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ABSTRACT

We consider the problem of covering simple orthogonal polygons
with star polygons. A star polygon contains a point p, such that for every
point ¢ in the star polygon, there is an orthogonally convex polygon con-
taining p and q.

In general, orthogonal polygons can have concavities (dents) with
four possible orientations. In this case, we show that the polygon covering
problem can be reduced to the problem of covering a weakly triangulated
graph with a minimum number of cliques. Since weakly triangulated
graphs are perfect, we obtain the following duality relationship: the
minimum number of star polygons needed to cover an orthogonal polygon
P without holes is equal to the maximum number of points of P, no two of
which can be contained together in a covering star polygon. Further, the
Ellipsoid method gives us a polynomial algorithm for this covering prob-

lem.

In the case where the polygon has at most three dent orientations, we
show that the polygon covering problem can be reduced to the problem of
covering a triangulated (chordal) graph with a minimum number of
cliques. This gives us an O (n*) algorithm.
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1. Introduction

A useful strategy for solving many computational geometry problems on general
polygons is to decompose the polygon into simpler polygons, solve the problem on these
polygons using a specialized algorithm, and then combine the solutions. The simpler
polygons commonly used are convex polygons and star-shaped polygons [12, 17, 21].

A decomposition is called a partitioning, if the polygon is decomposed into non-
overlapping pieces. Partitioning problems have received a lot of attention in the litera-
ture. See, for instance, [2, 3, 13, 22]. ‘ '

If overlapping pieces are allowed, the decomposition is called a covering. If the
polygon has holes, the problems of covering the polygon with a minimum number of
convex polygons or a minimum number of star-shaped polygons are NP-hard [22].
Aggarwal [1] later showed that even if the polygon does not contain holes, the problem
of finding a minimum covering with star-shaped polygons remains NP-hard. The prob-
lem of finding a minimum covering for polygons without holes with convex polygons
remains open.

In the light of these NP-hardness results, it becomes important to restrict our atten-
tion to orthogonal polygons. Several interesting results have been obtained for covering
orthogonal polygons with simpler polygons. Franzblau and Kleitman [6] provide an
0 (n?) algorithm for covering a horizontally convex orthogonal polygon with a minimum
number of rectangles. Keil [14] has provided an 0 (s?) algorithm for covering a horizon-
tally convex orthogonal polygon with a minimum number of orthogonally convex
polygons. Reckhow and Culberson [4, 19] extend this, providing an O (»?) algorithm for
covering an orthogonal polygon with concavities (dents) in two directions only with a
minimum number of orthogonally convex polygons. Later, Motwani, Raghunathan and
Saran [18] and independently, Reckhow [20], obtained polynomial algorithms for
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covering an orthogonal polygon with dents in three directions with a minimum number
of orthogonally convex polygons. The general case of covering a simple orthogonal
polygon with a minimum number of orthogonally convex polygons remains open.

Two kinds of visibility for orthogonal polygons have been studied in the literature
[5]. Two points of the polygon are said to be s-visible if there exists an orthogonally
convex polygon that contains the two points. Two points of the polygon are said to be 7-
visible if there exists a rectangle that contains the two points. This gives us two classes
of star covers for orthogonal polygons. An s-star polygon contains a point p, such that
for every point ¢ in the polygon, there is an orthogonally convex polygon containing p
and ¢g. An r-star polygon is similarly defined. Thus, an s-star cover is a cover by s-star
polygons and an r-star cover is a cover by r-star polygons.

For r-star covers, Keil [14] has provided an O (a?) algorithm for covering a horizon-
tally convex orthogonal polygon with a minimum number of r-stars. For s-star covers,
Culberson and Reckhow [5] provide an O (n?) algorithm for covering an orthogonal
polygon with only two dent orientations with a minimum number of s-stars. Since this
paper does not deal with r-star coverings, the word star will be taken to mean an s-star.

The purpose of this paper is three-fold: we first show that for the case where the
orthogonal polygon has all four dent orientations, the covering problem can be formu-
lated and solved as the problem of finding a minimum clique cover for a weakly triangu-
lated graph [11]. Since weakly triangulated graphs are perfect [11], we obtain the fol-
lowing duality relationship: the minimum number of star polygons needed to cover an
orthogonal polygon P is equal to the maximum number of points of P, no two of which
can be contained together in a covering star polygon. Further, the Ellipsoid Method of
Grotschel, Lov’asz and Schrijver [10] gives us a polynomial algorithm for this covering
problem. We then show that the problem of covering orthogonal polygons with three
dent orientations with a minimum number of star polygons can be formulated and solved
by finding a minimum clique cover for triangulated (chordal) graphs [9,15]. This gives
us an O (n?) algorithm.

