SPUR Lisp: Design and Implementation

Benjamin Zorn
Paul Hilfinger
Kinson Ho
James Larus

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California '
Berkeley California

24 September 1987

This research was funded by DARPA contract number N00039-85-C-0269 as part of the SPUR
research project.

Abstract

This document describes SPUR Lisp, a Common Lisp superset designed and implemented
at U.C. Berkeley. Function calling sequences, system data structures, memory management
policies, etc. are all described in detail. Reasons for the more important decisions are given.
SPUR Lisp is implemented on BARB, a software simulator for SPUR hardware. In addition
to describing the design of SPUR Lisp, this paper provides documentation for the BARB
simulator, the SPUR Lisp compiler, and associated tools.

Contents

1

Introduction 1
1.1 OTigins . . . v v v v e e e e e e e 1
1.2 Notation v o i e s e e e e e e e e e e e e 2
1.3 Document OVEIVIEW v+t o v v v vt e et e e e e e e 2
Data Types 3
2.1 Machine Data Types o oo it i 3
22 LispDataTypes« o v v i it i i vt 3
2.3 Immediate Data Types « « v v o v i v i i b e e e e 4
2.4 Symbol and List Data Types 5
2.5 Integer Vectorso v i v ittt 6
2.6 Bignumsand Stringso e 6
2.7 General Vectors v v v v v v e e e e e e e e e e e e e 7
2.8 Array Header Objects v 8
2.9 Numeric Data Types o v i i i i i e e e 9
2.10 Data Types Related to Functions 9
2.11 Special Data Types« v o i i it i 13
System Organization in SPUR Lisp 14
3.1 Memory Organization of SPUR Lisp IR 14
3.2 SPUR Lisp Register Assignment, 16
3.3 Additional System Constants e e 17
3.4 System Structures Associated with Functions 18

3.4.1 The Unresolved Reference List 20

342 Caller Sets . . . v v v v it e e e e e e e 21
SPUR Lisp Function Calling Conventions 22
4.1 Argument Register Assignment 22
4.2 Function Calling Sequence oo 22
4.3 Function Entry Sequence oo 25
4.4 Function Return Sequenceo oo 26
45 Multiple Values 0 i 26
4.6 Calling Interpreted Functions oo 28
47 Catchand Throw« . i i it e e et e e e 29
Memory Management in SPUR Lisp 31
5.1 Generation Garbage Collection 31
5.2 Hardware Support for Memory Management. 31
5.3 Organization of Spaces in Memory 32
5.4 Memory Consistency Issues 32

5.4.1 Allocation Sequencesot 34

5.4.2 Stores into General Vectorso 35

5.4.3 Stores into Integer Vectors.o 36
5.5 Multiprocessor Garbage Collection 37

Runtime Operation of SPUR Lisp

6.1

6.2

The
7.1

7.2
7.3

Runtime Primitives

6.1.1 Allocation Primitives.

6.1.2 Vector and Array Primitives

6.1.3 Arithmetic Primitives

6.1.4 Logical Primitives

6.1.5 String Primitives

6.1.6 Miscellaneous Primitives . . .

Error Handling
SPUR Lisp Implementation
Components of SPUR Lisp

7.1.1 BARB: the SPUR Simulator

7.1.2 SLC: the SPUR Lisp Compiler

7.1.3 RT: the SPUR Lisp Runtime Kernel
7.1.4 CODE: the SPUR Lisp Common Lisp Implementation
7.1.5 TH: SPUR Trap Handlers . .

7.1.6 SPLASM: the SPUR Lisp Assembler
7.1.7 ZEUS: the SPUR Lisp Creator
Implementation Status

The Future of SPUR Lisp

Summary of SPUR Lisp Data Types

B.1
B.2
B.3
B.4
B.5
B.6

B BARB: The SPUR Simulator

Purpose
Organization
Flags to BARB
The BARB Interactive Shell
Using BARB
Implementation Status

.............

............

.............

........

SLC: The SPUR Lisp Compiler

C.1
c.2
C3
C4

RT:
D1
D.2

Purpose
Organization
Using the SPUR Lisp Compiler
Implementation Status

.............

The SPUR Lisp Runtime Kernel
Organization
Implementation Status

.............

CODE: The SPUR Lisp System

E1l
E2

.............

Organization
Compiling the SPUR Lisp System .

ii

......................

......................

......................

......................

......................

......................

......................

......................

......................

.....................

........

..................

.....................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

......................

39
39
39
41
42
44
45
46
48

50
50
50
50
53
53
53
53
54
54
55

57

59
59
59
61
62
64
65

67
67
67
69
70

F TH: SPUR Trap Handlers
F.1 Introduction to SPUR Traps

.....................

F2 Resetand Error Traps o o v it it it et e e

F.3 Window Overflow and Underflow Traps

....................

F.4 Tagand Generation Traps o i v v v it it it oo n
F5 User Traps v o v i i i it i e e e e e e e s e e e e e e

G SPLASM: The SPUR Lisp Assembler

G.1 SPLASM SyntaX o v i i it e e e e e e e e e e e e e e e
G.1.1 Imstruction Syntax i .
G.1.2 Register Specifiers L. e
G.1.3 Using Lisp macrosin SPLASM Files

G.2 Organization of SPLASM i

H ZEUS: The SPUR Lisp Creator

iii

78
78
79
79
80
81

82
82
82
85
86
86

87

List of Figures

O 00 IO U W N+

L
-0

N DO DD D) = e e e s
W N H O WO=1O0, Ot b WK

SPUR CPU Register Organization 3
SPUR Lisp Pointersin Memory v v v v i v v v v v v v v 3
Format of SPUR Character Immediate Data. 5
Structure of a Symbol Object 5
Structure of an I-Vector Header, 7
I-Vector Representing the Bit Vector #*101001111 7
Structure of a G-Vector Header 8
Structure of an Array Header Object 8
Memory format of a Short Float 10
Memory format ofaLong Float 10
Memory format of an Extended Float 10
Structure of a Function Code Vector 11
Linkage between Function Code Vector and Constants Vector 12
Structure of a Function Constants Vector 12
Memory Organization of SPUR Lisp 14
Overlapping Register Window Design on the SPUR Processor 16
Structure of the Unresolved Reference List 20
Argument Registers and Miscellaneous Stack for thecall (£ 1 2 3 4 8) . 23
Structure of SPUR Lisp Catch Frame 29
Division of Heap into Spaces and Remembered Lists 34
Phases of the SPUR Lisp Compiler, 67
Phases of the SPUR Translator 68
Format of the ZEUS Memory Image File e 88

iv

List of Tables

= © 0~ O O Wi

SPUR Lisp Data Type Codeso 4
SPUR Lisp Global Register Assignments 17
SPUR Special Register Assignments 18
Contents of the System Constants Vector 19
SPUR Lisp Argument Register Assignments 22
Allocation Variables in the System Constants Vector 33
Numeric Codes for rt-boole Primitive. 44
SPUR LiSp TIaps . . . v v v v v it e v e e e e e e e e i e e e e e e e s 49
SPUR Lisp Traps (continued)o 51
SPUR Lisp Traps (continued)o oo vt 52

1 Introduction

1.1 Origins

SPUR Lisp is a Common Lisp [Ste84] superset that will run on SPUR, a multiprocessor
workstation being designed and built at U. C. Berkeley [HLE*85]. SPUR will consist of
6—12 processors connected to 32 megabytes of memory through a shared system bus. One
of the many interesting features of SPUR is that each CPU contains special hardware for
executing Lisp programs. This document describes the parts of the SPUR architecture
that are relevant to the Lisp implementation. A more complete architectural description is
provided in [THL*86].

SPUR Lisp is a derivative of Spice Lisp developed at Carnegie-Mellon University. The in-
ternal data structures and system organization of Spice Lisp are well documented [WFG85].
Because SPUR Lisp is derived from Spice Lisp, some of its structures are similar to those
of Spice Lisp. We will refer the reader to the Spice Lisp document whenever the systems
are essentially the same. On the other hand, Spice Lisp is implemented for the Perq, a
microcoded workstation, so there are many differences between the two Lisp systems.!

SPUR Lisp is still being designed and implemented. We expect that as Common Lisp
evolves, our Lisp will also evolve to keep up with the standard. An important part of the
SPUR Lisp system—language support for multiprocessing—has undergone several design
revisions and has not been implemented. This document will concentrate on uniprocessor
SPUR Lisp. A later document will describe the details of our multiprocessor implementa-
tion.

Simulations have shown that SPUR workstations will be high performance Lisp ma-
chines [THL*86]. When SPUR hardware is available at Berkeley, we expect people to use
SPUR Lisp for a variety of exploratory programming projects. The design of SPUR Lisp
will continue to evolve as new ideas are tested and proven.

This document is written for two purposes. The first is to provide a single reference for
information about the internal design of SPUR Lisp. To achieve this goal, we have divided
the document into two parts. The main body of this report describes the internal data,
structures and conventions of SPUR Lisp. The appendices are a collection of short pieces
that describe the current state of SPUR Lisp and its associated tools.

The second purpose of this document is to provide a written rationale for the decisions
made as we designed SPUR Lisp. A rationaleis important because although design decisions
are implicitly documented by an implementation, the reasons for the decisions are often
lost. We hope to collect our reasoning in this document for future Lisp designers and
implementors.

1Readers familiar with the Spice Lisp internal design document [WFG85] will note that this document has
a similar organization. Being quite familiar with the Spice Lisp documentation, we found it well organized
and informative. We hope that this document is as usable as theirs.

1.2 Notation

We use standard terminology throughout this document. Lisp objects are usually manip-
ulated indirectly through references to them. An object reference is a typed pointer to an
object (we use the term pointer for short). In SPUR Lisp, object references have three
parts: a 32-bit virtual memory address, a 6-bit type tag, and a 2-bit generation number
that is used for garbage collection. We refer to the 32-bit portion of a pointer as the data
of the pointer. The 8 bits of combined type tag and generation number are manipulated by
the hardware as a unit, and are called the typegen of the pointer. We use the term cell to
refer to a location in memory in which a pointer is stored.

Numbers in this document appear in several radices. With no radix specified, numbers
are decimal. Numbers in other radices will be represented as in Common Lisp. For instance,
hexadecimal numbers are prefixed with #x, octal numbers with #o, and binary numbers
with #bD.

In this document words are 32-bit quantities. Doublewords are 64-bit quantities. The
numbering of bits and bytes within a word corresponds to the SPUR hardware description
[Tay85]. Bits in a word are numbered least significant to most significant, right to left, from
0 to 31. Bytes are numbered right to left from 0 to 3.

1.3 Document Overview

Section 2 presents basic machine data types followed by the Lisp system data types. Section
3 describes the organization of system data structures. Section 4 presents function calling
sequences. Section 5 describes SPUR Lisp memory management. Section 6 describes the
runtime operation of SPUR Lisp. Section 7 presents an overview of the existing SPUR
Lisp implementation. Each of the appendices provides specific information about a major
component of SPUR Lisp.

2 Data Types

2.1 Machine Data Types

The SPUR CPU contains 40-bit tagged registers, as shown in figure 1. The 32-bit ad-
dress/data portion is distinct from the 8-bit typegen portion. Separate instructions manip-
ulate the 8-bit typegen portion as a unit.

gen type data
2 6 32

Figure 1: SPUR CPU Register Organization

The memory for SPUR is standard 32-bit memory. Pointers are placed in two consecu-
tive 32-bit locations. The address portion is placed in the first 32 bits and the typegen is
placed in the lower byte of the next 32 bits (figure 2).2 All pointers in memory must be
aligned to doubleword boundaries.

#x00 data
#x04

gen type

24 8

Figure 2: SPUR Lisp Pointers in Memory

Arithmetic in SPUR is handled both in the CPU and in a floating point coprocessor
(FPU) . The SPUR CPU contains a 32-bit ALU capable of adding two 32-bit integers.
Multiplication of integers and addition and multiplication of floating point numbers requires
the FPU. The coprocessor performs IEEE standard floating point operations on three sizes
of operands: short float (32-bit), long float (64-bit), and extended float (80-bit). The FPU
coprocessor is described in detail in [ABPWS85].

2.2 Lisp Data Types

Lisp data falls into two general categories: immediate values that fit in the 32-bit data
portion of a pointer and indirect data that is pointed to by these bits. In SPUR Lisp,

In the memory containing pointers, 3 bytes out every 8 bytes are unused. To avoid wasting this memory,
a SPUR workstation would need 40-bit memory, which would require the design of custom memory boards.
Because SPUR is a prototype research machine, funds and design time are limited. We chose to concentrate
on more interesting architectural issues rather than custom memory design.

3

there are two immediate types: fixnum (the Lisp term for “small” integers) and character.
All other data types are indirect. Objects of indirect data types are created in memory.
Because pointers in memory are aligned to doubleword boundaries, all objects that contain
pointers must be allocated on doubleword boundaries.

The upper bit of a SPUR type tag indicates whether a pointer references immediate or
indirect data. This allows the hardware to check for immediate types by looking at a single
bit. In addition to immediate and indirect types, some type tags are reserved for special
operations like garbage collection. Table 1 lists all the type codes and their meanings. The
following sections describe each data type in detail. Appendix A summarizes the SPUR
Lisp data types.

NAME CODE | CATEGORY DESCRIPTION
fixnum 0 immediate | —23T < integer < 2°1 — 1
character 16 | immediate | ASCII character with extra bits
nil 32 | indirect Lisp nil
cons 33 | indirect list element
symbol 34 | indirect Lisp symbol
i-vector 36 | indirect vector of k-bit integers
string 37 | indirect character string
g-vector 38 | indirect vector of pointers
function 39 | indirect compiled function ob ject
array 40 indirect array header
gc-forward 41 | special marks forwarding pointers
undefined 43 special marks unbound symbols
unused 44 special impossible tag
cclosure 45 | indirect compiled closure object
short-float 56 | indirect 32-bit IEEE short float
long-float 57 | indirect 64-bit IEEE long float
extended-float [58 [indirect 80-bit IEEE extended float
bignum 60 | indirect arbitrary sized integer
complex 61 indirect complex number
ratio 62 | indirect rational number

Table 1: SPUR Lisp Data Type Codes

2.3 Immediate Data Types

There are two immediate data types in SPUR Lisp: fixnum, and character. Fixnums are
32-bit two’s-complement integers. Characters are 32-bit objects that contain 8-bit ASCII
characters with additional font and bits information as defined by Common Lisp. The
format of character immediate data is illustrated in figure 3.

gen type data
0 16 unused font bits ASCII code

2 6 8 8 8 8

Figure 3: Format of SPUR Character Immediate Data

The generation number of all immediate types is generation 0, the oldest generation.
They are given the oldest generation so that when they are stored into other objects, such
as arrays, they will not cause an unnecessary generation trap (see section 5).

2.4 Symbol and List Data Types

Symbols are defined in Common Lisp to have 5 components: value, function definition,
property list, print name, and package. In SPUR Lisp, symbols are contiguous blocks of 5
pointers corresponding to the 5 values. The layout of a symbol is shown in figure 4. Because
each pointer occupies 8 bytes, symbols are 40 bytes long.

#x00 value

#x08 function definition
#x10 property list
#x18 print name
#x20) package

Figure 4: Structure of a Symbol Object

Lists are made from cons objects, which are pairs of pointers called the car and cdr,
respectively. A cons occupies 16 bytes.

The special object nil is both a symbol and the empty list. In SPUR Lisp, nil has all
the fields of a symbol. Except for its type code, nil really is a symbol. By definition, car
of nil and cdr of nil are both equal to nil. By setting the value and function definition
cell of the nil symbol to nil, nil can be accessed both as if it were a cons object or a

symbol.

2.5 Integer Vectors

Integer vectors, also called i-vectors , store raw bits of data. Objects with the types i-vector,
string, and bignum have the same internal structure and are distinguished by their type tags.
Abstractly, i-vectors are vectors of untagged k-bit integers, where k is determined by a field
in the header of the vector. This arrangement allows i-vectors to be used to represent
vectors of bits, characters, and instructions.

The access-type of an i-vector determines how the bits in the vector are interpreted.
The bit-width, k, of the integers in the vector is related to the access-type according to the

formula:
k= 2access—type

For example, access-type 0 indicates the i-vector is a bit vector. Access-type 3 indicates
a vector of bytes (e.g., a string), and access-type 5 indicates a vector of 32-bit quantities
(e.g., instructions). SPUR Lisp supports access-type values of 0 through 5.

I-vectors are implemented as vectors of untagged 32-bit quantities with a header. El-
ements of i-vectors are numbered 0 through n — 1, where n is the number of elements in
the vector. The vector elements are packed into the 32-bit quantities from right to left,
low-index to high-index. I-vectors are aligned to doubleword boundaries. The padding
needed to align an i-vector to a doubleword boundary is left unused and its contents are
not defined. This space is considered part of the i-vector and is moved and copied as such.

The header of an i-vector contains 4 fields in 64 bits as shown in figure 5. The 24-bit
length field contains the size of the entire i-vector, including the header and padding, in
32-bit words. The access type field has already been explained. The subtype field is unused
in every i-vector structure except bignums and caller sets. The second 32-bit word of the
header contains the number of elements in the vector. An element is a k-bit quantity, as
defined by the i-vector access-type. Figure 6 illustrates an i-vector used to represent a bit
vector.

2.6 Bignums and Strings

The i-vector data structure is used to represent many data types. Strings and bignums have
the same internal format as i-vectors, but have different type tags.

Bignums are arbitrary size integers that arise when an arithmetic operation creates an
integer larger than the largest machine integer. Bignums are represented as i-vectors with
8-bit elements (access-type 3). A bignum is stored as a vector of bytes, with the low order
byte having index 0. The sequence of bytes represents a two’s complement integer. The
subtype field of bignums is used to redundantly encode the sign of the bignum, with a
subtype of 0 indicating a non-negative integer, and a subtype of 1 indicating a negative
integer.3

3Currently, SPUR Lisp performs arithmetic operations on bignums a byte at a time. If bignums were
manipulated 32 bits at a time, as the hardware allows, bignum arithmetic would be many times faster than
it currently is. [CM87]

#x00 | subtype | access-type length in 32-bit words

4 4 ’ 24
#x04 number of k-bit elements in the i-vector

32

Figure 5: Structure of an I-Vector Header

#x0 at=0 st=0 length = 4

Figure 6: I-Vector Representing the Bit Vector #*101001111

A string is stored as a sequence of 8-bit ASCII characters in an i-vector. In SPUR Lisp,
strings are NULL (0) terminated to follow the conventions of the UNIX and Sprite operating
system library calls. The NULL byte appears immediately after the last character in the
string and is inaccessible from Lisp programs.

2.7 General Vectors

General vectors, or g-vectors , are vectors of SPUR Lisp pointers. They are used to imple-
ment aggregate types including arrays, structures, and hashtables. A general vector consists
of a 64-bit header attached to a vector of 64-bit pointers as shown in figure 7. The fields
in the header are similar to the fields in the i-vector header. The header mark field is used
to distinguish the g-vector header from elements of the g-vector for purposes of scanning
through the g-vector. The two bits of the header mark field are always both zeros (see
section 5.4.2). The subtype field of g-vectors is used to distinguish structures from other
g-vectors. A 1 in the subtype field indicates that the g-vector represents a structure; all
other g-vectors contain a 0 in the subtype field.

head_er_ mark

0 oo [subtype length in 32-bit words
_2— 2 4 24
#x4 number of elements in the g-vector
32

Figure 7: Structure of a G-Vector Header

2.8 Array Header Objects

An array header has the same form as a general vector and is used to implement multidi-
mensional, resizable, and displaced arrays. SPUR Lisp arrays are implemented indirectly,
using the same representation as Spice Lisp. Array pointers point to an array header ob-
ject, which in turn points to the array data. The array header object has the structure of
a g-vector with the elements of the g-vector describing the properties of the array. Figure
8 illustrates the structure of array header objects.

#x00 ECTOR HEADER

#x08 data vector

#x10 number of elements

#x18 fill pointer

#x20 displacement

#x28 range of first dimension
ranges of additional dimensions...

Figure 8: Structure of an Array Header Object
The fields of the array header object are:

data vector A SPUR Lisp pointer to the object containing the data for the array. This
object may be an i-vector or g-vector.

number of elements The number of array elements that can be placed in the array (i.e.,
the number of elements in the object pointed to by data vector).

fill pointer The number of elements of the array that are considered to be in use.

displacement A number used to provide displaced arrays as defined by Common Lisp.
This number is added to the calculated index into data vector before an item is
accessed. '

range of first dimension This is the index range of the first dimension of the array.
Likewise for additional dimensions.

2.9 Numeric Data Types

SPUR Lisp has seven numeric data types: fixnum, bignum, short-float, long-float, extended-
float,* complex, and ratio. fixnum and bignum types have already been described.

Floating point numbers adhere to the IEEE floating point arithmetic standard [IEE85].
The floating point data types are not immediate objects. Short floats are only 32-bits
long and might appear to be good candidates for immediate objects. However, the SPUR
processor executes floating point operations on a floating point coprocessor (FPU), and
floating point data must be moved to the coprocessor before operations can be executed.
Unfortunately, the SPUR CPU cannot transfer data from its registers to the FPU. If short
floats were immediate values, the SPUR CPU would have to copy them to memory before
sending them to the FPU. Because short floats are allocated in the same area as objects that
contain pointers, they must be doubleword aligned and padded to 64 bits in memory. Long
floats are also 64-bits long. Since short floats and long floats currently use the same amount
of memory, and since the FPU already converts all floating point operands to extended
precision before operating on them, we feel strongly that short floats should be eliminated
from SPUR Lisp. Extended floats are 80-bits long, and are stored in 128 bits in memory.
The bits used to doubleword align floating point numbers have undefined values. Figure 11
illustrates the memory formats of the floating point data types in SPUR Lisp.

