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1. Introduction

Particle simulations of plasma physics phenomena employ far fewer particles

than the systems which are being simulated, owing to the limited speed and memory

capacity of even the most powerful supercomputers. In practice, a system containing

as many as 1020 particles is studied with upwards of 104 simulation particles. If the

simulation consists of point particles in a gridless domain, then the combination of

the small number of particles in a Debye sphere and the possibility of zero-impact-

parameter, large-angle scattering results in a significant enhancement of fluctuation

phenomena such as collisions.

In contrast, a gridded simulation has finite-size particles, due to the weight

ing or interpolation of the particles onto the grid and vice versa for the forces.

These finite-size particles are tenuous in nature, being able to pass through each

other. Therefore the interparticle force does not become singular as the distance

of separation of the particle midpoints goes to zero, as it does for point particles.1

This means that the average scattering angle for finite-size particle interactions is

much smaller than that for point particle interactions, hence the collisionality for

finite-size particles is reduced relative to that for point particles.

Accommodating collisional processes in a simulation may be difficult because
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of disparate time scales. A comparison of the relevant physical time scales of the

system that is being simulated usually yields a large range of values. For instance,

the grid-cell transit time is usually several orders of magnitude smaller than the 90°

scattering time. Much of the physical phenomena of interest in the simulation are

due to these long-time-scale collisional processes2, but short-time-scale processes

(such as particle bounce times in a mirror or tokamak) must be adequately resolved

if the plasma dielectric response and the plasmapotential are to be accuratelydeter

mined. This leads to important constraints on the modeling of binary collisions in

our electrostatic particle simulation code TESS (Tandem Experiment Simulation

Studies).

In the following section we outline the physics and operation of the binary

collision model within the electrostatic particle code. Section 3 presents the results

of computer simulations of velocity space transport which were run to test the

accuracy of the model. Finally, Section 4 discusses the timing statistics for the

collision package relative to the other major physics packages in the code, as well

as recommendations on the frequency of use of the collision package within the

simulation sequence.

2. The Binary Collision Model

The binary collision model presented in this paper is fully relativistic, exclusive

of radiation losses, and employs Monte Carlo techniques to simulate the scattering

of plasmaparticles. It is similar in operation to the nonrelativistic model suggested

by Takizuka and Abe.3 Since the TESS code has only one spatial dimension (with

three velocity components), it is not possible to simulate the details of Coulomb
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scattering based upon impact parameters. However, it is possible to scatter particles

through an angle which is chosen randomly from adistribution ofangles. The mean

scattering angle is zero and the width or variance of the distribution is a function

of the particle charges, density, reduced mass and relative velocity, as well as the

simulation timestep. Particles within a given spatial grid cell are scattered off of

each other without regard for thedistance between the midpoints of these finite-size

particles. The model is designed to handle any combination ofprojectile and target

particles: electron-electron (e-e), electron-ion (e-i, which is equivalent to i-e) and

ion-ion (i-i) scattering.

The following is a step by step outline of the operations that are performed in

the binary collision model:

Step 1 - The absolute indices for all the ions and electrons in a given grid

cell are written into the two dimensional arrays NIC(ipg,ig) and NEC(ipg,ig)

respectively, where ipg is the gridwise index of particles within the given grid cell

and ig is the grid-cell index (ipg lies in the range [0,Npg(ig)], where Npg(ig) is

the total number of ions or electrons in grid cell ig, and ig lies in the range [1, Ng],

where Ng is the total number ofgrid cells in the system). This process takes place

in the particle mover routine (PUSHER).

Begin Grid Cell Loop ig = 1 to Ng

Step 2- "Gather" the particle variables from the absolute index (permanent)

particle arrays into temporary arrays which are of length Npg(ig). This unvector-

izable sorting process is required such that the particle loop described below can
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be vectorized. This software vector-gather process is necessary since not all vector

computers have hardware vector-gather-scatter capability.

Begin Particle Loop ipg = 1 to Npg(ig) [Vectorizable]

Step 3 - The TESS code uses axial (z direction) momenta and magnetic mo

ments to advance the particles. At this point, the magnetic moment of the particle

is converted to a perpendicular (gyro) momentum via

pj. = y/2mBaveu (1)

The momentum components in the x and y directions of the incident particle (par

ticle 1) are then calculated from the perpendicular momentum and a randomly

chosen angle of gyration. The x-component of momentum for the target particle

(particle 2) is set equal to the perpendicular momentum, while the y-component of

momentum is set equal to zero, thereby giving a reference direction for the rotation

discussed in the next step.

