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Abstract

This paper is a self-contained discussion of a right factorization approach in the stability

analysis of the nonlinear continuous-time or discrete-time, time-invariant or time-varying, well-

posed unity-feedback system S\(P,C). We show that a well-posed stable feedback system

S\(P,C) implies that P and C have right factorizations. In the case where C is stable, P

has a normalized right-coprime factorization. The factorization approach is used in stabilization

and simultaneous stabilization results.
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Introduction

The unity-feedback configuration Si(P, C) (see Fig.l ) has received considerable attention

for very good engineering reasons. For P and C lineartime-invariant, the factorization tech

nique [CaLl, Vid.2, Des.5,6, NeLl and references therein] has been extremely successful in

resolving many problems : finding all stabilizing compensators, robustness, sensitivity minimiza

tion, tracking, boundson performance, etc.. In [Isi.l], nonlinear control system problems are stu

died in the state-space using differential-geometric approach: this approach is a flourishing area

of research [see recentProceedings CDC, MTNS 1987].

Recently Hammer [Ham.1,2,3] hasdeveloped a theory of factorizations fornonlinear time-

invariant discrete-time systems. For a plant with a right-coprime factorization, a stabilizing

configuration is proposed. A class of systems withright-coprime factorizations is also introduced.

In a more general set-up Vidyasagar [Vid.l] has also proposed a stabilizing configuration for a

plant witharight-coprime factorization (see Fig.4 with«2a«3a«4s0). A right factorization of

anonlinear time-varying continuous-time system has been recently obtained [Des.7].

In Section 1we showthatif anonlinear (time-invariant ortime-varying, continuous-time or

discrete-time) Si(PtC) is well-posed and stable then the plant P and the compensator C have

right factorizations. In Theorem 1.9 we show that if either P or C has a normalized right-

coprime factorization, then the well-posed S,(P, C) is stable if and only if the pseudo-state map

is stable.

In Section 2 weshow that all plants which are stabilizable by incrementally stable compen

sators have normalizedright-coprime factorizations.

In Section 3 the factorization approach is used in simultaneous stabilization results.
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Section 1

LI Notation

Let X c JR and let V be anormed vector space. Let .

£:={F IF:X->V)

be the vector space of V-valued functions on X. For any T e X, the projection map

Tlj :£ -> C isdefined by

nrF(r) :=
F(f) f£T , r e X

9£ t>T, r e X ,

where 9^ is the zero element in £. Let A c £ be a normed vector space which is closed

under the family of projection maps {nT }T 6 x . For any F e A, let the norm

II n(.) F II : X ->IR+ be anondecreasing functioa The extended space A, is defined by

Ae:={FeC ' Vr e X, nrF e A} .

A map F :Ae -» Ae is said to be causal if and only if for allT e X, nr commutes with

II7F ; equivalently,

IIr F as II7 F nr .

A feedback system is said to be well-posed if and only if for all possible inputs, all of the

signals in the feedback system are determined by causal maps.

The Unity-Feedback System S^Q

Consider the unity-feedback system 52(F, C) in Figure 1 : the plant and the compensator

are given by causal maps P : A& -» A*, and C :A,* -» A& , respectively. A* and A^ arc

input and output extended spaces.
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Figure 1 The feedback system S i(P, C )

12 Definition: (Well-posed S^C) )

The feedback system S i(F, C) is said to be well-posed iff there exists a causal map Htl,

such that

tfe^A^xAk-^A^ , Hei:(u\,U2) \r> e\ . (1.1)

•

If 5i(F,C) is well-posed then for all inputs (u\,u£, the signals e\, C2.y1.y2 are

uniquely defined bythe causal maps Hei, Hei, Hyx, Hyi, respectively.

Now we introduce a bounded-input bounded-output stability notion.

1.3 Definition: (StableMap)

A causalmap H : A^ x A^ -» A^ is said to be stable iff there exists a continuous nonde-

creasing function $# : IR+ -> IR+ such that

V(«i,«2)6 A.XA,-, II//(m1,m2) II £ todliii U+II112II) O-2)

A stable map need notbecontinuous. Note that the composition and the sum of stable maps

are stable.

