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Abstract

High-beta ballooning modes are studied in an axisymmetric multiple mirror

which is made average-minimum-B with end cusps. Electric and magnetic

field measurements in the plasma characterize the predominant mode as

m = 1. The ballooning character of the mode is determined by measuring

the ratio ofthe mode amplitude nearthe device center to that near the cusp,

and confirmedby measurement of perturbed perpendicular magnetic fields.

Theoretical growth rates arecalculated numericallyusing ideal and resistive

MHD equations for the rigid m = 1 ballooning mode. We find within

experimental error that the m = 1 resistive ballooning growth rate scales

as (P)ll2 for radially averaged {$) &0.07 (on-axis fa &0.15), in agreement
with theory. The observed growth rates also increase with mirror ratio as

expected. Resistive growth rates calculated numerically agree reasonably

well with experimental observations assuming a fixed time for growth of
the mode.



1 Introduction

The experiments discussed in this paper were developed as part of an ongo

ing study of plasma stability in the Berkeley Multiple Mirror Experiment

(MMX) [1], [2]. Previous experiments demonstrated stabilization of a ten-

meter multiplemirror to MHD flute interchange modes by the use of linked

quadrupole fields to produce an average- minimum-B magnetic well [1],[2].
This configuration was reported to be stable against ballooning modes for

$ < 0.25 and mirror ratio Rm < 5 .

Recently attention has been given to axisymmetric mirror systems be

cause of the simplicity of design and construction and favorable radial

confinement properties. The experiments described here examine the sta

bility of an axisymmetric multiple mirror terminated with end cusps to

provide stabilizing good curvature. Stability is examined oyer a range of

plasma beta (0 & 0.30), curvature drive (Rm & 7), and system length

(225 < L < 450 cm).

Experimental data on MHD ballooningmodes is limited, although these

modes are believed to have been observed in many experiments. Instabili

ties driven by rotation in linear theta pinches have been observed to have

azimuthal and radial mode numbers m = 1 and n = 0, respectively [3].

Using finite Larmor radius fluid equations, Freidberg and Pearlstein [4]

showed that a rotationally driven m = 1, n = 0 ballooning mode can be

theoretically unstable for any beta and has the lowest threshhold rotation

frequency CIr for instability. Such modes should not be confused with the

faster curvature-driven modes which constitute our primary observations,

but might be observed late in time.



Idealand resistive MHD ballooningmodes wereobserved by Hatakeyama

et al [5] in a simple magnetic mirror with a conducting endplate. They ob

servea standing wavein the mirrorcellwith azimuthal mode number m = 2

which increases in amplitude as j3 increases. The direction of azimuthal

propagation changes as /? approaches /?c, the critical value for ideal MHD

instability. The authors associate this change of rotation with a transition

from the resistive to the ideal MHD regime. We observe both directions of

azimuthal propagation but are unable to determine any relationship with

other plasma parameters.

The ballooning m = 1 displacement mode is widely considered the most

dangerous for mirror-confined plasmas. Modes with higher azimuthal num

bers tend to be stabilized by finite Larmor radius effects (FLR), which take

into account the unequal drifting of ions and electrons in the non-uniform

electric fields. Kaiser and Pearlstein [6] have shown that FLR should affect

the m = 1 mode by keeping the displacement radially rigid. Kang [7] has

developed ideal and resistive MHD computer codes for the rigid m = 1

ballooning mode in the Berkeley Multiple Mirror. The numerical codes are

based on the fluid equation of Lee and Catto [8], and include the effects

of non-paraxial curvature in the cusp. These codes are used to calculate

theoretical growth rates for comparison with experiment.

Ballooning instabilities have been studied in the MMX using the same

plasma sourcesbut different magnetic field configurations than considered

here [1], [2]. Depending on the configuration, critical /?'s were found, for the

onset of ballooning, that vary from 5% for the most unstable configuration

to greater than 25% for the standard multiple mirror configuration. The



m = 1 azimuthal mode was predominant, with some admixture of m = 2 .

The experimental results were compared with predictions from ideal MHD

theory. The theoretical results generally predicted somewhat higher critical

betas for the m = 1 mode than those observed. Because of the complicated

nature of the magnetic field configuration it was not possible to check the

scaling of the growth rate with experimental parameters.