Step 4 - Rotate the coordinate system about the y axis such that the rotated

z axis (zr) is aligned along the momentum vector for the target particle (po) which

lies in the x-z plane. This coordinate system rotation is shown in Figure 1.

Step 5 - Lorentz transform the binary particle system such that the target par

ticle is then at rest (p2L = 0). This choice of reference frame for particle scattering

has been inspired by the treatment of relativistic particle scattering presented in

Jackson.4 The center of mass (COM) reference frame was considered for use, but

required a few more executable statements to set up. Therefore, in order to op

timize the computational efficiency of the model, the target-particle-at-rest frame

was chosen over the COM frame.



Figure 1. The rotation of the z axis to align the
rotated zr axis with the incident particle momentum
vector (P2).

♦ z
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Step 6 - Scatter the incident particle through a small angle. The polar COM

scattering angle ($') is chosen randomly from a distribution of angles which has a

mean value of zero, and a width or variance which is given by

0») =(""^pgB&ig'LJkyAf (2)
Pcm Vcm nave •»*cp

where pcm and vcm are the momentum and velocity of the center of mass in the

target-particle-at-rest frame, mi is the mass of the incident particle, vZth is the

axial thermal velocity of incident particle in the initial reference frame, u is the col

lision frequency specified as an input parameter, At is the simulation timestep and

nioc/n>ave is the ratio of the local to average target particle densities. The quantity

Ntc is the number of timesteps between subsequent executions of the binary collision

package, and Ncp is the number of binary collisions that each particle experiences

each time the collision model is called. (The first of these input parameters allows

one to increase the computational efficiency of the results by executing the model

every Nte timesteps, instead of every timestep. The second allows one to increase

the statistical accuracy of the results, by increasing the number of collisions per

particle for each call to the routine). This definition of the variance of the scatter

ing angle distribution is due to Spitzer5 as modified for relativity4. The azimuthal

scattering angle is chosen randomly.

Step 7 - Calculate the change in momentum of the incident particle Api and the

resultant momentum qiL in the target-particle-at-rest frame. The polar scattering

angle in this frame (03) is obtained from the COM polar scattering angle ($') via

Equations 12.31, 12.50 and 12.54 of [4]. The energy lost by the incident particle
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during the collision is given by Equation 12.55 of [4]. The scattering geometry in

the target-particle-at-rest frame is shown in Figure 2.

Step 8 - Perform an inverse Lorentz transform to obtain the rotated frame and

the momentum qi#.

Step 9 - Perform an inverse rotation to arrive at the final state for the incident

particle with momentum qi.

Step 10 - Calculate the components of the scattered target particle momentum

q2 by enforcing momentum conservation on a component by component basis

q2=Pi+P2-qi- (3)

This algorithm explicitly conserves the momentum of the scattered particle pair

and implicitly conserves energy.

End Particle Loop

Step 11 - "Scatter" the collided values in the temporary particle arrays back

into the absolute index (permanent) particle arrays. This unvectorizable process is

the software vector-scatter process.

End Grid Cell Loop

The large, inner particle loop is vectorizable, but the vector-gather-scatter pro

cesses (Steps 2 and 11) are unvectorizable loops (except for machines which have

hardware vector-gather-scatter capability) that are required in order for the particle

loop to be vectorizable. In any given grid cell ig, the initial pair of particles to be

scattered are chosen as follows. For nke-particle scattering (e-e or i-i), the tempo

rary arrays of length Npg(ig) are split into two lists of equal length (for Npg(ig)



m

Figure 2. The scattering geometry in the target-particle-
at-rest frame, showing the polar scattering angle of the
incident particle (#3).
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even) or two fists differing in length by one (for Npg(ig) odd). For unlike-particle

scattering (e-i), no subdivision of the temporary arrays (lists) is required. The start

ing location in the first list is taken as the first particle, while the starting location

in the second list is chosen randomly. When the last particle in the second list has

been scattered, the list "wraps around", such that the next particle to be scattered

is the first particle in that list. If each particle in the grid cell is to be scattered

more than once per execution of the collision package, the starting location in the

second list is always chosen randomly. This helps to ensure that the same particle

pairs are not used more than once for any execution of the collision package. This

random selection of incident (test) and target (field) particle pairs has been shown6

to be approximately equivalent to an integration of the field particle distribution

function, if the time between execution of the collision package is much smaller than

the effective 90° scattering time and if there are enough unique collision pairs to

give decent statistical resolution of the local velocity distribution function.

