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Abstract

A method of analysis has been developed for treating the trapped particle mode

in magnetic mirror systems in which three or more spatially distinct regions are

present The method applies for plasmas in which the electrons are sufficiently colli

sional that a Krook collision operator can be used. The ions have been treated as

trapped within individual regions. The approximations allow the problem to be

reduced to coupled algebraic equations, that are solved numerically. The numerical

solutions are compared with asymptotic analytic solutions including known results.

The results are applied to the multiple mirror experiment at Berkeley, which has three

mirror cells of equal length but variable density, in which the central cell contains a

potential barrier produced by a hot electron distribution.



I Introduction

Mirror machines that are MHD stable (having net good curvature) can be

come unstable due to the presence of velocity space barriers such as local

potentials or magnetic mirrors. The net good curvalure criterion assumes

that communication between regions of local good and bad curvature is

strong enough so that only an integrated criterion is needed. However in

systems with barriers to the particle now, this communication is via passing

(or transiting) particles. The number density of passing particles can be

come much smaller than the overall density. This gives rise to the trapped

particle instability in which the unstable part of the machine goes unstable

via a localized mode.

The curvature driven trapped particle instability is important in mirror

machines and has been well studied in recent years . The early work1 dealt

with collisionless systems. Here, it is possible to find a threshold passing

fraction above which the system is stable with respect to this mode. More

recent studies2345 have dealt with coUisional systems. Here, the mode is

always unstable. The question is only whether the growth rate is small

enough that non-linear processes or neglected aspects in the modelling of

the system saturate or stabilize the mode. These studies were done using a

pitch-angle scattering operator as the collision operator, or else worked in

an asymptotic regime where one process dominated the behaviour. In this

paper we examine a new coUisional regime, such that pitch angle scattering

competes with drag and energy scattering effects. The collision frequency

is assumed large enough to allow the use of a Krook-type operator. The

motivation for this work comes from the curvature driven trapped particle
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mode measurements performed on the multiple mirror experiment (MMX)-

The model and the underlying assumptions are discussed in section II,

and the dispersion equation derived in section HI. Analytical limits and

approximations are obtained in section IV, using perturbation theory. We

discuss the numerical results in section V and conclude with remarks on

generalizations and limitations of the theory.



II Theoretical Model

The analysis is motivated by the multiple mirror experiment (MMX) 6,

shown schematically in fig. 1. It consists of a linear set of connected mirror

cells. A variety of mirror and quadrature coils aUow the magnetic field cur

vature within any ceU to be varied from unstable (axisymmetric mirrors) to

stable (quadrupoles or cusps). In the experiments, three cells are used as

shown in the figure. CeU 1 by itself is unstable and ceU 3 is stable. CeU 2 is

mildly stable. The entire three ceUsystem is stable to flute modes. The mir

ror ratio is three. The plasma density is about 1012 cm"3, and the electron

and ion temperatures are about 5 eV. The experiment involves suddenly

creating a magnetically confined hot electron species in the middle ceU, us

ing short pulse (~ 3 /xsec) electron cyclotron resonance heating (ECRH).

Nearly all the electrons in the ECRH ceU are heated. The electrons in the

other cells are also affected to a smaller extent - their temperature jumps to

about 15 eV after the pulse. As a result, an electrostatic (thermal) barrier

appears and impedes the cold electron flow between ceU 1 and ceU 3. It is

observed that this barrier drives the system unstable. The plasma in ceU 1

(unstable by itself) experiences a curvature driven trapped particle insta

bility (localized and flute-like), while the plasma in the other cells remains

stable.

The analysis of this phenomenon is compUcated by the fact that several

relevant frequencies of the system are of the same order. For example the ion

bounce frequency (~ l/v{ , where I is the machine length, and V{ is the ion

thermal velocily) is close to but somewhat smaUerthan the mode frequency



u/. The diamagnetic drift frequency (a;* ~ Te/r*B ~ 3 x 105 sec-1) is com

parable to electron collision frequency (i/e ~ 2.9 x 10-6nAT~1,5 sec-1 ~ 6.6 x

105 sec-1). . The hot-electron drift frequency (&& ~ (v|+v^/2)ft/ficei2B ~
2 x 105 sec-1) is of the same order. The pitch angle scatteringtime for elec

trons to scatter into and out of the loss-cone is about equal to the drag time

for the same process. Some of the other parameters of the system are as

foUows: the MHD growth rate in the unstable ceU is

7~[w.(|«*| +htoD/M^?)]2 ~lo5 s^"1
The cold electron drift frequency is (*><& ~ (vj| + v\/2)e/SlceRB ~ 2x

