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Abstract

This paper is a self-contained discussion of a right factorization approach in the stability
analysis of the nonlinear continuous-time or discrete-time, time-invariant or time-varying, well-
posed unity-feedback system Sy(P,C). We show that a well-posed stable feedback system
§1(P,C) implies that P and C have right factorizations. In the case where C is stable, P
has a normalized right-coprime factorization. The factorization approach is used in stabilization

and simultaneous stabilization results.
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Introduction

The unity-feedback configuration §,(P, C) (see Fig.1) has received considerable attention
. for very good engineeﬁng reasons. For P and C linear time-invariant, the factorization tech-
nique [Call, Vid.2, Des.5,6, Net.1 and references therein] has been extremely successful in
resolving many problems : finding all stabilizing compensators, robustness, sensitivity minimiza-
tion, tracking, bounds on performance, etc. . In [Isi.1], nonlinear control system problems are stu-
died in the state-space using differential-geometric approach: this approach is a flourishing area
of research (see recent Proceedings CDC, MTNS 1987].

Recently Hammer [Ham.1,2,3] has developed a theory of factorizations for nonlinear time-
invariant discrete-time systems. For a plant with a right-coprime factorization, a stabilizing
configuration is proposed. A class of systems with right-coprime factorizations is also introduced.
In a more general set-up Vidyasagar [Vid.1] has also proposed a stabilizing configuration for a
plant with a right-coprime factorization (see Fig.4 with u,=u;=u,=0). A right factorization of
a nonlinear time-varying continuous-time system has been recently obtained [Des.7].

- In Section 1 we show that if a nonlinear (time-invariant or time-varying, continuous-time or
discrete-time ) §y(P,C) is well-posed and stable then the plant P and the compensator C have
right factorizations. In Theorem 1.9 we show that if either P or C has a normalized right-
coprime factorization, then the well-posed S,(P,C) is stable if and only if the pseudo-state map
is stable. '

In Section 2 we show that all plants which a:e stabilizable by incrementally stable compen-

sators have normalized right-coprime factorizations.

In Section 3 the factorization approach is used in simultaneous stabilization results.
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Section 1

1.1 Notation

Let T € R andlet V be a normed vector space. Let .
E=(FIF:T>V)

be the vector space of V-valued functions on T. For any T e T, the projection map
7 : § - { is defined by
| F(t) tsT,teT
IIpF(t) =
Ot ©T,teT,
where O is the zero element in {. Let A < { be a normed vector space which is closed
under the family of projection maps {Ily }yrqot. For any F € A, let the nom
N II.,F Il :T—>IR, beanondecreasing function. The extended space A, is defined by
Ao={Fel | YTeT, IlF e A)
Amap F :A, = A, issaid to be causal if and only if forall T € T, Ilr commutes with
IIzF ; equivalently,
Iy F =y F Iy
A feedback system is said to be well-posed if and only if for all possible inputs, all of the
signals in the feedback system are determined by causal maps. .

The Unity-Feedback System S;(P,C)
Consider the unity-feedback system S (P, C) in Figure 1 : the plant and the compensator
are given by causal maps P : A;, &> A, and C : A, — A, , respectively. A; and A,, are

input and output extended spaces.



Figure 1  The feedback system S (P, C)

1.2 Definition : ( Well-posed S,(P,C) )
The feedback system S (P, C) is said to be well-posed iff there exists a causal map H,,,
such that
Hy iApe XAy Ay o Heyi(uyo ) > ey . (1.1)

(]
If $1(P,C) is well-posed then for all inputs (uq,u5), the signals e .e'z,yl ,y2 are
uniquely defined by the causal maps H,, , H,,, H, ,H,,, respectively.

Now we introduce a bounded-input bounded-output stability notion.

13 Deﬁn‘ition : ( Stable Map )

A causal map H : A, XA, — A, is said to be stable iff there exists a continuous nonde-

creasing function ¢y : IR, = R, such that
Vg u) e AgxA;y HH@Lupl S dg(llugN+lull) . (12)

O
A stable map need not be continuous. Note that the composition and the sum of stable maps

are stable.