The two other numeric data types in SPUR Lisp are complex and ratio. SPUR Lisp
implements both of these types as pairs of numbers. For complex numbers, the pair contains
the real and imaginary parts of the number, respectively. For rational numbers, the pair
contains the numerator and denominator of the number in that order.

2.10 Data Types Related to Functions

Compiled functions in SPUR Lisp are implemented as two objects linked together: the
object that contains the code for the function (the code vector) and the object that contains
the constants for the function (the constants vector). A function pointer points to the code
vector, which contains a pointer to the constants vector. An alternate design would be to
put both the constants and the instructions into the same object. In one configuration, the
constants would precede the code for the function. We chose not to do this because the start

4The extended-float type is not currently implemented, but we expect it to be easy to add at a later time.

#x00
#x04

#x00
#x04

#x00
#x04

#x00
#x04

1 8 23
k5| exponent <30:23> fraction <22:0>

Figure 9: Memory format of a Short Float

11 20

exponent <62:52> fraction <51:32>

123 { K

fraction <31:0>

32

Figure 10: Memory format of a Long Float

17 14

'-A

exponent <62:46>

27 2 3

fraction <63:32>

fraction <31:0>

32

Figure 11: Memory format of an Extended Float

10

LD/ST_EXT1

LD/ST_EXT2

of the code for a function would not be a constant offset from the pointer to the function
object. In another configuration, the constants would follow the code for the function. We
decided against this alternative because the constants could end up far from the function
pointer. SPUR only allows 14 bits of constant displacement in a load instruction. Large
functions might make the function constants unreachable using a load with a constant offset.
Our design uses existing object formats (i-vector and g-vector) with one minor modification.
A single-object compiled function would require an entirely new object format since it would
contain both tagged values (the constants) and untagged values (the instructions).

Code vectors are similar in structure to i-vectors, except that they also contain a tagged
pointer to the constants vector. The header of a code vector has the same format as the
header of other i-vectors with an access-type of 5 (element field width of 32). Other than
the first two 32-bit elements of the code object (the pointer to the constants vector), each
element in the code object is a SPUR instruction. Figure 12 illustrates the format of a code
vector and figure 13 shows how the code vector and constants vector are linked.

#00 | at=5[st=0 | #of32-bit words = # of instructions + 4
- i-vector header
#x04 # of 32-bit elements in code object = # of instructions + 2
#x08 address part of constants vector pointer
oo . constants vector pointer

#x0c byte=0 | { c.v.tag

#x10 instruction (offset 0)

cods for function
#x14 instruction (offset 1)
additional instructions ...

Figure 12: Structure of a Function Code Vector

The constants vector for a function is a g-vector that contains constants used in the
code of the function. Figure 14 shows its structure. The first 4 elements of the g-vector are
always interpreted in the same way.

argument number encoding A fixnum that encodes the argument discipline of the func-
tion. Bit 31 is 1 if the function is a special-form. Bit 30 is 1 of the function takes an
&rest argument. Bits <29:17> indicate the number of local variables the function
uses. Bits <16:8> indicate the minimum number of actual arguments the function can
accept. Bits <7:0> indicate the maximum number of actual arguments the function
can accept.

function name The symbol that names the function.

argument list The function’s formal argument list.

1

#x00 : rrerrrrerre— £x00
#x08 constants vector pointer __l-_. argurhent encodlng ' #x08
10 instruction 0 instruction 1 function name #x10
#x18 instruction 2 instruction 3 argument list #x18
#x20 additional instructions... caller set 20
st
vector constant 0 28
additional constants... #x30
constants vector

Figure 13: Linkage between Function Code Vector and Constants Vector

caller set A vector of addresses that identifies all the functions that call this function.
Section 3.4.2 fully explains the structure and purpose of the caller set.

#x00 CTORHE

#x08 srgument number encoding

#x10 function name

#x18 argument list

#x20 caller sot

#x28 constant 0
additional constants...

Figure 14: Structure of a Function Constants Vector

After the first four constants, the constants vector contains pointers to constants for the
function, such as symbols, numbers, structures, etc.

One important property of function objects is that the beginning of a function object
can be identified by scanning back from any instruction in the function. A debugger needs
to do this when doing a backtrace. SPUR Lisp functions contain a marker that distinguishes
their beginning. This marker is the fourth 32-bit word in the code vector and contains the
typegen of the constants vector pointer. The upper byte of this word is always set to zero.
Since SPUR contains no instructions with a zero opcode, this word signals the beginning
of the instructions in the function object.

12

Another type related to functions is the cclosure type, used for compiled closures. A
compiled closure is a pair of values. The first value is a g-vector containing the environment
of the compiled closure. The environment for a compiled closure contains the values of the
variables closed over in the environment. The second value in a cclosure is the function
object of the compiled closure.

2.11 Special Data Types

There are several data type tags used for special purposes in SPUR Lisp. They are gc-
forward, which is used during garbage collection to indicate that an object has been relo-
cated; undefined, which is stored in the value cell of symbols that have not been given a
value; and unused, which is used in comparisons requiring a tag value that never matches
the tag on an actual object. The unused type was used for the endp comparison condition.
endp checked for tag equality and would trap on any type other than cons or nil . We used
the endp condition with the tag trap instruction to trap if an object was not a cons or
nil. Because we did not want the instruction to trap in any other circumstance, the test
compares the tag of the operand with unused, so the test will always fail.

13

3 System Organization in SPUR Lisp

3.1 Memory Organization of SPUR Lisp

SPUR Lisp operates in the 32-bit virtual address space as provided by the SPUR hardware
and the Sprite operating system [0CD*87]. Figure 15 illustrates the memory organization

of SPUR Lisp.

SxtLLELL£0

Segment 3
(private data)

#xd40000000

#xc0000000

Segment 2
(shared data)

#x80000000

Segment 1
(non-Lisp text)

#x40000000

Segment 0
(operating system)

#x00000000

miscellaneous stack

binding stack

saved window stack

heap

trap handlers

Figure 15: Memory Organization of SPUR Lisp

r4

The SPRITE operating system divides the address space into 4 segments. One of the
segments—the kernel segment—is reserved for the operating system kernel and is unusable
by SPUR Lisp. Memory for the kernel segment resides in addresses #x00000000— #x3fffffff

14

(segment 0). Segment 1 (#x40000000—#x7{ffffff is used for non-Lisp user program text
(such as a C program). Segment 2 (#x80000000—#xb7777777) is shared between all pro-
cesses running Lisp and will contain the heap. Segment 3 (#xc0000000—#xffffffff) contains
private data for a process, such as the runtime stack. From segments 2 and 3, uniprocessor
SPUR Lisp allocates 4 memory regions: the heap, the saved window stack, the miscella-
neous stack, and the binding stack. SPUR Lisp uses non-writable pages to delimit these
regions so that memory accesses outside the allocated regions cause processor traps. The
trap handler for these traps can invoke the garbage collector (as in the heap), grow a stack
(as in the miscellaneous stack), or raise an error if that is preferred.

All SPUR Lisp objects are allocated in the heap. Because multiprocessor SPUR Lisp will
share the heap between processes, we allocate the heap in segment 2 starting at #x80000000
and growing upward to a boundary determined by the memory allocation system.’ Gen-
erally, the size of the heap is tens of megabytes. A global register (r8) points to the first
free doubleword in the heap, which is subdivided for effective storage reclamation. Section
5 describes the structure of the heap in detail. Objects of all types are allocated from the
same area of memory and not segregated by type as they are in some Lisp implementa-
tions [M0o85,WF84]. For this reason, all objects in the heap are doubleword aligned.

The second memory region in SPUR Lisp is the saved window stack . SPUR contains
overlapping on-chip register windows similar to those in RISC {[PS81] and SOAR [UBF*84].
SPUR contains eight register windows. Each register window contains six incoming argu-
ment registers, ten registers for local variables, and six outgoing argument registers which
overlap with the incoming arguments of the next window (figure 16).

In addition to the 22 registers local to a particular function call, SPUR contains 10
global registers. In all, 32 registers are available to an executing function. The SPUR
processor contains eight on-chip register windows. When the nesting level of function calls
exceeds seven, a register window is copied to memory.® The saved window stack is a region
of memory used to store overflowed register windows. The saved window stack is private
to a process and stored in segment 3 beginning at #xc0000000 and grows toward larger
addresses. A special register (s2) in the SPUR hardware points to the next free space to
which a register window will be copied.

The miscellaneous stack is also private to a process and contains pointers to various items
like arguments and local variables that will not fit in the on-chip registers, catch frames, etc.
The miscellaneous stack contains only pointers and grows toward smaller addresses starting
from #xfffffff0. The miscellaneous stack pointer is a global register (r4) that points to the
first free location in the stack. The miscellaneous stack is used for the following purposes:

o It holds arguments to functions that will not fit in the six arguments registers provided
by the hardware.

5In this discussion a region growing upward means that it grows to larger addresses.
Only seven windows can be used because the trap handler that copies register windows to memory must
also have a window to operate in.

15

incoming argments
5 g arg
ri6é
local registers
r25 r10
r26 outgoi nt i i nt
ing arguments incoming argments
31 going arg g arg 5
r16
local registers
r25
100l ot r26
outgoing arguments
going arg a1
caller window callee window

Figure 16: Overlapping Register Window Design on the SPUR Processor

e Returned multiple values that will not fit in the argument registers are stored on this
stack.

o It holds compiler temporaries that do not fit into the ten local registers.

e Catch frames, described in section 4, are also placed in the miscellaneous stack.

The final memory region is used for the bindings of special variables. The binding stack
is a stack of pairs of pointers that grows toward higher addresses starting at #xd0000000.
Each pair consists of a symbol and the value associated with that symbol. The binding
stack pointer is a global register (r5) that points to its first free element. SPUR implements
special variables with shallow binding. The value cell of a symbol contains the current
binding of a special variable. The binding stack contains saved bindings of rebound special
variables. Multiprocessor SPUR Lisp may use deep binding to implement dynamic binding.
In that case, the binding stack and binding stack pointer may be unnecessary.

3.2 SPUR Lisp Register Assignment

The SPUR hardware provides ten global general registers and six special registers. Tables
2 and 3 summarize how the SPUR Lisp system uses these registers.”

"Some global registers are unusual in that they point to objects that are not valid SPUR Lisp objects (as
defined in section 2). We chose to give these registers fixnum tags so they appear to be integers for purposes
of addition and garbage collection relocation.

16

NAME DESCRIPTION
10 fixnum zero. Fixed by the hardware.

rl Lisp nil .

12 Reserved for compiler temporary values.

13 System constants vector. A g-vector containing additional system
constants and variables.

r4 Miscellaneous stack pointer. Address of the next free cell on the

miscellaneous stack (from #xfffffff0 down). fixnum tag.

5 Binding stack pointer. Address of the next free cell on the binding
stack (from #xd0000000 up). fixnum tag.

6 Catch frame pointer. Address of the current catch frame (initially
nil). fixnum tag when non-nil.

7 Reserved for compiler temporary values.

8 Heap pointer. Address of the next free cell on the heap (from
#x80000000 up). Because most objects allocated in the heap are
cons objects, the heap pointer has the cons type tag.

9 Reserved for trap handling by the operating system.

Table 2: SPUR Lisp Global Register Assignments

Registers 2 and 7 are reserved by the compiler so that temporary values can be spilled
to memory and retrieved from memory without using any of a function’s local registers.
Temporaries and local variables that do not fit in the registers are stored in memory or
“spilled”. SPUR is a load/store architecture, which means that all operands to instructions
must be loaded into registers. For SPUR to operate on spilled temporaries, they must
be placed in registers. Two registers are needed because some instructions require two
operands, and if they are both spilled temporaries, then they must both be loaded into
registers at the same time.

Register 9 is used by the window trap handlers. The window overflow trap handler
needs to save the registers in the previous window. To do this, the trap handler changes the
current window during its execution. Register 9 is used to save a local value that will remain
constant while the window stack pointer changes. Register 9 is not entirely necessary, but
the window trap handlers would execute one instruction slower if a local register were used
instead. If a better use for register 9 becomes clear, we will use it for that purpose.

3.3 Additional System Constants
As is specified in table 2, register 3 points to a general vector containing additional system

variables that did not fit in the global registers. The system constants vector contains a
variety of variables defined when the system is created. The name “system constants” was

17

NAME DESCRIPTION
sO (upsw) | 32-bit user program status word. See the SPUR hardware
description for details [Tay85).

sl (cwp) Current window pointer. 3-bit register that indicates which
register window is in use.

s2 (swp) Saved window pointer. 32-bit address of the next free area
to which overflowed register windows will be copied (from
#xc0000000 up). The hardware compares bits <9:7> of this
register against s1 (the current window pointer) to determine
when a window overflow or underflow will occur.

3 (pc) 32-bit address of the currently executing instruction.
s4 (fpu pc) | FPU program counter. 32-bit address of last FPU instruction
issued.

Table 3: SPUR Special Register Assignments

1

poorly chosen, for as can be seen, many of the “constants” are actually variables. Table 4
describes each of the constants and variables.

3.4 System Structures Associated with Functions

When we discuss function calls, we will use the term caller to refer to the function mak-
ing the call, and callee to refer to the function being called. Many Lisp implementations
call functions indirectly through the function definition cell of a symbol [Mo085,WFG85].
Insteading of placing the address of a callee directly in a call instruction, the address of
the callee is computed each time a call is made. The address is retrieved from the function
definition cell of the symbol that names the callee. Each call requires one or two additional
loads to determine the actual address of the callee.

This implementation has several advantages. Because all calls are indirect, when a new
definition for a function is provided, only one value must be changed (the function definition
cell of the symbol naming the callee) and all callers will invoke the new version of the callee.
Similarly, keeping track of unresolved references is easy with indirect function calls. Since
all references to functions go through the definition cell of a symbol, an undefined value
indicates an undefined function. The main disadvantage of indirect function calls is the
overhead to find the address of the function on every function call. Since function calls are
frequent in Lisp and SPUR calls are fast, several cycles per function call is a significant
overhead.

SPUR Lisp implements function calls directly. Each call instruction contains the actual
address of the function being called. This implementation eliminates the overhead asso-

ciated with indirection, but requires additional information to be maintained for correct
function definition and redefinition. We have looked at the costs and performance benefits

18

NAME

INDEX

DESCRIPTION

unresolved_references
allocation variables

package_names

lisp_true

lisp.nil

find_symbol_address

iﬁterpreter.address

bit_table

current_space

deep.binding_marker

1-18

19

23

25

26

27-58

59

60

The unresolved reference list is a data structure
maintained by the loader (section 3.4.1).

Indices into various allocation spaces maintained
by the memory management software (section 5).

The symbol 1lisp:*package-names*, whose value
is the root pointer to all objects in the SPUR Lisp
system.

The symbol 1lisp::t returned from many predi-
cates.

A redundant copy of nil, the value in register 1.
This copy is used to initialize register 1 at system
startup time.

The symbol lisp:find-symbol. The function
find-symbol returns the symbol associated with
a particular print name. find-symbol is used to
locate symbols at system creation time.

The address of the function ¥%sp-internal-apply
that implements the SPUR Lisp interpreter.
fixnum tag.

This is a table of positive powers of two. Used
for setting bits in a bit vector (e.g., Common Lisp
sbit).

A fixnum indicating which space memory is cur-
rently being allocated in. Used for generation
garbage collection. '

A cons object, (0 . 0), used to mark the be-
ginning of special bindings for a function in the
deep binding implementation of SPUR Lisp.

Table 4: Contents of the System Constants Vector

19

of direct function calls, and the results are reported in [ZH87]. Here, we present the details
of our implementation.

3.4.1 The Unresolved Reference List

A Lisp function, £1, can contain a call to another function, £2, that has not been defined.
When £2 is defined, the unresolved reference to £2 in £1 must be resolved.

Constant 0 in the system constants vector contains a pointer to the unresolved reference
list. The unresolved reference list specifies all functions that have been referred to and not
yet defined, and for each of these, lists the locations of references made to these functions.
After a function is defined (using load or defun), the unresolved reference list is checked
to see if there are any unresolved references to the function. If there are unresolved ref-
erences, these are resolved by modifying the call instructions to call the correct address,
and the unresolved reference list is updated. Before the reference is resolved, the call
instruction contains a call to an error routine that reports the unresolved reference. Figure
17 summarizes the structure of the unresolved reference list.

((callee-symboll

((caller-functionl (offsetl offset2 ... offsetn))
(caller-function2 (offsetl offset2 ... offsetn))
o))

(callee-symbol2
((another-caller-functionl (offseti ... offsetn))
(another-caller-function2 (offsetl ... offsetn))
cee))
.2)

Figure 17: Structure of the Unresolved Reference List

The unresolved reference list is a list of lists. The car of each sublist is a symbol, called
the callee symbol, and the cdr of each sublist is another list of lists, called the caller list
for the particular callee. The callee symbol names a function that has not been defined
yet. The caller list is a list containing information about all the callers of the callee symbol.
When the callee symbol is defined, calls in all the functions in the caller list are updated
to reflect the actual address of the callee function. Each sublist of the caller list contains
information about one function that calls the callee function. The car of each sublist is
the caller function object and the cdr of each sublist is a list of offsets into the caller
function where references to the callee exist. The offsets are instruction offsets from the
first instruction, which is considered to be at offset 0.

20

3.4.2 Caller Sets

When a function is redefined, all calls to the old instance of the function must be updated.
This implies that each function must maintain information about all its callers. We store
this information in a data structure called the caller set, which is pointed to from the
constants vector of every function. Abstractly, the caller set records the addresses of all
functions that call a particular function. Unlike the unresolved reference data structure, the
exact location of every call to a function is not recorded. Ounly the caller function address
is recorded; to update calls in a particular function, all the instructions in the caller are
scanned. The addresses of individual calls are not stored because the caller sets would then
contain information about every call instruction in the Lisp system and be quite large. Our
implementation trades off the space required to store locations of the individual instructions
with the time required to scan a function object. Since defining functions is a relatively
infrequent operation, we consider this a good trade off.

The caller sets are straightforward to maintain. When a function is defined, its instruc-
tions are scanned to record the functions it calls. Ifit calls a function that is already defined,
then the function being defined is added to the caller set of the function it calls. If a call is
to an undefined function, that call is recorded in the unresolved reference list. Later, when
the reference is resolved, the calling function is added to the caller set of the function it
calls.

When a function is redefined, references to the old definition are updated. The caller
set of the old definition identifies all functions that contain obsolete calls. The instructions
of each of these caller functions are scanned, and calls to the old function are updated. In
SPUR Lisp, function objects are garbage collected like other objects. When all references,
such as pointers or call instructions, to a particular object are deleted, the storage used by
the object can be reclaimed.

Caller sets in SPUR Lisp are implemented as i-vectors of 32-bit function addresses. We
set the subtype field of the caller set to 2 so we can easily measure the space allocated to
caller sets. The first 32-bit slot of the caller set i-vector is used to store the current number
of callers in the caller set. The rest of the elements contain 32-bit addresses of function
code vectors. Caller sets are initially allocated with five slots for caller addresses. When the
initial size of the caller set is exceeded, a new caller set i-vector is allocated, and the entries
from the old i-vector are copied to it. The size of the new caller set i-vector is determined
as a function of the size of the old caller set i-vector. Our current policy is to double the
i-vector size until it contains several hundred callers, and then to increase it linearly by
several hundred callers at a time. Measurements indicate that most functions have less
than five callers. However, some functions, like error, have hundreds of callers.

21

4 SPUR Lisp Function Calling Conventions

4.1 Argument Register Assignment

Each register window in the SPUR architecture contains 6 registers for incoming arguments,
10 registers for local variables, and 6 registers for outgoing arguments that overlap with the
incoming arguments of the function being called. Table 5 illustrates how SPUR Lisp assigns
the incoming (r10-r16) and outgoing (r26-r31) argument registers.

INCOMING | OUTGOING DESCRIPTION

rl0 126 Return address. Set by the hardware.

rll r27 Number of actual arguments.

rl2 r28 First actual argument.

rl3 r29 Second actual argument.

rl4 r30 Third actual argument.

rl5 r3l Fourth actual argument if the number of ac-
tual arguments is exactly four. If there are
more actual arguments, this register points to
the fourth argument (located on the miscella-
neous stack) and has a fixnum tag.

Table 5: SPUR Lisp Argument Register Assignments

SPUR has a limited number of argument registers. To handle functions with more than
four actual arguments, we use the last argument register to point to the remainder of the
actual arguments, which are stored in memory on the miscellaneous stack. Arguments are
stacked consecutively on the miscellaneous stack in the same direction that it grows; later
arguments are placed at smaller stack addresses. Figure 18 illustrates the argument registers
and miscellaneous stack for a function call with five arguments.

4.2 Function Calling Sequence

When calling a function with fewer than four arguments, the calling function sets the
number of arguments, moves the arguments into the outgoing argument registers, saves
the miscellaneous stack pointer, and executes the call. After the function returns, the
miscellaneous stack pointer is restored. For example, the call (foo 1 2 3) would result in
the following sequence:®

8The assembly language used in this document is a simplified version of the SPUR assembly language
(SAS) documented elsewhere [Hil87]. The sequences presented here will not work in the actual assembler.
Furthermore, the sequences are provided to illustrate a point and may not be the optimal sequence or the
actual sequence used in many cases.

