
 

 

 

 

 

 

 

 

 

Copyright © 1987, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



OBJECT FADS PROJECT STATUS REPORT

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M87/20

16 April 1987



OBJECT FADS PROJECT STATUS REPORT

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M87/20

16 April 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



OBJECT FADS PROJECT STATUS REPORT

by

Lawrence A. Rowe

Memorandum No. UCB/ERL M87/20

16 April 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Object FADS Project Status Report*

Lawrence A. Rowe

Computer Science Division - EECS
University of California

Berkeley, CA 94720

1. Introduction

Object FADS is a "what you see is what you get" {WYSIWYG) program
ming environment for menu-based, graphical applications that access large
shared databases. It will be the programming interface to POSTGRES, a
next generation relational database management system currently being
developed at the University of California, Berkeley [StR86].

This report summarizes the status of the Object FADS system as of
April 1987. The system design has been completed and the implementation
has been started. As part of the implementation effort, we have built a
Common Lisp interface to the WX Window System" that is being distributed
to others [Mar87].

The remainder of this report describes the Object FADS system, the
current status of the implementation, and our future plans.

2. Object FADS
Object FADS is an object-oriented programming environment that will

allow rapid development of sophisticated, interactive database applications
(e.g., a software bug reporting and maintenance system, an IC fabrication
process control system, or an office automation system). The applications
developed with FADS and the programming environment run on a high per
formance Unix-based workstation with a bit-mapped display and a mouse.
Our goal is to build a portable system that can be run on a variety ofUnix-
based workstations (e.g., Sun's and DEC microvax's).

The user interacts with an Object FADS application, called a tool,
through windows displayed on the workstation screen. Figure 1 shows a
simple student information tool. A tool is composed ofa collection of frames.
A frame contains a form and a menu of operations. Users interact with the
tool by moving between the frames viewing and updating data displayed

* This research is supported by the National Science Foundation under Grant
NSF-DCR-8507256.



Student Information Tool

Edit Query Views

Dept: ComputerScience College: Engineering

Students

Nome UG/6 Picture

Tom Stoiith Graduate <£> 1
Sue atones Sretiuete • ^

Steye Baker Ltodergr&duete « 1

Figure 1: An example tool.

through the form and executing operations.1 Operation menus are displayed
in a "menu bar" below the tool title (e.g., Edit, Query, and Views are the
menus in the student information tool). The operations are coded in a very
high-level language with constructs to display data to the user through the
form, to allow the user to update the displayed data, to query and update
the database, to perform computations, and to call other frames. A tool is
analogous to a program in a conventional programming environment and a

1 Other user-interface development systems use the term views or DisplayOb-
jects to describe the specification of how to display data to the user. We chose the
term form because end-users are familiar with forms and their behavior and be
cause the term view has a different meaning in database terminology.



frame is analogous to a procedure in a conventional programming language.
Several tools can be running at the same time and they may be displaying
the same data in different forms (e.g., as text or as an icon).

Arbitrarily complex data displays can be created with the Object FADS
forms system. It will be possible to present data to the user in different
representations (e.g., text, graphics, video, or audio). Primitive form-types
(e.g., CharForm, GraphicsForm, etc.) are provided by the system. In addi
tion, structured form-types are provided that can be used to create more
complex forms (e.g., "table" forms, "master/detail" forms, "cross-tabulation"
forms, "spreadsheet" forms, etc.). The form in the student information tool
in figure 1 contains a scrollable table with columns that display text (e.g.,
"Name") and graphics data (e.g., "Picture"). The forms system is extensible
so that users can define their own primitive and structured form-types.

Object FADS also supports dialog boxes that can be used to collect argu
ments for an operation, to confirm an operation (e.g., "Do you really want to
exit this application without saving your changes?"), a d to notify the user
when an error has occurred. An operation in a frame "calls" a dialog box
which displays it on the screen. Control is returned to the operation that
called the dialog box when the user presses a mouse button on a Button-
Form, typically labeled "OK" or "CANCEL," which terminates the interac
tion. Dialog boxes are analogous to functions in conventional programming
languages.

Persistent, shared data is stored in a POSTGRES database that can be
accessed in two ways. First, a conventional relational query language is
provided that can be used to create relations and to query and update them
[RoS87]. The second way to access the database is to use the Object FADS
shared object hierarchy. All instances of a class defined with metaclass
dbclass are automatically stored in the database. These instances are called
"dbclass objects." Dbclass objects that are referenced in an application are
implicitly retrieved from the database into an"object cache" in the front-end
application program. Updates to dbclass objects are automatically pro
pagated to the database and other applications that have the object in their
"object cache." Concurrency control and crash recovery protocols are imple
mented by the Object FADS run-time system to control shared access and to
protect the data from system failures.