14 Definition:  ( Stable S,(P,C) )

A well-posed S (P, C) is called stable iff there e:éist causal stable maps H,, , H,,, such

ey ? ez

that

Hy iAje XA = Ay, Hy i (ug,u) b ey (1.3a)



and
He,:Aoe XAy > A, , H i (uy, u) b ey . (1.3b)

O

A well-posed S (P, C) is~stable if and only if all signals e;,e2,y;,y2 are uniquely
determined by the causal stable maps H,,, H,,, Hy, , Hy, , respectively. In the linear case, the
maps in eqns. (1.3a,b) are linear over the product space ; H,,(u1,u2)=H,. (uy)+
Hepu(u2) , H,(uyu2)= H,,, (1) +H,,,,(u3) . Hence one has to check the stability of four

‘maps [Vid.2).

In the linear time-invariant case, the factorization approach is a major tool in the stability
analysis of S ;(P, C) . Since the stable-factor factorization relies on transformation techniques,
these tools cannot be readily extended to the stability analysis of a nonlinear S (P, C) . Follow-
ing the linear theory as a guide and Vidyasagar [Vid.1] and Hammer [Ham.1,2], we introduce

. right factorization concepts for nonlinear systems in terms of stable maps and set theory.

1.5 Definition : ( Right Factorization )
A causal map P :A; = A,, is said to have a right factorization (N, ,D, ,X,) if and

only if there exist causal stable maps N, , D, , such that
@ D,:X, < A;, = A, isbijective and has a causal inverse ,
and (i) N, :X, = A, , with N,(X,]1=P[A;] ,
and (iii) P=N,D;! .

Xp is called the factorization space of the right factorization (N, , D, , X),).

1.6 Theorem:  ( A necessary condition for stable S;(P,C) )

Let P and C be causal maps such that S (P, C) is well-posed and stable. Then the maps P

and C have right factorizations.

Comment : Note that this is a generalization of the well-known result in the linear time-



invariant case [Des.1 p.85].

Proof of Theorem 1.6 : By assumption, H,,,H,,, H,

v. » Hy, are causal stable maps. Let

D, =H, |ue0=(U+PC)' and

D, :=H,, |0 = ( +CP)™!
D;:X; =Ape > A, and D, : X, =A;, = A;, are causal stable bijective maps with causal

inverses. Let
N, :=Hy, |uye0 = CU +PC)! and

N, =Hy, lus0 = P(I +CP)™!
Ne:X.—>Ap . Np:X, > A, are causal stable maps . and N, [X.]=C[A,],
Np[X,1=P[A;] by construction. By calculation, P =I\I,,D,,‘1 and C =N.=Dc‘l ; therefore
(Np » D, , X)) is aright factorization of P and (N, , D, ,X,) is a right factorization of C .
a

By Theorem 1.6, any causal plant P which can be stabilized by S (P, C) necessarily has
a right factorization. However, this result is not only due to the configuration of S ;(P,C). The
idea in Theorem 1.6 can be generalized to feedback systems other than § 1P, C). As an illustra-

tion, consider the following example.

1.7  Example : Consider the system S3(P,V,U,M-D) in Figure 2 , where
P:Ap—>A,, M-D :A, - A;, ,andV ,U are causal maps over the appropriate extended
spaces. Let the system S3(P,V,U,M-D) be well-posed, that is there exists a causal map H

HiAig XA XApe XAy > Aig XA XAy XApp  H iUy, lg, s, Uug) > €1,Y3,¥v.€9 .
Suppose also that the causal maps ‘

H“:A;c XA;‘ XA, XA;e _)Aie R H,,:(ul,uz,u3.u4) - e,

and Hy,:A, XA, XA, XA, = A, v Hy,:(uy,uz,u3,ug) By,

are stable. Then the plant P has a right factorization.