22

r10
ri1
r2
r3
ri4
ri5

return address

number of arguments = 5

first argument = 1

second argument = 2

third argument = 3

pointer to misc stack

o fourth argument = 4 r15-0

fifth argument = 5 r15-8

Nt 1op of Mis

ack . |current rd

l smaller addresses

Figure 18: Argument Registers and Miscellaneous Stack for the call (£ 1 2 3 4 5)

move r27, 3
move r28, 1
move r29, 2
move r30, 3
move rTMP, r4
call foo+16
nop

move r4, rTMP

number of arguments

arg 1

arg 2

arg 3

save misc stack pointer

(see below)

call is a two-cycle instruction
restore misc stack pointer

The offset in the call is 16 bytes from the function because we need to jump over the 8 byte
function object header and the 8 byte constant vector pointer to get to the first instruction of
the function. A slightly more complicated example involves a function with six arguments.
The call (foo 1 2 3 4 5 6) would result in the following instruction sequence:

move rTMP, r4
move r27, 6
move r28, 1
move r29, 2
move r30, 3
move r31, r4

store 4, r31(0)
store 5, r31(-8)
store 6, r31(-16)

add 4, r4, 24
call foo+16

nop

move r4, rTMP

’
’

save misc stack pointer
number of arguments

arg 1

arg 2

arg 3

set up additional args

; arg 4
; arg &
; arg 6

bump misc stack pointer

restore misc stack pointer

We follow the convention that a function’s caller saves the miscellaneous stack pointer
before a call and restores it after a call because a function that returns multiple values
uses the miscellaneous stack for values that do not fit in the registers. A caller cannot

23

know whether or not the callee will return multiple values. Functions that ignore multiple
values restore the miscellaneous stack pointer when the call returns. Functions that use the
multiple values restore the saved miscellaneous stack pointer after using the values on the
stack.

Recall that SPUR Lisp uses direct function calls (section 3.4.2). Placing the address of
the callee in the call instruction works well for conventional function calls. However, with
funcall and apply, the address of the callee is determined at runtime. The call (funcall
X) would result in the following instructions:

load rX, X ; place X in register rX
nop ; load is two cycle instr
move r27, 0O ; number of arguments
tag_cmp neq.tag, rX, symbol, L1 ; symbol?
load rX, rX(symbol-value-cell) ; load value

Li: tag_cmp neq_tag, rX, cclosure, L2 ; compiled closure?
load r7, rX(0) ; save closure environment
nop
load rX, rX(s) ; load closure function
nop

L2: tag_cmp_trap neq.tag, rX, function, ERROR ; function?
call_reg ri10, rX, 16 ; call_reg is not provided by

; the hardware (see below)

The SPUR hardware does not provide a call instruction that will transfer control to an
address in a register (e.g., call.reg). Instead, the hardware provides a jump to an address
provided in a regjster (jump.reg). jump_reg can be used to get the effect of call_reg if the
register window pointers are properly manipulated. Below is a code sequence that achieves
the effect of call_reg using jump_reg.

;3; original code sequence with call_reg

move rii, O ; zero arguments

load rFUNC, FUNC_ADDRESS ; load the function address
nop .

call_reg rFUNC

nop ; call_reg is two-cycle

;;; equivalent code sequence using jump_reg

move rii, O
load rFUNC, FUNC_ADDRESS ; TFUNC is a global register
nop
call labell ; change cwp
nop
jump done ; ‘return’ returns here
nop
labell: jump_reg rFUNC ; jump to correct address

24

nop ; jump_reg is two-cycle
done:

A call instruction to a nearby address is used to allocate another register window stack
frame and then the jump_reg modifies the program counter. Also note that the register
containing the jump.reg address must be global since it is used in two different register
frames, and the shared in/out registers are needed for passing arguments to the function
being called.

4.3 Function Entry Sequence

Common Lisp provides several different parameter mechanisms, including &rest, &optional,
and &keyword arguments and SPUR Lisp implements all of these. The exact entry sequence
to a function depends on the function’s formal parameters. If a function uses any constants,
which are stored in the constants vector, then we load the constants vector pointer into a
local register (r16) with the first three instructions of the function:

rd_spec ri7, s3 ; put the pc (s3) into ri7
load ri6, r17(-8) ; load constants vector into ri6
nop

Functions use the miscellaneous stack for temporary values and compiler locals that do
not fit in the local registers. The frame pointer points to the part of the miscellaneous
stack that contains these values. After setting up the constants vector, the function creates
a frame pointer in register 17 by saving the current value of the miscellaneous stack pointer
with the following instruction:

move ri7, r4 ; save frame pointer in ri7

All functions check the number of actual arguments against the number of formal argu-
ments. Functions without any &rest or Zoptional arguments test for an exact number of
actual arguments. Functions with an &rest argument test for a minimum number of actual
arguments. Functions with &optional arguments test that the number of actual arguments
falls within the minimum and maximum number of actuals allowed.

Functions with &optional arguments also use the number of actuals to branch to code
that initializes omitted values. Functions with &rest arguments create a list of the argu-
ments and change the number of actuals accordingly. &keyword arguments are parsed by
a runtime primitive that scans the actual arguments looking for keyword-value pairs. We
tried parsing &keyword arguments with in-line code, but this approach expanded the size
of functions with many keywords—in particular structure constructors.

Parsing of argument lists is done in two ways. If a function has an &rest argument in
addition to &keyword arguments, the actuals are made into a list and passed to the Spice
Lisp keyword parsing routines. In the case in which a function has &keyword arguments

25

but no &rest arguments, parsing of the actual arguments is done by hand-coded assembly
routines that scan the arguments in registers and memory. This approach is faster than the
previous one because it avoids construction of the &rest argument.

4.4 Function Return Sequence

Function returns occur in three stages. First, the return value(s) are moved to the incoming
argument registers. Register 11 indicates the number of values returned. Register 12 con-
tains the first return value. Additional registers store additional values if multiple values
are returned. Multiple values that require more than 4 registers are discussed in detail in
section 4.5.

After the return value is set, special variable bindings are undone. If the number of
bindings is known, then that number of unbind operations are generated. If the number
of bindings is unknown, then the binding stack is unwound to the point saved on function
entry.

The last stage of a function return is to execute the return instruction and return to the
address of the calling instruction (stored in r10) + 8, which skips over the calling instruction
and the instruction after it. Like call, return is a two-cycle instruction. For example,
consider a function that returns the value 24.

move rii, 1 ; return 1 value

move ri2, 24 ; set return value
return ri10, 8 ; return to saved pc + 8
nop ; two-cycle instruction

4.5 Multiple Values

Multiple values are created and reside, for the most part, in the outgoing argument registers
of the function that creates them. They are stored in the same format as actual arguments.
To return a multiple value, the function must copy the 5 outgoing arguments to the incoming
arguments. For example, to return the value returned by the call (foo), we execute the
following code:

move rii, O ; number of args to foo

move rTMP, r4 ; save misc stack pointer

call foo+16

nop

move ri1l, r27 ; copy back number of values

move ri2, r28 ; copy back all values from

move r13, r29 ; outgoing to incoming arguments
move ri4, r30

move ri5, r31 : do NOT restore the misc stack (r4)

return 110, 8

26

nop

There are advantages to having identical formats for multiple return values an multi-
argument function calls. multiple-value-list takes the multiple value that is returned
and passes it as an argument list to 1ist. For example, (multiple-value-list (foo))

produces:

move
move
call
nop

call
nop

move

r27, 0
rTMP, r4
foo+16

list+16

T4,

rTMP

2

number of args to foo
save misc stack pointer
make returned values into a list

restore misc stack only after
calling list

The next example illustrates how recovering values from multiple values is done. The
form multiple-value-setq assigns variables to the values returned. If there are more
variables than values, the remaining variables are set to nil . The following code sequence
is produced for the form: (multiple-value-setq (A B) (foo)).

move
move

call

nop

move

cmp

nop
move
val2: move
cmp

nop

move

done: move

r27, 0
rTMP, r4
foo+16

rl,
1t,

T,
rB,
1¢t,

rB,
r4,

nil
r27, 1, val2

r28
nil
r27, 2, done

r29
rTMP

; number of arguments to foo
; save misc stack pocinter

; 1 value?
; use 1st returned value

; 2 values?

; restore misc stack pointer

There are three Common Lisp constructs in which multiple values must be saved and
restored: multiple-value-call, multiple-value-progi, and unwind-protect. SPUR
Lisp provides the primitive functions rt-mv-spill and rt-mv-unspill to save and restore
multiple values.® A multiple value is saved by calling the rt-mv-spill runtime routine.
rt-mv-spill takes a multiple value and saves it on the miscellaneous stack, returning a
pointer to the spilled multiple value. rt-mv-unspill takes any number of pointers to
spilled multiple values and copies them back into the registers as a single multiple value.

®A list of the names and purposes of all the SPUR Lisp primitive functions is provided in section 6.

27

rt-mv-unspill also resets the miscellaneous stack pointer to point just after the new mul-
tiple value. For example the form, (multiple-value-call #’foo (bar) (bar-none))
results in the following code:

move r27, 0 ; number of args to bar

move rTMP, 14 ; save misc stack pointer

call bar+16

nop

call rt-mv-spill+i6 ; save 1st multiple value

nop

move TSAVE, r28 ; save 1st multiple value pointer

move r27, 0 ; number of args to bar-none

call bar-none+16

nop

call rt-mv-spill+16 ; save 2nd multiple value

nop

move r27, 2 ; number of args to rt-mv-unspill

move r29, r28 ; 2nd arg is return value of 2nd
; call to rt-mv-spill

move r28, rSAVE ; first arg is saved mv pointer

call rt-mv-unspill+16 ; unspill 2 multiple values

nop

call foo+16 ; call foo

4.6 Calling Interpreted Functions

An interpreted function is given a dummy compiled function body that loads the interpreted
form and calls a runtime primitive that calls the SPUR Lisp function %sp-internal-apply,
which implements the interpreter. The dummy function body loads the form to interpret
into r18 and then calls the runtime primitive rt-invoke-interpreter , which changes the
current window pointer, recovers the form to interpret, and sets up a call to the function
%sp-internal-apply. The first argument to %sp-internal-apply is the form to interpret
and the remaining arguments are the arguments passed to the dummy compiled function
body. To recover these arguments, rt~invoke-interpreter executes mostly in the window
frame of the dummy body that calls it. The dummy body does not even have to perform a
return because rt-invoke-interpreter does the return for it. Since the dummy compiled
function body is duplicated for every interpreted function, we attempted to make this
dummy body as small as possible.

The dummy function is created when the interpreted function is defined. Since both
compiled and interpreted function objects have the same structure, interpreted functions
can be treated exactly the same as compiled functions. The dummy function body consists
of the following code:

rd_spec ri17, s3 ; read the pc

28

load ri6, r17(-8) ; load the constants vector

nop

load_p ri8, ri16(40) ; load constant O: the form to interpret
nop

;; This is a pretty funny looking call. rt-invoke-interpreter
;; shuffles the arguments around (including the "argument" in

;; r18) and jumps to the interpreter, which uses this function’s
;; register window frame. Note no return from this function.

call rt-invoke-interpreter+1i6
nop

4.7 Catch and Throw

Catch frames are stored on the miscellaneous stack. The global register 16 points to the
first catch frame and each catch frame points to the preceding catch frame. The bottom
of the stack of catch frames is indicated by nil , which is the initial value of r6. A catch
frame contains seven values as illustrated in figure 19.

#x00 previous catch frame

#x08 tag of catch

#x10 saved pc

#x18 saved binding stack pointer (r5)
#x20 saved miscellaneous stack pointer (r4)
#x28 saved window stack pointer (swp)
#x30 saved current window pointer (cwp)

Figure 19: Structure of SPUR Lisp Catch Frame
The contents of a catch frame are:

previous catch frame The address of the previous catch frame on the miscellaneous stack
(with fixnum tag) or nil, which indicates no more catch frames.

tag of catch Compared using eq with the tag from the throw.
saved pc The address of the instruction to execute after the catch occurs. fixnum tag.
saved r5 The binding stack pointer at the time of the catch. fixnum tag.

saved rd Value of the miscellaneous stack pointer at the time of the catch. fixnum tag.

29

saved swp Saved value of the window stack pointer (s2). fixnum tag.

saved cwp Saved current window pointer (s1). fixnum tag.

When catch is invoked, a new catch frame is allocated, the proper values are stored in
it, and r6 is updated. throw invokes a runtime primitive with its value and a tag. Invoking
this routine is tricky when the value being thrown is a multiple value. Instead of shifting
the return values in the registers to make the tag the first value, we make the throw tag
the last element of the augmented thrown value. Even so, much in-line code is needed to
put the tag in the correct place for all sizes of multiple values.

When throw is invoked, two special symbols are used to implement unwind-protect,
which catches every throw, executes some code, and propagates the throw upward. The
unbound symbol 1isp: :%catch-all-object is used to indicate a catch frame generated by
an unwind-protect. Any catch frame with this symbol as a tag will catch all throws. The
symbol 1isp::%sp-internal-throw-tag is used to store the value of the real throw tag
when executing an unwind-protect generated catch. This symbol is initially unbound, and
is rebound by each unwind-protect catch frame. SPUR Lisp follows Spice Lisp conventions
with respect to the %catch-all-object symbol used to indicate an unwind-protect. The
major difference is that SPUR Lisp does not do a throw to clear a catch frame from
an unwind-protect off the stack, but rather changes the catch frame pointer (r6) and
miscellaneous stack pointer (r4) explicitly.

30

5 Memory Management in SPUR Lisp

5.1 Generation Garbage Collection

SPUR Lisp reclaims unused memory with an algorithm called generation garbage collec-
tion, first proposed by Lieberman and Hewitt [LH83]. The major advantage of generation
garbage collection is that it allows small pieces of the address space to be collected sepa-
rately and avoids poor paging performance caused by collecting the entire address space.
Generation garbage collection divides the heap into several spaces and places objects in the
spaces according to how long the object has persisted in memory. Objects are allocated
in the youngest space (called newspace), and if they remain in use long enough (e.g., the
time between successive garbage collections), they are promoted to a space in which older
objects are stored. Objects in newspace are garbage collected most frequently. Since news-
pace occupies a small fraction of the entire heap, these garbage collections are rapid and
non-disruptive. Objects in older spaces are collected less frequently. Generation garbage
collection takes advantage of the empirical property that most newly allocated objects be-
come garbage quickly, while objects that have persisted for a period of time are more likely
to remain in use.l?

Generation garbage collection imposes no constraints on where pointers can point in
memory. To make generation garbage collection work, all the accessible objects in a partic-
ular space need to be identifiable. In particular, all pointers that point from an older space
to a younger space must be remembered. This set of pointers is called the remembered list.
This section will describe the generation garbage collection implemented in SPUR Lisp
in detail and focus on some of the problems anticipated in implementing multiprocessor
generation garbage collection.

5.2 Hardware Support for Memory Management

As mentioned in section 2.1, SPUR. general registers contain two bits in the 8-bit typegen
field that are used for memory management. These two bits, the generation number, are
used to indicate the space of the object the pointer refers to. SPUR provides a hardware
trap on pointer store operations that occurs when the pointer being stored has a newer
generation than the pointer being stored through. This trap allows the SPUR Lisp runtime
system to keep track of all pointers that point from an older space to a newer one.

To avoid confusion, note the difference between the generation number, which is the
number stored in the two generation bits of each SPUR pointer, and the space number,
which is the number we refer to throughout this discussion of memory management. For
hardware reasons, objects in the newest space have a generation number of 3. In this
document, generation number 3 corresponds to space 0. Likewise, generation 2 corresponds
with space 1, generation 1 corresponds with space 2, and generation 0 corresponds with

19Ungar has shown that generation garbage collection can be used very effectively in Smalltalk because
most objects are short lived {Ung84). Several Lisp implementations use generation garbage collection, and
report similar success {Moo84,Sin85].

31

space 3. Space 0 is also referred to as newspace. Space 3, the oldest space, is sometimes
referred to as static space, because objects allocated in it are never collected. The fact that
generation numbers and space numbers are inverted is an unfortunate result of the SPUR
hardware design.

5.3 Organization of Spaces in Memory

The organization of the SPUR Lisp heap is the subject of ongoing research and the design
is currently very fluid. This discussion describes the initial implementation, which is very
simple and serves well as a control from which to measure the performance advantages
of more complex implementations. The SPUR heap is divided into four spaces. Initially,
objects are allocated in newspace. After surviving a single garbage collection, objects in
newspace are copied to space 1. Objects collected in space 1 are copied to space 2. Space 3
is reserved for allocation of objects that are unlikely to become garbage. Space 2 is where all
long lived objects are stored. Since remembered lists are only kept for pointers to younger
generations, when space 2 needs collection, spaces 1 and 0 must also be copied. Cross
space pointer information needs be kept only for pointers into spaces 1 and 0. Thus there
two remembered lists: rem 0, which contains the addresses of pointers into space 0 from
spaces 1-3, and rem 1, which contains addresses of pointers into space 1 from spaces 2 and
3. The remembered lists are implemented as stacks of consecutive 32-bit addresses. Each
32-bit address is the address of a pointer that points from an older space to the space of
the remembered list. These stacks of 32-bit addresses are stored as a separate part of the
heap. Figure 20 illustrates the layout of the heap in SPUR Lisp.

Constants 1-18 of the system constants vector are allocation variables. Table 6 shows
how these allocation variables correspond to addresses into spaces and remembered lists.

5.4 Memory Consistency Issues

In its initial configuration, SPUR Lisp memory management is very simple. Objects of
all types are allocated from the same region of memory and are not segregated by type
as in many Lisp systems. The SPUR Lisp heap cannot be scanned linearly, as it can
in other Lisp implementations [Moo85,Sha87]. Being able to scan the heap is essential
to incremental garbage collection, as proposed by Baker [Bak78]. Thus, the SPUR Lisp
memory organization does not permit Baker-style incremental garbage collection. With
generation garbage collection, however, SPUR Lisp avoids non-disruptive behavior, which
is a primary advantage of incremental garbage collection. 1

Correct garbage collection requires that all objects in use can be identified at any time.
Such identification is impossible at certain critical times because operations such as object
allocation temporarily place memory in an inconsistent state. Two kinds of situations

1The other major advantage of incremental garbage collection, that of being suited for real-time appli-
cations, is only available for Lisp systems with limited array sizes and no virtual memory. No existing Lisp
system we are aware of provides real-time response from its incremental garbage collection.

32

NAME INDEX DESCRIPTION

rem_0_base 1 Address of the base of remembered list
for space 0. Constant with fixnum tag.

rem_0_top 2 Current top the the remembered list
for space 0. Variable with fixnum tag.

rem_0_max 3 Address of the maximum allowed ex-
tent of the remembered list for space
0. Coincides with rem_1_base. Con-
stant with fixnum tag.

rem.1_base,top,max 45,6 Addresses as per rem_0_base, top, and
max.

space_0_base, max 7.9 Addresses as per rem_0_base and max.

space_0_top 8 NOT current top of space 0, since this
is pointed to by r8, the heap pointer.
This slot is unused except to store the
value of 18 when a memory image of
SPUR Lisp is saved.

space_1_base,top,max | 10,11,12 | Addresses as per rem_0_base, top, and
max.

space_2_base,top,max | 13,14,15 | Addresses as per rem_0_base, top, and
max.

space_3_base,top,max | 16,17,18 | Addresses as per rem_0_base, top, and

max.

Table 6: Allocation Variables in the System Constants Vector

33

larger addresses

space o max g e e i L - r8
space 0 (new space
space 1 max = space 0 base e o - sys constant 11
space 1
space 2 max = space 1 base e - sys constant 14
space 2
space 3 max = space 2 base - ' - sys constant 17
space 3 (static space)
rem 1 max = space 3 base . T
e sys constant 2
remember list for pointers into space 1
rem 0 max = rem 1 base
- sys constant 5
remember list for pointers into space 0
rem O base
all regions grow to LARGER addresses smaller addresses

Figure 20: Division of Heap into Spaces and Remembered Lists

cause inconsistent state in SPUR Lisp. Some primitive system routines (section 6) cause
temporary inconsistent state. These routines are coded in assembly language for speed.
Instruction sequences in these routines are carefully chosen by the implementor. Inconsistent
state also occurs during execution of instruction sequences generated by the SPUR Lisp
compiler. These sequences are more likely to cause garbage collection errors because they
are not chosen by the implementor.

For example, the SPUR architecture is pipelined and contains instructions such as call,
return, and cmp that execute an extra instruction before changing the pc. The SPUR
Lisp compiler produces code naively, not attempting to use this extra instruction. After
the initial code generation another pass could attempt to reorder the instructions to take
advantage of these extra slots. Such a code reorganizer will only produce correct code for
SPUR Lisp if it understands that the following code sequences are immutable.

5.4.1 Allocation Sequences

The philosophy of memory management in SPUR Lisp matches the simplicity of SPUR
architecture design. Certain essential operations in SPUR Lisp are very fast. The cons

34

operation takes 4 SPUR instructions and is open-coded.}? Assume the car value to store
is in rCAR, and the cdr value to store is in rCDR, then a cons operation looks like:

store rCDR, r8(8) ; r8 points to the heap
store rCAR, r8(0)

move rCONS, 18 ; TCONS contains the result
add r8, r8, 16 ; bump r8

This sequence is possible because the page at the top of the heap is a non-writable page. If
the first store causes an operating system bad page trap, the garbage collector is invoked,
and r8 is reset to the reclaimed portion of the heap. Then the store instruction is retried
and works the second time. The order of instructions is important; if the car were stored
first, and then the store of the cdr failed, r8 would be relocated, but the car would already
have been stored into the incorrect place.

