

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

CIRCUIT PLACEMENT METHODS USING

MULTIPLE EIGENVECTORS AND LINEAR

PROBE TECHNIQUES

by

Jonathan Alexander Frankle

Copyright © 1987

Memorandum No. UCB/ERL M87/32

13 May 1987

CIRCUIT PLACEMENT METHODS USING MULTIPLE

EIGENVECTORS AND LINEAR PROBE TECHNIQUES

by

Jonathan Alexander Frankle

Copyright © 1987

Memorandum No. UCB/ERL M87/32

13 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

CIRCUIT PLACEMENT METHODS USING MULTIPLE

EIGENVECTORS AND LINEAR PROBE TECHNIQUES

by

Jonathan Alexander Frankle

Copyright © 1987

Memorandum No. UCB/ERL M87/32

13 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

CIRCUIT PLACEMENT METHODS USING MULTIPLE

EIGENVECTORS AND LINEAR PROBE TECHNIQUES

Jonathan Alexander Frankle

pn>D# Computer Science

ABSTRACT

Efficient wiring of electronic circuits depends on good component place

ment. One formulation of the placement problem is as follows: given n

legal positions, n components, and an n-by-n symmetric matrix of connec

tions between components, assign the components to the legal positions so

that the sum of squared connection distances is minimized. We transform

this to an equivalent problem in which every feasible placement is

represented by a point in n-1 dimensions, and the object is to find the
point furthest from the origin. This is accomplished by expressing each
placement as a weighted sum of certain eigenvectors, which contribute

independently to placement cost.

It is possible to find the feasible point with maximum projection on any

given direction in the transformed problem space. We call this operation a

"probe". Individual probes can be used to produce good points, and iterated
probes can be used to produce sequences of points at increasing distance

from the origin. Iterated probes can work in projected spaces with increas

ing numbers of dimensions, with early stages focusing on the most valuable

dimensions.

By upper-bounding the distance of the furthest point from the origin in

k dimensions, for k<n, we prove better lower bounds on placement cost

than those given by previous techniques. Some of our proofs use

0(Vk(c)k~l) random probes, where the desired tightness of the bound

determines c^. We also describe an adaptive algorithm that precisely

determines the furthest point in a fe-dimensional projection, using
©(n2**-1') probes in the worst case.

We generalize our approach to handle fixed components. Finally, we
test several placement algorithms that use probes against an exhaustive
pairwise interchange heuristic, on randomly generated test cases. For one-
dimensional placement problems, our techniques are faster and produce
slightly better solutions. For two-dimensional problems, the results depend
on problem size. With up to about 64 components, an exact implementation
of iterated probes gives the best results, but it is substantially slower than
pairwise interchange. With 256 or more components, an approximate
iterated probes heuristic is faster than pairwise interchange and gives
equally good results. For intermediate cases we obtain the best results by
using probes to generate initial placements and pairwise interchange to
improve them.

Supported by Semiconductor Research Corporation,

grant SRC 82-11-008.

Chairman of Committee: Richard M. Karp.

Acknowledgments

I am pleased to acknowledge help from many sources. My greatest debt

is to my research adviser, Dick Karp. I first knew him only as "Professor

Karp", in the four courses I took with him. The first of these, an introduc
tory course on the analysis of algorithms, was tremendously inspiring.

Dick's lectures combined clarity, rigor, beauty, and what is probably most

important in sustaining a graduate student's interest in research: fun. The

other courses offered more of the same.

Dick's talent for focusing on the essence of a problem, which makes his

lectures so effective, has also made him a steady guiding force as a research

adviser. He has pushed me forward patiently yet forcefully, encouraging

potentially fruitful work and helping me discard bad leads. He has offered
important insights at every step. Along the way he has stirred my interest

in many fields that out of ignorance or fear I would otherwise never have

explored.

Dick's critical readings of this work have made me a better critic of my

own expository style. I hope his advice stays with me. I have learned to
avoid burdening my listener with descriptions of what I am not doing.

Someday I may learn when to get out of the way and let mathematics speak

for itself.

Finally, I must acknowledge Dick's role in arranging funding to support

this work. I am also grateful to the Semiconductor Research Corporation,

which provided that funding.

11

Two other strong influences have been John McCann and Manuel

Blum. John was my supervisor at Polaroid's Vision Research Laboratory in

the four years before I began graduate study. He taught me the value of
forming hypotheses and testing them quickly. The experimental side of the

current work has benefited greatly from this spirit. Manuel Blum, in hiring

me as his teaching assistant for introductory algorithms just after I had

taken the course myself, gave me a terrific opportunity to solidify my grasp

of the field.

To John Blanks I am grateful for providing the turning point in the

progress of this research. On learning about his dissertation work, I real
ized that all the algorithms we had developed for partitioning could be

adapted to the broader problem of placement. He kindly sent me a copy of
his dissertation and engaged me in some brief but stimulating exchanges of

ideas.

For help in producing this document I am grateful for various software

tools of the local UNIX* environment: especially emacs, pc> make, rdist,

eqn, and troff; and for hardware manufactured by Digital Equipment Cor

poration and Xerox. Mary Edmunds turned my rough sketches into attrac

tive figures. The data plots were produced using Ed Hunter's program

ggraph.

I thank Beresford Parlett and Michael Klass for serving on my commit

tee and for reading versions ofthe thesis. Both had more suggestions than I

have so far been able to pursue. Malgorzata Marek-Sadowska also read the

thesis and helped keep me in touch with the practical side ofcurrent place

ment problems. The advice of Lorraine Hirsch helped me improve the

*UNIX is a trademark of AT&T Bell Labs.

HI

readability of several sections.

Writing a dissertation also requires more general "life-support" and

advice. I am grateful to everyone who persuaded me that working at home

with a terminal and modem was essential, and to Peter Danzig and Ken

Krieg who helped make the workplace at home a reality. I thank the City

of San Leandro for providing a very pleasant home in the last few months.

I thank David Glueck for his no-nonsense credos of positive thinking, such

as "Why shouldn't we win this chess tournament?", and, most importantly:

"Just write it up!"

I appreciate the patience and support of all my friends, and of my

parents, during the times I have withdrawn from regular activities for the

sake of this work. Finally, I thank my ever-supportive, loving wife,

Lorraine Hirsch: her faith fed my own.

IV

Table of Contents

Chapter 1: Circuit Placement: Background 1
1.1. The placement problem 2
1.2. Review of placement techniques 5

1.2.1. Constructive algorithms 5
1.2.1.1. Cluster growth 5
1.2.1.2. Partitioning 6
1.2.1.3. Constraint relaxation 8

1.2.2. Iterative algorithms 13
1.2.2.1. Pure improvement procedures 13
1.2.2.2. Simulated annealing 15

1.3. Outline of new approach 16

Chapter 2: Transformation of the Circuit Placement Problem 20
2.1. Problem statement 20

2.1.1. The connection matrix 21

2.1.2. Legal positions and feasible placements 23
2.1.3. The quadratic cost function 26
2.1.4. Computational complexity of the problem 29

2.2. Restatement using eigenvectors • 31
2.3. Transformation to a furthest-point problem 35
2.4. Probes for good points 37

Chapter 3: One-dimensional Placements by Iterated Probes 43
3.1. The idea of iterated probes 44
3.2. Using iterated probes 47

3.2.1. Start directions 47
3.2.2. Number of dimensions for iterations 49

3.3. Iterating in stages 49
3.4. Sparse iteration 55
3.5. Summary 59

Chapter 4: Proving Lower Bounds on Placement Cost of a Given
Circuit 60
4.1. Nonadaptive probe sets 62

4.1.1. Axis probes 62
4.1.2. Regular coverage of Rk 63
4.1.2.1. Asymptotic number of probes required 64
4.1.2.2. Random probes 67

4.1.3. Practical shortcuts 69
4.1.3.1. Partitioning 69
4.1.3.2. Sets of related probes 71
4.1.3.3. Parallelism and probes 75
4.1.3.4. Choosing k wisely 75

4.2. Adaptive methods 77
4.2.1. Probing for the convex hull 77
4.2.2. Probing for the furthest point 84

4.3. The sizes of V and F for placement polytopes 88

Chapter 5: Application to Circuits 95
5.1. Weights for component pairs in large nets 95
5.2. Classes of components 97
5.3. Fixed components 98

5.3.1. New form of objective function and probes 99
5.3.2. Features of the transformation with fixed components 102
5.3.3. A "mixed representation" method for fixed components 104

Chapter 6: Two-dimensional Placement 107
6.1. The furthest-point transformation 108
6.2. Probes 109
6.3. The (x,y) probe operation HI

6.3.1. Exact solution by linear assignment HI
6.3.2. Restatement as Euclidean2 blue-green matching 112
6.3.3. Approximate solution to Euclidean2 blue-green matching 113

6.4. Lower bounds on two-dimensional placement cost 117
6.4.1. Generalized axis probes 117
6.4.2. Generalized random probes 119

6.5. Extensions for special components and higher dimensions 120

Chapter 7: Experimental Results 122
7.1. Distributions of Xr and a2 124
7.2. Uniform interval placement of random graphs 128

7.2.1. Low-cost placements 128
7.2.2 Lower bounds on cost 129

7.3. Two-dimensional placement 129
7.3.1. The error in approximating individual probes 130
7.3.2. Iterated probes for the placement of random graphs 133
7.3.3. Real circuits 138

VI

139Chapter 8: Conclusions
a, „ . 1398.1. Review

8.2. Directions for future work 14
141

8.2.1. Analytical questions
140

8.2.2. Experimental tests
8.2.3. Possible extensions

. . 1458.2.4 Applications to partitioning

Appendix 1: Proof that UIP is NP-hard 146
Appendix 2: "Minimum projection magnitude" is NP-hard 149

9 /rtv ^ .256+ Zn(fe) icQAppendix 3: Proof of (4.11): tan2<p{S) < 10U
152Appendix 4: Details ofexperiments

Appendix 5: Away to make our cost function sensitive to congestion 154
0 , 155
References

Chapter 1

1. Circuit Placement: Background

This work presents new methods for placement in the physical design of

electronic circuits. The main object of physical design is to transform a

functional design into a physical layout. A functional design specifies com

ponents and interconnections that will behave as desired; the layout assigns

positions to the components and interconnecting wires.

Layout is traditionally conducted in two phases. In placement, posi

tions of the components are determined. In routing, paths are then specified

for the wiring that interconnects the components. Both phases must con

form with certain design rules prescribed by the technology being used.

A poor placement may require several times more wire than a good one;

this consumes layout area and leads to wire congestion that can make rout

ing difficult or impossible. Because good placement is critical to good lay

out, much effort has been invested in developing placement algorithms.

This chapter is an introduction to the placement problem. Section 1.1

summarizes the elements and goals of circuit placement, including a precise

statement of the objective that we shall employ. In section 1.2 we survey

the most widely used algorithmic strategies for circuit placement. Section

1.3 outlines the new approach developed in this work and describes the

organization of the remaining chapters.

Sections 1.1 and 1.2 are not meant to be exhaustive reviews of the

literature on circuit placement. [Preas86] gives a more complete survey of

placement techniques, including 89 references. A general overview ofplace

ment and routing issues and an annotated bibliography appear in

[Soukup81].

1.1. The placement problem

A mathematical formulation of the placement problem requires a meas

ure of placement quality, and abstractions to represent components, connec

tions, and the layout surface. Our particular formulation, and a discussion

of the technologies for which it is appropriate, will be examined in section

2.1; here we review some abstractions common to many approaches. Some
procedures consider technology-specific details that these abstractions
suppress. But most placement algorithms, e.g., those to be discussed in sec

tion 1.2, do not depend on such details.

In some layout styles, the surface where components are placed can be

represented as a fixed set of discrete slots. Aplacement assigns each com
ponent to a distinct slot. For a component to function, its internal circuitry
must connect with external wiring at locations on the component known as

ports. For simplicity the problem is often formulated as if all of a
component's ports were located at the center point of its assigned slot.
Placements are then modeled as assignments ofcomponents to given points,

which we call legal positions.

The functional design specifies subsets of ports, known as signal sets,

that the wiring must connect into electrically common interconnection nets.

Placements are evaluated according to how effective a wiring of these nets

they allow. Defining a corresponding cost measure is the key step in treat

ing placement as a mathematical optimization problem.

Choosing an appropriate cost function is difficult for two reasons.

1) In practice there are many conflicting goals. [Preas86, Hanan72] mention
easy routability, small layout area, low crosstalk among signals, uniform
heat dissipation, and maximum circuit performance.

2) Cost should be fast to compute. For example, the ideal way to compare

proposed placements might be to perform and evaluate a finished routing for

each one, but this is impractically slow.

Consequently, simple functions that estimate routability are typically
used to evaluate placement quality. Some are based on estimating the

length of wire required to connect the nets. One commonly used approxima
tion to the wire length ofa net is half the perimeter of the smallest rectan

gle that contains the components of the net. The minimum length of a tree
that connects the component positions is a more accurate approximation.

The weighted sum of squared connection distances has also been used
as a measure of placement cost [Cheng84, Blanks85b]. We adopt this meas

ure in the current work. Specifically, we assume that we are given entries

cr representing the number of connections between components i and j, and

our goal is to minimize

where (x[i],y[i]) is the position given to component i. The squared-distance

metric penalizes long connections; it also approximates signal propagation

time along wires. These and other of its properties are elaborated in section

2.1.3.

Measures based on wire length do not account for interactions among

the nets. They therefore do little to discourage unbalanced distributions of

wires, which can make routing difficult. Excessive demand for wiring in

specific areas is known as congestion. An example of a metric that is sensi
tive to congestion is the number of nets that cross a given straight line

through the layout (a "cutline"). One version of the placement problem
aims to minimize the maximum number of nets that cross any cutline.

There are thus many ways to define the placement problem. Even the

simplest formulations lead to very difficult problems. For instance, we show

in section 2.1 that to minimize cost (1.1) is an NP-hard problem; [Sahni80]

proves that several other formulations of placement also belong to this class.

NP-hardness implies that no known algorithm can solve these problems in

time bounded by any polynomial function of the input size; and that it is

highly unlikely that an algorithm that does so exists. (See [Karp75],
[Garey79] for detailed discussions of NP and related problem classes.)

Because modern circuits can have thousands of components, it is thus not

feasible to solve most placement problems exactly.

Circuit designers must therefore rely on heuristic procedures for place

ment. Such procedures do not guarantee optimal solutions; instead, they

generate one or more fairly good placements, reasonably quickly. The next

section reviews some of the most widely used placement heuristics.

It is difficult to compare the effectiveness of these algorithms. They are

often developed and tested on different sets of problem instances. Further

more, different algorithms often aim to minimize different objective func

tions; obviously it makes little sense to evaluate an algorithm according to

an objective other than the one that it was designed to optimize.

In this respect, cost measure (1.1) offers an important advantage:

[Blanks85a,b] observed that it facilitates proofs of good lower bounds on

placement cost for given circuits. We can use lower bounds to show in some

cases that heuristic placements are close to optimal, with respect to the

chosen cost measure.

1.2. Review of placement techniques

Placement algorithms are generally divided into constructive and itera

tive. Constructive algorithms start with few if any components in assigned

positions, and produce an initial placement. Iterative algorithms take a
complete placement as input and produce a new, improved placement. Not
every algorithm is purely constructive or purely iterative, and most place
ment systems use both kinds of procedures. Still, the distinction is reason

able, as most procedures emphasize one mode or the other.

1.2.1. Constructive algorithms

We review constructive algorithms based on three ideas: cluster growth,

partitioning, and constraint relaxation.

1.2.1.1. Cluster growth

Cluster growth begins with only a few components placed; these may be
thought of as "seeds". New components are introduced into the placement,

one at a time, at positions determined by their relation to the components

already placed. Various rules have been used to control the order in which
new components are selected: a few of these are summarized in [Hanan72].

Although clustering methods are easy to implement, they are currently
losing favor. One reason is that the final placements are heavily influenced
by the first components that are placed. Since the early decisions are based
on incomplete information, they can easily lead to placements that are far

from optimal.

1.2.1.2. Partitioning

From the bottom-up approach represented by cluster growth, we now

turn to a top-down approach that uses successive partitioning of the com

ponents. The idea is to divide the components into groups that will be

assigned to separate regions ofthe layout, so that the number ofconnections

between different groups is kept small. The most common application of

this idea works by recursive bisections, i.e., cuts into two groups. For exam

ple, the first cut might decide which components to place on the left and

right sides of the layout; then the components on each side would be

separated into top and bottom halves, etc.

The motivation for partitioning is clear. Since routing trouble from

excessive wire crossings is most likely to be associated with cutlines through

the center, it makes sense to try to reduce connections across the middle.

Ever since the partitioning heuristic in [Kernighan70] became popular,

many placement algorithms have employed partitioning.

Before describing this and other techniques, we note that partitioning is

itself a difficult problem.* In fact, no practical algorithm is known to find a

balanced 2-way partition in which the number of connections between the

two sides is guaranteed to be within any constant factor of the minimum

achievable number. Thus while it is possible for partitioning techniques to

perform well in various situations, the practice of calling them "min-cut"

heuristics is misleading, since none of them reliably achieves this goal.

We now outline the procedure of [Kernighan70] for improving a parti

tion. The number of connections between each pair of n nodes is given. An

♦Section 2.1.4 states a particularly simple form of the problem Cgrapn partition")
that is NP-complete.

initial partition is given into two sets, each with n/2 nodes. The cost is the
total number of connections between the two sets. The procedure performs

n/2 exchanges of nodes between the sets, in the course of which all nodes
will switch sides. For each exchange, the pair of nodes not previously

moved whose exchange will produce the lowest-cost partition is selected.

(Some exchanges can increase cost.) Among the n/2 configurations in this
sequence, the procedure returns to the one that achieved the minimum cost.
If the new partition is better than the initial one, then a new pass is begun

with the new one.

[Fiduccia82] extends the above technique to partition circuits that

include multi-component nets. Cost is evaluated as the number of nets that
have components on different sides of the partition. At each step they find
the best component to move instead of the best pair to exchange. By using
efficient data structures to avoid unnecessary updates of the payoff function

for component moves, a pass that moves all components can be performed in
time that is a linear function of the size of the circuit description.

[Dunlop85] shows how to produce better placements when using the
approach of recursive partitioning into halves, quarters, eighths, etc. The
idea, called terminal propagation, allows choices made in partitioning com

ponents of a given subregion to influence subsequent partitioning in adja
cent subregions. Suppose each component has been committed to the left or
right side, and components on the left have been divided into atop and bot
tom half. The right side is not partitioned independently: if a component on

the right belongs to a net that includes components on the top left, a
penalty is introduced for placing that component in the bottom half of the
right side. In a small experimental study, [Hartoog86] reported that a
simplified form of terminal propagation was the most effective of several

placement procedures.

[Barnes82a] considers the problem of partitioning an n-node graph into
kblocks of specified sizes. Let Abe the adjacency matrix of the graph, and
represent each partition by an n-by-fc matrix Xin which x^ equals 1if node
i belongs to block j and 0otherwise. Barnes shows that the problem has an
equivalent restatement: Find the partition Xfor which XXT is the closest
approximation to A.

If X could be chosen so that its k columns were proportional (respec
tively) to the first *eigenvectors of A, it would represent an optimal parti
tion. This motivates Barnes to search for apartition in which the columns
of Xapproximate these eigenvectors. The desired approximation is provided
by asolution to alinear programming transportation problem. It is worth
noting that this solution optimizes closeness in approximating the eigenvec
tors, whereas the partition cost is actually a function of the closeness in
approximating A.

1.2.1.3. Constraint relaxation

We now review aclass of algorithms that operate in two characteristic
phases. The first phase relaxes the feasibility constraints associated with
discrete legal positions: i.e., components are allowed to occupy other posi
tions. Cost is minimized among all placements in aset that includes the
feasible ones. Usually placements in the extended set satisfy certain basic
properties of feasible placements, e.g., have the same sum of component
positions.

Once the legal-position constraints are relaxed, the resulting problem
can be solved efficiently with optimization techniques such as gradient pro
jection. This yields what we call a"relaxed placement", which typically

features an unacceptable distribution of components. The second phase

maps the output of the first phase to a legal placement.

This approach appears in many forms. [Quinn79] suggests that the
components and connections be modeled as particles and springs, with the
optimum configuration characterized by anet force of zero on every particle.
A constant repulsive force between unconnected components is introduced to
avoid the equilibrium configuration in which all components collapse to a

single point. The paper states that this force "is the single most critical
parameter of the system." In the second phase their procedure moves the
components onto legal positions by solving a linear assignment problem to

minimize the total of the squared distances traveled by all components.

The first phase in [Cheng84] finds the configuration that minimizes cost

among all placements that give the components positions whose sum equals
the sum of the legal positions. The result would be a placement in which all
components are placed at the center of gravity of the legal positions, except

for the effects of explicit constraints that fix some components at predeter

mined locations. Thus if the problem statement does not include such con

straints, this approach must introduce some arbitrarily.

The second phase produces an assignment of components to legal posi

tions by a sequence of partitions. First the n/2 left-half components and
n/2 right-half components are committed to the corresponding halves of the
layout; then the upper n/4 components on each side are committed to upper

quadrants, etc.

•Before each partitioning step, three repositioning passes along the par

titioning direction are applied to the components of the region. Each pass

rescales the positions of a small fraction of the region's components, locks
these components into their new locations, and then reoptimizes the

10

positions of the other components in the region. Rescaling applies an affine
map to the affected components so that the spacing proportions between

them are preserved, while the center and spread are adjusted to match those

of corresponding legal positions. Reoptimizing mimics the first-phase relax

ation step, except that only the nonfixed components of the current region

are allowed to move.

In all cases, components outside the region are kept fixed. For

definiteness, our summary of the three passes will assume that the- parti

tioning direction is left to right, and that the fraction of "locked" com

ponents (a user-specified parameter in the range [0,.5]) equals 15%.

1) Positions of the leftmost 15% components are rescaled and fixed, and the

other component positions are reoptimized.

2) Positions of the rightmost 15% components are rescaled and fixed, and

the others reoptimized.

3) Positions of the leftmost components are rescaled once more, the leftmost

and rightmost 15% components are fixed, and the remainder are reoptim

ized.

[Blanks85b] also uses metric (1.1). As in the above approaches, the first

phase yields a placement that does not assign components to legal positions.

Instead, cost is minimized among placements that agree with the legal posi

tions in the sums and sums-of-squares of the x coordinates and y coordi

nates, and in the inner product of x and y. As is shown in [Hall70], the
optimal x and y vectors under these constraints are given by two eigenvec

tors of a slightly modified connection matrix. In his second phase, Blanks
uses component interchanges (an iterative technique discussed in the next

section). Interchanges are first used to convert an arbitrary placement on

the legal positions into a legal placement that is as similar as possible to

11

the eigenvector solution; additional interchanges are used to reduce cost.

The relaxed placement phase in [Just86] uses Lagrange multipliers to

enforce the correct sum and sum-of-squares of component positions. In the

second phase, components are transported from the relaxed positions to

"buckets" defined within columns of the placement plane. The approach

allows components of different heights; it associates each component with a

number of units of supply according to its height. The cost of transporting

each unit is given by the squared distance from the component to the

bucket, and the objective is to minimize total cost.

There is no guarantee that the optimal solution will transport all units

of a component to the same bucket, so some post-processing is required.

First each component is assigned entirely to the bucket that contains the

largest number of its units. Finally, the components in each bucket are

ordered according to their original vertical positions in the relaxed place

ment.

[Otten82] uses a two-phase approach for the initial allocation of high-

level modules in "floorplanning". Each module can contain several com

ponents. The modules can have different sizes, and the designer has some

control over the shape of each one. Otten's goal is to arrange the modules

into a compact layout. Since the formalism of legal positions is not so suit

able here, he takes another approach.

The first stage depends only on interconnection nets, not module sizes.

From the net lists, Otten derives desired distances between center points for

each pair of modules; the goal of his relaxed placement is to place the

modules in the plane so that these distances are approximated as closely as

possible. The matrix of desired distances determines what he calls the

Schoenberg matrix S.

12

If S has rank r, there is a configuration of the modules in r-

dimensional Euclidean space that realizes all the desired distances: in each

dimension, the module coordinates are prescribed by one of the r eigenvec

tors of S. Generally r is much greater than 2. Since the modules must

actually be placed in 2 dimensions, not all the distances can equal the goals.

The relaxed placement sets the two-dimensional coordinates according to the

two leading eigenvectors of S; this minimizes the discrepancy between the

original matrix S and the Schoenberg matrix given by the actual distances.

In the second phase, a rectangle with area at least equal to the sum of

the module areas is carved into regions by a sequence of vertical and hor

izontal "slicing lines". At each step the modules ofa region are partitioned

among child regions that share the shorter dimension of their parent.

Along the other dimension, lengths of the child regions are made propor

tional to the total areas of their modules. Eventually the modules are all

assigned to distinct regions. The basic approach assumes that each module
is flexible enough to be fit into any rectangle that has the required area,

although more realistic models are also mentioned.

The relative positions of modules in the relaxed placement determine

which partitions are allowed in the second phase. For example, m-1 verti
cal slicing lines are possible in a region with m modules; each line
corresponds to one breakpoint in the horizontal ordering of these modules in

the relaxed placement.

The process for deciding which partitioning lines in a region to accept

at a given stage also uses the relaxed positions. The region's modules are
represented as squares centered at their assigned positions in the relaxed
placement. With all ratios between module areas preserved, the squares are

first made large enough so that every pair overlaps, and then

13

simultaneously shrunk. At some point in the shrinking process, the
modules become separable into two sets by a line that intersects no squares.

The slicing line corresponding to that partition of modules is accepted first;
further lines are considered in the order in which such partitions become

possible during continued shrinking. Aregion is allowed to accept alimited
number of parallel slicing lines in any stage. Otherwise, the likely result
would be modules with shapes that deviate too far from being square.

We have examined five different approaches to placement that use con

straint relaxation. These represent only a small sample of the possible algo

rithms of this type. Any technique for defining and solving a relaxed place
ment problem could be followed by any of the second-phase heuristics. Com
binations of heuristics, that apply one after another or mix features of

different approaches, are also possible.

1.2.2. Iterative algorithms

In iterative placement the basic step generates a proposed placement

that is slightly different from the current one, and accepts the proposed
change under specified conditions. The most common change considered is
an exchange, in which two components trade places. We divide iterative

algorithms into two classes, depending on whether changes that increase

cost are ever accepted.

1.2.2.1. Pure improvement procedures

We first consider the general form of improvement algorithms based on

exchanges. An exchange of components is proposed, and if it decreases cost

it is accepted. When no further exchanges can decrease cost, we say that a

local optimum has been reached. At this point the algorithm stops.

14

If the effect of an exchange on the cost function is time-consuming to

compute, time constraints may make it necessary to select proposed

exchanges carefully, and to stop before a local optimum is reached.

[Blanks85b] showed that cost metric (1.1) makes it easy to compute the

incremental cost of any proposed exchange and to perform updates when

exchanges are accepted.

It is thus feasible to perform what Blanks refers to as "exhaustive pair-

wise interchange" on very large circuits. In each pass of this procedure,
every pair of components is considered for exchange, and all exchanges that
decrease cost are accepted. Passes continue until one in which no pair is

accepted.