M-D r

Figure2 The feedback system S5(P,V,U,M-D)
For uy=u3=u4=0,any e, e A, uniquely determines y,=UPe, € A;, . By well-
posedness, y, determines e; uniquely. Then u;=e;—e; € A;, is uniquely defined. Hence

chllh.u:.luﬂo :Aie —)Az'e iSbijeCtive‘ Since Hy: |l4|8u;ﬂlu-0 = P ch |u;au;au.=0 ’
(Hy; |u.-u;au.-00ch lu;-ugnuqao’Aic)

is a right factorization of P .

Now we introduce the right-coprime factorization concept for causal nonlinear maps.

1.8 Definition : ( Normalized Right-Coprime Factorization )
W, , D, ,X,) is said to be a normalized right-coprime factorization of P : A;, — A,, iff
@) N, ,D,,X,)is aright factorization of P
and (i) there exist causal stablemaps Up, : A, =X, and V,:A;, — X, suchthat

U, N, +V,D, =Ix, (1.4)
where I, denotes the identity map on X,, .

a
A similar definition is stated in [Vid.1]. In [Ham.1], the right-coprimeness notion is intro-

duced for discrete-time systems, where condition (ii) of Definition 1.8 is interpereted as : given
any "unimodular” M, there exist causal stable maps Up and V, suchthat U,N, +V,D, =M .

Note that this statement implies eqn.(1.4). However the converse need not be true since nonlinear



maps are not necessarily right distributive.

The following theorem gives a necessary and sufficient condition for stability of a well-
posed S (P, C) provided that either P or C have nommalized right-coprime factorizations.
Since the roles of P and C can be interchanged, we state only the case where C has a normal-
ized right-coprime factorization. Clearly, any causal stable map C : A,, = A;, has a normal-

ized right-coprime factorization, namely (C ,1,, ,Aq ).

19 Theorem: ( Necessary and sufficient condition for stable S;(P,C))

Let C : A, = A;, have a nomalized right-coprime factorization (N, ,D.,X.) and

§1(P,C) be well-posed. Let £, € X, be defined as in Figure 3 . Then

§1(P, C) is stable if and only if there exists a causal stable map Hg :(uy,u) b &

u;

.fc

u, + €; D -1
Cc

N‘ yz+*¢zlP Y,

c

v

Figure3 S§,(P,N.D;1)

By assumption, there exists a causal and stable map H g :(u1,uz) > & . Since
(N.,D, ,X.) isaright factorizatién of C,
H, (uy,up) = D.Hg(u,,ur and
Hy(uy,u3) = us+NHe (uy,uy
are causal stable maps. By Definition 1.4, S,(P, C) is stable.

" only if

By assumption, H,,, H,, are causal, stable maps. Since (N, D, ,X.) is a normalized
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right-coprime  factorization of C, for any (e;,y;) € Ase X A, such that

y1=Pey=N.D; e, there exists aunique &, € X, such that
D& =¢; (1.53)

N&:=y1 ., (1.5b)
and there exist causal stable maps U, : A,, =X, , V.:A; — X, suchthat

U.N, +V.D, =Iy, . (1.6)

From equations (1.5a,b) and (1.6) we get
8 =UNcE + VD&,
=UHyuy,u)+VH, (uy,u2)
=Uc(H,(uy  u)—uz)+V.H, (u,,u2)

= Hg(uy,u2 1.7
The map Hg, defined in equation (1.7) is causal and stable.

. -0
The idea in Theorem 1.9 can be generalized to well-posed feedback systems other than

§1(P,C). Clearly, the necessity part requirés only that the well-posed feedback system has
causal stable maps H,, and H, . Note that the stability assumption on such a feedback
configuration can be a stronger requirement. The sufficiency condition is clearly a prope@ of the
feedback configuration. It holds for S;(P,C), but it may also hold for other well-posed sys-
tems. To illustrate the idea we give the following example. The example deals with the causal
plant P . Hence 'Ihedrem 1.9 should be interpreted after suitable subscript interchanges :

cop,1e2 and o i .