Another immutable instruction sequence is the open-coded operation 1ist, which takes
advantage of the non-writable page at the top of the heap to avoid explicitly checking if
enough storage is available. The first instruction in a 1ist operation writes to the last cons
object needed for the list. By forcing a garbage collection at the outset, the code for 1ist
is written assuming that enough memory is available.

5.4.2 Stores into General Vectors

A more complex situation arises during stores into vectors. The store instruction in the
SPUR architecture cannot use two registers (base + displacement) to form the store address.
Instead, the displacement has to be a 14-bit constant. This means that to store into a vector,
a register must contain the address of an item inside the vector. This address is not a valid
pointer to any Lisp object since it points inside the vector, not to its header. For example,
suppose we want to execute the form (setq (svref A X) V). The instruction sequence
would be:

load TA, A ; TA points to a g-vector

nop

load rX, X ; rX contains a fixnum index
nop

load v, V ; V is the value to store

nop

1sh rX, rX, 3 ; 8 bytes/pointer element
add_nt <rINTERNAL, rA, rX ; create pointer to the element
store rV, rINTERNAL(16) ; add in header offset

Notice that the internal pointer created does not point to a legal SPUR object. The archi-
tecture takes the typegen of the destination of add_nt from the typegen of the first operand.

12Because the store instructions take two machine cycles, and each cycle is 150ns., a cons operation takes
approximately 1 microsecond.

35

rINTERNAL, thus, has type g-vector and the generation number of the g-vector it points in-
side. If a garbage collection occurred at the store instruction, INTERNAL would look like
a pointer to a g-vector. The garbage collector must distinguish between internal g-vector
pointers like INTERNAL, and regular g-vector pointers like rA.

SPUR Lisp uses a clever encoding of the g-vector header to distinguish between an
internal g-vector pointer and a pointer to the g-vector header. Internal g-vector pointers
always point to memory that contains a legal SPUR pointer, as shown in figure 2. Note
that the first 32-bits of the referenced object contain a valid SPUR heap address. Also,
recall the format of the g-vector header in figure 7. The first 32-bit word pointed to by a
real g-vector pointer contains #b00 in the upper two bits, by definition. If this first word
was interpreted as an address, it would be an address in the kernel segment, which does not
contain heap objects.

When the garbage collector encounters a pointer into a g-vector, it scans back through
the g-vector to the header. It then relocates the g-vector and installs a forwarding pointer
in the old object. The garbage collector also updates the internal pointer to point into
the new g-vector object. Because the garbage collector can distinguish internal g-vector
pointers from real g-vector pointers, internal g-vector pointers do not introduce any in-
consistency. They can exist indefinitely and code sequences that produce them can be
arbitrarily rescheduled.

5.4.3 Stores into Integer Vectors

Stores into integer vectors have the same constraints as stores into general vectors. The
instruction sequence for (setf (svref A X) I),where Ais an i-vector with 32-bit elements,
would be:

load rA, A ; TA points to a i-vector

nop

load rX, X ; rX contains a fixnum index
nop

load v, V ; V is the value to store

nop

1sh rX, rX, 2 ; 4 bytes/32-bit element

add_nt <rINTERNAL, rX, rA ; create pointer to the element
store rV, rINTERNAL(16) ; add in header offset

Without a store instruction that uses two registers to form an effective address, an internal
pointer into an i-vector must be created. Internal i-vector pointers are handled differently
than internal g-vector pointers. Unlike internal g-vector pointers, which are always distin-
guishable from pointers to g-vector headers, internal i-vector pointers can point to arbitrary
bit patterns and cannot be distinguished from pointers to i-vector headers. Because they
cannot be distinguished from other pointers, the creation of internal i-vector pointers causes
an incomnsistent state.

36

Note the the add_nt instruction gives the internal i-vector pointer the fixnum type. After
the store has executed, the fixnum address is no longer needed. Because the fixnum is an
immediate, the garbage collector will ignore it. Before the store is executed, the fixnum
address is a dangerous inconsistency. If a garbage collection occurs between the add_nt and
the store,!3 the garbage collector must recognize that the internal pointer is more than just
a fixnum or it might relocate the i-vector without relocating the internal pointer. What is
worse, if a code rescheduler places arbitrary code between the add_nt and the store, then
the inconsistent state persists for an indefinite period of time. In section 5.5, we solve the
inconsistency problem in the absence of rescheduling. In addition, we require that code
reschedulers are aware of the two instruction sequence, add.nt followed by store, and that
they never schedule instructions between the two.

5.5 Multiprocessor Garbage Collection

Multiprocessing generation garbage collection for SPUR Lisp has not been implemented.
We intend to study and implement such an algorithm in the near future. Here we discuss
one problem associated with multiprocessor garbage collection: arbitrary garbage collection
interrupts. The current model for multiprocessor generation garbage collection is that when
one processor runs out of allocation memory, it interrupts all the processors, and they
cooperate to collect objects from newspace. This model implies that a processor can be
interrupted for garbage collection at any time. Such a model requires special actions to
be taken in certain circumstances to ensure that the objects in memory are in a consistent
state when the garbage collection occurs. We will discuss both the circumstances that cause
an inconsistent state to arise and ways to avoid inconsistency during garbage collection.

There are many SPUR Lisp operations that put memory in an inconsistent state for
a short time during their execution. The instruction sequence for setting an element in a
i-vector requires the creation of an inconsistent internal pointer (section 5.4.3). The instruc-
tion sequence for list allocates the list elements as a unit, and remains in an inconsistent
state until the list is entirely linked together. load and defun require operations on the
caller sets of functions, which are dangerous because addresses of functions are manipulated
as fixnums. If a garbage collection occurs during a caller set operation, a function object
might get relocated, but the fixnum address of the function would not. Finally, all the prim-
itive routines that allocate memory for different types of objects require special handling
because they require several instructions to set up the headers of objects like i-vectors and
g-vectors.

We have two ways to handle garbage collection interrupts during sequences in which the
memory state is inconsistent: software breakpoints and software critical sections. Software
breakpoints are implemented by the trap handler for a garbage collection interrupt. When
an interrupt occurs, the trap handler examines the instruction sequence starting at the
instruction in which the interrupt occurred, and searches for an instruction of the following
type: jump, cmp, call, return, or trap—any instruction that alters the flow of control. It

131n multiprocessor SPUR Lisp, a global garbage collection can be triggered by any processor at any time.
Possible solutions to this problem are discussed in section 5.5.

37

replaces the first such instruction it finds with a special trap instruction, called the software
breakpoint. It then restarts the interrupted instruction, and instructions are executed until
the software breakpoint is reached. With this design, all the SPUR Lisp system must
do is insure that the memory state is consistent at all instructions that alter the flow of
control. This design prevents the problem of inconsistent state between the add nt and
store instructions on stores into vectors.

The software breakpoint design has the advantage that it is simple to implement. It
greatly reduces the places where inconsistent state must be avoided. Certain care must be
taken with this design because a second interrupt might occur during the execution of the
instructions leading to the software breakpoint after the first interrupt. Interrupt handlers,
like the garbage collection interrupt handler, must be written so that they check if a software
breakpoint is already in progress, and “do the right thing” in this case. Unfortunately,
software breakpoints alone are insufficient to avoid inconsistency during garbage collection
interrupts. The code for the open-coded list operation loops while the memory state is
inconsistent. A mechanism is required that allows inconsistent state across branches and
jumps. Software critical sections provide such a mechanism.

Software critical sections act much as you would think. If a particular instruction se-
quence is sensitive, it is placed inside a software critical section, and if a garbage collection
interrupt occurs, the critical section is guaranteed to complete before the interrupt is ser-
viced. To mark the entry of a software critical section, we use the low order bit in register
10, the return address. Since the return address must be word aligned, the two lowest bits
of the return address are ignored by the hardware. To indicate that a software critical
section has been entered, the low order bit of r10 is set. To indicate the end of the software
critical section, the low order bit of r10 is cleared. The garbage collection interrupt handler
is responsible for identifying software critical sections. If the low order bit of rl0 is set
when a garbage collection interrupt occurs, the handler scans linearly through the code
until it finds the instruction that clears the bit in r10. This instruction must follow the
instruction that sets the bit and be in the same function. The handler then replaces the
instruction that clears the bit with a software interrupt trap and restarts the instruction as
with software interrupts. Code within a software critical section must be very careful not
to call other functions or cause traps. With both software breakpoints and software critical
sections, any action that alters the flow of control in such a way that the breakpoint is never
reached must be avoided. If all possible changes in the flow of control are anticipated, we
feel confident that all the code for SPUR Lisp can be written in such a way that a garbage
collection interrupt can happen at any time and be serviced correctly.

38

6 Runtime Operation of SPUR Lisp

This section provides a brief overview of the organization of SPUR Lisp during execution.
The primitive non-Lisp coded routines are described and the possible traps that can occur
at runtime are listed. As described in appendix D, the SPUR Lisp runtime primitives are
currently implemented in both SPUR Lisp assembler (SPLASM) and in C as part of the
SPUR simulator. Ultimately, all kernel functions will be written in SPLASM. This listing
indicates which primitives are implemented in the SPUR Lisp assembler (asm primitive) and
which are implemented in C (C primitive).

6.1 Runtime Primitives

The SPUR Lisp compiler is implemented as a translator from Spice Lisp bytecodes (provided
by the Spice Lisp compiler) to a combination of open-coded SPUR instruction sequences
and calls to a set of primitive routines. These primitives are coded mostly in SPLASM,
but are accessible as SPUR Lisp functions and interned in the system package. The prim-
itive routines fall into several categories: memory allocation, vector operations, arithmetic
operations, logic operations, string operations, and miscellaneous operations.

'8.1.1 Allocation Primitives

rt-alloc-i-vector length access-type [asm primitive]

rt-alloc-i-vector allocates an i-vector of length elements, each element of the size
specified by access-type. This primitive is used to allocate bit vectors and parts of a func-
tion’s caller set, as well as programmer declared vectors of integers. length must be a
non-negative fixnum. access-type must be a fixnum from 0-5. No initialization is done.

rt-alloc-string length [asm primitive]

rt-alloc-string allocates a string length bytes long, and NULL terminates the result
before returning it. length must be a non-negative fixnum. No initialization is done.

rt-alloc-bignum length [asm primitive]

rt-alloc-bignum allocates a bignum of length bytes, and initializes the bytes to 0.
length must be a non-negative fixnum.

rt-make-complex real-part complez-part [asm primitive]

39

rt-make-complex allocates a complex number and with real and complex parts specified
by the arguments. real-part and complez-part must have non-complex numeric types.

rt-make-ratio numerator denominator [asm primitive]

rt-make-ratio allocates a ratio with the numerator and denominator specified by the
arguments. numerator and denominator must have bignum or fixnum types.

rt-alloc-g-vector length initial-value [asm primitive]

rt-alloc-g-vector allocates a general vector with length elements and initializes the
elements to the value specified by initial-value. length must be a non-negative fixnum.

rt-vector argl arg2 ... argn [asm primitive]

rt-vector takes any number of arguments up to call-arguments-limit as specified
by Common Lisp.!* rt-vector allocates a vector as large as the argument list, and copies
the arguments into the vector before returning it.

rt-alloc-function code-length constants-length [asm primitive]

rt-alloc-function allocates a compiled function object. code-length is a non-negative
fixnum that specifies the number of instructions the function will contain. constants-length
is a non-negative fixnum that specifies how many constants to allocate in the constants
vector for the function. rt-alloc-function allocates the code vector as an i-vector in
static space, and allocates the constants vector by calling rt-alloc-g-vector. Elements
of the code vector are not initialized. Elements of the constants vector are initialized to
nil.

rt-alloc-array number-of-dimensions [asm primitive]

rt-alloc-array allocates an array object with the specified number of dimensions.
number-of-dimensions is a non-negative fixnum less than array-dimensions-limit, as
specified by Common Lisp.!® Elements of the array object are initialized to nil.

rt-alloc-symbol print-name [asm primitive]

14call-arguments-1imit in SPUR Lisp is 255.
15Tn SPUR Lisp, array-dimensions-limit has the value 2147483647

40

rt-alloc-symbol allocates a SPUR Lisp symbol with the specified print name. print-
name should have type string. The value and function definition component of the symbol
are initialized to undefined, and the package and property list components of the symbol
are initialized to nil. rt-alloc-symbol does not intern the symbol it allocates.

rt-list argl arg2 ... argn [asm primitive]

Like rt-vector, rt-list takes an arbitrary number of arguments. The arguments
to rt-list are made into a list that is returned. Although many list operations are
open-coded, this function is called frequently to create &rest arguments.

rt-list-star argl arg2 ... argn [asm primitive]

rt-list-star performs the Common Lisp list* operation on its arguments. This
function is sometimes open-coded and is rarely used.

6.1.2 Vector and Array Primitives

Many of the vector and array bytecodes in Spice Lisp take a variety of possible argument
types. These bytecodes have been translated into primitive routines to avoid the code
expansion necessary to open-code the required type dispatch.

rt-shrink-vector vector new-length [C primitive]

rt-shrink-vector takes a vector argument of type bignum, i-vector, string, or g-vector.
rt-shrink-vector makes the size of the array new-length, which must be a non-negative
fixnum smaller than the original length of the vector argument. rt-shrink-vector shrinks
vectors in place. Shrinking a string causes a new NULL terminator to be placed at the end
of the string. rt-shrink-vector returns the modified vector.

rt-typed-vref access-type vector indez [C primitive]

rt-typed-vref references an element of an i-vector. The vector argument must have an
i-vector base type: i-vector, string, bignum, or function. access-type specifies the access-type
assumed in the vector reference, and may not correspond to the access-type of the argument
vector. access-type should be a fixnum between 0 and 5. indez should be a non-negative
fixnum that does not cause a reference outside the bounds of the vector. The value returned
has type fixnum.

rt-typed-vset access-type vector indez value [C primitive]

41

rt-typed-vset sets an element of an i-vector. vector should have the type: i-vector,
bignum, string, or function. access-type specifies the access-type assumed in the vector
assignment, and may not correspond to the access-type of the vector argument. access-type
should be a fixnum between 0 and 5. indez should be a non-negative fixnum that does not
cause the assignment to fall outside the bounds of the vector. value should be a fixnum of
a size appropriate for access-type. The value argument is returned by this primitive.

rt-arefl vector inder [C primitive]

rt-arefl references an element in a vector. vector can be any vector type: array,
i-vector, function, bignum, g-vector, or string. indez should be a non-negative fixnum that
falls within the bounds of the vector. References to i-vectors, functions, and bignums return
fixnums. References to strings return characters; the ASCII code is inserted into a character
object with NULL (0) font and bits fields.

rt-asetl vector inder value [C primitive]

rt-aset1 assigns an element in a vector. vector can be any vector type: array, i-vector,
function, bignum, g-vector, or string. indez should be a non-negative fixnum that falls within
the bounds of the vector. For bignums, functions, and i-vectors, value should have type
fixnum. For strings, value should have type character; the ASCII code is extracted from the
character and stored into the string. rt-asetl returns value.

6.1.3 Arithmetic Primitives

SPUR Lisp provides arithmetic primitives that operate on any numeric type: fixnum,
bignum, short-float, long-float, extended-float, complex, and ratio. These routines perform
a dispatch on the types of the operands, and return a numeric value of the appropriate
type. Not all arithmetic routines have been implemented with all combinations of numeric
types, especially the ratio and complex types.

rt-integer-length integer [C primitive]

rt-integer-length returns a fixnum that represents the number of bits in an integer
as specified by the integer-length function in Common Lisp. integer should have type
fixnum or bignum.

rt-short-float number [C primitive]

rt-short-float returns a value of type short-float. The parameter number is coerced
to type short-float as specified by the Common Lisp function float. number can have any

42

non-complex numeric type.
rt-long-float number [C primitive]

rt-long-float returns a value of type long-float. The parameter number is coerced
to type long-float as specified by the Common Lisp function float. number can have any
non-complex numeric type.

rt-scale-float float integer [C primitive]

rt-scale-float performs the Common Lisp function scale-float. float must have a
floating point type. integer must have type fixnum. A floating point number with the same
type as float is returned.

rt-decode-float float [C primitive]

rt-decode-float performs the Common Lisp function decode-float. float must have
a floating point type. A three value multiple value is returned. The first and third values
have type long-float, and the second value has type fixnum.

rt-truncate number divisor [C primitive]

rt-truncate divides the first. operand by the second, and returns two values. There
are several cases depending on the types of the operands. If the divisor has type fixnum,
rt-truncate returns a fixnum or bignum representing the integer part of number divided by
divisor rounded toward zero and a float or ratio representing the fractional part of number
divided by divisor. If either number or divisor are floats or ratios, then rt-truncate
returns a fixnum or bignum quotient and a float or ratio remainder, as determined by the
type coercion rules for +.

rt-multiply z y [C primitive]

rt-multiply multiplies its arguments and returns a result with a type as specified in
Common Lisp. z and y can have any numeric type.

rt-divide z y [C primitive]

rt-divide divides its arguments and returns a result with a type as specified in Common
Lisp. ¢ and y can have any numeric type.

43

6.1.4 Logical Primitives

rt-boole operation operandl operand2 [C primitive]

rt-boole performs a boolean operation on its arguments. The operation is specified by
operation, which is a fixnum from 0-15. Table 7 summarizes the possible operations and
their numeric codes (operation names correspond to those in Common Lisp). operand! and

NAME INDEX NAME INDEX
boole-clr 0 boole-xor 8
boole-set 1 boole-eqv 9
boole-1 2 boole-nand 10
boole-2 3 boole-nor 11
boole-cl 4 boole-andcl 12
boole-c2 5 boole-andc2 13
boole-and 6 boole-orcl 14
boole-ior 7 boole-orc2 15

Table 7: Numeric Codes for rt-boole Primitive

operand2 should both have the same type: either fixnum or bignum. An integer with the
same type as operand! is returned. rt-boole does not currently work for bignum operands.

rt-1db size position number [C primitive]

rt-1db performs the Common Lisp function 1db. The size and position parameters
should be non-negative fixnums. The number should be an integer. A non-negative integer
is returned.

rt-mask-field size position number [C primitive]

rt-mask-field performs the Common Lisp mask-field function. size and position
should be non-negative fixnums. number should be an integer. An integer with the same
type as number is returned.

rt-dpb bits size position number [C primitive]

rt-dpb performs the Common Lisp dpb function. size and position should be non-
negative fixnums. number and bits should be integers. An integer with the same type as
number is returned.

44

rt-deposit-field bits size position number [C primitive]

rt-deposit-field performs the Common Lisp deposit-field function. size and posi-
tion should be non-negative fixnums. number and bits should be integers. An integer with
the same type as number is returned.

rt-logldb size position number [C primitive]

rt-logldb performs the same operation as rt-1db, but all of its operands must be
fixnums. This operation is performed by a runtime routine because the SPUR hardware
provides minimal support for logical operations. A fixnum is returned.

rt-logdpb bits size position number [C primitive]

rt-logdpb performs the same operation as rt-dpb, but all of its operands must be
fixnums. This operation is performed by a runtime routine because the SPUR hardware
has minimal support for logical operations. A fixnum is returned.

rt-ash number distance [asm primitive]

rt-ash performs the Common Lisp function ash. number should be an integer. distance
should be a fixnum. The value returned is the integer obtained by doing an arithmetic shift
of number to the right or left depending on the sign of distance.

rt-1sh number distance [asm primitive]

rt-1sh performs a logical shift in either direction. number should be an integer. distance
should be a fixnum. If distance is non-negative, shifting is done to the left. If distance is
negative, shifting is done to the right. The value returned is the integer obtained by doing
a logical shift of number to the right or left depending on the sign of distance.

6.1.5 String Primitives

rt-byte-blt src src-start dest dest-start dest-end [asm primitive]

rt-byte-blt copies blocks of characters from one string to another. src and dest should
be strings or i-vectors of bytes. src-start, dest-start, and dest-end should be fixnums. dest-
end - dest-start bytes are copied from src starting at src-indez to dest starting at dest-indez
up to but not including index dest-end. src and dest may be the same string, and the indices

45

may overlap, in which case the copy occurs as is it were a byte at a time starting from the
lowest index. dest is returned.

rt-find-character string start end char [C primitive]

rt-find-character returns the index of the first occurrence of char in string between
indices start and end. string should be a string or an i-vector of bytes. start and end
should be fixnums. char has type character or fixnum. A fixnum is returned if the character
is found. nil is returned otherwise.

rt-find-character-with-attribute string start end table mask [C primitive]

rt-find-character-with-attribute finds an element in a string as a function of en-
tries in a table. The 8-bit codes of string are scanned between indices start and end as in
rt-find-character. table and string are strings or i-vectors of bytes. table should have
256 elements. The codes of elements in string are used as indices into table. When the
referenced element of table has a non-zero value after being bitwise anded with mask, the
current index into string is returned. mask should have a fixnum value. If no reference
succeeds, nil is returned. ’

rt-sxhash-simple-string string length [C primitive]

rt-sxhash-simple-string computes a hash value from the first length characters of
the string argument. string should be a string or i-vector of bytes. length should be nil or a
fixnum. If length is nil, the length of string is determined from its header. A non-negative
fixnum is returned.