[Goto811 is representative of techniques that allow more complicated
improvement steps, such as the following: component A takes B's place, B
takes C's place, C takes D's place, and Dtakes A's place. The length of
cycle allowed, sometimes denoted X, determines the number of available
changes in a given placement. (In the above example, A=4.) This number,
which we can think ofas the size of the "neighborhood" ofpossible moves, is

roughly proportional to n\ It is almost never practical to use X>2 in
exhaustive improvement procedures.

Goto makes effective use of longer cycles by selecting moves from a very

restricted set. In each cycle, every component but the last must move near

to the location that would minimize cost, assuming all other components

stay fixed. Complicated moves may be useful, even if the resulting neigh
borhoods become too large in practice for moves to continue until a local

optimum is reached.

15

1.2.2.2. Simulated annealing

Among iterative algorithms in which steps that increase cost are
allowed, the most popular use an approach known as simulated annealing.
The idea, as introduced in [Kirkpatrick83], exploits an analogy between the
problems of minimizing cost in combinatorial problems and of producing
low-energy states in materials. Accepting only those changes that decrease
cost is analogized to rapid quenching from high to low temperature. Pure
improvement algorithms get stuck at local optima, just as quenching yields
suboptimal material structures. The lowest energies are achieved only if
temperature is decreased gradually according to an annealing schedule that
keeps the material in equilibrium.

An algorithm in [Metropolis53] simulates the equilibrium behavior of a
collection of atoms by proposing at each step asmall move that would result
in a change in energy of AS. Moves with AE^O are always accepted;
moves with AE>0 are accepted with probability e^'7, where T is the
temperature. Combinatorial optimization by annealing proceeds in a simi
lar fashion. Given an initial configuration, specified numbers of moves are
attempted at several decreasing values of acontrol parameter T: cost is sub
stituted for energy in the above acceptance rule.

Annealing offers a general algorithmic template that has been applied
to diverse optimization problems, including circuit placement. An imple
mentation that has been tested on numerous industrial circuits is reported
in [Sechen86]. This package employs annealing algorithms that consider an
unusual range of details. Proposed moves include component displacements,
exchanges, and orientation changes. Costs assess net perimeter lengths,
component overlaps, row imbalance, and wiring track requirements.

16

Although simulated annealing has achieved encouraging results in
placement and related design problems, the approach has drawbacks.
Improved results often come at the expense of very long computation times.
Furthermore, there is no sound theoretical justification for applying the
specific annealing formulation. In placement and partitioning experiments,
[Nahar85] and [Nahar86] found that simulated annealing performed no
better than other methods that allow cost-increasing moves. They favor a

procedure that accepts bad moves only when the last several attempts to
find a good one have failed. Annealing may prove more important for indi
cating the value of accepting bad moves to escape local optima than for the

details of the physical analogy.

1.3. Outline of new approach

The current work takes a new approach to the placement problem. We

use linear algebra to express the problem in a transformed geometric set
ting. Each possible placement is represented by a point in a multi
dimensional space, in such a way that the optimal placement is transformed

to the furthest point from the origin.*

This transformation allows us to take advantage of a new tool, called

the probe, for finding good placements and for proving lower bounds on
placement cost. The probe procedure takes any given direction in the
transformed space and produces the feasible placement whose point has the
maximum projection on that direction. We present a variety of algorithms

and lower-bound methods based on probes.

*This approach was first reported in [Frankle86].

17

The value of each dimension of the transformed problem space can be

precisely quantified in anatural way according to its potential to contribute
to the objective function. The best use of probes is to concentrate them in
directions spanned by the most valuable dimensions. The projections of the
transformed points in the best dimensions supply a systematically derived
approximation to the placement problem, in any fixed number of dimen
sions. Such approximations enable us to apply multi-dimensional search

techniques to the placement problem.

In some respects the work on partitioning in [Barnes82a,b; Barnes84] is

a precursor ofour approach to placement. Each approach uses eigenvectors

and eigenvalues to produce solutions and lower bounds on cost, and each

depends on linear optimization techniques.

There are significant differences. Our approach uses more general com

binations of eigenvectors. We consider entire placements (assignments of n
components to n legal positions), not just partitions into k sets. Note finally
that our placement problem can represent fc-way partitioning as a special

case, by specifying multiple legal positions at each ofk locations.*

It is also interesting to compare our approach with the algorithms

based on constraint relaxation (section 1.2.1.3). The relaxed placement

phase effectively produces a two-dimensional approximation to our

transformed problem. The mapping to a feasible placement is like a single

probe. (Some methods perform exactly the same function as a probe; others

♦Components assigned to the same location compose one set of the partition. No
cost is charged for connections within such a set, since the squared distance is zero.
We can choose k locations in k-l -dimensional space so that the Euclidean distance
between the locations of any two sets is the same. Higher-dimensional placement is
discussed in section 6.5.

18

differ slightly.)

Constraint relaxation produces a problem formulation for which an

optimal relaxed placement can be found. The trouble is that this solution
can be very far from the feasible placement that it leads to in phase 2,

which consequently can be far from optimal among feasible placements.

If we had to stake everything on a single probe, the direction

corresponding to an optimal relaxed placement would be the right choice.
But we face no such limitation. In fact the span of the most valuable

dimensions comprises a wealth of probe directions, each of which
corresponds to a promising relaxed placement. Although these relaxed
placements cost more than the optimal one, many are typically more nearly
feasible. It is quite possible for these relaxed placements to lead to feasible
placements that cost less than the one determined by the "optimal" relaxed

placement.

The organization of the remaining chapters is as follows. The next four
chapters develop our methods for the special case of one-dimensional place
ment (in which all legal positions lie on a straight line). Chapter 2 gives

the furthest-point transformation and the probe procedure. In chapter 3 we
present placement heuristics that use sequences of probes. Chapter 4
describes how to use probes to derive lower bounds on the placement cost of

a given circuit. In the course of chapter 4 we develop and analyze a
polynomial-time algorithm to find the furthest point from the origin in pro
jections of our transformed problem into any fixed number of dimensions. In
chapter 5 we treat multi-component nets and specially constrained com

ponents.

Chapter 6 shows how the techniques of chapters 2 through 5 are gen

eralized to handle two-dimensional placement. Experimental results appear

19

in chapter 7 and conclusions in chapter 8.

20

Chapter 2

2. Transformation of the Circuit Placement Problem

Our problem is to assign the components of a given circuit to a fixed set

of positions so that the total of squared connection distances is minimized.

This chapter presents a problem transformation and develops our main pro

cedure for taking advantage of the transformation. In section 2.1 we

present the precise problem formulation and examine several of its features

in detail. Section 2.2 shows how to restate any instance of the problem in

terms ofthe eigenvectors and eigenvalues ofa certain matrix. In section 2.3

we recast the problem in a transformed geometric setting, as a search in a

discrete set of points for the one at maximum distance from the origin. Sec

tion 2.4 describes the "probe", a procedure for locating good points in the

transformed setting. Most ofour new methods are based on probes.

2.1. Problem statement

A problem instance consists of n circuit components and n legal posi
tions in the (x,y) plane. The only information about the components is a

symmetric matrix C in which ctj is the number of connections between com

ponent i and component j. We seek a one-to-one assignment of components

to legal positions that minimizes

21=1j=\

where {x[i],y[i]) represents the position given to component i.

To clarify the strengths and weaknesses of this model of the circuit
placement problem, we examine the assumptions imposed by adopting this
formulation of connection matrix, legal positions, and cost function.

21

2.1.1. The connection matrix

Acircuit is defined by listing its components and specifying the neces

sary connections between them. For a given circuit, our goal is to find a
feasible placement of the components that makes routing easy. Routability
is difficult to measure, so instead we take an approach that designers have
found works reasonably well: we define a cost by summing contributions

from each connection. Reasonable abstractions of the placement problem

must make this sort of simplification.

It is convenient to express cost as a sum of contributions from all pairs

of components, with contributions of zero from pairs that are not connected.
This motivates us to use n-by-/i matrices C to represent circuits with n
components. Entry ctj in Crepresents the connection between components i
and j, and each Cij will be a multiplicative factor in one term of the cost

summation.

In the simplest matrix representation of a circuit, entry ctj equals 1 if
components i and j are connected and 0 if they are not. Some features of
matrix representations of circuits are apparent even in this simple case.
Most entries in the connection matrix tend to be zeros, because in typical

circuits most pairs of components are not connected. The diagonal entries

cu equal zero, since we are not concerned with internal connections.

An obvious refinement of the above scheme is to let different types of

connections be represented by matrix entries with different values. Avalue
may have a precise physical correlate; e.g., the number of wires connecting
two components on a printed circuit board. In general, the value cu indi
cates the importance of the connections between components i and j. Each
value acts as a weighting factor for the contribution that the associated pair
adds to the total cost. We can assign larger values to special pairs, e.g.,

22

those with timing-critical connections, to give them greater weight.

The signals directed from i to j and from j to i might have different
weights, say w^ and w^. We assume that in the placement cost summation,
these values should both be multiplied by a function of the positions given

to components i and j. Total cost would be the same if instead of using wu
and Wjt in C, we set both cv and Cji to \(w^wjt). We can thus restrict
attention to symmetric connection matrices.

In typical circuits, some signals (or "nets") are passed among more than
two components. Such nets offer us achoice of connections, where a"con
nection" is a pair of components that a signal can pass between without

going through other components.

It would be straightforward to represent a net in the C matrix if we
knew its connections: we would add weight to precisely the entries of Cthat
correspond to these pairs. But usually anet will function properly with any.
connections that provide a path between any two of its components. For
example, anet with s components has s(s-l)/2 pairs; any s-1 connections
that form a spanning tree are typically sufficient.*

In practice, connection choices are postponed so they can suit the place
ment. Choosing particular connections in advance can bias the evaluation

of placement costs (see Figure 2-1).

•In reality, alist of s-1 connections would still be only an approximation because
wiring is typically accomplished by Steiner trees, which can make use of additional
connection points to reduce total wire length.

Connections

are 1-2 & 2-3.
A costs less.

X

Placement A

i—o
Placement B

C ^

23

Had we chosen

1-2 & 1-3.
B would cost less.

Figure 2-1. Choosing connections biases placement cost evaluation.

We want to represent nets without biasing the placements. For every pair
of components ij in a net, we therefore add the same value to eu. In nets
with more components, a smaller fraction of the pairs will actually become
connections, so the value we use ought to be a decreasing function of the
number of components in the net. In section 5.1 we determine an appropri

ate function.

2.1.2. Legal positions and feasible placements

We define feasible placements in terms of n (x,y) points, termed "legal
positions", which must be specified in any instance of the problem. In the
basic problem, a feasible placement is one that assigns each of the n com
ponents to a different legal position.

We represent a placement as an n-by-2 matrix X, in which the entries
in row i are the x and y coordinates selected for the ith component. We
refer to the columns of Xas vectors x and y, so that {x[i],y[i}) is the position
of component i. If Lis an n-by-2 matrix whose rows are the legal positions
in some arbitrary order, then a feasible placement X is any permutation of
the n rows of L. We can thus write the feasibility requirement as follows:

X€ {IIL: IT is a permutation matrix}

(A permutation matrix is one in which every row and every column has

24

n — 1 zeros and one 1.)

We view the interconnections as our primary concern and the indivi

dual features of specific components as secondary complications. Thus we

take the position of acomponent to be the position of its center, and neglect
such geometric aspects as its size, shape, orientation, and where on its per

imeter the various signals appear.

A usable circuit placement will ultimately specify an arrangement of
the components in complete detail. Permutations of legal positions are

intended to capture the essential combinatorial difficulty of the arrange

ment problem in an easy to manipulate form. It seems necessary to omit
details such as possible compaction of component and wire positions. A for
mulation that took into account detailed component shapes, routing area

variations, and the corresponding constraints on placement would be

unworkably complicated mathematically.

How useful is our model of feasibility? It adequately represents the

core of most placement problems, but for some technologies it does not do
the whole job of specifying usable placements. In the rest of this section we

indicate situations for which the basic model is well suited, and discuss

ways to extend the range of its practical applications.

A formulation based on fixed legal positions is most appropriate when

component sizes and shapes are uniform. In this case, rearranging com
ponents among the legal positions can never cause them to overlap. Of
present-day technologies, gate arrays come closest to having uniform com

ponents.

Gate-array designs employ clusters of universal logic elements, or

"gates", that are laid out in an array on a regular grid. A few standard
sizes of array are mass-produced. To implement a particular circuit, one

25

selects an array of adequate size and maps the required components onto its
gates, the positions of which are literally fixed in advance. Amasking step
in the manufacturing process adapts the array to agiven design by enabling
the specific connections required. The representation of feasible placements
as permutations appears well suited to gate arrays.

In one respect our model is too restrictive. We ask for exactly n legal
positions, when in practice more than nare usually available. The formula
tion could allow a finite number of surplus positions. However, the conveni
ence for the model of having exactly n positions specified seems worth the
price of arbitrarily requiring that certain positions be selected and others
ignored. We assume that any reasonable choice of nclose-packed positions
(e.g., filling a shape as close to square as possible) will allow solutions
nearly as good as the best we could obtain with an optimal selection.

In most technologies, the components are not strictly uniform in size
and shape. For instance, in printed-circuit-board layout, the components are
packaged in a few different sizes. If the packages are placed close together,
small packages can occupy positions where larger ones might not fit. We
could insure the feasibility of arbitrary component permutations by spacing
the legal positions far apart, but the resulting spread between components
will be unacceptable if the variation in sizes is too great.

To adapt our definition of feasible placements to a wider range of real
circuits, later chapters generalize the notion of feasible placements by allow
ing extra constraints for special components. In particular, a problem
instance can divide the components into two or more classes and specify
which legal positions will be occupied by each class. A group of components
that are incompatible with most legal positions can be relegated to a group
of legal positions that can accommodate them. Or, by specifying classes that

26

have only one member, individual components can be "pre-placed".

The division of components into classes is useful when a few com

ponents are much larger than the rest, e.g., macro cells in standard-cell

design. Another important application of classes is the special treatment of

external ports or 1-0 pads. These components are the interfaces between

the given circuit and the rest of the world. Since external signals are

delivered at boundaries of the layout surface, such components must almost

always be placed at a boundary; and individual pads must sometimes occupy

particular positions.

Permutations of legal positions, together with the above extension for

special components, constitute a set of convenient models of feasible place

ments that adequately represent several types ofpractical problems. These

models are best suited to problems that involve many components ofsimilar

size and shape. They are less appropriate for problems that involve arrang

ing components with highly diverse contours to fit close together. Although

it might be possible to extend the permutation approach, e.g., by modeling

components of arbitrary shape as tightly-connected collections of more uni

form smaller cells, we will not explore such approaches here.

2.1.3. The quadratic cost function

We have described connection matrices and feasible placements. For

any function that attaches costs to circuit placements, we can now study the

problem of finding a minimum-cost feasible placement. But it is not obvious

what cost function is appropriate.

In practice we evaluate a placement in terms of how well it translates

into a finished design, i.e., a layout with the connections routed. Does a

routing for the placement exist that obeys the rules of the technology? Into

27

how small an area can the layout be compacted? To answer such questions
we must attempt a complete routing, which would be an unreasonable
prerequisite for computing placement cost: it would be inefficient; it would
make cost depend on the particular routing strategies used; and it would not
provide aclosed formula for cost. We want placement cost to correlate well
with routing difficulty. But "difficulty" is hard to express in ausable for-
mula because routing procedures are complicated, and they differ from each
other in fundamental respects (e.g., how they handle congested regions).

In any case, connections over long distances tend to be hard to route.
This observation underlies the common definition of placement cost as the
sum over all component pairs i,j of c0-((x[i)-xljl)2+(y[n-yL;l)2)- Each
term is the product of a connection weight cj; and the squared distance

("a"2") between components i and j.

Before discussing why we use the particular function d2, we note some
consequences of using any function fid) that is "superadditive", i.e., that
satisfies f(a +b)>f(a) +f(b) for positive distances a and 6. Such a function
penalizes long connections; a single large distance costs more than two
smaller ones of the same total length. Since overall speed and reliability
tend to deteriorate when acircuit uses long connections, this form of penalty

is reasonable.

On the other hand, simply taking cost proportional to distance would
give a more robust measure in one situation: suppose we introduce extra
components (e.g., amplifiers or "repeaters") along along wire. Total cost of
the connections does not change if cost is proportional to distance, but it
decreases if we use a superadditive function. For example, with f(d) =d2,
the evaluated cost to connect two components would be cut in half if a
repeater were placed at their midpoint, since ft,d/2) +f(d/2)=-f(d). We

28

elect to give up the property of connection cost invariance with added

repeaters, since the function d2 has some very useful qualities.

Signal propagation time on a wire grows as the square of the length
traveled. The dependence is quadratic because propagation time is propor

tional to the product of resistance and capacitance, both of which grow

linearly with wire length.* Our measure of placement cost is thus a
weighted total of estimated propagation times in all connections of the cir
cuit. The estimates are low because connecting wires do not generally run

in straight paths; wire lengths tend to exceed the distances between com

ponents. Although total propagation time is not an ideal measure of circuit
cost, it is interesting that squared distances are good estimates of propaga

tion times.

Thanks to the Pythagorean theorem, squared distances offer a

significant convenience; each d2 equals the squared distance in x plus the
squared distance in y. As aresult, the contributions to placement cost from
the x and y vectors can be computed separately and added together:

cost(x,y)=|l;2cy((^n-^])2+(y[n-yL/])2)=costU) +cost(y).

The most important advantage of using squared distances is that it
n n

enables us to write cost(x) as a quadratic form 2 ^buxli]x\j]. In section
i=i j=i

2.2 we exploit the properties of quadratic forms to develop a useful restate

ment of the circuit placement problem.

*See [Ullman84, page 3].

29

2.1.4. Computational complexity of the problem

Many critical problems in circuit layout are NP-hard. An NP-hard
problem is one that is as difficult as any problem in the class "NF1, in the
following sense: an algorithm capable of solving the given problem
efficiently could be used to solve any problem in NP efficiently. In this con
text, an efficient solution is one whose worst-case running time is bounded
by apolynomial function of the length of data needed to represent the prob
lem instance. (See [Karp75, Garey79].)

To prove that a problem is NP-hard, one supplies a polynomial-time
reduction that transforms some known NP-complete problem (one already
proven to be difficult in the above sense) into the form of the given problem.
The following proof that our formulation of circuit placement is NP-hard
shows that despite the simplifications we have made, the problem is still

difficult.

We transform graph partition (which is NP-complete*) into the circuit

placement problem.
An INSTANCE of graph partition consists of a graph (V^,) ana an
inteeer * V is a set of nodes 1 to n. with it even; E is a set of
edees t e' pairs of nodes of V. The QUESTION is to decide ifffi'is apaction of Vinto disjoint sets S and T, with n/1 nodes
each such that no more than * edges in E have nodes in both S
and r Given an instance of graph partition, produce an instance
of circuit placement as follows: Form an n-by-n matrix C with
c =1 when <iJ>€E and c,-.=0 otherwise. Specify n/2 legal
positions at (0,0) and n/2 at (1,0).**

•[Garey76] calls this ••minimum cut into equal-sized subsets." Their statement also
specifies two nodes that the partition must separate, but the proof given works as
well with no distinguished nodes. .
••Although it is counterintuitive to ask that multiple components be placed at the
same location, our problem definition does not forbid it. In fact, P«««»"' »••
important in practice that we specialize several of our methods for exactly this prob-
lem.

30

In the resulting problem, placement cost equals the number of edges

whose nodes are assigned to different locations. An algorithm capable of

determining optimal placements could thus decide the graph partitioning

question by answering "yes" when the minimum cost in the transformed

problem was less than or equal to k.

An efficient method to solve our circuit placement problem exactly

would therefore imply an efficient solution to any problem in NP, including

dozens ofproblems that are presumed to be intractable. Since such a result

is highly unlikely, we seek efficient heuristic methods for finding place

ments that are close to optimal. We cannot guarantee that our approach

will find a solution within a specified factor of the minimal cost in every

instance. However, it does provide good placements and lower bounds on

placement cost for any given circuit.

Placement cost may be calculated by summing the results of two appli

cations of the same cost function: once to the x vector and once to the y vec

tor. It is easiest to explain our approach if we focus initially on problems

that involve only one vector. Accordingly, we restrict attention in chapters

2 through 5 to problems in which the y coordinates of all legal positions

equal 0. All of our methods have natural generalizations for full two-

dimensional problems, and we present these in chapters 6 and 7. These

extensions are treated separately because substantial technical complica

tions arise in two dimensions. Our perspective on the two-dimensional tech

niques will be clearer if we first develop the fundamental concepts in the

one-dimensional setting.

In the prototypical example of one-dimensional placement, the legal

positions are spaced at uniform intervals along the x axis. We call this case

"UIP", for uniform-interval placement. In chapter 7 we use UIP as a test

31

case for the placement of randomly generated graphs. We prove in appendix

1 that UIP is NP-hard.

2.2. Restatement using eigenvectors

In this section and the next, we develop the transformation to a

furthest-point problem. Readers who are conversant with linear algebra are

likely to find the careful explanation of every step belabored. They are

invited to bypass the next five pages and simply read the condensed deriva

tion, which appears at the end of section 2.3.

For a one-dimensional problem, we represent circuit placements with a

single vector x, in which component x[i] of the vector identifies the x posi

tion given to the ith component of the circuit. Our measure of placement

cost for the vector x is

cost(x)=42 i;c«<x[i]-x[/])2.

Expanding the terms (x[i]-x\j])2, we obtain
n n

cortte)=-S ±eu x[i]x[j) + {(2*2[«l2ctf+ 2*2U')2W)-
n

Because C is symmetric, the fcth row-sum 2% equals the £th column-sum

2ciJk, so the parenthesized double sums are equal. Using matrix notation to
«=i

represent the quadratic form 2 Scj/xtflxlj], we nave
»=ij»i

cost(x)= -xTCx +^x2[i]-(ith row-sum of C).
1 = 1

Define a matrix B:

B = -C+D, (2.0)

where D is a diagonal matrix with entries equal to the row-sums of C. We

32

can then write simply

cost(x)=xTBx. (2.D

We can restate the problem in a convenient form using the eigenvectors

of B. Because B is symmetric, it has northonormal eigenvectors ur* Each

eigenvector has an associated cost: cost(ur) =urTBur=\r. Any vector x has
a unique expansion x=^ar{x)ur with coefficients ar(x)=x ur.

r

The above expansion is convenient because we can use it to write place
ment cost as a sum of independent contributions from the different eigenvec

tors:

COSt(x) = 2«r2(*)*r • (2-2)
r

In one dimension, the feasibility requirement reduces to x€ {Til: U is a per
mutation matrix}, where / is a vector whose components are the legal x
positions in arbitrary order. Less formally, x must be apermutation of the
legal positions. We thus have the following problem restatement:

Choose x to minimize 2ar2(*^r
r

where x is a permutation of the legal positions

and ar(x)-xTur ^

We have chosen to express x as aweighted combination 2ar(x)ur; i.e.,

we have selected the eigenvectors of B as a"basis". Since any n linearly
independent vectors form abasis, it is worthwhile to explain what makes
* An eigenvector of Bis simply anonzero vector ur that satisfies Ba,=Xrur for a

constant Xr (the eigenvalue). The Xr's are real when Bis symmetric. To^be ortho-
normal" is to satisfy «//u8 =0 for r*s ("orthogonality"), and u/ur=l. A good
reference on eigenvectors is [Parlett80].

33

the eigenvectors uniquely useful in this role. We have already mentioned
one important property: the ur's may be chosen to be orthonormal. In gen
eral we might have to solve asystem of linear equations to determine the
expansion coefficients or(x); but with orthonormal basis vectors ur, each
ar{x) is given by the simple inner product xTur. Another advantage of
orthonormal bases is that they preserve inner products: pTq =a{p)Ta(q).
We will soon make use of a special case of this property:

2*2[i]=*rx=a(*)ra(*) =2ar2(x).
I r

The property of the eigenvector basis that is crucial to our problem
restatement is its "cost independence". Briefly, we want

cost(ur+us)=cost(ur)+cost(us) for any pair of vectors ur,us in the basis.
By equation (2.1), this amounts to requiring

urTBur+usTBus +2urTBus =urTBur+u8TBus,

or simply
urTBus =Q. (23)

Orthogonality implies urTus =0; it does not insure urTBus =0. But when
the u's are orthogonal eigenvectors of B, Bus =\sus, and requirement (2.3)

is satisfied.

It is instructive to compare the eigenvector basis to another orthonor

mal basis that appears to be a more natural choice. Most placement algo
rithms work with the vector x by manipulating individual components. In
effect they expand x in terms of the orthonormal basis {ex, e2, ...,ej, where
et has 1for its ith component and zeros for all the others: x=2*^er The

problem with this basis is that the contributions of the vectors e, to place
ment cost are not independent. Because they interact, we cannot attach
fixed costs to choices of individual coefficients x[i). By contrast, if we know

34

a coefficient ar(x) of an individual ur in the eigenvector expansion, we

know that it will contribute exactly a2{x)\r to placement cost, regardless

of the values of the other coefficients in the expansion. Eigenvectors of B

are the only orthonormal bases with cost independence.

Discussing the advantages of expressing x as a combination of eigen

vectors of B has set the stage for our problem transformation. Before

proceeding, we establish two helpful conventions for the legal positions.

Note that if we alter the legal positions by a "shift" (adding a constant to

all of them) or a "scaling" (multiplying all by a nonzero factor), nothing

essential about the problem is changed. A shift does not change placement

costs, which depend entirely upon differences between component positions;

and scaling by k multiplies the cost of every feasible placement by k2. We
can therefore assume without loss of generality that the legal positions are

centered at the origin (2/[t] =0) and have unit variance (2/2[i] =l).

The above conventions slightly simplify the eigenvector expansion.

Since by definition (2.0) every row of B sums to 0, the vector

(ViT^vT^r, • • • Vun)T is an eigenvector, which we label u0. The

corresponding eigenvalue X0 equals 0 {Bu0 =0u0; intuitively, when all com

ponents are put at the same place, the connection cost is zero). Centering

the legal positions allows us to ignore u0, because its contribution x u0

equals zero for every feasible x. We label the other eigenvectors ux

through un_i, in order ofincreasing eigenvalue. Scaling so that 2/ [i] =l

insures (by orthonormality) that

2ar2U)=l for every feasible placement. (2.4)
r = l

The observation (2.4) allows us to interpret equation (2.2) as follows:

the cost of a vector is the weighted average of its constituent eigenvector

35

costs Xr. The bounds X^cortMsX,-! follow. Thus (as shown in
[Blanks85b]) if the cost of aheuristic solution approaches X^ a proof of
near-optimality is immediate. Simply setting x=«x would be optimal
([HainO]), but the components of hx are unlikely to coincide with the legal
positions. We therefore seek heuristics to find feasible placement vectors
whose expansions are dominated by the lowest-cost eigenvectors. In the
next section we describe a problem transformation that facilitates this

search.

