

Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

A RULE MANAGER FOR RELATIONAL

DATABASE SYSTEMS

by

M. Stonebraker, E. Hanson and S. Potamianos

Memorandum No. UCB/ERL M87/38

20 May 1987

A RULE MANAGER FOR

RELATIONAL DATABASE SYSTEMS

by

Michael Stonebraker, Eric Hanson, and Spyros Potamianos

Memorandum No. UCB/ERL M87/38

20 May 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

A RULE MANAGER FOR RELATIONAL DATABASE SYSTEMS

Michael Stonebraker, Eric Hanson and Spyros Potamianos

EECS Department
University of California

Berkeley, Ca., 94720

Abstract

This paper explains the rules subsystem that is being implemented in the
POSTGRES DBMS. It is novel in several ways. First, it gives to users the capa
bility of defining rules as well as data to a DBMS. Moreover, depending on the
scope of each rule defined, optimization is handled differently. This leads to good
performance both in the case that there are many rules each of small scope and a
few rules each of large scope. In addition, rules provide either a forward chaining
control flow or a backward chaining one, and the system will choose the control
mechanism that optimizes performance in the cases that it is possible. Further
more, priority rules can be defined, thereby allowing a user to specify rules systems
that have conflicts. This use of exceptions seems necessary in many applications.
Lastly, our rule system can provide database services such as views,protection,
integrity constraints, and referential integrity simply by applying the rules system
in a particular way. Consequently, no special purpose code need be included to
handle these tasks.

1. INTRODUCTION

There has been considerable interest in integrating data base managers and
software systems for constructing expert systems (e.g. KEE [INTE85], Prolog
[CLOC81], and OPS5 [FORG81]). Although it is possible to provide interfaces
between such rule processing systems and data base systems (e.g. [ABAR86,
CERI86]), such interfaces will only perform well if the rule system can easily iden
tify a small subset of the data to load into the working memory of the rule
manager. Such problems have been called N%partitionable'' Our interest is in a
broad class of expert systems which are not partitionable.

An example of such a system would be an automated system for trading
stocks on some securities exchange. The trading program would want to be alerted
if a variety of data base conditions were true, e.g. any stock was trading exces
sively frequently, any stock or group of stocks was going up or down excessively

This research was sponsored by the National Science Foundation under Grant DMC-
8504633 and by the Navy Electronics Systems Command under contract N00039-84-C-0039.

rapidly, etc. It is evident that the trading program does not have any locality of
reference in a large data base, and there is no subset of the data base that can be
extracted. Moreover, even if one could be identified, it would be out of date very
quickly. For such problems, rule processing and data processing must be more
closely integrated.

There are many mechanisms through which this integration can take place.
In this paper we indicate a rather complete rules system which is quite naturally
embedded in a general purpose data base manager. This next-generation system,
POSTGRES, is described elsewhere [STON86a]; hence we restrict our attention in
this paper solely to the rules component.

There are three design criteria which we strive to satisfy. First, we propose a
rule system in which conflicts (or exceptions [BORG85]) are possible. The classic
example is the rule ssall birds fly" along with the conflicting exception
**penguins are birds which do not fly'' Another example of conflicting rules is the
situation that all executives have a wood desk. However, Jones is an executive
who uses a steel desk. It is our opinion that a rule system that cannot support
exceptions is of limited utility.

The second goal of a rule system is to optimize processing of rules in two very
different situations. First, there are applications where a large number of rules
are potentially applicable at any one time, and the key performance issue is the
time required to identify which rule or rules to apply. The automated stock trader
is an example application of a rule system with a large number of rules each of
narrow scope. Here, the system must be able to identify quickly which (of perhaps
many) rules apply at a particular point in time. On the other hand, there are
applications where the amount of optimization used in the processing of exception
ally complex rules is the key performance indicator. The rule whereby one derives
the ANCESTOR relation from a base relation

PARENT (person, offspring)

is an example of this situation. Here, processing the rule in order to satisfy a user
query to the ANCESTOR relation is the key task to optimize. A general purpose
rules system must be able to perform well in both kinds of situations.

The third goal of a rules system embedded in a data manager should be to
support as many data base services as possible. Candidates services include
integrity control, referential integrity, transition constraints, and protection. As
noted in [STON82], the code needed to perform these tasks correspond to small spe
cial purpose rules systems. A robust rules system should be usable for these inter
nal purposes, and the POSTGRES rules system achieves this goal.

In Section 2 of this paper we discuss the syntax of POSTGRES rules and the
semantics desired from a rule processing engine. Then, in Section 3 we discuss two
optimization issues. First, the time at which a rule can be awakened can be
varied, and provides a valuable opportunity for performance improvement. Secon
darily, the mechanism that is used to *% fire'' rules can be used at multiple granu
larities, and will be a second optimizationm possibility. Then in Section 4 we
sketch the algorithms to be run at various times in rule processing. Lastly, Sec
tion 5 indicates how our rules system can be used to support views, protection, and
integrity control subsystems.

2. POSTGRES RULE SEMANTICS

2.1. Syntax of Rules

POSTGRES supports a query language, POSTQUEL, which borrows heavily
from its predecessor, QUEL [HELD75]. The main extensions are syntax to deal
with procedural data, extended data types, rules, versions and time. The language
is described elsewhere [STON86a, ROWE87], and here we give only one example to
motivate our rules system. The following POSTQUEL command sets the salary of
Mike to the salary of Bill using the standard EMP relation:

• replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Mike" and E.name = "Bill"

POSTGRES allows any such POSTQUEL command to be tagged with three
special modifiers which change its meaning. Such tagged commands become rules
and can be used in a variety of situations as will be presently noted.