3. Simulation Results of Plasma Relaxation Processes

In order to verify the accuracy of the binary collision model, several simulations

were performed for various incident (test)and target (field) particle combinations,

and different velocity distribution functions (beam and Maxwellian) in both the

nonrelativistic and relativistic limits. These simulations used finite-size particles in

a gridded domain, however the Poisson field solver and the spatial particle advance

were disabled. Therefore, these simulations dealt only with velocity space transport

of particles in a spatially uniform plasma.
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Three types of plasma relaxation processes were studied: transverse diffusion,

slowing down and energy loss. These proceses are discussed in depth in [5] and [7].

Each of these processes will be discussed in detail below. The number of simulation

particles (Nsp = 6400) and initial particle density (n0 = 100) were the same for each

simulation. The parameters that were different between simulations include the ion

to electron mass ratio (mi/me), the ion and electron temperatures (T-^T^^Tz^

and T±m) and total number of timesteps (Nt). Since the spatial density of particles

remained uniform during the simulations, the ratio nioc/nave = 1. Furthermore,

the collision package was executed each timestep (Ntc = 1) and each particle was

scattered only once per timestep (iVcp = 1), the variance of the scattering angle

distribution reduces to

(S*) = (^l^f^vAt. (4)
Pcm Vcm

In general, the value of the collision frequency v which is input to the code

will not be equal to the "physical" collision frequency which would be calculated

from the other input parameters. As stated earlier, the binary collision rate is

accelerated so that the the mirror bounce time and the (typically) much longer

90° scattering time are not so disparate as to preclude simulation with available

computer resources.



11

3.1 Transverse Diffusion

.The differential equation which describes the transverse diffusion in velocity

space of a beam of charged particles is

i(v(i) - (v(t)))x2 =V90v\t) (5)

where v(t) is the velocity of a particle in the beam at time t, (v(t)) is the mean

velocity of the beam at time t, and 1/90 is the inverse of the 90° scattering time.

The 90° deflection frequency is defined in terms of the mass ratio of the incident

and target particles (mi and 7712), the energy of the incident particle (Ei), the

temperature of the target particles (T2) and the "basic" collision frequency u0 as7

v90 =2Mx)(l-±-)+iJi'(x)]vo (6)

where the Maxwell integral is defined as

X

fj.(x) = -4= / Vie^dt (7a)
y/'K J

0

with

_ .1*2 Ei M
x = (— — ). (<b)

mi 12

The diagnostic that was used to study the rate of transverse diffusion of a beam

is the time history of the sine of the mean velocity pitch angle

*p ,=1



12

where <f>(t) is the pitch angle between the incident beam velocity and the velocity

at time (t). If we assume that only small-angle collisions are possible, then for a

time t <C t0, the perpendicular velocity component of the i-th particle is given by

k

ujLi(i) =v±i(kAt) ~ ^2 v0sin(6B)it
xt=l

k k

^Er*=,,oEWii (9a)
it=l tt=l

where 6Bit is the angle that the particle is scattered through at timestep it. The

speed of the i-th particle is given by

Vi(t) = Vi(kAt) - v0 (96)

where v0 is the initial beam velocity. Squaring (9a) gives

*i=l

-i#fe<62) (10)

where the cross-timestep terms cancel since the scattering angle is uncorrelated with

time and (62) is the variance of the distribution of scattering angles. Substituting

(9b) and (10) into (8) yields

(5m2^))--i-5]/:(62)-fc(62). (11)
iV*P t=i

Therefore, the sine squared of the mean velocity pitch angle should vary linearly

with the number of timesteps, for times short compared to the basic collision time.

The slope of the line should be the variance (£2).
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Another check on the accuracy of the model is the large-time asymptotic limit of

the (sin24>(t)) diagnostic. For times t > r90, where r90 is the 90° scattering time,

the initially one-dimensional beam should become isotropic in three-dimensional

velocity space. At that point v\ = 2v2, and since v2 = (v\ +v2) = 3vjj, then as

t —• oo

(sin'W)) - (J) - \. (12)

A nonrelativistic simulation which has an axial electron beam of energy E\ =

50 eV incident upon a three-dimensional, isotropic ion Maxwellian distribution of

temperature T2 = 1 eV, with a large mass ratio mi/me = m2/mi = 1000 is used

to study transverse diffusion. Only unlike-particle (e-i) collisions were performed.

Using these values, the variable x = 5 x 104, such that fi(x) = 1 and //(*) = 0

(see [7], page 178). Equation (6) then gives 1/90 cz 2v0. In practice, the value

of v0 in (6) is replaced by one-half of the input accelerated collision frequency

v/2. For this simulation, the value vAt = 2.5 x 10"3 was used, and the ratios

mivzth/Pcm ^ 1 and vlth/vcm ^ 1. Therefore equation (4) yields (b2) ^ uAt, such

that (sin2<t>(kAt))e ^ 2.5 x 10_3fc.

