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Abstract

A method of analysis has been developed for treating the trapped particle mode
in magnetic mirror systems in which three or more spatially distinct regions are
present. The method applies for plasmas in which the electrons are sufficiently colli-
sional that a Krook collision operator can be used. The ions have been treated as
trapped within individual regions. The approximations allow the problem to be
reduced to coupled algebraic equations, that are solved numerically. The numerical
solutions are compared with asymptotic analytic solutions including known reshlts.
The results are applied to the multiple mimror experiment at Berkeley, which has three
mirror cells of equal length but variable density, in which the central cell contains a

potential barrier produced by a hot electron distribution.



I Introduction

Mirror machines that are MHD stable (having net good curvature) can be-
come unstable due to the presence of velocity space barriers such as local
potentials or magnetic mirrors. The net good curvalure criterion assumes
that communication between regions of local good and bad curvature is
strong enough so that only an integrated criterion is needed. However in
systems with barriers to the particle flow, this communication is via passing
(or transiting) particles. The number density of passing particles can be-
come much smaller than the overall density. This gives rise to the trapped
particle instability in which the unstable part of the machine goes unstable
via a localized mode.

The curvature driven trapped particle instability is important in mirror
machines and has been well studied in recent years . The early work® dealt
with collisionless systems. Here, it is possible to find a threshold passing
fraction above which the system is stable with respect to this mode. More
recent studies?34® have dealt with collisional systems. Here, the mode is
always unstable. The question is only whether the growth rate is small
enough that non-linear processes or neglected aspects in the modelling of
the system saturate or stabilize the mode. These studies were done using a
pitch-angle scattering operator as the collision operator, or else worked in
an asymptotic regime where one process dominated the behaviour. In this
paper we examine a new collisional regime, such that pitch angle scattering
competes with drag and energy scattering effects. The collision frequency
is assumed large enough to allow the use of a Krook-type operator. The

motivation for this work comes from the curvature driven trapped particle
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mode measurements performed on the multiple mirror experiment (MMX).6

The model and the underlying assumptions are discussed in section II,
and the dispersion equation derived in section ITI. Analytical limits and
approximations are obtained in section IV, using perturbation theory. We
discuss the numerical results in section V and conclude with remarks on
generalizations and limitations of the theory.



ITI Theoretical Model

The analysis is motivated by the multiple mirror experiment (MMX) S,
shown schematically in fig. 1. It consists of a linear set of connected mirror
cells. A variety of mirror and quadrature coils allow the magnetic field cur-
vature within any cell to be varied from unstable (axisymmetric mirrors) to
stable (quadrupoles or cusps). In the experiments, three cells are used as
shown in the figure. Cell 1 by itself is unstable and cell 3 is stable. Cell 2 is
mildly stable. The entire three cell system is stable to flute modes. The mir-
ror ratio is three. The plasma density is about 10'2 cm~3, and the electron
and ion temperatures are about 5 eV. The experiment involves suddenly
creating a magnetically confined hot electron species in the middle cell, us-
ing short pulse (~ 3 usec) electron cyclotron resonance heating (ECRH).
Nearly all the electrons in the ECRH cell are heated. The electrons in the
other cells are also affected to a smaller extent - their temperature jumps to
about 15 eV after the pulse. As a result, an electrostatic (thermal) barrier
appears and impedes the cold electron flow between cell 1 and cell 3. It is
observed that this barrier drives the system unstable. The plasma in cell 1
(unstable by itself) experiences a curvature driven trapped particle insta-
bility (localized and flute-like), while the plasma in the other cells remains
stable.