Finally, we wish to make the point that perfect graphs play a crucial role in polygon
covering problems. In fact, the main emphasis of this paper is to exhibit this relationship
rather than provide the most efficient algorithms. For instance, in the case of covering
with orthogonally convex polygons, when the orthogonal polygon has only three dent
orientations, the underlying graph defined in [18] is perfect. This helps us to solve the
problem. However, when the polygon has all four dent orientations, the same graph is no
longer perfect, and the problem is stll open. We are also convinced that for covering
orthogonal polygons with r-stars, the perfect graph approach presented in this paper
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would work. This will be reported elsewhere.

This paper is organized as follows:

In Section 2, we discuss the theoretical framework for this problem, as discussed in
[5,18,19]. In Section 3, we formulate a graph called the star graph of the polygon, and
prove: that the minimum clique cover of the star graph corresponds exactly to a minimum
star cover of the polygon. Section 4 defines a constriction, and proves several properties
related to constrictions that help in the proofs presented in later sections. We state our
main results concerning general orthogonal polygons in Section 5, and prove our results
in Sections 6 and 7. Section 8 deals with the case where the polygon has dents in only
three directions. In this case, we obtain a much more efficient algorithm than in the gen-
eral case. We present our conclusions in Section 9.

2. Preliminaries

An orthogonal polygon (OP), P, is a polygon with all its sides parallel to one of the
two co-ordinate axes. In this paper, we are concerned with covering simple, connected
OP’s. An OP is said to be an orthogonally convex polygon (OCP) if its intersection with
every line parallel to one of the co-ordinate axes is either empty or a single line segment.

2.1. Dents

Consider the traversal of the boundary of P in the clockwise direction, ensuring that
the interior is always to the right [19]. At each comer (vertex) of P, we either turn 90°
right (outside corner) or 90° left (inside comer). A dent is an edge of the boundary of P,
both of whose endpoints are inside corners. The direction of traversing a dent gives its
orientation: for instance, a dent traversed from west to east has a N orientation. Figure 1
illustrates the N . S, E and W dents. A polygon is said to have only three dent orienta-
tions if all its dents take on only one of three orientations (see Figure 2).

2.2. Staircase Paths and Visibility

A staircase path p =xq,x,, -+ ,x, =q in P is a path joining p and ¢ and completely
contained in P such that x;_, and x; are the endpoints of a segment parallel to one of the
co-ordinate axes and with no two consecutive turns to the same side (left or right). We
say p = ¢ (read as p sees q, or, p is visible from ¢) if there exists a staircase path joining
p and q. The following observation from [19] will be useful.

Observation 1. p = ¢ if and only if some OCP includes both p and q.
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We say that a staircase path from p to ¢ goes southwest if, in traversing it from p to
g, we go west on all the horizontal segments and south on all vertical segments. Thus,
staircase paths between p and ¢ can be of four possible orientations: northeast, northwest,
southeast, southwest.

‘We now define a star polygon.

Definition 1. A star polygon (SP) P’ is an OP such that 3 p € P’ with the property that
¥ qeP',p=gq.

A maximal SP in P is an SP contained in P, but not contained in any other SP con-
tained in P. The visibility polygon, v(p), of p € P is the set of all points ¢ € P, such
thatp = g.

Lemma 1. The boundary between v(p ) and any connected component of P-v(p)isa
single line segment (horizontal or vertical).

Proof: The proof is in two parts. We first show that the boundary between v(p ) and any
connected component Q of P -v(p)is connected. Assume to the contrary that the boun-
dary is disconnected. Then, there is a region § that is bounded by [v(p) U 2], and dis-
joint from [v(p) Q] Since P is simple, § is contained in P. For the same reason, the
boundary of § with v(p ) or @ cannot use a polygon edge. By definition no point of § is
in v(p). Then, § Q is connected and [S UQle P-v(p), implying that Q is not a
connected component of P -v(p ), a contradiction.

We now show that the boundary between v(p) and Q is a single line segment.
Assume to the contrary that the boundary contains adjacent line segments ab, that is hor-
izontal, and bc, that is vertical. Assume without loss of generality, that v(p) lies to the
south of ab. If p lies to the south of ab, then the staircase paths from p to any point on ab
goes northeast or northwest. Such a staircase path can be extended vertically upwards to
see points in Q, implying that ab is not part of the boundary. Thus, p lies to the north of
ab.

If ¢ lies to the north of b then Q is to the west of bc (see Figure 3). By an argument
similar to the one for ab, this implies that p is to the west of bc. Now, the staircase paths
from p to a and c, together with ab and bc form an OCP, which must have a non-empty
intersection with ¢. This implies, by Observation 1, that p sees points in @, a contradic-
tion.
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If ¢ lies to the south of b, then Q is to the east of bc (see Figure 4). As before, p lies to
the east of bc. Clearly, the staircase path from p to b must pass through Q, a contradic-
tion.

