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ABSTRACT

In this paper, we precisely formulate the input design problem of choos
ing proper inputs for use in SISO Adaptive Identification and Model Reference
Adaptive Control algorithms. Characterization of the optimal inputs is given in
the frequency domain and is arrived at through the use of averaging theory.
An expression for what we call the average information matrix is derived and
its properties are studied. To solve the input design problem, we recast the
design problem in the form of an optimization problem which maximizes the
smallest eigenvalue of the average information matrix over power constrained
signals. A convergent numerical algorithm is provided to obtain the global
optimal solution. In the case where the plant has unmodelled dynamics, a care
ful study of the robustness of both Adaptive Identification and Model Refer
ence Adaptive Control algorithms is performed using averaging theory. With
these results, we derive a bound on the frequency search range required in the
design algorithm in terms of the desired performance.
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1. Introduction:

Robustness and Rate of Convergence are the two most important factors on the design of

adaptive identification and control. To date, there has been a great deal of analysis of robust

ness properties of adaptive algorithms ever since Rohrs et al [30] showed the lack of robust

ness margin in several practical applications. While some modifications of adaptive control

algorithms have been proposed ( Peter & Narendra [29], Kreisselmier & Narendra [20], Sastry

[33], Ioannou & Kokotovic [17] and Ioannou & Tsakalis [18]), it has been argued by some

that the robustness of adaptive algorithm depends primarily on the persistence of excitation of

the controlled system, and, consequently on the choice of the exogenous reference input

applied to the system. In Bodson & Sastry [3], the effects of persistent excitation on robustness

margin is made precise. A connection between the rate of convergence of the adaptive scheme

and the robustness margin is also made. For adaptive identification, Bai & Sastry [2] and Bai

et al [12] showed that the parameter converges to a small neighborhood of the true parameter

of the nominal plant under a condition in the presence of unmodelled dynamics and model

mismatch.

The study of parameter convergence rate of adaptive schemes came in the work by Son-

dhi & Mitra [31] who obtained bounds, dependent on the parameter adaptation gain, of the

convergence rate. Later, Fu et al [9], Bodson et al [4] and Kosut et al [21] used averaging

techniques to obtain estimates of parameter convergence rate for the nominal system. Such

techniques were first introduced by Astrom [1] to explain the instability mechanism in adaptive

control arising from unmodelled dynamics, and are the most useful for the analysis of adaptive

systems in the frequency domain.

In this paper, we focus on the choice of optimal input signal and its effects on parameter

convergence rate in both cases where the plant has and doesn't have unmodelled dynamics.

Although the same issue has been discussed by Mareels et al [24], the results are limited. In

the stochastic literature, the problem of optimal input design in estimating parameters in linear

dynamical systems has been widely investigated ( a survey by Mehra [26]). Based on several

different optimality criteria such as D-Optimality and A-Optimality, various design algorithms

are obtained. Since these designs are unavoidably dependent on the unknown parameters of the

system, a Bayesian approach that assumes a prior distribution of the parameters is then used.

In all cases, however, the objective of their design is to achieve a more accurate parameter esti

mate instead of a better parameter convergence rate.

♦Research supportedby NASA under grantNAG 2-243 and Army Research Office under grant DAAG-29-85-k-0072



The purpose of this paper is both analysis and design. We first analyze the effect of the

frequency spectrum of an input to the rate of parameter convergence. For the design purpose,

we then find the optimal input (input with the optimal frequency spectrum ) by the process of

optimizing that effect. Of course, during the course of the optimization, we replace the

knowledge of the "true plant" by an estimate. Our contribution is as follows: we propose a

Sequential Design Algorithm to search for the optimal input signal design which is shown to be

the global optimal one. The algorithm is based on the design criterion to maximize the smallest

eigenvalue of the average information matrix ( which willbe defined in the sequel) rather than

its determinant or trace. It turns out to be a more practical criterion in the case when the infor

mation matrix may be ill-conditioned.

The paper is organized as follows: In section 2, we formulate the input design problem

for both Adaptive Identification and Model Reference Adaptive Control in terms of an optimi

zation problem. In section 3, some input rules for design on which the solution of the optimi

zation problem is based are given. In section 4, we propose a numerical design algorithm by

which the optimal input is searched sequentially and we give some simulation examples to

illustrate the results. In section 5, we discuss the robustness of both Adaptive Identification and

Model Reference Adaptive Control schemes. Moreover, we give a bound on the frequency

search range based on information about the plant uncertainty and the frequency content of the

input such that a desirable performance is guaranteed.



2. Input Design Problem

The problem of designing optimal inputs for both Adaptive Identifiers and Model Refer

ence Adaptive Controllers is under investigation.

(I) Adaptive Identifier:

We consider an unknown plant, described by a SISO proper stable transfer function

np(s)
dj.s)W =*,^77 CD

where np(s), dp(s) are coprime monic polynomials, and dp(s) is of known degree n.

The adaptive identifier of this plant has a structure shown in Fig. 2.1. The stable filter

blocks Fi and F2 generate signals v(1)(f) and vm(t), which are respectively smoothed derivatives

of the input r and the output yp of the plant The output of the identifier yt is obtained through

the adaptive gains c(f). d(t) gRh and c^iifieR

X-WWiPH:lMr (2.2)

and it may be verified that there exists a unique choice of the adaptive gains, denoted c\ d*
and c^i, such that the transfer function from the input r to the output yt is identical to the plant

transfer function P(s). We define the parameter vector BeR**1

er=(c7u (2.3)

and the signal vectorwe/?2**1

wr=(v<1>r,v®r/) (2.4)

so that

y,-eTw (2.5)

The output of the plant is then given by an equation similarto that of the identifier

y„ =e'rW (2.6)

where 9* is the vector of "true" parameters corresponding to P(s). Defining the parameter error

4> = e-G' (2.7)

the output errorex=yr yP is then given by

ex = 4>Tw (2.8)

It can be shown ([19],[23]) that, with the adaptation law

<> =-r«!w (2.9)

where TeR"** is the adaptation gain matrix, the following propositions are true



(i) If r, reL«, then lime^/H).

(ii) If, moreover, w is persistently exciting (PE), that is, if there exist constants 04, Oq. and

5>0 such that

a^ Jwwr^a2/ for all j>0 (2.10)

then the parameter error also tends to zero, i.e.

lim<|>(f) = 0 (2.11)

and the convergence is exponential.

In the proposition (ii) above, we quantify the convergence by giving a preliminary

definition.

Definition 2.1: ( Exponential Stability, Rate of Convergence )

The equilibrium point x=0 of a differential equation is said to be exponentially stable,

with rate of convergence a ( a>0), if

II x(0 II <S mil xfa) Oe"0*"^ (2.12)

for all £f(£0, x(t0)eBk ( a closed ball with radius /o0 ) and some m>l.

The input design problem for an adaptive identifier is that of selecting an input r from an

allowable class of signals (to be specified by the designer) so that the rate of convergence of

the parameter error vector <fr can be optimized. There are various possible solutions to this

problem. The solution pursued here is based on a frequency domain approach, applying averag

ing theory to the update law (2.9), that is to replace r by e/ where e is a small positive

number. It is shown in [9] that the rate of parameter convergence can be assessed easily by

studying the average information matrixRJP) defined by

RJ® = lim ± fwitMifdt s>0 (2.13)

when w is persistently exciting. The bound on the rate of convergence is close to the smallest
eigenvalue of RW(Q) ( a symmetric positive definite matrix ) but differs from it by a class k

function of e, y(e).

The input design problem can therefore be cast in the form of an optimization problem in
which an input r is chosen from a class of signals to maximize the smallest eigenvalue of the
average information matrix RJQ). Such a procedure is very reminiscent of the procedure indi
cated in [14] [16] [25] for the design of input signals in identification. There, however, the



objective is to achieve better accuracy of the parameter estimates as opposed to the larger rate
of parameter convergence in our case.

(II) Model Reference Adaptive Controller

Next, we examine the optimal input design problem for Model Reference Adaptive Con
trol schemes. We consider the output error scheme, developed by Narendra and Valavani [27]

and Narendra, Lin and Valavani [28]. Although not discussed here, the input error scheme,

developed by Bodson and Sastry [5], can be handled similarly.