The first tag is *v always'' which is shown below modifying the above POST
QUEL command.

always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Mike" and E.name = "'Bill"

The semantics of this rule is that the associated command should logically appear
to run forever. Hence, POSTGRES must ensure that any user who retrieves the
salary of Mike will see a. value equal to that of Bill. One implementation will be to
wake up the above command whenever Bill's salary changes so the salary altera
tion can be propagated to Mike This implementation resembles previous proposals
[ESWA76, BUNE79] to support triggers, and efficient wake-up services are a chal
lenge to the POSTGRES implementation. A second implementation will be to delay
evaluating the rule until a user requests the salary of Mike. With this implemen
tation, rules appear to utilize a form of "lazy evaluation" [BUNE82].

If a retrieve command is tagged with "always" it becomes a rule which
functions as an alerter. For example, the following command will retrieve Mike's
salary whenever it changes.

always retrieve (EMP.salary) where EMP.name = "%Mike

The second tag which can be applied to any POSTQUEL command is
"refuse". For example, the above retrieve command can be turned into this
second kind of rule as follows:

refuse retrieve (EMP.salary) where EMP.name = "Mike"

The semantics of a refuse command is that it should NEVER be run. Hence, if any
subsequent request for Mike's salary occurs, POSTGRES should refuse to access it.
More precisely, the semantics of any command with a refuse modifier is that the
indicated operation cannot be done to any tuple which satisfies the qualification.
For qualifications spanning more than one relation, the qualification is true if
values for the tuple in question are substituted into the qualification and the result
evaluates to true. Syntactically, append and delete commands do not contain a
target list when tagged with "refuse", while replace and retrieve commands con
tain only a list of attributes.

Rules with a refuse modifier are generally useful for protection purposes; for
example the following rule denies Bill access to Mike's salary.

refuse retrieve (EMP.salary) where EMP.name = "Mike"
and userO = "Bill"

In this command, userO is a POSTGRES function which returns the login name of
the user who is running the current query. Commands with a refuse modifier are
also useful for integrity control when tagged to update commands. For example,
the following rule refuses to insert employees who earn more than 30000.

refuse append to EMP where EMP.salary > 30000

One final example illustrates integrity control using a refuse modifier. The follow
ing rule disallows the deletion of a department as long as there is at least one
employee working in the department. This corresponds to one situation that arises
in referential integrity [DATE81]

refuse delete DEPT where DEPT.dname = EMP.dept

The final tag which can be applied to a POSTQUEL command is the modifier
one-time''. For example:

one-time replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Mike" and E.name = "Bill"

The semantics of this command is that it should be done exactly once when the
qualification is true. In this case, the effect is exactly the same as if the command
was submitted directly with no modifier. However, the following example shows
the utility of this kind of rule in providing so-called "one shots".

one-time retrieve (EMP.salary) where EMP.name = %*Mike
and timeO > = April 15''

This command will be run once at some time subsequent to April 15th to retrieve
Mike's salary.

There is great leverage in these three simple rule constructs. However the
semantics of always and one-time commands present a problem as explored in the
next subsection.

2.2. Semantics of Always and One-time Rules

Always and one-time rules share a common semantic problem which can be
illustrated by the following rules that provide a salary for Mike.

always replace EMP (salary = E.salary) using E in EMP
where E.name = "Fred"

and EMP.name = " *Mike''

always replace EMP (salary = E.salary) using E in EMP
where E.name = "Bill"

and EMP.name = s xMike''

There are several possible outcomes which might be desired from this collection of
commands. The first option would be to reject this set of rules because it consti
tutes an attempt to assign two different values to the salary of Mike. Moreover,
these two commands could be combined into a single POSTQUEL update, e.g.:

always replace EMP (salary = E.salary)
where EMP.name = "Mike"

and(E.name = "Bill" or E.name = "Fred")

Such updates are non-functional and are disallowed by most data base systems
(e.g INGRES [RTI85]) which detect them at run time and abort command process
ing. Hence the first semantics for always and onetime rules would be to demand
functionality and refuse to process non-functional collections.

Of course functionality is not always desirable for a collection of rules. More
over, as noted in [KUNG84], there are cases where non-functional updates should
also be allowed in normal query processing. Hence, we now turn to other possible
definitions for this rule collection.

The second definition would be to support random semantics. If both rules
were run repeatedly, the salary of Mike would cycle between the salary of Bill and
that of Fred. Whenever, it was set to one value the other rule would be run to
change it back. Hence, a retrieve command would see one salary or the other
depending on which rule had run most recently. With random semantics, the user
should see one salary or the other, and POSTGRES should ensure that no compu
tation time is wasted in looping between the values.

The third possibility would be to support union semantics for a collection of
rules. Since POSTQUEL supports columns of a relation of data type procedure,
one could define salary as a procedural field. Hence, commands in POSTQUEL
would be the value of this field and would generate the ultimate field value when
executed. In the salary field for Mike, the following two commands would appear:

retrieve (EMP.salary) where EMP.name = "Bill"
retrieve (EMP.salary) where EMP.name = "Fred"

If Mike's salary was retrieved, both Fred's salary and Bill's salary would be
returned. Hence, when multiple rules can produce values, a user should see the
union of what the rules produce if union semantics are used.

To support exceptions, one requires a final definition of the semantics of rules,
namely priority semantics. In this situation, a priority order among the rules
would be established by tagging each with a priority. Priorities are unsigned
integers in the range 0 to 15, and may optionally appear at the end of a command,
e.g:

always retrieve (EMP.salary) where EMP.name = "Mike" at priority = 7

If a priority is not specified by a user, then POSTGRES assumes a default of 0.
When more than one rule can produce a value, POSTGRES should use the rule
with highest priority. For example, suppose the priority for the *sFred'' rule is 7
and for the "Bill" rule is 5. Using priority semantics the salary of Mike should
be equal to the salary of Fred.

Since one of the goals of the POSTGRES rules systems is to support excep
tions, we choose to implement priority semantics. Hence a user can optionally
specify the relative priorities of any collection of tagged commands that he intro
duced and the highest priority rule will be used. If multiple rules have the same
priority then POSTGRES chooses to implement random semantics for conflicting
rules, and can return the result specified by any one of them.