2 Experiment

The high-/? ballooningmodes areexcited in the MMX using a variablenum

ber of cells (see Figure 1). The MMX is described fully in references [2],[9],

and [10]. The axisymmetric mirror cells are made average-minimum-B by

the use of end cusps, which are formed by using reverse current in ordinary

mirror coils. The cusp coils produce a peak field on axis of 3 kG opposite to

the 1.5 kG solenoidal field. The mirror ratio is varied up to a mirror ratio

Rm « 7 . Hydrogen plasma is injected from both ends of the axisymmetric

mirror configuration through the solenoid and rising mirror and cusp fields

using a conical theta pinch and a Marshall gun. The counterstreaming

plasmas thermalize to yield 5 £ Te & 15 eV, n^lx 101S cm"3, and on-

axis values of P £ 0.30 . The two-source injection is timed to yield peak

plasma density and pressure in the center of the multiple mirror region.

We generally observe that, as the plasmas interact, the ion-saturation cur

rent (~ nT1*2) peaks about 10 /xsec earlier than the diamagnetic signal

(W ~ Pl/B2), This is because the plasma flow velocity affects the ion-

saturation current collected but the flow energy does not contribute to j3.

As the counterstreaming plasmas interact via collisions, the parallel flow



energy becomes isotropic within 10 fisec. Subsequent (0) decay times vary

from 5-50 fjisec, with high (/?) decaying faster.

In the experiments, the time evolution of plasma £, radial density pro

file, and plasma motion are measured for each shot. The electron tempera

ture, flow energy, and electric and magnetic field fluctuations are measured

only on selected shots to characterize the plasma behavior. The diagnos

tics used are electric probes operated in various regimes, magnetic induction

probes, and compensated diamagnetic loops.

Our principal diagnostics for monitoring plasma motion are arrays of

Langmuir probes which measure ion-saturation current at different loca

tions in the plasma. For a known plasma profile (we fit to a modified

Gaussian exp|—r2/rj|), an array of four probes at 90° intervals provides
information about the m = 1 and m = 2 components of the plasma motion.

By using two arrays at the same axial position but at different radii, the

plasma radius rp (for the Gaussianmodel) can be determined. Using Lang

muir probe arrays at different axial positions measures the z-dependence of

the plasma motion so that flute modes (with amplitude independent of z)

are distinguished from ballooning modes (z-dependent). Our method for

measuring plasma displacement, using probes at r < rp, ensures that we

observe global plasma motion rather than edge fluctuations which might

be associated with drift waves.

The electron temperature was measured on some shots using an array

of Langmuir probes with different bias voltages to detect the exponential

change of electron current as a function of voltage due to the Boltzmann

factor exp{e(V - $p)/T}. Themeasured temperature is typically between



5 — 15 eV at the time of peak density and 20 /xsec later is consistently

about 5 eV . On the basis of this data, we decided to use T = 5 eV for

our numerical calculations. We measure values of /? & 0.30, so the density

n £ 2 x 1015 cm"3. This is roughly consistent with our peak ion-saturation

current measurements (nT1*2).

We compare the plasma centroid motion at different axial positions to

distinguish between flutelike and ballooning instabilities. The calculation

of the centroid position is described in Appendix A . Figure 2 shows cen

troid motion (1) in a mirror cell and (2) near a cusp. During the first

twenty microseconds the plasma centroid in the unstable mirror cell moves

a distance on the order of a plasma radius, while the plasma centroid near

the cusp is essentially fixed, clearly indicating ballooning motion.

Floatingpotential measurements, described in Appendix B, are used to

calculate an E x B drift velocity which is compared to the velocity obtained

from the Langmuir probe array measurements. As shown in Figure 3, the

two measurements of plasma motion are in good agreement until the plasma

moves far off center, when neither method can be considered reliable. The

agreement between these two methods of calculating plasma motion iden

tifies the mode as an m = 1 displacement and verifies the perpendicular

part of Ohm's law v = E x B/B2.