We consider an SISO plant with transfer function

M.!too|Jf» (2.14)
rXA 'dp®

where np{s) and dp{s) are monic coprime polynomials of degree m and n respectively and kp is a
scalar. Hie following are assumed to be known about the plant transfer function:

(Al) The degrees of the polynomials dp and «p, namely, n and m, are known.

(A2) The sign of kp is known ( say *p>0 ).

(A3) The plant transfer function is assumed to be minimum phase.

The reference model is described by

—- =M{s) =K-jjr (2.15)

where nm(s) and dm(s) are monic coprime polynomials of degree m and n respectively (i.e. the

same degrees as the corresponding plant polynomials ). The reference model is stable,

minimum phase, and k„^0.

The controller structure for the scheme is shown in Fig 2.2. The dynamical compensator

blocks Fi and F2 ( reminiscent of those in the adaptive identifier) are identical single input and

n-1 output systems with transfer function (j/-A)_1& where Aert*""1*""1, beR*~l and A is chosen

so that its eigenvalues are the zeros of njs). The parameter ce/?*"1 in the precompensator block

serves to tune the closed loop plant zeros; deR*~l and d^R in the feedback compensator assign

the closed loop plant poles. The parameter c0 adjusts the overall gain of the closed loop plant

Thus, the vector of 2n adjustable parameter denoted 6 is

er=(co^TA^)

with the signal vector we/?2" defined by

wr=(r,^r0'p.v<2>r)
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The input to the plant is seen to be

u = QTw

and the state equation of the plant loop is given by

» «
' '

» . * «

** AP 0 0 xp *P
v<!> = 0 A 0 V(D + b

• •

bcl 0 A v(2) 0

(2.16)

eTw (2.17)

where (ApJbp^p) is a minimal realization of the plant It may be verified that there is a unique

constant vector 8'e/?2" such that, when G=G\ the transfer function of the plant plus controller

equals that of the model, M(s).

Now if the relative degree of the plant is one ( n-m=l), the model transfer function M(s)

can be chosen to be strictly positive real, and it can be shown ([27]) that, with the parameter

update law

0 =- Texw =- T(yp- yjw (2.18)

where Te/?2**2" is a positive definite matrix, the following propositions are true:

(i) If the input reLmt then all signals in the loop, i.e. «, v°\ v™, yp and yM are bounded and

lim<?i(0 = 0 (2.19)

(ii) If, moreover, w is persistently exciting ( which is similarly defined as in (2.10)), then

the parameter error 4>=e-6* also tends to zero, i.e.

limtfO = 0 (2.20)

and the convergence is exponential.

The stability proofs of the above propositions heavily rely on the strictly positive realness

(SPR) of the model transfer function. In the event that the relative degree n-m is greater than

one, M(s) can never be chosen to be SPR. Consequently, the following modifications need to

be made.

(i) A stable linear filter L~\s) is found to make the transfer function L(s)M(s) SPR.

(ii) When the relative degree n-m is greater than two, augmented output error and over-

parametrization (i.e. 02*44 is used besides Ge/?2") are used.

It is shown ([6]) that, with a modified update law, propositions (i) and (ii) are still valid ( even

though the (2n+l)th parameter may not converge in the case when n- m>3. ).

As a result, the input design problem for this output error control scheme is again thatof

selecting an input r from a class of signals so as to optimize the rate of parameter convergence.



As in the optimal input design for the adaptive identifier, a frequency domain approach through
the application of averaging is adopted as the method to solve the problem. In the following,
we will only discuss the case when the relative degree is one. The case in which the relative
degree is greater than one can be dealt with similarly.

The state equations for the model loop are given by

Ym
l J

VV&J bpcr bp(ff
b4d A+bc* bd*T
bcp 0 Ju,

*>P
b
0

W (2.21)

The (3n-2)x(3n-2) matrix in (2.21) is henceforth referred to as Am and the (3n-2) veaor in

(2.21) as b„. Then subtracting (2.21) from (2.17) with

eT =(£v»>V®7) - 0d,v2>r,v2)r) (2.22)

we have that

e =Ame+MTH' (2.23)

and

*i =(£0,0)e:=c& (2.24)

Note from (2.21) that <&£(*/- A^~lbm is equal to the model transfer function M{s) and that

kmc5=t- is the ratio of the high frequency gains. Now the update law (2.18) becomes
p

G=<j> =-rVck (2.25)

To apply averaging, we consider slow adaptation, i.e. T=eJ resulting in

e=AMe+bMwT^

4 =- ewcj>

Recall that w is not exogenously specified, rather it depends on e, i.e.

w = wm+Qe

where wm is an exogenously defined 3n-2 dimensional vector obtained from r and given by

wm =(r,v2>Vm.vg)r)

and Q is the constant 2nx(3n-2) matrix

G =

0 0 0
0 / 0

4 0 0
r

0
•

0
•

(2.26)

(2.27)

(2.28)
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Using these, eq. (2.26), (2.27) are rewritten as

e^A^+byj^byQ7* (2.29)

^-zw^le-zQecle (2.30)

With the exception of the last terms ( quadratic in e and $ ), eq. (2.29), (2.30) are linear time

varying equations describing the linearized adaptive control system, around the equilibrium

point e=0 and $=0.

Recall that exponential parameter convergence can be obtained provided that w is per

sistently exciting. Referring to the definition 2.1, we see this is the case by taking the rate of

parameter convergence as that of tail parameter convergence; in other words, behaviorof small

e and <t> is our domain of interest Consequently, we apply the averaging to the linearized ver

sion of (2.29), (2.30), i.e.

e~A.fi*mvfa (2.31)

<j> =- zwtfile (2.32)

The rate of parameter convergence of the linearized adaptive system can be easily

assessed by investigating its averaged system

ip^-rtv^ (2-33)

where

J?VJ) := Um 1J hOO-V^wJCO* J*0 (2.34)
"» T—»~ 1 g Cq

(Note -rM(wJ(0 is avector obtained by filtering wm(0 through a transfer function -tM(s) )
c0 co

It is shown in [9] that the bound on the rate of convergence is close to the smallest real

part of eigenvalues of RwmwJQ) ( a positive definite non-symmetric matrix ) but differs from it
by a class k function of e, \j/(e). The resulting optimization problem is to choose an input r (
subject to certain constraints ) so as to maximize the smallest real part of eigenvalues of the
general ( non-symmetric ) matrix RWmwJS>). Although this is not well formed, the next lemma

([8]) remedies the situation.

Lemma 2.1:

Given any constant square real matrix A such that

x A= Hl+iH2 (2.35)

where Hi and H2 are Hermitian matrices, then the following are true:



^(//O^Re^A)^^^) (2.36)

7^<flj)ZlnQd(A)Z7±J?ij) (2.37)

where XQ stands for an eigenvalue of some matrix in its argument In the case where A is a
real matrix, Hx and iH2 are simply symmetric and skew-symmetric matrices respectively.

In light of Lemma 2.1, the transformation from input design problem to a problem of
maximizing the smallest eigenvalue of the symmetric part of RwmwJP), denoted as

Symm\Rwmw£0)]* by choosing r subject to some constraints is thus established.
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3. Input Design Bases:

The input design problem is formulated in terms of an optimization of the smallest eigen

value of a positive symmetric matrix ( i.e. Rw(0) for the adaptive identifier and Sy^[RWmW(0)]

for the Model Reference Adaptive Controller) over a class of input signals. In this section, we

make the problem more tractable by choosing the class of input signals to be power-

constrained; by which we roughly mean that the average power of a signal i(r)e/?, defined as

lim-M i\()dt (3.1)

with limit existing uniformly in j£0, can be no greater than a fixed amount. In the following,

more detailed definitions are introduced to facilitate the later development of the input design

algorithm.

Definition 3.1: ( Stationary, Autocovariance, Power Spectral Measure)

A signal «(•): /?+-»/?" is said to be stationary if, for each t, the following limit exists uni

formly in s:

RJ® =lim^ f u(M)uT(t)dt (3.2)

in which instance, the limit RJx) is called the autocovariance of u. Also, Ru(x) can be written

as the inverse Fourier Transform of a positive power spectral measure Su(d(a)

OS

«*)«±l*"SJida» (3.3)

As indicated by Definition 3.1, the average power of a stationary vector signal u may

thus be expressed in terms of its power spectral measure 5tt(dco), i.e.
••

/?B(0) =-~j51Xrfto) (3.4)

In general, a stationary signal may have nonzero power spectral measure over continuous
and/or discrete sets in the frequency spectrum. The next definition explores this inmore detail.