The analysis of this phenomenon is complicated by the fact that several
relevant frequencies of the system are of the same order. For example the ion
bounce frequency (~ l/v; , where ! is the machine length, and v; is the ion
thermal velocity) is close to but somewhat smaller than the mode frequency



w. The diamagnetic drift frequency (w, ~ T/r2B ~ 3 x 10° sec™!) is com-
parable to electron collision frequency (ve ~ 2.9x 10~®nAT; 5 sec™! ~ 6.6 x
10°sec™?). . The hot-electron drift frequency (wan ~ (vf +v3/2)a/QeeRB ~
2 x 10° sec™!) is of the same order. The pitch angle scattering time for elec-
trons to scatter into and out of the loss-cone is about equal to the drag time
for the same process. Some of the other parameters of the system are as
follows: the MHD growth rate in the unstable cell is

T 1
7~ [l + B ~ 10° s
L]

The cold electron drift frequency is wge ~ (vﬁ + 12 /2)e/QeRp ~ 2 X
10° sec™!. The ion drift frequency is wa ~ (vj +v1/2)i/QuRB ~ 2 X
103 sec~!. Here T.,T; are the cold electron and ion temperatures in eV
(~ 5 eV), rp the nominal plasma radius, B the background magnetic field,
ng the plasma density, A the coulomb logarithm, p the fluid pressure, n the
fluid density, R, the radius of curvature of the magnetic lines, Q; the
cyclotron frequency, and b; ~ (k3 p?) the finite larmour radius (FLR) pa-
rameter (p; is the ion gyroradius and k, the radial wave number); ( )
represents a velocity average.

We first note that ion bounce averaging is invalid. As a first approxi-
mation we assume that all ions are confined in cells (no passing ions). We
~ further neglect axial variations inside cells. Thus the profiles are all piece-

wise constant in z with jumps at cell interfaces.

The electron collision frequency is modelled by a Krook collision operator’.
A Krook operator is used because the general collision operator is a second
order elliptic differential operator , and is not analytically tractable. Using

6



a simple pitch-angle scattering operator alone is not reasonable in a regime
where drag and pitch-angle scattering compete. At large collision frequen-
cies, the system is near maxwellian and so are its perturbations. When this
is the case, a Krook operator is a reasonable choice for a collision operator
that embraces both the effects of drag and pitch-angle scattering. The mir-
ror system we describe is modelled as three coupled cells. Since the Krook
operator is algebraic, the resulting dispersion equation is just the determi-
nant of a matrix, whose zeros are easily found numerically, and, in limiting
cases, analytically. Had we used a differential operator, we would have had
a set of coupled dxﬂ'erentla.l equations, which would have been very hard to
treat.

Since the collision frequency is high, we assume that the zero-order dis-
tribution of the electrons and the ions is maxwellian (the ion collisionality
is ignored in the problem, but it is about 10* sec~! which is large enough to
force the zero order distribution to relax to a maxwellian). We also assume
that the hot electron distribution is maxwellian (the roots are not sensi-
tive to the nature of the hot electron distribution, and this is a convenient
assumption).

The zero order axial and radial density and potential profiles are also
time dependant. However, their shapes evolve slowly compared to the mode
we are studying and are assumed frozen in this analysis.

We study the (azimuthal) m = 1 mode, because it is not FLR stabilized,
and because it is the primary mode observed in the experiment. We assume
the mode to be rigid® and alter the drift kinetic equations accordingly..



Clearly the model has many approximations, which limit the useful pa-
rameter range. For example, the ion collision frequency is v; ~ 10%sec™.
Since the ion collisionality is neglected, if a growth rate v < 10%sec™! is
computed, this value is probably in error. Similarly, ignoring the commu-
nication of ions between cells, ignoring non-maxwellian deviations in the
zero-order distributions, etc, limit the applicability of the results.



III The Dispersion Equation
We begin with the drift kinetic equation® for any of NV species
£ =~ + Joh | 1)

- i(w — TG)h = —Jov(h — gort) — i(w — w.)q";,“ Jod )

where f is is the first order distribution function, h is the nonadiabatic part
of f, q is the charge of the species, T is its (uniform) temperature, nq is its
density, go is the density normalized maxwellian for the species, Jy is the
zero order Bessel function of the first kind, ¢ is the first order perturbed
potential, i = [ hd®v is the integrated nonadiabatic density, ( ) refers to

bounce averaging over the appropriate orbit and wg, w, and v were defined
earlier. The Krook collision operator used is C(f) = —v(h — gfi), which is

particle conserving but not momentum or energy conserving.