1.4 Definition: (Stable S^C) )

A well-posed 5 i(P, C) is called stable iff there exist causal stable maps Hei , He2, such

that

Hei-^oeXAie-tAoe , Het:(ultu£ h* e 1 (1.3a)
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and

^i^xA^Ai , #,,.-(111,112) H> e2 . (1.3b)

•

A well-posed S\(P,C) instable if and only if all signals C1.c2.y1.y2 are uniquely

determined by the causal stable maps Hei, He2, Hyi, Hyi, respectively. Inthe linear case, the

maps in eqns. (1.3a,b) are linear over the product space ; He£u 1,1*2)=^,«,("i) +

#«i«a0*2) . ^rea(«i.M2)= UeiUx{u {)+#«,„,(*<2) . Hence one has to check the stability of four

maps [Vid.2].

In the linear time-invariant case, the factorization approach is a major tool in the stability

analysis of Si(F, C) . Since the stable-factor factorization relies on transformation techniques,

these tools cannot be readily extended to the stability analysis of a nonlinear S\(PfC). Follow

ing the linear theory as a guide and Vidyasagar [Vid.l] and Hammer [Ham.1,2], we introduce

rightfactorization concepts for nonlinear systems in terms ofstable maps and set theory.

IS Definition : ( Right Factorization )

A causal map P : A& -» Aoe is said to have a rightfactorization (Np , Dp , Xp) if and

only if there exist causal stable maps Np ,Dp , such that

(i) Dp:Xp c Ajg -» A^ is bijective and hasa causal inverse,

and (ii) NpiXp-tAo,,with Np[Xp] =F[A*] ,

and (Hi) P=NpDp~1 .

Xp is called the factorization space of the right factorization (Np , Dp , Xp).

•

1.6 Theorem: ( A necessary condition for stable Si(P,C) )

Let P and C be causal maps such that S \{P, C) is well-posed and stable. Then the maps P

and C have right factorizations.

Comment : Note that this is a generalization of the well-known result in the linear time-
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invariant case [Des.l p.85]. ••

Proof ofTheorem 1.6: By assumption, He%,He2,Hyit Hyi are causal stable maps. Let

Ar-tf*. \u*o = V+PCTl and

Dp:=He2\Uls0 = (I+CPTl

De :Xe := AM -» A^ and Dp:Xpz=Al4 -> Aie are causal stable bijective maps with causal

inverses. Let

Ne :=Hyt |Ma=0 = C(I +PCT1 and

Np:=Hy2\UxSa = P(I+CPrl

Ne :XC->A& , Np .Xp-^Aoe are causal stable maps and NdX^^CiAn.] ,

NplX^^PlA^] by construction. By calculation, P =NpDp"1 and C =NeD~l ; therefore

(Np ,Dp ,Xp) isaright factorization ofP and (Ne ,De,Xe) isaright factorization ofC .

•

ByTheorem 1.6, any causal plant P which can be stabilized bySX(P, C) necessarily has

aright factorization. However, this result is not only due to the configuration ofS j(F, C). The

idea inTheorem 1.6 can be generalized to feedback systems other than S j(P, C). Asan illustra

tion, consider the following example.

1.7 Example : Consider the system S3(P,V,U,M-D) in Figure 2 , where

P :Ak -> A^ , M-D :A& -> Afe ,and 7 , £/ are causal maps over the appropriate extended

spaces. LetthesystemS3(F,V,tf,M-D) be well-posed, that isthere exists acausal map H

tfiAfcXAfcXA^xAfc-^AfcXA^xAfcXAfc , H:(ulfu2tu3,u4) h> (ex ,y3,yv ,e£ .

Suppose also thatthecausal maps

tfei-Afc XAfc XA^ XAlV. -»Afc , /fe2:(M1,M2."3.«4) H- *2

and /^AfcXAkXA^xAfc-frA^ , #ya: (Ml ,m2,m3 ,m4) H- y2

are stable. Then the plant P hasa right factorization.
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Figure 2 The feedback system S3(P, V, U,M-D)

For «iSK3sM4sO,any e2 € Afe uniquely determines y„ = UPe2 € A& . By well-

posedness, yB determines ei uniquely. Then a2=C2~^ieAi is uniquely defined. Hence

Hei\uimUiMU4*o :A»e -*Afe isbijective. Since Hy2 \UimUimU4mo = /> #ea Iu,-u,q«4bo .