Definition 3.2: ( Frequency Support)

The frequency support of a scalar stationary signal uwith power spectral measure SJdri)

is defined as

Supp(u) = (0 I©€/?, for all e>0 , J Su(d(o) >0 Y , (3.5)
ox J
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Let FM(a>) be defined as

<D

F„(co) =J SJjM) (3.6)

then FB(<fo>) is a spectral distribution function which is monotonically increasing and continuous
from the right If F^o) is absolutely continuous, then the frequency support Supp(u) defines a
continuous spectrum, which denotes the smallest closet set outside which the power spectral

measure Su vanishes. On the other hand, if FJid®) is a staircase function with n jumps, then

Supp(u), which is exactly n points in the frequency spectrum, defines the discrete spectrum.

In practice, stationary signals frequently encountered are bandlimited with bandwidth

ft=RD0,(Dj, ©o>0. This leads to the following definition.

Definition 33: ( Normalized Input Design (NID) Set tf(Q) )

A normalized input design is defined by the spectral distribution function F„(©) which

satisfies

jF»ol (3.7)

The normalized input design set N(Q) is then defined to be a set of normalized input designs

with frequency support only contained in the frequency band Q=Ho*.©©]t i-e-

F(- aO = 0 , F(<oe) = 1 (3.8)

Note that F(co) can be identified with a positive measure, i.e.

f S(<fa>) = f dF(a>) (3.9)

which gives a more concise expression of N(C1)

N(Cl) =\ F I F: positive measure , -^-fdF(©)=l V (3.10)=J F I F : positive measure , —JdF(©)=l l

In the sequel, we.will use ND(C1) to denote a subset of N(Q), including all the NID's with only

discrete spectrum contained in CI.

Definition 3.4: ( Normalized Average Information Matrix (NAEM) )

A matrix G is said to be a normalized average information matrix if there exists a proper

stable column transfer function //(OiC-^1", a scalar function a():C-*/?+ and FeN(Q) such that

G=-j-f a(j<o)H(j<ayf(j(o)dF(<o) (3.11)



12

In the special case where F(co) results from a single frequency sinusoidal input with fre

quency ©o, the corresponding NAIM G will be called the point-inputinformation matrix (PITM)

and denoted G(©o). Moreover, all NAIM's resulting from the column transfer function H(s) and

all possible F's in N(p) form a class of matrices M„(Q.) called NAIM set, i.e.

M^Cl) =JGIG=y-faO'©V/0'©)^0'co)^F(©), FeN(Q) I (3.12)

Definition 3.5: ( Minimum Eigenvalue of G e M^Q) )

A function \(£yjJ(Q!)->R is defined to be the minimum eigenvalue of a NATM G resulting

from some NID FeN(Cl).

Remarks:

(1) The NID set N(Q) is a convex set due to the fact that

(l-oOF, + ctF2 e N(&) (3.13)

for all FltF2e/V(G) and ae[0,l].

(2) All NAIM's are symmetric and at least positive semi-definite, therefore, X,c(F) are

nonnegative for all FeN(Q).

(3) In the stochastic literature, the average information matrix that we used here is often

referred to as Fisher information matrix which is related to the error covariance

matrix. Due to the similarity between the average information matrix and the Fisher

information matrix, in the following, we will state some lemmas with proofs omitted

(they can be obtained as in [16] [25]).

Lemma 3.1:

The NAIM set Af/^G) is the closed convex hull of all PIIM's corresponding to the same

transfer function H, i.e.

A//KO) =cJg(©)I©6G \ (3.14)

Lemma 3.2:

For any FxeN(Q) with corresponding G(Fx)eMff(Cl)t there always exists a FieND(Cl) con

taining no more than m(m+l)/2+l distinct frequency elements (m(m+l)+2 spectral lines ) such

that



-13-

G(F!) = G(F2) (3.15)

(Note that G(F) is denoted to emphasize the dependence of G on F.)

Lemma 3.3:

The optimal normalized input F* = argmax { Xg(F) IFetf(G) } exists, and contains no
more than m(m+l)/2 distina frequency elements ( i.e. one less than that prediaed by Lemma

3.2).

Remark:

One can infer from Lemma 3.3 that while designing optimal inputs for maximizing the

smallest eigenvalue of the average information matrix, one can confine the search to sinusoidal

inputs with a finite number of frequencies.
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4. Sequential Design Algorithm and Its Application to Adaptive Identifier and Model

Reference Adaptive Controller

In this section, we first derive some basic results on the smallest eigenvalue of G(F),

namely, ^(F), using perturbation theory. The numerical algorithm for input design given later

is based on these results. In the end, we illustrate the results by showing simulation examples.

Theorem 4.1: ( Equivalence Theorem )

Consider some F*eN(G). Let ^(F*) be the smallest eigenvalue of G(F*) and v,-, t=l,.../ be

the orthononnal eigenveaors associated with it Then the following three statements are

equivalent

(a) F* = argmax« }Xc(F) IFeN(Cl) } (4.1)

(b) for allF°eN(Cl) .with F°= (l-a)F*-MxF° , ae [0,1] (4.2)

•^[W^USO (4.3)
(c) AgOO*^ (4.4)

where

i\uPTGQr)P)\FeN(mq... = maxi l(PTG(F)P) 1Fetf(G) \ (4.5)

and

/, = [v„---,vr] (4.6)

Proof of Theorem 4.1:

The way we proceed in the proof is to show (a) (b) are equivalent and then (b) (c) are

equivalent

(i) First of all, note that from (4.2)

G(F°) = (l-a)G(FVoG(F°) (4.7)

and that, by perturbation theory, the smallest eigenvalue satisfies

ktf") =(l-a)ic(F*)+a2+o(a) (4.8)

when a is small, where s is defined by

5 = i(PrG(F°)F) (4.9)
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and

/> = [v„---,vr] (4.10)

It then follows that (a) implies (b) trivially. To show that (b) implies (a), we use a contradic

tion.

Suppose (b) is true but that there exists a F*F* such that

k(F)>kaO (4.11)

Define F° as

F° = (l-a)F*+aF ae [0,1] (4.12)

Then

GQ?*) =(l-a)G(F>aG(F) (4.13)

and the smallest eigenvalue satisfies

lap") =(l-a)io(^)+a2-+o(a) (4-14)

when a is small and 5 is defined by

a = UPTG&P) (4.15)

where P is defined as in (4.10).

Since, by definition, v,-, i=l, • • • / are orthononnal veaors, one can easily show that

S^AcrfO (4-16>

Further, with eq. (4.14), one can establish the following

-^ac(Fa)]U=S-WF•) (4-17)
which along with (4.11) and (4.16) gives a contradiction. Hence, the implication is valid.

(ii)

(c) => (b). By hypothesis and definition of s^, we have

^0F*)^2(F°) forallFeMG) (4.18)

where

2(F°) =X(/,rG(F,0P) (4.19)

With definition of F" in (4.2), (4.18) then implies that

•^aC(Fa)Uo^o =S-ic(F")^0 (4.20)
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(b) => (c). This is more obvious to see since if 2m«>2w(F*). then there exists FeN(Cl) and

F° defined by

Fa = (l-a)F,+aF a€[0,l] (4.21)

such that

-^[XsOF^U=flffHoflO >0 (4.22)

Consequently, (b) and (c) are equivalent.

Q.E.D.

Remark:

In the Equivalence Theorem, one should note that finding gaMX is less complex than

finding 1^:= { h/JF) IFetf(G) } in the nontrivial case simply because PTG(F)P is of dimension
rxr and r<m. In fact, the most common and the simplest case is when P consists of single vec

tor where PTG(F)P becomes a scalar. Thus, by Lemma 3.3, 2m« can be easily calculated using

a one-line search optimization routine, i.e.

Except in very simple cases, the computation of optimal inputs has to be done numeri

cally. We propose the following algorithm and prove that it converges to the global optimum.

To start with, we introduce some notation that will be used in the sequel.

Notation:

(i) /V&(G) is a subset of ND(C1) with each member containing no more than k sinusoidal

components.

(ii) Pi s [vu, • •• .v^J consists of orthononnal eigenveaors of G(F) associated with the

smallest eigenvalue ^(F).