6.1.6 Miscellaneous Primitives

rt-putf list indicator value [asm primitive]

rt-putf manipulates lists with structures like a property list. list should have type cons
or nil. If list isnil, a new list is created with indicator and value as elements. Otherwise, list
is eddred down, and indicator is searched for. If found, the car of the cons after indicator is
set to value, otherwise, indicator and value are both consed onto the list, which is returned.
If list were the property list of symbol X, this operation would correspond to the Common
Lisp operation (setf (get ’X indicator) value).

rt-throw throw-values ... throw-tag [C primitive]

46

rt-throw implements the Common Lisp throw operation. The arguments to rt-throw
are the values being thrown, except the last, which is that tag being thrown to. The behavior
of catch and throw are described in section 4.7.

rt-mv-spill value!l value2 ... wvaluen [asm primitive]

rt-mv-spill takes the arguments passed to it and stores away the group as a saved
multiple value on the miscellaneous stack. This function returns the miscellaneous stack
pointer with a fixnum tag that identifies the location of the spilled multiple value.

rt-mv-unspill mov-address-1 mv-address-2 ... mv-address-n [asm primitive]

rt-mv-unspill takes an arbitrary number of fixnum addresses of multiple values on
the stack (as returned by rt-mv-spill) and creates a new multiple value created from the
elements of the spilled multiple values. rt-mv-unspill returns the multiple value it creates.

rt-spread lLst start-indez [asm primitive]

rt-spread takes a list and creates a multiple value. list is a list of values. start-indez is
a non-negative fixnum that specifies which argument index to place the first component of
the multiple value. Arguments with indices lower than start-indez are not modified. The
number of return values is set to the actual number of values being returned. rt-spread
returns a multiple value.

rt-length sequence [asm primitive]

rt-length returns the length of the sequence argument. sequence can have types: nil,
i-vector, string, bignum, g-vector, cons, or array. rt-length returns a fixnum that is the
number of elements in the sequence argument.

spur-get-key starting-arg-inder keyword [asm primitive]

spur-get-key gets the value of the keyword argument specified as its parameter from
the argument list of the function that calls it. spur-get-key operates in the window
frame of the function calling it and searches the argument list for a keyword/value pair
starting with the argument specified by starting-arg-indez. spur-get-key does not perform
a return in the normal sense, but instead returns by setting the values of two registers in
the output registers of the function that called it. r28 is set to the value of the keyword
if the keyword/value pair is found and nil otherwise. r29 is set to a non-nil value if the
keyword is found, and nil otherwise. The number of return values is not set upon return.

47

spur-keyword-test starting-arg-indezr keyword-list [asm primitive]

spur-keyword-test checks that all keywords in the argument list of a function are valid
keywords. Like spur-get-key, spur-keyword-test operates in the window frame of the
function that calls it. keyword-list identifies all valid keywords to the function. Arguments
to the calling function starting at starting-arg-indez are checked against the elements of
keyword-list. spur-keyword-test does not return in the usual way. If all keywords are
valid, spur-keyword-test returns control to the caller without returning any values. If a
keyword is invalid, spur-keyword-test calls the function error.

rt-invoke-interpreter [asm primitive]

rt-invoke-interpreter is called by the compiled function body for interpreted func-
tions discussed in section 4.6. Like spur-get-key, rt-invoke-interpreted operates in
the window frame of the function calling it. rl8 in the caller’s window frame contains
the lambda list to interpret. rl8 is made the first argument to the calling function,
and all other arguments are shift ahead one position. Control is then transferred to
Y.sp-internal-apply, which implements the SPUR Lisp interpreter in its full general-
ity. Return is not performed in the normal way. Control of the calling function is simply
transferred to %sp-internal-apply.

6.2 Error Handling

The SPUR architecture provides a cmp_trap instruction for quickly testing for illegal con-
ditions, such as an incorrect number of arguments to a function. A 9-bit immediate field in
the cmp_trap instruction is used in SPUR Lisp to allow the trap handler to quickly identify
the cause of the trap and report this to the user. Tables 8, 9, and 10 enumerate the SPUR
Lisp software traps, the trap numbers used to identify the traps, and briefly describes each
trap. Note that the symbol <*> in the description refers to a function with the same name
as the name of the trap. For example, for the bit-vector-index-trap, <*> refers to the
function bit-vector-index. Software traps detected by SPUR Lisp will raise an error that
will report the kind of trap and location of the trap to the user.

48

NAME INDEX DESCRIPTION
actuals-neq-trap 0 Actuals not equal to number of formals.
actuals-1t-trap 1 Too few actual arguments.
actuals-gt-trap 2 Too many actual arguments.
bind-symbol-trap 4 bind applied to non-symbol.
replace-car-cons-trap 5 replace-car applied to non-cons.
replace-cdr-cons-trap 6 replace-cdr applied to non-cons.
get-value-trap 7 get-value applied to non-symbol.
undef-value-trap 8 get-value applied to undefined symbol.
set-value-trap 9 set-value applied to non-symbol.
get-definition-trap 10 get-definition applied to non-symbol.
undef-function-trap 11 get-definition applied to undefined

' symbol.
set-definition-trap 12 set-definition applied to non-symbol.
get-plist-trap 13 get-plist applied to non-symbol.
set-plist-trap 14 set-plist applied to non-symbol.
get-pname-trap 15 get-pname applied to non-symbol.
get-package-trap 16 get-package applied to non-symbol.
set-package-trap 17 set-package applied to non-symbol.
boundp-trap 18 boundp applied to non-symbol.
fboundp-trap 19 fboundp applied to non-symbol.
array-index-trap 20 array-index applied to a non-array.
array-index-number-trap 21 Too many indices for an array.
array-index-range-trap 22 Array index out of bounds.
char-index-trap 23 char-index applied to a non-string.
char-index-range-trap 24 char-index out of bounds.
bit-vector-index-trap 25 <*> applied to a non-bit-vector.
bit-vector-range-trap 26 bit-vector-index out of bounds.
g-vector-ref-trap 27 g-vector-ref applied to a non-g-vector.
g-vector-ref-index-trap 28 g-vector index out of bounds on ref.
g-vector-set-trap 29 <*> applied to a non-g-vector.

Table 8: SPUR Lisp Traps

49

7 The SPUR Lisp Implementation

This section presents an overview of SPUR Lisp as it is currently implemented. We outline
the important components of the implementation, each described more fully in an appendix.
We also discuss the current and future status of the implementation.

7.1 Components of SPUR Lisp

The major components of the SPUR Lisp implementation are: BARB, the SPUR simulator;
SLC, the SPUR Lisp compiler; RT, the SPUR Lisp runtime kernel; CODE, our Common
Lisp implementation; TH, the SPUR trap handlers; SPLASM, the SPUR Lisp assembler;
and ZEUS, the SPUR Lisp creator. The implementation for each component is located in
a particular directory, and we shall refer to the directory in which the component resides
as one would C-shell variable with the same name. Thus, $barb will refer to the directory
that the SPUR simulator is implemented in. A C-shell file in the $barb directory named
SPUR-NAMES can be sourced and will create shell variables for all the SPUR Lisp components.
Below, we briefly describe each component. Times reported are on a VAX 8800 computer
with 32 megabytes of memory. ’

7.1.1 BARB: the SPUR Simulator

SPUR Lisp is implemented on a simulator for SPUR hardware because the actual hardware
was unavailable. BARB, the SPUR simulator, is written in C and runs on the VAX 8800
and Sun 3 computers. BARB is an instruction level simulator, and implements the SPUR
instruction set as defined by [Tay85]. BARB executes SPUR instructions at approximately
60,000 SPUR instructions per CPU second. Simulations of more than 100 million SPUR
instructions are routine. BARB occupies approximately 40 files containing 15,000 lines of

C.

7.1.2 SLC: the SPUR Lisp Compiler

The SPUR Lisp compiler, SLC, compiles SPUR Lisp source code into Lisp object code. The
format of the object files, commonly called FASL files, is the same format used by Spice
Lisp and is documented in [WFG85]. The SPUR Lisp compiler is a multi-pass compiler
that uses the Spice Lisp compiler to translate SPUR Lisp into Spice bytecodes and then
translates the bytecodes into SPUR instructions. The SPUR Lisp compiler is written in
Common Lisp, and runs in Franz Lisp Opus 43.1 with compatibility macros, VAX Lisp and
SPUR Lisp. The SPUR Lisp compiler running in Franz Lisp Opus 43.1 compiles SPUR
Lisp files at approximately 30 lines per CPU second when writing large listing files. It is
much faster when it does not need to write these files. The SPUR Lisp compiler occupies
approximately 20 files containing 23,000 lines of code.

50

NAME INDEX DESCRIPTION
g-vector-set-index-trap 30 g-vector index out of bounds on set.
vector-length-trap 31 vector-length applied to non-vector.
g-vector-length-trap 32 <*> applied to non-vector.
string-length-trap 33 string-length applied to non-string.
bit-vector-length-trap 34 <*> applied to non-bit-vector.
get-vector-subtype-trap 35 <*> applied to non-vector.
set-vector-subtype-trap 36 <*> applied to non-vector.
set-vector-subtype-type-trap 37 Non-fixnum to set-vector-subtype.
get-vector-access-code-trap 38 <*> applied to non-vector.
header-length-trap 39 header-length applied to non-array.
header-ref-trap 40 header-ref applied to non-array.
header-ref-index-trap 41 header-ref index out of range.
header-set-trap 42 header-set applied to non-array.
header-set-index-trap 43 header-set index out of range.
call-non-symbol-trap 44 Call to non-symbol.
assoc-non-list-trap 45 assoc on non-list.
assq-non-list-trap 46 assq on non-list.
last-non-list-trap 47 last on non-list.
nthedr-non-fixnum-trap 48 nthedr with non-fixnum index.
nthedr-non-list-trap 49 nthedr on non-list.
nthedr-negative-trap 50 nthedr with negative index.
member-non-list-trap 51 member on non-list.
memgq-non-list-trap 52 memq on non-list.
getf-non-list-trap 53 getf on non-list.
iheader-ref-trap 55 iheader-ref applied to non-array.
iheader-ref-index-trap 56 iheader-ref index out of range.
iheader-set-trap 57 iheader-set applied to non-array.
iheader-set-index-trap 58 iheader-set index out of range.
8bit-system-ref-trap 59 <x> applied to non-vector or integer.
8bit-system-set-trap 60 <*> applied to non-vector or integer.

Table 9: SPUR Lisp Traps (continued)

51

NAME INDEX DESCRIPTION
16bit-system-ref-trap 61 <*> applied to non-vector or integer.
16bit-system-set-trap 62 <*> applied to non-vector or integer.
signed-32bit-system-ref-trap 63 <*> applied to non-vector or integer.
signed-32bit-system-set-trap 64 <*> applied to non-vector or integer.
non-string-argument-trap 65 Non-string to sxhash.
non-fixnum-argument-trap 66 Non-fixnum to kernel routine.
incorrect-access-type-trap 67 rt-alloc-i-vector passed bad

access-type.
complex-argument-trap 68 complex arg to rt-make-complex.
non-integer-argument-trap 69 Non-integer to rt-make-ratio.
gc-space-0-trap 70 Garbage collection of space 0 required.
non-list-arg-trap 71 Non-list to rt-putf .
non-array-aref-trap 72 Non-array to rt-arefi.
non-sequence-arg-trap 73 Non-sequence to rt-length.
unimplemented-software-trap 74 Unimplemented primitive operation.
call-kernel 75 Call kernel instruction replacement.
logldb-trap 76 logldb applied to non-fixnum.
logdpb-target-trap 77 logldb destination is non-fixnum.
logdpb-source-trap 78 logldb value is non-fixnum.
ivref-trap 79 ivref applied to non array.
ivref-index-trap 80 ivref-index out of range.
ivset-trap 81 ivset applied to non array.
ivset-index-trap 82 ivset-index out of range.
space-2-too-small-trap 83 Object larger than space 2.
gc-space-1-trap 84 GC of space 1 requested.
full-ge-trap 85 Full GC requested.
make-unbound-trap 86 make-unbound applied to non-symbol.
db-panic-trap 87 Internal inconsistencies in deep bind-

ing routines.

Table 10:

SPUR Lisp Traps (continued)

52

7.1.3 RT: the SPUR Lisp Runtime Kernel

The SPUR Lisp runtime kernel is a set of primitive Lisp functions. Originally the runtime
kernel was implemented entirely in C and called from Lisp code using special hooks in the
simulated call instruction. Many of the runtime functions are now implemented in SPUR
assembly code assembled into SPUR FASL files. SPLASM, a component of the SPUR Lisp
compiler, assembles these files. Ultimately, all kernel functions will be written in SPUR
Lisp assembler. Currently, approximately 20 of the 50 kernel functions are coded in 2000
lines of assembler. The remaining 30 routines are coded in approximately 5000 lines of C.

7.1.4 CODE: the SPUR Lisp Common Lisp Implementation

The CODE component of SPUR Lisp provides the many functions available in Common
Lisp. The CODE component is copied almost entirely from Spice Lisp and is implemented
entirely in Common Lisp. Machine and operating system dependent functions have been
modified to be specific to SPUR Lisp. The CODE component occupies 56 files containing
32,000 lines of Lisp. To compile the entire SPUR Lisp $code directory using the SPUR
Lisp compiler running in Franz Lisp takes approximately 54 CPU minutes.

7.1.5 TH: SPUR Trap Handlers

Trap handlers for SPUR Lisp are written in assembler and loaded into the lowest part of
the SPUR memory. Trap handler files have a.out file format and are written in SAS,
the standard SPUR assembly language. The syntax of SAS is described in another doc-
ument [Hil87]. Trap handlers handle such traps as window stack over and underflow, tag
traps on arithmetic operations, and generation traps on stores. There are approximately
50 traps handled in 2000 lines of SPUR assembler.

7.1.6 SPLASM: the SPUR Lisp Assembler

SPLASM is an assembler with Lisp-like syntax that is used to implement the SPUR Lisp
runtime kernel. SPLASM is a separate from the SPUR assembler, SAS, used to assemble
the output of the SPUR C compiler, and used to implement the SPUR trap handlers.
SPLASM generates SPUR Lisp FASL files that can be loaded with the Lisp loader. We
chose to provide an alternative Lisp assembler for several reasons. First, we wanted to
access the Lisp runtime kernel from Lisp, and if we had implemented the runtime kernel
in SAS, we would have needed to provide an interface between SPUR Lisp and general
a.out files. This interface is necessary anyway, but we chose to postpone implementing it.
Another reason for providing a separate assembler is that much of the functionality of the
assembler is already present in SLC, the SPUR Lisp compiler. Using SLC, SPLASM was
easy to create. A final reason for implementing SPLASM is that since it is implemented
in Lisp, SPLASM can use Lisp macros and variables, and so it is much easier to use than
SAS. SPLASM is written in about 1500 lines of Lisp.

53

7.1.7 ZEUS: the SPUR Lisp Creator

ZEUS is a program that takes the SPUR Lisp system defined by the FASL files in the $code
directory, and creates an initial SPUR Lisp memory image. ZEUS simulates the loading of
the FASL files into the image and defers load-time execution of forms until all the system
functions are present. After the loading is complete, an initialization function is executed
and the initialized SPUR Lisp memory image is saved. ZEUS is adapted from the genesis
program that is used to create an initial Spice Lisp image. ZEUS is written in Common
Lisp and implemented using Franz Extended Common Lisp for the VAX. The creation ofa
SPUR Lisp image takes 11 CPU minutes to load the system FASL files and 3 CPU minutes
to execute the initialization routines. The image of SPUR Lisp occupies approximately 2.4
megabytes of disk space. If the SPUR Lisp compiler is also included in the memory image,
the image occupies 4.7 megabytes of disk space.

7.2 Implementation Status

SPUR Lisp currently runs on the BARB simulator, which implements a superset of the
actual SPUR instruction set. Small changes are required to make the SPUR Lisp imple-
mentation compatible with actual SPUR hardware. These changes are:

¢ The call_reg must be replaced uniformly with jump_reg, using the replacement sug-
gested in section 4.2.

o The enable_traps instruction, used in the trap handlers must be replaced by a se-
quence of instructions to modify the KPSW.

o The various types of cmp_branch instructions used in trap handlers must all be con-
verted to cmp_branch_delayed instructions.

e All uses of the eql compare condition must be replaced with a sequence of tests.
e All uses of the endp compare condition must be eliminated.

e Uses of the tag_cmp_xxx instructions must be modified to use the cmp_xxx instructions
with tag_eq and tag-ne conditions.

e Generation and cmp_trap traps, which have their own trap numbers in the simulator,
actually have the same trap numbers as fixnum traps and illegal opcode traps in the
hardware. The trap handlers must be rewritten to merge the trap numbers.

Several large test applications have been implemented in SPUR Lisp. These applica-
tions include an OPS5 interpreter (3600 lines of Lisp); WEAVER, an OPS5 program that
performs circuit routing (about 1000 OPS5 rules); RSIM, a Common Lisp program that
simulates simple circuits (2000 lines of Lisp); and the SPUR Lisp compiler (13000 lines of
Lisp). Additional applications will be moved to SPUR Lisp as the need arises.

There are also some known errors and weaknesses in the existing SPUR Lisp implemen-
tation. They are:

54

¢ Bignum arithmetic operations are currently inefficient because they are performed
8-bits at a time, instead of 32-bits at a time, as the SPUR ALU will allow.

o Floating point numbers cannot be correctly printed.

» Runtime routines that support generic arithmetic have not been implemented for all
combinations of numeric type such as ratios and complex numbers.

s Runtime routines performing boolean operations are not fully implemented for bignum
parameters (e.g., rt-boole).

e Calls to the function %make-immediate-type create type tags without the correct
generation number. This has not caused any known garbage collection errors, but it
has the potential to cause errors.

e debug, trace, and other related Common Lisp functions have not been implemented
for SPUR Lisp. The versions available with the system are Spice Lisp specific.

e There are still a few unresolved references in the initial SPUR Lisp image. These
references should be resolved or eliminated.

s The operating system interface in SPUR Lisp is implemented through the BARB
simulator, and calls are made to Unix library routines. SPUR will run the Sprite
operating system and the OS interface in SPUR Lisp should reflect the Sprite OS
system calls.

e There is no support for foreign function calls in SPUR Lisp. Support must be provided
before calls to the native OS can be made.

e Obvious performance bottlenecks are still being discovered and reimplemented.

7.3 The Future of SPUR Lisp

SPUR Lisp will evolve in two directions. The first direction is towards completeness. In
time, SPUR hardware will be available and action will be taken to make SPUR Lisp work
directly on the hardware. Missing pieces of the implementation will be provided and new
applications will be ported to SPUR Lisp. The second direction is towards multiprocessing.
Language ideas for multiprocessing in SPUR Lisp have already been discussed, and are
presented in [ZHH*86). Muitiprocessor implementation issues are only beginning to be
addressed, including compiler detection of parallelism, creation and scheduling of processes,
efficient variable binding strategies, and effective multiprocessor storage reclamation. Work
in all of these areas will result in additional technical publications.

Other areas of SPUR Lisp development are more speculative. Because other multi-
processors are being commercially developed, porting SPUR Lisp to hardware other than
SPUR is possible. SPUR Lisp will be a testbed for new multiprocessing ideas. If SPUR
Lisp is available on a variety of multiprocessor architectures, we can try to develop language
features and programming styles for parallelism that are effective on a number of different

55

architectures. Currently there are no plans to port SPUR Lisp, but if after SPUR Lisp has
been installed on actual SPUR hardware the SPUR Lisp research effort continues, porting
it to other architectures may be considered.

Another possible area of SPUR Lisp development is toward a second generation of SPUR
hardware. Taylor has carefully studied performance of SPUR Lisp on the SPUR hardware,
and the knowledge he has gained would enable architects to build a much improved SPUR
workstation. Such a workstation could have custom 40-bit memory, fast trap handling, and
some of the features for Lisp that were eliminated from the original SPUR design. Making
SPUR Lisp run on new SPUR hardware would probably be quite easy but would require a
few changes in the implementation. Having custom 40-bit memory words would mean that
all data in memory would have tags, and the Lisp system would have to be redesigned to
take full advantage of the tags.

56

A Summary of SPUR Lisp Data Types

fixnum An immediate 32-bit two’s-complement integer.

character An immediate ASCII character with 8 bits of font information and 8 bits of
additional code information.

nil A unique object that has its own type tag. Represented as a symbol, with value appro-
priate as a cons object as well (40 bytes).

cons A two pointer object with car and cdr components (16 bytes).

symbol A five pointer object, with value, function definition, print name, package and
property list components (40 bytes).

i-vector A vector of k-bit values, where k ranges from 1 to 32 by powers of two. Fields in
the header include the access-type (determines size of elements), subtype, word size of
object, and number of elements in the vector. Used to represent bit vectors, strings,
bignums, and vectors of instructions in functions. Variable length (8 bytes of header
plus 4 bytes per element aligned to a doubleword boundary).

string Implemented as an i-vector of ASCII 8-bit characters with its own tag. NULL (0)
terminated for UNIX and Sprite compatibility.

g-vector A vector of pointers. Used to implemented SPUR Lisp data aggregates including
vectors, arrays, and structures. Fields in the header include the header mark, subtype,
word size of object, and number of elements in the vector. Variable length (8 bytes of
header plus 8 bytes per element).

function An object with two parts. The pointer to a function points to a code vector, which
is a modified i-vector that contains instructions for the function and a pointer to the
constants vector, which is a g-vector that contains the constants used in the function.
Variable length (code vector—16 bytes plus 4 bytes per instruction; constants vector—
40 bytes plus 8 bytes per constant).

array The array descriptor for a non-simple SPUR Lisp vector or array. Includes fields for
displaced arrays, arrays with fill pointers, and multi-dimensional arrays. Implemented
as a g-vector. Size depends on dimensionality of the array.

cclosure A pair of pointers used to implement compiled closures (16 bytes). The first
pointer points to the environment for the compiled closure, which is implemented as
a general vector. The second pointer points to the function object for the compiled
closure.

short-float IEEE 32-bit non-immediate floating point type that is stored in 64 bits to keep
objects aligned in memory (8 bytes). Soon to be obsolete (section 2.9).

long-float IEEE 64-bit floating point type (8 bytes).
extended-float IEEE 80-bit floating point type (16 bytes).