In summary, POSTGRES will implement priority semantics and use the
highest priority rule when multiple ones apply. Moreover, if multiple rules have
the same priority, POSTGRES will use random semantics. It would have been pos
sible (in fact easy) to insist on functional semantics. However, we feel that this is
a less useful choice for rule driven applications.

Notice that collections of rules can be defined which produce a result which
depends on the order of execution of the rules. For example, consider the following
rules:

always delete EMP where EMP.salary = 1000

always replace EMP (salary = 2000)
where EMP.name = "Mike"

If Mike receives a salary adjustment from 2000 to 1000, then the delete would
remove him while the replace would change his salary back to 2000. The final out
come is clearly order sensitive. If these commands were run concurrently from an
application program, then two outcomes are possible depending on which command
happened to execute first. POSTGRES does not alter these semantics in any way.
Hence, rules are awakened in a POSTGRES determined order, and the ultimate
result may depend on the order of execution.

It is also possible for a user to define ill-formed rule systems, e.g.:

always replace EMP (salary = 1.1 * E.salary) using E in EMP
where EMP.name= "Mike"

and E.name = "Fred"

always replace EMP (salary = 1.1 * E.salary) using E in EMP
where EMP.name = "Fred"

and E.name = "Mike"

This set of rules says Fred makes 10 percent more than Mike who in turn makes
10 percent more than Fred. Clearly, these rules will never produce a salary for
either Mike or Fred. In these situations, the goal of POSTGRES is to avoid going
into an infinite loop. The algorithms we use are discusses in Sections 5 and 6.

We now turn to a discussion of the optimization tactics which POSTGRES
employs.

3. OPTIMIZATION OF RULES

3.1. Time of Awakening of Always and Once Commands

Consider the following collection of rules:

always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Mike"

and E.name = " "Bill''

always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill"

and E.name = "Fred"

Clearly Mike's salary must be set to Bill's which must be set to Fred's. If the

salary of Fred is changed, then the second rule can be awakened to change the
salary of Bill which can be followed by the first rule to alter the salary of Mike. In
this case an update to the data base awakens a collection of rules which in turn
awaken a subsequent collection. This control structure is known as forward
chaining, and we will term it early evaluation. The first option available to
POSTGRES is to perform early evaluation of rules, and a forward chaining control
flow will result.

A second option is to delay the awakening of either of the above rules until a
user requests the salary of Bill or Mike. Hence, neither rule will be run when
Fred's salary is changed. Rather, if a user requests Bill's salary, then the second
rule must be run to produce it on demand. Similarly, if Mike's salary is requested,
then the first rule is run to produce it requiring in turn the second rule to be run
to obtain needed data. This control structure is known as backward chaining,
and we will term it late evaluation. The second option available to POSTGRES is
to delay evaluation of a rule until a user requires something it will write. At this
point POSTGRES must produce the needed answer as efficiently as possible using
an algorithm to be described in Section 5, and a backward chaining control flow
will result.

Clearly, the choice of early or late evaluation has important performance
consequences. If Fred's salary is updated often and Mike's and Bill's salaries are
read infrequently, then late evaluation is appropriate. If Fred does not get fre
quent raises, then early evaluation may perform better. Moreover, response time to
a request to read Mike's salary will be very fast if early evaluation is selected,
while late evaluation will generate a considerably longer delay in producing the
desired data. Hence, response time to user commands will be faster with early
evaluation.

The choice of early or late evaluation is an optimization which POSTGRES
will make internally in all possible situations. However, there are two important
restrictions which limit the available options.

The first concerns indexing. Fields for which there are late rules cannot be
indexed, because there is no way of knowing what values to index. Hence, a secon
dary index on the salary column of EMP cannot be constructed if there are any
late rules which write salary data. On the other hand, early rules are compatible
with indexes on fields which they update.

A second restriction concerns the mixing of late and early rules. Consider, for
example, the situation where the Bill-to-Mike salary rule is evaluated early while
the Fred-to-Bill salary rule is evaluated late. A problem arises when Fred receives
a salary adjustment. The rule to propagate this adjustment on to Bill will not be
awakened until somebody proposes to read Bill's salary. On the other hand, a
request for Mike's salary will retrieve the old value because there is no way for the
Bill-to-Mike rule to know that the value of Bill's salary will be changed by a late
rule. To avoid this problem, POSTGRES must ensure that no late rules write any
data objects read by early rules.

To deal with these two restrictions, POSTGRES takes the following precau
tions. Every column of a POSTGRES relation must be tagged as "indexable" or
"non-indexable". Indexable columns cannot be written by late rules, while non-
indexable columns permit late writes. To ensure that no late rule writes data read

by an early rule, POSTGRES enforces the restriction that early reads cannot access
data from non-indexable columns. To support this, the POSTGRES parser produces
two lists of columns, those in the target list to the left of an equals sign and those
appearing elsewhere in the rule. These lists are the write-set and read-set respec
tively for a rule. If the read-set contains an indexable field, we tag the rule *%read
I". Similarly, a rule that writes an indexed field is tagged "write I". For non-
indexed fields, the corresponding tags are "read NI" and "write NI". Table 1
shows the allowable execution times for the various rule tags. The consequences of
Table 1 are that some rules are not allowable, some must be evaluated early, some
must be evaluated late, and some can be evaluated at either time. This last collec
tion can be optimized by POSTGRES. In a well designed data base we expect most
rules to read indexed fields for fast access. Hence, if they write non-indexable
fields they are optimizable.

To achieve further optimization, POSTGRES can temporarily change the time
of evaluation of any late rule to *% temporarily early'' if the rule does not read any
data written by a late rule. Similarly, an early rule can be changed to temporarily
late if it does not write an indexed field or an object read by an early rule. If at
some subsequent time these conditions become false, then the rule must revert
from its temporary status back to its permanent status.

An unfortunate consequence of Table 1 is that permanent status of all inserts
and deletes is early, since all relations will have at least one indexable field. More
over, we will make no effort in the initial implementation to support moving either
kind of command to temporarily late.