(m) GLx = max {UPjG(F)Pd IFefl^G) }where A,-=r,(r,+l)/2.

Numerical Algorithm:

Data: F°eJvJf(G) is a feasible initial design.

Stepl: Set i = 0.

Step2: Compute Xg(F) and find aW

Step3: If tfnux^^F*). thenstop and P is the optimal input design; else go to step 4.
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Step4: Update the input design P by

F*1 = (l-adP+OiP a,€[0,l] (4.24)

where PeNji(Cl) is such that

dmx'BterTG&rd (4.25)

Step5: i = i + 1 and go to step 2.

Remark:

In step 2 of the numerical algorithm, the procedure of finding gmax is exactly the same as

finding >tc(F*). i.e. to go through step 2to step 5with some feasible initial design F^eNjKG).

Theorem 4.2: ( Convergence Theorem)

In the sequential design algorithm, if the sequence { a, } is chosen such that

(a) lima,= 0 2& =oo 0*6(0,1) (4.26)

or

(b) a,-= argmax { ^Kl-^F+aF*'] Ias [0,1] } (4.27)

then either the numerical algorithm terminates in finite steps or

lti<F) ->Id?) as i-*» (4.28)

where F* is an optimal input design as defined in (4.1).

Remark: The optimal input design as defined in (4.1) is not unique. The input design

sequence {P} generated in the sequential design algorithm will converge to one of the the

optimal input designs in the sense of (4.28).

Proof of Theorem 42:

Let's assume the algorithm does not stop in finite steps,

(a) Equivalent to showing that (4.28) is true, we show that

^-[^(Fg^lo^^O asi->oo (4.29)

where

Fg) =(l-a)P+oF*' (4.30)
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Assume the contrary, i.e.

-|^[MF©)]lapO =A>0 foraU £0 (4.31)
This implies

fim[Ac(F0-XG(Fo)] =(Ea,)8(A) (4.32)

where 5(A)>0, which contradicts that { Xc(F) } is a bounded sequence.

(b) By the Equivalence theorem, we know that if P is not the optimal input design, then

-^[^(FS))]U>0 (4.33)
which yields { XcQ?) } as a monotonically increasing sequence bounded above. Hence, the

sequence converges to a limit, say, &g<F). We now show that

k?<F) = k(F*)

where F* is assumed to be an optimal input design.

Assume a contradiction, i.e. Wf^&gO7*). Again, by Equivalence Theorem, the gradient

^BcO^]U =A>0 (4.34)
where F° is defined as

F3 = (l-a)F+aF (4.35)

for some FeA7(G). This, in turn, implies

Jim [X^(P) - k(F-1) ]=6(A) >0 (4.36)

which contradicts that the sequence converges. In consequence,

!imk(P) =kaO (4.37)

Q.E.D.

Remark:

In effea, by numerically constructing the design F*, we obtain the design Fx which canbe

made arbitrarily close to F* but in general is usually distina from it ( we can take any large but

finite number of iterations ). Since the design F, may have undesirably large point spectrum, its

approximation is usually considered. Such an approximation, discussed in [14], yields the

rounded-off design and will be denoted by F^ subsequently.
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To apply the sequential design algorithm to the Adaptive Identifier and Model Reference

Adaptive Controller, we initially obtain the spectral representation of Rw(0) and Symm[RWmWJS>y]

by use of eq. (2.13) and (2.34). It may be verified that, as a result of applying a normalized

input design F(co), the following are true.

*w(0) =̂ nQmyn'Wdm (4.38)

and

Sym,JRwmwJP>] - ^ J=J.fReA£M^t0)^(/(0)dF(Q)) (4.39)
Co

where n(s) stands for the column transfer function from r to w in the Adaptive Identifier and

h\s) stands for the column transfer function from r to wm in the Model Reference Adaptive

Controller. By definition 3.4, if F is taken to be an NID in #(G), then it is easy to see that

Rw(0) and SymJRwmwJP)] are NAIM's in M„(a>) and M^a) respectively. Application of the
numerical algorithm then readily yields the optimal designs for both cases.

To illustrate the preceding results, we show examples in the adaptive identifier and con

troller respectively, in which instances the plants and the model arc the same as in [9]. As for
the purpose of design, we compute the PITM by using an estimate of the unknown parameters.

Example 1: Consider the identification of the plant

2s+2
P(s) =

a+3
(4.40)

The filter is chosen to be det(sI-A)=(s+5). The true values of cx, dx, c2 arc -1.6, 0.4, and 2.0.

Denote the parameter error as:

<h =cx-c\ <j>2 =dx-d\ 4>3 =Cjr-cJ (4.41)

To calculate the PUM G(co) required in the numerical algorithm, we use an estimate of the

plant transfer function, namely, Pt{s)

P<S) =2&2L

and the corresponding initial guess of the parameters arc

ct=-L2 d\ =0.0 4=3.0

Thus, based on this estimate, G(g>) becomes

G(a» =

25 75(15-hp2) 25
•55^2 (25+0)2)2* 25+co2

75(15+fl)2) 225(9+to2) 15(75+7o)2)
(25+G)2)2 (25+a2)2 (25-KD2)2

15(75+7(Q2)
(25-ko2)2

25 ,c«c..»«A

25+cd2

(4.42)

(4.43)
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Since the number of unknown parameters is 3, parameter convergence will occur when the

support of F((o) consists of grcater than or equal to 3 points. Hence, we choose the initial input

design as

± F° =-|6(co)+|6(o>-2>4.{5(o>f2) (4.44)

and the frequency search range G=[-10,10]. After applying sequential design algorithm, we

Obtain Fj^ ( rounded-off design )

•— F^=0.4455((0)+0.192{5(Q)-2>f8(0H.2)}+O.0203{6(0>-3.52)+6(C0+3.52) }
2ft

+ 0.00702{5((i>-3.80)^((W-3.80)}+0.00442{6(Ci>-4.29)+6((«H4^9)}

+ 0.0539{5(0)-4.43>f6(a>f4.43)} + 0.10{5(o>-10)+5(G>+10)} (4.45)

In Fig. 4.1, we show the spectral distribution of F^, while in Fig. 4.2 (a) (b) (c) and Fig. 4.3

(a) (b) (c), we illustrate the time trajeaories of parameter errors $lv fo, and the output error

e=yryP for the input designs F° and F^ respectively.

Example 2: Consider the adaptive control process of a first order plant

By adjusting the feedforward gain kj. and feedback gain ky, the closed loop transfer function is

made to match the model transfer function

*w-S3> (4-47)
in which case, the true values of kr and ky are 1.5 and -1. Define ^x=kr-k*r and $2=^-%- Tne
PITM is then computed to be

G(©) =

81

(9+co2) (9+g)2)2
81 81

(9+G)2)2 (9+co2)2

To guarantee the persistency of excitation, we choose the initial input design F° to be

•J- F° =-75(G>-1.5) +—6CC0-I-1.5) (4.49)
2ft 2 2

Application of sequential design algorithm yields the rounded-off optimal input design F^* as

T- *£* =t5(o>-2.46) +-J-5(o>f2.46) (4.50)
2ft 2 2

(4.48)
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Figure 4.4 (a) (b) (c) and Figure 4.5 (a) (b) (c) display the time trajectories of the parameter

errors <h, fe and the output error ex-yp-ym for the input designs F° and F^ respectively.
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5. Robustness Discussion: Presence of Unmodelled Dynamics

In section 4, we apply the numerical design algorithm to both Adaptive Identifiers and

Model Reference Adaptive Controllers where the plant has no unmodelled dynamics, in which
case the frequency search range G may be made as large as possible. In fact, however, the
adaptive identification and the Model Reference Adaptive Control (MRAC ) are usually under
taken in the case where the plant is contaminated by unmodelled dynamics. As a consequence,

the choice of the frequency search range G becomes a relatively important faaor for considera

tion in the context of input design.

In this section, first, we analyze the robustness of both adaptive identification and

MRAC; second, we explicitly derive a bound on the frequency search range based on prior

information about the plant ( and the model). To start with, consider the following definition:

Definition : ( Crosscovariance, Cross-Power Spectral Measure)

Given two stationary signals k(): /?+->/?", v(): R+->R, RM(-z) is called the crosscovariance

of u and v if

Rw(x) = lim ± [ u(m)v(t)dt (5.1)
r-»- i *

in which case J?w(t) can be written as the inverse Fourier Transform of a cross-power spectral

measure Sm(d<a)

As indicated by the definition, the average cross-power of two stationary signals u and v

may thus be expressed in terms of its cross-power spectral measure Sw(Ao), i.e.