57

bignum Arbitrary sized integer represented by a vector of bytes stored in an i-vector. The
integer is stored as an n-byte two’s-complement number. The sign of the bignum is
redundantly encoded in the subtype field of the i-vector.

complex A complex number is implemented as a pair of pointers that point to the real
and imaginary part of the number, respectively (16 bytes).

ratio A rational number is represented as a pair of pointers that point to the numerator
and denominator, respectively (16 bytes).

58

B BARB: The SPUR Simulator

B.1 Purpose

BARB is a simulator of a single SPUR processor. BARB emulates the execution of in-
structions and maintains the current state of the processor and memory. BARB does not
correctly emulate the the processor cache, the system bus, the floating point unit, or SPUR
virtual memory address translation. BARB was developed to study the performance of the
proposed SPUR architecture and to implement the SPUR Lisp system. Although BARB is
a general CPU simulator, many additional functions have been added that are specific to
SPUR Lisp.

BARB is written in C and runs on VAX 8800 and Sun 3 computers. BARB is an
interactive program that prompts the user for input. Users can execute Lisp functions or
arbitrary assembler instructions. Interaction with BARB allows users to trace function calls,
step through instruction sequences, and print out the contents of memory and registers.
Many facilities of the symbolic debugger dbx are present in BARB. Currently BARB has
little support for executing C programs, primarily because a C compiler for SPUR has not
been fully implemented. In the future, we will make the debugging features available to
Lisp users also available to C users.

B.2 Organization

The files for BARB are stored in a single directory, hereafter referred to as $barb. BARB has
several components: the actual instruction simulator, the interactive shell, and the interface
to SPUR Lisp. We describe each briefly and note what files implement the component and
their specific purposes.

Several files contain global definitions and are used to generate C header files as well as
Lisp definition files for the compiler. These files are:

SPUR-0PCODES -- numeric mapping of opcodes

-- used to generate opdefs.h, opsym.h, instype.h
SPUR-CMP-CONDS -- numeric mapping of SPUR compare conditions

-- used to generate conddefs.h, condsym.h
SPUR-TAGS -- numeric assignment of type tags

-- used to generate tags.h, tagsym.h
SPUR-TRAPS -- numeric assignment of SPUR Lisp traps

-- used to generate trapdefs.h, utraps.h
SPUR-RUNTIME -- numeric mapping of runtime kernel calls

-- used to generate rtdefs.h, rtsym.h

The simulator component contains the code that has specific knowledge of the instruc-
tion set of SPUR and the organization of SPUR registers. Trap handler simulation and
simulation of floating point operations is also part of this component.

59

std.h -- contains frequently used C macros and definitions

mem.h -- structures and macros specific to 40-bit registers

spur.h -- definitions for the instruction formats

asm.h -- definitions for fixed trap handler addresses

simdefs.c -- collected instantiations of the global variables

main.c -- parses the command line, initializes, and simulates

sim.h -- definitions of the machine process register formats;
shared macros and declarations specific to barb

simulate.c -- implements simulation of individual instructions

sim2.c -- auxiliary definitions for simulation

regs.h -- macros and defines for SPUR registers

sim_regs.c -- functions to use and modify the SPUR registers

traps.h -- definitions of machine hardware traps

traps.c -- implements actions for hardware and software traps

float.c -- simulation of floating point unit operations

The SPUR Lisp interface component contains routines that are specific to the execution
of SPUR Lisp in the BARB simulator. Currently, the simulator contains a simple C-
coded Lisp read-eval-print (REP) loop, loads Lisp FASL files, and implements many
Lisp runtime kernel calls. The loader and REP loop were originally provided in C before
the SPUR Lisp versions of these functions were available. Now these facilities are mostly
unnecessary. The majority of the working knowledge of Lisp data structures in the simulator
is stored in sim rt.c.

rtcall.c -- interface from SPUR Lisp runtime kernel calls

to the C coded implementation of the routines
sfasl.h -- definitions of SPUR loader FOP codes
sfasl.c -- implements the Lisp load operation in C
sim_callers.c =-- operations on function caller sets in C
uref.c -- operations on unresolved references in C
sim_rt.c -- large collection of simulator functions that require

knowledge about SPUR Lisp

The interactive facilities of BARB fall into two categories: debugging and tracing tools,
and statistics gathering tools. In both cases there is some support for general program
execution and additional support for running Lisp programs. In particular, breakpoints
can be set and deleted, each instruction can be printed as it is executed, the registers and
memory can be examined, and Lisp calls and returns can be monitored. In addition, support
exists for attaching address trace output from BARB to an N.2 cache circuit simulator and
also to DINERO, a cache execution simulator.

active.c -- central dispatch for BARB shell

itrace.c -- contains knowledge about how to print each instruction
stats.h -- definitions for gathering statistics

stats.c -- functions for gathering statistics

60

trheader.h
external.c

defines address trace output data structure
simulator actions for cache operations;
interface to N.2 cache simulator

B.3 Flags to BARB

BARB accepts many flags on the command line. They are:

general flags:

-?, -H, -h
-m size

-w size

-a size

-0 filename
-Z

print help information

set size of runtime stack in 1K pages

set size of window stack in 1K pages

set size of system segment in 1K pages

use file as trap handler (default: trap.handler)
does nothing

SPUR Lisp flags:

-L filename
-S filename
-U filename
-b size

-G size

load an uninitialized Lisp core image (see ZEUS)
load a SPUR Lisp fasl file

save Lisp core image in file

use file as Lisp core image (default: icore)

set size of binding stack in 1K pages

turn on garbage collection

set size of newspace

use deep binding for special variables

SPUR C flags (not fully implemented):

-C

read C a.out file format as input (default: spur.data)

-8i,s0,se fname

set stdin, stdout, stderr files for C (not implemented)

debugging and tracing flags:

-d
-8
-i
-C
-n2
-T filename

print trace of every instruction executed
gather and print instruction statistics
print calls to top-level functions always
gather and print cache statistics

send all memory references to n2 simulator
file where address traces are sent

61

B.4 The BARB Interactive Shell

BARB provides a set of simple interactive commands that allow the user to execute, trace,
and debug SPUR Lisp and assembly programs. Currently there are no facilities for inter-
acting with SPUR C programs. It is important to note that commands that are specific to
Lisp functions will give erroneous results if used for non-Lisp functions. BARB’s interactive
commands fall into several categories: execution, breakpoint/tracing, printing, statistics,
and miscellaneous operations.

Programs loaded into BARB can be executed in several ways. Lisp functions can be
executed from the BARB shell simply by typing the form (e.g., (+ 1 2)). Any input
beginning with a left parenthesis is assumed to be a call to a Lisp function. The command
run starts a simple SPUR Lisp read-eval-print (REP) loop which accepts symbols or
function calls which it evaluates. BARB commands will not work in this REP since all
input is interpreted as Lisp forms. To return to the BARB shell, type q to the #> prompt.
Like the reader in the BARB interactive shell, this REP loop will not accept Common Lisp
package syntax or bignums. To invoke a more sophisticated REP loop, start the SPUR Lisp
top-level by calling the function (%top-level). The SPUR top-level is a full Common Lisp
REP loop that accepts all valid Common Lisp syntax. Like the simple REP loop, BARB
commands will not work within this REP loop since all input is interpreted as Lisp forms.
To finish the SPUR top-level REP and return to the BARB shell, type :quit to the spur>
prompt.

Another way to execute code is with the the command ex, which will start executing the
instruction at any specified address. Unfortunately, since there is no facility for assigning a
value to a register, it is impossible to set up arguments before calling a function using ex.
ex takes an optional argument (in hex) that tells how many instructions to execute before
stopping. Another way to stop program execution after an absolute number of instructions
have been executed is with the command si. Be careful when using si that the number of
instructions you specify have not already been executed, since BARB executes about 38,000
instructions of initialization before prompting for user input.

Once the program has been stopped, there are several ways to continue execution. The
¢ command continues execution until the program finishes, encounters a breakpoint, or
executes a number of instructions specified by si. Typing a number to the shell tells the
program to execute for that many (decimal) instructions. Typing a carriage return executes
one instruction. The command pi prints out the number of instructions that have executed.
For instance, at startup pi tells the user 37,230 instructions have already executed.

run, r -- start the program

ex addr [h-count] -- @xecute count instrs starting at addr

c -- continue execution

[0-9]*, <CR> -- execute # instructions (<CR> defaults to 1)
si number -- stop after number instructions have executed
pi -- print # instructions executed

The second group of commands set breakpoints and trace Lisp functions. sb sets a

62

breakpoint at an arbitrary hex address. sbn sets a breakpoint inside a Lisp function whose
name is given. db and 1b delete and list breakpoints respectively. st turns on tracing of Lisp
function calls and returns. If no argument is specified, all function calls are traced. dt and
1t delete and list functions traced respectively. v+ is used to increase information printed at
each call and return. After one v+, arguments to calls and return values are printed. After
two v+ commands, calls to trap handler routines are also printed. v- decreases information
printed. ss is used to show the value of a register or memory location after every traced
function call. ds and 1s delete shown memories and list shown memories respectively.

Just like the where command in dbx, b produces a backtrace of Lisp function calls and
the value of the v flag applies to the printed backtrace. For example, when debugging Lisp
code, it is common for an error to occur during execution. To see what was being executed
at the time of the error, first use v+ to increase the information printed, and then use b to
print out a backtrace of calls in progress at the time of the error. Unfortunately, backtracing
will not work correctly when the error occurs inside a trap handler because trap handlers
manipulate the window pointers in unexpected ways.

To see the execution of the program at an even finer grain use d+. All instructions
executed will be printed if the d+ flag is turned on. To turn off instruction tracing, use the
d- command. The d+ command is equivalent to using the ~d flag on the BARB command
line.

sb [h-breakpt] -- set breakpoint(s)

sbn fun-name -- set breakpoint in function

db [h-breakpt] . -- delete breakpoint(s)

1b -- list breakpoints

st [s-funname] -- set tracing of function(s)

dt [s-funname] -- delete tracing of function(s)

1t -- list functions being traced

v+, v- -- increase/decrease baktrace and trace output
ss [h-memloc] -- set showmemory(s) on call/return trace
ds [h-memloc] -- delete showmemory(s) on function trace
1s -- list showmemories

b -- backtrace

d+, d- -- increase/decrease instruction tracing

The next group of commands is used to print out values in the memory and registers. p
prints general registers (prefixed by 't’), special registers (prefixed by ’s’) and floating point
registers (prefixed by ’t’), as well as arbitrary memory locations, which are just specified
by their address. p tries to interpret the values as Lisp data and expects correct type
tags. Without an argument, p prints the currently available 32 general registers. To avoid
interpreting values as Lisp data use px. px takes arguments just as p does and prints the
contents of memory or registers as hex numbers. pp prints all the special and floating point
registers. ps prints the registers belonging to procedures on the calling stack, including
possible off-chip registers. pw prints all the registers in the on-chip register windows. Both
ps and pw interpret values as Lisp pointers. pf prints the number of memory references the
program has made.

63

p [h-memloc]
px [h-memloc]
ps
pv
PP
pf

print objects (indicate regs by r#, s#, t#)
print objects in hex, just as ’p’

print the whole register stack

print all register windows

print special and floating point regs
print # memory references

The following commands are used by particular users interested in using BARB for
cache performance studies, SPUR address traces, SPUR N.2 cache simulations, and general

machine architecture issues.

g+, g
gt

gr

gs

gx

n2+, n2-
n2x*

T+, T-

increase/decrease statistics gathering
show cache statistics

reset instr set statistics

show instr set statistics

show space statistics

turn on / turn off n2 simulation

send remaining line to n2 simulation
increase/decrease address tracing

These miscellaneous commands below are divided into two categories: those that require
SPUR Lisp to be loaded, and those that do not. u, gc, and inv all require SPUR Lisp.
help prints a summary of all BARB shell commands. dis disassembles the instruction at
an address, but can sometimes cause an error printing out instructions. quit exits BARB.

h, help, ?

mx addr data
dis [h-memloc]
f [filename]
u

gc space#

inv inv-args
quit, g

B.5 Using BARB

prints this message

modify memory location

disassemble instruction at an address

save Lisp image in filename upon exit

show all unresolved references

force a garbage collection of space number #
check the space memory invariants

exit xbarb

BARB is being developed on eros, a VAX 8800 computer. The source code for BARB
is stored in the directory eros:/eros6/lang/barb. A file in this directory, SPUR-NAMES,
is a C-shell script that defines shell variables for all the major components of SPUR Lisp.
BARB users should source this file in their .login files.

All development work on BARB takes place on eros. The most recent version of all
files associated with the simulator are stored on this machine. BARB has also been ported
to Sun 3 workstatations. The source files for BARB are occasionally copied to a Sun 3 and
recompiled, but in general, the Sun 3 version of the the simulator is several weeks behind

64

the VAX version. The existing Sun 3 implementation of SPUR Lisp on BARB does not
create and operate on floating point numbers correctly. The VAX implementation of BARB
does not represent SPUR floating point numbers in the correct format, but performs correct
operations on floating point values.

There are several versions of the BARB simulator available. The most stable version is
kept in the file barb. barb is intended to always contain a working version of the simulator.
xbarb contains the version of the simulator with the most recent updates. Because xbarb is
under development, users should be aware that it may stop working at any time due to new
bugs. xbarb is also used for debugging the Lisp system, and so all statistics gathering code
has been disabled in this version. To run the simulator and gather statistics, use wbarb.
Finally, to produce a call graph with statistics, use the program gbarb.

BARB requires two files to execute SPUR Lisp correctly. The first file is an a.out file
containing the code for handling traps. This trap handler file is by default trap.handler
in the $barb directory, but can be specified by a user with the -0 option. The other file is
used by SPUR Lisp and contains an initial memory image of the SPUR Lisp system. This
file is created by ZEUS, the creator component of SPUR Lisp, and described elsewhere.
The default name for this file is icore in the barb directory. Users may specify another
name using the -U option.

B.6 Implementation Status

BARSB is still undergoing changes because the focus of BARB users has shifted from the
SPUR Lisp implementors to the SPUR hardware implementors. BARB will also be used
by the SPUR C developers. Here we indicate remaining weaknesses in the BARB imple-
mentation and attempt to evaluate the effort required to fix them.

¢ BARB was implemented on a VAX computer and the floating point numbers used by
BARB are VAX double precision floating point. SPUR will use IEEE floating point
numbers, and BARB should be reimplemented to use host machine independent IEEE
standard floating point numbers. If C-coded IEEE software floating point routines
were available, using them in the simulator would require little effort. The availability
of these routines is not known, nor is the effort required to implement them ourselves.

e The SPUR Lisp memory image cannot be properly ported to Suns because it contains
VAX floating point numbers. When BARB uses host machine independent floating
point, SPUR Lisp can be executed on Suns.

e Currently, BARB has lots of specific knowledge about the format of the SPUR Lisp
memory image. Ideally, this knowledge should be shifted to a C routine that is used to
initialize SPUR Lisp. This C routine could then be simulated and the proper initial-
ization would take place. Ultimately, BARB should be fully functional for executing
and debugging C programs, with additional support for executing Lisp. In its current
configuration, BARB fully supports Lisp execution, with only minor support for C
execution. To provide support for debugging in C, BARB needs to understand the
symbol tables provided in the a.out files, a minor addition.

65

e Tracing of specific Lisp functions is not correct in the presence of catch and throw.
BARB will continue to be developed and maintained. A separate unpublished document,

originating from the text of this appendix, will contain the most recent information about
the BARB implementation.

66

C SLC: The SPUR Lisp Compiler

C.1 Purpose

The SPUR Lisp compiler (SLC) compiles SPUR Lisp source code to FASL files. The format
of the FASL files is described in [WFG85). In addition to the FASL files, the SPUR Lisp
compiler optionally produces listings of error messages (extension .err), Spice Lisp bytecode
listings (extension .slap), and SPUR Lisp assembly listings (extension .spur-lap).

C.2 Organization

The SPUR Lisp Compiler has two major pieces—the Spice Common Lisp compiler (CLC)
and the SPUR translator (SPURT). The first piece is the complete Spice Lisp compiler from
CMU. It has been slightly modified and a few minor bugs fixed. This compiler produces
a stream of unassembled Perq bytecodes, which are translated into SPUR instructions and
assembled by the SPUR translator (see Figure 21).

Spice Lis -
SPUR Lisp Co,fmn Lpnsp Perq SPUR Lisp
source file ~ —* Compiler —— bytecodes —| Bytecode Translator
(.slisp extension) (CLC) (SPURT)

SPUR Lisp lap file
(extension .spur-lap)

and SPUR Lisp object file
(extension .sfasl)

Spice Lisp lap file
(extension .slap)

Figure 21: Phases of the SPUR Lisp Compiler. It is build from the Spice Lisp compiler (CLC)
and an additional translator (SPURT).

This arrangement permitted us to build on the efforts of the Spice Lisp group and not
write a complex compiler from scratch. The obvious disadvantage is that we had to use the
Perq bytecodes as an intermediate form in our compiler. These bytecodes were not intended
for that purpose, but they suffice.

For details about the Spice Lisp compiler, we refer the reader to the documentation that
accompanies the source code. We attempted to minimize changes to the Spice compiler so
that future improvements from CMU could be adopted into the SPUR compiler with little

67

effort. The optional peephole optimizer of the Spice compiler must always be used or
SPURT will produce bad code from the voluminous, unoptimized bytecodes. The Spice
optional register allocator must never be used.

SPURT has four parts (see Figure 22). The first takes a sequence of Perq bytecodes

Build
Expression |—e| Instruction —e- Register —= | SPUR Lisp
Trees Selection Aliocation Assembler
Perg SPUR Lisp SPUR Lisp
bytecodes assembly file object file

(extension .spur-lap) (extension .sfasl)

Figure 22: Phases of the SPUR Translator. The first stage builds expression trees from Perq
bytecodes. The second produces a sequence of SPUR instructions from these trees. The third
allocates registers for these instructions. And the fourth assembles the instructions and writes fasl

files.

and builds expression trees from them. The process involves inserting explicit temporaries
in place of the Perq’s implicit stack locations and collecting the operands to the various
bytecodes. The next stage produces SPUR code from these instruction trees. This code
uses an infinite set of symbolic registers, necessitating register allocation, which allocates
these temporaries to the available registers. The process is described in detail elsewhere
[CH84,LH86]. The fourth and final stage assembles the SPUR instructions and writes out
a FASL file. These files have the same structure as the Spice Lisp FASL files, except that
the function bodies have a different format and instruction set.

The Spice Lisp portion of the compiler resides in these files:

aliencompile -- contains constant folding code

clc -- main CLC compiler

fndefs -- information on CL functions

instdefs -- information on Perq bytecodes

peep -- peephole optimizer

seqtran -- optimizations for sequence functions
trans -- miscellaneous optimizations

typetran -- optimizations from type specialization

The SPUR translator portion of the compiler resides in these files:

68

reg-alloc -- the register allocator

spur-assem -- SPUR assembler

spur-cmp-conds - list of SPUR condition tests
spur-inst -- produces the SPUR instructions
spur-1lisp -- description of SPUR Lisp data structures
spur-opcodes -- definitions of SPUR opcodes
spur-runtime -- definitions of SPUR runtime routines
spur-tags -- definitions of SPUR Lisp type tags
spur-traps -- definitions of error conditions
spurt-macros -- SPURT macros

spurt -- bytecode parser

trans-bc -- SPUR code generator

The SPUR Lisp compiler also relies on the following files to provide a standard set of
macros in foreign (i.e., non-SPUR Lisp) environments:

defmacro
defstruct
macros
symbol-macros

The following files are also used:

assembler -~ interface to the assembler for handwritten files
misc -- odds and ends

print-sfasl -- print out a fasl file in a readable format
setup-slc -~ command file to load the compiler

C.3 Using the SPUR Lisp Compiler

The SPUR Lisp compiler is invoked by calling the function compile-file, as defined by
Common Lisp. The SPUR Lisp implementation of compile-file has several additional
gkeyword parameters. The keyword :lap-file is a boolean argument that defaults to
nil. If :lap-file is nil, no .spur-lap or .slap file will be generated by the compila-
tion. :clean-up is a boolean keyword that defaults to t. If :clean-up is nil, macros
defined in a compilation are not deleted after the compilation completes. :error-file
specifies the file that error messages are written to. :errors-to-terminal is a boolean
keyword that specifies whether or not to write compilation error messages to the terminal.
:errors-to-terminal defaults to t, which means that error messages are written to the
terminal. :load is a boolean keyword that indicates the compiled file should be loaded
after being compiled. :load defaults to nil.

69

C.4 Implementation Status

SLC runs under Franz Lisp Opus 42 and 43[FSL*85] with the aid of a Common Lisp
compatibility package. It also runs in VAX Common Lisp (VAXLISP), Franz Common
Lisp (Excl), and, of course, SPUR Common Lisp. There are several additions to the SPUR
Lisp compiler that would improve the performance of the compiled code it produces. These
are:

e As was mentioned in section 5.4, SLC does a naive job of placing instructions in the
delay slots of several two-cycle instructions. A code scheduler could be added to SLC
that would improve the use of the delayed instruction slots. Studies show that a
rescheduler could relocate useful instructions in about 60% of the unused delay slots,
improving overall performance by up to 20%.

e SLC performs none of the standard optimization techniques such as common subex-
pression elimination, code motion, global interprocedural analysis, or redundant store
elimination.

e SLC now ignores many of the programmer specified type declarations provided in
Common Lisp. Support for recognition of numeric type declarations (especially float-
ing point types) would significantly improve the performance of numeric applications.

e Some of us think that simple peephole optimization of the generated code would
probably improve performance at a small implementation cost.