The Jp terms appear due to averaging the motion along the exact orbit
as opposed to averaging at the guiding centre. But for a rigid mode, these
FLR terms vanish except for the polarization drift terms. Keeping only the
polarization drift, we obtain the equations

f= —%w(l +b)+h (3)

qrgo $ (4)

—i(w — T@)h = —v(h — got) — i(w — w,) T

where b =1 — J¢ ~ k2 p?. We close the system by using quasineutrality

- g6 =0 (%)
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where én = [ fd®v and the subscript jindexes species. For clarity we use
the following convention regarding indices

4,4+ .. are species subscripts

k,k',k"... are cell subscripts

LU,I".. are velocity space region subscripts

Then (3), (4) and (5) become

L _ _3%nojk
fjkl = 13

a0j (1 + bjia) + bt . ()
—i(w —@gn)hj =— Y vii(hit — 905 )Ty
K@)

. j10;k905
—i(w - wag) TR YT g
2 k'(l)

z: gionjr =0 (8)
j

™

where T;i; is the fraction of time spent in velocity region ! of cell k by
species j. In terms of 741, bounce averaging is written as &@j; = 3y @) QK 1TikL
where ay is any bounce averageable quantity, and 3, ) is a sum over cells

reached by particles of velocity space region I.
We solve for hj in (7)
1

hirg = gJo;i Vst Tird Tt
_z(w —_ wd?‘) + le %) J 2 7

(9)

. jT%05k 905
—i(w — wej )&%—1 Z u Tix's
2 K ®
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We then integrate over velocity space and use i = [ hd®v
Tijg EE/ .davhju
1 lk

- ngV' P 9T opt
=Zn'k' dav jkl'ik'l
K T

—i(w — g + 75 (10)

—2as . ] W — Weq Tt
+Z( zq:yno'gk¢k) lkdsv ( J)gOJ k'l

~\ T —i(w — T + 1)

where Ik under the integral sign represents the region of integration, region [
in cell k. The ‘;'elocity integrals in (10) can be done to give

ik + EAjkk'ﬁjk' = ZBjkk' ! (11)
k’ kl
where
iy. 12T o0t 90_1
Ay =— /d“ 3K 173K k) _ 12
akk z,: Ik v(w — wdbarjl) + iv5 (12)
S T dw (v —wg) + i

and 7;,¢/(k) is the fraction of time spent in cell k' by a particle belonging to
velocity region I in cell k.

If we ignore velocity dependances of quantities and just use their aver-
aged values (12) and (13) become

iu.o'r.l ﬂjkl
A = — jk'U jk I(k) 14
Ikl ;w—w@h‘vji (14)

and

g;"0jk Tik' 1(k) ikl
B. | T e— —_— - PR hhdihd, shet S 15
e w")zl:w—r.gﬁwj (15)
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where quantities like 7, K 1(k) DOV refer to "average” values, and 7)j is the
passing or trapped fraction defined by

0= [ Bogo;
L] /; 905

where R is the appropriate region in velocity space. It turns out (Appendix
A) that (14) and (15) are good approximations of (12) and (13) for large
thermal barriers. We will use these simplified equations when performing
perturbation analysis in the next section. Equation (8) can be expanded to
get

— * Z (1 + bjk) + Z gk = (16)
where
bjk = /j; d*vgosb

For purely magnetically confined systems with uniform mirror ratios, (14)
and (15) are correct to first order in wg/(w + iv). For the case of a colli-

sionless species, equations (11) - (13) simplify to

fijke = E ik’ D (17)