\**yt lui«UjH«4»0 *"ej lutHU)MU4B0 »Afe )

is a right factorization ofP.

Now we introduce the right-coprime factorization concept for causalnonlinearmaps.

1.8 Definition: (Normalized Right-Coprime Factorization )

(Np ,DptXp) is said to be anormalized right-coprimefactorization ofP :A^ -> Aoe iff

(i) (Np , Dp ,Xp) is a right factorization of P

and (ii) there exist causal stable maps UpiA^-^Xp and V^A*.-*^ such that

UpNp+VpDp=IXp , (1.4)

where IXp denotes the identity map onXp .

•

A similar definition is stated in [Vid.l]. In [Ham.l], the right-coprimenessnotion is intro

duced for discrete-time systems, where condition (ii) of Definition 1.8 is inteipereted as : given

any ,,unimodularM Af, there exist causal stable maps Up and Vp such that UpNp +VpDp =M .

Note that this statement implies eqn.(1.4). However the converse need not be true since nonlinear



maps are not necessarily right distributive.

The following theorem gives a necessary and sufficient condition for stability of a well-

posed S{(P,C) provided that either P or C have normalized right-coprime factorizations.

Since the roles of P and C can be interchanged, we state only the case where C has a normal

ized right-coprime factorization. Clearly, any causal stable map C : A«,tf -> A^ has a normal

izedright-coprime factorization, namely (C , /^ , A^ ).

1.9 Theorem: ( Necessary and sufficientcondition for stable Si(P,C) )

Let C : Aoe ->AiVj have a normalized right-coprime factorization (Nc ,DC ,XC) and

S i(P, C) be well-posed. Let £c e Xe bedefined as in Figure 3. Then

Si(P,C) isstable if and only ifthere exists acausal stable map H^ : (u i, uj) h> §c •

*h

:> e' >tf » Nc y,vV \ Pj
c

K j '

Figure 3 Stf.NcD-1)

Proof:

HjfH

By assumption, there exists a causal and stable map H^:(u 1,1*2) H» 5c • Since

(Wc , £>c , Xc) is a right factorization of C ,

#«,("i»"2) := DeH^(uitU2) and

^ea("l.M2) == U2 +NeH^(ul tU2)

arecausalstablemaps. By Definition 1.4, Si(PtC) is stable.

"only if*

By assumption, Hei1He% are causal, stable maps. Since (/v*c ,DC ,Xe) is a normalized



right-coprime factorization of C, for any (ex ,y0 e A^X Au such that

y1=Pe i =NeD~le i, there exists aunique ^. e Xc such that

A£e=«i (1.5a)

Ne$c=yi . (1.5b)

and there existcausal stable maps Uc:Aoe-*Xc , Ve : Afc -» Xc such that

UeNe + VcDc=IXt . (1.6)

From equations (1.5a,b) and (1.6) we get

=UeHyt(u i, W2) +Ve#,,(«1. M2)

= ^c(^a(Ml»M2)-"2) + ^c^I(M1,M2)

=:#§.(" 1.^2) (1.7)

The map //§, defined in equation (1.7) is causal and stable.

D

The idea in Theorem 1.9 can be generalized to well-posed feedback systems other than

Si(P, C). Cleariy, the necessity part requires only that the well-posed feedback system has

causal stable maps Hei and Hyi. Note that the stability assumption on such a feedback

configuration can be a stronger requirement The sufficiency condition is clearly a property of the

feedback configuration. It holds for S\(PtC)9 but it may also hold for other well-posed sys

tems. To illustrate the idea we give the following example. The example deals with the causal

plant P . Hence Theorem 1.9 should be interpreted after suitable subscript interchanges :

c <*p , 1 <*2 and o <*« .