Figure 3 shows the time history of (sin2<f>(t)) for both the electrons (a) and

ions (b). The dashed line onthe electron time history plot has a slope equal to (62).

Note that the time history curve asymptotes to this line for t < 2.0 x 10~7 sec. A

detailed study of the linearity of (sin2<t>(t))e for times less than this shows that the

difference between the theoretical and calculated results is < 6.69% through k = 30

timesteps (t = 6.0 x 10"8 sec). Therefore, the effective 90° scattering time for this
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a)

Electron Hean-Square V-Vz Angle History

Ion Mean-Square V-Vz Angle History
1 i

Figure 3. Scattering angle time histories of a) electrons
and b) ions for the case of an electron beam (E\ = 50 eV)
incident upon ions (T2 = 1 eV). The mass ratio is mi/m^
= 1000. Only e-i collisions were performed. The dashed line
on the electron plot has a slope of (62).
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simulation is given by r90 ~ At/(uAt) = (2.0 x 10"9 sec/2.5 x 10"3) = 8.0 x 10"7

sec. Note also that for large times, the {sin2<j>(t))€ time history curve asymptotes

to —|. A closer look at the data shows that at timestep k = 1995 (t = 3.99 x 10~6

sec), the valueof (sin2<j>(t))e —0.6621, which varies from the theoretical asymptotic

limit by only 0.68%.

At this point a word regarding the statistical accuracy of these simulations is

in order. For a simulation involving Nap = 6400 particles, the minimum statistical

error that is to be expected for an ensemble averaged quantity (such as (sin2<j>)) is

given by

9=ii/aT" =±te=±^=±1-25%. (13)Nap V 6400 80

The percent differences in the valuesof (sin2<j>(t))e for k ^ 10 timesteps (small time

asymptote) and for k cz 2000 timesteps (large time asymptote) are within the limits

of the statistical error.

Figure 3b displays a small decrease (~ 8%) in the value of (sin2<j>(t))i with

time. This indicates that the ion velocity pitch angle is decreasing with time,

such that the ratio (v\\/v)i increases with time. The ion velocity-space (vj| vs vj_)

density contour plot for this simulation at k = 2000 timesteps exhibits a slight

elongation along the positive v^ direction, which is the direction of propagation of

the electron beam. Tins indicates that while the peq>endicular velocity distribution

function remained Maxwellian, the axial distribution function has been modified by

the transfer of low axial velocity particles to the positive i»|| tail of the distribution.
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This is attributable to the transfer of axial momentum from the beam electrons to

the ions during scattering events, as illustrated by equation (3).

To check the rate of transverse diffusion in the relativistic limit, the above

simulation was repeated with an axial electron beam energy of Ei = 500 keV instead

of Ei = 50 eV. All other input parameters were the same and only unlike-particle

(e-i) collisions were performed. In this case the ratio oimivZth/pcm = 0.6726, while

the ratio vZth/vcm = 0.9992. With i/At = 2.5 x 10~3, equation (4) gives (62) =

1.13 x 10"3. The same analysis that was applied to the nonrelativistic simulation

is applied here. In the small-time asymptotic limit, the curve of {sin2<j>(kAt))e

should be a fine with slope 1.13 x 10-3 per timestep. The data indicates that the

curve is linear to within 3.45% through k = 30 timesteps (t = 6.0 x 10~8 sec),

with an average slope of 1.12 x 10""3 per timestep. The large-time asymptotic limit

of (sin2<f>(t))e is found to be 0.6389 at timestep k = 1995 (t = 3.99 x 10~6 sec),

which is within 4.17% of the theoretical value of |. Therefore, in both the small

time and large-time limits, the difference between the theoretical and simulated

rates of transverse diffusion of charged particles in a beam is close to the statistical

uncertainty, for both relativistic and nonrelativistic particles.

3.2 Slowing Down

The differential equation that describes the slowing down of charged particles

in a beam is

^v(i) =-«/,v(<) (14)
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where v(t) is the velocity of a particle in the beam at time t, and u, is the slowing

down frequency, which is defined in terms of the mass ratio, Maxwell integral and

basic collision frequency to be

f. = (l + —)/u(xK. (15)
7712

Solving (14) for the i-th particle of an initially axial beam gives

v||iM = V||<(fcAt) = v\\i(0)exp[-v3t]. (16)

At time t = ra = l/ua, known as the slowing down time, this becomes V||,-(ra) =

vjl^Oje"1 = 0.3679u||i(0). The time history of the mean axial particle velocity ofan

initially axial beam, ie.