2.3. Transformation to a furthest-point problem

For any real constant H, minimizing cost(x)="SJar2(x)Ar is equivalent
J r = l

to maximizing

H-cost(x)=^ar2(x)[H-Xr]* (2.5)
r»l

Pick an arbitrary H*\-X and define a matrix V whose columns are the
eigenvectors vr =urVirT,; this scaling has the effect of associating the
greatest lengths with the lowest-cost eigenvectors. Then the expression
(2.5) to be maximized equals ^(xTvr)2, which we write as HxrV||2. By

r=l

representing the feasible placements x as points xTV (with coordinates
xTvr), the problem becomes asearch for the point furthest from 0.

What is the transformation all about? The overall idea is to represent

the problem in adomain that allows us to use geometric search tools. The
usual way to interpret vectors in R" geometrically is to take each com
ponent x[i] as the coordinate on an axis e,. Our transformation involves a

-TT=1

* because 2ar2(x)=l for all placements.

36

"renaming" stage (we adopt new axes) and a"relocation" stage (we multi
ply the coordinates on each new axis by adifferent scale factor).

When we change reference axes from the directions e% to the directions

un the coordinates change from xTet to xTur. In effect, each placement x
is simply given a new name: xTU. The feasible points, initially equidis
tant from the origin (2x2[i] =l), all remain at distance 1under the change

of coordinates.

Now multiply every coordinate xTur by VfTT,: the coordinates of the
relocated points equal xTvr, where vr=urViTTr. Because of eigenvector

cost independence, the distance from the origin to each relocated point xTV
is a function of its cost:

||xTV|2=H-cost(x) (2.6)

By representing feasible points as rows xTV rather than columns V x,
we make it easier to distinguish vectors in the transformed domain from

those in the original domain. Columns belong to the original "placement"
domain, and we associate each of their n components (e.g., xtf] or ur[i])
with the physical location of a particular circuit component. Rows belong
to the transformed "point" domain, and we identify each oftheir n-1 com

ponents {e.g., ar, dr, or xTvr) with a particular eigenvector of B and its

associated axis.

In the next section we take advantage of the chosen transformation:

we describe a simple tool for discovering points that are far from the ori

gin.

Condensed derivation of furthest-point problem

cost(x) =^i2^(^n-xL/l)J
I o 1 j = 1

Define

37

B = -C+D, (2°)

where D is diagonal with du = 2cy•
j

cost(x)=xrBx. (2-D

Let m/s be orthonormal eigenvectors of B, with

• • \,-i. Let ar(x)=:

COSt(x) = 2«r2(*)*r •
eigenvalues 0=X0-*i- ' ' ' ^-i- Let a^)=x ttr'

2rrU (2.2)

Choose legal positions with 2/[i]=0, 2/2[i]=l; so a0(x)=0 and
^ar2(x)=1for every feasible placement. (2.4)
r»l

H-cost(x)=^or2(x)[H-Xr] (2-5)
r = l

Pick i/sAn-i. Let Vcomprise columns ur =urV/f-X, for r-1 to n 1.
|xrV||2 =Jf-cost<x) (2.6)

2.4. Probes for good points

We have seen that the problem transformation allows us to evaluate

tf-cost(x) in terms of the distance ||xrV|| from the origin to the
transformed point. The transformation pays off because we can efficiently
produce the point that is furthest out along any given direction. We use
the word "probe" to stand for both the direction and for the operation that
finds the point with maximum projection in that direction. Any probe
dTtRn~l delivers a special x - one that maximizes xTVd. The diagram
illustrates the idea for a case in which only dx and d2 are nonzero. Each

38

dot plots the first two components l%r»lfxT»a> of apoint xTV correspond-
ing to some feasible placement x.

7*

Figure 2-2. Aprobe locates the point xTV with maximum projection on d .
Every probe yields both aplacement and aproof that no point in the entire
set of feasible solutions has a greater projection in the probe direction.

To perform a probe, we first compute Vd, whose nelements {Vd)[i} are
the projections of the rows V[i] onto the probe. (This takes time 0{nk),
where k is the number ofnonzero elements of d.) The objective is then to

determine x, the permutation of legal positions that maximizes x {Vd).
The solution is to order x to match the ordering of the components of Vd\ if
{Vd)[m] is smallest then assign x[ml the smallest legal position, etc. Oth
erwise, for some pair of nodes i,j, {x[i]-x\j}y{{Vd)[i)-{Vd)\j})<0', and
swapping i with j would increase the inner product. To sort {Vd) requires

time 0{n log/i).

We can view our whole problem as a search for the best probe direc

tion, because there is always some probe direction that would produce the
optimal point. To see this, let fT be the point furthest from the origin in
an arbitrary set of points; and consider the unit vector dT aimed at f ,
that is, dT =fT4fTl Using dT as a probe direction would produce the
point fT, since it is necessarily the one with maximum projection on d .*

•Write the squared distance to any point pT as lpTV=^d)2+irTl\ where rT (the
residual portion of pT orthogonal to dT) equals pT-(pTd)dT. Since f has zero

39

There is also a direct proof that the furthest point and the best probe are

equivalent search objectives. The furthest point objective is^Mox JxrVl,
which we can rewrite as Max {Max xTVd).** Interchanging the maximiza-

feasible x |d| =l

tions, our objective is

Max [Max xTVd), (2.7)
|d|=l ftatiblex

which precisely defines the search for a best probe.

When we map placements to points, cost becomes represented by dis
tance from the origin. If we transformed to points with coordinates

xTurV\, instead of xTurVirT„ the squared distances would equal cost(x)
instead of tf-cost(x). Thus, depending on which formula we choose, the
transformed optimum can be the point with minimum magnitude or the
point with maximum magnitude. We convert the objective from cost
minimization to distance maximization because transforming to a

furthest-point problem enables us to use probes. That the application of
probes depends on asimple change of objective from min to max is acuri
ous fact that calls for some explanation.

The idea of probes is to attack the global problem by searching locally
in one direction at a time. We have seen that the point furthest from the

origin must also be the one with maximum projection on a probe aimed at
that point. But there is not necessarily any direction on which the point
closest to the origin has the minimum projection. Minimizing the projec-

tion on dT selects the point furthest from 0 in the direction -d .

residual, pTd>fTd would give Bprl>B/,rI, contradicting the assumption that fT is
the furthest point.

**The Euclidean length IpTB equals the maximum value of pTd over all vectors d
of unit length.

40

In other words, probes are linear programs and thus return extrema,

i.e., points from the convex hull of the feasible solutions. If we did not
change our goal from convex minimization to convex maximization, the

best points would be the most "interior" solutions.

The other possible goal to associate with a direction d in the

magnitude-minimizing formulation would be to minimize \p d\, but this
too is ill-conceived. To have a large projection, a point must have a large

magnitude. However, for any point pT there is an n-1-dimensional space

of directions dT for which pTd =0. Knowing that a point has 0 projection

in a given direction tells us nothing about the magnitude of that point.

Furthermore, to find the feasible x that minimizes |xr(Vd)| for fixed Vd is

NP-hard, even though the corresponding maximization is easy. (Appendix

2 proves this by a reduction from set partition.)

The transformation to a furthest-point problem gives us the opportun

ity to use probes. But probes are only a tool. The challenge is to devise

strategies for selecting useful directions.

Probes with only a few nonzero components have important practical

advantages. They are more efficient than random probes, since calculating

Vd requires a number ofoperations roughly proportional to the number of

nonzeros in d. They also allow us to choose nonzero components that

improve our chance of finding a good point: for example, we can select the

k eigenvectors with the smallest Xr's. Since the point-scaling factors

VlTTr are greatest for these axes, we expect such probes to discover points

further out than points found by average probes.

We can view our transformed placement problem as a search for a

probe in Rn~1 that produces the point furthest from the origin. It is useful

to study variants of this problem that restrict the set of probe components

41

that we allow to be nonzero. With the other components fixed at zero, we

can explore the range of possible contributions to H-cost(x) from k
selected eigenvectors. Limiting the probe set reduces the original search in

JL

Rn~l to a *-dimensional search problem. Each dimension in R
corresponds to an active column-vector in V. Since all but k dimensions
are ignored, we are essentially projecting the points into Rk and measuring
distances in this subspace.

How do fc-dimensional search problems relate to the full problem?

First, some solutions may not be discoverable by any probe in R .*
Second, distances to points in k dimensions will in general differ from the
corresponding distances in the original space.

In certain fortuitous situations, all the original lengths can be per

fectly preserved in a projected space of fewer than n-1 dimensions. Sup
pose eigenvalues \k+l through K-i ™e identical. (For aconcrete appli
cation of this thought experiment, we can take *=n-2 for any problem.)

Now break the summation in (2.5) into two pieces:

H-cost{x)=±a2{x)[H-\r] + t arHx)[H-\r) (2.8)
r=* + l

If we set H=\l_i in this hypothetical case, then we observe the following
desirable results: the terms in the second summation all equal zero; costs

may be evaluated in Rk\ and the optimal point must be detectable by a

probe in Rk.

Although \k+l through *„_! are usually not equal, the thought exper
iment suggests guidelines for choosing H in more general circumstances.

Any ^-dimensional search intentionally neglects asum like the second one
♦In chapter 4we present an exact formula for the number of points discoverable by
probes, as a function ofn and k.

42

above. For any particular x there will be some H in the range of the

neglected eigenvalues that makes the neglected terms sum to zero. In gen

eral, however, no single choice of H can provide lengths in Rk that equal

the full lengths for all the solutions.

The next two chapters both exploit the idea ofreducing the number of

active dimensions/ Chapter 3 gives methods to find good placements. In

this case we want k-dimensional distances to match the full distances as

closely as possible. Our choice ofH should therefore be an estimate of an

effective average of the neglected eigenvalues; it might be an overestimate

for some placements and an underestimate for others. Chapter 4 gives

methods that take any given circuit and prove lower bounds on its place

ment cost. In proving a lower bound, we must guarantee that any estimate

that we use for the cost contributed by neglected eigenvectors is an

underestimate. Thus a fe-dimensional search with ux through uk must use

H<X* +1 in this case.

43

Chapter 3

3. One-dimensional Placements by Iterated Probes

In chapter 2 we introduced the problem of minimizing xTBx, where x
must be some permutation of a given vector of legal positions. The scaled
eigenvectors vr (= urVJTTr) of B define a transformation from placements

x to points xTV. The minimum-cost feasible placement (call it "x,") is
mapped to the point furthest from the origin, with H-cost{xm) =h?V\\2.

Some bounds on cost(x„) are easy to obtain. We observed that

cost(x,)>X!, where \x is the least positive eigenvalue of B. Also, any probe
in the transformed space yields a feasible point pT, whose distance from the
origin cannot exceed that of the optimal point. Combining these observa

tions, we have

We will give different methods that use probes to tighten the inequali
ties in (3.1). To decrease the right-hand bound from H-\x to some new

value M, we must prove that every feasible point xTV satisfies ixrV| ^M.
Techniques for such proofs, which provide improved lower bounds on place
ment cost for given circuits, are developed in chapter 4. It is easier to work
at sharpening the left-hand inequality: we can use any heuristic that discov
ers feasible points that are far from the origin. In this chapter we examine
placement heuristics that obtain distant points by using sequences of probes.

44

3.1. The idea of iterated probes

The common idea of progressively improving an initial solution can be
adapted to the furthest-point problem. Recall that aprobe operation locates
the point with maximum projection in agiven direction. Our basic improve
ment step is to direct a new probe toward the maximum-projection point
discovered by the previous one. Let pT be the point at which we aim. On
the new probe, the projection of pT equals its magnitude; so when we find
the point with maximum projection, its magnitude must at least equal that
of pr. By iterating the process, we step through asequence of points, each
further from the origin than the last, until the same point is detected by
two successive probes. We say that the last point in asequence is "stable".
In Figure 3-1, we illustrate a sequence of three probes; the second point
found is stable.

Figure 3-1. Illustration ofiterated probes.

The steady increase in magnitude from point to point implies that each
placement that we encounter costs less than the previous one, when we
iterate on the full transformed problem in J*""1. If instead we iterate with

45

projections of the transformed points in a£-dimensional space (with k possi
bly much less than n-1), we can isolate the most valuable eigenvectors and
improve efficiency. We assume that improvements in k dimensions will
tend to improve placement cost. This assumption is based on equation (2.8),

reproduced here,

tf-COSt(x)=2«r2(*)[#-*r]+ U Ct2{x)[H-\r]
r=l r=*+l

and a"principle of ignorance": that maximizing the first sum will not sys
tematically worsen the distribution of terms in the second, uncontrolled
sum. While it is possible for an improvement in k dimensions to be associ

ated with a larger placement cost, such cases should not be too frequent.

The distributions ofcoefficients a2 observed in good placements provide

the best evidence that it is reasonable to work with k-dimensional approxi

mations. In chapter 7 we examine, for heuristic solutions to placement

problems, the fractions of^a2 contained in different terms. Typically, the
r = l

first 5 to 10% ofthe terms make up 95% or more of the sum. We know that

the dimensions with the smallest eigenvalues add the most to our objective

function, per a2. The distributions tell us that in practice, these dimen
sions can make a substantial contribution to good solutions. This observa

tion is the main rationale for considering projections of the problem into

relatively few dimensions.

We conclude this section with a detailed statement of the basic iterated

probes method, using amix of PASCAL syntax and high-level description.

46

procedure IterateProbes ((*INPUTS*) V, n, L, k, din, doSteps;
(♦OUTPUT*) x);

{INPUTS:
V is a matrix. Typically, its columns vr are scaled eigenvectors.
n is the number of entries in each column vr\

also the length ofcolumn vectors in general.
L is a column vector: the legal positions in nondecreasing order.
k is the number of active columns in V;

also the length ofrow vectors ("directions") in general.
This procedure treats V as an n-by-k matrix, with
columns vx through vk active.

din is a row vector that defines the first probe direction.
doSteps is an integer: the maximum number of probes to perform.

OUTPUT:
x is a column vector that returns the final permutation of L.

Asequence of directions dT is used; at each step, x is set equal^to
the permutation of L for which xTVd is maximum. The direction x V
is used next; the process continues until x stops changing or doSteps
iterations have been executed.

LOCAL VARIABLES:}
i,r,step: integer; rank: array[l..n] of integer; stable: boolean;
d: row (* with elements dr *); projection,previousX: column;

begin (* IterateProbes *)
step : = 0;
d := din;
repeat

for i := 1 to n do projection[i] := k-dim. inner product of
ith row of V with d;

(* To maximize xTVd, fill x with the permutation oflegal positions
that matches the ordering of the projection components. *)

Determine rank, an array of indices such that projection[rank[l]] ^
projection[rank[2]] < • • < projection[rank[n]];

for i : = 1 to n do x[rank[i]] : = L[i];

(* Prepare next probe. *)
for r := l.to k do dr := n-dim. inner product x vr.
(* Check if done. *)
step := step + 1;
if step =1 then stable := FALSE else stable := (x =previousX);
previousX := x;

until (step = doSteps) or stable;
end; (* IterateProbes *)

47

Each improvement step (pass through the repeat loop) takes less than

twice the computation of a single probe. (The k /i-dimensional inner pro

ducts that determine the new probe direction are roughly as expensive as

the n &-dimensional inner products needed for the probe itself.)

The rest of the chapter concerns how to use this procedure. How do we

pick starting directions? How many dimensions should we use? The guide
lines that we will give for these and other parameters are based on experi

ments: these experiments and the computational results are described in

detail in chapter 7.

3.2. Using iterated probes

We can apply IterateProbes to try to improve the solution that any

probe produces. By trying many different start directions, we increase the

chance of discovering valuable points.

We could try a greater number of independent directions if we per

formed just one probe per trial instead of iterating; but in the search for dis

tant points, iteration pays off. That is, we typically get better results from a

small sample of iterated-probe solutions than from a large sample of

independent probes.

3.2.1. Start directions

How should we pick start directions? Rather than generating directions

at random, we want to target the dimensions with the greatest potential. A

simple strategy is to stay in the span of the s dimensions with the smallest

Xr's. Once we adopt this restriction, we assume for simplicity that random

initial directions in Rs are good enough. Selecting a value for s (the dimen

sionality of the start-space) then becomes the main choice in determining

48

start directions.

If s is too large, solution quality deteriorates. If s is too small, many

independent start directions may converge to only a few independent solu

tions.* In most experiments, taking s on the order ofV» has worked best.

For a specific problem instance we might take the best preliminary

placement cost obtained by some heuristic and pick the value ofs for which

Xe is closest to this cost. (Only the dimensions with smaller eigenvalues can

help reduce cost further.) Or, we can try a quick experiment: perform a fixed

number of independent random probes in s dimensions for each of several

values of s, and see which value gives the best solutions.

These heuristics provide a range of possible values. We can let s vary

over this range in different trials; as the results accumulate, we learn which

values work best.

To get started we must set the scale factors V/f-A, for the s eigenvec

tors vr {=urVIF-kr), i.e. we must assign a value to H. Recall that H esti

mates an effective average of eigenvalues associated with the other eigen

vectors. The starting value of H is not critical: one possibility is the aver

age of eigenvalues Xs +1 through \,_i.

To perform the starting probe in a sequence, we invoke IterateProbes

with k =s and doSteps = 1.

♦We could reduce the likelihood of repeat solutions by injecting randomness
throughout the sequence, e.g., byadding perturbations to the probes instead ofaim
ing directly at points.

49

3.2.2. Number of dimensions for iterations

Once we have performed a first probe, we are ready to iterate. We must

set a value for k, the number of active vectors in V. We assume from now

on that the eigenvectors with the smallest associated eigenvalues will be

used; any deviations from this rule will be noted.

Although large values of k require proportionally more computation in
the inner products, the extra work can lead to higher-quality solutions. We
have observed improvements in solution quality with increases in k up to a

substantial fraction of n (the total number of dimensions), e.g., - to —.

Iterating with this many dimensions requires a quadratic number of opera
tions per step. Fortunately, there is no reason that every probe in a

sequence must use the same number ofdimensions.

3.3. Iterating in stages

Having observed that iterations can take advantage of many more

dimensions than are useful for start directions, it is natural to consider

increasing the number of dimensions in the course of the sequence of probes.
We can iterate in several stages, with the number ofdimensions increasing

from one stage to the next.

To generalize iterated probes, we provide for different numbers of
dimensions and steps in the different stages. Transitions are straightfor

ward: the solution x at the end of a stage determines the initial probe direc-

tion for the next. We simply extend the computation of components x vr to

the newly activated eigenvectors. The following is a prototypical example of

the use of stages.

50

procedure Stages ((*INPUTS*) U, n, X, L, s, din, last, k, steps, epsilon;
(*OUTPUT*) x);

{INPUTS: T
U is a matrix. Its columns ur are eigenvectors, with ur ur-l.
n is the number of entries in each column ur\

columns in general have length n; rows have length up to n-1.
Xis a row vector: the eigenvalues Xr associated with the u/s.
L is a column vector: the legal positions in nondecreasing order,
s is the number of active entries in the start direction.
din is a row vector that defines the start direction.
last is an integer: the maximum number of stages.
k is an array of last integers: the ath entry

is the number of active columns in stage a.
steps is an array of last integers: the ath entry

is the maximum number of probes to perform in stage a.
epsilon is a real number. Ifthe fraction of 2(xr«,)2 in the active dimensions

exceeds 1-epsilon at the end ofa stage, no more stages are begun.

OUTPUT:
x is a column vector that returns the final permutation of L.

LOCAL VARIABLES:}
r,a: integer; H: real; d: row (* with elements dr *);
V: matrix (* with columns vr *);
begin (* Stages *)

H *•= _. a 2 V*>
for r := 1 to s do vr := ur * sqrt (H-Xr);
IterateProbes (V,n,L,s,dIn,l,x);
a := 0;
repeat

a *—— a "T" 1*
H := NextH (* defined later in text *) (k[a],U,n,x,X);
for r := 1 to k[a} do vr := ur * sqrt (H-Xr);
for r := 1 to k[a} do dr:- xTvr\
IterateProbes (V,n,L,k[a],d,steps[a],x);

until (a =last) or {%xTur)2> 1-epsilon);
r=l

end; (* Stages *)

Except for the function NextH, which we will discuss shortly, the opera

tion of Stages is clear. We have obtained the best results by conducting the

first stage with as many dimensions as are used for the starting probe, and

multiplying the number of dimensions by a constant in each successive

stage. A multiplier of 2 works well. With a smaller multiplier, there are

51

more stages; we sometimes find better solutions, at the cost of increased

computation time.

Another parameter for each stage is the maximum number of probes
{steps). We can stop early stages before they reach astable point: this saves
time without necessarily affecting solution quality. A probe in Rk requires
time Oinlk +login)]). Thus we can divide the total time fairly evenly
among the stages by choosing aparameter pand setting steps for Rk to the
integer nearest to p/{k + log(n)).

The resulting time per stage would be 0{pn). When k increases by a
constant multiple with each stage, there are 0{log{n)) stages, for a total
time of 0{pnlog{n)). To insure a positive number of steps in the last stage,
we need p>k[last]/2. Since this is 0{n), the overall running time is

0{n2log{n)).

To complete the specification of Stages, we must define the function
NextH, which fixes H at the beginning of each stage. What is at stake
when we choose H? The set of placements that arbitrary probes can gen

erate with given eigenvectors is identical for any Hgreater than the associ
ated eigenvalues. This is because these placements correspond to all the
component orderings of vectors in the span of the eigenvectors u/Vh-a,; the
span is the same for any positive values Vff-Ar.

However, the relative magnitudes of points in Rk do depend on H.
Suppose X1 =.04 and X2=l: for H=2the ratio ViTT^ViTT, is only 1.4, but
for H=1.04 the ratio equals 5. A consequence of this kind of change is that

it is possible to have two solutions whose magnitude ordering in R is
reversed by changing H. The solution with larger a2 may have the greater

magnitude when His large, while the one with larger ax dominates it when
H is small. (Compare a and c in Figure 3-2.)

)•
Magnitude ordering of projected pointsdepends on H.

=0.04, X, =1. Plo«(xTV =(XTU, VH-.04, xTU2vH-l
(cTUl^Uz)

(0.08, 0)
(aTU, aTU2)

(0, 0.2)

(bTU,bTU2)
(0.05,0.11)

| H°1.04 |

c'v

52

Figure 3-2.

Because the choice of Hcan alter the values associated with different solu
tions, it can also affect iteration sequences. Thus in Figure 3-2, aprobe
directed at point 6rV leads to solution awhen tf=2, but to solution cwhen
H=1.04. For certain intermediate values (e.g., H=1.25), bTV is stable.

In summary, different values of Hmay change our evaluations of place
ments in B*. Which placements are stable, and even which is furthest from
the origin, may change depending on H. These changes arise from the
differences between the squared magnitudes of feasible points and of their
projections in Rk. Squared magnitudes in B""1 equal H-cost(x); in R>
they are approximations. The difference between the exact and approximate
values is t ar2(x)lH-\rl For any particular x, we can choose Hso that

r»* + l

this difference equals 0:

f arHx)[H -Xr]=0
1

[^ar!WlH=l!«M
»A + 1

"S ar2(x)Xr

r»* + l

r=* + l r»*+l

53

jj- '-**1 (3.2)
II arHx)

r=A + t

For other placements, the difference may then be more or less than zero.

But the variation is not too great among the best solutions, since for them

the k active terms a2{x) tend to dominate.

We can use NextH{k,U,n,x,\) to set H according to (3.2). If U contains

all the eigenvectors, then for each r>k, we can evaluate ar{x) =x ur

directly. But when k<n-k, it is possible to compute H more efficiently.

From (2.4), we have "£ ar2(x)=l-2ar2(x). And from (2.2),
r=*+l r=l

^ ar2(x)Xr= cost(x)-2ar2(x)Xr. Since we can evaluate cost(x) using the

original C matrix,* all references to eigenvectors fc +1through n-1 can be
eliminated. This may save a great deal of space. More importantly, eigen

vectors that are never activated need not even be computed; this may

significantly reduce the computational demands associated with determining

eigenvectors.

We have experimented with variations of IterateProbes that do extra

work between probes. For example, we can update H after every probe
instead of only between stages; but this yields no significant improvement.

* With a reasonable data structure for C, e.g., lists of the connections for each
circuit component, matrix storage space and cost-evaluation time are proportional
to the number of nonzero entries cy, which is typically much less than n .

54

Another possibility is to evaluate cost(x) after every probe, and at the end of

each stage restore the lowest-cost solution encountered. (Because of the

discrepancy between Rk and Rn"1, the final point in a stage is not always

the best one.) Beginning each stage with the best point from the previous

stage gives better final solutions in some trials and worse ones in others.

We prefer the version of IterateProbes described earlier because it is simpler

and slightly faster.

We saw at the end of chapter 2 that n-2 dimensions are enough to

represent the transformed problem perfectly, so we might typically use this
many dimensions in the last stage. Because the later stages seldom intro

duce major changes, we provide a test that can stop the procedure before

then. Think of 2ar2(x) as the "power" of x that is concentrated in its k-
r»l

dimensional projection. We begin new stages only until this sum exceeds

l-epsilon. For example, with epsilon=0.005, we forgo refinements in

higher dimensions if the current projection already has 99.5% ofthe power.

In summary, the crucial idea of Stages is to work with problem approxi

mations that progress from coarse to refined. This general idea should be

applicable to a wide range of problems. The approach shares some qualities
with simulated annealing, in its gradual commitment to structural features

of the solution. For optimization problems that involve a quadratic form,

the ordering of eigenvalues provides valuable guidance. We can design

algorithms that concentrate in their early stages on the dimensions with the

greatest potential for contributing to the objective function.

55

3.4. Sparse iteration

In this section we examine our basic iterative improvement step from a

different viewpoint, which leads us to a much more efficient way to perform

iterations on the full transformed problem in Rn" .

Consider iteration in k dimensions; i.e., take V to be an n-by-fe matrix

with the active eigenvectors as its columns. Let x be the current solution
vector. The next probe direction dT is xTV; we pick the next solution vector

to align with Vd, which equals VVTx. Define an /i-by-n matrix of rank k:

A=VVT

The squared distance ||xrV||2 to the projection of a feasible point in Rk is
xTVVTx, or simply xTAx.

From the definition vr =urVJTTr, we have A=VV =U{H-A)U ,
where H-A is a diagonal Jfc-by-fc matrix with entries H-Xr. That is, the

eigenvalues ofA are H-\r.

Given a solution vector x, our iteration step selects the feasible solution

vector w that maximizes wT VVTx. If we had to use explicit matrix multi

plication, the association (VVr)x would be much worse than computing
V{VTx) as in IterateProbes. To compute A=VVT would require 0{n2k)
work, versus 0{nk) total work previously. But for the special case k=n-l,
the A matrix is available without performing any multiplications. This is

because when all n-l eigenvectors are active, A is identical to the original

connection matrix C, except on its diagonal.

To see this, consider the n-2-by-n-l diagonal matrices H (with entries

equal to the scalar H) and A(with entries Xr). We have A=U{H-A)U ,
and with k=n-l we also have B= UAUT; thus

A=H-B.

56

From definition (2.0) we can substitute B=D-C, where D is a diagonal

matrix with entries equal to the row sums of C:

A=C + (tf-D).