Within these constraints and considerations, POSTGRES will attempt to
optimize the early versus late decision on a rule by rule basis. Not only will a
decision be made when a rule is first inserted, but also an asynchronous demon,
REVEILLE/TAPS (Rule Evaluation Either earLy or LatE for the Trigger Applica
tion Performance System), will run in background to make decisions on which
rules should be converted temporarily or permanently from late to early execution

rule status Time of Awakening

read I write NI early or late
read NI write I not permitted
read I write I early
read NI write NI late

Time of Rule Awakening

Table 1

8

and vice-versa. The architecture of REVEILLE/TAPS is currently under investiga
tion.

3.2. Granularity of Locking for Refuse and Always Rules

POSTGRES must wake-up rules at appropriate times and perform specific pro
cessing with them. In [STON86b] we analyzed the performance of a rule indexing
structure and various structures based on physical marking (locking) of objects.
When the average number of rules that covered a particular tuple was low, locking
was preferred. Moreover, rule indexing could not be easily extended to handle
rules with join terms in the qualification. Because we expect there will be a small
number of rules which cover each tuple in practical applications, we are utilizing a
locking scheme.

When a rule is installed into the data base for either early or late evaluation,
POSTGRES is run in a special mode and sets appropriate locks at the individual
attribute level or at the tuple level. There are a total of 13 kinds of locks which
will be detailed in the next section. These locks differ from normal read and write
locks in several ways. First, normal locks are set and released at high frequency
and exist in relatively small numbers. When a crash occurs, the lock table is not
needed because recovery can be accomplished solely from the log. Hence, virtually
all systems utilize a main memory lock table for normal locks. On the other hand,
locks set by rules exist in perhaps vast numbers since POSTGRES must be
prepared to accommodate a large collection of rules. Secondly, locks are set and
reset at fairly low frequency. They are only modified when rules are inserted,
deleted, their time of evaluation is changed, or in certain other cases to be
explained. Lastly, if a crash occurs one must not lose the locks set by rules. The
consequences of losing rule locks is the requirement that they be reinstalled in the
data base and recovery time will become unacceptably long. As a result, rule locks
must persist over crashes.

Because of these differences, we are storing rule locks as normal data in
POSTGRES tuples. This placement has a variety of advantages and a few disad
vantages. First, they are automatically persistent and recoverable and space
management for a perhaps large number of locks is easily dealt with. Second,
since they are stored data, POSTGRES queries can be run to retrieve their values.
Hence, queries can be run of the form " If I update Mike's salary, what rules will
be affected?" This is valuable in providing a debugging and query environment
for expert system construction. The disadvantage of storing the locks on the data
records is that setting or resetting a lock requires writing the data page. Hence,
locks associated with rules are expensive to set and reset.

Like normal locks, there is a phantom problem to contend with. For example,
consider the rule to set Mike's salary to be the same as Bill's. If Bill is not yet an
employee, then the rule has no effect. However, when Bill is hired, the rule must
be awakened to propagate his salary. Setting locks on tuples and attributes will
not accomplish the desired effect because one can only lock actual data read or
written. To deal with phantoms, POSTGRES also sets rule locks on each index
record that is read during query processing and on a stub record'' which it
inserts in the index to denote the beginning and end of a scan. Whenever a data
record is inserted into a POSTGRES relation, appropriate index records must be

9

added to each existing secondary index. The POSTGRES run time system must
note all locks held on index records which are adjacent to any inserted secondary
index record. Not only must these locks be inherited by the corresponding data
record, but also they must be inherited by the secondary index record itself. The
above mechanism must be adjusted slightly to work correctly with hashed secon
dary indexes. In particular, a secondary index record must inherit all locks in the
same hash bucket. Hence, "adjacent" must be interpreted to mean "in the same
hash bucket". This mechanism is essentially the same one used by System R to
detect phantoms. Although cumbersome and somewhat complex, it appears to
work and no other alternative is readily available. Since POSTGRES supports
user-defined secondary indexes [STON86d], this complexity must be dealt with by
index code written by others

Locks may be set at attribute or record level granularity as noted above.
However, there are situations where lock escalation may be desirable. For exam
ple, consider the rule:

always replace EMP (salary = avg (EMP.salary where EMP.dept = "shoe''))
where EMP.name = s *Mike''

This rule will read the salaries of all shoe department employees to compute the
aggregate. Rather than setting a large number of attribute or record level locks, it
may be preferable to escalate to a relation level lock. Hence, all rule locks can
also be set at the relation level. In this case they become tuple level locks set on
the tuple in the RELATION relation which exists for the particular relation to be
locked. A lock can be set only on a column of a relation by setting a tuple level
lock on the appropriate row in the ATTRIBUTE relation.

POSTGRES will choose either fine granularity or coarse granularity as an
optimization issue. It can either escalate after it sets too many fine granularity
locks or guess at the beginning of processing based on heuristics. The current wis
dom for conventional locks is to escalate after a certain fixed number of locks have

been set [GRAY78, KOOI82]. For simplicity in the first implementation,
POSTGRES will guess one granularity for the rule in advance and set either
record or table level locks for the rule. The extension to multiple concurrent granu
larities is left as a future enhancement.

The decision on lock granularity in this new context has a crucial perfor
mance implication. In particular, one does not know what record level locks will be
observed during the processing of a query plan until specific tuples are inspected.
Hence, if late evaluation is used, one or more additional queries may be run to pro
duce values needed by the user query. Consequently, in addition to the user's
plan, N extra plans must be run which correspond to the collection of N late rules
that are encountered. These N + l queries are all optimized separately when
record level locks are used. Moreover, these plans may awaken other plans which
are also independently optimized.