—>

will be used as the diagnostic to check the slowing-down rate in the beam.

The nonrelativistic simulation which was used to determine the 90° scattering

time is alsoused here, hence only unlike-particle (e-i) scattering is performed. Figure

4 shows the time histories of the mean axial electron (a) and ion (b) velocities. The

data indicates that the e-folding slowing-down time, where v\\{ts) = 0.3679(2.96 x

108) cm/sec = 1.09 x 108 cm/sec, is ra = 1.54 x 10"6 sec. Since the mass ratio

mjmi = mi/m2 = 10"3, equation (15) yields va = 1.001i/o rr i//2, such that

ra ^ 2r90, where as in the previous section, v0 has been replaced by v. Using the

value of T90 determined in the previous section, the expected theoretical value of

ra = 1.6 x 10"6 sec. The difference between the theoretical and simulation results

is 3.47%.

<"ii(')> =]r5>||iW' (17)
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Figure 4. Mean axial velocity time histories of a) electrons
and b) ions for the case on an electron beam (E\ =50 eV)
incident upon ions (T2 = 1 eV). The mass ratio is mi/me
= 1000. Only e-i collisions were performed. The slowing down
time is shown on the electron plot.
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3.3 Energy Loss

The differential equation which describes the transfer of energy from a high

energy test particle to a lower energy field particle is

jtEi(t) =-v€Ei(t) (18)

where u€ is the inverse of the energy-loss time. For a large mass ratio in a nonrela

tivistic simulation

u€=2[(T^)ti(x)-ii,(x)]u0. (19)
7712

As in the previous sections, fi(x) is the Maxwell integral and i/0 is the basic collision

frequency.

The electron and ion kinetic energy time history plots are used to check the

energy transfer rate between an electron beam and a Maxwellian ion distribution.

The total kinetic energy of the electron and ion species at time t is given by

and

respectively, where 7j = [1 —(vj/c)2]-1/2, with c the speed of light, me<t is the

electron rest mass, pZj is the ion axial momentum and fj.j is the ion magnetic

moment.

N'Pi «2
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The kinetic energywhich is transferred from the incident particle to the target

particle during the scattering event, as described by Equation 12.55 of [4], is

m2PiLc4x^
E'

A£i =-(^L)V (21-)

where pn, is the incident particle momentum in the target-particle-at-rest frame,

and E'2 = (m\cA -{-mlc4 +2m2c2\J'p\Lc2 +m\cA). In the nonrelativistic limit, this

reduces to

AE _ ™2(miVlL)2 e'2 _ _E mim2 e,*
1 (mi -f- m2)2 2 (mi + m2)2

(mi +m2)2

For nonrelativistic simulations with rr^/mi ^> 1 and Ei/T2 > 1, it has been

shown that (62) ~ uAt, such that

*£•*-*. "»'"%. (21c)At (mi + miy

which in the limit At —• 0 reduces to the differential equation

a*«-i(5SSplftW- {2U)
If the effective (accelerated) energy-loss frequency is defined as

« m[j^Bt> (22)(mi + mi)*

then the solution of (21d) for the kinetic energy of the particles in the beam at time

t is

E^t) = Ei(0)exp[-uei\. (23a)
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Note that for m2/mi ^> 1, vt 2t (mif/m2) ?so

£,(*) a ^(OJespH —)*]• (236)
77l2

The inverse of the time constant rei^jmiv in equation (23b) is equivalent to the

energy-loss rate of equation (19), with v0 replaced by vj2, and with \x(x) —• 1 and

y!(x) —• 0 for values of a; = (m2^i/miT2) > 6 (see [7], page 178).

At time t = re = l/i/e, known as the energy-loss time, one can see that E(re) =

E(0)e~x = 0.3679£(0). Figure 5 shows the time histories of the total species

kinetic energy for the electrons (a) and the ions (b) from a nonrelativistic simulation

for which the mass ratio 7712/mi = mi/me = 12 and the energy ratio E1/T2 =

Ee/Ti = 50. Only unlike-particle (e-i) scattering is performed. For this simulation

re 22 12r90 2i 9.6 x 10"6 sec.