*w(0)=2ft" I Sjm (5'3)

Next, we will study the robustness of the Adaptive Identifier and the Model Reference

Adaptive Controller respectively.

(I) Adaptive Identifier

We consider a finite order plant consisting of the same nominal plant as in section 2

along with* some stable additive unmodelled dynamics, i.e.
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^)^-5tT=^>^^) (5.4)dp(s)

satisfying the following assumptions:

(Dl) \P*(j(t))\<Li for some known positive constant I, and for all <neR.

(D2) There exists a known nondecreasing function /,{©):£-»/?+ such that /i(fi>)->0 as co-»0

and

IAP0'©)l * '.<<*>) * k. fa" all coe/? (5.5)

(D3) The input r(/) is stationary and KO. rXOel-

Recall that the signal vector weRM is defined to be

i/=(v^,v«r,r) (5.6)

which can be reproduced, differing only by stable initial condition terms, by filtering the input

r(t) through a single-input multi-output linear system with transfer function n(s)

nT(s) = 1_ iHi£L £^iisLx
|A(*),"',A(,)'A(*)*"'' ACf) \

A(s)dp(s) *> J

where A(j) =6et(sl- A) is a Hurwitz polynominal with 3(A($))=n , and (AJb) is the controllable

canonical realization of the compensator block as shown in Fig. 2.1.

If the plant does not have unmodelled dynamics, it can be shown ([7]) that w(t) is PE

provided the input r(t) contains 2n+l spectral lines. In other words, the matrix Zln¥X defined by

Zi*x := [n0'(Oi)^0'(^/"^0'o)2J^0'o>2H.i)J (5-8)
is nonsingular whenever a>i*fi>y, i*;, ij= 1, 2,...,2n+l. On the other hand, in the case when the
plant has unmodelled dynamics, it is shown in [12] that w(t) is almost always PE when the
input r(0 contains 2n+l spectral lines or, equivalently, the matrix Z^x is nonsingular for

almost all (©l,co2,v,fiWi)re/?2,H"1. Based on this result, we give the following proposition.

Proposition 5.1:

Given the transfer function n(s) as in (5.7), define the matrix z^eC*2**1^ as

Zy := UQ'<ax)*(j<^r'*(j(^i)*(Jaty (5-9)

For almost all (coi,co2,-,(i>r)r€/?T, y£2n+l, the matrix Zy is of full column rank, i.e. p(Zy>nr.

Equivalently, the set {(tti,a>2,",<K>y)r ertT I p(Zr)<y } is of zero measure.
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Proof: See Appendix.

In fact, a real stationary signal contains symmetric spectral lines, e.g. 7© and -jco when

©*0. Hence, KO. containing 2n+l spectral lines, should consist of n sinusoids and a DC signal

which gives a set of frequencies (O,©!,-..,©*,-©!,...,-©^. To practicalize the results from [12] and

the previous proposition, we introduce a technical assumption which, we believe, will be true

in general.

Assumption:

(D4) Given / = l,-,n, there exists a set of frequencies (0,©i,y,©i,-©i,-,-©i) such that no

nonzero %t e i?2*4"1

$/= [mo.Ui .•••.|A!.to,Tit---Tw]
will satisfy

M®d dpQad +W®d njjnd =0 1=-/,",-l,0,l, •/ (5.10)

where

Ms) =Uo +\lxs + •• •+ \i^ and tfa)=x0 +%xs +• ••+Tm^"1

Remark:

(1) This assumption has been implicitly taken for the work of synthesizing transfer functions

using frequency response data, e.g. [32],[34].

(2) When / = n, the assumption (D4) implies that the matrix Z^i defined by

Z^x := ^(0)*(j(Ox)rt-m)r*(j<oJX-Ja>S) (5-11)
is nonsingular. In other words, there existn sinusoids sin(©j/). i = It... A such that the sig

nal veaor w(0 will be PE if the input is of the form

n

r(t) =ao +L ai sin(cOi/+£>i) atpi e R (5.12)

Based on this assumption and the previous results, we give the following proposition

which deals with the case of sinusoidal inputs.
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Proposition 5.2: ( Almost-All Richness of Sinusoidal Input)

Given the transfer function n(s) as in (5.7) satisfying the assumption (D4). Define the

matrix Z^eC*2**1**2*1* by

Z^ := k0)^0'©i)^(-y©i).-^0'«Oi)^H©Dj (5.13)

Then

0) for almost all (©i,©*-,©*)7 eRl, fen, the matrix Z2l¥l is of full row rank, i.e. p(ZUfl)=2n+l.

Equivalently, the set {(©i,©2,-,©Dr eJ?' I tffrMy&n+l } is of zero measure,

(ii) for almost all (©i^r,©!)7" eRl, &», the matrix Z^ is of full column rank, i.e.

p(Z2f+i)=2/+l. Equivalently, the set {(©i,©2,~,©[)T ert' I p(ZMfi)<2/+l } is of zero measure.

Proof: See Appendix.

Corollary 5.3:

Given the transfer function n(s) as in (5.7), for almost all (©l-,©^/?', ten, there exists a

QoeR2"*1 such that

?(/©•) = 6oi(/©i) ' = -'»".<W ©-, = -©! and ©<f=0 (5.14)

and is given by

©o = Zyfi\&u+&u*\T giM (5.15)

where £2*4-1 is defined to be

&m - [^(0)/0'©i)A-;fi)i).-"/0'fi>i)A-;fi>i)) (5.16)
Proof: See Appendix.

Consequently, a conclusion can be readily drawn from the Corollary 5.3 about the Adap

tive Identifier that, for almost all inputs KO containing / sinusoids where ten and a DC signal,

there always exists an Goe/?2**1 such that the error signal e*(t):=yp(t)- Gjw(r) converges to zero
exponentially in time t. Therefore, the parameter update law defined by (2.9) can be rewritten
in a form which helps to analyze the stability, i.e.

9=- T(yr yp)w =- lW(G- GoWy,- Gfw)w (5.17)

or

<j> = -rW(|H-iyw (5.18)

where $:=G- G0. Since the last term on the RHS of (5.18) is an exponentially decaying term, it
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can be shown that the asymptotic behavior of <{> in (5.18) is no different from the one below

$ = -TwwT$ (5.19)

By such fact we can conclude that <t»rw-»0 as f-*» and ,in turn, that yr yp=$Tw+e*->0 as *-»«>.

In addition, the partial convergence theorem ([6]) implies that

lim RJflM) = 0 (5.20)
r-H»

where RJfi) is as defined in (2.13).

Remark: In particular, when the input r(t) contains exactly n sinusoids and a DC signal, then

with almost all n sinusoids, w(t) is PE and the parameter Goe/?2**1 such that yp-*Qlw as f-»~ is

uniquely defined. Moreover, the parameter 6(0 then converges to G0 exponentially; in which

case an identified transfer function associated with the parameter G0 ( which will be called

tuned parameter as defined in [12] ) can be obtained. Though the true plant is stable, the

identified plant transfer function could be unstable due to the inappropriate location of the fre

quencies of the sinusoidal input

On the other hand, when the input r(0 contains / sinusoids and a DC signal where t>n,

then for almost all / sinusoids, w(t) is PE but there may not be a solution Ge/?2**1 to the follow

ing set of equations

P(j(Od - GTn(/©i) i =-/,.,0, •/ ©_• =-©, and ©o=0 (5.21)

Instead, there will be a minimum error (least square error) solution G0 corresponding to that

family of equations (5.21) and is given by

Go = \Zqm^U¥\T ZimUv+i

After some algebra, the expression for G0 in (5.18) becomes

G0 = 2 n(j(adnT(-ja>d
i-i r

± n(j<adPHa>d
*=-/

The G0 so obtained will match the tuned parameter Gr as defined in [12]

eT=/?w(0)-1/?vw(0)

where

n ^—1 t

Ej n(j(odnTH®d "T 2>(/©i)P(-./©i) —«n

U i*0
tiSS[2 i=0

(5.22)

(5.23)

a-i = <*i (5.24)

(5.25)
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a2
when the weights of all the spectral lines, —, i = -/,...,0,...,/ are taken to be 1. It is also

*i

shown in [12] that the parameter 6(0 in the parameter update equation

6 =- ehwtG +typw (5.26)

is a bounded function of time />0 and

lim II 6(0 - GTII * W) (5-27)

where \j/(e) is a class k function of e,

Remarks:

(1) To compare Gr defined in (5.24) with 60, note that

Gr = &wW%MT*ZiMWg2M (5-28)

where W is a diagonal weighting matrix

tx L-X ti f_j

(2) GT may be considered to be a natural tuned parameter due to two facts: (i) the steady-state

parameter 6(0 stays close to 67 and is different from it only by v(e) when the parameter

update is slow as in (5.26) (ii) the steady-state plant output yp stays close to the identifier

output yi since that

Iy. - yp I£ Iyp _w^ |+|| 6r - 6(0 II IMI (5.30)

where 6r is the weighted minimum errorsolution to (5.21).