The measurements of the perturbed magnetic field are compared to the

plasma motion calculated from Langmuir probe measurements in order to

determine whether magnetic field line bending is produced by the mode as

predicted by ideal MHD theory. Figure 4 shows a comparison of perturbed

magnetic field and plasma motion for a flute-unstable plasma, which should
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not haveany associated magnetic perturbation. Figure 5 compares the per

turbed magnetic field and the plasma motion for a plasma stabilized against

flutes (ballooning). A good correlation between the magnetic perturbation

and the plasma motion is observed, indicating MHD ballooning. However,

the magnetic field perturbation decays after t « 50 /isec, indicating finite

resistivity.

The m = 1 displacement { is determined using arrays of eight and

four Langmuir probes. The driving force of the instability is, in the low-

0 approximation, (pu 4- p±)VB/B . We therefore expect the instability

to grow while flow energy (pa) is being converted to diamagnetism (0 oc

pj.). Theoretically, it is the radially averaged pressure which drives the

instability. In principle this average should be taken over the region which

moves rigidly as the instability grows. We estimate this region to extend to

within 0.5 cm of the wall, so we take the plasma boundary to be r& = 4.0 cm.

We generally observe a peak in ( within 10 /xsec after the 0 peaks.

Afterward the motion becomes quite complicated. We restrict our observa

tions to the 10 /xsec time interval after 0 peaks. Theoretical growth rates

are calculated using the peak value of 0.

The total plasma energy is decaying during the time that parallel flow

energy is being converted to flow energy. We therefore expect calculated

growth rates to be slightly underestimated. Experimental conditions such

as initial plasma temperatures above 5 eV or the lack of a steady-state

equilibrium may either increase or decrease the actual growth rate of the

instability relative to theoretical expectations.



For computing the plasma displacement {, the plasma radius is mea

sured at the time of peak /?, and assumed to remain fixed thereafter. This

assumption reduces noise introduced by distortion of the plasma profile as

it moves toward the chamber wall.



3 Results

The parameters which we use for comparison with theory are the plasma

displacement {, the radially averaged beta (/?), the ratio of pressure in the

central mirror midplane to that in the cusp pm/Pc the mirror ratio Rm,

and the number of mirror cells Ne . The experimental values of {0), Pm/Pc,

Nei and Rm are used to obtain a theoretical growth rate jt • The plasma

is assumed to be injected with a small but finite initial m = 1 displacement

(o which grows exponentially (growth rate assumed constant) while pB +p±

is large.

Numerical calculations used for comparison with experiment are per

formed using ideal and resistive ballooning codes developed by Kang [7].

Because FLR tends to stabililze modes with radial or azimuthal variation,

the least stable mode is assumed to be a radially rigid displacement of the

plasma (uniform for fixed z). The magnetic field line curvature is calculated

in the paraxial limit (dB/dr > dB/dz) except in the cusp region, where

the paraxial approximation is invalid. A model of the cusp contribution

to the curvature drive developed by Kang assumes that the cusp contains

a 0 = 1 interior surrounded by an adiabatic plasma with constant mag

netic field strength and plasma pressure, and then a vacuum field region.

The endpoints of the calculation are taken to be where the fieldline with

midplane radius of 2.0 cm hits the wall (rw = 4.5 cm) in the cusp region.

Floating end conditions d£/dz = 0 are used (no line-tying). We assume a

uniform temperature of 5 eV and, for the resistive calculation, we use the

corresponding resistive decay time tr = 43/isec. The solenoidal magnetic



field is 1.5 kG, and the mirror ratio is varied up to Rm « 7 . The theoreti

cal model assumes a Gaussian profile with plasma radius rp = 2.5 cm and a

cutoff at n = 4.0 cm. Wall effects are not included. The plasma pressure is

assumed to fall in steps, with a constant ratio at each mirror moving away

from the central cell.

For JVC = 3, with values of central mirror cell to cusp cell pressure ratio

Pm/Pe < 3, critical 0 values for onset of ideal ballooning (tr -*• oo) are

above experimental limits (0C > 0.30 for Rm < 6). For Ne = 1, critical 0

values are 0C > 0.30 for all Rm < 6 with pm/Pe < 10 . Growth rates for the

resistive calculations are plotted as a function of 0 in Figure 6. Resistive

growth rates are plotted as a function of Rm in Figure 7.