It is important to note that equation (23a) may only be accurate for times

much less than re. For instance, the rate of energy transfer between an electron

beam and a Maxwellian ion distribution is likely to be different than that between

electron and ion Maxwellian distributions, even if the ratio Ee/T{ is the same. This

is a consequence of the fact that the energy equilibration rate for a beam and a

Maxwellian distribution is not the same as that for two interacting Maxwellian

distributions. To check the energy-loss rate, the ratio Ee(t)/Ee(0) from the sim

ulation is compared to the value of exp[—t/re], in which the theoretical value of

re = 9.6 x 10~6 sec was used. The simulation results agree with the theoretical

predictions to within 1.34% (which is near the limit of the statistical accuracy of

the simulation) through A; = 216 timesteps (t = 4.32 x 10~7 sec <$; re). As the
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a>

b)

Electron Kinetic Energy History

Tine (sec)

Ion Kinetic Energy History

Tine Isec 1

Figure 5. The total kinetic energy time histories of a) electrons
and b) ions for the case of an electron beam (Ex = 50 eV)
incident upon ions (T2 = 1 eV). The mass ratio is mi/me = 12.
Only e-i collisions were performed. The energy loss time is
shown on the electron plot.
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simulation proceeds in time, the difference continues to grow, and approaches 20%

at k = 1400 timesteps (t = 2.8 x 10-6 sec).

A comparison of Figures 5a and 5b shows that the energies of the two species

have not equilibrated after k = 3500 timesteps (t = 7.0 x 10"6 sec), although

the kinetic energy of each of the species has leveled off. Note however, that after

t 2r 5.0 x 10~6 sec, the ions have a greater total kinetic energy than do the electrons:

the electron and ion kinetic energies have overshot the equilibration energy value of

85 keV. Although this seems contradictory to the laws of thermodynamics, it may

be accounted for by looking at the rates of the various processes that are occurring

during the simulation. For nonrelativistic incident electrons and target ions (with

x ^> 1) it can be shown7 that the characteristic times for the processes of interest

have the following relative magnitudes

T90 : ra : re : req = 1 : 2 : (mi/me) : (Eem,/2rTme) (24)

where req is the energy equilibration time. In this case, the relative magnitudes

are 1 : 2 : 12 : 300. With r90 = 8.0 x 10"7 sec, the simulation encompasses

8.75r90, 4.38ra, 0.73r5 and only 0.03rC9, based upon the initial input parameters.

Therefore, a simulation several times longer than the one that was performed would

be necessary for the energy of the two species to equilibrate.

As an additional check on the validity of the simulation, the entropy of each of

the species was followed during the simulation

S(t)= f f f(vhv±)log[f(vhv±)]dv±dv^ (25)
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The electron entropy increases rapidly from zero at the start of the simulation (the

beam is a delta function in velocity space, hence the electrons are perfectly ordered

and the entropy is zero) due to transverse diffusion of the beam in velocity space.

This is followed by a small increase over approximately a 90° deflection time, after

which the entropy remains constant. The ion entropy increases gradually from the

non-zero value associated with the bi-Maxwellian distribution, and then remains

constant for the second half of the simulation. Figure 6 shows the time histories

of the electron (a), ion (b) and combined or total entropy (c). Note that the total

entropy either inceases or remains constant (to within statistical fluctuations). Since

the binary collision algorithm conserves total kinetic energy, the simulation obeys

both the First and Second Laws of Thermodynamics.

3.4 Additional Relaxation Processes

Several additional simulations were made to study the specific relaxation pro

cesses that are analyzed by Takizuka and Abe in [3], These processes are the re

laxation of a drifting Maxwellian distribution, the equilibration of two Maxwellian

distributions with different temperatures and the isotropization of a bi-Maxwellian

distribution with different axial and perpendicular temperatures.

3.4.1 Relaxation of a Drifting Maxwellian Distribution

For these simulations, the electrons and ions have a single temperature (T =

7]| =T±). Inaddition, the electrons have an initial net drift velocity v«£eo in the axial

direction. The ion temperature is chosen such that Tio < (mi/m€)Teo. Equation

(14) describes the time variation of the mean electron velocity (v(t) = (v(*))e),
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however the slowing down frequency for this specialized process is given by

u. =irt*,)(*T*/2«'. (26)

where x' = (e/Teo), with e = mev^ /2, while \x is the Maxwell integral and vQ is

the basic collision frequency.

The mass ratio for these simulations is mi/me = 1836, the ion temperature is

Ti0 = 1 eV and the electron temperature is Tee = 50 eV. Only unlike-particle (e-i)

scatterings are performed. The diagnostic used to study this process is the time

history of the electron drift velocity ratio

^ =—77-EVO- (27)Vdeo vdmoNaPt f^

Figure 7 shows this time history plots for (a)e = TCo/2, (b)e = Te<) and (c)e = 2Te<>.