Q.E.D.

2.3. Dent Lines and Zones

For each dent edge D, we construct a dent line D by extending D in both directions
until it meets the boundary of P. The orientation of D is the same as the orientation of
p. O divides P into three zones. Two of these zones (labeled B (0 )and B, (D) in
Figure 5) are said to be below the dent, and are the two connected components of P
below 5. The third zone, A (D) is above D, and is the connected component of P
above D. For any p € B, (D).q € B, (D), p #q. Thus, if p =~ and ¢ =r, then
r e A(D). Also, if p g4, then there is a dent D, such thatp € B, (D),q € B, (D), or
vice versa. We say that D separates p and ¢, and D itself is called a separating dent
between p and ¢. Note that when there are several separating dents, we will confine our
attention to any one separating dent. The following fact is from [18].

Observation 2. Let L be a southeast staircase path from p to ¢ and M be a northeast
staircase path from p to r, where p . ¢q and r are points in P. If ¢ #r, then an E dent D
separates ¢ and r. (Similar statements can be made about the other three dent orienta-
tions.)

2.4. The Region DAG

The set of all dent lines of P subdivides P into regions. Reckhow and Culberson
[19] construct a region DAG (directed acyclic graph) as follows: The vertices of the
region DAG correspond to the regions, and there is an arc from u to v if « and v share a
common border D and u is below D. A source is a region of zero in-degree in the
region DAG. Similarly, a sink is a region of zero out-degree in the region DAG. (see
Figure 6). Let v denote the set of all sources of P and U denote the set of all sinks of P.

Definition 2. Let » and v be any two regions of the region DAG. Region u is said to see
region v (u = v) if some OCP includes both « and v.

Observation 3.[18] Let x and v be any two regions of the region DAG, and let ¢, and g,
be any two points in « and v respectively. Then, q. = g, iffu=v.
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It now follows that for any region u, v(u ), the set of all points seen by u, or the visi-
bility polygon of u, is the same as v (4. ), for every ¢, € u. Let N (u) denote the set of
sources with points in v(u ). The following two lemmata from [5] together imply that the
minimum set of sinks, U’ € U, of P that together sec all the sources correspond to a
minimum star cover of P. The star polygons that constitute this minimum cover are
exactly the visibility polygons of the sinks in U".

Lemma 2. If B is a set of maximal star polygons that includes every source of P, then B
covers every region of P.

Lemma 3. Let Uu'N (u)=V.Then, {v(u):u € U’} is a minimum star COver forp.

Thus, the covering problem has been formulated as the problem of finding the smal-
lest set of sinks that together see every source, which is a set covering problem. Unfor-
tunately, the set covering problem is NP-hard [7], and does not solve the problem for us
immediately. However, the geometry of the problem imposes enough structure for it to
be solved in polynomial time, as shown in the following sections. Moreover, the advan-
tage of this formulation is that instead of dealing with the visibility of points, we need
only consider the visibility of sources and sinks. There are at most O (n) sources and
sinks in an OP with three or less dent orientations, and O (n?) sources and sinks in any
simple OP [5].

3. The Star Graph

In order to exploit the geometric structure of the problem, we formulate the set cov-
ering problem of the previous section as the problem of finding a minimum clique cover
of a graph defined below, called the star graph. Of course, the minimum clique cover
problem for general graphs is also NP-hard [7]. However, it turns out that the star graph
belongs to a special class of graphs, and this enables us to solve the problem efficiently.

The star graph H =(V ,E) is defined as follows. The vertices of H are the sources
of P. Two vertices, v, and v, are adjacent in H if there is a sink u that sees both of them,
that is, edge <v,,v,> € E if and only if there exists u € U such thatv, =u and v, = u.

For two points p;,p, in P, p; A pa (read as p, indirectly sees p,) if there existsp € P,
such that p, = p and p, = p. Let p; and p, belong to regions r, and r,. We then say that
r, A r,. We refer to the concatenation of the staircase paths p, p and p p, as a I-bend path
from p, to p,, and p is called the bend point. If there does not exist any point p that sees
both p, and p,, we say that p, #p; and ry #ry. As the following lemma shows [5], two
vertices of the star graph are adjacent if and only if the corresponding sources indirectly



see each other.

Lemma 4. [5] Two regions indirectly see each other if and only if there exists a sink u in
P that sees both.

Clearly, two points of P see each other indirectly if and only if their visibility
polygons have at least one point in common. The following two results show that if two
points indirectly see each other, then the intersection of their visibility polygons is a sim-
ply connected region. Further, if three points indirectly see each other, then there is at
least one point that sees all three.

Lemma 5. Let p,q € P such that v(p) "\ v(¢q)=D. Then, v(p)\v(q) is a simply
connected polygon.