Numerically calculated growth rates are used for comparison with the

oretically observed mode amplitudes. The m = 1 displacement f is as

sumed to grow at a constant (or average) rate7 for a fixed time to? so that

f = foexp {yfQ} or equivalently ln{ = ln£0 + 7*o • By finding £0 experi

mentally (the intercept of a plot of lnf versus 7*0), we can obtain growth

rates from experimental observations of mode amplitude.

The dependence of ln£ oc yt0 on (#)1/2 with pm/pe as a parameter is

shown in Figure 8. Theoretical curves are drawn for Nc = 1, Rm = 4,

In{0 = —1.45 . This value of f0 was chosen to match the experimental

intercept at (0) = 0. A least-squares linear fit gives lnf = (—1.45±0.31) +

(7.1 ± 1.2) (0)ll2 . The exponent of {0) in the expression lnf = a + b{0)a

was determined to be a = 0.44 ± 0.16, in reasonable agreement with

the theoretical expectation a « 0.50 . The procedure used to obtain this

estimate of a is described in Appendix D . Figure 9 shows the scaling of In £

10



with mirror ratio Rm for Ne = 1, 0.068 < (0) < 0.108, and 1.0 < pm/Pc <

3.0 . A theoretical curve with {0) = 0.09, pm/pe = 2.0, t0 = 10 /^sec,

Info = —1.0 is shown for comparison.

Plotting the data points against the theoretical growth rates calculated

from Rm, (0), and 1.0 < pm/pc < 3.0 gives Figure 10, which agrees with

theory for to = 9.1 ± 1.7 /usee. The slope to was calculated using weightings

determined from estimates of experimental statistical errors.

With Ne —3 (three mirror cells), some shots are observed to have flute

like behavior, classified by large displacement in both the central mirror

cell and in the midplane near a cusp ((e) such that £m/€c < 1.5 . The

flute shots are excluded from the following analysis. The plot of In £ versus

(0)1'2 for Ne = 3, Rm > 3.0, and 1.0 < pm/pc < 3.0 is shown in Figure 11 .

A least-squares linear fit gives ln{ = (-1.89 ± 0.53) + (11.0 ± 3.5) (0)1'2.

Comparing with the single mirror cell case, three cells have slightly higher

growth rates and lower offset due to fo . However, one standard deviation

variation in either the intercepts or slopes would cause the data to overlap.

Forthree cells, a largeroffset would be more in agreement both with theory

and with the single cell results. The theoretical curves drawn have Rm = 4,

Info = —1.4, and pm/pc = 1, 3. Figure 12 shows a graph of lnf versus Rm

for JVC = 3, 0.017 < (0) < 0.041, and 1.0 < pm/pc < 4.0 . A theoretical

curve with (0) = 0.027, pm/pc = 2.0, tQ = 10 /xsec, and Info = -1.0 is

drawn for comparison.

Using the experimental parameters to calculate theoretical growthrates,

we get Figure 13 for 1.0 < pm/pc < 3.0. These points agree with theory for

to = 11 ±4/zsec.
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The experimental values for t0 obtained from the slope of lnf versus jt

are in good agreement for Nc = 1 and Ne = 3, which is expected because

radial losses are dominant. Both values of to are close to the assumed value

of 10 jtsec, justifying the assumption of constant growth rate during the

beta peak. Measurement uncertainties can account for a significant part

the scatter, implying that the spread in f0is smaller than its average value.

For the one- and three-cell configurations, we looked for a correlation

between the direction of azimuthal propagation (sign of 9) and other pa

rameters (0, Pm/Pc 0- Although we observed instances of both 9 > 0 and

9 < 0, there did not appear to be a relationship between the sign of 9 and

the other measured parameters.
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4 Conclusions

Electromagnetic m = 1 ballooning instabilities have been observed in ax

isymmetric multiple mirrors stabilized by end cusps. The m = 2 mode is

not observed except in conjunction with m = 1, consistent with predictions

of finite Larmor radius magnetohydrodynamic theory. The observed mode

is a radially global displacement of the plasma satisfying v = E x B/B2

with E the measured instability electric field. The magnetic perturbation

Bx, resulting from magnetic field line bending, is measured and found to

be consistent with the observed ballooning. The magnetic perturbation

decays faster than the plasma displacement because of finite resistivity. In

stabilities are observed at values of (0) well below the critical value (0C)

for ideal MHD ballooning. Growth rates are large compared to the resis

tive decay time tr. The experimental results are compared with numerical

calculations from a resistive MHD ballooning code.