Thus when k=n -1, we can compute Ax in time proportional to the number

of nonzero entries of C. Because C is usually sparse, we obtain an efficient

algorithm to iterate in n-1 dimensions, using the A matrix justdefined:
procedure Sparselteration ((* INPUTS *) A, n, L; (* INPUT&OUTPUT *) x);

{INPUTS:
A is a square matrix, with only the nonzero entries stored.
n is the order ofA, and the length of column vectors in general.
L is a column vector: the legal positions in nondecreasing order.

INPUT&OUTPUT:
x is the initial placement vector (permutation of L);

it is modified in a sequence of iterations, until it stabilizes.

LOCAL VARIABLES:}
i: integer; p,previousX: column; rank: array[l..n] ofinteger;

begin (* Sparselteration *)
repeat

previousX := x;
p := Ax;
Obtain array rank such that p[rank[l}]<p[rank[2]]< ••• <p[rank[n]J;
for i : = 1 to n do x[rank[i]]: = L[i];

until x=previousX;
end; (* Sparselteration *)

If \E\ is the number of connections in the C matrix, the running time is

0{\E\ +nlog{n)) per pass. A typical use of Sparselteration is to improve an

output x from Stages. The effect is identical to that of a stage with k=n-2

and steps = °°.

The operation of multiplying a solution vector by the A matrix pro

duces an effect similar to that of a relaxation step in other placement

heuristics. Writing A as tf + (C-D), we get the following expression for

the typical component of Ax:

57

(Ax)[i]=H-x[i]+2cy(j:W"x[i]) (3,3)
j

In words, each component is ranked according to a constant multiple of its

current position plus a vector sum of "forces" exerted by the other com
ponents. The magnitude of each force equals the product of the distance to
the other component and the weight of the connection with that component.

Our scheme differs from past relaxation techniques. Other heuristics

ignore the constraints associated with legal positions during relaxation. At
best, they introduce fictitious repulsive forces to discourage components from
being placed on top of each other. By contrast, we have a feasible place
ment at every step. Our procedure moves the components from the positions

{Ax)[i] onto the legal positions, preserving their relative order.

In general this process need not converge (the placement may oscillate
between configurations). But if we choose fls\,_i, this problem cannot

arise in Sparselteration. We show this by proving that the step from x to w
can only increase the magnitude of the corresponding point {wTAw>x Ax).
Because the eigenvalues of A are H-\r, A is positive semidefinite. Thus

we have {wT-xT)A{w-x)>0, or

u/TAu;+xrAx>2i/;rAx.

Add the probe property

2u>rAx>2xTAx.

Cancelling like terms, we have

wTAw^xTAx.

This proof applies as well to iterated probes in k dimensions; when H is
as large as the Xr of every active eigenvector, VVT is positive semidefinite,
and the magnitudes of solution points in Rk increase monotonically.
Although this guarantees that every iteration will converge, it may be

58

unnecesarily conservative to require monotone improvement. For example,

in sparse iteration the current x contributes with a factor of H to Ax (equa

tion 3.3): steps with H^X,^ would be less dominated by the current solu

tion, and thus freer to change significantly.

We can compute (3.3) for any real value of H. But in k dimensions, it

is not obvious how to carry out probes when the restriction H^Xr is

violated. Suppose that some active eigenvalues are smaller than H and oth

ers are larger.* The transformed components xrurVff-Ar would then divide

into the purely real and purely imaginary, respectively. The problem would

no longer map into Rk) but we could use an algebraic representation with a

total of k axes, some real and some imaginary. Restricting the correspond

ing components of probe directions dT to purely real or purely imaginary

values would insure that Vd remains a real vector, since the imaginary vec

tors of V would all be multiplied by imaginary components of d. When

iterating, the appropriate restrictions arise naturally from dr=x vr.

We can thus extend the application of probes by experimenting with

H<Xn_1 in sparse iteration; and in k dimensions, by using imaginary vec

tors vr to represent terms with tf-Xr<0. In each case VVT has negative

eigenvalues, which makes steps that decrease xTVVTx possible. Still, in

practice this function may increase as much or more under these conditions

as when we enforce H^\r: when it does not, it is easy enough to stop iterat

ing or to increase H.

♦When the active eigenvectors are. not those with the smallest Xr's, we may want to
represent the other dimensions with an H that falls between the active eigenvalues.
Chapter 5 discusses some situations where this may occur.

59

3.5. Summary

In this chapter we developed improvement heuristics that use iterated

sequences of probes for one-dimensional placement. All running times per

trial are at most 0{n2log{n)). If we discount the one-time cost for a given

circuit of computing the eigenvectors of B**, this is competitive with the
run-times of traditional approaches such as exhaustive pairwise inter

change. Chapters 5 and 6 will extend our methods to handle constrained
components and two-dimensional placements.

Computational experience with these heuristics has been encouraging.
In chapter 7, for a variety of problem instances we obtain lower-cost place

ments than are obtained by other approaches.

These heuristics generate good placements on their own; in addition,

these solutions can serve as starting points for other improvement pro

cedures. Our problem transformation also stimulates the development of
new improvement heuristics. For example, to escape from local optima, we
can take a good point discovered by any probe and perform new probe
sequences starting with various directions in its vicinity. Another heuristic
takes two or more directions associated with good points and solves for the
furthest point in a projected space spanned by these directions. (Given two
directions, we can do so in time 0{n2log{n)).) These ideas will be explored

in future work.

**As discussed in chapter 7, most procedures to compute all eigenvectors are 0(n3),
but significant speedups are possible for sparse matrices.

60

Chapter 4

4. Proving Lower Bounds on Placement Cost of aGiven Circuit

In chapter 2 we transformed the circuit placement problem into a
search for the furthest point from the origin in a multidimensional space.
For the resulting furthest-point problem we introduced a search tool, the
"probe", which finds the point with maximum projection on any given direc
tion. In chapter 3 we used sequences of probes to discover points with large
magnitude, which correspond to low-cost placements. In this chapter we
will describe how probes can serve the complementary purpose of proving

lower bounds on placement cost of a given circuit.

We will be more satisfied with our heuristic placements if we can show

that much better ones are not possible. This is our motivation to seek lower

bounds on cost. In the transformed problem, these correspond to upper lim

its on how far points can lie from the origin. By working with certain k-
dimensional projections, we can rigorously derive such limits for the full-

dimensional furthest-point problem.

If we set H to XA+1 in equation (2.5), we have:

XJk+1-cost(x)=2,otr2(x)[XA +1-Xr].
r»l

Terms with XrsX*+1 are never positive, so only the first k terms can make

a positive contribution to the sum. Therefore,

X* +1-cost(x)<iar2(x)[XJk+1-Xr]. (4.D

Letting ur =urVxA+l-Xr, the sum equals the squared magnitude in k dimen
sions of the point xTV. For any given circuit, we thus obtain lower bounds

on its placement cost by deriving upper bounds on ||x V|| in R .

61

To apply probes to prove upper bounds on the possible magnitude of
points in Rk requires different strategies than when our aim was to find dis
tant points. Each probe returns a point with maximum projection in a
given direction. That point now interests us less than the guarantee that no
other point lies past it. We want to collect enough such guarantees to prove

that no point can be found in any direction beyond acertain distance from

the origin.

To do so we must cover the search space globally. Rather than explor

ing isolated regions in depth (as in iterated probes), we need broad, provably
thorough coverage. We can frame this problem in terms of general point
sets pT and probe directions Dj in Rh. Most of the analysis depends nei
ther on where the points come from nor on how probes are conducted.* Each
probe direction Dj yields Mt, the smallest real number that satisfies
Mi>pTDi for all points pT. We want to select collections of probes Dj so
that the resulting inequalities imply that every lprl is at most B, with Bas

small as possible.

In section 4.1 we consider nonadaptive strategies, in which the set of
probe directions does not depend on the results of any probes. In section 4.2
we discuss adaptive methods, in which the results of earlier probes may be
considered when selecting the directions to use for later ones. Finally, in
section 4.3 we analyze specific features of furthest-point problems that arise
via our transformation from circuit-placement problems. In particular, we

show that in a fc-dimensional projection, the furthest point from the origin
can be found with a number of probes that grows as a polynomial function

*e.g., our derivation, in which pT =xTV for xapermutation of L, is irrelevant.

62

of n, the number of circuit components.

4.1. Nonadaptive probe sets

4.1.1. Axis probes

The simplest way to use probes to obtain an upper bound on ||x V|| is
to find the maximum possible value of each term (xrur)2 independently.
TKe maximum of ||xTV||2 is certainly no more than the sum of the maximum

values attainable in each component. We probe in both directions along

each axis ur. Since Vd then equals a single eigenvector ±vr, the placement
x that maximizes xTVd has the x[i]'s rank-ordered to match the ordering of

eigenvector components ur[i].

For general point sets, probes in opposite directions give independent
information. But suppose we start with a symmetric placement problem, in

which / is a legal position only if -/ is also. In this case the set of
transformed points is symmetric about the origin. Let x be the feasible vec
tor whose component ordering aligns with Vd. Then -x is feasible, aligns
with - Vd, and yields the same inner product xTVd. In other words, a sin

gle probe effectively covers directions dT and -dT simultaneously. Sym
metric problems thus require half as many probes; in particular, we can

obtain a tight upper bound on (xrur)2 from one probe on axis r.

For some circuits, the use of a few axis probes provides a lower bound

on cost that is far better than \x. The lower bound improves with more

axes - to a point. Starting with inequality (4.1), we will derive the condi
tion for when an additional axis improves the bound. Let fr be the max

imum value of a2{x), which we obtain by probing along axis r. Using k

axes, we have

63

XA +1-cost(x) < 2W^Jk+i-XrL or
r = l

cost(x) a XJk+1-ifr[X4+1-Xr] =ia+d-^A+iHV- (4-2)

The *-axis lower bound {Ak) is a weighted average of \x through X* +1.

Now A.-A^^d-t^XX^i-X,). Since X, +1^X„ the lower bound
r = l

increases with additional axes only so long as 2/V<l-

4.1.2. Regular coverage of J?*

The upper bound on [xTVl2 derived from axis probes is seldom very

tight, since we give so much away in assuming that every component x vr
might simultaneously reach its maximum value. The furthest point in Rk
typically has much smaller magnitude than this bound allows. To prove

closer bounds, we use more probes*

Extra probes extend the portions of Rk known to be devoid of points.
Our upper bound is associated with the furthest place from the origin that
probes have not excluded. We seek a fixed set of probes that will, for any
problem, yield an upper bound that is close to the magnitude of the furthest
point pi. To do so, we must be sure that every direction has a probe

nearby.
ip

The idea is to cover Rk with enough unit-length probe directions D;

that one of them must come near pTm. Each probe yields Mit the maximum

value of pTDi over all points pT. The Euclidean length lpJ1l equals the
maximum value of pU over all vectors dT of unit length. Thus

Max{MJ< Dp ril; we obtain an upper bound by proving that the gap in this

inequality is small.

64

By simple geometry, if Dj falls within an angle <p of p„, the

corresponding projection satisfies M^hlhosy. For a concrete example,

suppose we probe R2 at if intervals. Some probe Dj must come within f of

p*. Then
llprfsMftl +tanV)]: (4.3)

the upper bound is within 2.5% of llpf!!2.

4.1.2.1. Asymptotic number of probes required

We are thus led to the following problem: how many probes do we need

in jR* and how should we arrange them, so that every direction is within <p

radians of some probe? In jR2 the optimal solution is trivial; lay out [tf/tpl

probes at intervals of 2<p radians. The general problem in k dimensions is

harder. Let the minimum number of probes needed be P*(9).

We first show that for fixed <p, the number of probes increases exponen

tially with the number ofdimensions: in particular, for all k^2,

Pk{<p)>2^k (i)*"1. (4-4)

To prove (4.4), observe that any probe covers those directions within <p radi

ans of itself. Let ak{<p) denote the area of a spherical cap with half-angle <p

on the unit sphere in Rk. Then if fik is the area of the entire unit sphere,

we cannot possibly cover it without using at least Hk^k^ probes. Now

ak{<p) =nk-i}sink-2xdx. (4.5)
o

The areas uk are given by j*i =2, yL2=2ir, and a recurrence for k>2:

MA =-j^T2fi*-2. We have
PkW *Pk/Uk -1J sin* "2xdx]

65

We get a lower bound on this ratio from a simple upper bound on the
integral: x >sinx for x >0. This implies

Ma 1

Since J±- >̂ ± for all k>2, inequality (4.4) follows.

To cover the unit sphere in Rk requires more than p-k/ak{^) caps,

because caps necessarily overlap. We can see this from the smaller asymp
totic growth rate of Nk{<p), the maximum number of mutually disjoint caps
that may be placed on the surface of the unit sphere in Rk. For example,
for <p<*/4, [Rankin55] gave an upper bound on Nk{<p) that is of the order of

V2 sin<p

and [Sidel'nikov73] lowered this bound slightly.

We now give amethod to construct explicit probe sets in Rk. The lat
tice Zk comprises the points in Rk whose coordinates are integers. Let the
m.sphere be those points whose squared distance from the origin equals m.
Suppose we direct aprobe at any point of Zk ifthe unit cube centered there
intersects the m-sphere. Thus, consider the probe set

S={xlZk:±{xr-\)2*m*±{xr+\)2}.
r~l 2 r=l

We can choose m to guarantee any given <p. Every point on the m-

sphere lies within adistance V*/2 of some point in S. It thus suffices to

pick mso that arcsin|vT/(2Vm)J^<p» or
V?n"^v^/(2sinsp). <4-6)

66

Let us estimate the number of probes required. We first count the

number of spherical "shells" that can contribute lattice points to S. A t-

sphere can have points in S only if

for a total of 2^mk shells, asymptotically. There are 9(Vm *~2) P°«nts per
shell. Substituting the value of Vm from (4.6), we have on the order of

V*
A—2

2 sin <p

k
points per shell, times —: shells, for
r r sm<p

v* -
a total of 0

2sin<p
probes. (4.7)

We might hope to achieve the same coverage with smaller sets of

probes. To improve the above construction, one approach would be to use

lattices other than Zk. In general a lattice is defined by any set of linearly

independent vectors in Rk; it comprises all sums of integer multiples of

these vectors. The use of lattices to cover all directions in Rk does not seem

to have been investigated, although the literature treats several related

problems. For example, to find dense packings of spheres or sparse cover

ings ofspace by overlapping spheres, a common idea is to center the spheres

at points of a lattice.

The idea of using a general lattice to supply useful sets of directions

has been exploited in packing problems. In particular, [Sloane81] shows

that to obtain a k-dimensional spherical code (a set of directions, no two of

which form a small angle), one can take the lattice points that lie on an

appropriate m -sphere.

Our use of cube center-points in Z* was similar. To cover arbitrary

directions, we took points from several shells to be probes. Generalizing

67

that construction, consider any lattice covering of space. We could take as
probes the center-points of a set of bodies that together cover the surface of
a sphere. Unfortunately, using a different lattice is unlikely to give us

much more efficient probe sets.

The problem is that for common families of lattices, the minimum dis
tance between points is the same for all k, but the maximum distance of
any point in space from the lattice is proportional to V*. As a result, the
number of probes needed by lattice constructions tends to grow as (V*/c</,
as in (4.7). (c, is a real number that depends on <p.) Some lattices may
achieve larger values of c9 than others, but as yet there is no prospect of
avoiding the factor of Vk .

4.1.2.2. Random probes

The size of explicit probe sets based on lattices grows much faster as a
function of k than the lower bound (4.4) might allow. It is natural to ask:
do satisfactory probe sets exist with sizes closer to this bound? Adapting a
result of [Rogers63], we can answer this question affirmatively:

THEOREM (Rogers): If <p< arcsin(l) and ^9, then there exists a covering
of the unit sphere in Rk by P spherical caps of half-angle <p if P is at least

klog* +kloglog* +klogC-jJ-) +|log(16*) [l-sjj] •Ma

ak{<p) sincp

Rogers also gives an upper bound on -^r that closely matches (4.4):
ak{<p)

<4Vk{-^-)k'K (4-8)Ma

ak{(p) sm<p

Together these observations imply, for fixed <p and large k,

P4(9) =0(fe3/2logfe(-^)*-1).

68

This encouraging result is nonconstructive. That is, Rogers does not
supply efficient probe sets; he only proves that they must exist. His reason
ing nicely illustrates the probabilistic method, which often tells us that
desirable objects exist without helping us construct them. He first defines
an e>0 that depends on 9 and k. He shows that, averaged over the sample
space of all possible probe sets, the mean value of surface area left
uncovered by P caps of 9-6 radians is less than the area of asingle cap of
e radians. This can only be true if at least one of the probe sets, not

identified explicitly, has this property. For that set, it follows that every

point on the sphere must lie within <p radians ofa probe.

By a similar argument, relatively small sets of independently chosen
random probes provide usable guarantees with high probability. Our object
is to insure that, wherever the furthest point lies, some probe falls within 9

radians of it. The probability that every one of P independent random
probes will miss the furthest point by more than 9 radians equals

a*(<p) Since 1+x <ex for any real x, we can upper-bound this failure

probability by e M* . For example: for any k, conducting 5/i*/a*(9)
probes reduces the probability of an unsatisfactory set to less than e" . To
increase the certainty ofsuccess, simply pick a constant greater than 5.

It remains only to show how to generate random directions on the k-

dimensional unit sphere. [Muller59] gives a simple method:

1) Generate k independent normal deviates xr, for r = 1 to k.
2) Use the direction dT given by dr=xr/(2)x2)2.

r = l

Normal deviates are numbers gotten by sampling a standard normal distri

bution. To simulate this process on a computer, it suffices to have two com

monly available functions: one to give pseudo-random numbers, and one to

69

invert the normal distribution function $. We first generate a number p

from the uniform distribution on [0,1]. We then obtain the deviate, x, for

which

*{x) =̂ fe-u2/2du =p

Mullens method gives points distributed uniformly on the unit sphere

because the probability density function of the vectors x generated in step 1
(k-dimensional normal) is constant at any fixed distance from the origin,

independent of direction.

4.1.3. Practical shortcuts

In the previous section we saw that the number of probes needed to
cover Rk is an exponential function of k. The computational demands of
covering kdimensions may therefore be excessive even for small values of
k, say 10 or 20. While this analysis fundamentally limits the potential of
fixed probe sets for multidimensional furthest-point problems, we are still
interested in making probes as efficient as possible. We now present several
techniques designed to optimize special classes of probe sets.

4.1.3.1. Partitioning

The object of graph partitioning is to split n components into two
equal-sized groups, minimizing connections between the groups. We
represent this as a circuit placement problem by using an Lvector of legal
positions with just two values, each repeated f times. Recall that each
probe computes Vd for a given direction dT, and arranges the legal posi
tions into a vector whose order matches that of Vd. To permute the legal
positions appropriately, we in general need a total ordering of the

70

components of Vd, but for partitioning it suffices to separate the largest j

components from the smallest. (This division fully characterizes a feasible
placement, since there are no distinctions among components within each
half.) To determine the partition x that maximizes xTVd we thus compute
the median value of Vd, which requires 0{n) time rather than the

O(nlogn) required to sort the components.

When we seek the maximum value of xTVd over a large set of probe

directions (as in upper-bounding ||xrVl in Rk), still greater savings are pos-

sible. Let l,s be the values of the legal positions (Z>s). For direction d ,

the maximizing inner product satisfies

xTV<i=Z2Ji Ingest components ofVd]. +s^± smallest components^.
For r*0, the components of vr sum to 0 {vrTu0=0); since Vd is a linear

combination of vr's, its components also sum to 0. Thus

xTVd ={l-s)^{% largest components).
it

Now {l-s)^{positive components of Vd) is a good upper bound on

xTVd. It is an upper bound because the positive elements in a set of real

numbers always constitute the subset whose sum is largest. It is a good

bound because we expect Vd to have roughly j positive components, since

its component sum equals 0. Comparing components with zero instead of

the precise median element makes the computation trivial.

Over a set of probes, the maximum (Z -s^faositive components ofVd)

is an upper bound on xTVd for the set. However, a little extra work gives

the exact maximum Cm"). The idea is best expressed as a fragment of code

that computes m.

71

m := 0;
for each probe dT do begin

up := (/-s)2(Positive components of Vd)
ifup > mthen m:= Max [m, «-«)2<f lar&est components of Vd)]

end; (* for *)

We compute xTVd exactly (by finding the median component) only when
the computation has a chance of yielding the maximum value for the set.

4.1.3.2. Sets of related probes

For a special case of the placement problem, the previous section shows
how to speed up or bypass some probe steps that use the vector Vd. We now
turn to the computation of Vd itself, namely, the linear combination of k
vectors vr. We count vector operations, bearing in mind that for vectors in
Rn, a scalar multiplication or addition requires n real arithmetic opera
tions. Each vector vr is multiplied by a scalar dr, and the k results are

summed. Thus we normally use kmultiplies and k-1 adds to compute Vd.

Because we can use any scalar multiple of dT, k-1 multiplies actually

suffice. Let c equal some nonzero dr. Suppose that at the start, we reset

each dr to dr/c. Our use of Vd is to take its inner product with a legal vec
tor. If we multiply this inner product by c, we recover the result we would
have obtained with the original dr's; this device saves one vector multiply,

since it sets one dr = l.

For general probe sets, and in particular for sets of random probes, the
computation of Vd must proceed independently for each direction dT. But if
we use a set of related directions, the same arithmetic operations may

appear in the computations required by several probes. With careful organi
zation, we can re-use intermediate results common to different probes

instead of recomputing them.

72

The easiest way to understand related probes is to consider an example.

We shall study an algorithm that computes Vd for every probe in a specific
set of ±(3*-l) vectors dT in Rk, for any k>l. This illustrates the basic

ideas in a form that is practical to implement. Compared to general probes,

the algorithm saves a factor of 2{k -1) operations in computing each Vd. (It
uses no multiplications and at most one addition per probe.)

We consider the 3* probes in R* in which each component is either 0 or

±1, and discard the case with k O's. It is convenient to identify these

probes with the first 3*-l positive integers in base 3, which require up to k
ternary digits. Places 0 through k-1 of the integer represent the probe
components: in each place we let the digit 2 stand for acomponent of -1, 0

stand for 0, and 1 stand for 1.

The probe set is symmetric about the origin: if we compute Vd, there is
no reason to compute V{-d) separately. We thus omit half the integers,

namely those whose leading digit is a2. Our algorithm steps acontrol vari

able c through the remaining integers. We refer to the digit in the pth

place of c as Dit{p,c)\ that is,

Dit{p,c)=[{c modtf +1)/Zpl
The inputs (e.g., vectors) appear in the array v[0..k-l]. At each step we

compute the combination of inputs determined by the probe associated with
c, and place it in the output array sum[0..k-l]. Each new combination can

be computed by adding one input (or its negative) to an already computed

combination that is available in the array of outputs.

73

for j := 0 to k-1 do begin (* j-digit integers, base 3 *)
for c := V to (2* 3^)-l do begin (* with lead digit = 1 *)

(* "place" to update is smallest integer >0 for which Dit(place,c)*0 *)
place := 0; while Dit(place,c) =0 do place := place+ 1;
if 3P'fl«=c then sum[place] := v[place]
else begin

(* Use sum stored in next highest place with nonzero digit *)
old := place +1; while Dit(old,c)=0 do old := old +1;
case Dit(place,c) of

1: sum[place] := sum[old]+v[place];
2: sum[place] := sum[old] - v[place];

end; (* case *)
end; (* else *)
(* sumtplace] now has new combination of v's *)

end; (* for c *)
end;(*forj*)

How well do these probes cover Rkt> The coverage of a probe set S may

be defined by

cosw(S) =Min[Max cos(x,p)], <4-9)
T x piS

where the minimum is over all nonzero vectors x*Rh. For the furthest-

point problem, this gives the upper bound

Ilp^TII2 < Mi2[l +tan2<p(S>]» (410)

as in (4.3): here Mt is the largest projection obtained by a probe. Thus
tan2<p(S) represents the worst-case relative error associated with (4.10),
since M^llpJI Typically we will observe that the magnitudes of some
points returned by probes exceed Mit and thus obtain alarger lower bound
for IpJI ^ these cases the aposteriori relative error in (4.10) is reduced
accordingly.

For comparison, we compute tan2<p(S) for the set of 2k axis probes. The
worst-covered x'% have the same absolute value in each component: e.g.,
(±1,±1,±1)in R3. Cosine <p(S)=l/vT; tan2<p(S) =*-l.

74

Suppose we add only the 2* worst-covered vectors (with ±1 in each
component) to the set S. Let k be a perfect square; consider vectors with
Vk components equal to 1and the rest equal to zero. The maximum cosine
that such a vector makes with any probe equals l/k\ thus

tan2<p(S)>V£-l.

In Appendix 3 we prove that for the example set of 3*-l directions

considered above, „ .256+ ln{k) u\\\
tan^<p(S)< • i*.n;

This error bound grows relatively slowly with k: tan2<p does not reach 1.0

until k =43. However, for k>ll, random probes provide better coverage

more efficiently, even if we allow for the speedup factor of2(fc-l) achieved

by this set of related probes.

In a wide range of probe sets, we can use incremental computing as

above to share operations among probes. For example, it is easy to general

ize the above sequence to sets of c* probes, in which each component

assumes c values. Sharing operations can speed up any set of probes drawn

from lattice points.

Speedup is not much justification for working with related probes. For

one thing, saving a factor of 2(*-l) is the best we can hope for. And the

possibility of having to design new probe sets and algorithms when k and <p

change seems like an unnecessary inconvenience, since simple random

probes require no such work.

Still, clever designs of organized probe sets may pay off, by letting us

dispense with unnecessary probes. For example, on the basis of earlier

unproductive probes in the neighborhood, it may be possible to prove,

without trying them, that no probe in a whole cluster of directions can

improve on the current best point.

75

4.1.3.3. Parallelism and probes

New computers make it feasible to use many processors that work in

parallel. Sequential processing may remain the standard technology; but it
is interesting to study the extent to which different computations lend
themselves to parallel processing. Probes definitely have the potential to

make efficient use of multiple processors.

Each probe computes Vd by combining k vectors vr. This entails an

independent inner product computation of length k in each of the n com
ponents. All nk scalar multiplications involved could be performed in paral
lel, as could the n subsequent component sums. Any of several known stra

tegies for parallel sorting could then be applied to sort Vd. Finally, the
inner product computation xT{Vd) could use up to n processors.

An obvious way to exploit even more processors is to perform multiple
probes simultaneously. The requirement for large probe sets established in
(4.4) means essentially that we can find work for as many parallel proces

sors as are available.

4.1.3.4. Choosing k wisely

To obtain close upper bounds on the summation in (4.1), the simplest
nonadaptive probing strategy is to use randomly generated directions in Rk.
We now show how to estimate which kwill result in the best lower bound
on placement cost. The goal is to avoid time-consuming probe sets that use
sub-optimal values of k.

For each k, let Bk2 be the upper bound on Z(xTur)2[\k+i-W that we

expect to derive from probes in Rk; write (4.1) as

cosUx^X^x-B*2- <4-12)

76

The A's are known; good approximate values for Bk2 allow us to make an

informed guess as to which k will maximize (4.12). For each k, to estimate
B*2=Aft2(l+tan2<p), (4.13)

we need to know two things: 1) <p, the angular coverage in Rk; and 2) an

estimate of Mif the maximum projection we expect to find.