Next, we derive a bound on the frequency search range CI used in the sequential design

algorithm in terms of the amount of deviation of 6T from the nominal parameter 6* (
corresponding to the nominal plant with the transfer function P*(s)).

Denote by w* and y. the signal veaor and the output corresponding to the nominal plant

and rewrite (5.26) by

6=s - e(w*+Aw)(w*+Aw)rGft(yp*+Ayp)(w*+Aw)

=- e(wVT+AB)^e(yp.w+AQ (5.31)

where AB^'AwT+Aww^+AwAw7 and AC-y .Aw+Aypw*+AypAw. In analogy to [12], the averaged

system of (5.31) can be written as

6ov =- eK^O^ +eRypJP)
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=- t(Rw<0)+ARw(0))Qa,+Wy ^.(OHW^O)) (5.32)

where

and

With the fact that

i? l TR .(0) =lim ± fwVT<fc ARJfl) =lim ± \ABdt (5.33)
w r-*-J0 r-4«r fl

V(0)=&rfc"'* "v««>" &7H* ^

e^^or'/e .(0) (5.35)
P*

and, from (5.24) and (5.32), that

GT =[Rw-(P)+ARw(0)rl[Ry ,w.(0)+^w(0)] (5.36)
p

the following proposition gives the bound on the frequency search range CI in terms of the

bound on II0T - 6*11.

Proposition 5.4: (Bound on CI in adaptive identification)

Given an Adaptive Identifier satisfying assumptions (D1)-(D4). Suppose the input KO is

power constrained, containing a DC signal and finite number, say s>nt of sinusoids with fre
quencies lying inside the compact set CHr®M in the frequency spectrum, i.e.

I rfKJffll = V

2tciJ«»-*7-*- (5-37)
Let p^lie'11^2 for some plf fo>0 and II(/©/-A)-lWI £ KAt ©<=/?, for some KA>0. If ©satisfies

p< «iWfe«dB) sn (5.38)
Pi(M/?w.(0)]-a,(C5))

for a small number t|>0 where

ttl(©) =|2irAVl+(l+L?«+Jft/J/KatfF. (5.39)

<X2(©)=jvi +(i+eya+*Aft-+w[««>*- (5.40)
then

Her —e*n (5.4i)



-29

Proof: See Appendix.

Remarks:

(1) Despite that the bound on CI is not explicit, by the nature of the functions ax and ct2, JS
can be obtained numerically.

(2) The derivation of ft and, in turn, ft=[- TBffl in (5.38) requires the knowledge of M^w-(0)],

which can be replaced by an estimate similar to the one used in the numerical design

algorithm.

(3) Normally, the optimal input design generated by the numerical design algorithm consists
of more thann sinusoids; in whichcase the parameter 6(0 won't converge to 6r but rather

oscillates around it. Hence, the preferable input design should be a two-phase design.

The phase I design is simply the optimal input design itself such that 6(0 converges to the
neighborhood of 8T fast and stays within it The phase n design is to add one DC signal
and reduce the number of sinusoids in the phase I design to exactly n such that 6(0 settles

down on a new 6T. However, the determination of the time when this phase II design

should be initiated and the way that these n sinusoids are to be chosen in the phase II

design requires some experience on the part of the designer.

Example 1: Consider the first example in section 4 with the plant being changed into

- 2fr+l) 30 (M2)
w (s+3) (s+30)

The corresponding additive unmodelled dynamics is

tff* = 2fo-l) ~s (5.43)
w (s+3) (*f30)

Recall that the nominal parameter is cl=-1.6, ^=0.4, and £g.0. Suppose we use the optimal
input design obtained in (4.45) as the phase I design, the tuned parameter 6r can be calculated,
using the definition Qr-Rw(0TlRypJi0), to be c^l.531, <f,=0.819, c*=1.650, and the tuned plant
transfer function is thus to be

j^=(l-65Qj+0.593) (5.44)
r*5) (*f0.905)

Now, we start the phase II design at <=20 sec such that the initial design F° in the first example
in section 4 is used instead of the original design F^. Again, the tuned parameter 6T and the

tuned plant transfer function are found to bec^l.443, ^=0.516, cr=1.767 and

/yw.itsa^a . (5.45)
ev (j+2.422)
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Fig. 5.1 (a) (b) (c) show the time trajectories of the parameter errors <h, fa, and the output
error e=yryr After roughly MO sec, the adjustable parameter 6 settles down on the tuned
parameter value. In Rg. 5.2 (a) (b) (c), we show the time trajectories for the parameter error
and the output error using only the design F°. Apparently, the adjustable parameter 8 does not

converge to the tuned value even when r=160 sec. To illustrate the closeness among the true

plant, the nominal plant, and the tuned plant, we draw the Nyquist plots of the transfer func
tions of these plants and show them in Rg. 5.3.

(II) Model Reference Adaptive Controller

In the case of MRAC, we consider a finite order plant consisting of the same nominal

plant as in section 2 ( with relative degree one ) and some stable multiplicative unmodelled

dynamics, i.e.

Hs) =kf&r =fWO+DW) (5.46)
dpKs)

, and the same reference model as in section 2

satisfying the following assumptions:

(El) . \M(j(&)\<Lc for some known positive constant Le and for all ©e/?.

(E2) There exist some known nondecreasing functions /ei(©) and lai<o)Jl-¥R+ such that

/cl(©)-»0 as ©-»0 and

!£/(/©)! * /ci(<o) IP'O'©)"1' * 'c2(<o) (5-48)

for all ©>0.

(E3) The reference input KO is stationary and KO^Iw

Remark: Assumption (E2) implies that

*w*sTO* (5-49)
for all 0<©<©0 and some ©°>0.

Denote //(8^) to be the closed loop plant transfer function which is obtained by keeping

the parameter 8(0 fixed at some 6. Similarly, let n(6^)J?2,,xC-»C2" denote the column transfer
function from the reference input KO to the signal veaor we(0 defined by

we(0 = (K0,ve1)(07'.^(0.ve2)(0r) (5.50)
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where v$\t), y^t) and v$\t) are time functions obtained with 6(0 being fixed at 6. Then, refer
ring to the structure of MRAC in Fig. 2.2, we can express n(9j) in terms of (AJ>), P and H(Qj)

as:

n(Qj) = (si- A)-lbrl(s)H(Bf)
H(Qj)

(si- Ay*bHQ*)

1

Vfi(s)H(Qj)

where Vfi(s):C->C*t~l. Assuming that H(Qj) is stable, we have

y^PWWe)

and thus

rx(s)H(Qj) =8rn(8^) =c0+Qlvp(s)H(Qj)

where

The closed loop plant transfer function H(Qj) can thus be represented explicitly by 6 as

Co
//(6^) =

^(sh 6,tv>(j)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

Now suppose that the reference input r(t) contains y spectral lines y©i, ..., y©y such that

the closed loop plant transfer function matches the model transfer function at these frequencies,

i.e.