The shared object hierarchy will control the mappping between the
Common Lisp and POSTGRES type systems. POSTGRES user-defined data
types will be mapped to Common Lisp types and a selection of useful Com
mon Lisp types (e.g., lists) will be mapped to POSTGRES data types. The
proposed implementation of the shared object hierarchy is described else
where [Row86].

The Object FADS development environment is composed of a collection
of editors for the objects that make up an application (e.g., tools, frames,



forms, operations, dialog ^^.^kmSSZ!^^£
describing the objects f*"^£Z3E*,aWYSIWYG frame editor,
each object type (e.g., »WYSIWYG forms eaito inforffiation

•J2S3asSRraSs:^•arrsss:

Application menu) and executing it (i.e., executing operations m
menus).

•

Figure 2: Application development interface.



Frames are specified by defining a form and coding the operations in a
high-level programming language [RoS82,RTI84] or by using a frame-
generator [Row85,RTI84]. Currently, the operations are coded in Common
Lisp which is the language used to implement Object FADS. Functions for
high-level operations (e.g., CALL-FRAME and CALL-DIALOGBOX) have
been added to the system to simplify operation coding. We plan to explore
graphical notations for the operation language in the future.

The second way to define a frame is to use a frame-generator. An
example of a frame-generator is a "query/update through forms" frame-
generator that takes a form definition and a specification of a mapping
between the database and the form and produces a frame that can be used
to browse the database. The frame-generator mechanism is also extensible.
In other words, developers can create new frame-generators and editors that
can be used by end-users to create applications. These frame-generators and
the form-types mentioned above are defined by using a frame- or form-
definition tool. In other words, the definition environment uses the same
interface as the applications that are being built.

The Object FADS system is built on an object-oriented programming
system. The objects are stored in a database so that users can share both
the data being accessed and the programs that access it. Consequently, new
application editors and browsers can be built using the system itself and, if
necessary, an application developer can access the low level primitives used
to implement the system.

Object FADS has several novel features when compared with other
database and expert system programming environments. First, the shared
object hierarchy implemented on a relational database management system
allows users to code applications in an object-oriented programming
language and access data created by applications coded in other conven
tional programming languages (e.g., ADA, C, COBOL, FORTRAN, or PAS
CAL)

Second, the extensible forms system and frame-generators coupled with
the WYSIWYG editors makes Object FADS a powerful, yet easy-to-use sys
tem to build user interfaces. Our experience is that most people underesti
mate the number of lines of code required to build a sophisticated, user-
friendly interface in a workstation environment. Often, more than 50% of
the lines of code in an application is really user interface code. Moreover,
past experience has shown that with a visual programming environment
and high-level application objects (e.g., default forms and frame-generators)
novice programmers can build many useful applications and expert pro
grammers can produce sophisticated applications more quickly.

Third, although not part of our current work, our future plans include
investigating:



1) graphical notations for specifying operations,

2) the problems of porting the system to a tightly-coupled mul
tiprocessor workstation,

3) application program support for rules defined in the database
[SHH87] similar to the support currently provided for objects
(i.e., building an integrated model for rules that are executed
in the application front-end or database back-end process),
and

4) debugging support for rules executed on a tightly-coupled
parallel processor.

Finally, Object FADS is the primary programming environment for all
of the features in POSTGRES (e.g., abstract data types, historical data, ver
sions, procedure data types, and rules).

3. Implementation Status
After evaluating many different programming languages and environ

ments, we decided to implement Object FADS in Common Lisp. We have
built a Common Lisp interface to the "X Window System" [Get86] that we
are distributing to others. This system provides access to all functions and
data structures in the X Library for C [Gee86].

We are using the "Common Lisp Object System" (CLOS)2 for the object
hierarchy model in Object FADS. Using an implementation of CLOS
developed at Xerox PARC, we have defined low-level window system objects
(e.g., display, window, font, event, etc.) and primitive versions of some
high-level Object FADS objects (e.g., tools, frames, and forms).

We have also completed a low level interface to POSTGRES that allows
arbitrary POSTQUEL commands to be executed from Lisp. This library
also provides support for portals, a new application program interface
developed at Berkeley [StR84,StR86]. A simple forms-based relation
browser has been built using this library and the form objects.

Lastly, we have built a simple object hierarchy browser that allows us
to examine and update CLOS objects. The object hierarchy is displayed
graphically and menu operations are provided to examine a class definition
(e.g., instance variables, class variables, methods, and superclasses). We are
currently modifying it to be an Object FADS tool and extending it to allow
the programmer to edit class definitions.

2CLOS was formerly known as Common LOOPS [Boe86].