1.10 Example : Consider the well-posed system Sg(Npr-l,.Vp, Uy, M-D,) inFigure 4.
Let the causal map P :A; - A, have a normalized right-coprime factorization
(Np +Dp  A;). Let Up:A, = A, and V,:A;, - A, be causal stable maps such that
equation (1.4) holds for X, =A;, . Then S3(N,,DP". Vp, Uy, M=D}) is stable if and only if the



causal map He, is stable.

Uy Uy
u, N e ,l’ & D.] fp N Y o« x* y,‘
X i ’ ‘e o~ -

Figure4  The feedback system S3(N,D,", V,, Uy, M~D,)

The feedback system is stable if and only if the causal maps H, ,H,,,H, and H, are

stable. If the maps H,, and H,, are stable, then the map
He(uy,uz,u3,u4) = UpHy(uy uz,u3,u8) + Vp [He (1,83, u3,u4)+usz]
is causal and stable. Conversely, if there exists a causal stable map Hg, then the maps
| Ho(uy,uz,u3,u4) =Dy He (uy ,u2,u3,u4) = Uy
Hy(uy,u2,u3,u8) =N, He (uy,u2,u3,uy)
Hy(uy,uz,u3,u9) =V, H, (y,u2,u3,uy)

Hy Wy, uz,u3,u9)=U, [Hy(uy,82,u3,u4)+us3)
are causal and stable since U, and V, are causal stable maps. Hence the system in Figure 4 is

stable.

0
The Small Gain Theorem [Des.1, Zam.1] can be considered as a corollary to Theorem 1.9.

1.11 Corollary : ( Small Gain Theorem )

Let P ,C be causal stable maps with the property that for some nonnegative Y, , ¥ , B, ,
Bc, for all x € R,, ¢p(x) =Y%x+B, . ¢c(x):=v.x +B. (see equation (1.2) ) . Let
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S$1(P,C) be well-posed. Then S (P, C) is stable if ¥, <1.

Proof:

Since C isstable, (C ,/,, ,A,) is a nomalized right-coprime factorization of C . By
setting €. :=e,, a standard calculation shows that if Y7Y. <1,then Hg, is stable. By Theorem
1.9, we conclude that S (P, C) is stable.

a
A generalization [Vid.1] of the unimodularity concept of linear time-invariant systems is

introduced next,

1.12 Definition : ( Unimodular Map )

A causal stable map H :A, = A, is called unimodular iff H is bijective and

H1:A, = A, is causal and stable.

1.13 Corollary :

Let S4(P,C) be well-posed, stable with the maps P and C causal and stable. Then
(I +PC) is unimodular. .

Comment : If either P or C is not stable, (I +PC ) need not be stable; however

(I +PC )™ is always causal stable if S (P, C) is stable.

Proof of Corollary 1.13 : By assumption, (/ +PC ): A, — A, 1is causal and stable.
Since S,(P,C) is well-posed, (I +PC ) is bijective and has a causal inverse. (C ,1,, ,Az)
is a normalized right-coprime factorization of C ;hence & :=e,. The stability of S(P,C)
and Theorem 1.9 imply that

(I+PC Y = H,, lus0 : 41 > €}

is stable.
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Section 2

Theorem 1.9 and the two corollaries are due to the asumption that either C or P have
normalized right-coprime factorizations. The following theorem establishes a class of systems,
not necessarily stable, which have normalized right-coprime factorizations. First, we state an
incremental stability definition [Saf.1, Des.1, Des.2] which generalizes an important property of
stable linear maps : regardless of the input, the deviation at the output due to a bounded deviation

in the input is bounded.