103 sec-1. The ion drift frequency is &# ~ (ujj +v\/2)i/QciRB ~2x
103 sec-1. Here TeiT{ are the cold electron and ion temperatures in eV

(~ 5 eV), rp the nominal plasma radius, B the background magnetic field,

no the plasma density, A the coulomb logarithm, p the fluid pressure, n the

fluid density, Rf, the radius of curvature of the magnetic lines, £lCe,i the

cyclotron frequency, and 6j ~ (&j.Pi) the finite larmour radius (FLR) pa

rameter (pi is the ion gyroradius and k± the radial wave number); ( )

represents a velocity average.

We first note that ion bounce averaging is invalid. As a first approxi

mation we assume that aU ions are confined in cells (no passing ions). We

further neglect axial variations inside cells. Thus the profiles are all piece-

wise constant in z with jumps at ceU interfaces.

The electron collision frequency is modeUed by a Krook collision operator .

A Krook operator is used because the general collision operator is a second

order elliptic differential operator , and is not analyticaUy tractable. Using



a simple pitch-angle scattering operator alone is not reasonable in a regime

where drag and pitch-angle scattering compete. At large collision frequen

cies, the system is near maxwellian and so are its perturbations. When this

is the case, a Krook operator is a reasonable choice for a collision operator

that embraces both the effects of drag and pitch-angle scattering. The mir

ror system we describe is modeUed as three coupled cells. Since the Krook

operator is algebraic, the resulting dispersion equation is just the determi

nant of a matrix, whose zeros are easily found numerically, and, in limiting

cases, analyticaUy. Had we used a differential operator, we would have had

a set of coupled differential equations, which would have been very hard to

treat.

Since the collision frequency is high, we assume that the zero-order dis

tribution of the electrons and the ions is maxwellian (the ion coUisionaUty

is ignoredin the problem, but it is about 104 sec-1 which is large enough to

force the zero order distribution to relax to a maxwellian). We also assume

that the hot electron distribution is maxwellian (the roots are not sensi

tive to the nature of the hot electron distribution, and this is a convenient

assumption).

The zero order axial and radial density and potential profiles are also

time dependant. However, their shapes evolve slowly compared to the mode

we are studying and are assumed frozen in this analysis.

We study the (azimuthal) m = 1 mode, because it is not FLR stabilized,

and because it is the primary mode observed in the experiment. We assume

the mode to be rigid8 and alter the drift kinetic equations accordingly.



Clearly the model has many approximations, which limit the useful pa

rameter range. For example, the ion collision frequency is i/{ ~ 104sec-1.

Since the ion coUisionality is neglected, if a growth rate 7 < 104 sec-1 is

computed, this value is probably in error. Similarly, ignoring the commu

nication of ions between cells, ignoring non-maxwellian deviations in the

zero-order distributions, etc, limit the apphcabUity of the results.



Ill The Dispersion Equation

We begin with the drift kinetic equation9 for any of N species

f =-^90 +J0h (1)

qnogo
—i(u) —ujdjh = —Jou(h —goh) —i(w —v*) Jo<ft (2)

where / is is the first order distribution function, h is the nonadiabatic part

of /, q is the charge of the species, T is its (uniform) temperature, no is its

density, go is the density normalized maxwellian for the species, Jo is the

zero order Bessel function of the first kind, <j> is the first order perturbed

potential, n = JhSv is the integrated nonadiabatic density, ( ) refers to

bounce averaging over the appropriate orbit and u><£, wm and v were defined

earlier. The Krook collision operator used is C(f) = —u{h —<jn), which is

particle conserving but not momentum or energy conserving.