70

D RT: The SPUR Lisp Runtime Kernel

D.1 Organization

The SPUR Lisp runtime kernel contains functions coded in SPUR assembly language either
for efficiency or because they cannot be written in SPUR Lisp. Section 6 describes each of
these primitives in detail. This appendix outlines how these primitives are implemented.

The runtime primitive functions are currently implemented in two ways. About 20
of the 50 functions are implemented in SPUR assembler and called directly from other
Lisp functions. Ultimately, all runtime primitives will be implemented in SPUR assembler.
Because a SPUR assembler was originally unavailable, all runtime routines were initially
implemented in C code as part of the BARB simulator. About 30 routines have not been
rewritten in assembler. These routines are invoked through a special simulator mechanism,
where calls to negative addresses are interpreted as calls to runtime routines.

The SPUR runtime routines are implemented in SPUR Lisp assembly language, and
compiled into SPUR Lisp FASL files. This assembly language has a different syntax than
SAS, the assembly language generated by the SPUR C compiler and used to implement
the SPUR trap handlers. The syntax of SPUR Lisp assembler (SPLASM) is described in
appendix G. The syntax of SAS is described in another document [Hil87]. SPLASM files are
suffixed with .sa and translated into .spur-1lap files before being assembled by the same
functions that assemble SPUR Lisp compiler generated files. One advantage of SPLASM
over SAS is that SPLASM files are interpreted using SPUR Lisp and may contain SPUR
Lisp macros. Also, the SPLASM assembler understands SPUR Lisp constant vectors, and
users can add their own constants to the constant vector of the function they are defining.

The SPUR assembly files reside in the $code directory with the rest of the SPUR Lisp
system files (see appendix E). All functions defined in SPUR assembly files are interned in
the system package. The SPUR Lisp assembly files are listed below.

spur-runtime -- allocation functions for SPUR Lisp objects

spur-runtime2 -- miscellaneous runtime kernel routines

spur-misc -- other miscellaneous runtime kernel routines

spur-arith -- arithmetic and logical shift routines

spur-proto -- prototype function objects for interpreted
functions and compiled closures

spur-deepbind -- functions to implement deep binding of special

variables for multiprocessor SPUR Lisp

The remainder of the SPUR Lisp runtime kernel is coded in C as part of BARB, the
SPUR simulator (see appendix B). Calls to these routines are not performed by simulated
instructions. Instead, C code operates on the simulated SPUR memory and hardware to
perform the necessary operations. The files for the C-coded portion of the runtime kernel
reside in the rt subdirectory of the $barb directory. The files are organized into three major
components: the SPUR Lisp runtime kernel routines, the SPUR Lisp garbage collection

71

routines, and support routines for SPUR Lisp debugging in the BARB simulator. These
files are listed below.

support for general programming:
stdlib.h -- header containing general useful C macros
stdlib.c -- useful C routines non-specific to SPUR Lisp

support for the SPUR Lisp runtime kernel:

typedefs.h -- definitions of SPUR Lisp types

spurlib.h -- macros defining classes of types, general defines
spurlib.c -- general routines specific to SPUR Lisp
spurdefs.c -- definitions of global variables

alloc.h -- defines for SPUR Lisp allocation routines
alloc.c -- SPUR runtime kernel allocation (mostly obsolete)
boole.h -- defines for boole operation

arith.c -- support for generic SPUR Lisp arithmetic

logic.c -- support for logical operations

spurmisc.c -- miscellaneous runtime kernel routines like throw
string.c -- operations on arrays of characters

vector.c -- operations on generic vectors

support for memory allocation and reclamation:

gc.h -- defines for SPUR Lisp garbage collection
ge.c -- generation garbage collection and full gc support
measure.c -- code to measure performance of memory reclamation

support for BARB simulator Lisp debugging:

lexio.h -- defines for YACC output to a program variable
lisp.lex -- simple LEX code for Lisp reader

lisp.yacc -- YACC to correctly interpret LEX tokens

rep.c -- simple read-eval-print code for BARB simulator

D.2 Implementation Status

There are several things that must be done to complete the SPUR Lisp runtime kernel
implementation.

¢ The remaining C-coded runtime routines must be implemented in SPLASM. An al-
ternative to writing these in assembler would be to take the C-coded versions and
compile them using the SPUR C compiler that is becoming available.

e Some of the runtime routines are currently implemented as part of the trap handler file
and not coded in SPLASM. This happened because the trap handler file was available
before the SPLASM assembler was written.

72

o Complete numeric support must be provided in the runtime kernel routines. Support
for all numeric types, and most notably ratio and floating point numbers, is not
provided in all the existing kernel routines.

o The implementation of multiple values in the C-coded portion of the runtime routines
is now incorrect when more than 4 values are returned from a function. The only
runtime routine where this can happen is rt-throw, in which any number of values

may be thrown.

73

E CODE: The SPUR Lisp System

SPUR Lisp is built in layers. The most primitive layer provides SPUR Lisp constructions
that cannot be implemented in Lisp (such as list or throw), or that are so frequently
executed that hand coded assembly routines are warranted. We have already discussed the
contents of the SPUR Lisp kernel in appendix D. Above this layer, the SPUR Lisp system
is written in SPUR Lisp. The SPUR Lisp files for this component are stored in a single
directory which is referred to as the $code directory. The $code directory contains 50 files
totaling more than 30,000 lines of Lisp.

Most of the SPUR Lisp system has been taken directly from Spice Lisp. Because this
system is implemented in Common Lisp, much of the Spice Lisp code works for SPUR
Lisp. The main differences are the functions that interface to the operating system,'® such
as open and close; the functions that manipulate system data structures, such as load,
which modifies the unresolved reference list; and the functions that manipulate the runtime
environment, such as debuggers and tracing routines. The SPUR-specific functions in the
$code directory are in files whose names are prefixed by “spur-".

At present, some of the Spice-specific routines in the SPUR Lisp system have not
been rewritten. In particular, the Common Lisp functions trace, untrace, disassemble,
documentation, step, time, inspect, room, and ed have not been reimplemented for SPUR
Lisp.

E.1 Organization
This section presents the files in the SPUR Lisp $code directory and briefly describes their

contents. The following table describes the correspondence between the files in this directory
and chapters in Guy Steele’s book, Common Lisp: the Language.

Chapter 6 : Predicates
pred -- predicate functions
subtypep -- subtypep function

Chapter 8 : Macros

backq -- backquote and comma macros

macromemo -- macro memoization if *macroexpand-hook* is
set to memoize-macro-call

sharpm -- the # macro

defmacro -- define defmacro

macros -- CL macros from various chapters

Chapter 10 : Symbols
symbol -- symbol manipulation functions

18Spice Lisp uses the Accent operating system and SPUR Lisp uses the Sprite operating system.

74

Chapter 11 : Packages
package -- main package operations
provide -- provide, require, etc.
Chapter 12 : Numbers
arith -- arithmetic, boolean, logic and bit operations
spnum -- rationals, gcd, lcm, component extraction
for integer and floating point numbers
(float-radix/sign/digits/precision)
(decode-float, scale-float, etc.)
spirrat -- irrational, transcendental, trigonometric,
exponential and logarithmic functions
rand -- random number functions
1float-consts -- implementation dependent constants for
long-floats
Chapter 13 : Characters
seq -- sequence functions
sort -- sort and merge
Chapter 15 : Lists
list -- list functions
Chapter 16 : Hash Tables
hash -- hashing, hash tables
Chapter 17 : Arrays
array -- arrays and arrays of bits
Chapter 18 : Strings
string -- string operations
pergstrops -- more string operations
Chapter 19 : Structures
defstruct -- define defstruct
Chapter 20 : Evaluator
eval -- SPUR Lisp interpreter
nspdefs -- interpreter access to compiler primitives
Chapter 21 : Streams
defstream -- definition of a stream
stream -- machine independent streams

75

Chapter 22 : Input/Output

reader -- Lisp reader

print -- *print-<variable>* variables, print functions
pprint -- pretty printer

format -- format function

query -- y-or-n-p, yes-or-no-p

spur-io -~ gtream-level input/output implementation;

uses interface defined in sprite.slisp

Chapter 23 : File System Interface

spur-filesys -- pathname functions

load -- reads in sfasl files

spur-uref -- unresolved reference list operations
spur-support -- caller set operations;

interpreted functions and macros;
compiled closures

Chapter 24 : Errors
error -- requires reimplementation for SPUR

errorm -- define error macros

Chapter 25 : Miscellaneous

misc -- documentation function, *features*;
implementation version, type, etc.

spur-patches -- time function

trace -- Spice debugger, not yet modified for SPUR

debug -- ditto

frames -- ditto

step -- ditto

Other files

constants -- define Spur-specific system constants

spur-func -- functions and macros to access fields of a
function object

initialization -- %new-initial-function;

most-positive-fixnum, most-negative-fixnum;
site/machine/version/system information

sprite -- 0S primitives
keyword -- keyword parsing macro (part of compiler)
extensions -- Spice Lisp extensions to CL

76

E.2 Compiling the SPUR Lisp System

The files in the SPUR Lisp system are interrelated. Macros defined in one file are used in
another. To compile the SPUR Lisp system correctly in a foreign Lisp, such as Franz Lisp,
the files must be compiled sequentially in a specific order. After the SPUR Lisp system
is compiled, the creator component of SPUR Lisp creates an initial SPUR Lisp memory
image from all the compiled files. The creation process is described in appendix H. The file
compile-all.l in the $code directory indicates the order of files in the compilation, and
notes reasons for the order.

Compilation of the SPUR Lisp system using the SPUR Lisp compiler requires significant
resources. While the actual source code occupies just over a megabyte, the files produced
in the compilation use more than 20 megabytes of disk space. The space explosion occurs
because listings of the intermediate forms (.slap, .spur-lap) of the SPUR Lisp compiler
are saved after compilation and used for finding bugs. If only the SPUR sfasl files are
saved after recompiling the SPUR Lisp system, the directory is only 3 megabytes. A typical
recompilation of the entire $code directory requires an hour of CPU time on a VAX 8800
computer.

77

F TH: SPUR Trap Handlers

F.1 Introduction to SPUR Traps

SPUR traps vector through locations 0x1000 to 0x10f0. The hardware that implements
traps is described in [Tay85]. There is a priority ordering which corresponds to the trap
vector locations. 0x1000 is highest, 0x10f0 is lowest. The page starting at 0x1000 has
read/write access in kernel mode and no access in user mode. It is possible to execute
instructions from this page while in user mode because instruction fetches are not restricted
by access rights. The code at each trap vector location is a jump followed by a delay slot.
The following text lists trap locations and a description of the traps that each location
handles.

1000 reset

1010 error
1020 window overflow
1030 window underflow

1040 fault, interrupt
1050 fpu exception
1060 illegal op, kernel mode violation, cxr exception
1070 fixnum tag trap (add, sub, shift, logical)

fixnum or char tag trap (cmp_br)

generation tag trap (store_40) (in the real hardware)
1080 integer overflow (add, sub)

cmp_trap (in the real hardware)

1090 cmp_trap (current simulator)
10a0 generation trap (current simulator)
10b0

10c0 eql (simulator only, real SPUR has no eql condition)
1040 endp (simulator only, real SPUR has no endp condition)

When a trap occurs, the cwp is incremented, the pc is saved in r10 of the new window,
the next pc is saved in 116 of the new window, and the <all traps> trap enable bit in the
kpsw is turned off. The following traps also change the mode from user to kernel— reset,
error, fault, interrupt and cmp_trap.

All traps except reset and error are disabled when a trap occurs. One effect of this
is to mask off page faults (or turn them into errors). Consequently, the trap vector page
and certain others containing trap handler code need to be resident in memory. Traps that
may correctly cause other traps need to re-enable traps during their execution. The current
simulator provides the enable instruction for this purpose, but the actual hardware has no
enable instruction. Because the return_trap instruction re-enables traps, it can be used
to get the effect of enable.

Most trap handlers end with a return_trap—jump.reg or return_trap—nop sequence.
At the start of the sequence, all traps are disabled. The effect of the return_trap is to

78

enable all traps after the cwp has been decremented and after control has passed to the
trailing instruction. This order of actions prevents the window overflow trap handler from
getting stuck in an infinite loop. It also means that the return_trap instruction does not
check for window underflow, as the normal return instruction does. In cases where window
underflow is possible, the trap handlers must check for window underflow in software.

F.2 Reset and Error Traps

When a reset or error occurs the mode of the processor changes to kernel. All traps except
reset are disabled. The window overflow trap is overridden so only the ten local registers
(r16-125) are known to be empty. Before calling another function, the trap handler must
check explicitly for window overflow by comparing the cwp with the swp.

Before enabling traps with the kpsw <all traps> or kpsw <error> bits, you must save
the kpsw <previous mode> bit. If a second reset occurs before the previous mode is saved,
the previous mode will be lost. In that situation trap handler software cannot prevent the
mode from being lost.

If traps are turned on during the execution of the trap handler, then before returning
from it, the code must check whether the window underflow handler should be called. Traps
should be turned off before calling the window underflow handler so that they will be off
when control returns from it.

Before returning from the trap handler, you must have traps off and move the saved
<previous mode> bit back into the kpsw <current mode> bit. This action may place the
trap handler in user mode, but the handler can still continue because instruction fetches
are not limited by access restrictions. The last instructions of the trap handler should be
the following:

check for window underflow # traps off
invoke window-underflow if necessary

move r9, saved.2nd_pc # any global reg
rd_kpsw

assign the <current mode> bit

wr_kpsw

return_trap rio

jump_reg rd

F.3 Window Overflow and Underflow Traps

When a window trap occurs, the user/kernel mode does not change, so the window trap
handlers do not have to manipulate the kpsw <previous mode> and <current mode> bits.
All traps except reset and error are disabled during the execution of window overflow and
window underflow trap handlers. The window stack where overflowed registers are stored,
pointed to by the swp, is readable and writable in both user and kernel modes.

79

The window overflow handler starts at 0x1100. The delay slot after the jump is used
to load the swp into 19. If the caller’s window was z, the current window is ¢ + 1. The
handler first assigns a youngest generation tag to r9 so that subsequent stores will not take
generation traps. The handler then saves 126 of the current window at the address in 19.
Next it makes a call in order to move into window z + 2, which is the window that needs to
be copied to memory. After saving registers 11-25 using r9 + offsets, the handler returns
to window z + 1, where it checks whether the window stack in memory has overflowed.
If it has, then the handler jumps to diag_halt. Otherwise it adds 128 (16 registers x 8
bytes/register) to the swp and re-executes the instruction that caused the trap. The exit
sequence from window overflow is:

jump_reg rl0
return_trap ri6

return_trap turns the <all traps> trap enable back on in time for the next instruction to
cause a trap. Since the user/kernel mode did not change when the window trap occurred,
the current mode bit is correct when control returns to window z.

The window underflow handler starts at 0x1200. The delay slot after the jump is used
to load the swp into r9. If the caller’s window was z, the current window is z + 1, and
the underflow window needs to be copied to window z — 1. The handler first checks if the
saved window stack has underflowed in memory. If it has, then the trap handler jumps to
diag_halt. Otherwise, it decrements the cwp by 2 in order to move to window z — 1. The
trap handler then subtracts 128 (16 x 8) from both r9 and the swp and loads registers 10-25
using 19 + offsets. The handler returns to window z+ 1 by incrementing the cwp by 2. The
exit sequence is the same as the exit sequence of the window overflow trap.

F.4 Tag and Generation Traps

SPUR will trap when certain operations are performed on registers with the wrong tag.
For example, the cxr instruction traps when the type of the operand is not cons or nil.
Traps also occur when arithmetic operations are performed on registers with types other
than fixnum. When one of these traps occur, the Lisp system needs to perform a more
complex operation than that provided by the hardware. The trap handler must recover the
operands of the instruction that trapped, call a Lisp function (or the FPU) to execute the
correct operation, and place the result of the operation back in the destination register of
the trapping instruction.

Recovering the operands is a complex task that is implemented with an obscure code
sequence in the trap handler. Operand recovery requires decrementing the cwp either
explicitly or by using a return in order to read the registers in the previous window. While
the cwp points to the previous window, traps must be disabled. This is the primary reason
why the kpsw <all traps> bit is disabled at the start of every trap. If a hardware reset or
error occurs while the cwp points to the previous window, then the return pc for this trap
will be lost.

80

After the operands have been recovered, the trap handler may return control to normal
user code. Traps must be enabled before doing so, but the Kpsw <all traps> bit cannot
be written while in user mode. Therefore, the trap handler must make a kernel call using
the cmp_trap instruction. (An enable instruction which is executable in user mode would
solve the problem).

In many cases, the normal user code will want to write a substitute result into the
register that would have been the destination of the instruction that trapped. To do so, it
passes the substitute value to the trap handler, which places the value in the destination
register.

Generation traps take place during store operations. Like tag traps, generation traps
must recover the operands and then return. Because generation traps can also cause page
faults, and because the generation trap can occur before the page fault is noticed, and
because generation traps disable faults by default, the generation trap handler must imme-
diately reenable faults when it is entered.

F.5 User Traps

User traps are taken when the user program executes a cmp_trap instruction. A field in the
trapping instruction specifies a trap number that can be used to identify the trap. Trap
numbers for SPUR Lisp user traps are given in 6.2. Most user traps occur when an error
condition arises in the execution of a program. In this case, control is transferred to an
error handling routine, which reports the error to the user.

81

G SPLASM: The SPUR Lisp Assembler

SPLASM is an assembler that takes SPUR assembly instructions in a Lisp-like syntax and
creates Lisp FASL files. SPLASM routines can call and be called directly from any other
SPUR Lisp functions. SPLASM uses the SPUR Lisp compiler (appendix C) to assemble
files that have a syntax very similar to the syntax of the .spur-lap files generated by the
compiler. SPLASM is a two pass assembler. The initial pass translates SPLASM source code
(extension .sa) into the similar but less readable .spur-lap syntax. The second pass feeds
the .spur-lap file into the back end of the SPUR Lisp compiler, which performs register
allocation and writes the FASL file. An advantage of using the SPUR Lisp compiler is that
symbolic temporary names can be used in the SPLASM files and the compiler’s register
allocator will perform efficient allocation of the temporaries.

G.1 SPLASM Syntax

Functions are defined in SPLASM using the defasm form. The syntax of defasm is specified
below:

defasm name arguments &optional constants &rest body [splasm form]

defasm defines a new function. The argument list is only provided for documenta-
tion. The optional constants parameter is a list of the form (constants constent-0 ...
constant-n). Each constant can be any lisp form. Constants can be referenced as they are
in any SPUR Lisp function, from the constant vector pointer, which is stored in r16 at the
beginning of each function. SPLASM inserts the following two instruction at the start of
every function:

rd_spec ri7, s3 ; read the pc
load ri6, r17(-8) ; load the constants vector

To place constant-0 in a register, the following sequence is used:
load rCO0, ri16(40) ; constant-0 is 40 bytes off rié

If no constants are used in a function, the second phase of the assembler removes the first
two instructions from the function.

G.1.1 Instruction Syntax

The body of the defasm consists of SPUR instructions. The SPUR instruction set is de-
scribed in [Tay85) and used in SAS. Note that the opcode names in SPLASM are different
from the names used in SAS, although there is a one-to-one correspondence between them.
Names ending in 40 in SAS are ended with _p (pointer) in SPLASM. Names ending in 32

82

in SAS end in _w (word) in SPLASM. 1d and st in SAS are spelled out fully as load and
store, in SPLASM. Each instruction has one of several possible formats. The formats are:

RRI: (opcode reg-dest reg-sourcel reg-or-constant)

RI: (opcode reg-dest reg-or-constant)

NOP: (opcode)

RSR: (opcode reg-dest sp-reg reg-or-constant)

SRR: (opcode sp-reg reg-dest reg-or-constant)

CMP: (opcode compare-cond reg-sourcel reg-or-constant label)
FCMP: (opcode compare-cond reg-sourcel reg-source2)

TRAP: (opcode compare-cond reg-sourcel reg-or-constant vector)

STORE: (opcode reg-source2 reg-sourcel offset)
JUMP: (opcode label)

CALL: (opcode function-name)

JREG: (opcode reg-target offset)

The instructions, their formats, and an example of their typical use are presented below:

;33 general instructions

Instruction Format Example Comment
load_p RRI (load.p %ri7 %ri16 $40) ; load constO
cxr RRI (cxr Yr19 %r20 $8) ; take cdr of r20
load_w RRI (load_w %r20 %r19 Y%r12) ; 3 regs okay
store_p STORE (store.p %ri16 Yr17 $40) ; store constO
store_w STORE (store_w %r20 %r21 $0)

test_and_set RRI (test_and_set Yr20 Ytemp $10)

add_nt RRI (add_nt %ri15 %temp $10) ; named temp reg
add RRI (add %r1S Y%temp %ri2)

sub RRI (sub %r15 Ytemp %ri2)

and RRI (and %ri5 Y%temp %ri2)

or RRI (or %ri15 Ytemp %ri2)

xor RRI (xor %r15 Ytemp %ri2)

extract RRI (extract %r20 %x %y)

s11 RRI (s11 “dest Ysrcil $3)

srl RRI (srl %dest Ysrc1l $1)

sra RRI (sra %dest Ysrci $1)

insert RRI (insert %r20 %x %y)

rd_special RSR (rd_special Ydest %r1 $0) ; %rl is si
wr_special SRR (rd_special %r1 %target $0) ; rl is si
rd_insert RRI (rd_insert %dest Y%xxx $0) ; rsi is ignored
wr_insert RRI (wr_insert %xxx %xxx $1) ; rd, rsl ignored
rd_tag RRI (rd_tag %dest Y%src $0)

83

wr_tag RRI (wr_tag hrX YrX $tag) ; $tag named const
rd_kpsw RRI (rd_kpsw %dest Y%xxx $0) ; rsl is ignored
wr_kpsw RRI (vr_kpsw %xxx hsrc $1) ; rd ignored
cmp_br_delayed CMP (cmp_br_delayed test %r0O %15 Qlabel)

cmp_trap TRAP (cmp_trap test Jx 4y $trapnum)

call CALL (call lisp::vector) ; call function
jump JUMP (jump Q@label) ; jump to label
call_reg JREG (call_reg %x %target $0) ; dest is ignored
jump_reg JREG (jump_reg “x %target $0)

return RRI (return %r10 %ro $8) ; see below

;;; Pseudo-instructions -- provided for purposes of gathering statistics.