On the other hand, if all locks are escalated to the relation level, the query
optimizer knows what late rules will be utilized and can generate a composite
optimized plan for the command as discussed in Section 6. This composite plan is
very similar to what is produced by query modification [STON75] and is a
simplified version of the sort of processing in [ULLM85]. It will sometimes result
in a more efficient total execution. However, setting relation level locks has an

10

important performance disadvantage. For example, if the rules noted earlier that
set Mike's and Bill's salaries are escalated to the relation level, then ALL incom
ing commands will use the rules whether or not they read Mike's or Bill's salary.
This will result in considerable wasted overhead in using rules which don't apply.
Like the decision of early versus late evaluation, the decision of lock granularity is
a complex optimization problem. Initial investigation [HONG87] suggests that
record level locking is preferred in a large variety of cases; however a more
detailed study is underway.

Unfortunately, there appears to be no way to prioritize two commands which
lock at different granularities. Hence, priorities can only be established for collec
tions of table locking rules or record locking rules.

4. SETTING LOCKS

4.1. Introduction

POSTGRES rules are supported by setting various kinds of locks as noted in
the previous section. One-time rules are the same as always rules except that
there is an automatic deletion of the rule when a successful firing takes place. The
only special case code required for one-time commands pertains to ones which have
a time clause present. For those, POSTGRES will perform an insert into a calen
dar relation and have a system demon which will wake up periodically and see if
there are rules in calendar to awaken. Consequently, we will concentrate on
always and refuse rules.

When an early rule is installed, it must set early read and early write locks
on all objects that it reads and writes respectively. Moreover, late rules must set
similar late read and late write locks. However, it will be desirable to distinguish
three different kinds of read locks for the following three situations.

Consider the rule which propagates Fred's salary on to Bill, i.e:

always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill"

and E.name = "Fred"

If this rule is evaluated early and Fred's salary changes, then this rule must be
awakened to propagate the change on to Bill. Clearly, no new objects will be read
or written because of this salary adjustment. Hence, the recalculation of Bill's
salary is the only task which must be accomplished, and no locks will change.
Fred's salary field will be marked with an Rl lock to indicate this cheapest mode of
rule wake-up.

On the other hand, suppose that Bill does not exist as an employee yet. Obvi
ously, this rule will not be able to give Bill a salary. However, at the time he is
inserted, the rule must be awakened to give him a salary. In this case, the rule
must be run but the only locks affected will be on the tuple just inserted. This
second wake-up mode is indicated by placing an R2 lock on the name of Bill.
Lastly, if Fred is not yet an employee, then clearly the rule cannot propagate a
salary on to Bill. When Fred is inserted, the rule must wake up to do the
appropriate salary modification and must also set locks on records in the data base
other than the one just updated. This third wake-up mode is indicated by placing

11

an R3 lock on the name of Fred.

As a result, always commands can set the following locks:

ER1: early read lock —cheapest wake-up
ER2: early read lock ~ more expensive wake-up
ER3: early read lock —most expensive wake-up
EW : early write lock
LR1: late read lock —cheapest wake-up
LR2: late read lock —more expensive wake-up
LR3: late read lock —most expensive wake-up
LW : late write lock

Refuse rules will set late read locks in the same way as always commands.
However, they must also set a special kind of write lock on objects they would pro
pose to change. These locks are:

RR: refuse retrieve

RA: refuse append
RD: refuse delete

RU: refuse update
RE: refuse execute

The next three subsections discusses now these 13 kinds of locks get set.

4.2. Set-up Needed

When a refuse or always command is entered by a user, the query tree for the
new rule must be decorated with a read marker or a write marker on certain

nodes. For each node which corresponds to an attribute in some relation, the
parser must place markers as follows:

read markers:

Rl: attributes on right hand side of an assignment in the target list
R2: any attribute in the qualification with the same

tuple variable as the relation being updated
R3: other attributes in qualification

write markers:

W : all attributes on left hand side of a target list assignment for always commands
RA: the relation affected for refuse append command
RD: the relation affected for refuse delete commands

RE: all attributes in the target list for refuse execute commands
RR: all attributes in the target list for refuse retrieve commands
RU: all attributes in the target list for refuse replace commands

If a field name appears more than once in the qualification then each marker must
identify the particular node in the tree that it is associated with.

Lastly, the parser must tag the rule with %*early" " late" " either'' or
return an error message according to Table 1 of the previous section.

12

4.3. Insertion of Rules

REVEILLE/TAPS will make the early/late decision for always commands with
a status of "either", and the lock granularity decision for all rules. If a complete
scan of any relation is done, table level locking will be used. Otherwise,
REVEILLE/TAPS can freely choose the granularity. Then, POSTGRES will insert
an entry into a system relation holding rules and change the decorations in the
parse tree to EW, ER1, ER2, and ER3 for early rules and LW, LR1, LR2, and LR3
for late rules. The command will now be optimized and then executed normally.
During each scan of a relation, the attributes being accessed will be identified in
the plan. Hence, a marker for each attribute along with its attribute number and
the rule identifier can be packaged into a "*lock structure'' In addition, the lock
structure must include the rule priority for write locks. If relation granularity has
been chosen, then this lock structure will be placed in the RELATION relation
tuple for this particular relation. Moreover, if early evaluation is used, then the
rule will be run to update appropriate data values. First, the negation of all the
higher priority rules must be ANDed onto the rule qualification.

If record level granularity has been selected, the lock structure will be put on
each tuple accessed in the secondary index used in the scan. Additionally, a **stub
record'' will be inserted in the index at each end of the scan giving an **end of
scan'' marker and the data value of the end of the scan. Lastly, the read locks in
the lock structure will be placed on each data tuple accessed independent of
whether it actually satisfies the qualification. In addition, the write locks in the
lock structure are placed on the data records that would actually be updated by the
rule. However, if the rule being processed is a refuse command or an always com
mand with late execution, write locks are installed but no updates of data records
are actually performed, and the insertion of the rule is now complete. If the rule is
an always command with early execution, POSTGRES must calculate the proposed
data values and place them in the data records if there is no higher priority EW
lock already on this field.