1) To compute the angle <p, we first specify the number of probes ("P")

that we could perform in R*, by dividing the time allowed for the whole set

by the time per probe in Rk. We can then easily find <p for which

5_£*_=P (here we assume that the final bound from the probe set should

be correct with probability at least 1-e"5).

2) We now give a heuristic to estimate M; for a given k in (4.13)

without performing the whole set of probes. Recall that this is only a

"guessing" stage, designed to tell us which k to select: the actual lower

bound will be proven in a"verifying" stage, using the recommended value of

k. We borrow an idea from the last chapter. From a small sample of

iterated probe sequences, take the magnitude of the furthest point; it

approximates the maximum projection that will arise if we cover R with

probes.

In conclusion, we can use the observed distribution of A's and the com

puted dependence of coverage angle on k, together with a small sample of

outputs from furthest-point heuristics, to determine in which search space

R* random probes are likely to provide the best lower bound.

It is also sometimes possible to prove that other choices of k are bad.

To do so, we want to prove limits on how large the lower bound (4.12) in an

alternative search space Rk could become if we flooded it with probes. As

<p->0 in (4.13), BJka-*Afi2 =|pn2, where p? is the furthest point in Rk. We

77

can thus define an "asymptotic" value of (4.12):

L» =X4+l-|pFP.. (4-14)

Any point pT (e.g., from iterated probes) provides the upper limit

x*+i-!pt»2 * Lk- (4A5)

4.2. Adaptive Methods

The approach in section 4.1 was to use a fixed probe set for any problem
instance. To guarantee that some probe would always come near the
furthest point, we distributed probes uniformly throughout the search space.
We now consider adaptive probing strategies, which use results of early
probes to help decide where to allocate later probes. In most cases, we can
learn more from probes chosen adaptively than we would from a fixed probe
set of comparable size.

Because nonadaptive techniques allow no probe choice to be influenced
by any others, the probes may yield much redundant information. This is
an obvious weakness of random probe sets. With an adaptive approach, we
can avoid unnecessary probes: what is more, we can develop strategies to
find the optimal (furthest) point in any finite set using only a finite number
of probes.

4.2.1. Probing for the convex hull

Consider afinite point set Sin fl*. Suppose we could blanket Rk with
an infinite number of probes, covering all possible directions: what would we
learn about S? Each probe returns a perpendicular hyperplane* that

•For »nonzero d€R* and real c, the set of points f that satisfy PU =cis ahyper-
plane; hyperplanes are the generalization of lines mR1 and planes in K.

78

contains a point of S and is the boundary of ahalfspace that includes all of
S. The intersection of all such halfspaces is the smallest convex set that

contains S, and is known as the convex hull of S, or conviS). The convex

hull of a finite set of points is called a polytope.

We will see that to find a point in S at maximum distance from the ori

gin, it is sufficient (though not always necessary) to fully determine the
polytope P=conviS). Polytopes are specified in terms of their boundaries.
The hyperplanes mentioned above, which contact and bound S, also contact

and bound P; they are said to support P. The intersection ofP with a sup

porting hyperplane is called a face. In Rk, two extreme cases are especially
important: faces of dimension 0 {"vertices"), when the intersection is a single
point; and faces of dimension k-1 ("facets"), when the intersection is con

tained in no other hyperplane.

Our motivation to determine the polytope P =conviS) is that some ver

tex of P maximizes distance from the origin among all points of S. This fol

lows from three elementary facts: 1) squared distance from the origin is a

convex function; 2) the maximum of a convex function on a polytope is

attained at one of its vertices; and 3) the vertices of conv(S) are all points of

S. We can thus solve the furthest-point problem on any set for which we

can construct the convex hull, because once the vertices are computed it is

easy to find one that is furthest from the origin.

The conclusion of the thought experiment with an infinite number of

probes is that determining the vertices of conviS) is enough. This gives us

some reason to be hopeful. For instance, when we transform a circuit place

ment problem into Rh for k much less than n, S comprises n\ points but

conviS) has far fewer than n\ vertices. (See section 4.3.) But the question

remains: is it possible to determine the convex hull from a reasonable

79

number of probes?

Our problem differs from traditional formulations of the convex hull
problem. Usually one is given mpoints and asked to enumerate all facets
of their convex hull, or given m halfspaces and asked to enumerate all ver
tices of their intersection. In each case the best known algorithms in Rk for
ft>4 are due to [Seidel86]. They require the solution of m linear programs

with m-1 constraints, plus time 0(fe3|F|logm) to enumerate \F\ facets or
0(k3\V|logm) to enumerate |V| vertices. (From now on we use Fto denote
sets of facets and V to denote sets of vertices, with \F\ and |V| denoting the

respective sizes of these sets.)

In our problem, neither points nor halfspaces are provided at the outset.
Instead we must determine the polytope P by performing probes in direc
tions that we select; each one finds the perpendicular hyperplane h that
supports P, and apoint in hf\P. Probing can be thought of as consulting

an "oracle" that solves linear programs of the form [Mai vTd: vTiP\ for
any requested d*Rk. Our primary concern is to bound the worst-case
number of probes necessary to determine a polytope.

[Dobkin86] studies the problem of determining polytopes with probes,
using avariety of probe models: of these, the moving hyperplane or "hand
probe" is the model that most resembles our own. Ahand probe returns the
supporting hyperplane hperpendicular to agiven direction, without telling
which point or points of hcontact the polytope. Under this model Dobkin
etal. show that |V|+|F| probes are necessary and (*+2)|V| +|F| probes
are sufficient to determine a polytope.

Compared to hand probes, our probes are more powerful (each one
returns apolytope vertex) and thus easier to use. We now show how to find
all the vertices and facets ofa polytope using only |V| +|F| probes.

80

The idea is simple: find fc +1 vertices, compute their convex hull, and
"conjecture" that |V|=* +1. Try to verify this conjecture by directing
probes normal to the facets of the current convex hull. If a probe returns a
supporting hyperplane that contains a conjectured facet, that facet is
verified. Otherwise the probe necessarily discovers a new vertex beyond the
conjectured facet. In that case add 1to the conjectured size of V, update the
convex hull to include the new vertex, and begin testing the new conjecture.

The conjecture is proven when all facets are verified.

We now present the algorithm in more detail. The algorithm assumes

that a procedure to perform probes is available; we first specify the behavior

of this procedure.

{procedure Probe (("INPUT*) d; ("OUTPUTS*) v, H);
INPUTS:
d is a vector in J?*.

OUTPUTS:
u is a polytope vertex.
H is the halfspace {x: xTd < vTd}\

(if contains the polytope, and its boundary contains v.)

81

procedure ProbeForHull ((*INPUT*) k; ("OUTPUTS*) V, F); #
{Use probes to determine a polytope; assume that the origin is in its interior.
INPUT:
k, an integer, is the dimension of the search space.

OUTPUTS:
V is the set of polytope vertices.
F is the set of polytope facets.}

begin (* ProbeForHull *)
(* Find fe + 1 distinct vertices. *)
Probe (<1,0,0,...,0>, vv Hx)\
Probe « -1,0,0,...,0>, u2> #2);
V := {vvv2}
forj:= 2 to k do begin

(* To avoid rediscovering vertices in V, choose d: d u<utori>tv. j
Solve for direction d such that dr=Qfor r>j and

dTv is constant for u€V. (* j-1 constraints in RJ. *)
if dTv > 0 thend := -d;
Probe (d, vj+v HJ +1);
V:=VIJ(W

end; (* for *)
m:= k+1; (* mwill be the number of probes performed. *) ^
(* See if any points lie beyond conv (V), by testing conjectured facets.)
F := facets (conv(V));
while some facet of F is unverified do begin

f: = an unverified facet of F;
Compute direction d£Rk normal to f
(* For all vertices v€ f, dTv is the same positive constant.)
m := m + 1;
Probe (d, um, Hm)\
if dTvm > dTw for v€ f then

begin (* update *)
F := facets (conv(VU{um}))'»
(* The update of Finvolves deleting f and any other
unverified facets that vm lies beyond, and adding
new facets (unverified) that contain vm. *)

V:= VUfrmk
end; (* update *)

else mark f verified.
end; (* while *)

end; (* ProbeForHull *)

82

The essence ofour algorithm is an operational definition for facets:

Let d be the normal vector of the hyperplane that contains k given points of

V. These points are the vertices of a facet of conviV) iff their projection on

d is larger than that of any other point in V."

An unverified facet satisfies this condition among points of V that the algo

rithm has already discovered. By expanding the test to all of V, a probe

along d always either

1) produces a new vertex, or

2) establishes that the tested facet is part of the final hull.

Consequently, when the algorithm terminates it has performed exactly

|V|+|F| probes, as claimed.

To see that the algorithm correctly determines the polytope P, observe

that after each pass through the while loop,

conv{V)CPCf]Hi. (416>
t = l,m

When every facet is verified, conviV) = f] H^ thus P has been completely
i = l,m

determined.

We now argue that ProbeForHull is optimal, in the sense that no algo

rithm can guarantee to determine an arbitrary polytope using fewer than

|V|+|F| probes. A correct algorithm must report every vertex and verify
every facet: otherwise there is a proper inclusion in (4.16). (If a vertex is

*For simplicity, the text assumes non-degeneracy (no hyperplane contains *+l
points of V), so each facet of V's hull is determined by exactly k points. In general,
k points on a hyperplane normal to d lie on a facet iff no other point has a greater
projection on d. When more than k points lie on a facet, they all tie for greatest
projection. It is reasonable to assume that a probe can return all the points in a tie.
(Section 4.3 treats the case of ties in transformed placement problems.) On this as
sumption, ProbeForHull requires at most |V| + |F| probes in degenerate cases.

83

missed, conviV) is too small; if a facet is unverified, f)H is too large.)

We show that no algorithm can insure that any probe does more than

find one new vertex or verify one facet. Clearly, at most one facet can be

verified by a probe. Thus we must only rule out the possibility that a probe

discovers multiple new vertices, or establishes a facet at the same time it

finds a vertex. In either case, some new vertex has a projection on the probe

that equals another point's projection exactly. Intuitively, this is unlikely;
an algorithm would have to be clairvoyant to select a probe direction that

matches an unknown point so perfectly.

To substantiate this intuition, we take the role of an adversary who

responds to probes. We want to eliminate "fortunate accidents" of the above
type. In proving alower bound, an adversary is entitled to pick ahard case:
we fix on any simplicial polytope (one with k vertices per facet), reserving
the right to adjust its vertex positions slightly as we reveal them to the
algorithm. For this purpose we observe that there is an e>0 such that we
can simultaneously move every vertex anywhere within eof its initial posi
tion without altering the structure of the convex hull (composition of

polytope faces).

We respond to most probes according to the original vertex positions.
But suppose aprobe is about to find anew vertex v whose initial position
has aprojection identical to that of another undiscovered vertex or an entire
facet. In this case we reposition vby introducing aslight perturbation that
increases its projection and thus "breaks the tie" in v's favor. By induction
no previous bounding hyperplane intersects u, so it is easy to make this per-
turbation consistent with information from earlier probes. Then no probe
detects multiple vertices, and no facet is verified until all k of its vertices
have been found: the algorithm must perform |V|+|F| probes.

84

4.2.2. Probing for the furthest point

For specific point sets it will often be possible for a probing algorithm to

determine our actual objective, the furthest vertex on the convex hull,

without completely determining the polytope. Figure 4-1 illustrates how

this can happen. In this example, three probes have produced only two of

the polygon's six vertices; yet they give enough information to conclude that

point C is the furthest vertex from the origin.

Figure 4-1. The furthest point is determined, but not the complete hull.

The polygon must lie in the intersection of the three halfplanes determined

by the probes; by inspection, C is the furthest point from the origin in this

containing region (triangle BCD). Because C is also a polygon vertex, it

must be the point we seek.

The possibility of finding the furthest point without fully mapping out

the set's convex hull is very important in practice. We can find the furthest

point on some polytopes while ignoring a great deal of their structure. But

there are still unfavorable cases. For instance, we now show that in i?2,

any algorithm to determine the furthest point of a polygon requires as many

probes in the worst case as are needed to completely determine a polygon:

|V| + |F|(= 2m).

85

We follow an adversary strategy, which first selects an arbitrary m^3

(not revealed to the algorithm) and a circle centered at the origin. Our

basic idea is to put vertices where the algorithm's first m probes meet the

circle. Typically this will yield m vertices whose hull contains the origin;

we study this case first. Consider any two neighboring vertices, e.g., A and

B in Figure 4-2.

Figure 4-2.

After m probes, any point beyond arc AB and bounded toward the origin by
the tangent lines through A and through B is still eligible to be a vertex.

Since all these points (the shaded area in the figure) are further from the
origin than the known vertices, the algorithm must rule out this area. Only
a probe directed between A and B can exclude any of this area." (On any
external probe, A or B has a greater projection than the shaded points.)
Therefore, the algorithm needs at least m more probes (one in each area),

for a total of 2m probes in all.

We now handle cases in which the first m probes are atypical. If the

algorithm repeats any probe, it discovers only p distinct vertices, with
♦For a single probe to exclude the whole area, it must aim at the midpoint of AB.

86

p<m. In this case we "give away" m-p probes at uniform-angle spacing
in the biggest gap, and tell the algorithm (for free) that each such probe
meets a vertex at the circle. This returns us to the situation with m ver

tices.

Finally, suppose the first m probes are distinct, but all lie in one half-
plane. If our last vertex followed the basic strategy, the polygon would not
contain the origin. So instead we find the most separated pair of vertices
u,w among the first m-1, and place a vertex u on the circle so that v
bisects the external angle (> 18(f) between u and w. This insures that tri
angle uvw contains the origin. Each of the m-2 sections internal to uw
requires a probe, just as in the main case. As for the external section, two

probes suffice only if the algorithm is "fortunate": vertex v and either u or

w must have identical projections on the first probe in this section. As

before, we can perturb v (this time along the circle) in response to such a

probe. Thus a total of (m-1) +(m-2)+ 3 = 2m probes are needed, which

concludes the proof.

This proof of a |V| +|F| lower bound for furthest-point problems applies

only in R2: in Rk for k>3, it becomes possible to use probes that lie outside

a cone spanning k vertices to exclude regions of that cone. But it is easy to

see that finding the furthest vertex of a polytope in Rk requires at least |V|

probes in the worst case. Consider any simplicial polytope whose vertices

are equidistant from the origin. A furthest-point algorithm must find all

the vertices, and in the worst case no probe will find more than one. (This

can be proven formally by another adversary argument involving perturba

tions of the points.)

The consideration of polytopes in which the vertices are equidistant

from the origin has demonstrated that finding the furthest vertex can

87

sometimes require as many probes as determining the whole polytope.
Nevertheless, a suitably modified ProbeForHull can solve some furthest-
point problems for which it would be intolerably slow to compute the entire
hull. The basic idea is to keep track of the furthest point in Rk that is still

eligible to be a vertex.

Figure 4-1 makes it clear that the furthest eligible point is determined
by the bounding halfspaces Ht that probes return. As we presented it,
ProbeForHull makes no explicit use of these halfspaces. To handle the
furthest-point problem, ProbeForHull should maintain an up-to-date

specification of «=n*<. Just » il does for CO"o(V)- A feW initializing
i = l.m

probes can insure that Q isbounded.*

Among the vertices of Qand of con.; (V), let qand v, respectively, be at
maximum distance from the origin. We change ProbeForHull'* termination
condition so that it continues probing to verify facets only while
faPXl +eriul*. where cis the acceptable error in determining the furthest
point.

The furthest-point objective also provides a reasonable criterion for
selecting which unverified facet to test at each step; until now the choice of
facet has been completely arbitrary. We propose to choose afacet that lies
beneath o, i.e, one contained in ahyperplane that separates conviV) from ,.
This method insures that every probe has the possibility of concluding the
search, since it might discover avertex (,) that is provably furthest from
the origin.

*E.g., 2k axis probes.

88

By leaving the basic structure of ProbeForHull intact, we preserve the
guarantee that every probe either finds a new vertex or verifies a facet. The
refinements focus the early exploration on polytope regions likely to be most

productive in our search for the furthest point. They allow us to gather use
ful information even when |V|+|F| is so large that we cannot hope to deter

mine the polytope completely.

Of course, the necessary background work between probes essentially

doubles if we must maintain the polytope C\HL in addition to conviV).

Convex hull computation is a solved problem, but as we noted earlier, the

solutions are expensive. Fortunately, it is much easier to solve the set of

problems encountered in the course of a probe sequence than it would be to

solve the same number of independent problems.

An efficient implementation of ProbeForHull is beyond the scope ofthis

work. It is worth mentioning, however, that the required updates are simi

lar to problems that have been studied in inductive approaches to computing

the convex hull. They are also related to "on-line" versions of the problem,

where the hull is updated to include one arbitrary point after another. Our

situation enjoys two advantages, compared to the general on-line problem.

First, each point returned by a probe is a vertex, and it remains a vertex

through all updates of the polytope. Second, each new point is known to lie

beyond a particular facet; this is a useful head start in the update process.

4.3. The sizes of V and F for placement polytopes

In section 4.2 we gave an algorithm, ProbeForHull, which finds the

furthest of a set of points in fl* by computing the convex hull of the set.

We showed that |V| +|F| probes suffice to determine the hull completely. In

this section we investigate the implications of this result for the class of

89

point sets derived from n-component circuit placement problems. We refer
to the associated convex hulls as "placement polytopes". Our main finding
is that for any fixed number of dimensions, ProbeForHull produces the
optimal solution to these furthest-point problems in time that grows as a
polynomial function of n. To prove this we show that for placement prob
lems transformed into Rk, |V|+|F|=0(/i2"-1*).

We know that the transformed placement problem has n! points, one

for each ordering of the components. Our first concern is to determine how
many of these points are "visible" to probes in Rk: only these points can be
vertices of the convex hull. The visible solutions correspond to all possible
component orderings of vectors in the span of Vl through vk: as our probe
directions d range over Rk, we produce vectors Vd in this span.

The solution to the following equivalent problem (viewing rows of V as

points) appears in ICover67].

cn*d.,. pom. vm, via... .vwi» ft a"!„««,»;fy££j

dTV(ir(l)]<dTV[ir(2)]< ••• <drV[w(n)].
We would like, to know the number «^SStJ^^^SgT ""points in pairwise general position* in R , wmcn we aenut* <*v

ss-isrs*.£5£'-»Vs ha\a ^ti°r^Ra—£wise general position" if the only sets of*connecting segments with acommo p.
pendicular are those that have acycle. hvoerplane; de-Recall that point, in fi* are degenerate .f some *+1̂ * ' ^Sj, ^
eenerate poinU are never in pairwise general position, since any ft sepnen

For example, in R> it disallows not only three collinear points, but also op

"^aSt*. *** mU-sUted in Cover's paper•-^^gj^
that the points be non-degenerate. [Goodman86] Pointed out fcat the stronger
dition must be satisfied to obtain the maximum number of ordering..

Cover showed that

m=0

1+2 i + 2 y + -' •I(fe terms)'
2£i£n-l 2si<j'Sn-l

90

where ftSm is the sum of the |»;2| possible products of mnumbers taken
without repetition from {2,3, . .. ,n-l}. The last sum includes \nkz\\ pro
ducts, each ofwhich is less than n*"1. It is easy to see that

Q(n,*)=e(/i2(*-l)). <4'17)

Also ofnote is Cover's solution to a related problem. Let C{n,k + 1) be

the number of linearly separable dichotomies of n non-degenerate points in

Rk* He showed that ft * ._„ -, k.
C(/i,* +l)=2 2 | mre(n }-

m=0

C(n,Jfe +l) is an upper bound on how many of the \nn/2\ solutions to an n-

component partition problem can be discovered by probes in R .

From Cover's analysis, we conclude that placement polytopes have at

most Q{n,k) vertices. Our goal now is to determine the number of facets of
placement polytopes. We do so in two stages. First we find anecessary and
sufficient condition for a direction d to be the normal vector of a facet.

Then we calculate the number of distinct directions that can satisfy the con

dition.

Given any set of points S and direction d, let Mid) denote the set of

points in S with maximum projection on d. The supporting hyperplane of
conviS) normal to d intersects conviS) in a face whose dimension equals

that of the affine hull of Mid) {"affiMid))")** Thus in Rk, d determines a

♦that is, distinct partitions of the points according to whether their projections on a
given vector are greater or less than a specified constant.

**The affine hull ofa point set Wis the intersection ofall hyperplanes that contain

91

facet if and only if the dimension of off(Mid)) equals k-1. We will prove
that for point sets derived from placement problems, the dimension of
affiMid)) is easily characterized in terms of the components of Vd.

We require the following

LEMMA: Assume that the n legal positions are distinct. If {Vd)[i)<iVd)[j],
then x[i]<x\j] for all points xTV that maximize x Vd.
PROOF: Otherwise x[i]>x\J] (by distinctness of the legal. Position^^and
swapping the positions of components i and j would strictly increase x Vd.
COROLLARY: The xvectors of points xTV in Mid) ™te**^J^£ft£possible rearrangements of positions among components that are identical in
Vd,

The corollary allows us to compute the possible numbers of points in
Mid). The number is always of the form n<c,!>. Each term represents a cr

way tie among certain elements of Vd; permutations of the corresponding
components of xdo not change xTVd. We will now show that the dimension
of the face determined by d equals 2(^-1). This sum has a natural

interpretation: it is the number of pairs of components of Vd that must be
equated to specify all the ties. The notion that acertain number of pairs is
necessary rests on the following definition: aset of equalities is nonredun-
dant if none is implied by the others.

THEOREM: Suppose Iis an n-vector with all components^distinct.and VW
through Vln) are points in pairwise general position in R . Uehne a line
set of solution points) by

g_ ixTv. x=Ul for some permutation matrix 11} .
For an arbitrary direction dtRk, define Midi (the points discovered by a
probe in direction d) as

Af(<f) ={m€S: mTd^sTd for all sZS}.
Then the dimension of the affine hull of Mid) equals the maximum number
W. Equivalent^, the affine hull of points u/, equals {5>«">,: 5>. =l)

92

of nonredundant equalities between components in Vd.

PROOF: Let j be the maximum number-of r***™*"s^ne'poinlVfoThe case j=0is trivial; with no equalities JJW> ^^SduodSnt index

through p, in Afid) and demonstrate that
1) these j +1 points are nondegenerate, and
2) every point in Mid) is in their span. rrmsider

For l^i^j, we obtain points

in M(d), where A; = Xotfeil-^o^i^0- ^ , .._ fV*A i
1) The points p through Pj span j dimensions, 0tflhn7^} segments V[a°]-to-V[61 foJr the given index^«^ ggr ^Jft

mints between points in V[l..n] ^^rn^^^^^nm^onsegments have a common perpend cular contradicting our
that VtL.nl are in pairwise general position.

2) We claim that any point p in Mid) can be written as
=Po + 2ci(P»"Po).P

i = l

for suitable constants c. The above ^£^^i^EXtSM(d) all result from simple rearrangements of the'£•«"»»•• s™ be
with identical components in Vd Any «^ "^ggf?$- *ts 0f
accomplished by a sequence of swaps j°LxW^J™tetive (a,b) pairs,components. Each tied set is connected by its ref""$»";? ;w"'f By
We?an therefore move from Po to pby ase^X%fJea^.Ss3 mSthe definition of the points Pj, each such swap adds some constant mui
tiple of (Pi-p0) to the current position, proving our claim.

The theorem implies that we can identify each facet with aset of fc-1
nonredundant equations of elements of Vd. Computing the number of
facets of aplacement polytope in Rk thus reduces to the following problem:
Given » items, we must equate *-l pairs of them so that no equation is
implied by the others. How many different choices are possible? (If some e
items are equated, the particular pairs used to link them together does not
matter.) Denote this number by D{n,k).*

The maximum possible number of normal vectors to facets is DinJ,). If the points
V[l..n] are not in pairwise general position, there are fewer.

93

Each group of equated items defines an equivalence class. We begin

with n classes. Every nonredundant equation merges two classes and thus

reduces-the number of classes by one. At the end we have n-fe +1 classes;

thus our problem is simply to count the possible partitions of n items into

n-fc+1 nonempty subsets. The solution is known as the Stirling number

of the second kind, SO1.11-A+ 1). These numbers obey the recurrence rela

tion S{ntt) =S{n-l,t-l) + t'S{n-l,t). To compute D(n,*) =S(n,n-* +D

for small k, it is easier to use the equivalent relation

Dinjt) = Din-l,k) + in-k + lYDin-l,k-l),

with the boundary conditions D(n,l)=D(n,/i)=l for nSl. Finally, the
problem formulation provides acrude upper bound on Din,k): From j;| pos-

sible equations, k-l are selected: therefore Dinyk)^

Since the probe vector in either direction along anormal line will find a
facet, there are twice as many facets as normal vectors. We conclude that
for the convex hull of the points of an n-component placement problem
transformed into Rk, the number of facets satisfies

n

2

k-l

|F|£2p(/i.*)=2S(n,ii-* +l)£2
n

2

k'-l
_e(n2(*-i>) (4.18)

We have just seen that the normal vectors to all facets of placement
polytopes are determined by the underlying points V[i). By computing
these normal directions before probing, we can insure that every probe
verifies a facet! We can thus determine the whole hull with |F| nonadaptive
probes. Of course, for practical values of n. the range of * for which it is
feasible to consider performing GCn"*-") probes is severely limited.

94

From the theoretical standpoint, (4.17) and (4.18) are important because

they establish that for fixed *, the problem of determining the placement
polytope and thus of finding its furthest point is solvable in polynomial
time. From the practical standpoint, the ideas in section 4.2.2, which
highlight the differences between finding a furthest point and determining a
polytope, are more important. By showing us how to choose probes that are
especially informative about the furthest point, these ideas illustrate the

real power of adaptive probing.

95

Chapter 5

5. Application To Circuits

We have concentrated on the problem

minimize xTBx:x €{UL} , U a permutation,

which resulted from our formulation of circuit placement. Before our tech
niques can be applied, we need to consider some aspects of real circuits that
our abstractions have suppressed. This chapter addresses two practical con
cerns. In section 5.1, we propose a new weighting function to represent
multi-component nets in the n-by-n connection matrix. In sections 5.2 and
5.3, we study two methods that our approach can use to handle components
that must lie in specially constrained positions.

5.1. Weights for component pairs in large nets

In our general placement problem, cost is defined as the sum of terms
Cy-(squared distance between components i and j). How should the values
Cy- be set up to represent circuits that have nets with more than two com
ponents? In section 2.1 we argued that for every pair of components i,j in a
net, the same weight should be added to cy-. This approach is commonly
known as the "clique model" of nets.

Care must be taken when using the clique model, so that nets with
many components do not overwhelm the cost function. Let wis) be the
weight added per entry for nets with s components. If we used u>(«) =l, a
net with s components would contribute sis -l)/2 times as much total
weight as a two-component net ([Schweikert72]).

96

Past work has compensated for this effect by using w(s) =— or

w(s) =2- ([Charney68, Cheng84]). The latter choice gives a total weight of
s

s-1 for s components, which equals the number of connections needed to
link them. But it is not clear that the total weight of a net should match

the number of connections it requires.