;;; These instructions are not provided by the actual hardware.

Instruction Format Example Comment
load_p_spill RRI (load_p_spill ‘r2 r4 $8) ; load r2 from mem
store_p_spill STORE (store_p_spill Y%r2 %r4 $8) ; store r2 to mem
store_p_cons STORE (store_p_cons Y%cdr %r8 $8) ; store into cdr
move RI (move %dest Ysrc)

move_imm RI (move_imm %dest $22)

nop NOP (nop)

;33 Floating Point instructions

Instruction Format Example Comment
load_sgl RRI (load_sgl %r3 %ri6 $56) ; load FPU r3
load_dbl RRI (load_dvl %ri %ri6 $56) ; load FPU ri
load_extl RRI (load_extt Yré %ri6 $56) ; load FPU ré6 (hi)
load_ext2 RRI (load_ext2 %r6 %ri6 $64) ; load FPU r6 (lo)
store_sgl STORE (store.sgl %r3 %ri6 $56) ; store FPU r3
store_dbl STORE (store.dlb “r1 %r16 $56) ; store FPU ri
store_extl STORE (store_extil %r6 %ri6 $56) ; store FPU 16
store_ext2 STORE (store_ext2 %r6 %ri6 $64) ; store FPU 16
sync RRI (sync %r0 %ro0 Y%r0) ; ignores operands
fadd RRI (fadd %r5 %r3 4ri1o0)

fsub RRI (fsub %r5 %r3 %rio)

fmul RRI (fmul %S %r3 Yri0)

fdiv RRI (f£div %rs %r3 %rio)

fcmp FCMP (fcmp test 4rl %r3) ; sets state

cvts RRI (cvts s 4r3 $0) ; ignores rs2
cvtd RRI (cvtd hr5 %r3 $0) ; ignores rs2
fmov RRI (fmov w5 %r3 $0) ; ignores rs2
fabs RRI (fabs %rs Y%r3 $0) ; ignores rs2
fneg RRI (fneg %rs %r3 $0) ; ignores rs2

84

Instructions that compare registers, like cmp_trap and cmp_br_delayed, take as an ar-
gument the comparison to perform. The possible comparisons are listed in [Tay85], and
the only difference in syntax is that eq.38 and neq.38 are replaced by eq.p and neq.p,
respectively. Labels, as indicated above, are prefixed with @ (e.g., @labell). Constants are
prefixed by $, and use standard Lisp syntax for their representation. For example, $32,
$#x20, and $#b10000 are all valid representations for the number 32. Lisp constants may
also be used. Thus $thirty-two is also valid if there is a Lisp variable defined in the
SPLASM program that gives the global variable thirty-two a value.

G.1.2 Register Specifiers

Register operands can be named in a number of ways. The most direct way is to simply
specify the register number (e.g., %r12). All tokens of the form %rN and %rNN, where N is
a digjt, are interpreted as absolute register references. Many registers also have symbolic
names, which are indicated with the syntax %=NAME, where NAME is the symbolic name.
The symbolic names for the various registers are presented below.

Symbolic Name General Register Comment
%=0 r0 r0 is fixed to be 0
A=nil rl Lisp nil
%=in_nargs rit number of in arguments .
%=in0 ri2 first in arg (index 0)
%=in1 ri3 second in arg
4h=in2 ri4 third in arg
%=1in3 ri5 fourth in arg
%=out_nargs r27 number of out arguments
h=out0 r28 first out arg (index 0)
%=out1l 29 second out arg
%=out2 r30 third out arg
%=out3 r31 fourth out arg

Symbolic Name Special Register Comment
%=upsw s0 user program status word
h=cwp s1 current window pointer
h=swp 82 saved window stack pointer
h=cpu_pc 83 program counter
%=fpu_pc s4 pc of last FPU instr

Temporary registers can also be given symbolic names. Any register operand of the form
YNAME, where NAME is not of the form %rN, 4rNN, or 4=NAME, will designate a temporary
register that is efficiently allocated by the SLC register allocator, which can even spill
temporaries to memory if necessary.

85

G.1.3 Using Lisp macros in SPLASM Files

Standard Lisp macros can be used in SPLASM files. If an opcode is detected that is not
a valid SPUR opcode, SPLASM will look for a SPLASM macro defined with that name.
SPLASM macros expand into a list of forms which are inserted as an instruction sequence
in the body of the function, replacing the macro instruction. SPLASM macros are exactly
like Lisp macros, and can execute an arbitrary Lisp program to determine what instruction
sequence they expand into. The sequence of instructions returned is itself expanded if
necessary, so that macros can contain other macros. SPLASM macros are defined using the
def-asm-macro form. For a better understanding of the use of SPLASM macros, look at
the file asm-macros.1 in the $splasm directory.

G.2 Organization of SPLASM

Assembling SPLASM .sa files into SPUR FASL files is a two-stage process. The first stage
translates files is human readable .sa format into .spur-lap format, understandable by
the SLC assembler. The files that perform the .sa to .spur-lap translation are store in the
splasm subdirectory of the $barb directory. These files define symbolic names for registers,
macros used in the SPUR runtime system SPASM files, and symbolic names for tags and
traps. They occupy 8 files containing 700 lines of Lisp code and are listed below. Files
prefixed with “def-" are generated from files in the $barb directory.

def-sysc.l . == symbolic names for system constants-
def-traps.1l -- symbolic names for SPUR Lisp traps

def-tags.l -- symbolic names for SPUR Lisp type tags
asm-consts.l -- symbolic definitions for registers
asm-macros.l -- SPASM macros used in SPUR Lisp runtime kernel
asm-1ib.1 - -- reader macros for special syntax

asm-trans.l -- translation from .sa to .spur-lap files
load-asm.1l -- loads necessary files

The second stage of translation, from .spur-lap files to FASL files takes place in the
back end of the SPUR Lisp compiler, documented in appendix C.

86

H ZEUS: The SPUR Lisp Creator

ZEUS is a program that takes the FASL files that define SPUR Lisp, and creates a Lisp
memory image suitable for execution in the BARB simulator. ZEUS is derived from the
Spice Lisp genesis program. ZEUS is really just a loader like the program load.slisp
in $code that loads .sfasl files into the running SPUR Lisp system. Since ZEUS creates
the initial SPUR Lisp image, however, ZEUS must execute initially in a non-SPUR Lisp
environment. ZEUS executes in Franz Extended Common Lisp [Fra86].

ZEUS takes as input FASL files that define the Lisp image it will build (e.g. the files
in the $code directory). ZEUS creates as output two files: a file that contains an initial
memory image of the Lisp system created from the FASL files, and a file that lists each
function and macro that was loaded and the address it was loaded at.

Since loading FASL files in ZEUS is very much like loading FASL files in SPUR Lisp,
ZEUS borrows functions from SPUR Lisp. The source files in ZEUS come from the $code
directory, the $slc directory, and from the $zeus directory. The files from the $code
directory provide functions that manipulate the caller sets and unresolved reference list.
They are:

spur-func.slisp -- macros and functions for accessing functions
spur-support.slisp -- caller set abstraction
spur-uref.slisp -- unresolved reference list abstraction

The files in the $slc directory provide definitions of the SPUR opcodes, tags, traps,
etc., as well as access functions for all the SPUR Lisp data types. These files are:

spur-tags.slisp -- definitions of type tags

spur-traps.slisp -- definitions of trap numbers
spur-cmp-conds.slisp -- definitions of compare conditions
spur-opcodes.slisp -- definitions of SPUR opcodes
spur-inst.slisp -- definitions of SPUR instruction formats
spur-lisp.slisp -- access functions for SPUR Lisp data types

The files in the $zeus directory redefine the loader functions provided by these other
files so that the loading will take place into the memory image that ZEUS creates. The
ZEUS specific files are:

defs-scv.cl -- defines offsets into system constants
vector; generated from $barb/SPUR-SYSCONSTS
zeus-defs.cl -~ defines macros and functions necessary to
manipulate memory image being created
zeus.cl -- master file: reads in FASL files, creates
memory image, writes output files
zZeus-imports.cl -- imports symbols from other package
zeus-types.cl -- type specific allocation into the ZEUS

87

memory image

zp.cl -- print function for objects in the ZEUS image
zeus-ex.cl -- redefines functions from file in the $code
directory

ZEUS creates an initial memory image that must then be initialized by running the
function Ynew-initial-function defined in the file initialization.slisp in the $code
directory. The image file contains some header information, and then a sequence of triples.
The header information identifies the overall size of the heap, the size of newspace, and
the location of the system constants vector. From the system constants vector, all the
information about the organization of memory can be determined. After the header there
are zero or more triples. Each triple contains a four byte base address, a four byte upper
address, and then contains the memory contents to load from the base to the upper address.
The format of the memory image is shown in figure 23.

ITEM SIZE (bytes)

<heap size>

<newspace size>

<scv pointer>

<region 1 base address>

<region 1 top address>

<region 1 content> top - base

<region 2 base address>
2
2

B 00 B b

Lo

<region 2 top address>
<region 2 content> top

base

<region N base address> 4
<region N top address> 4
<region N content> top - base

Figure 23: Format of the ZEUS Memory Image File. This format is also used when the memory
image is dumped from the BARB simulator.

ZEUS creates an initial memory image file (named athena) and this file is read into
the BARB simulator with the -N flag, which tells the simulator that the memory image is
uninitialized. The initialization function is then executed, and the new memory image is
written to a file (named acore) which has the same format as the uninitialized memory
image file. The SPUR Lisp image files range from 1.7 megabytes to 6 megabytes, depending
how much application code has been loaded into the image.

The other file produced by ZEUS is the loader map, which is a listing of the locations at
which all the functions and macros defined in the FASL file were loaded. The loader map

88

file is called 1isp.map and each line in the file has the following format:
function-name (m or f) byte-address

The function name field always starts in column 1 and is the print name of the symbol that
names the function. If the second field is (m), the object is a macro. If the second field is
(£), the object is a function. The byte address is a hex address of the first instruction in
the function (e.g. #x80337db8).

89

References

[ABPWS85] G. Adams, B. K. Bose, L. Pei, and A. Wang. The design of a floating-point

[Bak78]

[CHs4]

[CMs7]

[Fra86]
[FSL*85]

[Hil87]
[HLE*85]

[IEES5)
[LH83]

[LHS6)

[Moo84]

[Moo85]

[0CD*87]

[PS81]

unit. In R. H. Katz, editor, Proc. of CS292i: Implementation of VLSI Systems,
University of California, Berkeley, CA, September 1985.

Henry G. Baker, Jr. List processing in real time on a serial computer. Com-
munications of the ACM, 21(4):280-294, April 1978.

Fredrick Chow and John Hennessy. Register allocation by priority-based col-
oring. In Proceedings of the ACM SIGPLAN 1984 Symposium on Compiler
Construction, pages 222-232, Montreal, Canada, June 1984.

William Chang and Luis Miguel. Bignum arithmetic on SPUR: a case study
in programming RISC for high performance. In David Patterson and Corinna
Lee, editors, Projects from CS252: Volume II—Systems (Caches and RISCs),
University of California, Berkeley, CA, May 1987.

Eztended Common Lisp Reference Manual. Franz Inc., 1986.

John Foderaro, Keith Sklower, Kevin Layer, et al. Franz Lisp Reference Manual.
Franz Inc., Berkeley, CA, 1985.

Paul Hilfinger. SPUR architecture user’s manual. July 1987. Unpublished.

Mark Hill, James Larus, Susan Eggers, George Taylor, et al. SPUR: a VLSI
multiprocéssor workstation. IEEE Computer, 19(11):8-22, November 1985.

IEEE. IEEE standard 754 for binary floating-point arithmetic. IEEE, 1985.

Henry Lieberman and Carl Hewitt. A real-time garbage collector based on the
lifetimes of objects. Communications of the ACM, 26(6):419-429, June 1983.

James R. Larus and Paul N. Hilfinger. Register allocation in the SPUR Lisp
compiler. In Proceedings of the ACM SIGPLAN ’86 Symposium on Compiler
Construction, pages 255-263, June 1986.

David A. Moon. Garbage collection in a large Lisp system. In Conference
Record of the 1984 ACM Symposium on LISP and Functional Programming,
pages 235-246, Austin, Texas, August 1984.

David A. Moon. Architecture of the Symbolics 3600. In Proceedings of the
Twelfth Symposium on Computer Architecture, Boston, Massachusetts, June
1985.

John Ousterhout, Andrew Cherenson, Fred Douglis, Michael Nelson, and Brent
Welsh. An overview of the Sprite project. ;login, 12(1), January 1987.

David A. Patterson and Carlo H. Sequin. RISC-I: a reduced instruction set
VLSI computer. In Proceedings of the Fighth Symposium on Computer Archs-
tecture, pages 443-457, May 1981.

90

[Sha87]

[Sin85]

[Ste84]

[Tay85]

[THL*86]

[UBF*84]

[Ung84]

[WF84]

[WFG85]

[ZHS7]

[ZHH*86]

Robert A. Shaw. Improving Garbage Collector Performance in Virtual Memory.
Technical Report CSL-TR-87-323, Stanford University, March 1987.

Kenneth H. Sinclair. A High-Performance Lisp Machine Garbage Collector.
Technical Report, Lisp Machine, Incorporated, October 1985.

Guy L. Steele, Jr. Common Lisp: The Language. Digital Press, Burlington,
Massachusetts, 1984.

George Taylor. SPUR instruction set architecture. In R. H. Katz, editor, Proc.
of CS5292i: Implementation of VLSI Systems, University of California, Berkeley,
CA, September 1985.

George S. Taylor, Paul N. Hilfinger, James R. Larus, David A. Patterson, and
Benjamin G. Zorn. Evaluation of the SPUR Lisp architecture. In Proceedings
of the Thirteenth Symposium on Computer Architecture, June 1986.

David Ungar, Ricki Blau, Pete Foley, Dain Samples, and David A. Patterson.
Architecture of SOAR: Smalltalk on a RISC. In Proceedings of the Eleventh

Symposium on Computer Architecture, June 1984.

David Ungar. Generation scavenging: a non-disruptive high performance stor-
age reclamation algorithm. In SIGSOFT/SIGPLAN Practical Programming
Envioronments Conference, pages 157-167, April 1984.

Skef Wholey and Scott E. Fahlman. The design of an instruction set for Com-
mon Lisp. In Conference Record of the 1984 ACM Symposium on LISP and
Functional Programming, Austin, Texas, August 1984.

Skef Wholey, Scott Fahlman, and Joseph Ginder. Revised Internal Design of
Spice Lisp. Technical Report, Department of Computer Science, Carnegie-
Mellon University, Pittsburgh, Pennsylvania, January 1985.

Benjamin Zorn and Paul Hilfinger. Direct function calls in SPUR Lisp. July
1987. To be published as a tech report.

Benjamin Zorn, Paul Hilfinger, Kinson Ho, James Larus, and Luigi Semenzato.
Features for multiprocessing in SPUR Lisp. October 1986. To be published as
a tech report.

91

Index

40-bit-memory, 3, 56 compiled closure, 13
compiled function, 9
access-type, i-vector, 6 compiler, 66, 67
address map, 86 complex, 9, 58
address space, 14 cons, 5, 57
allocation variables, 32 cons sequence, 35
apply, 24 constants vector, 9
argument number encoding, functions, creator, 86
11 curent window pointer, 30
argument register assignment, 22 current window pointer, 18, 28
array, 8, 57
array header object, 8 data types, summary, 57
assembler, 81 delayed branch, 54
: doubleword, 2
BARB, 59
bignum, 6, 58 enable_traps instruction, 54
binding, 55 endp, 13, 54
binding stack, 16 eql, 54
binding, deep, 16 error handling, 48
binding, shallow, 16 extended-float, 9, 57
bit ordering, 2
bit-width, i-vector, 6 FASL file, 67
byte ordering, 2 : fill pointer, array, 9
bytecode, 39, 66, 67 fixnum, 4, 57
floating point numbers, 9, 55
call_reg instruction, 24 floating point unit, 3
callee, 18 FPU, 3
caller, 18 frame pointer, 25
caller set, functions, 11, 21 funcall, 24
catch, 29 function, 9, 57
catch frame, 15, 17, 29 function calling sequence, 22
%catch-all-object, 30 function calls, direct, 18
cclosure, 13, 57 function calls, indirect, 18
cell, 2 function entry sequence, 25
character, 4, 57 function return sequence, 26
cmp_branch_delayed instruction, 54
cmp_trap instruction, 48 g-vector, 7, 57
CODE, 73 g-vector, store into, 35
code rescheduler, 37 garbage collection interrupt, 37
code vector, 9 ge-forward, 13
Common Lisp, 73 general vector, 7

92

generation garbage collection, 31
generation number, 2, 31
generation trap, 53

generation, immediate types, 5
genesis, 86

hardware traps, 77
header mark, 7, 57
header, array, 8
header, g-vector, 7
header, i-vector, 6
heap, 15

i-vector, 6, 57

i-vector, store into, 36

IEEE floating point arithmetic, 9

IEEE floating point numbers, 3

immediate data type, 3

inconsistent state, 32, 36, 37

incremental garbage collection, 32

indirect data type, 3

instruction formats, 81

integer vector, 6

internal pointer, 35

interpreted function, calling sequence,
28

jump.reg instruction, 24, 77

kernel segment, 14
&keyword argument, 25

Lisp assembler, 81
Lisp system, 73
list, 5, 35
long-float, 9, 57

%make-immediate-type, 55
marker, function object, 12
marker, g-vector, 7
memory, 3

memory alignment, 3
memory allocation, 32
memory consistency, 32
memory image, 86

93

memory organization, 14
miscellaneous stack, 15, 22
miscellaneous stack, saving convention,
23
multiple value, 16, 24, 26
multiple-value-call, 27
multiple-value-progl, 27
multiple-value-setq, 27
multiprocessing, 55
multiprocessing garbage collection, 37
multiprocessor SPUR, 1, 15, 16

newspace, 31
nil, 4, 5, 13, 17, 19, 27, 29, 57

object reference, 2
&optional argument, 25

parallelism, 55
pointer, 2, 3

primitives, 70
print-sfasl, 66

radix, 2

ratio, 9, 58

register, 3

register assignment, 16
register window, 15, 22, 24
registers, global, 15
remembered list, 31, 32
&rest argument, 25
return._trap instruction, 77
RISC, 15

RT, 70

rt-alloc-array, 40
rt-alloc-bignum, 39
rt-alloc-function, 40
rt-alloc-g-vector, 40
rt-alloc-i-vector, 39
rt-alloc-string, 39
rt-alloc-symbol, 41
rt-arefl, 42

rt-asetl, 42

rt-ash, 45

rt-boole, 44

rt-byte-blt, 45
rt-decode-float, 43
rt-deposit-field, 45
rt-divide, 43

rt-dpb, 44
rt-find-character, 46
rt-find-character-with-attribute, 46
rt-integer-length, 42
rt-invoke-interpreter, 28, 48
rt-ldb, 44

rt-length, 47

rt-list, 41

rt-list-star, 41

rt-logdpb, 45

rt-logldb, 45

rt-long-float, 43

rt-lsh, 45
rt-make-complex, 40
rt-make-ratio, 40
rt-mask-field, 44
rt-multiply, 43
rt-mv-spill, 27, 47
rt-mv-unspill, 27, 47
rt-putf, 46

rt-scale-float, 43
rt-short-float, 42
rt-shrink-vector, 41
rt-spread, 47
rt-sxhash-simple-string, 46
rt-throw, 47

rt-truncate, 43
rt-typed-vref, 41
rt-typed-vset, 42
rt-vector, 40

runtime kernel, 70
runtime primitives, 39, 70
runtime stack, 15

saved window pointer, 18
saved window stack, 15
short-float, 9, 57
simulator, 59

SLC, 66

SOAR, 15

94

software breakpoint, 37
software critical section, 37
%sp-internal-apply, 28
%sp-internal-throw-tag, 30
spaces, 32

special variables, 16

Spice Lisp, 1, 39, 66
SPLASM, 81

Sprite, 14

SPUR Lisp, components, 50

SPUR Lisp, implementation status, 54

SPUR Translator, 67
spur-get-key, 47
spur-keyword-test, 48
SPURT, 66, 67

static space, 32
string, 7, 57
structure, 7

subtype, 21

subtype, g-vector, 7
subtype, i-vector, 6
symbol, 5, 57

system constants, 17
system constants vector, 17, 20, 32

TH, 77

throw, 29
translator, 66
trap handlers, 77
type tag, 2, 4
typegen, 2, 3

undefined, 13

unresolved reference list, 20
unused, 13

unwind-protect, 27, 30

user traps, 77

window overflow, 17, 77
window underflow, 77
word, 2

ZEUS, 86