Jkk' = ﬂOk(w w*J)E/ B 905 Tjx! 29775k I(k) (18)

w — Wgl

The problem at hand involves collisional electrons and collisionless ions and
collisionless hot electrons. So on substituting (17) into (16) for ions and hot
electrons we get

nOek no:k Nohk

g = (1+b )+

(19)
Z kk’¢k ZBthc'¢k'
kl
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Here we have ignored b, and b, as being small. Using (11) we have

Y Buwéy = D (G + A gy
K K

N’ Nap ! Naart
=§:(5kk' + At) [’¢k'{‘%" + "[’T';‘k‘ + %(1 +b,)}

<+ Z B‘-klkll ¢k’ - E Bhk'k” ¢k"
k” k"

(20)
where 6,/ is the kronekker delta function. The ions and hot electrons
also completely trapped, so B,,,s and B, are diagonal. This allows us to
simplify (20) to

ZDkkl¢kl = E [dkl (6kk' + Aekk') - Bekk'] ¢k’ =0 (21)
¥ K

where

— _P0ek _ _TNoik . W—Wei TWhk W — Weh
di = —e T ~°T {1+b*+/dsvw—w¢sk} T {1+/d3"_w—wm}
(22)

For the approximate version corresponding to 14 and 15 this becomes

Noek Wik Wai — Wik Nohk ;Weh — Wdhk
d = - — O em— : — 8 —— () cmm——— Y eom————— 2
k eIL € ,-{b’k+ w—wd,-k} eTh{w-wdmg } (23)
The dispersion equation is then
detD=0." (24)

Aekk"and B, are given by (12) and (13) and well approximated by (14)
and (15).
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IV Perturbation Analysis

We perform a perturbation analysis on (21) of the previous section. For this

we order the quantities in the equations and write

: 0 1
Dy =D +eDQ) +... (25)

Then we solve the system order by order. To lowest order

[det Do 1@ = det D&} =0 (26)

yields the roots w,(o),i =1,...,n (n is the number of roots). We expand
D about w® to get correction terms:

DO (w) = DO (W + e +...)

det D) (w) = det DY) (w(®) + ew{P 8, (det DG (@) .y + - -

We then obtain from the order € equation corresponding to (21)

cuf®) = — [det Dy ()] (27)

k3 w:w?
8,(det D) (w)) =

By looking at different regimes of parameters, we get different expansions (25)
and so different roots of (26) and their perturbations (27).

1. Limit of zero collisionality

We consider first the limits of zero collisionality (v = 0) and very small
passing fractions (7. < b,wg/w,), where the usual ordering of the FLR and
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drift frequencies (b,wq/w, < 1) is assumed. (21) becomes (4. = 0 when
v=0)

Dy = dybye — By (28)
" ie.,
ENQke Wee — Wdke , ENWOKi (3 Wee — Wake
D, = b —
ki Te w—wgke + T. {b W — Wki }
ENQkh Wee — Wdke ENQeke W — Wye
+ + Nek
Te w—wakh T. w—wWdek 20
- 17 ek W — w*e k = kl ( )
Gk ek 1'1e w— wdep,
ENgek W — Wye '
Dt = — T 1t Nep —— k
ek Ten!Mlek 5 — Wdep k#

where b = b;T./T;. In cells 1 and 3, 7. — 0. In cell 2, 7. can be large or
small depending on the barrier. If no hot electrons are present, then . — 0
in this cell as well. '

We first examine a system having no hot electrons. In this case,

D(o)' -6 ., €Noke (Wae — Wdke  Wie — Wdke | ¢
o = S T. { W — Wike W — Waki +bi} (30)

is diagonal (19(D§33) = 9(wq/we,b)). The six roots are MHD-like:

1
- - . 2
w,gggi[ el “d*)] (31)

The (e) part of det D is
[det DI = D DR DY + DD DR + DPDRDE  (32)
with |

ENQek W — Wae ENpek W — Wae
= NekTek pa—
Te w—wqek T, w—Wiep

Dig = Tek
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So (27) gives

1-r17
w,(;z =3 _(—7e) 5 o) (w,(gg — Wee %‘f (33)