4.4. Deletion of a Rule

To delete a rule, the run-time system must execute the rule in a special mode
to find all the read and write locks set on behalf of the rule. Then, it must update
all such data and index records to remove the locks. Finally, other rules with EW
locks on fields written by the deleted rule must be awakened.

5. RECORD LEVEL LOCK PROCESSING

The execution routines in POSTGRES must perform certain actions when a
tuple is retrieved, modified, deleted, inserted or executed. These actions make use
of a common module called the "rule manager" where much of the algorithm
resides. We discuss the tuple level routines followed by the rule manager.

5.1. Tuple Processing

When a tuple is inserted, the appropriate keys must be inserted into all secon
dary indexes. These secondary index records plus the data record must inherit all
appropriate lock structures as noted in the previous section. Now the tuple with
all its proposed lock structures should be passed to the rule manager.

13

When a tuple is to be deleted, the tuple together with all its locks will be
passed to the rule manager for processing. When a collection of fields in a tuple
are retrieved or executed, the appropriate fields and their lock structures must be
passed to the rule manager.

When a tuple is modified, all the changes must be installed in the appropriate
secondary indexes and new locks must be inherited as in the case of insertions. In
addition, all lock structures that were deleted by the index deletions must be
noted. A data structure will be passed to the rule manager consisting of:

the old values of the updated fields
the locks to be deleted from the updated fields
the new values of the updated fields
the continuing locks on the updated fields
the locks to be added to the updated fields
the fields which are not being updated

5.2. The Rule Manager

The rule manager processes inserted, deleted, retrieved, executed, and
replaced tuples and returns a revised tuple or an error message to the execution
routine. For inserts and deletes, it looks at all fields. For each one with a lock, it
does the action indicated in Tables 2 and 3 below. For retrieves and executes, it
looks only at the fields retrieved or executed, and does the action indicated in the
tables below. For replaces, things are a bit more complex. It should process the
refuse replace locks first according to Table 2. Then, it should process all the con
tinuing locks on the updated fields according to the replace column in Table 3.
The last step is to process the new locks and the no longer valid locks using the
append and delete columns respectively in Table 3.

In Table 3 there are no actions to take when LR1 or LR2 locks are observed; hence
their is no row for them and they need never be set. In Tables 2 and 3, the sym
bols have the following meaning:

Refuse-Lock retrieve execute replace delete append

RR a

RE a

RU a

RD a

RA a

Actions for Refuse Locks

Table 2

14

Always-Lock retrieve execute delete append replace

EW b c

LW d d

ER1 e e f

ER2 g

ER3 or LR3 h i J

Actions for Always Locks

Table 3

a: Generate an error message for the executor if the tuple satisfies the
qualification.

b: Check if the tuple actually satisfies the rule. If not remove the EW lock. Take
the value returned by the highest priority rule and put it in the tuple. If the
highest priority rule is a delete, then remove the tuple.

c: Refuse the offered value unless it is made on behalf of the rule holding the lock
or a higher priority rule.

d: substitute the current tuple into the query plan for the rule and run the rule as
a retrieve command. Take the first returned value and plug it into the tuple as a
value, thereby implementing random semantics. For example, consider a query to
retrieve the salary of Bill and a late rule that ensures Bill's salary is the same as
that of Fred, i.e.:

always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill" and E.name = "Fred"

In this case the user read of the salary field will conflict with the LW lock from the
rule. The rule will be turned into the following retrieve command:

retrieve (salary = E.salary)
where "Bill" = "Bill" and E.name = "Fred"

The salary of the first Fred to be returned is placed in the record returned by the
rule manager.

e: All records that have an ER1 lock must have an ER3 lock elsewhere in the

tuple. In the case that a delete or insert occurs, the field having an ER3 lock will
also be deleted or inserted and the processing appropriate to that stronger lock will
have precedence.

f: Substitute the proposed tuple into the rule and run it as a normal command to
update appropriate data items.

g: Substitute the new value of the tuple into the rule and see if the rule evaluates

15

to true. If not remove the EW locks for the fields in this tuple associated with the
ER2 lock. Execute step b: to find a replacement value for the field.

h: In this case some locks may have to be deleted. Hence, substitute the values for
the current tuple into the rule, add on the qualification

and object-identifier = "*this-tuple

and execute it in "rule deletion" mode to find the locks to delete. The second
step is to reinsert locks on data items that can be found from duplicates of the
deleted data item. To perform this function, the rule should be run in *%rule inser
tion '' mode with the the following qualification appended:

and object-identifier not equal "this tuple''

For example, consider the Fred-to-Bill salary rule above and suppose that
Fred is deleted. The first step is to run the following command in rule deletion
mode:

always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill"

and "Fred" = "Fred" and E.OID = "Fred's OID"

The second step is to run the following command in rule insertion mode.

always replace EMP (salary = E.salary) using E in EMP
where EMP.name = "Bill"

And E.name = "Fred'' and E.OID != ."Fred's OID''

i: In this case some locks may have to be inserted. Hence, substitute the new tuple
into the rule and execute it in "rule insertion" mode. Place locks and data
values in records as appropriate.

j: Do both h: and i:

The transformations in i: and j: can be performed in parallel with processing
the remainder of the query as long as the rule runs with an effective command
identifier which is the same as the current command. This will ensure that the
command does not see any of the modifications performed by rule processing. The
details of why the POSTGRES storage system supports this parallelism are con
tained in [STON87a]. Alternatively, these modifications can be executed at the
conclusion of a user command by saving them in virtual memory or in a file. If the
user command writes data on a substantial number of fields holding ER3 or LR3
locks belonging to a single rule, then it may be advantageous to simply delete and
reinstall the complete rule. In the first implementation we will process
modifications synchronously at the end of a command, leaving the other options as
future optimizations.

If both read and write locks are held on a single field by different rules, then
care must be exercised concerning the order of execution. The rule manager must
construct a dependency graph to control processing order. In this graph an arc is
placed from any rule holding a LW lock on a field to all the rules holding LR1,
LR2 or LR3 locks. If this graph is a tree, then process the rules from root to leaf.