The Jo terms appear due to averaging the motion along the exact orbit

as opposed to averaging at the guiding centre. But for a rigid mode, these

FLR terms vanish except for the polarization drift terms. Keeping only the

polarization drift, we obtain the equations

/—^md+tj +fc (3)

Qnogo-T—i(uj —t*Jd)h = —u(h —goh) —i(w —<*;♦)—=—<f> (4)

where b= 1 —Jj ~ k\$. We close the systemby using quasineutrality

E^ni=° (5)



where Sn = / fa*v and the subscript jmdexes species. For clarity we use

the following convention regarding indices

i i i"

are species suoscrtpts

are ce/Z suoscripts
are velocity apace region subscripts

Then (3), (4) and (5) become

- Qjfenojk
fjki = ™ 90j(l + bjki) + hjl

k'(l)

Tj *'(0

(6)

(7)

(8)

where Tjki is the fraction of time spent in velocity region I of ceU k by

species j. Interms ofTjki, bounce averaging iswritten as a^ = £fc» ^ ajk'irjk'l

where a fc#f isany bounce averageable quantity, and Hk'(i) ^ asum over ce^s

reached by particles of velocity space region I.

We solve for hjki in (7)

jkl -i(u - u${) + t/ji 90j X) V3k'lTik'ln3k'
k'(i)

-i((jj - u+j)
Qjnojkgoj

H <f>k'Tjk'i
k'(i)

10
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We then integrate overvelocity space and use n = / hSv

njk=^2j a*vhjki

-%n*' Jik-i(u-m)+wi (10)
y^ /-iojnojfc^N f ^ (w - ^*j)9ojrjk'i
jfi\ Tj JJik V-i(u>-ZJ#i +W)

where Ik under the integral sign represents the region of integration, region I

in ceU k. The velocity integrals in (10) can be done to give

nJk +£ Ajkk,njk, = YlBjkk'h' (n)
fc' k'

where

A i- T f Jv *#MWP» (12)3kk yJlk (w-wdbarjVl + wft v '

and Tjk'i(k) is the fraction of time spent in cell k by a particle belonging to

velocity region I in ceU k.

If we ignore velocity dependances of quantities and just use their aver

aged values (12) and (13) become

A j= v^iVk*)W ( .
3kk A,a;__+ i_7 V ;

and

Bjkk, =Sffla(w - ^)y; r^l^_ (is)

11



where quantities like t.^«u now refer to "average" values, and rjjki is the

passing or trapped fraction defined by

Vjkl
JR

where R is the appropriate region in velocity space. It turns out (Appendix

A) that (14) and (15) are good approximations of (12) and (13) for large

thermal barriers. We wiU use these simplified equations when performing

perturbation analysis in the next section. Equation (8) can be expanded to

get

- e24>k £ ^(1 +bjk) +£ gjhjk =0 (16)

where

bjk —I <*vgojb
JR

For purely magnetically confined systems with uniform mirror ratios, (14)

and (15) are correct to first order in Wd/(v + iu). For the case of a colli

sionless species, equations (11) - (13) simplify to

nik = ^Bjkkf4>kl (17)
k

B =«(„ _^.)£ / *»&!(m. (18)
3kk Tj v J,yjR U-Udjl

The problem at hand involves coUisional electrons and collisionless ions and

collisionlesshot electrons. So on substituting (17) into (16) for ions and hot

electrons we get

= / a*vgoj
JR

nek =- e<f>k{-jr- +-y-U +Oik) +-jT-}

+£Bikk'h' - Z) Bhkk' 4v
k' k'

12

(19)



Here we have ignored be and bh as being smaU. Using (11) we have

J2Bekk,h' =E(5fcfc' +Aekk')nek'
k' k'

+E Bik'k" tk" -EBhk'k" h"
k" kn

(20)

where S^f is the kronekker delta function. The ions and hot electrons

alsocompletely trapped, so B^ and B^ are diagonal. This allows us to

simplify (20) to

5>W*tf = E M** +*-*> " *«**'] ^' =0 (21)
k' k'

where

dfc = -e— - e—{1 + 6ifc + a*v } - e-=-{l -r d*v }
Te Ti J U —U)<nk J-h J V — Mdhk

(22)

For the approximate version corresponding to 14 and 15 this becomes

j noek "Otfcr, . W*»— ^cKfc-, nphk fU*h —Udhki /0„v
dk = -«-«- - e^-V>ik + —— } - e-nn-{ ,, ,, } (23)

Te Ti v —ujd*k Th u —Udhk

The dispersion equation is then

det£> = 0. (24)

A^ and Befcfc# are given by (12) and (13) and weU approximated by (14)

and (15).