Proof: Assume to the contrary that v(p)M\V(q) is not simply connected. Let
W =v(q)-[Ep n\Eql. Since v(p)Nv(q) is not simply connected, the boundary
between v (g ) and W is not simply connected. As in the proof of Lemma 1, v(q) U W,
which is v(p)v(g), bounds a region § that is disjoint from v(q) W, or
v(p)UV(q). Every point of § is in P, as P is a simple polygon. Therefore, the boun-
dary of § is composed entirely of the boundary of v(p ) Vv(q), not including edges of
P. Let R be the connected component of P —v(p) that contains S. By Lemma 1, the
boundary of v(p) with R is a single line segment, implying that the boundary of v(p)
with § is a single line segment. Similarly, the boundary of v(g) with § is a single line
segment. Since at least four orthogonal line segments are required to enclose a region,

we obtain a contradiction.
Q.E.D.

Lemma 6. Let p.q.r e P such that v(p)\Vv(q)*9, v(ig)\Vv(r)=@ and
v(r)AVvip)=9. Then,v(p) A\ V(g) A\V(r)=D.
Proof: Assume to the contrary that vip)Av(g)AVv(r)=0. Since vip)NVv(g)=9,
v(g)A\Vv(r)=@D and v(r)AVv(p)#D, we can show, by a proof similar to that of
Lemma 5, that v(p)v(g)V(r) bounds a region, say §, that is disjoint with
v(p)v(g)yv(r). We can now show, again, by a proof similar to that of Lemma 5,
that this is impossible, because three orthogonal lines cannot bound a region. This estab-
lishes that v(p ) A v(g) A V(r)=D.

Q.E.D.
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In what follows, a cell is a simply connected compact subset of the plane. The fol-
lowing theorem, due to Moln‘ar [16], will be useful.

Theorem 1. (Moln“ar) Let C be a set of cells in the plane. f C NC"isa cell for every
c.Cle CandC NC'~C"#@DforC,C’,C" e C,then N{C € C}=0.

Consider any clique H’ in H. The visibility polygon of any source in H’ is a cell.
The intersection of any two such visibility polygons is non-empty, and a cell by Lemma
5. By Lemma 6, the intersection of any three such visibility polygons is non-empty.
Molnar’s Theorem now assures us that the intersection of all these visibility polygons is
non-empty, implying that there is a point that sees all the sources of #’. By Lemma 4,
there is a sink in P that sees all these sources. This results in Theorem 2.

Theorem 2. Let H'=(V’,E’) be a clique in #. Then, there is a maximal star polygon that
covers all the sources in V".

If v, and v, are not adjacent in H, they cannot both be covered by the same star
polygon. Thus, every maximal star polygon corresponds to a clique in H. We obtain the
following corollary.

Corollary 1. A minimum clique cover of H (that is, a minimum cardinality set of
cliques of H with every vertex of H belonging to some clique) corresponds exactly to a
minimum cover of P by star polygons.

4. Constrictions

The main purpose of this section is to provide a theoretical handle on the covering
problem. Consider two points, p,q € P, such that they do not have any 1-bend staircase
path between them, i.e., p *gq. Given such a pair of points, we will identify a connected
subset of P, Cons (p . q ), with the following properties: (a) there is no staircase path from
either p or ¢ to any point in Cons (p . q), and (b) any path in P from p to ¢ must pass
through this region. We call this region the constriction between p and q. In a sense, the
existence of the constriction is the reason why there is no 1-bend path from p to g. We
first give a formal definition of a constriction and then obtain certain useful properties.

Let p and ¢ be points of P, and letp +q. Clearly v(p)\Vv(g)=9. LetQ,, -~ . O

denote the connected components of 0 =P - [v(p) U Vv(q)] We first claim that there is
a unique connected component of Q which shares a boundary with both v(p ) and v(q).
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Lemma 7. There is a unique Q; for whichv(p),v(q) and Q; form a connected polygon.

Proof: Clearly, 0; N Q; =@ fori #j. Since P is connected, this implies that there exists
at least one i such that P,=Q; U lv(p)UV(g)] is connected. Now, let there be
i,j.i#j such that P; and P; are connected. Then, [v(p) UV(DIUIL U Q,;1bounds a
regio_n S that is disjoint from it. Since P is simple, every pointin § is in P. This implies
that Q; and Q, were not connected components of P - [v(p) UVv(g)], 2 contradiction.
Q.E.D.

Definition 3. O, is called the constriction between p and ¢, and is denoted by
Cons (p ,q). (see Figure 7)

We now state four important properties concerning Cons(p ,q ).

Property 1. The boundary between Cons (p,.q) and v(p) (resp., v(q)) is a single line
segment (horizontal or vertical), called the p dent line (resp., the ¢ dent line).