1.10 Example : Consider the well-posed system S3(NpDp~lt Vp, Upf M-Dp) inFigure 4.

Let the causal map P : Afc -> AM have a normalized right-coprime factorization

(Np , Dp , A;,.). Let Up :A^ -» A& and Vp :A^ -» A^ be causal stable maps such that

equation (1.4) holds for Xp=Aie . Then S3(NpDp~l, Vpf Up,M-Dp) isstable if and only if the
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causal map H^ is stable.

o-i-H^ d;1 e.
N,

y, ♦
«

v. u,

Or

M-DfY Or^2

Figure4 The feedback system S3(NpDp-\ Vpt UptM-Dp)

The feedback system is stable if and only if the causal maps Hei, Hyi, H^ and fly. are

stable. If the maps Hei and //ya are stable, then the map

#$,(Kl.tt2.«3."4) := UpHn(uUU2lU3%U4) + V;,[Hei(M1,M2,M3,M4) +«2]

is causal and stable. Conversely, ifthere exists acausal stable map Ĥ then the maps

#«,(Kl,K2.K3."4):=0p#£,(Kl,K2.K3,K4) - M2

^y2(" i*u2tu3tu4)^Np H^(u i, a2. u3,114)

^y.("l.M2.K3."4):=Vp//ei(M1,M2,M3,M4)

^y.(»l . «2»"3 ."4) •= ^p [#ya(K 1. U2 , «3 , tt4) +U3]
are causal and stable since Up and Vp are causal stable maps. Hence the system inRgure 4is

stable.

D

The Small Gain Theorem [Des.l, Zam.l] can be considered as acorollary to Theorem 1.9.

1.11 Corollary: ( SmallGain Theorem)

Let P ,C be causal stable maps with the property that for some nonnegative yp ,ye ,$p ,

Pc, for all x g IR+, Qp(x):=ypx +pp , $c(x) :=ycx +pc (see equation (1.2) ) . Let



-10-

Si(P,C) be well-posed. Then Si(P,C) isstable if ypyc <1.

Proof:

Since C is stable, (C ,7^ , Aw) is a normalized right-coprime factorization of C . By

setting 5c := ei, astandard calculation shows that if ypyc <1, then H^ is stable. By Theorem

1.9, we conclude that Si(PtC) is stable.

•

A generalization [Vid.l] of the unimodularity concept of linear time-invariant systems is

introduced next

1.12 Definition : ( Unimodular Map)

A causal stable map H : Ae -* Ae is called unimodular iff H is bijective and

H~l: Ag -» Ae is causal and stable.

1.13 Corollary:

Let £i(P,C) be well-posed, stable with the maps P and C causal and stable. Then

( / +PC ) is unimodular.

Comment : If either P or C is not stable, (I +PC ) need not be stable; however

(I +PC r1 is always causal stable if Si(P, C) isstable.

Proof of Corollary 1.13 : By assumption, (/ +PC ): A^ -> A^ is causal and stable.

Since S i(P, C) is well-posed, (/ +PC ) is bijective and has a causal inverse. (C , / a,* . A^)

is a normalized right-coprime factorization of C ;1ience 5c :=*i • The stability of S\(P, C)

and Theorem 1.9 imply that

(7+PCr1 =Hei\Ufs0 :«,hci

is stable.

•
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Section 2

Theorem 1.9 and the two corollaries are due to the asumption that either C or P have

normalized right-coprime factorizations. The following theorem establishes a class of systems,

not necessarily stable, which have normalized right-coprime factorizations. First, we state an

incremental stability definition [Saf.l, Des.l, Des.2] which generalizes animportant property of

stable linear maps: regardless of the input, thedeviation at theoutputdueto abounded deviation

in the input is bounded.

2.1 Definition: (Incrementally Stable Map)

A causal map H : Ae x Au -> AM is called incrementally stable iff H is stable and there

exists a continuous nondecreasing function $ H : R+-> IR+ such that

V(v,m) e A^xAfc , V(Av,Am) e AxAf- ,

II#(v+Av,k+AjO-//(v,u)II £ $#(ll Av 11 + 11 Au II ) .