2.1 Definition : ( Incrementally Stable Map )

Acausalmap H :A, XA, = A,, iscalled incrementally stable iff H is stable and there

exists a continuous nondecreasing function ¢ 5 : R, = R, such that
Y.,u) e A,xA, , Y (Av,Au) e AXA;,
WHE+Av, u+0u)-HE,u) Il < dxz(H Av Il + Il Au 1l )
2.2 Theorem: ( Normalized right-coprime factorization and stable S;(P,C) )
Let S4(P,C) be well-posed. If P is incrementally stable, we have :

.§1(P, C) is stable if and only if C has a normalized right-coprime factorization of the

form (N, ,Iy,—PN,,X. C A, ) forsome causal stable map N, from A, into A .

Comment : Theorem 2.2 gives a parametrization of all stabilizing compensators C pro-
vided that the plant is incrementally stable. This theorem [Des.2] extends the Q-parametrization
result of the linear case [Zam.2] . It is interesting to note that Theorem 2.2 motivates a normal-

ized right-coprime factorization approach.

Proof of Theorem 2.2 ;
" onlyif "

Since § (P, C) is well-posed and stable, as in Theorem 1.6, the maps
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D, =H, l o= (I +PC )Y :A,, = Ape »
N =Hy, | a0 = C(I1+PC Y :A,, > A,
are causal stable maps. (N, D, ,A,, ) is aright factorization of C . For the causal stable maps
P :A; = A, and 1, weget
PN, +I,D.=PC(I+PCY'+(I+PC)Y'=1,, . @.1
From equation (2.1), we conclude that D, = I - PN, and that (N, ,/ -PN, ,A,.) is a nor-
malized right-coprime factorization of C .

”" if "

By assumption, S (P, C) is well-posed and C has a normalized right-coprime factoriza-
tion (N, ,D, ,X;) with PN, +D, =Ix, . By Theorem 1.9, it is sufficient to show that He, is
causal and stable. Writing the summing node equations in Figure 3 , we get

D& = ulfP(NcE.»¢+u2) . (2.2)
By well-posedness, for any input (u;,u42) € A, XA;, equation (2.2) determines &,
uniquely; indeed
& = He(uy,up) = D7V H, (uy,ud) . (2.3)
Equation (2.3) also shows that Hy, is causal.

Adding PN_E. to both sides in equation (2.2) and using the normalized right-coprime fac-

torization of C , we get
(D +PN:)E = & = uy + PNE —P(NE. +uz) . 24

Since P is incrementally stable, for some § p
Yy, u) € AgXA; VT €T, WITIpE, 1S 1wy Il + 1| PN,E, —P(N.E, +uz) Il
S"ulll'l'@p(" u 1) ,

hence Hg, is stable. By Theorem 1.9, we conclude that S,(P, C) is stable.

O
Using the incremental stability argument, we show that the unimodularity condition in
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Corollary 1.12 is also a sufficient condition for stability of S,(P,C).

23 Proposition :
Let §4(P, C) be well-posed. If P is incrementally stable and if C is stable, we have :

S1(P, C) is stable if and only if (/ +PC ) is unimodular.

Comment : Note that the test for stability of a two-input two-output system reduces to that

of a one-input one-output system.

Proof of Proposition 2.3 :

" only if

Follows from Corollary 1.12.

"ipn

By assumption, (/ +PC ) is unimodular. Since C is stable. (C,I1,A,) is anormal-
ized right-coprime factorization of C ; hence e; :=E. ( see Figure 3). By Theorem 1.9, it
suffices to show that the causal map H,, is stable. Writing the summing node equations in
Si(P,C),weget

ey1=u=-P(Cey+uy) . 2.5)

Adding PCe; to both sides in equation (2.5), we get

(I+PC)e; = u1+PCey-P(Ce;+uy) . (2.6)
By unimodularity of (I +PC ), e; € A, ifand onlyif (I +PC )e; € A, .From equation

(2.6), by incremental stability of P , we get

Vu,,u0) € A,xA; VT e T
Q.7
DTy (I +PCey Nl S Wuyg W+ Fp(luyll)

By equation (2.7) , the causal map (u,,u5) > (I +PC )e, is stable, hence H,, is stable.