The dashed lines on these plots indicate the theoretical predictions of equations (14)

and (26). Notice that the agreement is best near the beginning of the simulation,

which is to be expected, since the theory is valid only in the small-time asymptotic

limit. The data indicates that at k = 800 timesteps (/ = 1.6 x 10"6 sec), the

difference between the theoretical and simulation values is 2.87% for run (a), 2.45%

for run (b) and 1.70% for run (c). The final time of these simulations corresponds

to 1.25r0, where the basic collision time r0 = \jv0 = 1.6 x 10~6 sec.

3.4.2 Energy Equilibration of Two Maxwellian Distributions

The electrons and ions in these simulations have single temperature Maxwellian

distributions, however initially TCo ^ T{0. Several combinations of mass ratio and
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temperature ratios were studied. The differential equation that describes this tem

perature relaxation process is

|(Ti(t) -T.(t)) =-vte,(W) -T.(t)) (28)

where uteq is the inverse of the temperature equilibration time, and is defined by

2 m€
Vteq = •(l + -T7)"V2|/« (29)3y7r m»

where x" = (miTe/meTi).

Only unlike-particle (e-i) scatterings are performed in these simulations. The

diagnostic that is used to study the temperature equilibration rate is the time

history of (Te(t) - Ti(t))/(T€o - Tio), where the temperature at time t in a system

which has 2 degrees of freedom (|| and 1) is defined in terms of individual particle

velocities as

r<o =^D4w +"» (30)
-iv*p t=l

The results of three simulations are shown in Figure 8. The simulation shown

in Figure 8a used a mass ratio mi/me = 4 and temperature ratio T€o/Tio = 2,

while Figure 8b is for a simulation with the same mass ratio, but a temperature

ratio Teo/Ti0 = *. The mass ratio used to produce Figure 8c was mj/mc = 16,

with a temperature ratio T€o/T{0 = 2. The dashed lines in these figures are the

theoretical predictionsof equations (28) and (29). The maximum difference between

the theoretical and simulation results is approximately 11.4% for run (a), 5.0% for

run (b) and 3.6% for run (c) through k = 1000 timesteps (t = 2.0 xlO"6 sec). The



£ .92

a)

I

cs

o

b)

.90

.88

.86

.84

.62

m./m - 4
i e

T /T. » 2
eo .i0
CO CM

Teaperature Difference Ratio History

<o oo

Tine (sec)

Tenoerature Difference Ratio History
r T I 1 ^

Tine (sec)

Figure 8. Energy equilibration of two Maxwellian distributions.
The electron temperature is Tx —50 eV. Only e-i collisions
were performed, [a) mi/me = 4, Teo/Ti0 = 2; b) m,i/me = 4,
TeJTio = 1/2; c) mi/me = 16, TeJTio = 2]

31



i

4>

c)

32

Tenoerature Difference Ratio History
—r* 1 ~i '^

Tine (sec)

Figure 8. (continued)



33

data suggests that the agreement with theory increases as the mass ratio increases

and the temperature ratio decreases. The reason for the poor agreement at low

mass ratios, is that one can no longer assume that (62) ~ 2v0Atk, or rather that

v = 2v0, as was done previously for the large mass ratio simulations. Therefore,

the uncertainty of the value of i/0 that is used in equation (28) limits the accuracy

of the theoretical predictions.

3.4.3 Relaxation of a bi-Maxwellian Distribution

To study the rate of isotropization of a bi-Maxwellian temperature distribution

with Tj| ^ Tj_, a simulation was performed which used an axial to perpendicular

temperature ratio for the electrons of T\\€o/T±eo = 2, in which only e-e collisions

were considered. The characteristic differential equation for isotropization of a bi-

Maxwellian distribution is

^(T„(<) - T±(t)) =-uiao(T^t) - T±(t)) (31)
dt

where V{ao is defined by

/2
viao = 5W-i/0. (32)

The mass ratio for the simulation was mi/m€ = 1836, with a temperature ratio

of T\\e/Ti = 50. The diagnostic for this relaxation process is the time liistory of

(T||e(<) - Tj.e(<))/(T||eo - T±to). The temperatures at time t are defined by

N.p

n +M^ — ^+M). (33)
-iV'P i=i

The result of the simulation is presented in Figure 9. The dashed line in the figure

represents the theoretical prediction obtained by use of equations (31) and (32).
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Figure 9. Temperature anisotropy relaxation of a bi-Maxwellian
distribution. The temperature are T^ = 50 eV, Tj.. = 25 eV and
Ti = 1 eV. The mass ratio is m,7me = 1836. Only e-e collisions
were performed.
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Note the oscillation of the simulation result about the theoretical curve. This is the

only case in which the two curves do not diverge. The maximum difference between

the two curves is ^ 3.0%.