Co
M(j<Oi) =H(Qj<ad = ... . aT-/- x *=1""*Yrl<j<Oi)- divpQdid

Then the parameter ee/?2" satisfies (5.54) if and only if it satisfies the following

6T
1a

vfi(j(oi)M(jOii) =P~l(jadM(j®d «=1»....Y

(5.56)

(5.57)

or more concisely

8Tv/0'©i) =P"10'©i)^r0'©l) *=l,...,y (5.58)

( Notice that n(s) - v^(s) where h\s) is defined in section 4 ) Grouping the set of equations in

(5.58), we obtain a more compact form

0%=*; (5.59)

where

h:= [v/»0'©l)»V/»(0'©2)."-.V/»0*©Y-l).v/»(/0>y)J (5.60)
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and

g* := ( '̂©i^O'©!)/"^^ (5-61)
Note that

4,(5) dp(s)s*-2 nm(s) i f*
V?(5) = 1.-np(s)dM(s)t tnp(s)dm(s),dM(s)fdm(s)t 'dn(s)

=nJ^ {s) [&)dMW).>-W^ (5.62)
which has the similar structure to (5.7). Hence it may be verified ([12]) that Yy is of full row

rank for almost all 7&2n spectral lines. In the following, we introduce a similar technical

assumption to the one (D4) so that the case where a reference input consists of sinusoids can

be dealt with.

Assumption:

(E4) There exist a set of frequencies (©i ,-,©„,-©!,-,-©„) such that the matrix Y*, defined by

Yin := [v^<Di),v^(-jto1)/-%v^<BO,v^Hfl)ll)j (5.63)
is nonsingular.

Based on this assumption, we give the following proposition.

Proposition 55:

Given the transfer function vp(s) as in (5.62) satisfying the assumption (E4). Define the

matrix Y^C2**2'as

Yy := \vpij(ox),vp(H(ax)r-,vP0'(ad,vp(-j(adj (5.64)
Then for almost all (©1,©2,-,©i)7'eRl, l>n, the matrix Yv is of full row rank, i.e. p(Y2/)=2fl.

Equivalently, the set {(©i,©2,"\©<)T *Rl I p(^2/)<2n J is of zero measure.

Proof: cf. [12]

Corollary 5.6: ( Almost Persistency of Excitation)

Consider the signal veaor w&0 as defined in (5.50) with the assumption (E4) being

satisfied. Then we is PE for almost all reference inputs consisting of / sinusoids where ten.
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The proof can be easily obtained by using the transfer function n(Q0j) and proposition

5.5, and hence is omitted here.

Repeat the set of equations (5.59) here

6% =^ (5.65)

It is obvious that, when ten, there may not be a QeR2* that solves (5.65). Instead, the minimum

error (least square error ) solutions, either unweighted or weighted , can be obtained and are

given respectively by

80 = (XTiYTjf^ngit (5.66)

and

80 »(XvWYTd^YiiWgx (5.67)

where W is a weighting matrix similarly defined as in (5.29) and (5.25). This parameter 60 will

be called tuned parameter if the resulting transfer function //(80^) is a stable transfer function

and H(Q0j) will then be called tuned plant transfer function.

With the tuned plant notion, it is shown in [10] that the MRAC system can be

transformed into the following

e=(Ae(+b4>TQ)e+b»$fi (5.68)

<t> =- *(*>*/+**&)*- eQehTe- ee9owBo (5.69)

with e being defined as the state error between the states in the closed loop plant and the tuned

plant and <J> as 8- 0O, where

*e0 := y,*, - ym =H<fayry M(s)(r) (5.70)

is called the tuned error, AQq is a Hurwitz matrix,

cWW-A^b^HQoj)

with 6j = (c0,,coT&doT), and Q is the matrix defined in section 2. In the following, we will dis

cuss two cases where the reference input consists of n sinusoids and more than n sinusoids.

We will use the corollary 5.6 to assume that w9o is PE and leave out the "almost-aUness" tem

porarily.

Case I: l=n
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By definition, //(8o*y) is a stable transfer function and the frequency response of the tuned

error eeo(/©i)=0 for i = -n,..,-l,l,..,2 where ;©,- is the the frequency of the ith sinusoid in the

reference input Hence, the tuned error eBo(t) is an exponentially decaying function, i.e. e©0(0-»0

exponentially as t-**>. Moreover, when the averaging assumptions are met, the asymptotic

behavior of the system (5.68) (5.69) is equivalent to the following system

e=(AQo+b$TQ)e+b»lfi (5.71)

<j> =- t(w6ohT+eBoQ)e- tQehTe (5.72)

which is shown ([10],[4]) to be exponentially stable. Consequently, the parameter error of the

original system (5.68) (5.69), <Jj=6-e0, satisfies <|>->0 as f-x».

CASE II: l>n

The tuned error eB (t) in this case is in general a nonzero bounded signal. To prevent from

the slow-drift instability in the presence of unmodelled dynamics, we further require that the

reference input KO he a dominantly rich good signal as defined in the work [10]. Now if

\eBo(j<odtegb for i =-/,..,-l,l,...,/, and hence \eBo(t)\ £ gh it is shown ([13]) that there exist some

class k function of e, v(e), and a nondecreasing function 8(a)*J?+-»/?+ and 8(a)-»0 as a-»0 such

that <K0 is a bounded function of t>0 and

lim won £ 8(&Hv(e) (5-73)

provided lte(0)ll, ll<K0)ll, g* and e are small enough.

Remark: In general, the way to choose a stationary input KO with finite number of frequen

cies such that H(QBj) ( 60 as defined in (5.67) ) is a tuned plant transfer function and, inciden

tally, that \eB (s)\ is small enough, is to select frequencies in the midband region of the model

transfer function. Also, it is more possible to have so obtained input be a dominantly rich good

signal as required to prevent from slow-drift instability.

Next, the bound on the difference between the weighted tuned parameter 60 defined in

(5.67) and the nominal parameter 8* corresponding to the nominal plant, namely, ilG<j— 8*H, can
be evaluated in terms of the frequency content of the input and the plant uncertainty. This

result is then used to derive a bound on the frequency search range CI required in the numerical

design algorithm.
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Proposition 5.7: ( Bound on CI in MRAC )

Consider a Model Reference Adaptive Controller satisfying assumptions (E1)-(E4). Sup

pose now the reference input KO is power constrained and contains finite number, say skn, of
sinusoids with frequencies lying in the compact set G=[-©",©1 hi the frequency spectrum, i.e.

we have

T- f*v(cd) =t «T =F- «H> <5/74)

where a{ is similarly defined as in (5.21). If JS satisfies

ou(55)
©< ©° and 0 < -^ £ r\ (5.75)

(M/?wm(0)]-O5(C5))

for some small ti>0 where 04(0, c^Q are some positive nondecreasing functions and 04(a),

05(a) -»0 as a-»0, then

ne0-e*ii^Tiiie#ii

Proof: See Appendix.

Remark: Similar to the case of adaptive identification, © can be derived numerically from

(5.75) and thus determines the frequency search range CI which is used in the numerical input

design algorithm.

Example 2: Consider the second example in section 4 with the plant contaminated by a high

frequency unmodelled pole £=-20, i.e.

*»-55>* (5>76)
Recall that the nominal parameter 6* is: #=1.5 and *J=-1, and the optimal input design obtained
in the second example in section 4 contains only single frequency. From previous discussions,

the adjustable parameter 6 then converges to the tuned parameter 60, where £,=1.575 and

ky=-\226, which gives the tuned plant transferfunction

v (52+21j+69.05)

Fig. 5.4 (a) (b) (c) demonstrate the time trajeaories of the parameter error <j>lf fa and the output

error e=yp-ym using the initial design F° as in (4.49); whereas Fig. 5.5 (a) (b) (c) show the time
trajectories for the same parameter error and the output error using the optimal input design.