(]
With all the assumptions made in Example 1.10, provided that u;=u3=u,4=0, it can be
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easily shown that the system S3(N,D,, V,, Up, M—-D,) in Figure 4 is stable [Vid.1] . In the
following example, incremental stability assumptions are made to give a stabilizing configuration

for a plant with a normalized right-coprime factorization.

24 Example : Consider the feedback system in Figure 4 and let all of the assumptions in
Example 1.10 hold. Suppose now that the causal maps D, ,Up,V, and M are incrementally
stable. Then the well-posed feedback system in Figure 4 is stable.

It suffices to show that the causal map
Hg' A XA XA XA, oA, Hg,:(u;.uz,ug.uo g §,,
is stable. Writing the summing node equations in Figure 4 , we get

uy=(M -Dy)[T(uy,uz,u3,u4)] = Dpp~usy, (2.8a)

where

Tur,uz,u3,uq) = ug+Up(us +NE)+V, (D6, —up) . (2.8b)
Adding ME, to both sides in equation (2.8a) gives

ME, = uy+uz+ (ME, —M[T(uy,uz,u3,u9]} +{ Dp[T(uy,uz,us,ud)-D,E, }.(29)

The incremental stability of U, and V, imply that the map I'-H g, » Namely

(T-He )y, uz,u3,uq) = uy+ {Up(Npgp +u3)- Uprép} + {Vp(DpE.ap —uz — Vprép} ’
is stable. Going back to equation (2.9), by unimodularity and incremental stability of M , the
claim follows.
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Section 3

3.1 Theorem: ( Simultaneous Stabilization )

Let P(*, *):A,XA; > A, be causal and incx'erﬂcmally stable. For some fixed causal
C:A,e > A, let Sy(P(v,*),C ) bewell-posedforall v € A.Then

S1(P(vo, *),C) isstable forsome vy € A ifand onlyif S{(P(v, * ),C ) is stable
forall v € A.

Comments :

a) In other words, if we have a family of incrementally stable plants { P(v, * ) }yea

and if one member is stabilized by some C , then the whole family is stabilized by that C .

b)  The one-input one-output plant P(v, *) can be considered as an input-output
description for a fixed parameter v or for a fixed bounded auxiliary input v . In any case,

P(v, - ) is assumed to be a complete description of the plant forany v € A [Bha.1].

Proof of Theorem 3.1 :
" if "
Obvious.
" only if "

By assumption, S(P(vg, * ),C ) is stable for some voe A. By Theorem 2.2, there
exists a causal stable map N, such that (N, ,/ =P (vo,N.(*)), A, ) is a normalized right-

coprime factorization of C .Forany v € A, consider S;(P(v, *),C ) inFigure5:

“ o PN 0T B N, ’éi-P(v,-) L

Figure5 S,(P(v,-),C).

v
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By Theorem 1.9 , it is sufficient to show that the causal map "H g, associated with

$)P(v, *),C) isstable. The summing node equations in Figure 5 give

& = u1+P(vo,NE)-P(v . NE, +up) . G0
Since P(+, ) is incremer;tany stable, equation (3.1) yields
Yuy,u9 e A,xA; ,¥ved,VTeT,
WTIZE, I S Huy N+ Fp(lv—vgll+1lugll).
Hence, Hg, is stable forall v € A. By Theorem 1.9, we conclude that S(P(v, * ),C) is
stable forall v e A.

O
In the case that P(v,*) = I?,,hz., : (u;,v) b y, where ﬁ,, is the restricted

input-output map of an incrementally stable § ,(ﬁ , 6) for some causal f'\ and 6 , the two-step

stabilization results in [Ana.1, Des.3] become special cases of Theorem 3.1 .

The following theorem [Des.2] establishes a necessary and sufficient condition for simul-
taneous stabilization of two plants which need not be members of an incrementally stable family

of plants. Our use of the factorization approach greatly simplifies the proof.