22 Theorem: (Normalized right-coprime factorization and stable Sx(P, C ) )

Let S i(P, C) be well-posed. If P is incrementally stable, we have:

Si(P,C) is stable if and only if C has a normalized right-coprime factorization of the

form (Ne ,/x.-PATc ,XC c A^ ) for some causal stable map Nc from A^ into A& .

Comment: Theorem 2.2 gives a parametrization of all stabilizing compensators C pro

vided that the plant is incrementally stable. This theorem [Des.2] extends the Q-parametrization

result of the linearcase [Zam.2]. It is interesting to note that Theorem 2.2 motivates a normal

ized right-coprime factorization approach.

Proof ofTheorem 22:

"only if"

Since S\(P, C) is well-posed and stable, as inTheorem 1.6, themaps



-12-

Dc :=Het \U2S0 = (7 +PC Tl:Ke^>*oe .

Nc '.=Hyx lMa«o = C(7+PC r1 :Aoe ->A*

are causal stable maps. (Nc , De , A^ ) is aright factorization of C . For the causal stable maps

P lAig-iAoe and 7^ we get

PNe +Ia..Dc = PC(7 +PC rl +(/ +«: r1 = 7^ . (2.1)

From equation (2.1), we conclude that Dc = 7 -PJVC and that (Wc ,1 -PNC , A0<) is a nor

malized right-coprime factorization of C .

"if"

By assumption, S\(P,C) is well-posed and C has a normalized right-coprime factoriza

tion (Ne ,7?c ,Xe) with PJv"c +DC =7*.. ByTheorem 1.9, it is sufficient to show that H^ is

causal and stable. Writing the summing nodeequations in Figure 3 , we get

De^c^ul-P(Ne^c+u2) . (2.2)

By well-posedness, for any input (mi,«2) e A^xA^, equation (2.2) determines £c

uniquely; indeed

4c = H^(u!, tt2) = De'1 Hei(u!, rij) . (2.3)

Equation (2.3) also shows that 77^ is causal.

Adding PNe%c to both sides in equation (2.2) and usingthe normalized right-coprime fac

torization of C , we get

(Dc+PNc)** o %c = «i + PNe%c-P(Nc^c+u2) . (2.4)

Since P is incrementally stable, for some $ P

VOct.112) e A^xAf , Vr sT , II n7§c ll£llMl II + II PWc5c-^(^ +"2)11

<ll Ut ll+$j>(ll u2\\) ,

hence 77^ is stable. By Theorem 1.9,we conclude that 5i(P,C) is stable.

D

Using the incremental stability argument, we show that the unimodularity condition in
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Corollary 1.12 is also a sufficientcondition for stability of S i(P, C).

23 Proposition:

Let S i(P, C) be well-posed. If P is incrementally stable andif C is stable, we have:

S i(P* C) is stableif and only if •(•/+PC) is unimodular.

Comment: Note that the test for stability of a two-input two-output system reduces to that

of a one-input one-output system.

Proof of Proposition 23 :

"only if"

Follows from Corollary 1.12.

"if"

By assumption, (7 +PC) is unimodular. Since C is stable, (C ,7 , A^) is a normal

ized right-coprime factorization of C ; hence ex :=§,. (see Figure 3 ). By Theorem 1.9, it

suffices to show that the causal map 77ai is stable. Writing the summing node equations in

5i(P,C),weget

ex = ux-P(Cex + u2) . (2.5)

Adding PCe x to both sidesin equation (2.5), we get

(7+PC)*! = ul+PCei-P(Cel + u2) . (2.6)

By unimodularity of (7+PC), ex e A, if and onlyif (7 +PC )ex € A* . From equation

(2.6), by incremental stability of P , we get

V(uuui) € A„xA,- , Vr e T
(2.7)

linr(7+PC)e1 II £ II tit 11 + $/>(!! m2M) .

Byequation (2.7), the causal map (uy.ud h» (I+PC)ex is stable, hence 77e, is stable.