16

If the graph is not a tree, then the rules involved in the loop are probably not well
formed, and an error message will be signaled.

6. PROCESSING RELATION LEVEL LOCKS

When POSTGRES begins to process a user command which involves a relation
R, it must process all the locks held at the relation level on R. To do so, it checks
whether the proposed command is reading or writing any field on which a rule
holds a lock and uses Tables 4 and 5 to resolve the conflict: In Tables 4 and 5 the
symbols denote the following actions:

k: Add the negation of the rule qualification to the query qualification and con
tinue.

1: The action to take is a little different depending on whether the rule holding the
EW lock is an append, replace or delete command. If it is an append, then do noth
ing. If it is a delete, then AND the negation of the delete qualification to the

Refuse-Lock retrieve execute replace delete append

RR k

RE k

RU k

RD k

RA k

Table Level Refuse Locks

Table 4

Always-Lock retrieve execute delete append replace

EW 1 1 1

LW m m

ER1 n n n

ER2 n n n

ER3' n n n

Table Level Always Locks

Table 5

17

user's command. If it is a replace, then two commands must be run. The first one
results from ANDing the rule qualification onto the command and replacing
appropriate fields in the user's target list with target list entries from the rule.
The second command results from ANDing the negation of the rule qualification to
the user's command. When multiple EW locks occur, process the highest priority
one first. Then proceed iteratively with the next highest one, applying it to the
modified command for deletes and to the second command resulting from replace
rules.

m: Since only replace commands can hold LW locks, the action to take here is to
run two commands. The first results by ANDing the rule qualification to the user
retrieval and substituting the rule target list for appropriate elements of the user's
target list. The second command results from ANDing the negation of the rule
qualification onto the user command.

n: Wake up the rule after the user qualification has been ANDed onto it to refresh
its values.

When both read and write locks are held on a column of a relation by
different rules, then care must again be exercised in choosing the order of rule
evaluation. Construct a dependency graph as in the previous section and process
the rules in the appropriate order. If the graph is not a tree, signal an error.

7. DATA BASE SERVICES

7.1. Views

POSTGRES supports updatable views using procedural fields as explained in
[STON87b]. However, the rules system can be used to construct two other kinds of
views, partial views, and read-only views. A read-only view is specified by
creating a relation, say VIEW, and then defining the rule:

always retrieve into VIEW (any-target-list)
where any-qualification

This rule can be executed either early or late if all accessed fields are indexable.
Otherwise, the permanent status of the rule is late and REVEILLE/TAPS may
temporarily move it to early if no other rule performs late writes on data this rule
reads. Late evaluation leads to conventional view processing by query
modification, while early evaluation will cause the view to be physically material
ized. In this latter case, updates to the base relation will cause the materialization
to be invalidated and excessive recomputation of the whole view will be required.
In the future we hope to avoid this recomputation and instead incrementally
update the result of the procedure. The tactics of [BLAK86] are a step in this
direction.

On the other hand, partial views are relations which have a collection of real
data fields and additionally a set of fields which are expected to be supplied by
rules. Such views can be specified by as large a number of rules as needed. More
over, priorities can be used to resolve conflicts. As a result partial views can be
utilized to define relations which are impossible with a conventional view

18

mechanism. Such extended views have some of the flavor proposed in [IONN84].

Moreover, all retrieves to such relations function correctly. Updates to such
relations are processed as conventional updates which install actual data values in
their fields, as long as all the rules are evaluated late.

7.2. Integrity Control

Integrity control is readily achieved by using delete rules. For example the
following rule enforces the constraint that all employees earn more than 3000:

delete always EMP where EMP.salary < 3000

Since this is an early rule, it will be awakened whenever a user installs an over
paid employee and the processing is similar to that of current integrity control sys
tems [STON75].

Referential integrity is easily accomplished using the mechanisms we have
defined. The modes that refuse insertions and deletions can be accomplished with
refuse rules as noted in Section 2.1. The other modes can all be accomplished
using always rules.

7.3. Protection

Protection is normally specified by refuse rules which have a user() in the
qualification. The only abnormal behavior exhibited by this application of the rules
system is that the system defaults to "open access". Hence, unless a rule is
stated to the contrary, any user can freely access and update all relations.
Although a cautious approach would default to "closed access", it is our experi
ence that open access is just as reasonable.

A useful future extension would be a rule which hides data items by return
ing an incorrect value. For example, consider the following rule:

hide EMP (salary = 0)
where EMP.name = "Mike"

and userO = " *Sam

This rule should be evaluated just like a refuse rule except it must return the
value in its qualification instead of the one in the data record. This would allow
the protection system to lie to users, rather than simply allow or decline access to
objects. Such a facility allows greatly expanded capabilities over ordinary protec
tion systems.

8. CONCLUSIONS

This paper has presented a rules system with a considerable number of advan
tages. First, the rule system consists of tagged query language commands. Since
a user must learn the query language anyway, there is marginal extra complexity
to contend with. In addition, specifying rules as commands which run indefinitely
appears to be an easy paradigm to grasp. Moreover, rules may conflict and a prior
ity system can be used to specify conflict resolution.

Two different optimizations were proposed for the implementation. The first
optimization concerns the time that rules are evaluated. If they are evaluated
early, then a forward chaining control flow results, while late evaluation leads to

19

backward chaining. Response time considerations, presence or absence of indexes,
and frequency of read and write operations will be used to drive REVEILLE/TAPS
which will decide on a case by case basis whether to use early evaluation. Study of
the organization of this module is underway. In addition, the locking granularity
can be either at the tuple level or at the relation level. Tuple level locking will
optimize the situation where a large number of rules exist each with a small scope.
Finding the one or ones that actually apply from the collection that might apply is
efficiently accomplished. On the other hand, relation level locking will allow the
query optimizer to construct plans for composite queries, and more efficient global
plans will certainly result. Hence, we accomplish our objective of designing a rule
system which can be optimized for either case. Lastly, the rule system was shown
to be usable to implement integrity control, a novel protection system and to sup
port access to two different kinds of views.