Proof: Consider the orthogonal polygon P —v(p). By Definition 3, Cons (p ,q) and v(q)
lie in the same connected component § of P —v(p). The boundary of § with v(p ) is the
same as the boundary of Cons (p ,¢ ) and v(p ), which, by Lemma 1, is a single line seg-
ment (horizontal or vertical). Similarly, the boundary of v(g ) and Cons (p ,q) is a single
line segment (horizontal or vertical).

Q.E.D.

Property 2. Let the p dent line of Cons (p.q) be vertical, and let Cons (p , ¢ ) lie to its east
(west). Let r’ be a point on the p dent line, and let r be any point to the east (resp., west)
of r’, such that r = r". Then, an E dent (resp., W dent) separates p from r. (Similar
statements can be made about the other two dent orientations).

Proof: Since p sees r’, and does not see r at an infinitismal distance to the east of r, no
staircase from p to r’ can travel to the northeast or southeast (see Figure). Thus, r” sees p
to its northeast or southeast, and sees r to its east, and p #r. By Observation 2, there is
an E dent separating p and r. The proof for the other part of Property 2 is similar.

Q.E.D.

Property 3. LetR be apathin P connecting p and ¢. Further, let p #q. Then, there is a
connected subpath of R that joins a point on the p dent line and a point on the ¢ dent line
of Cons (p . ¢ ) and is completely contained in Cons (p . q ).

Proof: This follows trivially from the definition of Cons (p , ¢ )-
Q.E.D.
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Property 4. Letp g, and letr A p andr A g. Then, (1) Ifr € Cons(p,q), thereis a 1-
bend path from a point on the p dent line to a point on the ¢ dent line with » as bend
point, (2) If r ¢ Cons (p.q),r hasa single staircase path that meets the p and ¢ dent lines.

Proof: If r € Cons(p.,q), we have that r #p and r #g¢, implying that there are staircase
paths from r to points on the p and ¢ dent lines. If r & Cons (p ,q ), assume, without loss
of generality, that r is on the same side of Cons (p.q)asp. Now, clearly, r # ¢, implying
that there is a staircase path L from 7 to the ¢ dent line. L has to intersect the p dent line,
thus establishing a staircase to both the p and ¢ dent lines. '
Q.E.D.
We now define three types of constrictions. The other types of constrictions do not
play a part in this paper.
Type I. In a type I constriction, the p and q dent lines are parallel and there exist points r,
and r, on the p and ¢ dent lines respectively such thatr, = r,.

Type II. In a type II constriction, the p and ¢ dent lines are orthogonal and there exist
points r, and r, on the p and ¢ dent lines respectively such that r, = r,.

Type II1. In a type III constriction, Cons (p.q) is not of type I or II, and there exist points
r, and r, on the p and ¢ dent lines respectively such that r; A r,. Thus, ifr Apandr A g,
thenr € Cons (p.q).

The next four results will be used repeatedly in the following three sections. In
what follows, p,q € P,suchthatp xgq.

Lemma8.1f3 r € P,suchthatr A p andr A g, then Cons (p.q)isof type I, Il or IIL

Proof: Trivial.
Q.E.D.

Lemma 9. Let r € Cons (p.q), such that r A p and r A q. Further, lets Ap and s A q.
Thenr A s.

Proof: By Property 4, there is a 1-bend path L from r’ on the p dent line to r” on the ¢
dent line with r as bend point. Without loss of generality, let the p dent line be vertical,
and let the staircase path from r to r’ be southwest (the other cases are handled similarly).
Thus, r sees every point below r” on the p dent line (see Figure 8).

Assume to the contrary that r #s. This implies that s does not see r’ or any point
below r’ on the p dent line. Therefore, let s see a point s” on the p dent line that is above
r’. Clearly, r #s’. Since r’ sees s’ to its north, and r’ sees r 10 its northeast, Observation
2 implies that there is a N dent D separating r and s’. We have s’ € B; (D) and
r € B, (D) (see Figure 8). r" =s"and r’ = r, implying that r’* € A (D). Thus, L crosses
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D at some point, say I’. By Property 4, there is a path M from s’ to s” on the g dent line

that is either a staircase or a 1-bend path with s as the bend point. Since s” € B, (D ), M

crosses I at m’, such that m’ is to the west of 1. Hence, r = m’, implying thatr A s.
Q.E.D.

Lemma 10. Let r e Cons(p.q), such that rap ad ragqg. Let

R=(pry,rira, -+ »re—1r,. 7 q) be a sequence of 1-bend paths. Then, 3 i € {1, --- ,k}

such thatr A r;.

Proof: By a proof very similar to that of Lemma 9, we can establish that r sees some

point, say m’, of R such thatm’ € Cons (p ,q). Since R is a sequence of 1-bend paths, and

m’ € Cons (p,q),thereexistsr; € {ry, **-,n}, such that r;, = m’, implying thatr A r;.
Q.E.D.