D

With all the assumptions made in Example 1.10, provided that u2s"3 =W4s0,itcanbe
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easily shown that the system S3(NpDp-1, Vp, UptM-Dp) in Figure 4 is stable [Vid.l]. In the

following example, incremental stability assumptions are made to give astabilizing configuration

for aplant withanormalized right-coprime factorization.

2.4 Example : Consider the feedback system in Figure 4 and let all of the assumptions in

Example 1.10 hold. Suppose now that the causal maps Dp,UptVp and Af are incrementally

stable. Then the well-posed feedback system in Figure 4 is stable.

It suffices to showthatthe causal map

tf^AfcXAfc xa<* xAfc ->Ak , H^:(uXtu2,u3tU4) h> %p

is stable. Writing the summing node equations inFigure 4, weget

ux-(M -Dp)[r(ux,u2,u3,u4)] =Dp\p-u2 , (2.8a)

where

nttLM2.M3.w4) := u4+Up(u3+Np$p) +Vp(DpZp-u2) . (2.8b)

Adding M\p toboth sides inequation (2.8a) gives

M\p =ttl+tt2+{MS,-M[r(ttlftt2.M3."4)]} +{£^

The incremental stability of Up and Vp imply that the map T-77^, namely

(T-Hi)(uXtu2lu3tu4) = u4+iUp(Np^p+u3)-UpNp^p) + {Vp(Dp^p-u2) -VpDp^p) ,

is stable. Going back to equation (2.9), by unimodularity and incremental stability of M , the

claim follows.

D
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Section 3

3.1 Theorem: ( Simultaneous Stabilization )

Let P (• , •): Ae x A& -» A^ be causal and incrementally stable. For some fixed causal

C lAoc -»Afc ,let 5i(P(v , -).C ) be weU-posed for all v e A.Then

Si(P(v0. ' ). C ) is stable for some v0 e A if and only if Sx(P(v , • ), C ) is stable

for all v e A.

Comments:

a) In other words, if wehave a family of incrementally stable plants {P(v, • ) )v e a

andif onememberis stabilized by some C , thenthe whole family is stabilized by that C .

b) The one-input one-output plant P(v , • ) can be considered as an input-output

description for a fixed parameter v or for a fixed bounded auxiliary input v . In any case,

P(v , • ) is assumed to be a complete description of the plantfor any v e A [Bha.1].

Proof ofTheorem 3.1:

" if"

Obvious.

"only if"

By assumption, S i(P(v0, • ), C ) is stable for some v0e A. By Theorem 2.2, there

exists a causal stable map Ne such that (Nc,,I -P(v0,Nc( •)), A^ ) is a normalized right-

coprime factorization of C .Forany v e A,consider 5i(P(v , • ) ,C ) inHgure5 :

"2

'1 -0 «l >II -Prv0,ivc(-))]'7 i Nc y' V k+ V P(V, ')
y2

^ f
c

Kj i

Figures Sx(P(v , • ),C).
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By Theorem 1.9 , it is sufficient to show that the causal map 77 §„ associated with

Si(P(v , • ) , C ) is stable. The summing node equations in Figure 5 give

$v = UX+P(v0,NeZtv)-P(v ,tfc$v+tt2) • (3.1)

Since P( • , • ) is incrementally stable, equation (3.1) yields

V(ttlftt2) e A^xA; , Vve A , VreT ,

II IIri;v II £ II Mi II + §P( II v -v0 II + II tt2 II ) .

Hence, 77$. is stable for all v e A. By Theorem 1.9 , we conclude that Si(P(v , • ) ,C ) is

stable for all v e A.

In the case that P(v,-):= #ya l«a-v : (iii.v) h» y2 where Hyt is the restricted

input-output map of an incrementally stable Sx(Pt C) for some causal P and C , the two-step

stabilization results in [Ana.1, Des.3] becomespecial cases ofTheorem 3.1.

The following theorem [Des.2] establishes a necessary and sufficient condition for simul

taneous stabilization of two plants which need notbe members of an incrementally stable family

of plants. Ouruseof the factorization approach greatly simplifies the proof.