It makes more sense to determine the weights wis) by the effect they

will have in cost summations. Ideally, the total cost contributed by each net

{wis) times the sum of squared distances of all its component pairs) would
equal the square of its span,* for any s, as it does for 2-component nets with
weight 1. But this cannot be guaranteed since for nets with s>2, total cost
depends not only on the span but also on the detailed configuration of com

ponents.

We can choose wis) so that the biggest discrepancy (among all

configurations) between total cost and span2 will be as small as possible. It
suffices to consider the extreme costs among configurations of nets with

span2=l. Cost can range from f-u;(s) (when all but two components are

midway between the extremes) to (±)2-w(s) (when half the components are

at each extreme). We propose to set

s

.2since this minimizes the worst-case deviation of cost from span2. Cost is
then a factor of V^2 below span2 in one extreme case, and a factor of V^2
above it in the other.

♦The (X) "span" of a net is the maximum distance (in X) between any two of its
components.

97

5.2. Classes of components

In applications, differences between components are often so pronounced
that it is inappropriate to assume that every permutation of the legal posi
tions is feasible. The positions of certain components may be restricted by
functional considerations. For example, the components responsible for
external connections (1-0 pads) typically must lie near an edge of the lay
out. To be useful in practice, our problem formulation must explicitly
accommodate restrictions on specific components.

While the initial problem statement in section 2.1 allows arbitrary per
mutations of legal positions, away to handle restricted components was also
mentioned. In addition to specifying the connection matrix and legal posi
tions, the input can divide the components into two or more classes (where
class Ihas m, components, 2«»=*> and sPecify m< V0**0™ t0 ** °CCUpied
by each class.

Performing a probe to maximize xT(Vd) among the n<«l» vectors x
that are feasible under these constraints is as easy as when all n\ permuta-
tions are possible. This is because the inner product to be maximized equals
the sum of separate inner products of length m, for the different classes, and
arbitrary component permutations are permitted within each class. Thus
the solution requires no new techniques: we simply order the x positions in
each class independently to match the order of the corresponding portion of
Vd. This straightforward generalization of probes enables us to produce the
feasible solution point with maximum projection in any direction for prob
lems with different classes of components.

Our original probes precisely matched the ranking of each component
in x to its rank in the ordering of Vd. When we place a component among
specially designated legal positions according to its ranking in a class, its

98

overall ranking in xmay be very different from the one determined by Vd.
This effect would not be too serious if the legal positions for each class

were well distributed over the range of positions. For instance, suppose two
classes of n/2 components occupied alternating positions along the xaxis.
Acomponent placed by rank within its class would tend to be close to its
overall ranking as well.

But atypical class of 1-0 pads comprises asmall fraction of the com
ponents, with all the associated positions at one side of the circuit. As the
ordering of xis constrained, xTVd becomes less than it would be if arbitrary
permutations were allowed. This reduces the effectiveness of our heuristics,
which work best when the proportion of 2«r2<*> found in the active eigen-

vectors is large.

To summarize: when disjoint sets of components are to be arranged
within separate sets of positions, using probes to order the components
separately in each class is an appropriate method. However, class con
straints tend to undermine the power of probe directions spanned by low-
cost eigenvectors.

5.3. Fixed components

If each special component must occupy a predetermined position, we
could define a"class" for each one. But there is little reason to work with a
solution space in which the positions of these components vary. In this case
it makes more sense to fix the special components explicitly, and consider
the reduced problem on the remaining components. That is the approach in
this section.

We first examine the new form that the objective function takes, and
show that we can still transform to afurthest-point problem that enables us

99

to use probes. We then study features that distinguish the transformation
with fixed components from the general problem. We conclude by present

ing a variation of the given method.

5.3.1. New form of objective function and probes

Number the fixed components m+1 through n, and let x[m +l]
through x[n] be their respective positions. Assume that components 1
through m may be freely permuted among m legal positions. We now
reconsider the original expression for placement cost,

£iic«(*[i]-x[/])2,

with the aim of separating out terms that involve the fixed components.

The double sum can be broken into parts, [l] +]2] + [3], where

[1] =}£ £cy.(*[i]-*l/])2

[2] =2 t cik(x[i]-x[k])2
i=l *sm + l

[3] =i j i cu(x[k)-x[l])2 ;
«ft = m + l f = m + l

and part [2] can in turn be broken into [2.1]+ [2.2]+ [2.3], where

[2.1] =2* U3
i = l

[2.2] =£x[i](-2 2 cikx[k})
i = l

2 cik
» = m + l

* = «♦!

[2.3] = 2 x2[k)
h = m + \

2C»A
i = l

We shall treat terms [2.3] and [3] as constants, since they do not depend on

the positions of components 1through m. Define Q=[2.3]+ [3], For i=l to
m, define g[i] =(-2 ± cikx[k]). Define C, B, and D as the upper left m-

100

by-m portions of the C, B, and Dmatrices from chapter 2(2.0), respectively.
Using these definitions, we can write cost concisely as a function of the

vector xtl..m]. As in chapter 2, m=-xTCx +%xHi\(%cik); and since
«=I 1=1

da= ZtCik,
i = l

[1] +[2.1] = -xrCx +xr5x = xTBx *

Therefore, cost(x) =[11 +[2.1]+ [2.2] +[2.3]+ [3] implies

cost(x) = xrBx +xTg +Q . tf-1)

Our goal is to revise the furthest-point transformation to incorporate
the linear term in x, namely xTg. For the matrix B, we denote the eigen

vectors ur and associated eigenvalues Xr, as when the objective was a pure

quadratic form. We note first that

xTg =[2(ar(x))urT]£,
r = l

where ar(x)=xTur. If we choose some tf >Afax{Ar}, we can convert to a
maximization problem with the objective function

$a2(x)[H-\r]-ar(x)(urTg). (5-2)
r = l

We can rewrite the objective in an equivalent form,

maximize %(xTvr +zr)2 , <53)
r = l

♦Note that since dlt is the row-sum of n elements, while the rows of C have only m
elements, the row-sums of B are in general not zero. As a result, several con
venient properties of Bdo not hold for B: the least eigenvalue is not zero the com.
ponents of the associated eigenvector are not constant, and the components of other
eigenvectors do not sum to zero.

101

by defining vr =urVH=Z as before and choosing each constant zT to "com

plete the square".

Before we proceed, let us determine zr. For each r we equate the linear

terms in (5.2) and (5.3):

- ar(x)(urTg) =2(xTury/W=\r)zr\

thus

*r=-urV<2V^X). <5-4)

The advantage of the form (5.3) is that we can think of each xTvr +zr
as a coordinate of a point, xTV +zT. After the transformation from place
ments x to points xTV +zT, our objective is again to find the furthest point.

It is as easy to perform a probe in this formulation as before. Given a
probe vector d, the point with the greatest projection on d is the one that
maximizes [xTV +zT]d. Since z is aconstant vector (defined in (5.4)), zTd
does not affect the probe operation. The desired placement is determined by
filling x with the mlegal positions in the order that matches Vd.

Starting with any point, we also can iterate with probes in this setting
to produce asequence of points at increasing distance from the origin. At
each step, the probe direction dT is set to the current point, xTV +zT. The
new point is determined by the component ordering of

Vd = VVTx +Vz . <5-5>

Suppose apoint with greater projection is found. Because the projection of
the new point is greater, in the direction of the old point, magnitude can
only increase at each step until convergence.

102

5.3.2. Features of the transformation with fixed components

In the transformation to points with coordinates xTvr +zr, there is no
longer an obvious criterion to decide which dimensions are most valuable.
We can still work with low-dimensional projections of the points. We can
carry out iterated probes in stages, with the number of dimensions increas
ing from stage to stage. But which dimensions should come first?

This uncertainty is due to the form of the function (5.2). While large
numbers tf-Xr indicate potential value as before, the numbers urTg are
also factors of terms in this objective function. Because for each r, the rela
tive contribution to (5.2) from the terms associated with these two numbers
is a function of ar(x), the balance changes from one placement to another.

Thus large numbers tf-Xr and \urTg\ are both valuable, and the tra
deoff between them depends on x and r. The observation that H-\r enters
with a factor of a2 and urTg enters with a factor of ar has led us to formu
late an ad hoc heuristic for ranking the dimensions. We consider the ur's

in decreasing order of

A(H-\r)+ \urTg\ <5-6>

for some A (e.g.,^U^) chosen to represent the typical a.

Because of the new objective function, we must also rethink how to

compute H. Assume that we have a placement in hand, as is true in
iterated probes. The preceding discussion tells us that we can no longer
count on having an index set of active eigenvectors of the form {l..k}. Let K
denote the current set of indices. The obvious generalization of (3.2) is to

set

H=(2ar2(x)Xr)/(2ar2(x)). (5-7)
rlK rtK

103

The next question is how to compute (5.7) efficiently when \K\ is much
less than m. (As in chapter 3, the goal is to avoid computing and storing
inactive eigenvectors.) To efficiently compute the denominator of (5.7) is
easy. If the norm of the legal-position vector is |L|. then
y,arHx)=U¥- 2«r2(*>- For the numerator, we use

rlK riK

2ar2(x)Xr=xrBx- 2«r2(*>V Observe that from (5.1), we can obtain
rtK r«K

XTB X=COSt(x) - XTg -Q.

Because the active indices need not correspond to the smallest eigen
values, the value of Hfrom equation (5.7) may be smaller than some active
eigenvalues. This produces scale factors .A8^^ that are *******
numbers. We then have two options.

We can use vectors vr whose components are purely imaginary, as at

the end of section 3.4. Because the associated values of zT also become ima-
ginary, the iterated probe computation of Vd according to (5.5), V(V x+z),
produces areal vector result. The drawback is that monotonic improvement
in the iteration is no longer guaranteed. To see why, we analyze what must
happen for an iterative probe step to decrease the objective function:

Let A=VVT. For a step from itou;,a decrease of the objective func

tion means that

xrAx +2xrVz > wTAw +2wTVz .

The probe insures that

2u;TAx +2u;TVz > 2xrAx+2xTV2 .

Summing these two conditions, we obtain

2wTAx > xTAx + wTAw .

If we define A=u/-x, the latter condition is equivalent to AAA<0. This

104

possibility can only be ruled out if A's eigenvalues H-Xr are all nonnega-

tive.

The other option is to abandon (5.7), and select a value of H that is

greater than Xr for all rZK. For example, if k is the largest index in K, we
can set H=\k +V We have just shown that this will restore the monotonic
improvement guarantee, but it gives a less satisfactory approximation for
the missing eigenvalues. Which approach is better is an experimental ques

tion that is still open.

5.3.3. A "mixed representation" method for fixed components

The global objective of the furthest-point problem in the presence of

fixed components is to maximize

|xrV +2Tl2 = [xTV +zT][VTx +z] = xrWrx +2x7V2+2r2 . (5.8)

In the complete representation of the transformed space (in which V
includes all m eigenvectors), V2=-.5g. This can be verified from the
definition of 2 (5.4); or we can substitute -.5g for Vz in the final expression

of (5.8) and obtain the correct dependence on x in the objective function,

namely xT WTx - xTg.

According to (5.5), the basic iterated probe operation is to find the feasi

ble vector w that maximizes wTVd =wT[VVTx + Vz]. When using stages,

we increase the number of vectors in V in a sequence of steps: we work with

projections of the solution points that are progressively more accurate

representations of the complete problem.

We now describe an approach using "mixed" representations: the qua

dratic term xTVVTx goes through a sequence of stages, but the linear term

2xrV2 is complete (= -xTg) from the start. Although this approach resists

105

natural interpretations involving projections of the points xrV+*T, it has
favorable properties in both theory and practice.

Let A represent VVr in each stage. The "mixed representation" step
moves from aplacement xto the placement wthat maximizes wT(Ax-.5g).
As with probes, to prove monotonic improvement we must require that Abe
positive semidefinite. This can be insured for any choice of active eigenvec
tors, by choosing Hgreater than the largest associated eigenvalue.* We will
prove that

wTAw-wTg*x*Ax-xTg. (5.9)
PROOF: From A being positive semidefinite we have

wTAw+xTAx^2wTAx ,
and from the maximizing property of w,

2wTAx-wTgZ2xTAx-xTg .
Adding these together and canceling like terms gives (5.9).

As the number of columns in V increases, so does the likelihood that
(5.9) signifies an improvement in the true objective function. And for any
number of dimensions, the completeness of the linear term yields astronger
correspondence to the full problem than that provided by iterated probes.

In experiments on problems with fixed components, mixed iteration has
performed better than iterated probes. Convergence is much quicker, and
placements of lower cost are obtained.

Even with the improvement from mixed iteration, results applying the
furthest-point transformation to examples with fixed components have been

•Furthermore, mixed iteration in effect introduces all the terms «/« fron>.the
•Lrt soTt is less important to consider the dimensions in a special order such as
Tt V s-ibe- byTs^K Experiments have confirmed that using*"~J*
the smallest Vs works better in mixed iterate than «'th ord'nary .terated
probes; with this choice of dimensions. Ais always pos.Uve sem.defin.te.

106

less favorable (compared to traditional approaches such as pairwise inter

change) than cases without fixed components.

107

Chapter 6

6. Two-dimensional Placement

The previous chapters have dealt with the restricted placement problem
in which all y positions are equal. The possible applications of our methods
are greatly extended when we consider the original problem in its general
form, which allows n legal positions anywhere in the (x,y) plane.

In this chapter we generalize the furthest-point transformation and
associated probe techniques from one-dimensional to two-dimensional prob
lems. As one might expect, the number of required dimensions in the
transformed problem also doubles. We shall find that the function of a
probe does not change, but that significantly more computation is needed to

perform it.

In section 6.1 we present the furthest-point transformation for problems
involving (x,y) positions. Section 6.2 describes the function of probes in this
setting. In section 6.3 we show that standard algorithms for the linear
assignment problem implement the probe operation exactly; we also give a
faster technique for approximating the result of a probe. Section 6.4 treats
techniques for proving lower bounds on two-dimensional placement cost.

To simplify the development, in sections 6.1 through 6.4 we assume

that no components have specially constrained positions. Section 6.5 consid
ers extensions to constrained components in two dimensions, and to place

ments in three dimensions.

108

6.1. The furthest-point transformation

A two-dimensional placement is specified by vectors x and y, where
(x[i],y[i)) is the position of component i. Represent any placement by
adjoining vectors xand yin an n-by-2 matrix X. Let Lbe an n-by-2 matrix
whose rows are the n legal positions. We recall from section 2.1.2 that a

placement X is feasible if

X€{IIL: II is apermutation matrix} . (61)

Thus while xand yare permutations of two separate vectors (the columns of
L), the permutations applied to these vectors must be identical.

Because cost is the sum of squared connection distances, it separates

into two double sums;

ii ScyxW-xUD'+iS tctf(y[i]-vfj])2 .
2i»ij»i '»«W-i

DefiningB as in (2.0), our goal is:

minimize cost (x,y) = xTBx +yTBy . (6.2)

Using the orthonormal eigenvectors ur of Band the matrix Vwith columns
vr=urVH=K as in (2.5) and (2.6), we see that (6.2) is equivalent to

maximize 2H-cost(x,y) = |*7VP + hTV\\2 . (6-3)
TIf we transform each placement x,y into a point with n-1 coordinates x vr

and n-1 coordinates yTvn the optimal placement is mapped to the furthest

point from the origin.

Let k be the number of columns of the transformation matrix V*

•In the complete furthest-point transformation, k=n-1. As in chapters 4and 5 it
is often useful to consider projections of the points into fewer dimensions; this
effectively truncates V, giving k <n-l.

109

Rather than representing the transformed points in R2k as row vectors, it is
convenient to use 2-by-fc matrices. The transformation maps placements X

to points XTV.

When 2-by-fc matrices represent points, a corresponding notation for
squared distances is helpful. The appropriate choice is the square of the
Frobenius norm: ||Aftr2 is defined as the sum of squares of A's elements, or
equivalent^ as the trace of ATA. This allows us to condense (6.1) and (6.3):

Maximize l|Xrvtf , X€{TIL: II a permutation} (6.4)

6.2. Probes

The function of a probe is to find the feasible point with maximum pro

jection on a given direction of the search space. For placement problems
involving (x,y) positions, the search space has 2k dimensions when k eigen
vectors are active. We pick 2k probe coordinates dv.dk and ev.ek, implicitly

defining vectors d and e. The aim of a probe is to produce a feasible place

ment x,y that will

maximize ±(xTvr)dr +±iyTvr)er =xTVd+yTVe . (6.5)

Searching for the best probe d,e is equivalent to pursuing the furthest-

point objective (6.3). To prove this we apply the reasoning that led to (2.7),

with the number of dimensions doubled:

UTViF =(||xrVl2 +IlyrVl2)" = Max (xTVd+yTVe) .
ii«r TCf —1

r

For any probe, form a *-by-2 matrix D having d and e for its columns.

Writing xTVd +yTVe as trace[XTVD], we find

no

Max |XrV|F =Max [Max trace [iXTV)D]\
feasible X * feasible X[|D|F=1 >

= Max\ Max trace[XT{VD)]\ , (6.6)
|D|f=ll feasible X J

which concludes the proof.

Probes thus play as useful a role in two-dimensional placement as they

do in one-dimensional placement. But because X and VD are both /i-by-2,

performing a probe is now more complicated. Our goal is:

Find an X€ {IIL} that maximizes trace[XT(VD)] , (6.7)

for a fixed VD. Section 6.3 discusses how to attack this problem.

The probe technique for one-dimensional placement, which is based on

sorting the components of a vector, could be used to maximize x Vd or
yTVe. But a permutation that optimizes x alone or y alone will in general
be suboptimal for objective (6.7), which is the sum ofthese terms.

Although it cannot solve (6.7), the one-dimensional technique can be
used to improve two-dimensional placements. The idea is to improve ||xrV||
without altering the y vector, and to improve ||yrV|2 without altering the x
vector. For example, given a placement x,y = ml,mm, we can set d -x V
and seek a new permutation *r' that maximizes (ir'lfVd, subject to the

"y-preserving" constraint ir'm = irm.

When all components of m are distinct, no m'** satisfies this con

straint. But suppose the legal positions were given by the intersection
points of a few horizontal and vertical lines. Then it' is y-preserving so
long as it maps each component to another one on the same horizontal line.

We can conduct probes that enforce this kind of restriction by special
use of the "class" constraints introduced in section 5.2. For x probes we

divide the components into classes according to their current horizontal

Ill

lines: for y probes, according to their vertical lines. Of course, probes are
less powerful under class constraints such as these.

6.3. The (x,y) probe operation

6.3.1. Exact solution by linear assignment

We can view (x,y) probing as a special case ofthe following
"linear assignment" problem:

njobs must be assigned to npeople. The cost of assigning person i to job j
is fr. Find the permutation mthat minimizes the total cost Sft.wtf)-

Let us express (6.7) in this form. The column of II in which row i gets
a 1 is denoted m(i). (Thus X=UL means X[i]=I[w(i)].> We associate cost

fr with the assignment of component i to legal position j, where

fy=-ITU1<VD)[i].* (6'8)

Known methods to solve the linear assignment problem (e.g., the "Hun
garian" algorithm given by [Munkres57]) have 0(/i3) running time in the
worst case. The Hungarian algorithm is treated in standard texts on com

binatorial optimization, e.g. [Lawler76, Papadimitriou82]. While we can
conclude that (x,y) probing is tractable, the 0(n*) running time may be
unsatisfactory for large placement problems, especially since our methods
make such heavy use of probes.

One response to the bad news about linear assignment is to study the
expected running time of algorithms for its exact solution. For example,
[Karp80] gives an algorithm whose expected running time is Oin2\ogn), for
♦The minus sign converts the maximization problem (6.7) into aminimization prob-
lem.

112

a class of linear assignment problems with independent identically distri

buted fifs. But since this sample space is not representative of problems
with costs determined by (6.8), such an analysis is not very reassuring.

6.3.2. Restatement as Euclidean2 blue-green matching

The n-by-n cost matrices specified by (6.8), which are fully determined

by 4n numbers, constitute a highly restricted class of problem instances.

We might hope to design algorithms for problems in this class that are more

efficient than algorithms for the general linear assignment problem. To
encourage the development of such algorithms, we show that for this class of
problems, there is a simple geometric interpretation of assignment cost.

Let iHj],m\j])=LT[j] and (a[i],b[i]) = (VD)T[i] represent points in the

(x,y) plane. Then from (6.8), the total cost associated with a permutation m

equals

]£f-/[»(i)]a[i] - m[«ii)]b[i]) . (6-9)
1=1

Nothing essential changes if we double this objective and add

2[(/[ir(i)])2 +(a[i])2 + (mk(i)])2 +(Mi])2l ,

since this sum is constant for all permutations. This gives

cosUtf) = £[<7UU)]-a[i]j2 + (m[„(i))-b[i])2] . (6.10)
I sal

In other wordsi our problem is to assign n blue points (a,6) to n green

points (/,m) so that the sum of squared distances between paired points is
minimized. We refer to this class of linear assignment problem as

Euclidean2 blue-green matching.

113

6.3.3. Approximate solution to Euclidean2 blue-green matching

We have not yet found a way to compute exact solutions for Euclidean
blue-green matching problems that is faster than known algorithms for the
linear assignment problem. However, in many applications of probes,
approximate solutions are almost as useful as exact solutions. The special
form of Euclidean2 blue-green matching lends itself to fast heuristics for

good approximate solutions.

[Avis83] reviews several heuristics for a closely related problem, in
which there is no distinction between blue and green points, and the cost
function is the sum of distances. Most of these heuristics are based on
divide-and-conquer strategies. The problem region is partitioned into small
subregions; an efficient algorithm then pairs up as many points as possible
in each subregion, and a "cleanup" procedure is used to match leftover

points.

[Ajtai84] uses asimilar idea to study C„, the expected optimal cost for
problem (6.10) when nblue and ngreen points are distributed uniformly on
the unit square. They prove that Cn=9(logn), by showing that the typical
squared distance between paired points is of order {logn)/n. Their upper
bound on C„ is derived from the analysis of amatching algorithm based on
separating point sets into halves according to their positions.

Applying the separation procedure recursively, the algorithm constructs
a binary tree for the blue points. Each node of the tree corresponds to a
subset of the blue points, and the branching at each node represents aparti
tion of that subset determined by a vertical or horizontal line: the partition
direction alternates from level to level. The leaves of the tree correspond to
individual points. A separate application constructs a similar tree for the
green points. The two trees determine amatching, in which blue and green

114

points assigned to corresponding leaves are paired with each other.

For definiteness, consider the beginning levels for points ofeither color.

The first level selects avertical line such that half the points are to the left
of (or on) the line, and the other half to the right of it (or on it).* The second
level picks one horizontal line to separate the left set of points into halves,
and another horizontal line to divide the right set of points. Further levels

recursively split the point sets associated with each quadrant, until none of
the resulting sets contains more than one point.

The scheme of separate recursive partitions is illustrated in Figure 6-1.

o-o

o-o

Figure 6-1. Blue and green points are partitioned separately, then matched.

For completeness we now implement the above algorithm as a pro

cedure (TwoDimSplits) that can be used to find a permutation that approxi
mates the minimum cost (6.10). We assume the existence of the following

•Whenever n is not a power of 2, some levels must partition sets with odd numbers
of points. In these cases an arbitrary rule is applied: e.g., the left side gets one
more point than the right.

115

partitioning procedure:

{procedure Partition ((*INPUTS*) data, lo, mid, hi; (*INPUT&OUTPUT*) index);
INPUTS:
data is a real array.
lo,mid,hi are integers, with lo^mid^hi.
index is an integer array:

data[index[i]] is a valid entry ofthe data array for i €[Jo,/uJ.

OUTPUT:
The numbers in index[lo:hi] are rearranged so that
for all integers i€[/o,mid] and./€[mid+ UH, data[index[i]] £ data[index[j]].
(The indices are reordered, not the data values themselves.)

}

procedure TwoDimSplits ((*INPUTS*) x, y, lo, hi, stage;
(*INPUT&OUTPUT*) index);

{Recursive procedure to split the points (x[index[i]],y[index[i]]), i-lo..ni.
INPUTS:
x,y (real arrays): coordinates of points in the plane.
lo,hi (integers): range delimiters of portion of index array to split.
stage (integer): recursion depth. If stage is odd, split x; ifeven, split y.
index (integer array): index[i], i=lo..hi, are recursively separated, by

the values x[index[i]] or y[index[i]], in alternating stages.

OUTPUT:
Integers index are returned in the order that results from the above splits.

begin (* TwoDimSplits *)
if lo<hi then begin

mid:=l(lo + hi)/2j;
if odd(stage) then Partition (x, lo, mid, hi, index)

else Partition (y, lo, mid, hi, index);
TwoDimSplits (x, y, lo, mid, stage+1, index);
TwoDimSplits (x, y, mid +1, hi, stage +1, index);

end;(*if*)
end; (* TwoDimSplits *)

To apply TwoDimSplits to (6.10), we load the integers l..n into two
arrays, indexL[l:n] and indexA[l:n]y and execute the following code:

TwoDimSplits (1, m, 1, n, 1, indexL);
TwoDimSplits (a, b, 1, n, 1, indexA);
for i := 1 to n do 7r[indexA[i]] := indexL[i];

116

For a sample component (indexA[l]) of the resulting placement, the overall

effect is

X[indexA[l]] = L[ir(indexA[l])] = L[indexL[l]] .

We now compute T(n), the running time of TwoDimSplits on n points.

IfP(n) represents the time in acall to Partition with n points, we have the
recurrence Tin)=P(n) + 2T(n/2). Expanding, we obtain

r(n)=P(n) +2P(n/2) +4P(n/4)+ • •• (6.1D

The running time of Partition is dominated by the time needed to compute a

median element; thus P(n)=c/i, where c is a constant. Each of the logn

terms in (6.11) equals en, so the total running time of TwoDimSplits is

O(nlogn).

In summary, the assignment procedure based on TwoDimSplits is both

straightforward and fast: it is an eminently practical way to perform
"approximate" (x,y) probes. We can use this method in any probing heuris

tic, e.g., iterated probes.

While approximate probing can help us locate good placements, it does

not provide the guarantees that exact probing can. For instance, we have
no assurance that the points obtained by an iterative sequence of approxi

mate probes will consistently improve or converge. And this kind of approx
imate probe is unsuitable for lower-bound techniques. The next section
addresses the problem of how to prove lower bounds on two-dimensional

placement cost.

117

6.4. Lower bounds on two-dimensional placement cost

There is a trivial way to prove lower bounds on the cost of a two-

dimensional placement problem. Compute a lower bound Lx on the one-
dimensional placement problem obtained by ignoring the y coordinates.
Compute a lower bound Ly, ignoring the x coordinates. Then

cost(x,y)=cost(x)+cost(y)s Lx+Ly. (6.12)

Chapter 4gives a wide range of lower-bound methods for one-dimensional
placements, from "axis probes" to ProbeForHull; any of these may be substi
tuted in (6.12).

However, lower bounds of the form Lx+Ly fail to assess a charge for
the central difficulty of two-dimensional placement; namely, that x and y
cannot be permuted independently. In this section we study two lower-
bound methods that do exploit the link between x and y. These methods are
the natural generalizations to (x,y) placement of axis probes and random

probes, respectively.