Lemma 11. Let Cons (p .q) be of type II. Letr ¢ Cons (p,q), such thatr A p andr A q.
Let R=(pri.rirs, --,ne—=1r,rq) be a sequence of 1-bend paths. Then,
3 ie{l, - ,k}jsuchthatr A r.

Proof: Let r be on the same side of Cons(p.q) as p (the other case is symmetrical).
Without loss of generality, assume that the p dent line is vertical and the g dent line is
horizontal. By Property 4, there is a staircase path L (southeast, say) from r to r” on the
g dent line that meets the p dent line at r". Clearly, r sees every point of the p dent line
below r* and every point of the ¢ dent line to the right of r” (see Figure 9). For r notto
see some point of R inside Cons (p .q ), R has to meet the p dent line above r’, and the ¢
dent line to the left of r”. Thus, R meets L inside Cons (p.q), implying that r A r;, for
somer; € {ry, """ ,r}.
Q.E.D.

5. Weakly Triangulated Graphs and the Star Graph

In this section, we assert that the star graph introduced in the previous section
belongs to a special class of graphs called perfect graphs [9,15]. In a perfect graph G,
the size of a minimum clique cover of every induced subgraph G’ is equal to the size of a
maximum independent set of G’. A minimum clique cover of a perfect graph can be
found in polynomial time [10]. We first need the following definition.

Definition 4. A graph G is weakly triangulated [11] if neither G nor G¢, the complement
of G contain induced cycles of length greater than four.
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Theorem 3. (Hayward) Weakly triangulated graphs are perfect.

We now state our main result, the proof of which is contained in the next two sec-
tions.

Theorem 4. The star graph of an orthogonal polygon P is weakly triangulated.

Theorem 4, together with Hayward’s theorem, provides us with the following dual-
ity relationship:

Corollary 2. (The Duality Relationship) The minimum number of star polygons needed
to cover an orthogonal polygon P is equal to the maximum number of points of P, no two
of which see each other by 1-bend paths.

We can now use any algorithm that would cover the vertices of a weakly triangu-
lated graph with a minimum number of cliques to cover an orthogonal polygon with a
minimum number of star polygons. The best known algorithm to find minimum clique
cover of a perfect graph, which is due to Grotschel, Lov‘asz and Schrijver, is based on the
Ellipsoid method, and it runs in polynomial time [10]. Reckhow and Culberson [5] pro-
vide a polynomial algorithm to compute the instance of the set covering problem in Sec-
tion 2. The star graph can easily be obtained from this. Thus, there is a polynomial algo-
rithm for finding a minimum star cover for P.

6. Induced Cycles of the Star Graph

In this section, we establish one part of the proof of Theorem 4, namely that the star
graph contains no induced cycles of length greater than four.

Lemma 12. The star graph H does not contain an induced cycle of length greater than

four.

Proof: Assume to the contrary that C =(V’,E’) is such an induced cycle, 1V’1>4. For
convenience, let V'={1,2, ---,n},n>4, and let <i,i +1modn> € E’. By assumption,
edge <1,3> ¢ E, implying that 1 # 3. Hence, we have the constriction Cons (1, 3).

We now assert that 2 cannot be in Cons(1,3). Assume to the contrary that
2 € Cons (1,3). R =C —{2} is a sequence of 1-bend paths connecting 1 and 3, and hence
by Lemma 10,2 A i, forsomei € {4, --- ,n}, thus establishing a chord.

This also implies that Cons(1,3) is not of type IIl. Further, by Lemma 11, if
Cons (1,3)is of type I, 2 A i, for some i € {4, ---,n}, establishing a contradiction.
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Now, let Cons (1,3) be of type I, and let the two dent lines be vertical (the other case
is similar). Further, let 2 be on the same side of Cons (1,3) as 1. By the proof of Property
4, there is a staircase L (southeast, say) to the 3 dent line, meeting the 1 and 3 dent lines
at 2’ and 27, respectively. Therefore, 2 sees every point below 2’ and 2” on the 1 and 3
dent lines, respectively (see Figure 10). To prevent chords, R needs to meet the 1 and 3
dent lines (at z and y) above 2’ and 2”.

Case 1: 2" +y (see Figure 11).
2” sees y to its north, and sees 2’ to its northwest. By Observation 2, there is a N dent D
separating 2’ and y. We have 2’ € B, (D) andy € B, (D). 2” =2 and 2” = y, implying
that 2” € A (D). Thus, L crosses D at some point, say I’. Since z is to the north of 2, we
have that z € B, (D). Thus, R is a sequence of 1-bend paths from a point in B; (D) to a
point in B, (D). This implies that R cross D at x to the east of I”. Hence, 2 = x, imply-
ing that2 A i, forsomei € {4, ---,n},2 contradiction.