6



4. Future Plans
This section presents our implementation plans for the next year. Our

major task is to complete the basic system and to develop some applications
using it. There are three subtasks that must be finished to complete the
basic system:

1) the shared object hierarchy (i.e., the dbclass metaclass),

2) WYSIWYG editors for tools, frames, and forms, and

3) an event-driven scheduler for running several tools in one
Common Lisp process.

In addition, Object FADS will be used to develop a series of applications for
automating an IC fabrication laboratory. The applications include an editor
for process-flow recipes and a work-in-progress (WIP) system for tracking
wafers as they move through the fabrication process [HoR87]. These appli
cations will provide a real-world test ofthe system that we are building.

The first subtask that must be finished is to build the "object cache"
that will support the shared object hierarchy. We have already begun the
implementation of a dbclass metaclass in CLOS. The initial goal is to write
a single-user "object cache" that stores data in POSTGRES. This system
should be completed by September 1987. It will be used to implement the
database representation of Object FADS applications. A multi-user cache
that uses the precomputation and distributed cache mechanisms described
elsewhere [Row86] will be implemented when the required features are pro
vided in POSTGRES (sometime in early 1988).

The second subtask is to complete WYSIWYG editors for tools, frames,
and forms. These editors are essentially Object FADS tools so they will
require us to implement most of the features of the system. For example,
many different form-types will have to be defined to support these editors
(e.g., scrollable text forms, table forms, and graphics forms). Initial versions
of these editors should be completed by September 1987.

Lastly, an event-driven scheduler must be developed so that one Com
mon Lisp process can execute several tools concurrently. Common Lisp
implementations are typically large programs (e.g., Franz Extended Com
mon Lisp on a Sun workstation is initialized with an 8 megabyte virtual
address space and DEC VAX Common Lisp is initialized with a6 megabyte
virtual address space) so it is impractical to run one Common Lisp process
per Object FADS tool. We have implemented a prototype event-driven
scheduler that will be integrated into the system [Bra86].

We plan to release the first version of Object FADS to users outside
Berkeley sometime in the latter part of 1987. We could release a version
earlier, but a major, incompatible change is being made to the "X Window
System" this summer (i.e., the version 11 protocol) that will require



extensive modification of our code.

References

[Boe86] D. B. Bobrow and et.al., "COMMONLOOPS: Merging Lisp and
Object-Oriented Programming", Proc. 1986 ACM OOPSLA Conf,
Portland, OR, Sep. 1986, 17-29.

[Bra86] R. Brand, A Portable Multiprogramming Scheduler for Common
LISP, MS Report, Computer Science Division - EECS, U.C.
Berkeley, Dec. 1986.

[Get86] J. Gettys, "Problems Implementing Window Systems in UNIX",
Proc. Winter USENIX Technical Conf, Jan. 1986, 89-97.

[Gee86] J. Gettys and et.al., Xlib - C Language X Interface (Protocol
Version 10), MIT Project Athena, Nov. 1986.

[HoR87] D. A. Hodges and L. A. Rowe, "Information Management for
CIM", Proc. Adv. Res. in VLSI, Palo Alto, CA, Mar. 1987.

[Mar87] D. C. Martin, XCL - Common LISP X Interface (Protocol Version
10), Computer Science Division - EECS, U.C. Berkeley, Apr.
1987.

[RoS82] L. A. Rowe and K. A. Shoens, "FADS - A Forms Application
Development System", Proc. 1982 ACM-SIGMOD Int. Conf. on
the Mgt ofData, June 1982.

[Row85] L. A. Rowe, "Fill-in-the-Form Programming", Proc. 11th Int.
Conf. on Very Large Data Bases, Aug. 1985.

[Row86] L. A. Rowe, "A Shared Object Hierarchy", Proc. Int. Wkshp on
Object-Oriented Database Systems , Asilomar, CA , Sep. 1986.

[RoS87] L. A. Rowe and M. R. Stonebraker, "The POSTGRES Data
Model", Submitted for publication, Mar. 1987.

[StR84] M. R. Stonebraker and L. A. Rowe, "Database Portals: A New
Application Program Interface", Proc. 10th Int. Conf. on Very
Large Data Bases, Aug. 1984.

[StR86] M. R. Stonebraker and L. A. Rowe, "The Design of POSTGRES",
Proc. 1986 ACM-SIGMOD Int. Conf. on the Mgt. of Data, June
1986.

8



[SHH87] M. R. Stonebraker, E. Hanson and C. H. Hong, "The Design of
the POSTGRES Rules System", IEEE Conference on Data
Engineering, Los Angeles, CA, Feb. 1987.

[RTI84] INGRES ABF (Applications By Forms) User's Guide, Version 3.0,
VAX/VMS, Relational Technology, Inc., Berkeley, CA, May 1984.

9


	Copyright notice1987
	ERL-87-20