13



IV Perturbation Analysis

We perform a perturbation analysis on (21) of the previous section. For this

we order the quantities in the equations and write

Then we solve the system order by order. To lowest order

[detJD^]<0)=detD^=0 (26)

yields the roots u;|°%i = 1,. . .,n (n is the number of roots). We expand
£)(°) about u>\ ' to get correction terms:

So

det£$ (w) =detDW(u,,'0)) +*ll)U**B$W)lmjp +•••

We then obtain from the order c equation corresponding to (21)

t ~" Q ,, -.(0)/ \\,w=u'i V 'd„(det!><%))

Bylooking at different regimes ofparameters, we getdifferent expansions (25)

and so different roots of (26) and their perturbations (27).

1. Limit of zero coUisionality

We consider first the limits of zero coUisionality (u = 0) and very small

passing fractions (rje <C 6, a>d/o;#), where the usualordering ofthe FLR and

14



drift frequencies (6,u>d/u;* < 1) is assumed. (21) becomes (Ae = 0 when

i/ = 0)

Dkk'=<ik'6kk>-Bekk> (28)

ie.,

enofce W*e — UJdke . e^Ofci ff ^*e ~ ^dfce-t

** Te U-Udke Te W - Udki

, enokh w*e — Wrffee , enoefc w — w#e

(29)
enodfe ^ — w*e , ,»

Te U-Wdep

enoek w — w*e
^Jfefc' =" Tek,rlek m .. ^_, « 7* «

where S = biTe/Ti. In ceUs 1 and 3, Tfe -> 0. In ceU 2, »7C can be large or

small depending on the barrier. If no hot electrons are present, then ne —* 0

in this ceU as weU.

We first examine a system having no hot electrons. In this case,

*>J3 =***• ggte{w"-'"»' - "» " "•"* +&*} (so)

is diagonal (tf(£J2?) = #(<*><*/<*>♦,&)). The six roots are MHD-Uke:

«S«±
-W*e(Wdefc - <*><tfk)

6fc

The i?(e) part of det D is

[detD]« -B®B®B®+I®D®n® +n&D&0& (32)

with

,-,1 C"Odb W — U/*e eriOefc **> — U7«e
•Ofcfc = ^cfe-Tp— VekTek-^—- ==

15
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So (27) gives

u(l)^ (1-Tefc), (Q) .Tjek m,
wk± — 2 * *± T^ * '

Equations (31) and (33) are valid for both two and three ceU systems, if we

neglect the hot electron effects. When hot electrons are present in ceU 2,

the zero order roots are as before

Cjg> =0 (34)

However DjJt is no longer diagonal. So the #(e) expression in the determi
nant is changed to

(det D)M =D$D<8dW - D^D® +^M

-n&B®B&+B®LlSn® (35)
We shall not consider the roots in the hot electron ceU itself but rather the

effect ofthe hot electrons on the roots in the other cells. We find, for k —1,3

(i)-_u;v ' =
ukk uk2 u7.k
D(o)' DWD(oy

L^fcfe ^22 ukk J

where (') refers to differentiation with respect to <j. Explicitly we find

Vek

(36)

ww=.iL^)(uc).W(()?
2 bk

(37)
+nekTe^(^-^e)2^)2^-^^)

40h2WdekUdh2(v*e)2

The second term represents the modification due to the hot electrons present

in cell 2. This result is valid only for large thermal barriers (small passing

fractions), so that nearly all the electrons in the middle ceU are hot electrons.

16



The results (33) and (37) allow us to predict for the passing fraction

needed for stabilization. The mode stabilizes when its growth rate vanishes,

that is when

lntt>(1)) = -Im(u/(0>) (38)

The left hand side is a function of 171 (or alternatively, of <fo). So we solve

for 771, which yields a condition for the stabilization of the trapped particle

mode,

m,c *r^- (39)
1-Tel

Both (33) and (37) yield approximately the above result, since the correc

tions in (37) are small.