Equations (31) and (33) are valid for both two and three cell systems, if we
neglect the hot electron effects. When hot electrons are present in cell 2,

the zero order roots are as before

D9 =0 (34)
However D,(:‘,?, is no longer diagonal. So the 1¥(¢) expression in the determi-
nant is changed to

e -0 000 - DYDY + DYDY
- DD Dfg + DY DR DY

We shall not consider the roots in the hot electron cell itself but rather the

effect of the hot electrons on the roots in thé other cells. We find, fork=1,3

1) (1) p(0)
== |- 2o 0
D kk D 22 Dkk

where (’) refers to differentiation with respect to w. Explicitly we find

se) -~

k
(WO — wee)2 (W) (w — wana)
4Bh2wdekwdn2(wae)?

W) = Ll—zi)(w(o) — ) ek

(37)

+ NekTe,a—k

The second term represents the modification due to the hot electrons present
in cell 2. This result is valid only for large thermal barriers (small passing
fractions), so that nearly all the electrons in the middle cell are hot electrons.
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The results (33) and (37) allow us to predict for the passing fraction
needed for stabilization. The mode stabilizes when its growth rate vanishes,
that is when

In(w(®) = —Im(w®) (38)

The left hand side is a function of n; (or alternatively, of ¢2). So we solve
for m, which yields a condition for the stabilization of the trapped particle

mode,

-~

= 39
maa' 1-— Tel ( )

Both (33) and (37) yield approximately the above result, since the correc-
tions in (37) are small. .

The mode structure is obvious from the diagonal nature of D(®). The
mode is strongly localized in cell k. Quantitatively,

DY)

>1
Dy

-

2. Collisional cells

For this case we have the ordering (7, b, ws/w, < 1), with the collisionality
parameter v/w, arbitrary, and with 7, b, ws/w, allowed to be of comparable

magnitude. The dispersion matrix is
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A Wee — W, Wee — W W,

W — Wik W — Wihk W — Wgtile (49)
B (W — wee) ]
w — Wgyive

The determinant of the dispersion equation 41 can then be written down

(detD) = (du + exm)(dz + ezm)(ds + ests) [1 "> d”i”;f’; ] 0 (45)

To observe qualitative features, we simplify by choosing v, = v, b=b

in all cells. For a two cell analogue, the hot electron cell is replaced by a

velocity space barrier, which simply changes the number of passing electrons.

Then to first order in 7, b, wg/wse, for a system of two cells, the equations
become

detD =c1c2 + (W — wae)(w + iV)(clz% + Cz%)mﬂz (46)
where
ck = bw? + Wee(Waek — Waik) ' (47)

For a three cell analogue, with the middle cell at a lower potential with
respect to the end cells, but with no hot electrons present,

det D =cjcac3
+ (w — wee)(w + i) [c162(1 — 73)73
48
+c2e3(1 — 11 )m + czer(1 — 72)m) (48)

. T T2 T3
+(w—w 2w+wz[c—+c2—+c3—] N3
( ve)( ) 1 Fa tan | mmn
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Both (46) and (48) show how the roots depend on the passing fraction.
When n < 8, wd/wse We Tecover the case of weakly coupled cells (ie, we
get both (30) and (31) from the above expressions), which we have already
examined. If we allow > b, wg/w,e then we find double roots at w,e
and —iv, and a pair of MHD-like roots for a pressure weighted, curvature
driven mode. To see the last, we note that these roots correspond to

cells -
E cG— 0 (49)
= K

In (49), 7; measures (approximately) the length of the cell and 1/7 represents
the ratio of the overall density to the passing fraction demsity. So (49)
represents a density weighted equation. Since T is assumed uniform, this
is equivalent to saying that (49) represents a pressure weighting of the drive.
So if the system is net MHD stable, then these roots should also be stable.