For a single mirror cell stabilized by end cusps, the natural logarithm

of the mode amplitude lnf (oc 7) is found to increase with the radially

averaged beta (0) in the central cell. The dependence is lnf oc (^)°-44±01«>

in good agreement with the theoretical expectation 7 ~ (0)1^2 . Taking

the experimentally observed amplitude ln{ oc 7*0, where t0 is the time for

which the pressure is sufficientlyhigh that the mode is growing, good agree

ment with theory is obtained for constant to = 10 /isec. This agreement

with theory is surprisingly good considering the simplifying assumption of

constant growth rate over a fixed time interval.

Experimentally observedmode amplitudes increasewith mirror ratio as

expected, with weak dependence for Rm ~ 3, and with weak dependence
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on Pm/Pc • No significant dependence of ballooning growth rate on system

length was observed, but flute-like instabilities were often observed with

three mirror cells but not with one. This lack of length dependence for

ballooning is not surprising since the plasma pressure is usually strongly

peaked in the central cell.

The resistive decay time scales like rj (r& is the radius out to which

the mode is rigid), so resistivity is less important in devices with larger

plasma radii. The dimensionless quantity tr7mhd gives an indication of

the importance of resistivity. In our experiment tr7MHd « 5 • Since tr &

<7„ ofi T3'2 and 7mhD o* Tl/2, it follows that tr7MHd «* T2 . This indicates

that resistive effects would not be of great importance in high temperature

devices. For example, at T = 50 eV, tr7mhd « 500, giving a growth rate at

0 as 0.1 0e of 10% of the growth rate at 0 = 0e.

A Calculation of Plasma Motion

Eight Langmuir probes span two circles of radii rx and r2 at 90° intervals.

The plasma profile is assumed Gaussian in each of two dimensions, with

elliptical contour surfaces:

/ s J (a - so)2 (y-yo)2l /.xn(g,y)=n0exp|-v ^ - ^-^ j (1)
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The eight probes inorder are positioned at (x, y)=(ri, 0),(0, —i"i),(—rx, 0),... (0, r2).

Labelling the probes as in Figure 14, we derive the following:

r, =

r„ =

2(rj - r2)
1/2

ln(ii»3A'5»7).

2(rj-r1V1/2
.ln(«2«4A6«8).

= —

(2)

where e is the ellipticity, which measures the magnitude of the m = 2 mode.

The plasma radius is defined by r2 = rxry . Because non-Gaussian

profiles can introduce spumous ellipticity into the calculation, we set rx —

ry = rp to calculate (x0,t/o). To reduce sensitivity to edge fiuctuations, we

require that the plasma radius be less than the wall radius (rp < rw). We

use only the inner probes to calculate:

Xq

Vo

4ri \j3/

4ri \i2/

(3)

These calculations are relatively insensitive to errors. A miscalibration

of the probes, for example,essentially results in a constant offset of (x0, yQ).

Also, the probes used to measure the centroid motion have rj < rp, so that

only bulk motion on the same scale as the plasma radius is detected (mea

surements are insensitive to edge fluctuations). Ellipticity (m = 2 mode)

is only considered important when the plasma displacement (m = 1) is
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small because non-gaussian profiles make ellipticity measurement inaccu

rate when the plasma is off center. One drawback of this procedure is the

sensitivity to the measured plasma radius, which is not even well-defined

if the density profile is not truly Gaussian. In practice, we use the eight-

probe array to calculate the plasma radius at the time tp where the plasma

0 peaks. The plasma radius is then assumed to be fixed as the plasma

moves, so only the inner four probes are used to calculate £.

B Electric Field Determination

We consider two causes of electric fields in the plasma: (1) a radial am-

bipolar field, and (2) a uniform field which results from charge drifts in

the curved magnetic field. The total potential is a superposition of the

potentials from each of these effects.

Diffusion in the multiple mirror gives rise to ambipolar potentials in

two ways. First, ambipolar diffusion parallel to B produces a positive

potential in the plasma due to the faster escape of electrons. Second, ion-

ion radial diffusion produces a potential minimum on axis, with a radially

inward electric field. Collisions between ions and electrons give rise to radial

diffusion, but do not cause charge separation and therefore do not affect

the radial potential profile.