32 Theorem: (Simultaneous Stabilization)

Let P i: Ak -» A*, be causal and incrementally stable. Let S X(P X,C) be well-posed and

stable. ( Hence by Theorem 22 , C has a normalized right-coprime factorization

(NcJ-PfloAcc) for some causal stable Ne :A^ -» A^ ). Let P2:Aie->Aoe be any

causal mapsuchthat Sx(P2tC) and Sx(P2-PXtNc) are well-posed. Then

S X(P 2. C) is stable if andonly if S X(P 2- P x, Nc) is stable.

Comment: Note that thecausal map P2 need notbe stable: the perturbation replaces the incre

mentally stable P j by an arbitrary nonlinear P2 which is only subject to S X(P2 - P Xt Nc) be

stable in orderto have SX(P2,C) stable.
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Proof ofTheorem 3.2:

Consider Figures 6a and 6b

Figure 6a SX(P2, C).

*-*}

Figure 6b SX(P2-PX,NC).

By Theorem 1.9, it is enough to show that

77g is causal, stable ifand only if H\ is causal, stable .

"only if"

By assumption, Sx(P2-PXtNe) iswell-posed; hence the map H\ iscausal. Writing the

summing nodeequations in Figure 6b *weget

%= ui-(P2-Pi)(Ne%+u2>
Subtracting P xNe% from both sides of equation (3.2), we get

£ <* * a.
(/-/,i^c)5 = ux+Px(N£+u2)-PxNeZ>-P2(Nctt+u2) .

Let

(3.2)

(3.3)

£ ,*> A v . A /^,A A A»-A AF:Aoe^Au^Aoe tF:(ultu2) K ul+P1(NcHl(uXtu2) +u2)-PxNcHl(SXfi2)

F is causal andstable since by incremental stability of P i,
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V(mi,M2) e A0xa/ , Vr e T II nrF^.tt^ll^H Mi II + $p,(H «2 H) •

Then equation (3.3) can be rewritten as

(7 -PXNC)% =P(tt1,«2)-P2(^+"2) • 0.4)

Comparing the summing node equations of Figure 6a with equation (3.4) and by well-posedness

ofS i(P2.C), we get

H%(ux,uz) = H%(F(ux,u2),u2) . (3.5)

Since F and 77£ are stable maps, H\ is stable.

"if"

By assumption, Sx(P2tC) is well-posed; hence 77$ is causal. Writing thesumming node

equations in Figure6a, we get

$ = ux+PlNcZt-P2(NeZ> + u2) . (3.6)

Let

FiA^xA^A^ ,P:(a1,tt2) V* ux+PxNeHk(uXtuz)-Px(NcH%(ux,u2) + uz) Q.l)

F is causal and stable since P x is incrementally stable. Addingand subtracting P X(NC% +ui)

on the right handsideof equation (3.6) and using equation (3.7), we get

%= ux+PxNe^-P1(Nc^ + u2)-(P2-Px)(Ne^ + u2)
(3.8)

= F(ux,uz)-(P2-Px)(NeZ> + u2) .

Comparing equations (3.2) with(3.8) and by well-posedness of S X(P 2- P x, Ne), we get

Hl(uXtua) = H\(F(ux,u2),u2) . (3.9)

Since F and H% are stable maps, 775 is stable.

•
Consider the feedback system S2(AP, N^ ,Dpl) shown in Figure 7, where AP :Au -* A*, is

causal; Wcr :Aoe ->A^ and Dpi:A^ -» A*e are causal $raWe maps (not necessarily linear).

We assume that S2(AP, Ner ,Dpl) is well-posed.
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Figure 7 Thefeedback system S2(AP, N^ , Dpt)

33 Lemma:

The well-posed system 52(AP,iVcr , D^) (Fig. 7) is stable if and only if the causal map

H2yt-(ux,u2*u3) h> y2 isstable.

Proof:

Immediate, since iVer , Dpl arestable maps.

D

Theorem 3.4 below motivated by [Des.4],states conditions under which a linearcompensa

tor C stabilizes the one-input one-output plant P +AP provided the linear system SX(P,C)

is stable.