Case 2: 2’ = y (see Figure 12).

If the staircase from 2’ to y is southeast, then the concatenation of this staircase with the
southeast staircase from 2 to 2’ gives us a southeast staircase from 2 to y, implying that
2ri,forsomei e {4, ---,n},2 contradiction. Therefore, the staircase from 2’ to y is
northeast. Let R’ be such a staircase from 2’ to y such that no other such staircase lies
entirely to its north. Thus, some horizontal edge of R touches a polygon edge. R’, L and
the 3 dent line between y and 2” together form an OCP, §. We now assert that R has a
point in §. Assume to the contrary that R does not have a point in §. Then z ¢§. This
means that z is above R’ on the 1 dent line. By our choice of R, y and z are now in dif-
ferent connected components of the portion of P that is bounded by R’ and the two dent
lines (see Figure 11). Since this portion of P borders § at R, and R is a connected path,
R must have a pointin §.

Since R is a sequence of 1-bend paths, and § is in Cons (1, 3), one of the points of R
in S is either i € {4, --- ,n} or a bend point x such that x sees some j € {5, - ,n}
(every bend point of R that is in Cons (1,3) sees two pointsin 4, --- ,n}. Ifi € §, then
the vertical line from i to L exists in § (S is an OCP), thus establishing a chord between 2
and i. If there is noi e {4, ---,n} in §, then we have a bend point, x € §, such that
x =j,forsomej € {5, --,n}. By our choice of §, j is above R’ in Cons (1,3). Since R’
is a northeast staircase from 2’ to y, the staircase from j to x can only travel southwest,
southeast or northeast. If it is southwest or southeast, then 2 A j by using a vertical line
from x to L. If it is northeast, then 3 A j by using a horizontal line from x to the 3 dent
line, implying that 3 A j, a contradiction.

Q.E.D.
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7. Induced Cycles in the Complement of the Star Graph

We establish in this section the other part of the proof of Theorem 4, namely that
the complement H¢=(V,F) of the star graph does not have induced cycles of length
greater than 4.

Lemma 13. H¢ does not contain an induced cycle of length greater than 4.

Proof: Since H does not contain an induced 5 cycle, and the complement ofaScycleisa
5 cycle, H¢ cannot contain an induced 5 cycle. Assume to the contrary that there exists
an induced cycle C=(V’,F’) in H°, with 1v’1>5. For convenience, let
V'={1,2, - .n},n>5and let<i,i +1modn> e H’. Since 1+2, we have the constric-
tion Cons (1,2). Since edge <i,j> ¢F,for j #i + 1 mod n, we have thati A j.

We now assert that 4,5, ---,n—1 cannot be in Cons(1,2). Suppose 4 were in
Cons(1,2). 4A1and 4 A 2,and 54 1 and 5 A 2. From Lemma 9, 4 A 5, a contradiction.
Similar arguments establish that S, - -+ ,n —1 cannot be in Cons (1,2). It is further clear

that Cons (1,2) is not of type II, else 4,5, --- ,n — 1 have to be inside Cons (1,2) in order
to see 1 and 2. Suppose Cons (1,2) is of type II. Then, by Lemma 11,44 5,2 contradic-
tion. ,

We now have that all of Cons (i ,i + 1 mod n ) must be of type I. Let us now further
classify type I constrictions as type IA (where the two dent lines are vertical) and type IB
(where the two dent lines are horizontal). We now assert that Cons (1,2) and
Cons (i ,i +1) cannot both be of type IA or IB (IA, say), for some i € {4, --- ,n—2J. To
see this, we reason as follows: Neither the i dent line nor the i+1 dent line of
Cons (i ,i +1) can be inside Cons (1,2), since i and i +1 see both 1 and 2. Now, let the i
dent line be outside Cons (1,2), implying that Cons (i ,i + 1) and Cons (1,2) are on different
sides of the i dent line. This would imply that that i + 1 does not indirectly see 1 and 2, a
contradiction. A simple combinatorial argument now shows that it is impossible to
obtain an induced 7 cycle using only type IA and IB constrictions for cycle edges. Thus,
letn =6.

It is clear that at least two of Cons (1,2), Cons (3,4) and Cons (5,6) must be of the
same type (IA or IB). Assume, without loss of generality, that Cons (1,2) and Cons (3,4)
are both of type IA. We now assert that this would imply that Cons (2,3) must be of type
IA and that Cons (1,2) is contained in Cons (3, 4) (see Figure 13 (a)). Thus, the only way
that one could possibly obtain an induced 6 cycle is by using type IA constrictions for
three consecutive edges and type IB consttrictions for the other three edges. Let edges
<1,2>,<2,3>, and <3, 4> use type IA constrictions and let <4,5>, <5,6> and <6, 1> use
type IB constrictions. The arrangement is shown in Figures 13 (a) and 13 (b).
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Since 6 is not in Cons (2,3), and 6 A 2 and 6 A 3, Property 4 implies that there is a single
staircase path X from 6 to the 2 and 3 dent lines of Cons (2,3), and passing through
Cons (2,3). Since the 1 dent line of Cons (1,2) is in Cons (2,3), (see Figure 13 (a)), K in-
tersects the 1 dent line of Cons (1,2), implying that 6 A 1. But <6,1> is a cycle edge of
H*¢, a contradiction.