The rate of convergence of the parameter in the case where the optimal input is applied is
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almost twice faster than that in the case where the non-optimal input is used. In Fig. 5.6, we

draw the Nyquist plots for the transfer functions of the model and the tuned plant to show the

closeness between them.
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Conclusion:

In this paper, we propose a frequency-domain input design algorithm and apply it to both
Adaptive Identification and Model Reference Adaptive Control schemes for continuous time
case. It is not hard to show that, by using the formulation of the discrete time case in [11]

[15], the same design algorithm can be applied to the discrete time adaptive system as well.
We feel that the algorithm presented here will become a very useful design tool if a good esti

mate of the unknown plant can be obtained beforehand.
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Appendix:

Proof of Proposition 5.1:

It can be seen from (5.7) that there exists a nonsingular matrix r€i?(2^1)x<2*fl) and a
transfer function n'(s) such that

n'(s) := Tn(s) = « * fdp(s) ,sdp(s), - ,s*dp(s) ,np(s).-, s^\(s) J (a.l)
A(s)dp(s) l> J

and a matrix Z„' defined by

2W := [n'O'Oi), «'0'tt>2) .- .n'0'̂ 2-) ,"'(/©a*i) J (*-2)
is nonsingular if and only if ZH is nonsingular since Z„'-TZ^. Similarly, we define n/(s) as

ny'(s) =-^ f4fr), - , j\(i), V^). - .*\C») J (a-3)
A(s%(j) *•

where ys2n+l and

*r-*-2

= r1

i
2 Yis even

2 "* 2

Then it follows from the resultof [12] that the matrix ZpC™ defined as

Zf := [n/O'cOi) ,ji/(/<»2) .- .V0'«Vi) •ny'Q'Qy) J
isnonsingular for almost all (<Dlf-,c&9r e/ft Furthermore, Zj can be related to Z^ by

Zy^r1^

(/©l)" (/(fly)"

^jtL j^jtl Yis odd

A(jo>,) AO'axy)

OW*
•

W¥
A(/©i)

Zr
AO'COy)

ipO'fiihXfflh)*"1 np0'©Y)0'c«)T),,"1

A0'g>iH,(/©i)
•

. A(j(*,)dp(jGiy)

np(/©i)(M)*2+l WpO^X/^)*2*1
A0'(0i)rfp0'a>i) A(jtoj)dp(j(Oy).

(a.4)

(a.5)
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It then follows that Zy is of full column rank or p(Zj)=^y for almost all (©1,-,£oy)T€7?'ir. In other

words, the set {(co1,-,a)7)r€/?T Ip(Zy>cy} is of zero measure.

.Q.E.D.

Proof of Proposition 5.2:

(i) The proof can be approached by using the similar technique in [12].

(ii) Referring to (a.3), we have na+i'fa) represented by

na+i'fr) = g/w/x dp(s). •" . Jdp(s). np(s)» "•. s^fiifc) (a.6)
A(s)dp(s) v. J

and the matrix^eC?™"*1* by

5w - (*2w(0). WCM), «2w'H«)i). - .WO'©/). »2w'(-M) J (a.7)
By assumption (D4), for given /, there exists a set of frequencies (O.coi,-,©/,-©!,-,-©;) such

that the matrix Z^x is nonsingular. Hence, by the first part of this proposition, we can conclude

that Zim is nonsingular for almost all <c»i,—,CDj)r€J?'. Finally, using (a.2) and (a.5), namely,

W - [n'(0), n'(/©i), n'(-jux), ••• ,n'(ja>d .itf-M) } (a*8)
Zqm = T~ Zmx (a.9)

one can easily conclude the result. This completes the proof.

Q.E.D.

Proof of Corollary S3:

Rewriting (5.14), we obtain the following matrix representation

6j \n(0)/i(j<ox)rt-j®i)r'ji(j®drt-j®d J

=[p(0)/(j(ax)A-m),'"/(joidA-j(od} (a-io)
or

eJZ2M = &w (a.11)

By Proposition 5.2, Z^+i is of full column rank for almost all (<ox,-tGidTeR1', in which case, it
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can be verified that

©0 := ^TM^M^OmT glM

is a solution to the matrix equation (a. 11) and, in turn, the setof equations (5.14).

Proof of Proposition 5.4:

Due to (5.35) and (5.36), thebound on the difference 67-8* can be found to be

II 6r - 6* II =II (Rw.(0)+ARJfl))-l(ARypW(Q)- ARw(0)tf )il

ii/motMi

Refer to (5.7)

1- II Rw4fSfl IIII ARw(0) II

l/URw.(0))
1-\\ARW(0)\\/UR .(0)]

(11 ARyw(0) 11 +11 a/uo) 11 ne'ii)

(II Aflyw(0) II +HM)v(0)ll 119*11)
*p

*(*) =

\-ii(sI-ATlb
(si- ArWb)

1

0

(si- A)'1bAP(s)
0

(a.12)

Q.E.D.

(a.13)

(a.14)

where the column matrices on the RHS are transfer functions from r(t) to w* and Aw respec

tively. By assumptions and (5.33), (5.34) we can estimate the following bounds:

and

II ARJV) II <£ [^aVI^I+L^+^/^J/Ko)/)-^

:=a,(G5)

"MypJfl) II <; £ (VKl+Lf^A+^A/K^H^W^-f

<; [Vl-Kl+Lf^A+ArA^+L^/^F.

:=ct2(o5)

(a. 15)

(a.16)
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As a result, the bound on 1107-8*11 which is defined in (a.13) can thus be simplified as follows.

a^ire'll + a2(S)
II 9r- 9* II <-^ — (a.17)

URw-(0)] - am

From assumptions

Pi <S II 9* II £ p2

for some plt p2>0 and

Q^ aig5)P2+a2(gS) ^
* Pi(M/?w.(0)]-a,(Q5))

for some small n>0, the result

H9r-9*II^Till9,ll

directly follows from (a.17). This completes the proof.

(a.18)

(a.19)

(a.20)

Q.E.D.

Proof of Proposition 5.7:

Recall that h\s), defined in section 4 as the transfer function from the input to the signal

vector wn, can be reformed into the following

m- Tp-(s)M(s) = MS>

= vp(s)-An(s)

(si- ATlbM(s)P'1(s)
0
0

L(s)

(a.21)

Referring to (5.51), (5.57), (5.58), we have the nominal parameter 9* satisfy the following fam

ily of equations

9*TnO©i) =P*-l(j<QdM(J®d

From (a.21), we have

9*7v/J(/G>i) =e*7" nO'Wi) +&TAn(j<od =F*"1^^©^ +9*7An(/<o«)

:= p-l(j(adM(j®i) + E(j<*d i =-5,...-1,1,...^ (a.22)

where E(s) is defined as
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E(s) = 9*7An(*) + rl(s)M(s)L(s) (a.23)

Define the vector Ag2s<ER2s as follows

Agl= [£0'©i)^0'ffli)."^0'to,)^(/Q)^)] (a.24)
and let 7^ and AY^ denote the matrices similar to those defined in (5.60) but corresponding to

the transfer functions n\s) and An(s).

Subtracting (5.58) by (a.22), we can express the bound on H9o- 9*11 by

II 9o- 9* II <, II ((X2s+AY2s)W(Y2t+AY^yi(X2,+AY2t)WAg2t II

\\(Y2twT2t r1 II
\-\\(Y2sWT2s r1 IIII AD II

vUY^wT^)

(II^+Ar^WA^I)

- , llAn„orv ™?-7 <Wi&tJ^WAa, II ) (a.25)
i - ii ad ii / Mi^ivyy

where AD^F^Al^+Ar^Wi^+Ay^WAl^. Let WeR2s*2s be a diagonal weighting matrix

*.<*(**£*> (a.26)
*1 »-l '* t-s

where *,- is defined similarly as in (5.25) and — represents the spectral weight of the frequency

yco,-. Then, Y^wT^ is simply an autocovariance matrix, i.e.

RWm(0) =YSWZ =£ [rtJQdn (/W|-f (a.27)

In order to relate the bound in (a.25) with the frequency content of the reference input and the

plant uncertainty, we first estimate several bounds as follows.

First of all, note that

II (j(0l- A)":b II £ 7A for all © e R (a.28)

Then it is true that the following hold.

(i) II n(/a>.-) II <; ^l+L2e(l+Jl+Jl%2(<»d)

:= a3(G>i) (a.29)

00 II (yis+AY^WAg* II £ II Y^WAgi, IWI AY^WAgK II

A mr i «vr ^4g5VA/eiq5)l/cia5)FJI9'l

:= 04(S)II9*II (a.30)
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(iit) II AD II <£ m^WAY^WMY^WAY-Ji

[2a3(B5)Lc/c2(Q5)/A+ I&flftft] ^ (fl^

.•= a5(B5) (a.31)

With these bounds obtained in (a.29)-(a.31), the bound on II90- 9*11 in (a.25) can thus be

simplified to the following

04(55)119*11
II 9o- 9 II <, , (a.32)

A[*wm(0)] - 05(B)

Consequendy, given any small number r|>0, if JS can be chosen such that

0< — <;n (a.33)
UR„m(0)] - 05(B)

then the result

II 90 -9* II £n 119*11 (a.34)

directly follows from (a.32). This completes the proof.

Q.E.D.
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