3.4 Theorem : ( Robustness of Stable Linear Si( P, C ) under Nonlinear Perturba

tion)

Let P :Afe -»A^ and C:A^ ->A^ be causal linear maps where P =Dp~ilNpi,

C =NcrD&1 and N^Ng. +7)p/Dcr =7 . Npt: A& -»A^ , N& :A^ -> Afc are //near causal

and stable. Dp/: A^, -» A„tf , D^ : Ao, -> A^ are causal //near bijective stable with causal

inverses. Let AP : A& -» A«,e be a causal map and let 52(AP,A^ ,D^) , 5 i(P + AP, C)

be well-posed. Then

S X(P + AP, C) is stable if 52(AP,Afcr , Dpt) is stable.

Comment: Note that P and C are linear, AP need not be linear, P , C , AP are not

required to be stable.
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Proof ofTheorem 3.4:

By assumption, C has a normalized right-coprime factorization (N^ , Der , A^). Then

by Theorem 1.9, 5 X(P +AP, C) is stable if and only if the causal map 77$ defined byequation

(3.10) is stable:

De£-ux+PNcr$+Pu2 + AP(NcrZt + u2) = 0 , (3.10)

where we used the linearity of P . Note that equation (3.10) is of the form F(Q = 0 for fixed

tt i and «2. Forany map G with the property that G(p) = 0 if and only if p =0, the solu

tions of GF(Q= 0 and F(§) = 0 are identical Themap G need not be bijective, however if

G is chosen to be linear then it must bebijective. Choosing G =Dpi and using linearity, we

get an equivalent equation for equation (3.10):

DpiDcrt, = Dplux-NpiNerB>-Nplu2-DplAP(Ncr^ + u2) . (3.11)

Since NptNcr +DptDcr =7 , we conclude that SX(P +AP, C) is stable if and only if the 775

map defined by the equation (3.12) is stable:

5 = 774(tt1,tt2) = Dplux-Nptu2-DplAP(NcrZ, +u2) . (3.12)

Let F :A^ xA* -» A^ , F :(ux,u2) h> Dplux-Nptu2. Clearly F is causal and stable.

By assumption S2(AP, Afcr tDpl) is stable, hence 772e, IUjb0 is a stable map. Asimple com

parison of equation (3.12) and thesumming node equations inFigure 7, yields

Hl-(ui,U2) = H2ex(F(ux,u2)1u2,0) . (3.13)

Since F and H2ex are stable, so is 77$ and we conclude that SX(P +AP, C) is stable.

•

33 Fact : The converse to Theorem 3.4 holds if P is stable. The proof follows by

Theorem 3.2 since P is incrementally stable bylinearity and C has a normalized right-coprime

factorization; hence Dpi canbe chosen to be the identity map, and the third input u3 can be

taken care of in the firstinput ux.

3.6 Fact : In the case where AP is stable, 52(AP,A^cr tDpi) restricted to the inputs

( F(u x, u2)+Dptu3 ,u2tu3) is stable if SX(P + AP,C) is stable. The proof follows by the
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stability of AP and the fact that

H\(F(uXtu2) +Dplu3,u2tu3) =77|(tti,tt2)
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Conclusion

In the linear time-invariant case, right and normalized right-coprime factorizations exist as a

property of the causal map, regardless of the feedback configuration the map is in. When gen

eralizing these concepts to nonlinear causal maps,we show the existenceof these properties as a

result of the specific feedback configuration the plant is in. Although the unity-feedback system

SX(P,C) is of main interest, some of the results can be extended to other feedback systems as

illustrated by examples.

If eitherthe plant or the compensator has a normalized right-coprime factorization, the sta

bility of a well-posed SX(P,C) is equivalent to the stability of one causal pseudo-state map.

Thisresult is themain step used in all of the simultaneous stabilization proofs inSection 3.

Since the composition of maps is only left distributive over addition, a left factorization

definition, although possible, does not bring an alternative solution to the stabilization problem as

in the linear time-invariant SX(P, C) case. However, as emphasized by Hammer [Ham.1,2,3],

left factorization can beused also toenumarate solutions U ,V of the normalized right-coprime

factorization requirement UN+VD=I, where (N ,D ,X) is a normalized right-coprime fac

torizationof the map in question.
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