Q.E.D.

8. An 0 (n?) Algorithm for Polygons with Three Dent Orientations

In this section, we show that if P has only three dent orientations, then the star
graph H is triangulated [9,15]. This would give us an O (n®) algorithm for finding the
star cover for P.

Definition 5. [9,15] A graph is said to be triangulated (or chordal) if it contains no
induced cycles of length greater than three.

In general, the star graph H is not triangulated: there exist induced 4 cycles in H
(see Figure 14). For the case where P has only three dent orientations, H is triangulated,

as the following theorem shows.

Theorem 5. The star graph H of an orthogonal polygon with at most three dent orienta-
tions is triangulated.

Proof: By Lemma 12, we have that H does not contain induced cycles of length greater
than four. It now suffices to show that H cannot have an induced 4 cycle.

Assume to the contrary that <1,2>, <2,3>,<3,4> and <4,1> is an induced 4 cycle
in H. Since <1,3> is not present, 1 +3. Consider Cons (1,3). Neither 2 nor 4 is in
Cons (1,3), else by Lemma 9, 2 A 4. This also implies that Cons (1, 3) is not of type II.

If Cons (1,3) is of type I, then by Lemma 11,2 A 4,a contradiction.

Thus, Cons (1,3) is a type I constriction. Without loss of generality, let the two dent
lines be vertical and let the 1 dent line be to the west of the 3 dent line (see Figure 15 (a)).
By Property 2, we have established the presence of an E dent and a W dent.

Without loss of generality, let 2 be on the same side of Cons (1,3) as 1. By Property
4, there is a staircase L (southeast, say) from 2 to 2 on the 3 dent line, intersecting the 1
dent line at 2°. 2 sees every point below 2’ on the 1 dent line and every point below 2” on
the 3 dent line.

Case 1: Let 4 be on the same side of Cons (1,3) as 1.
Then, every staircase from 4 to 4” on the 3 dent line, and hence to 4’ on the 1 dent line,
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has to be northeast (else, 4 A 2) (see Figure 15 (a)). Since 2 does not see 4°, 2’ sees 4’ to its
north, and 2 sees 2 to its northwest, Observation 2 implies that a N dent separates 2 and
4. By a similar argument, a S dent separates 4 from 2", This establishes that there exist 4
different dent orientations, a contradiction.

Case 2: Let 4 be on the same side of Cons (1,3) as 3.
Then the staircase from 4 to 4’ on the 1 dent line, and hence to 4” on the 3 dent line, has to
be northwest (else, 4 A 2) (see Figure 15 (b)) Since 2 does not see 4, 2’ sees 4’ to its north,
and 2 sees 2 to its northwest, Observation 2 implies that a N dent separates 2 and 4. By
a similar argument, a S dent separates 4 from 2”. This establishes the existence of four
different dent orientations, a contradiction.
Q.E.D..

Reckhow and Culberson [19] show that if P has only three dent orientations, the
number of sources and the number of sinks are both 0 (n). For a source v and sink u, it
is easy to figure out in O (n) time if u = v [5]. Thus, in 0 (n?) time, we can list the
sources seen by each sink. Now, for each pair of sources, we can figure outin O (n ) time
if they see each other indirectly, thus constructing the sink graph H in O (a*) time (H has
0 (n?) edges). Gavril’s algorithm [8] now gives, in O (n®) time, the minimum clique
cover of H, implying that the the star cover of P can be obtained in O (n*) time.

9. Conclusions

We have shown that the minimum clique cover of the star graph of a simple orthog-
onal polygon corresponds exactly to a minimum star cover of the polygon. We have
further shown that this graph is weakly triangulated. By Hayward’s Theorem, weakly tri-
angulated graphs are perfect [11]. This implies the following duality relationship: the
minimum number of star polygons needed to cover an orthogonal polygon is equal to the
maximum number of points in the polygon, no two of which can be contained together in
a single star polygon. Further, The Ellipsoid method of Grtschel, Lov’asz and Schrijver
provides a polynomial algorithm to find a minimum clique cover of perfect graphs, and
hence to cover such polygons with a minimum number star polygons.

In the case where the polygon has only three dent orientations, we have shown that
the star graph is triangulated. By Gavril’s algorithm, we can find a minimum star cover
for such polygons in O (n*) time.
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