The mode structure is obvious from the diagonal nature of D^°\ The

mode is strongly localized in ceU k. Quantitatively,

fa

fa
rsj

D(o)
•^33
r>U)
•^31

>1

2. CoUisional cells

For this case we have the ordering (77, b,u^/a;* < 1), with the coUisionality

parameter i//o/* arbitrary, and with 17,6, u^/u;* allowed to be of comparable

magnitude. The dispersion matrix is

17



LW-<4flUU>-WrffchJLW-LJdek+*•

*>**'

-Pek(u-U*e)

WekTekKk

V—Wdep+We

1-»7fc,Wefe
+

W—<*>defc+U/efeW—W<fep+M/e>

a;—wjpc+Wew—a;jpc+We

(40)

Here/3^andPhkarethefractionofcoldandhotelectronsinceUk

respectively.Equation40canberewrittenasfoUows

where

Dkjc'=(dk+ekVk)Sktk'+r}krkifki

,_/U>-Wdek\I"?PekV*e(udek~^dik)
W-u;<teJb+«Vefe/Lk(w-Wdefc)(w-U^fc)

Phk[v*e(udhk~Udik)+^dhJb^defc]]
(u>-W<fefe)(w-Wdhfc)J

\a.IU*e-Wdek,„tJ«e-^dek\wekVkSkk'

nk&k<k'

t"ek

+Pek(w~<*>*e)
<*>—U)dek+Wefc

18
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(42)

(43)



Ik = - \ (Pek + 0k HPhk ) =

(44)

(detD) = (di + ei77i)(<f2 + e2»72)(<*3 + e3*fe)

LJ —Wd+We]

The determinant of the dispersion equation 41 can then be written down

1 I Y^ ^rkfk
j~1dk + ek*lk

= 0 (45)

To observe qualitative features, we simplify by choosing i/efc = i/, 6* = 6

in aU cells. For a two ceU analogue, the hot electron ceU is replaced by a

velocity space barrier, which simply changes the number of passing electrons.

Then to first order in 77,6, u^/u^e, for a system of two cells, the equations

become

det D = cic2 + (w - u>*e)(w + iv)(c\ h c2—)t?iT72 (46)
m V2

where

Ck = bu>2 + U3*e(udek ~ ^dik) (47)

For a three ceU analogue, with the middle cell at a lower potential with

respect to the end cells, but with no hot electrons present,

det.D=CiC2C3

+ (W - W*e)(w + it/) [ciC2(l - T3)t73

+c2c3(l - Tijrn + c3ci(l - r2)»72]

C\ 1" C2 h C3— T71T72773
n\ m T73J

19
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Both (46) and (48) show how the roots depend on the passing fraction.

When 77 «: 6,u)d/u*e we recover the case of weakly coupled cells (ie, we

get both (30) and (31) from the above expressions), which we have already

examined. If we allow 77 » 6,Vd/w*e then we find double roots at u)me

and —ive and a pair of MHD-like roots for a pressure weighted, curvature

driven mode. To see the last, we note that these roots correspond to

cells

£ cfi at 0 (49)

In (49), Ti measures (approximately) the length of the celland I/77 represents

the ratio of the overall density to the passing fraction density. So (49)

represents a density weighted equation. Since T is assumed uniform, this

is equivalent to saying that (49) represents a pressure weighting of the drive.

So if the system is net MHD stable, then these roots should also be stable.

Equations (46) and (48) are quartic and hexic respectively and so can

not be solved exactly (actually (46) can be solved, but the solution is not

illuminating ). But we can solve them approximately. This enables us to

look at the behaviour of the roots in the region 77 » 6,u;d/u;*e. We examine

the two unperturbed solutions

where 57 is the positive real solution of (49). Perturbing these roots then

yields (only the results for the three ceU systems are given)

C\(u+e)c2(u*e)c$(u*e) ^J V ("") (51)

20



and

ci (u7)c2 (o?)c3 (a?) St ^-£0}, _ (-W + iVe\
2bu(u —u;*e) TlW3 + T2W1 + T3771772

(52)

where the c* were defined in (47). The coefficients in (51) and (52) are such

that in the MMX parameter range, both roots are growing (or unstable)

solutions. In general, the sign of the quantities in the square brackets in (51)

and (52) determines the nature of the roots.