In order to justify our assumption of uniform temperature in the plasma,

we show that the variations in floating potential in the plasma are due to the

existence of real space potential variations. The observed floating potential

profiles, in particular the scaling with density, can be explained by the

16



following model based on ambipolar diffusion. We assume a quasi-static

situation (d/dt« 0). Collisions between electrons and ions are naturally

ambipolar and do not give rise to radial electric fields. Radial ion-ion

diffusion generates electric fields, and is balanced by electron end loss to

preserve quasineutrality. Only these fluxes are considered in determining

the electric field. The electron momentum balance equation along z is:

- -p. _ enEg - meni/e,u! = 0 (4)
dz

which yields the electron end flux:

r: = ex -j- (5)

The ion flux due to ion-ion diffusion in an azimuthally symmetric cylidri-

cal plasma is given by [12]:

r. - 3„r« u l QUx* 9 ( * *0il (Kirr - g"a«*H* [r n* {™fr)\ (6)

Using quasineutrality V •Te = V •f* gives:

d ( enp n0T 1dn\
dz\ mevW ' mevWndzj

dr\rdr [ dr \rndr)\)

(7)=&tv$,)id fid '
8no

For a given density profile, the potential can be determined by calcu

lating Ex and integrating along z. A precise calculation of the potential

profile requires detailed knowledge of the density profile (accurate for four

17



derivatives). However, by letting d/dr oc l/rp, and d/dz oc 1/L (and using

uu oc Vd oc n), the scaling of the radial dependence of Ez is Ez oc n2/r* .

Since the potential </> is an integral along s of Egi we also have <f> oc n2/?-4, .

If initially the plasma expands radially without particle loss, then n oc r~2

and <j> oc n4 .

In the sharp-boundary limit, the m = 1 instability has a dipole charge

distribution. This results in a uniform electric field Ei across the plasma, so

that the plasmamoves almost rigidly. We assumethat the diffuse-boundary

ballooning mode will also havea rigid radial profile because of FLR effects

[6].

As the plasma position ro = (xo,yo) moves inside the stainless steel

chamber, image charges hold the potential fixed near the conducting wall.

Therefore the shape of the radial potential profile changes as the plasma

moves. This behavior is approximated by assuming that, as the plasma

moves off-center, the change in potential at a fixed point is less than the

change due simply to translation of the profile by a factor (1 — r2/r2 ),

where rw is the wall radius. If the initially centered profile is parabolic:

&(r) = ^> + <rr2 (8)

then the change of potential at a fixed r due to plasma motion is:

A#r)=(l-;J)*(|r-ro|J-rJ) (9)

Summing the initially centered potential profile, the change due to trans

lation, and the instability potential —Ei •r gives:

<f>(r) =fa +*r2 +(l - £\ a(|r - r0|2 - r2) - Ex •r (10)

18



Using eight probes arrayed as in Figure 14, and labelling the potentials

at each point by 0i, 02,. ••» the equations above can be solved to give the

m = 1 electric field independent of 0,-:

(id

Note that if no wall were present we would expect:

0(r) = 0O + <r|r - r0|2 - E! •r (12)

In this case the plasma displacement ro cannot be eleminated from the

equations for 0i, 02, ..., 0s because of the degeneracies (07 —<f>&)jr2 =

(03 —0i)A*i and (08 —0e)/r2 = (04 —02)/**i • The electric fields from

Equation 11 are used to calculate ExB drifts which are compared with

the plasma motion calculated from Langmuir probe ion saturation current

measurements.

Figure 15 shows the time evolution of the ambipolar potential radial

distribution for a stable shot. Measurement of the potential difference be

tween probes at x = —1.0 and x = 0.0 cm as a function of density reveals a

dependence V oc n4 early in time, when radial diffusion is the dominant loss

mechanism. Later, as axial loss becomes more important, the dependence

of floating potential on density is weakened. This behavior, which is ob

served consistently, confirms our model of a uniform-temperature plasma.

The measurements used to determine the electric field are made at small

radii (r < 2.0 cm) where the profile can be approximated by a parabola.
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Figure 16 shows the radial potential profile along x for a flute-unstable

plasma. In this case, the instability has produced an electric field in the

-x direction, resulting in an E x B drift in the —y direction (B is in the

—z direction). Similar results are obtained for plasmas with ballooning

behavior.