3.2 Theorem: ( Simultaneous Stabilization )

Let P,:A; — A, be causal and incrementally stable. Let S,(P;,C) be well-posed and
stable. ( Hence by Theorem 2.2 , C has a normalized right-coprime factorization
(Ne o1 =P )N, ,A,.) for some causal stable N, : A, > A, ). Let P5:A; = A, be any
causal map such that S(P,,C) and S{(P,—P,,Nc) are well-posed. Then

§y(P2,C) is stable if and only if S;(Po—P, Nc) is stable.

Comment : Note that the causal map P, need not be stable: the perturbation replaces the incre-
mentally stable P, by an arbitrary nonlinear P, which is only subject to S{(P,—P, Nc) be

stable in order to have S ;(P,, C) stable.
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Proof of Theorem 3.2 :
Consider Figures 6a and 6b .
3 "
u . -1 f * $’
A (I- PI Nc ) NC C . P2 >
Figure6a S§,(P,,C).
A
L]
& é
u, + + * -
: Nc Pz - P} >

Figure6b S;(P,-P,N,).

By Theorem 1.9, it is enough to show that

Hyg is causal, stable if and only if A% is causal, stable .
" onlyif " ‘
By assumption, S(P2~P;,N,) is well-posed; hence the map I-?’é‘ is causal. Writing the
summing node equations in Figure 6b ; we get
E=d1-P2-PYNE+ ) . (32)
Subtracting P INCE from both sides of equation (3.2), we get
U ~PWE =iy +P\(NE+i)-P NE-P(NE+iD) . (3.3)
Let
Fihw XAy > Ao , Fi@), i) b &) +P (N0 VD) +ih9) = PN AR, 1) .

F is causal and stable since by incremental stability of P, ,
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Y@y, € AgxA; VT € T WIIpF@Ry ) NS dy W+ §p (1l £211) .
Then equation (3.3) can be rewritten as
U P W = @it -PoVE+E) . (34)
Comparing the summing node equations of Figure 6a with equation (3.4) and by well-posedness
of S$1(P,,C), we get
Ayl i) = HeF @y 8,0 3.5)
Since ' and Hy are stable maps, H ¢ is stable.
" if "
By assumption, S(P;,C) is well-posed; hence H is causal. Writing the summing node

equations in Figure 6a , we get

E=u+P\NE-P,NE+uy . 3.6
Let '
F iAo XAy oAy o Fi(uyu B uy+P \N.He(u, yu)—P (NHe(uy,uz)+uz (3.7
F is causal and stable since P, is incrementally stable. Adding and subtracting P {(N.& +u>)

on the right hand side of equation (3.6) and using equation (3.7) , we get

E=u +PNLE=P(NE+up)—(Py—PINE+up)

(3.8)
=F(uy,up=Pa=P)(NE+uy) .
Comparing equations (3.2) with (3.8) and by well-posedness of S,(P,—P,,N,), we get
| Hyuy,up) = BCF 1.0 uz) . 39)
Since F and ﬁ’é are stable maps, H is stable.
0

Consider the feedback system S5(AP,N,, ,Dp) shown in Figure 7, where AP : A;, — A, is
causal; N, :A,e = A and Dy : A, = A, are causal stable maps (not necessarily linear).
We assume that S,(AP, N,, , D) is well-posed.



.uJ

Figure 7 The feedback system S (AP, N, , Dp)

33 Lemma:

The well-posed system S2(AP, N, ,Dp) (Fig. 7) is stable if and only if the causal map
H%,:(uy,u3,u3) > y; is stable.

Proof :

Immediate, since N, ,D, are stable maps.

O
Theorem 3.4 below motivated by [Des.4], states conditions under which a linear compensa-

tor C stabilizes the one-input one-output plant P + AP provided the linear system S(P,C)

is stable.