Equations (46) and (48) are quartic and hexic respectively and so can-
not be solved exactly (actually (46) can be solved, but the solution is not
illuminating ). But we can solve them approximately. This enables us to
look at the behaviour of the roots in the region n > b, wq/wse. We examine

the two unperturbed solutions
W) = wye W= (50)

where @ is the positive real solution of (49). Perturbing these roots then
yields (only the results for the three cell systems are given)

ns(1-14)

ol = (_w.e+i"e) 1(Wae)a(Wae)s(wne) 24 o7 TE) (51)
VW 402 TN ¥ Gl
7
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and

l—n)m
wl = (—U+ive) c1 (@) ez (@)cs(@) = (52)
2 @2 + 12 26T(T — wee) TiRMB + T2z + TIMM2

where the c; were defined in (47). The coefficients in (51) and (52) are such
that in the MMX parameter range, both roots are growing (or unstable)
solutions. In general, the sign of the quantities in the square brackets in (51)
and (52) determines the nature of the roots.

The critical (stabilizing) value of 7 in the limit ¥ — 0, can be calculated
from (51) and (52). We find that the roots w(%) = 0 and w(® = + collide

and move into the complex plane. The value of 7., at which this is occurs
can be got from

12,3 1(0)c2(0)(1 - Ts)nsl |21,z,3 1 (@)ex(@)(1 — 73)ms |
Wee 321,2,3 €1(0) 17213 (@ — Wee)@? Xy .3 brimems

=w (53)

where the 37, , 5 represents cyclic summations over 1,2, 3.

To examine the effect of hot electrons, we can look directly at equa-
tions (41) to (45). The case of weakly coupled cells has already been treated
at the beginning of the section. We now go to the other limit. Suppose the
cells are very strongly coupled. Then the thermal barrier is weak, and there
are very few hot electrons. We expand (45) to first order in 85, b and wg/w.
The equations are very complicated, and so we assume that v, and b are
independant of position. Then we get
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3
> 2w +of) = O [ i) — )

- W,
=1 M dh (54)
_Weih 1 |~ wne) +in e W] o
W — Wap M2 W — Wdh

When the coupling dominates, the roots tend towards @. The presence
of the weak barrier causes a shift in the eigen frequency which is easily
calculated from the above equation. We find for the residual growth rate

y = 1 ﬂurz VWee
Zsk—l e w i

This is valid only when the collision frequency is not much larger than
@ for that could promote first order variables into zero order. The growth

(55)

rate got here must be added to the growth rate obtained from ignoring hot
electrons (52), since those terms have been ignored here.
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V  Results and Comparison with Experiment
1. Numerical Computation

Equation (21) in section III was solved numerically and the various
roots obtained. For each group of particles present, there is a root to track.
In the three-cell configuration there are eight such groups (three groups each
of trapped, cold electrons and ions, a group of trapped hot electrons and
a group of passing electrons). This yields eight roots to track, of which
six are stable. One of the remaining roots is the curvature-driven trapped
particle mode and the other is a drift mode. Although both of these modes
are unstable, the trapped particle mode is the dominant (ie., most unstable)
mode for small and medium passing fractions, and both modes are only
weakly unstable at large passing fractions.

In fig. 2 we show a typical root locus of the trapped particle mode as
the passing fraction is varied. At small values of the passing fraction the
mode structure is well localised to the unstable cell. As the passing fraction
increases, there is a stabilizing influence from the other cells. The mode
becomes global and tends towards a mode frequency and a mode structure
that corresponds to the system-averaged MHD mode.

In fig. 3 we show a family of root loci versus the passing fraction, that
is parametrized by the collision frequency v. We see that the reduction in
growth rate with increasing passing fraction is initially more rapid at higher
collisionalities. At large passing fractions, the collisional processes dominate
and the growth rate scales with v/(@? + v2).