C Measurement of Perturbed Magnetic Fields

Ballooning modes are characterized by axial variation of the mode am

plitude. In ideal MHD, the magnetic field lines move and bend with the

plasma, giving rise to a perturbed magnetic field B which is perpendicular

to Bo . For a background field B0 = 2 kG which is bent ~ 2 cm over a

length 100 cm, the perturbed magnetic field will be B ~ 40 Gauss. The

components of this field can be measured and distinguished from the az-

imuthally symmetric background field using compensated magnetic probes

placed 180° apart.

The voltage induced in a magnetic probe with N loops of area A by a

time-varying B field is:

V=-NA?§± (13)
Each magnetic probe consists of 80 turns of wire at an average diameter of

0.106 cm with a length of 0.5 cm. The calculated inductance is L = 1.4 /xH,

and is in agreement with measurements made on a Tektronix Type 130 L-

C meter. The probes were calibrated by measuring the voltage induced

when placed in a solenoid with an oscillating magnetic field and using the
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relationship:

NA =
ljB

The resulting calibration for the two probes used are:

(NA\ = 0.59 turns • cm2
(15)

(NA)2 = 0.57 turns •cm2

To compensate for the different probe calibrations, a voltage divider is used

to decrease the signal from probe #1:

* =2*1 (16)
Ri+Rj 0.59 v J

For Ra = 78 ft, this gives Ri = 2.7 ft, which is the value used in Figures 4

and 5 .

D Beta-dependence of growth rate

The exponent in the expression lnf = a + H0)a was determined by testing

the quality of a linear fit for various values of alpha using the points shown

in Figure 8 except for two points which lie far above the line.

The method used is an F-test, which tests the probability that the

coefficient of a quadratic term c{0)2a is zero. A plot of this probability

P(c = 0) versus a is given in Figure 17 .

We see that at a = 0.44, the probability that the straight line is the

correct polynomial fit is P(c = 0) = 0.94 . Using the level where P(c = 0)

drops by one halfof its maximum value as a measure of acceptable error, we

get a = 0.44 ± 0.16 . This is within a standard deviation of the theoretical

expectation of a » 0.50 .
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Figure captions

1. The Berkeley Multiple Mirror Experiment (top) and axial magnetic

field profile (bottom).

2. Centroid motion for a ballooning plasma instability (1) in a mirror

cell and (2) near a stabilizing magnetic cusp calculated using data

from four Langmuir probes.

3. Velocity calculated from Langmuir probe arrayion saturation current

measurements (light trace) and floating probe array measurements

(dark trace) for a flute-unstable configuration.

4. Perturbed magnetic field (dark) and plasma z-position (light) versus

time for a flute mode.

5. Perturbed magnetic field (dark) and plasma rr-position (light) versus

time for a plasma stabilized against flute modes (ballooning).

6. Resistive growth rate versus beta for Ne = 1, tr = 43 //sec.

7. Resistive growth rate versus mirror ratio for Ne = 1, Pm/Pc = 2,

tr = 43 /isec.

8. Plotof lnf versus (0)1'2 for Ne = 1, Rm > 3.0, and 1.0 < pm/pe < 3.0 .

( is normalized to 1 cm.
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9. Plot of f versus Rm for Nc = 1, 0.068 < (0) < 0.108, and 1.0 <

Pm/Pc < 3.0 .

10. Plot of lnf versus 7T for Nc = 1 and 1.0 < pm/pc < 3.0 .

11. Plotof Ini versus (0)1'2 for Ne = 3, Rm > 3.0, and 1.0 < pm/pc < 3.0 .

12. Plot of lnf versus Rm for JVC = 3, 0.017 < (0) < 0.041, and 1.0 <

Pm/Pc < 4.0 .

13. Plot of ln{ versus 77 for Ne = 3 and 1.0 < pm/pc < 3.0 .

14. Arrangement of 8 electric probes. Typically r\ = 1.5 cm and r^ = 2.5 cm.

15. Floating potential profile for a stable shot.

16. Floating potential profile for an unstable shot.

17. Probability of zero quadratic coefficient versus exponent a for the

experimental fit lnf = a + b(0)a+ c(0)2a .
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