The critical (stabilizing) value of 771 in the limit v —> 0, can be calculated

from (51) and (52). We find that the roots w<°) = 0 and u;<°) = +u> coUide

and move into the complex plane. The value of rjcr at which this is occurs

can be got from

XiA»Ci(0)Pi(0)(l-i>)m. .Sit2,3ci(^)c2(^)(l-T3)r73, _ .
w*c El,2,3 cl (0)n*/2ffe (w - W*e)a72 £xA3 Sr^TTs

where the Z)i,2,3 represents cyclic summations over 1,2,3.

To examine the effect of hot electrons, we can look directly at equa

tions (41) to (45). The case of weakly coupled cellshas already been treated

at the beginning of the section. We now go to the other limit. Suppose the

cells are very strongly coupled. Then the thermal barrier is weak, and there

are very few hot electrons. We expand (45) to first order in /?/», b and Wrf/w.

The equations are very complicated, and so we assume that ue and b are

independant of position. Then we get

21



3 _
ll/UJLJ*eETk( 2 , 2\ PhT2 r / . . w v «—(^ +7jfe)--£- "(w+zi/)(w-a;*e)-

tel* b L w"w* (54)
UJUJ+eUJdh 1

+ (jjiijj —u;«eJ + ww = 0
w-Udh J

When the coupling dominates, the roots tend towards 57. The presence

of the weak barrier causes a shift in the eigen frequency which is easily

calculated from the above equation. We find for the residual growth rate

7=J^¥^;. (55)
ELi£ b LJ

This is valid only when the collision frequency is not much larger than

u7 for that could promote first order variables into zero order. The growth

rate got here must be added to the growth rate obtained from ignoring hot

electrons (52), since those terms have been ignored here.

22



V Results and Comparison with Experiment

1. Numerical Computation

Equation (21) in section HI was solved numerically and the various

roots obtained. For each group of particles present, there is a root to track.

In the three-ceU configuration there are eight such groups (three groups each

of trapped, cold electrons and ions, a group of trapped hot electrons and

a group of passing electrons). This yields eight roots to track, of which

six are stable. One of the remaining roots is the curvature-driven trapped

particle mode and the other is a drift mode. Although both of these modes

are unstable, the trapped particle mode is the dominant (ie., most unstable)

mode for small and medium passing fractions, and both modes are only

weakly unstable at large passing fractions.

In fig. 2 we show a typical root locus of the trapped particle mode as

the passing fraction is varied. At small values of the passing fraction the

mode structure is well localised to the unstable ceU. As the passing fraction

increases, there is a stabilizing influence from the other cells. The mode

becomes global and tends towards a mode frequency and a mode structure

that corresponds to the system-averaged MHD mode.

In fig. 3 we show a family of root loci versus the passing fraction, that

is parametrized by the collision frequency v. We see that the reduction in

growth rate with increasing passing fraction is initially more rapid at higher

coUisionalities. At large passing fractions, the coUisional processes dominate

and the growth rate scales with v/(p2 +1/2).
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In fig. 4, we compare the results of the numerical solutions with pertur

bation theory for the case of two cells with a barrier separating them. As

seen in the figure there is Httle qualitative difference. The only change that

is significant is the increased time spent by transiting electrons in stable re

gions for the three ceU case. This produces stabilization at a lower electron

passing fraction.
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2. Comparison of Numerical Results with the Experiment

In this section we compare the predictions of the theory with.the available

evidence for the MMX experiment. The experimental set-up and the exper

imental parameters were described in sec II. A more complete description

of the experiment and initial experimental results are given in ref . Here

we present some additional experimenatl results and compare these results

with the theory. In both the original experimental results and the results

presented here, the foUowing observations can be made In fig. 5, the radial

component of the velocity of the centroid motion is plotted for successive

times separated by ten microseconds and averaged over three points taken

two microseconds apart. Values are only plotted for radially outward motion.