23



In fig. 4, we compare the results of the numerical solutions with pertur-
bation theory for the case of two cells with a barrier separating them. As
seen in the figure there is little qualitative difference. The only change that
is significant is the increased time spent by transiting electrons in stable re-
gions for the three cell case. This produces stabilization at a lower electron
passing fraction.
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2. Comparison of Numerical Results with the Experiment

In this section we compare the predictions of the theory with the available
evidence for the MMX experiment. The experimental set-up and the exper-
imental parameters were described in sec II. A more complete description
of the experiment and initial experimental results are given in ref . Here
we present some additional experimenatl results and compare these results
with the theory. In both the original experimental results and the results
presented here, the following observations can be made In fig. 5, the radial
component of the velocity of the centroid motion is plotted for successive
times separated by ten microseconds and averaged over three points taken
two microseconds apart. Values are only plotted for radially outward motion.
The velocity is converted to an effective growth rate using the relationship

1dr
ry dt

(56)

where r,, is the plasma radius matched to an assumed Gaussian. This form
is justified in ref ©. In fig. 5a the result is shown for the basic configuration
of two stable and one unstable cell without applying the ECRH pulse. The
motion shown is in the magnetically unstable cell. The effective - is found to
lie below 10% sec™!. In fig. 5b the result is given for a fully stabilized magnetic
field with ECRH applied to the middle cell at time zero. Again the effective
7 lies essentially below 10° sec™!. In fig. 5c the basic configuration with one
unstable cell is again used with the ECRH applied at t = 0. There is a
definite increase in the effective growth rate after heating, and the plasma
is found to move rapidly to the chamber wall. It appears to bounce off the

25



wall without extreme loss of density, and after 50u sec, which is the time for
the barrier to decay settles down again to a value below 10° sec™.

From data such as that shown in fig. 5 and that given in® we can make
the following qualitative statements:

(1) When no barrier is present, and the system is calculated to be MHD
stable when taken as a whole, there is no observed instability on the order
of the experiment time(~ 10y sec).

(2) When a barrier is suddenly formed, the magnetically unstable cell
is observed to become unstable, with the;_ plasma quickly lost radially. The
time scale for the plasma loss is < 10usec.

(3) The theory predicts small growth rates at large passing fractions (
no barrier present) and also predicts that the bad curvature cell becomes
flute unstable at small passing fraction (large barrier present). The actural
growth rate depends on vy p in this cell, which depends on the drive and
the temperatures of the various populations present. Using the experimental
estimates of T, ~ 15eV, T; ~ 5eV, wg ~ 3 x 103sec™! (unstable) gives us
YmED ~ 1.2 X 10°sec™!. This value is somewhat lower than the observed
loss time. The values of wy and T, above are rather uncertain and it is quite
possible that this value of Yargp is as high as 5 x 10° sec™?, whicﬁ would be

reasonably consistent with the observations.

(4) The plasma restabilizes after about 504 sec, coinciding with the decay
of the potential barrier.

(5) If the unstable cells are stabilized with quadrupole fields, the residual

motion remains after ECRH but no significant increase in velocity is found

and the plasma does not move radially outwards to the device walls.

26



In fig. 6 we plot the numerical values of -y for the parameters most closely
matching the experiment, but allowing the passing fraction to vary. On this
plot we superpose the estimated experimental effective growth rates as scaled
from the observed velocity of the plasma centroid. We superpose experimen-
tal values right after heating when we expect the barrier to be essentially
4T,, after some barrier decay, and after nearly complete decay of the barrier.
We see that even in this last case in the passing fraction is considerably less
than unity, and the mode growth is substantial. Nevertheless, the actual
plasma motion appears to be saturated, with the centroid confined near the
magnetic axis. The complete motion is shown is some detail in our previ-
ous paper. We conclude that the theory is consistent qualitatively with the
experimentally observed decoupling of the stable and unstable cells in the
presence of an ECRH induced.potential barrier.
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VI Conclusions

A simple formalism has been derived in this paper to handle mirror systems
that consist of many coupled regions. It assumes that the bounce frequency
of ions is smaller than the mode fréquency and approximates them as be-
ing completely confined to the region they are in. The potential barriers
separating regions are assumed to be driven by hot electrons. The cold elec-
trons are assumed to have a b&unce frequency large compared to the mode
frequency.