6.4.1. Generalized axis probes

In two-dimensional placement, (4.1) generalizes to

2A, +1-cost(x,y) £ i(X,+1-Xr)[(xrM2 +(yr"r)2l • (613)

Thus any upper bound on the right-hand side implies a lower bound on cost.
Using the definition vr =urVZ^T» the function on the right equals

±[(xTvr)2+(yTvr)2]. (6-14)
r«l

If we had upper bounds on the contributions for each r, their sum would
upper-bound (6.14). In chapter 4, we were able to upper-bound the

118

contribution from ur by probing along the associated axis. Now there are

two such axes, and we want to upper-bound their joint contribution. For

each feasible x,y we view the projection of XTV onto the plane spanned by

the two ur axes as a point (xrur,yrur). We want to upper-bound the

squared distance from the origin to such points.

In principle it is easy to compute an upper bound within a factor of14-e

ofthe maximum squared distance for any e>0. Let <p=arctan(^e), and per

form unit-magnitude probes at intervals of 2<p radians in the plane. Then

(1 +tan2<p) times the square of the largest detected projection is an upper

bound of the desired quality.

This procedure is actually quite practical. First ofall, not many probes

are required. For instance, (4.3) showed that for e=.025, twenty probes

suffice. And in contrast to general (x,y) probes, which require 0(n) time,

probes in the ur plane can be performed in time 0(n\ogn). This is because

we can apply the probing technique for one-dimensional placement in a new

way.

In chapter 4, projections of points in J?2 were of the form (x vr,x vs):

here they are of the form (xTvr,yTvr). (Before, we sought the optimal com

bination of two eigenvectors: now we want the optimal distribution of a sin

gle eigenvector between the x and y dimensions.) Before, the permutation

it was chosen to maximize the projection (irl)T[vrdr + vsd8]: the analogous

projection is now (irl)Tdrvr + (irm)Tervr. Because here Vd is a scalar multi

ple of Ve, we can rewrite this expression as a single inner product,

(7r[drZ +erm])ri>r .

Thus the optimal permutation can be found by sorting components, as

before.

119

In summary, we can compute as tight an upper bound as desired on
each term {xTvr)2 +(yTvr)2 in (6.14), using only a constant factor more com
putation than was required to maximize (xTvr)2 in one-dimensional place-
ment.

6.4.2. Generalized random probes

Blanketing the search space with random probes is the simplest way to
derive tighter lower bounds than those provided by axis probes. When
(6.14) includes * eigenvectors, the corresponding probes lie in R2 . We
know from (4.8) that we can get <p-radian coverage of Ru using

0 Vfc(-J-)2*-
sinip

probes.

From apractical standpoint, the major problem with random (x,y) prob
ing is the 0(n3) running time needed to perform each probe using an exact
algorithm for linear assignment. Fortunately, we may be able to prove that
a certain probe is the best one in a set without computing all the probes
exactly. As with the partitioning problem in section 4.1.3.1, if we can
quickly prove that aprobe would give aresult less than another one already
found, there is no reason to proceed with the new one.

Thus we need fast ways to prove upper bounds on the result of a probe.
Many are available: the following is one of the simplest.

Max[xrV<f] + Ma.x[yTVe]*MaxlxTVd+yTVe).

We can compute the left-hand side in time O(nlogn). The fraction by which
this side overestimates the other is clearly no greater than the ratio of the
smaller to the larger term in the left-hand sum.

120

In summary, the available worst-case time bounds for random (x,y)

probing are discouraging. But clever heuristics can produce fast upper
bounds that may allow us to bypass the exact computation for many probes.
Random probe sets may thus be more manageable in practice than the

worst-case analysis would indicate.

6.5. Extensions for special components and higher dimensions

Although our treatment of (x,y) placement has thus far ignored the pos

sibility of special components, the ideas from chapter 5are easily adapted to
two-dimensional placement. In this section we briefly review how this is

accomplished.

The specification of component classes does not make (x,y) probing any
harder. We need only solve a separate linear assignment problem within

each class.

Neither do fixed components introduce new complications. The object of
a probe d,e will be to find the feasible placement x,y that maximizes a func
tion of the form xTVd +zTd +yTVe +sre. Since zTd and sTe are constant,

they have no impact on the assignment problem.

The only extra difficulty when fixed components appear in (x,y) prob
lems has to do with an aspect of special components that was already com

plicated in one-dimensional placement: which eigenvectors are most impor
tant? We can expect a heuristic ordering of the type suggested in (5.6) to
turn out differently in x and y. Consequently, an order based on some form

ofaveraging between the two dimensions is called for.

Finally, we note that with trivial modifications, the approach of this
chapter can handle three-dimensional placement problems. We add a new
column (z) to the placement matrix X, making it n-by-3. Placements still

121

transform to points XTV, which are now 3-by-*. Performing an exact probe
does not become any harder. Our goal is still to maximize trace XT(VD).
This is again equivalent to a problem of matching blue and green points to
minimize the sum of squared distances between paired points. While the z
dimension adds anew term to each entry f0- in the cost matrix, the problem

is still one of linear assignment.

122

Chapter 7

7. Experimental Results

In this chapter we present computational results using the eigenvector

transformation and probe techniques.

In section 7.1 we examine the eigenvalue distributions of B matrices

from various problem instances, and the distribution of "power" (a2) contri
buted by the associated eigenvectors in good solutions. We exhibit feasible
placements in which the spectral decomposition x=^ar(x)ur is dominated
by a few eigenvectors with the lowest cost. The availability of such place
ments is the main rationale behind methods that project the solution points

into spaces of low dimension.

Section 7.2 gives results for one-dimensional placement problems. We
use iterated probes to produce slightly better placements than are obtained
by exhaustive pairwise interchange. For these problems, previously known
lower bounds on placement cost are a factor of two or three below the costs

of the best placements produced by our algorithms. Using random probes,
we prove lower bounds that narrow the cost gap to less than 20%.

In section 7.3 we study probe techniques for two-dimensional place

ment. The TwoDimSplits heuristic of section 6.3.3 gives projections that
approximate the exact results for individual probe computations, with the
typical error decreasing as the number of components is increased. We
experiment with both iterated exact probes (computing the optimal linear
assignment for each probe in the sequence) and iterated approximate probes
(applying the heuristic for each probe). Iterated approximate probing is fas
ter than exhaustive pairwise interchange, and for large problems it yields
placements that are just as good. Iterated exact probing gives consistently

123

better placements, but it is substantially slower. We also present prelim

inary results with some real printed-circuit-board examples.

Our main test cases are randomly generated graphs. [Blanks85b]

tested examples in which each ofthe n components is connected to exactly d

others ("d-regular" graphs). For appropriately scaled VJT-by-V^ grids,

X1+X2 is an absolute lower bound on placement cost: Blanks found that for
these graphs, pairwise interchange achieves costs within a few percent of

this lower bound.

We first tested regular graphs on problems in which the nodes must be

assigned to positions spaced evenly along a line. (Appendix 1 proved that

uniform interval placement (UIP) is NP-hard for general graphs.) For d-

regular graphs with d=5, pairwise interchange produced results analogous

to those ofBlanks: i.e., placements with costs within a few percent of X^

For UIP, the regular graphs we studied enjoy the unusual property that

a single probe along ux produces a provably near-optimal placement x. We

observed that a2(x) by itself typically exceeds 98% of the total power in all

eigenvectors. While this is certainly a success story for the eigenvector

approach, the proper conclusion is that regular graphs are very special.

Real circuits are obviously not regular. A first step toward generating

more realistic examples is thus to let components have different numbers of

connections. We generated n-node graphs in which each edge appears

independently with probability d/n\ thus the expected degree ofeach node is

roughly d, but the actual number ofconnections varies from one node to the

next. We refer to this sample space of graphs as G„.«f/„. It is far more

difficult to find good placements and prove good lower bounds on placement

cost for graphs drawn from Gn.d/n than it is for regular graphs.

124

In sparse cases (e.g., G„.3/„), it is possible for the nodes to fall into
separate connected components. Usually the largest of these contains over
90% of the nodes. We restrict consideration to the nodes in the largest con

nected component, and the associated connection matrix.

For each graph, we compute all the eigenvalues and eigenvectors of B
using the IMSL FORTRAN library routine eigrs, which has a running time
of (n/22)3 seconds for n-by-n matrices on a DEC VAX 11/785. We perform

this computation once and store the eigenvectors and eigenvalues on disk
for use in our algorithms and lower-bound proofs.

For typical circuits the B matrix tends to be sparse, and it would be
significantly more efficient to use operator methods (e.g., the method of
Lanczos) to compute eigenvectors when n is large. The fundamental step in
the Lanczos method is to calculate Bx for a vector x. If the average number

of connections per component is d, this step requires approximately dn
operations. Roughly 6* steps are required. Since the number of necessary
auxiliary operations is quadratic, about (6d +c)n2 operations are needed in

all, where c is roughly 80.*

7.1. Distributions of Xr and a2

According to (2.2), placement cost in each dimension equals 2ar WK*
where the X/s are the eigenvalues of the B matrix, and each ar (x) is a

coefficient indicating the contribution of eigenvector ur to the placement. In

a sense, the distribution of Xr's sets the groundwork that defines the range

of possible costs for any set of legal positions. The extent to which eigenvec
tors with the most favorable costs in this range can contribute to legal

*[Parlett, personal communication].

125

placements is determined by the specific positions.

We first consider the distribution of eigenvalues. Some theorems on

random matrices are suggestive of what we might expect when sampling

graphs from G„,d/„. Specifically, a result of [Furedi81] applies to random
graphs Gn,P, when p is fixed as n goes to infinity. In this case, the largest
eigenvalue is approximately normally distributed with mean (n-l)p+l
and variance 2p. The other eigenvalues obey a "semi-circle" distribution

(eigenvalue density(x) proportional to Vi-(x/r)2 where r is a constant)
between -2VH? and +2V^. The probability that even one of these eigen

values has magnitude greater than 2VH£ +0(nl/3logn) tends to zero.

Several obstacles prevent us from applying these results to our situa

tion. Our graphs are finite, and the theorems apply as n goes to infinity.
More important, in the relevant family of graphs Ga.d/n, p does not stay

fixed as n increases. To extend these results to sparse graphs is a nontrivial

problem. [Boppana87] has obtained a similar bound on the magnitudes of
eigenvalues for sample spaces in which p is allowed to decrease. But it does
not apply to graphs in which the expected degree, <f, is constant, since one

of his conditions reduces to 2V5s(51og/i) .

We are free to ask what the results of [Furedi81] would imply if they

did extend to our graphs. The C matrix would have one eigenvalue near

d-rl and the rest distributed between -2V5 and +2V5. For d-regular

graphs, each eigenvalue of B=Z) -C equals d minus an eigenvalue of C. In
other words, the spectrum is reflected and shifted so that the smallest eigen
value of B equals 0, and the gaps between eigenvalues are preserved. Sup
pose (without justification) that a similar relation holds for graphs drawn
from Gn.d/n. The nonzero eigenvalues would then range between

d + l-2Vd andd + l+2Vd.

126

The above steps are mere speculation, but they provide arough idea of
what to expect from spectra of graphs drawn from G..„„. Measured eigen
value distributions for „=256 in the cases <f=32, 8. and 3are presented in
Figures 7-la, b, and c, respectively. Each plot is obtained by averaging data
from three example graphs. The ordinate of each horizontal segment
represents the number of eigenvalues observed between the abscissa values
of its endpoints. In each case the nonzero eigenvalues span asomewhat
greater range than our guess of 4V5. The distribution for d=32 is roughly
semi-circular. In the sparser cases, the distributions are increasingly
skewed toward smaller eigenvalues.

tokMml

•A MO Kfl

An- •»•* *«•»•»— **•«»

L h ^T' ^ » *7! . _ — — —- ..A UA ttl IU •io no no m« iu iu n> •AMU
U M W IU IU

Figure 7-la,b, and c. Distributions of X/s for
(left to right:) G2S6.32/W6, G^vim, and Gjse.sm*.

The success of the eigenvector approach depends on the existence of
placements whose spectral decompositions are dominated by eigenvectors
with small associated eigenvalues. To demonstrate that such placements
are available, we compare the spectral content of random legal placements
and placements found by heuristics. We consider one sample graph from
Git*, and one from G*,,,*, Each plot in Figure 7-2b and cis the aver
age of power spectra from five uniform-interval placements. The upper plots

127

espond to random placements, and the lower plots to placements found

Fraction of power k» tutors!

corr

by iterated probes.
Fraction of power in Interval

0-501

0.40

O30

O20

0.10'

0.00
' OO 2.0 iO CJO &0 10.0 12.0 14.0 16.0 18.0 20.0

value

O&O-l

O40

O30

040'

0.10

aoo

Fraction of power in interval

00 2.0 4.0 0.0 6.0 10.0 12J0 14.0 164 184 20.0
value

140

0.00

O80

0.70

aoo

0.50"1

0.40

O30

O20

0.10'

3

Fraction of power in interval

0.00
0.0 1.5 34 4.5 6.0 7.5 04 10-5 12.0

value

Figure 7-2b and c.
Power spectra of random placements (above) and good placements (below).

The plots 7-2b (at left) correspond to a graph from Gjas.oms.
The plots 7-2c (at right) correspond to agraph from G256.3/2S6.

128

The lower spectra show, at least for these graphs, that good placements

are characterized by a high concentration of power in the lowest-cost eigen

vectors. The iterated probes algorithm was not fine-tuned for these place

ments. Any decent heuristic could produce placements with spectra essen

tially indistinguishable from the ones shown, at this level of detail.

7.2. Uniform interval placement of random graphs

We consider the problem of placing nodes at uniformly-spaced positions

(UIP), for graphs drawn from G«.<f/„. Our test cases are six of the graphs for
which the distributions ofeigenvalues are plotted in Figure 7-1: three exam

ples each for d = 3 and d = 8.

7.2.1. Low-cost placements

We compare the iterated-probes approach to the pairwise-interchange

method. Using techniques suggested by [Blanks85b], a Pascal program was

written that considers every pairwise interchange of n nodes and performs

those that decrease cost (and the necessary updates) in roughly 5 seconds for

n=256. (All run times refer to the DEC VAX 11/785.) Passes are repeated

until one in which no exchange improves the cost. These examples require

an average of 45 passes (240 seconds).

APascal implementation of the iterated-probes method described in sec

tion 3.3 performs all the stages in 40 seconds. (Appendix 4gives the specific
parameters used.) The resulting average costs were lower for every exam

ple. The average improvement was 8% for d=3and 2% for d=8.

129

7.2.2. Lower bounds on cost

For each of the 6 graphs, we compare lower bounds (LB's) derived three
T 2

ways: (1) by computing Xx; (2) by summing component maxima ix vr)

obtained from axis probes; and (3) by covering a space Rk with 10,000 ran

dom probes. For this application k ranges from 5 to 10, and each probe

takes roughly 0.1 seconds. To evaluate the lower bounds, we take the cost

of the best solution produced by iterated probes ("IP") as a fixed reference.

The best lower bound is the one that most closely approaches this algo

rithmic cost. Hence our measure of tightness for LB(i) is the residual per-

centage excess: 100*(—- • - 1).

Tightness of lower bound

average(6 examples) [range]

LBU) 124% [48%,242%]

LB(2) 38% [28%, 48%]

LB(3) 17% [12%, 20%]

Joint consideration of several eigenvectors yields dramatic payoff in closing

the cost gap between lower bounds and heuristic solutions.

7.3. Two-dimensional placement

For two-dimensional placement, the utility of probing is limited by the

efficiency of algorithms for the linear assignment problem. As noted in sec

tion 6.3.1, the standard algorithm for the exact solution of this problem has

0(n*) running time in the worst case. While 40 seconds suffice to run an

entire iterated-probe sequence for a one-dimensional problem with 256 com

ponents, a single probe for a two -dimensional problem with half as many

components takes roughly 90 seconds. Since an iterated-probe sequence can

involve dozens of probes, this technique for exact probing seems impractical,

130

at least for large problems.

This is our motivation for comparing the performance of the linear

assignment algorithm with that of the much faster heuristic discussed in
section 6.3.3, which computes approximate probes. We first study the typi
cal error associated with individual probes using the approximate technique.

We then compare the performance of the exact and approximate techniques

in iterated probes.

For legal positions we use the smallest nearly-square array (e.g., 4X6,
10X12, 15X17) with enough grid points to accommodate the components.
The precise method of selecting the legal grid points is described in appen

dix 4.

We compute approximate probes using TwoDimSplits (section 6.3.3),
and exact probes using the assignment algorithm distributed by IMSL, Inc.,

as the routine asset [IMSL87].*

7.3.1. The error in approximating individual probes

We compare approximate with exact probes for two-dimensional place
ment of graphs drawn from G„.3/«, for n ranging from 24 to 64. With fewer
components, the data for approximate probes are not consistent enough to be
meaningful. For example, when n=8 the technique finds the optimal solu
tion in half the trials, but produces solutions with up to twice the optimal

cost in others. (For problems this small, the optimal assignment can be

computed quickly, anyway.)

* The method used to represent the real numbers of the cost matrix as an array
of integers for this routine is given in appendix 4.

131

We generate three graphs each for n= 24, 36, 48, and 64, and for each

graph we test 20 probes. We let V comprise the six eigenvectors with the

smallest Xr's: recall that the columns of V are given by vr =ury/H-K**

Each probe uses a random direction in R12 as a pair ofvectors d,e oflength

6, and computes a-Vd and b=Ve. The expressions (6.9) and (6.10) give

two measures for the results of a probe. If x,y is the placement obtained, we

can measure the projection %(x[i]a[i] + y[i]b[i]), which is to be maximized,
1=1

and the total squared distance %[(x[i]-a[i])2 +(y[i]-b[i])2], which is to be
1=1

minimized.

We compare the median results of 20 exact probes and 20 approximate

probes for each graph, according to both measures. For each ratio

(exact/approximate projection, and approximate/exact total squared distance)

there is a corresponding percentage error (lOOX(rario-D). Figure 7-3 plots

these percentage errors on separate curves: each data point is an average

over three graphs with the same number of components.

**As suggested in section 3.2.1, His set to the average ofall eigenvalues besides X,
through X6.

40l

35-

30-

25

20

15

10

Median percentage error in approximate probing

total squared distance (blue-to-green)

—r-

16

—i—

24

—r

32 40 48

Number of components

132

Figure 7-3.

The percentage errors in total squared distance are larger. One reason

is that the difference between 2(*[i]-a[i])2 in the approximate and exact
i=i

solutions is twice the difference between the optimal and approximate sums

£x[i]a[i]. Another reason is that the former sums tend to be smaller.
i«i

It is hard to know whether the observed errors of 5 or 10 percent in the

projections of approximate probes would seriously compromise techniques
that substitute these for exact probes. We investigate this question for one

technique in the next section. However, the results in Figure 7-3 are
encouraging. The errors seem fairly small, and they decrease as problem

size increases.

133

7.3.2. Iterated probes for the placement of random graphs

We now describe experiments with the method of iterated probes for

two-dimensional placement. As in section 7.2, we use results with exhaus

tive pairwise interchange as a standard of comparison. We test the graphs
discussed in the last section; in addition, we consider three graphs drawn

from Gn,3/n for each of the cases n=128, 256, and 512. For these larger test

problems we restrict the tests to pairwise interchange and iterated approxi
mate probes, since iterated exact probes is too time-consuming.

In experiments with pairwise interchange on one-dimensional problems,
we used random placements for our starting configurations. We justified

this decision by verifying that the use of "good" starting placements, e.g.,

derived by matching the component orderings of low-cost eigenvectors, did

not improve the results.

For two-dimensional placement, [Blanks85b] reports better results

using initial placements that attempt to minimize

£[(*[«] - ux[i])2 +(y [i] - u2[i])2] (7.D
1=1

than with random initial placements. This starting placement is what

would result from a special probe in which dx and e2 are equal, and all

other probe components are zero.

Our first experiments confirmed the results of Blanks; i.e., we found

that for two-dimensional problems, good initial placements do improve the

results obtained by pairwise interchange. This led us to design a controlled

experiment for comparing iterated probes with exhaustive pairwise inter

change. We test five methods for each graph.

The first two methods correspond to those tested by Blanks. Method A,

which serves as our baseline, runs exhaustive pairwise interchange from 20

134

randomly generated initial placements. Method B uses a single starting

placement derived to match ultu2. With n<128, we compute this place

ment using the linear assignment algorithm to minimize (7.1). For n>128

we use an approximate probe.

We then generate a set of 20 placements from probes using linear com

binations Vd,Ve, where V consists of the eigenvectors u^u^H-X,,

u2=tt2v'*f-V» and d,e are obtained from random directions in R4. (In all
cases except n>128 we use the exact method for these probes.) Each of

these 20 placements is used as an input to methods C (exhaustive pairwise

interchange), D(iterated exact probes), and E (iterated approximate probes).

Because method D is slow, we test it only for n <64.

Both iterated-probe methods use stages, as in section 3.3. For two-

dimensional placement problems, the iteration in each stage takes place in

a space with two dimensions for each active eigenvector. In the first stage,

2 eigenvectors are active. Each succeeding stage doubles the number of

active eigenvectors; the last stage is reached when this number is at least

half the number of components.

The probes in every stage continue as long as the distance of the points

from the origin increases. With iterated approximate probes, it is possible

for this distance to decrease at some steps. When such a step is encoun

tered, we reject it and terminate the stage. The placement cost at the end of

each stage is recorded, and the lowest one is taken as the output of the

sequence.

We plot the results of the experiment in Figure 7-4a. For each graph

we take the median cost of 20 trials, and each data point is the average of

the medians of three graphs with the same number of components. Since

each median is normalized with respect to method A (pairwise interchange

135

with random starts), all points for this method are assigned the value 100%.

Median cost
120

as % of baseline set (P.I., random starts) median

iterated approx. probes

100«

80

60'

40

20

iterated exact probes] "] T"

—i i i i i » • »

~0 32 64 96 128 160 192 224 256
Number of components

Figure 7-4a. Comparison of median placement costs, obtained by iterated exact probes,
iterated approximate probes, and pairwise interchange from probe starts.

For n<64, method D(iterated exact probes) gives the lowest-cost place

ments. Method C (pairwise interchange from probe starts) is only slightly

worse; it consistently produces placements that cost about 14% less than

those obtained from the same algorithm with random starts.

For n=24, 36, and 48, method E (iterated approximate probes) is essen

tially worthless. In the majority of these cases, the best placement that it

produces is no better than the placement it is given to start with. For

tunately, just as the problem size becomes too big for the linear assignment

algorithm to manage in reasonable running time (around n>64), method E

starts to become competitive. By n=256, method E is essentially as good as

method C.

136

We extended the comparison to n=512 to see if E (iterated approximate

probes) would overtake C(pairwise interchange). Ewas about 5% better in
one example, but 1% and 8% worse in the other two. The overall percen
tages (in terms of abaseline set with method A) were 93.7 for method Eand
92.4 for method C. Method E took roughly 100 seconds per trial, which was

five to six times faster than method C.

In Figure 7-4b we plot results in which the best placements from each
method are compared to the best of method A. These results are similar to
those for the medians, although the differences between the best costs of the
different methods are not as great as the differences between the medians.

Best cost as % ofbaseline set (P.I., random starts) best
120'

iterated approx. probes
harelinr i

100

80

60-

40-

20'

PX from pro^>e starts]

iterated exact.probes;.

0 32 64 96 128 160 192 224 256
Number of components

Figure 7-4b

This experiment is important for two reasons. First, by giving methods
C,D, and Eidentical starting placements, we obtain a fairer test of the rela
tive merits of these improvement heuristics than would be possible

137

otherwise. Second, we show that the eigenvector approach can contribute to

placement algorithms in two distinct ways:

1) generating initial placements, and

2) improving given placements.

In methods D and E the approach serves both these functions. In

method C, a probe is used only to generate the initial placement: this by

itself improves the results obtained by pairwise interchange.

To complete the story of this experiment, we need to describe the

results of method B: pairwise interchange from the (a1,i/2) probe. In all 21

graphs, the cost obtained from method Bwas better than the median cost in
the baseline set; however, in only 12 of the 21 graphs did it beat the best of

the 20 trials with random starts. Furthermore, the cost of this placement

was less than the best of set C (the 20 probe starts) for only one graph, and

the difference in that case was 0.3%. We conclude that while this method

for starting pairwise interchange is a good one, it offers no particular advan
tage when compared to other probes associated with low-cost eigenvectors.

This conclusion can lead to improvements of existing placement

methods. For instance, consider the methods we reviewed in section 1.2.1.3

for constructive placement by constraint relaxation. Each of these pro

cedures defines a problem with a unique relaxed solution, and works from

there to alegal placement. Our work is the first demonstration of the possi
ble advantages of exploiting whole subspaces of good relaxed placements

when searching for good legal placements.

138

7.3.3. Real circuits

It is important to test our methods on real circuits. Very few circuit

specifications have been published for use in testing placement algorithms.
[Stevens72] published the net lists for five printed circuit boards from the

ILLIAC IV. These circuits have from 67 to 151 components, in each case

including 15 1-0 pads. The components are placed on a 15-column grid,

with the pads fixed in place along the bottom.

We use the weighting function described in section 5.1 to represent the

nets. We have not yet implemented two-dimensional versions of iterated

probes that incorporate fixed components. Instead, we use iterated probes to
modify the x and y vectors in alternating stages, by applying the "class"
constraints discussed in section 6.2. We increase the number ofeigenvectors

(of the reduced B matrix described in section 5.3) from stage to stage. (See

appendix 4 for the parameters used.)

For each circuit we compare the lowest costU, y) from 20 runs of

iterated probes (using mixed iteration) with that from 20 runs of exhaustive

pairwise interchange. On average, the cost of our best placement was 3.7%
greater. To discover the source of difficulty for probe methods in placing
these circuits, we experimented briefly with variants on the legal positions.

We tried one-dimensional placement with 1-0 pads fixed at the edge, and

with pads free to move to any position. Our observations indicate that the
difficulty is due more to the constraints associated with fixed components

than the extension to real circuits and two dimensions, per se.

139

Chapter 8

8. Conclusions

In this chapter we review the main contributions of this work, and con

sider some directions for future research. We conclude by mentioning some

problems in areas other than circuit placement for which our techniques

may be useful.

8.1. Review

We began with the following circuit placement problem: given n legal

positions, n components, and an n-by-/i matrix ofconnections between com

ponents, assign the components to legal positions so that the sum of squared

connection distances is minimized. We transformed this to an equivalent

problem in which every feasible placement is represented by a point in n-1

dimensions, and the object is to find the point furthest from the origin. This

was accomplished by expressing each placement as a weighted sum of cer

tain eigenvectors, which contribute independently to placement cost.

We showed that it is possible to find the feasible point with maximum

projection on any given direction in the transformed problem space. We call
this operation a "probe". Individual probes can be used to produce good
points, and iterated probes can be used to produce sequences of points at
increasing distance from the origin. We found that a particularly effective

way to apply iterated probes is to use successive stages that project the
furthest-point problem into spaces with increasing numbers of dimensions.

This allows early stages to focus on a few of the dimensions that have the

greatest potential value.