The velocity is converted to an effective growth rate using the relationship

where rw is the plasma radius matched to an assumed Gaussian. This form

is justified in ref 6. In fig. 5athe result is shown for the basic configuration

of two stable and one unstable ceU without applying the ECRH pulse. The

motion shown is in the magnetically unstable ceU. The effective 7 is found to

He below 105 sec"1. In fig. 5b the result is given fora fully stabilized magnetic

field with ECRH appUed to the middle ceUat time zero. Again the effective

7 lies essentiallybelow 105 sec-1. In fig. 5c the basicconfiguration with one

unstable ceU is again used with the ECRH appUed at t = 0. There is a

definite increase in the effective growth rate after heating, and the plasma

is found to move rapidly to the chamber waU. It appears to bounce off the
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wall without extreme loss of density, and after 50/Jsec, which is the time for

the barrier to decay settles down again to a value below 105 sec-1.

Prom data such as that shown in fig. 5 and that given in we can make

the foUowing qualitative statements:

(1) When no barrier is present, and the system is calculated to be MHD

stable when taken as a whole, there is no observed instability on the order

of the experiment time(« 10/Ltsec).

(2) When a barrier is suddenly formed, the magnetically unstable ceU

is observed to become unstable, with the plasma quickly lost radially. The

time scale for the plasma loss is < 10/isec.

(3) The theory predicts smaU growth rates at large passing fractions (

no barrier present) and also predicts that the bad curvature cell becomes

flute unstable at small passing fraction (large barrier present). The actural

growth rate depends on imhd m this ceU, which depends on the drive and

the temperatures of the various populations present. Using the experimental

estimates of Te ~ 15eV, Ti ~ 5eV, Wi~3x 103 sec-1 (unstable) gives us

1MHD ^ 1.2 x 105 sec-1. This value is somewhat lower than the observed

loss time. The values of u>d and Te above are rather uncertain and it is quite

possible that this valueof Imhd is as high as 5 x 105 sec-1, which wouldbe

reasonably consistent with the observations.

(4) The plasma restabilizes after about 50jisec, coinciding with the decay

of the potential barrier.

(5) If the unstable cells are stabilized with quadrupole fields, the residual

motion remains after ECRH but no significant increase in velocity is found

and the plasma does not move radially outwards to the device walls.
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hi fig. 6 we plot the numerical values of7 for the parameters most closely

matching the experiment, but allowing the passing fraction to vary. On this

plot we superpose the estimated experimental effective growth rates as scaled

from the observed velocity of the plasma centroid. We superpose experimen

tal values right after heating when we expect the barrier to be essentially

4Te, after some barrier decay, and after nearly complete decay of the barrier.

We see that even in this last case in the passing fraction is considerably less

than unity, and the mode growth is substantial. Nevertheless, the actual

plasma motion appears to be saturated, with the centroid confined near the

magnetic axis. The complete motion is shown is some detail in our previ

ous paper. We conclude that the theory is consistent qualitatively with the

experimentaUy observed decoupling of the stable and unstable cells in the

presence of an ECRH induced potential barrier.
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VI Conclusions

A simple formalism has been derived in this paper to handle mirror systems

that consist of many coupled regions. It assumes that the bounce frequency

of ions is smaUer than the mode frequency and approximates them as be

ing completely confined to the region they are in. The potential barriers

separating regions areassumed to be driven by hot electrons. The coldelec

trons are assumed to have a bounce frequency large compared to the mode

frequency.

The resulting equations are found to agree with the experimental obser

vations of the trapped particle mode on the MMX.

The most serious approximation in the model is the assumption that

the ions are completely confined and that the mode is uniform within a

cell. A more sophisticated approach is being developed that takes the ion

dynamics into account, allows the mode to vary within a ceU, and can use

any bounce averaged electron response. This should be of relavence to the

current generation of mirror systems, which have relatively cold ions, with

transit times longer than the mode period.
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A Large Thermal Barriers

We evaluate (12) and (13), in the limit of smallu;d/(u; - u>m). The integrals

take the form

/, =£«,/ A£^(1+£!*£^ (57)

where u^i = Yu)djk"o(v\\ + §VJ.) yt^1 w4>Jb"o constants. We also take the
Krook collision frequency to be the same in aU cells. Then we need to

evaluate integrals of the type

^Ikk'
'RuJRm

Kik'k" =L a*VTjk'irjk"l903k"djk"l (59)
JRu

Evaluation is best done in the (u —fj) coordinates, where

u=i^l E-nBp-*2
M 2 B $2

where $2 is the potential energy gain of an electron when it enters cell 2

from ceU 1. In these coordinates,

(61)

«**" B0/3><2 (V5A M)
where /? = 1/T. For the trapped region, the integration is straightforward,

and we get ( for $2 2> T)

fr-^+^^+^gg) (62)
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Hence when we have a large barrier we can perform this integral by just

replacing the variable quantities by their averages.