The resulting equations are found to agree with the experimental obser-
vations of the trapped particle mode on the MMX. '

The most serious approximation in the model is the assumption that
the ions are completely confined and that the mode is uniform within a
cell. A more soﬁhisticated approach is being developed that takes the ion
dynamics into account, allows the mode to vary within a cell, and can use
any bounce averaged electron response. This should be of relavence to the
current generation of mirror systems, which have relatively cold ions, with
transit times longer than the mode period.
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A Large Thermal Barriers

We evaluate (12) and (13), in the limit of small wq/(w — w,). The integrals
take the form

gOJk wtbk" k"
Tm oy [ SRR () 5 STl )
e w+w,; ) w+w,¢

where wgn = Rwyng(vf + jv}) with wyw, constants. We also take the
Krook collision frequency to be the same in all cells. Then we need to
evaluate integrals of the type

i’ -/ d®ur VT 1905k (58)

Ky = -/Ru & VT 1T k" 1905k W g5k 1 (59)

Evaluation is best done in the (u — u) coordinates, where

_lmvi _E—pBo—‘bz
k=378 u= 3, (60)

where ®; is the potential energy gain of an electron when it enters cell 2
from cell 1. In these coordinates,

61
—PB®2_/
gozdsv € ﬂa;gg (;‘;i )

where 3 = 1/T. For the trapped region, the integration is straightforward,
and we get ( for & > T) '

1 - WdQjk
J(e PP L% 62
w-l-z?—w‘ykoT)-'- (e w+iu) (62)

L = ajenjn
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Hence when we have a large barrier we can perform this integral by just
replacing the variable quantities by their averages.

For passing particles, we need to evaluate integrals of the type (58) and
(59). In u — p coordinates

n=

V% = YU (63)
T ut+vutl 2Tt Vutl

To evaluate (58) and (59), we approximate (63) by

[ .645\/u — .346u 0<u<l1

11 u>1
{ 3 24u (64)
(1-1.29/u+.692u 0<u<l

T2 = ¢

1 1

-t — >
. T u2l

This approximation has a maximum error of .025. Using the following for-
mulae

=0
/o ! Bovke— — | ,(2?2 ;)i)!! [% \/g (65)
| -z_a;ﬂ (za('zf)i)n] kT ama oo
/lmdue:/: = %‘:. T a=— o0 (66)
./1'°° duf:; = ,9%-:_ a — oo (67)
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wd e —Ee"’ a — oo
1 u'uz\/‘l_t ~ 3
we find that
.731/%— 52;—1 - k=13
('Tk) deakaQOk - 2 2
f Bugor
1-1.46 + 1. 04— k=2

When we evaluate (59) and use (69), we find that

(w dk" ‘Tkl Tk" > =] ﬂ k" (Tkr ) (Tku )

where

wdkoQQ k= 1,3
Q. = (2> 7T)
2waoT k=2

Clearly then, for ®; >> T, (57) becomes

Z o (r jk' z)gOJk +

Y p—JR VTR L,
2 o, Tt i~ @
e n)
- Z 'k +iv —w)

K@)

which gives us (14) and (15).
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1. Layout of the experiment.

2. Typical results as a function of passing fraction eta : (a) growth rate;
(b) real part of frequency; (c) ratio of unstable to stable mode ampli-
tudes; (d) phase shift.

3. Trapped particle mode for different collision frequencies.

4. Comparison of numerical results with perturbation analysis. The ap-
proximation used is the quartic approximation obtained from equa-
tion 46.

5. Typical data obtained from experimental configurations: (a) stable
and unstable cells strongly coupled (no ECRH); (b) both cells stable;
(c) stable and unstable cells separated by ECRH generated potential
barrier.

6. Comparison between experiment and the numerical results The curve
is the numerical result and corresponds to the nominal point of opera-
tion for the experiment. The cross-marks are experimental datapoints
with error bars.
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