140

We showed that methods to upper-bound the distance of the furthest

point from the origin in kdimensions, for k<n, can be used to obtain lower
bounds on placement cost that are better than those given by previous tech
niques. The upper bounds required can be proven with arbitrarily high pro
bability using 0(VX(c9)*-1) random probes, where the desired tightness of
the bound determines the constant cr We also showed that the furthest
point in a k-dimensional projection can be precisely determined by an adap
tive algorithm that requires 0(n2(*_1)) probes in the worst case.

We generalized our approach to handle fixed components. Finally, we

implemented several placement algorithms based on probes and tested them

against an exhaustive pairwise interchange heuristic on a class of randomly

generated test cases. For one-dimensional placement problems, our tech

niques were faster and produced slightly better solutions. For two-

dimensional problems, the results depended on the size of the problem. In

small cases (up to about 64 components), an exact implementation of

iterated probes produced the best results, but it was substantially slower

than pairwise interchange. In large cases (256 or more components), an

approximate iterated probes heuristic was faster than pairwise interchange

and gave equally good results. We obtained the best results for cases of

intermediate size by using probes to generate the initial placements and

pairwise interchange to improve them.

8.2. Directions for future work

Our investigation of circuit placement methods using multiple eigenvec

tors has opened several areas for future research. These include analytical

questions, experimental tests, and possible extensions ofthe methods.

141

8.2.1. Analytical questions

Having introduced a new class of algorithms and lower-bound tech

niques, we face a fundamental question: For what kinds of problems can we

expect these methods to perform well? It is not obvious how to pose this
question mathematically. We could begin by defining a quality measure for
problem instances. For an arbitrary integer k, let Q(k) represent the max

imum, over all legal placements, of the fraction of 2«r2 (squared eigenvec-
r

tor coefficients) that can be attained by the first k eigenvectors. Large

values of Q(k) signify favorable cases for our methods.

On the basis ofexperimental observations, we might conjecture that for

uniform interval placement of random d-regular graphs, the expected value

ofQ(l) converges to 1 as n goes to infinity. For other classes of connection

matrices and legal positions, we could try to prove lower bounds on the

expectation of Q(k). Another challenge is to characterize unfavorable prob

lem classes, i.e., cases in which Q(k) is very small.

The answers to such problems hinge on the probabilities that certain

regions of the eigenvector domain contain feasible solution points. More
specifically, consider all one-dimensional placement problems on n com

ponents with legal positions satisfying 2/2[i] =l: the feasible placements x

are permutations of the Z's. Let the orthonormal eigenvectors of the matrix
B defined in (2.0) be ur, and let each x be transformed into a point with n

coordinates ar(x)=xTur. For any such problem, all n\ feasible points lie on

the unit sphere. We are interested in the likelihood that one or more of
*these points lie outside various cylinders of the form 2ar ~f-

The distribution of the n\ points is determined by the closeness of the

eigenvectors ur to permutations of the legal positions; its analysis thus

142

requires an understanding ofhow the sets ofcomponents of the ur's are dis

tributed. To date very little research has been done to characterize the dis

tributions of eigenvector components that arise from natural classes of

matrices.

If we assume that the n! points are distributed uniformly on the unit

sphere, then it is easy to prove that Q(l) approaches 1 as n increases. We

follow the argument used to analyze random probe sets in chapter 4. With

high probability, a set of n\ random points on the unit sphere in Rn con

tains at least one point near any given direction d, where near can be

defined (for any 5>0) as within an angle of ^d +S) radians. Of course,

there is no reason to believe that the points from circuit placement problems

are randomly distributed.

Other questions are relevant to the analysis of algorithms we have dis

cussed. Recall from our description of iterated probes that if a probe aimed

at point p discovers that p has the maximum projection in that direction,

we call p "stable". How many points can be stable? For general furthest-

point problems, it is possible for every point to be stable (consider the ver

tices of a regular polytope). It would be interesting to estimate the number

of stable, points in problems derived from circuit placement. A related prob

lem is to estimate the maximum possible number of steps in an iterated-

probes sequence.

In section 4.3 we computed the numbers of vertices (|V|) and facets (|F|)

of convex hulls of placement polytopes in Rk: both are of order 0(n).

We showed that |V|+|F| probes suffice to map out the entire convex hull, but

also that it is sometimes possible to find the furthest vertex with far fewer

probes. Another interesting, albeit difficult problem is to analyze the

expected number of probes needed by our heuristic to find the furthest point.

143

8.2.2. Experimental tests

Most of the algorithms we discussed have been implemented. A notable

exception is procedure ProbeForHull of section 4.3. The primary application

we discussed for this procedure was to prove lower bounds on placement

cost; but because it finds points that are far from the origin, it can also be

used as a placement algorithm. The implementation of this procedure itself

involves some interesting issues in algorithm design, e.g., how to update the

convex hulls efficiently when new points are found. Once the algorithm is

implemented, we can compare its performance with techniques such as ran

dom probes for lower bounds or iterated probes for placements.

The results of tests of our techniques with random graphs have been

encouraging. Preliminary results with the ILLIAC IV boards (section 7.3.3),

which include several fixed components, were less successful. We have not

yet tested two-dimensional iterated probes on these examples. In any case,
more work is needed to assess the merits of our techniques for practical

problems with fixed components.

8.2.3. Possible extensions

The experiments in chapter 7 demonstrate that the quality of two-
dimensional placements generated with probes depends largely on the accu
racy of the algorithm used for Euclidean2 blue-green matching. Thus an
important challenge is to develop improved algorithms for this problem.
The ideal algorithm would yield the optimal solution in a running time
guaranteed to be significantly shorter than the 0(n*) associated with the
Hungarian algorithm. Even if this goal proves elusive, several alternatives

are available.

144
«

The approach in [Karp80] finds the optimal solution to arbitrary linear

assignment problems, and has an expected running time of 0(n2\ogn) when
the entries of the cost matrix are independent. The running time analysis

does not apply to our problems, but it is possible that this algorithm will

provide substantial speedup for them as well.

In iterated probes, each blue-green matching determines a new probe,

and each probe aims to maximize a new objective function. There may be

more effective ways to conduct iterations than solving for the optimal value

at every step. For example, the following procedure improves the objective

function whenever this is possible, without doing all the work needed to

optimize it.

We construct a directed graph in which each node represents a legal

position. The edge from i to j gets a cost corresponding to the effect on the

objective function of reassigning the component at position i to position j.

By itself any such move is infeasible because j is already occupied, but any

directed cycle of such moves leads to a new feasible assignment. The net

change in the objective function from such a cycle equals the sum of the

costs of the edges used. The objective function can therefore be improved if

and only if the graph has a cycle of negative total cost. Detecting a

negative-cost cycle to improve an assignment is generally much easier than

computing the optimal assignment. However, it can take 0(nz) time in the

worst case ([Lawler76]).

Many techniques besides iterated probes can be developed to find points

far from the origin in our transformed problem. For instance, suppose that

a sequence of iterated probes has converged to a stable point p. To locate a

point further from the origin, one strategy is to determine the local struc

ture of the convex hull of the feasible points. It should be possible to find

145

the facets that contain p by using adaptive probes (as in ProbeForHull) in

this neighborhood. If any of these facets contains a point of greater magni

tude than p, we could in turn map out its incident facets.

We can also consider modifying the original problem formulation to

address additional practical considerations in our framework. Appendix 5,

which suggests a way to make our cost function more sensitive to potential

routing congestion, is a first attempt.

Finally, it would be useful to develop techniques analogous to the probe

for more general placement problems. For instance, it should be possible to

handle placement problems with surplus legal positions, and one-
dimensional placement of components with different widths. The difficulty
in both these cases is that ^x2[i] is no longer constant for all feasible place

ments. In our derivation, equation (2.5) relies on this property.

8.2.4. Applications to partitioning

Although we developed probe techniques for circuit placement, they can

also be used in other applications. In particular, the case of our problem

known as graph partitioning (section 2.1.4) can arise in many situations,
e.g.t allocating computer programs to pages of memory, data files to storage
devices, or employees to offices, as well as circuit components to layout

regions.

In each situation, the number of connections between blocks of the par

tition is a natural measure of cost. To represent partitions we use vectors

whose elements are n/2 copies of each of two numbers, so that each block
corresponds to the components with the same number. Using combinations
of eigenvectors as probes for good partitions allows us to apply our methods
in a variety of problem domains.

146

Appendix 1

Proof that UIP is NP-hard

We transform any instance of "graph partition," an NP-complete deci

sion problem mentioned in section 2.1.4, into an instance of "uniform-

interval placement" (UIP). We then show that the optimal solution to the

UIP instance provides the correct answer to the original graph partition

problem. Since we can perform the problem transformation in polynomial

time, this constitutes a proof that UIP is NP-hard.

Graph partition

INSTANCE: a graph (V\£) on nodes 1 to n= |V| (n even); an integer k.

QUESTION: Is there a partition of V into disjoint sets S and T of n/2

nodes, such that no more than k edges in E run between S and T?

Transformation to UIP

We produce an instance of UIP with n + 2H + l circuit components

(which we refer to from now on as nodes), where H=-y. Nodes 1through n

correspond to the nodes in V; /i+ l through n + 2# + l are new. The sym

metric matrix C is determined by the entries cy with i^j. We set cy =0 for

all i £j except

for l<i<j<n and <ij>ZE,cij = l (\E\ "original" edges;)

for n+1 < i < n+ 2Ht cIti +1 = n12 (n3 "chain" edges;) and

for l<i2=/i, c^+h+1^5 (n "star" edges.)

Define legal positions at (-H-|,0), (-H-| +1,0), •••, (H +|,0). We

will prove that the answer to the original graph partition problem is "yes" if

and only if the optimal solution to this instance of UIP has cost(UIP) < n15

+ D-ns + (& + l)n6, where

D=(ntf-^)-(H+n+l)-«2f +(£+£ +1).

Proof:

147

rrooi: . -—-— 1

"Yes" for graph partition -» optimal cost(UIP) < n15 4- D'n5 + (fe +l)n6. 1

Place nodes n+1 through n+2H+l in order at positions (-H,0)

through (tf ,0); assign the £ nodes of S arbitrarily to the positions with

x< -H and the £ nodes of T to the positions with x>H.

The nz chain edges all have length 1; each costs n12, for a total of n15.
A dry calculation shows that the n star edges have atotal cost of Dns. We
thus need only show that the placement cost associated with the original
edges is less than (A +l)n6. By assumption S and T may be chosen so at
most k edges run between them; each of these has squared length at most
(n3 +n)2 Fewer than j£ edges are internal to S and T, and each has

squared length at most (-|)2. We thus need

(/i6+2/i4+n2) + £(£) < ik +l)n or simply
4 4

k'2n4 +k-n2+^<n6,

and this is true because we always have k £ —.

Optimal cost(UIP^ < »15 +D»s + '^»'' ^ "v^" for ^aPh Partition- '
We prove that a placement for this instance of UIP can achieve the

specified cost only, if it puts the "original" nodes at the extreme positions as
in the above configuration, and the corresponding S:T partition separates

fewer than *+l edges. First observe that nodes n+1 through n+2H +l
must be placed in sequence (in either the above order or its reverse) because
only then do all the chain edges achieve their minimum possible cost.

148

namely n12. In any other arrangement, the cost of some chain edge would
be at least 4-n12, and the total cost of the chain edges would be at least
n15 +3-/112. Given that D<n\ cost(UIP) would be greater than we assumed.

Since the new nodes must be placed in sequence with no gaps, nodes 1

through nmust occupy two blocks of consecutive positions: a at the left and
7i-a at the right. The total cost of the star edges equals

n5'[D +(2#+n+l)(a--)27. This cost is minimized when a=-|, and for
tt

any other choice ofa it would be at least n8 larger. The blocks must there

fore be balanced (a =£) if cost(UIP) is as assumed.
tt

When nodes ti +1 through n+2# +l occupy positions (-H,0) through

(Hfi) in order, our assumption about cost(UIP) implies that the cost of the

original edges is less than (& +l)n6. Since the cost of each original edge

that runs between the left and right sides is greater than n6, fewer than

fc +1 original edges can do so. Thus the UIP placement provides a "yes"

answer to the original graph partition problem, as claimed.

149

Appendix 2

"Minimum projection magnitude" is NP-hard

In section 2.4, we claimed that to minimize \xT(Vd)\ for fixed Vd is
NP-hard. We transform any instance of "set partition," an NP-complete

decision problem [Garey79, page 223], into an instance of minimum projec

tion magnitude.

Set Partition

INSTANCE: Finite set A with \A\ even, and a positive integer s(a) for each

<z€A.

QUESTION: Is there a subset A' of A such that \A '| = |A|/2 and

2 s(a) = 2 *<*)?
aiA' atA-A'

Transformation to Minimum Projection Magnitude

We produce avector / of |A| legal positions, half of which equal -1 and
half of which equal 1. (Feasible vectors are those that satisfy x€ {III} for
permutations II.) Let Vd be a vector with the numbers s(a) as components.
The minimum-projection-magnitude problem is to find a feasible x that

minimizes |xT(Vd)|.

It is easy to verify that the answer to set partition is "yes" if and only if
the solution to the minimum-projection-magnitude problem is 0.

150

Appendix 3

o ,_ ^ .256 + ln(k)Proof of (4.11): tan2<p(S) < j

The error is determined by a representative "worst-covered vector", x.

By symmetry, we can restrict our search for x to the positive orthant.
Again by symmetry, it suffices to find the worst vector in any of the k\
cones that correspond to the different orderings of the components: for
definiteness, suppose xx*xj* •••*xk>0. This cone is bounded by the
probes Pl=(l,0,...,0), P2=vy<U,0 0), p3=^(l,U,0,...,0),...,

If a nonzero vector x makes the same angle with each of k distinct

probes and x lies in the cone that these probes determine, then in the sense
of (4.9), x is the vector in the cone that is worst-covered by those probes. In

the example at hand, we solve for x by equating the quantities -^r 2 xi for
J i = l

j = 1 to k (the inner products of x with the probes), and then verify that
the solution lies in the cone. For convenience fix xL = l, so that

cos2(x,p1) =l/||jcl2, and tan2<p =lUtl2-l. Thus we have

*i = l
xx+x2 =V2

*l+*2+ •" +*A =V^'

The trivial solution is xj =rf-rf-1, so x indeed lies in the cone. We con-

elude that tan2<p= %P(j-\j-l)2.
y=2

We now show that this sum is less than j-5—, which will com
plete the proof of (4.11). For j =2 and j =3, the bound holds by inspection.

Let j>4. We use the following lemma:

LEMMA: For all,/* 2, (v7-v7rT) <40i6)-
From this lemma, we have (for j^4)

<\ — +-V - Zn(2.4) +Zn<* - .6)
1.4 2.4

.256 + Zn(fe-.6) .256 + /n(fe)
< 4 4

It remains only to prove the lemma. First observe that for j's2,

1

411-4
< .3

151

(Equality holds when j =1.8). The rest is algebra. First divide by ij-.Z)j:

1 < .3
40* ~.3)2 0-.3)j

Addl —
J-.3

1 j-.3 +40'-.3)8 0'-.3V

Take square roots:

1-
20*-.3)

<(l--r)' or

1 L 1
1- (1-—)2 <

j 20-.3)

Finally, squaring both sides and multiplying by j:

which concludes the proof of the lemma.

152

Appendix 4

Details of experiments

Iterated probes for UIP (section 7.2.1): The number of dimensions used
in the first stage ik[l]) equals \AV^. The number of dimensions is) used to
select the random starting direction for each trial is chosen uniformly at

random from integers in the range [«1]-Vgl], *[1]+V5[ia. The value of
H for the initial probe equals Xs+1. Each stage after the first uses twice as

many active dimensions as the previous one, until the number exceeds n/2.
The maximum number of iterated probe steps allowed in a stage with k

eigenvectors equals the nearest integer to 2n/k. The parameter c equals 0:
i.e., iteration continues no matter how much power in the solution is con

centrated in the current dimensions.

Choice of legal grid points (section 7.3): Let m be the number of com

ponents to be placed. (Recall that m is typically slightly less than n,

because only the nodes in the largest connected component are placed.) The

points lie in r evenly-spaced rows, where r equals [Vm]. We initialize a

first column with points in every row. Proceeding to the right, we initialize

additional columns, spaced at uniform intervals. When m is not a multiple

ofr, the rightmost column has points in the lower mmodr rows, and its top

rows are left empty.

The legal positions are normalized so that the sums of the x positions

and of the y positions equal 0, and the sums ofsquares equal 1.

The cost matrix for asset (section 7.3): The algorithm asset for linear

assignment requires an integer cost matrix; we must therefore sacrifice

some precision in representing the squared distances between blue and

green points in this matrix. We do so by multiplying the coordinates of all

153

the points by an appropriate scale factor and rounding each result to the

nearest integer before computing squared distances.

The sums of squares of legal positions in x and in y equal 1; the

corresponding sums can be slightly larger for the positions determined by

the probe. We use a scale factor of 10,000: this provides sufficient precision

for the values of n being tested, and is small enough to avoid overflow with

32-bit integers.

Mixed iteration for placement of ILLIAC IV boards (section 7.3.3): We

use the parameters described above for UIP, with two exceptions. First, the

number of dimensions used in the first stage ik[\]) equals \Vn\.

Second, the choice of H for the initial probe is more complicated. We

usually set it to the average of the n-l-s eigenvalues associated with

eigenvectors not used for that probe. But because the eigenvectors are

selected in decreasing order of \urTg\-AXr (equation (5.6)), it is possible for

this average to be less than some "active" eigenvalues. In this case H is set

to the least eigenvalue greater than all the active ones.

Finally, there is the question of what value of A to use when ranking

the eigenvectors according to (5.6). On the basis of empirical tests, we chose

A =0.13 for these circuits.

154

Appendix 5

A way to make our cost function sensitive to congestion

Congestion at the center of the placement tends to cause the most
severe routing difficulties. As stated, our cost function is insensitive to this
problem. Suppose that only two wiring tracks are available: then we can

illustrate "insensitivity" with a small example.

The connection between positions Cand Eis a serious problem: it makes the
placement infeasible, since it requires a third track. The connection
between Cand Ais no problem. But since C-A and C-E have equal length,

they are currently assigned the same cost.

To sensitize our cost function to central congestion, we would like to

make wires that cross the center more costly per unit length. An expedient

that achieves this goal is to move the legal positions in the problem

specification away from the middle. {E.g., move positions A,B,C to the left
and E,F,G to the right.) In the evaluation of any placement, connections

that traverse the center {e.g., C-E) then cost more than comparable connec

tions that do not (e.g., C-A).

Ajtai84.

155

References

M Ajtai, J. Koml6s and J. Tusnady, On optimal matchings,
Combinatorica 4, 4 (1984), 259-264.

D Avis, A survey of heuristics for the weighted matching problem.
Networks 13 U983), 475-493.

Barnes82a. , , r u
E. R. Barnes, An algorithm for partitioning the nodes of a graph,
SIAM Journal on Algebraic and Discrete Methods 3 (1982), 541-550.

Barnes82b. A , ,.
E R. Barnes and A. J. Hoffman, Partitioning, spectra and linear
programming, IBM Research Report 9511 (#42058), Aug. 1982.

BarnE8 R. Barnes, A. Vannelli and J. Q. Walker, A new Procedure for
partitioning the nodes of a graph, IBM Research Report 10561
(#47264), June 1984.

R1anks85a
J P Blanks, Use of a quadratic objective function for the placement
problem in VLSI design, Doctoral Dissertation, University ofTexas at
Austin, April 1985.

Rlanlc^fiSb
J P' Blanks, Near-optimal placement using a quadratic objective
function, in Proceedings of the 22nd Design Automation Conference,
June 1985, 609-615.

Boppana87. . .
R. Boppana, Personal communication, 198/.

CharnfyL8 Charney and D. L. Plato, Efficient partitioning of components, in
Proceedings of the 5th Annual Design Automation Workshop, July
1968, 16-1 to 16-21.

°henC8 Cheng and E. S. Kuh, Module placement based on resistive network
design, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems CAD-3, 3 (July 1984), 218-225.

T. M. Cover, Geometrical and statistical properties ofsystems of linear
inequalities with applications in J?*f**-™Wgn' IEEE
Transactions on Electronic Computers EC-14 (1965), 326-334.

C0VeT.7M. Cover, The number of linearly inducible orderings of points in d-
space, SIAM Journal ofApplied Mathematics 15, 2 (March 1967).

D°bkD* Dobkin, H. Edelsbrunner and C. K. Yap, Probing convex polytopes,
in Proceedings of the 18th ACM Symposium on Theory ofComputing,
424-432.

Dunlop85 ^d b w Kernighanj A pr0Cedure for the placement of
standard-cell VLSI circuits, IEEE Transactions on Computer-Aided
Design CAD-4, 1 (Jan. 1985), 92-98.

156

Faredi81.
Z. Faredi and J. Komlos, The eigenvalues of random symmetric
matrices, Combinatorica L 3 (1981), 233-241.

Fiduccia82.
C. M. Fiduccia and R- M. Mattheyses, A linear time heuristic for
improving network partitions, in Proceedings of the 19th Design
Automation Conference, June 1982, 175-181.

Frankle86.
J. Frankle and R. M. Karp, Circuit placements and cost bounds by
eigenvector decomposition, in Proceedings of the IEEE International
Conference on Computer-Aided Design, Nov. 1986, 414-417.

Garey76.
M. R. Garey, D. S. Johnson and L. Stockmeyer, Some simplified NP-
complete graph problems, Theoretical Computer Science 1 (1976), 237-
267.

Garey79.
M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Company, San
Francisco, 1979.

Goodman86.
J. E. Goodman and R. Pollack, Upper bounds for configurations and
polytopes in Rd, Discrete & Computational Geometry 1 (1986), 219-227.

Goto81.
S. Goto, An efficient algorithm for the two-dimensional placement
problem in electrical circuit layout, IEEE Transactions on circuits and
systems CAS-28, 1 (Jan. 1981).

Hall70.
K. M. Hall, An r-dimensional quadratic placement algorithm,
Management Science 17, 3 (Nov. 1970), 219-229.

Hanan72.
M. Hanan and J. M. Kurtzberg, A review of the placement and
quadratic assignment problems, SIAM Review 14, 2 (April 1972), 324-
342.

Hartoog86.
M. R. Hartoog, Analysis of placement procedures for VLSI standard
cell layout, in Proceedings of the 23rd Design Automation Conference,
June 1986, 314-319.

IMSL87.
IMSL, The IMSL User's Manual, IMSL, Inc., Houston, Texas, 1987.
For information about IMSL routines, phone (800)-222-4675.

Just86.
K. M. Just, J. M. Kleinhans and F. M. Johannes, On the relative
placement and the transportation problem for standard-cell layout, in
Proceedings of the 23rd Design Automation Conference, June 1986,
308-313.

Karp75.
R. M. Karp, On the computational complexity of combinatorial
problems, Networks 5 (1975), 45-68.

Karp80.
R. M. Karp, An algorithm to solve the m x n assignment problem in
expected time O (mn log n), Networks 10 (1980), 143-152.

157

Kernighan70. ,
B. W. Kernighan and S. Lin, An efficient procedure for partitioning
graphs, Bell System Technical Journal, Feb. 1970, 291-307.

Kirkpatrick83. „ , . ^ A. . x.
S. Kirkpatrick, C. D. G. Jr. and M. P. Vecchi, Optimization by
simulated annealing, Science 220, 4598 (May 13, 1983).

Lawler76.
E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt,
Rinehart, and Winston, New York, 1976.

Metropolis53.
N. Metropolis, A. W. Rosenbluth, A. H. Teller and E. Teller, Equation
of state calculations by fast computing machines, Journal of Chemical
Physics 21, 6 (June 1953), 1087-1093.

Muller59. .. .
M. E. Muller, A note on a methods for generating points uniformly'on
n-dimensional spheres, Communications of the Association for
Computing Machinery 2, 4 (1959), 19-20.

Munkres57.
J. Munkres, Algorithms for the assignment and transportation
problems, Journal of the Society for Industrial and Applied
Mathematics 5, 1 (March 1957).

Nahar85. „ A ,
S. Nahar, S. Sahni and E. Shragowitz, Experiments with simulated
annealing, in Proceedings of the 22nd Design Automation Conference,
June 1985, 748-752.

Nahar86. ,
S. Nahar, S. Sahni and E. Shragowitz, Simulated annealing and
combinatorial optimization, in Proceedings of the 23rd Design
Automation Conference, June 1986, 293-299.

Otten82. , . . ' ,. r .
R. H. J. M. Otten, Automatic floorplan design, in Proceedings of the
19th Design Automation Conference, June 1982, 261-267.

Papadimitriou82. ^ ,. . t ^ . . .
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity, Prentice-Hall, Inc., Englewood Cliffs, New
Jersey, 1982.

Parlett80.
B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1980.

Preas86. A e
B. T. Preas and P. G. Karger, Automatic placement: a review of
current techniques, in Proceedings of the 23rd Design Automation
Conference, June 1986, 622-629.

Quinn, Jr.79.
N. R. Quinn, Jr. and M. A. Breuer, A force directed component
placement procedure for printed circuit boards, IEEE Transactions on
Circuits and Systems CAS-26, 6 (June 1979), 377-388.

Rankin55. .
R. A. Rankin, The closest packing of spherical caps in n dimensions,
Glasgow Math. Association Proceedings 2 (1955), 139-144.

158

Rogers63.
C. A. Rogers, Covering a sphere with spheres, Mathematika 10 (1963),
157-164.

Sahni80. ,.
S. Sahni and A. Bhatt, The complexity of design automation problems,
in Proceedings of the 17th Design Automation Conference, 1980, 402-
411.

Schweikert72. J , _ _
D. G. Schweikert and B. W. Kernighan, A proper model for the

.partitioning of electrical circuits, in Proceedings of the 9th Design
Automation Workshop, June 1972, 56-62.

Sechen86.
C. Sechen and A. Sangiovanni-Vincentelli, Timberwolf 3.2: a new
standard-cell placement and global routing package, in Proceedings of
the 23rd Design Automation Conference, June 1986, 423-439.

Seidel86.
R. Seidel, Constructing higher-dimensional convex hulls at logarithmic
cost per face, in Proceedings of the 18th ACM Symposium on Theory of
Computing, May 1986, 404-413.

SideInikov73. , ,
V. M. SideTnikov, On the densest packing of balls on the surface of an
n-dimensional Euclidean sphere and the number of binary code vectors
with a given code distance, Soviet Math Dokl. 14, 6 (1973), 1851-1855.

Sl0ane81. , , . i j rr»r»r*
N. J. A. Sloane, Tables of sphere packings and spherical codes, IEEE
Transactions on Information Theory IT-27, 3 (May 1981), 327-338.

Soukup81.
J. Soukup, Circuit layout, Proceedings of the IEEE 69, 10 (Oct. 1981),
1281-1304.

Stevens72. , ,
J. E. Stevens, Fast heuristic techniques for placing and wiring printed
circuit boards, Doctoral Dissertation, Computer Science Department,
University of Illinois, 1972.

Ullman84.
J. D. Ullman, Computational Aspects of VLSI, Computer Science Press,
Inc., Rockville, Maryland, 1984.

	Copyright notice1987
	ERL-87-32 (1 of 2)
	ERL-87-32 (2 of 2)