For passing particles, we need to evaluate integrals of the type (58) and

(59). In u —fj, coordinates

y/u
n = r3 =

2y/u + y/u+T '* 2y/u + y/u+ l

To evaluate (58) and (59), we approximate (63) by

' .645^/5-.346u 0<u<l

w>l

T2 =
V^TT

Tl = T3 = <

T2 = <

1 1

3 24u

' 1 - 1.29Vti+ -692u 0 < u < 1

1 1

3+ 12ti u>l

(63)

(64)

This approximation has a maTriiniim error of .025. Using the foUowing for

mulae

Jo
uvfce"av2 = <

f,

n!

2an+1

(2n - 1)!! TI PR

r-' 7
j=0 J

i)n ri nr
n L2Va(2a)

-a n
wy

2a £j (2j - 1)!!

oo e—am g—a
<ftl—=- =

1 y/u a

e~oo e—0rt* p—a
dtt—= = d-

1 Uy'lt OL*
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,fc = 2n + l

, k — 2n, a —+ oo

a-»oo

a —• oo

(65)

(66)
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-OB e-"" 2

we find that

, , _ fp<PvTk90k

Q-+00

.73A/^--.52^-+.- fc =l,3
$2 *2

It t
1-1.464/—+ 1.04—+ ••• fc = 2

V $2 $2

When we evaluate (59) and use (69), we find that

("dk"W> - ftfc"(v)(v)

where

f W<ifco$2 fc = 1,3
nk = { ($2>T)

I 2wdfcor fc = 2

Clearly then, for $2 » T, (57) becomes

r~V^ /* ^ (Tjk'l)90jk ,
k\i) Jrm v+v-fa)

^ **fcw +u/-ui)

which gives us (14) and (15).
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List of Figures

1. Layout of the experiment.

2. Typical results as a function of passing fraction eta : (a) growth rate;

(b) real part of frequency; (c) ratio of unstable to stable mode ampli

tudes; (d) phase shift.

3. Trapped particle mode for different collision frequencies.

4. Comparison of numerical results with perturbation analysis. The ap

proximation used is the quartic approximation obtained from equa

tion 46.

5. Typical data obtained from experimental configurations: (a) stable

and unstable cells strongly coupled (no ECRH); (b) both cells stable;

(c) stable and unstable cells separated by ECRH generated potential

barrier.

6. Comparison between experiment and the numerical results The curve

is the numerical result and corresponds to the nominal point of opera

tion for the experiment. The cross-marks are experimental datapoints

with error bars.

34



Langmuir
Probes

ECRH
Resonance
Zones

Fig. 1

ECRH

Plasma
Injection

X Ray detector
fx wave interferometer



(a)
. 1 1111111 • i • i i i

^ 10 —

1 -

(0

™"

-

o
5 —

X ™

0 , ..L • 111111 . i. i i i

0.05 0.1

(b)
15f-t I I I—R

t • i t I I i i I

Fig. 2



•o
0)
(ft

o

10

w 5

I I I I I I 1 I I I I I I I I I I I I

Ql^i i

60

Fig. 3



I
o
<D
(ft

O

. l I I ) I i i i i | i i i i i

10 —

\ \ Numerical

-

5

Quartic \ \
Approximation \^ \

-

0 i i t 1 i i i i i 1 i i i i i

0.05 0.1 0.15

Fig. 4



(a)

(b)

(C)

i
o

(ft
I

E
o

i
o
0>
(0
I

E
o

o
0)
(ft
I

E
o

-20 0 20 40 60 80 100

-20 0 20 40 60 80 100

-20 0 20 40 60 80 100

t (/jl sec)
Fig. 5



I
o
<D
(ft

O

<E>h(eV)

Fig. 6


	Copyright notice1987
	ERL-87-16