34 Theorem : ( Robustness of Stable Linear S;( P, C) under Nonlinear Perturba-
tion )

Let P:A, > A, and C:A, — A, be cavsal linear maps where P =Dy'Ny,
C =N,D;' and NpiNep +DpyDep =1 . Npj: Aie > A, , Ner i Ape = Ay, are linear causal
and stable. Dp;: A, = Ase » Dot Aye = A, are causal linear bijective stable with causal
inverses. Let AP :A; — A, be a causal map and let S3(AP,N ,Dp) , Si(P +AP,C)
be well-posed. Then

S (P +AP,C) isstable if Sy(AP,N,, ,Dp) is stable.

Comment : Note that P and C are linear, AP need not be linear;, P ,C ,AP are not

required to be stable.
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Proof of Theorem 3.4 :

By assumption, C has a normalized right-coprime factorization (N, , D., , A,.) . Then
by Theorem 1.9, S(P + AP, C) is stable if and only if the causal map H ¢ defined by equation
(3.10) is stable :

D,&-uy+PN,E+Pus+AP(NE+u) =0, (3.10)
where we used the linearity of P . Note that equation (3.10) is of the form F(E)=0 for fixed
uy and u;. Forany map G with the property that G(p)=0 if and only if p =0, the solu-
tions of GF(§)=0 and F(§)=0 are identical. The map G need not be bijective, however if
G is chosen to be linear then it must be bijective. Choosing G =D, and using linearity, we

get an equivalent equation for equation (3.10) :

DP1D¢,§ = Dpu, -NP,N,,,E, = Nyuz—Dp AP (N,E+uy . 3.11)
Since NN, +DyuD, =1 , we conclude that Sy(P +AP,C) is stable if and only if the Hy

map defined by the equation (3.12) is stable :

§ = Hg(ul yU2) = D,,,ul—Np,uz-Dp,AP(Nc,§+uz) . (3.12)
Let F:Ape XAy > A, , F:(uy,up) b Dpjuy = Nyu, . Clearly F is causal and stable.
By assumption S;(AP,N,, ,Dp) is stable, hence H 2,, ly,=0 is a stable map. A simple com-

parison of equation (3.12) and the summing node equations in Figure 7 , yields

He(uy,up) = H%, (F(uy,u2),42,0) . (3.13)

Since F and H 2,, are stable, so is H¢ and we conclude that S(P + AP, C) is stable.
O
35 Fact: The converse to Theorem 3.4 holds if P is stable. The proof follows by
Theorem 3.2 since P is incrementally stable by linearity and C has a normalized right-coprime
factorization; hence D, can be chosen to be the identity map, and the third input u3; can be

taken care of in the first input u, .

36 Fact: In the case where AP is stable, S,(AP,N,, »Dp) restricted to the inputs
(F(uy,u)+Dpusz,us,us) is stable if Sy(P +AP,C) is stable. The proof follows by the
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stability of AP and the fact that

H% (F(uy,u)+Dyus Uz, u3) = Hey,up) .



Conclusion

In the linear time-invariant case, right and normalized right-coprime factorizations exist as a
property of the causal map, regardless of the feedback configuration the map is in. When gen-
eralizing these concepts to nonlinear causal maps, we show the existence of these properties as a
result of the specific feedback configuration the plant is in. Although the unity-feedback system
§1(P, C) is of main interest, some of the results can be extended to other feedback systems as

illustrated by examples.

If either the plant or the compensator has a normalized right-coprime factorization, the sta-
bility of a well-posed S (P, C) is equivalent to the staBility of one causal pseudo-state map.

This result is the main step used in all of the simultaneous stabilization proofs in Section 3.

Since the composition of maps is only left distributive over addition, a left factorization
definition, although possible, does not bring an alfemat.ive solution to the stabilization problem as
in the linear time-invariant S (P, C) case. However, as emphasized by Hammer [Ham.1,2,3],
left factorization can be used also to enumarate solutions U . V of the normalized right-coprime
factorization xequfrement UN +VD =1, where (N ,D ,X) is a normalized right-coprime fac-

torization of the map in question.
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