However, much work remains to be done. Optimizing the updating of locks
when data items change is complex and possibly slow. Deleting and reinserting
locks should be optimized better. Moreover, the implementation is complex and
difficult to understand. Hence, a simpler implementation would be highly desir
able. In general, a mechanism to update the result of a procedure is required
rather than simply invalidating it and recomputing it. The efforts of [BLAK86]
are a start in this direction, and we expect to search for algorithms appropriate to
our environment. Moreover, it is a frustration that the rule system cannot be used
to provide view update semantics. The general idea would be to provide a rule to
specify the mapping from base relations to the view and then another rule(s) to
provide the reverse mapping. Since it is well known that non-invertible view
definitions generate situations where there is no unambiguous way to map back
ward from the view to base relations, one must require an extra semantic
definition of what this inverse mapping should be. We hope to extend our rules
system so it can be used to provide both directions of this mapping rather than
only one way. Lastly, we are searching for a clean and efficient way to eliminate
the annoying restrictions of our rule system, including the fact that priorities can
not be used with different granularity rules, and some rules are forced to a specific
time of awakening.

REFERENCES

[ABAR86] Abarbanel, R. and Williams, M., "A Relational Representa
tion for Knowledge Bases," Proc. 1st International Confer
ence on Expert Database Systems, Charleston, S.C., April
1986.

[BLAK86] Blakeley, J. et. al., "Efficiently Updating Materialized
Views," Proc. 1986 ACM-SIGMOD Conference on Manage
ment of Data, Washington, D.C., May 1986.

[BORG85] Borgida, A., "Language Features for Flexible Handling of
Exceptions in Information Systems," ACM-TODS, Dec. 1985.

[BUNE79] Buneman, P. and Clemons, E., "Efficiently Monitoring Rela
tional Data Bases," ACM-TODS, Sept. 1979.

20

[BUNE82]

[CERI86]

[CL0C81]

[DATE81]

[ESWA76]

[F0RG81]

[GRAY78]

[HELD75]

[HONG87]

[INTE85]

[IONN84]

[KOOI82]

[KUNG84]

[RTI85]

[ROWE87]

[STON75]

[STON82]

Buneman, P. et. al., "An Implementation Technique for
Database Query Languages," ACM-TODS, June 1982.

Ceri, S. et. al., "Interfacing Relational Databases and Prolog
Efficiently," Proc 1st International Conference on Expert
Database Systems, Charleston, S.C., April 1986.

Clocksin, W. and Mellish, O, "Programming in Prolog,"
Springer-Verlag, Berlin, Germany, 1981.

Date, O, "Referential Integrity," Proc. Seventh Interna
tional VLDB Conference, Cannes, France, Sept. 1981.

Eswaren, K., "Specification, Implementation and Interac
tions of a Rule Subsystem in an Integrated Database Sys
tem, '' IBM Research, San Jose, Ca., Research Report RJ1820,
August 1976.

Forgy, C, "The OPS5 User's Manual," Carneigie Mellon
Univ., Technical Report, 1981.

Gray, J., " Notes on Data Base Operating Systems,'' IBM
Research, San Jose, Ca., RJ 2254, August 1978.

Held, G. et. al., "INGRES: A Relational Data Base System,"
Proc 1975 National Computer Conference, Anaheim, Ca.,
June 1975.

Hong, C:, "An Analysis of Rule Locking Granularities,"
Master's Report, Computer Science Division, University of
California, Berkeley, Ca., 1987.

IntelliCorp, "KEE Software Development System User's
Manual," IntelliCorp, Mountain View, Ca., 1985.

Ionnidis, Y. et. al., "Enhancing INGRES with Deductive
Power," Proceedings of the 1st International Workshop on
Expert Data Base Systems, Kiowah SC, October 1984.

Kooi, R. and Frankfurth, D., "Query Optimization in
INGRES," Database Engineering, Sept. 1982.

Kung, R. et. al., "Heuristic Search in Database Systems,"
Proc. 1st International Conference on Expert Systems,
Kiowah, S.C., Oct. 1984.

Relational Technology, Inc., "INGRES Reference Manual,
Version 4.0" Alameda, Ca., November 1985.

Rowe, L. and Stonebraker, M., "The POSTGRES Data
Model," (submitted for publication).

Stonebraker, M., "Implementation of Integrity Constraints
and Views by Query Modification," Proc. 1975 ACM-
SIGMOD Conference, San Jose, Ca., May 1975.

Stonebraker, M. et. al., "A Rules System for a Relational
Data Base Management System," Proc. 2nd International
Conference on Databases, Jerusalem, Israel, June 1982.

21

[STON86a]

[STON86b]

[STON86c]

[STON86d]

[STON87a]

[STON87b]

[ULLM85]

Stonebraker, M. and Rowe, L., *%The Design of POSTGRES,"
Proc. 1986 ACM-SIGMOD Conference on Management of
Data, Washington, D.C., May 1986.

Stonebraker, M. et. al., "An Analysis of Rule Indexing
Implementations in Data Base Systems," Proc. 1st Interna
tional Conference on Expert Data Base Systems, Charleston,
S.C., April 1986.

Stonebraker, M., "Object Management in POSTGRES using
Procedures," Proc. 1986 International Workshop on Object-
oriented Database Systems, Asilomar, Ca., Sept 1986. (avail
able from IEEE)

Stonebraker, M., "Inclusion of New Types in Relational Data
Base Systems," Proc. IEEE Data Engineering Conference,
Los Angeles, Ca., Feb. 1986.

Stonebraker, M., "The POSTGRES Storage System," (sub
mitted for publication).

Stonebraker, M. et. al., "Extending a Relational Data Base
System with Procedures," ACM-TODS (to appear).

Ullman, J., "Implementation of Logical Query Languages for
Databases," ACM-TODS, Sept. 1985.

22

	Copyright notice1987
	ERL-87-38