4. Model Timing and Recommendations for Use

An important goal in our modeling of the collisional interactions of the plasma

particles is a computationally efficient resolution of the disparate physical time scales

of the plasma processes. The brief description of the model which is presented in

Section 2 indicates that it is rather computationally intensive. For instance, the

process requires a total of four changes of reference frame for each pair of particles

that are scattered. Care must be taken in choosing values for the input parameters

uAt, Nte and Ncp such that the collisional phenomena are accurately simulated,

while minimizing the number of executions of the collision package.

Code timings for simulations in which the particles are collided every timestep

(Nte = 1 and Ncp = 1) show that the binary collision package dominates the other

major physics packages, with regard to run time. In this case, the total code run

time is approximately 34 microseconds per particle per timestep, of which 24.0 were

spent colliding particles. This includes 6.0 microseconds per particle per timestep

for each type of like-particle scattering (e-e and i-i), and 12.0 microseconds per

particle per timestep for unlike-particle scattering (e-i). (This factor of two comes

about because in any given grid cell, the particle lists for e-e and i-i scattering

are only half as long as the list for e-i scattering). These timings compare to 7.2

microseconds per particle per timestep for the FORTRAN particle pusher and 15.0

milliseconds per timestep (using the LINPACK matrix inversion package) for the
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solution of Poisson's equation in a region with 128 grid cells. The cost of the field

solver becomes negligible as the number of particles of each species is increased

above 104. The collisions, however, account for about 70% of the total run time.

By increasing the value of the parameter Ntc above 1, the overall percentage

of the code run time that is due to the collision routine is reduced. For example,

if the collisions package were executed only every 5-th timestep, the total code run

time for those 5 timesteps is about 74 microseconds per particle, of which 24 are

required to perform the collisions, so the amount oftime spent colliding the particles

is reduced to approximately 32% of the total. However, increasing Nic can lead to

a violation of the assumption of small-angle scattering, since (62) *** Ntc^At/Ncp.

The violation of this critical assumption is an important issue that is discussed in

detail below.

This binarycollision modelis rigorous, except for the neglect of Bremsstralilung

radiation damping andthe assumption of small-angle scattering. The Bremsstralilung

energy loss is certainly negligible for nonrelativistic collisions, but is the dominant

energy loss mechanism for ultrarelativistic collisions.4 Because the COM scattering

angle 0' ~ (S2)1^2, there are three possible ways in which the small-angle assump

tion could be violated. The first occurs if the COM velocity of the colliding particles

is much less than the thermal velocity of the test particle (vcm < v-th), the second

way is if the local to average particle density ratio nioc/nave » 1, and the third is

due to a large value of the term NtcuAt/Ncp. It is of course possible to have all

three factors contribute concurrently. Therefore, safeguards have been installed in

the code to ensure that & does not exceed 20°. For all cases in which the calculated
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values of 9' > 20°, the angle is "clamped" at 20° by fixing the value of (62) at

4.0 x 10"2.

The third method of violating the small-angle scattering assumption is the

only one that is directly controllable. As the value of Ntci/At/Ncp increases, larger

volumes of velocity space have scattering angles which are clamped by the previously

described safeguard. To see this, consider a situation in which nioc/nave = 1. In

that case

(^) =(!2l!!£a.)aEst^A*. (34a)
Vcm vcm ™cp

In order to determine the volume of velocity space that is clamped for a given value

of NtcvAt/Ncp, assume that Pcm/m-i = vcm, such that

<*2> =(^)3^At (346)
Vcm ™cp

Setting. (62) = 4.0 x 10"2 and replacing vcm by vciamp we arrive at

^^ = (2bNteuAtlNcp)1'3. (34c)
v Zth

For NtcvAt/Ncp = 2.5 x 10"3, the result is that the 0' is clamped for velocities less

than or equal to 39.69% of the thermal velocity. This means that only 6.25% of the

volume of a sphere in velocity space with radius equal to the thermal velocity has

clamped COM scattering angles. Since the code defines Maxwellian distribution

functions out to vmax = 4.5vt/i, the clamped volume is negligible, but the number

of particles inside the clamped volume may not be, depending upon the form of the

velocity distribution function. A secondary safeguard was added to the code which

alerts the user if NtcvAt/Ncp > 2.5 x 10"3.
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