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Abstract

A database design for two applications that manage a semiconductor
fabrication laboratory are described: a facility management system and a
“work-in-progress” system. The database requirements generated by these
applications are discussed and a solution is proposed that uses a next-
generation database management system and an object-oriented program-
ming environment.

1. Introduc_tioh

The management and control ‘of an integrated circuit manufacturing
facility requires databases that can manage conventional business data
(e.g., accounting and inventory data) and engineering/scientific data (e.g.,
facility management data and measurement data collected during process-
ing). Conventional database management systems cannot be used for these
applications because they do not provide support for engineering/scientific
data (e.g., geometric data types and imprecise data with units). Next-
generation database systems currently being developed have been designed
to support business, engineering, and scientific data [3,6,7,14,15,21,25].
This paper describes a database design for two applications that will be
implemented on one of these next-generation systems to manage the
Microelectronics Laboratory (MICROLAB) at the University of California,
Berkeley. The development of these applications is part of a larger project
on integrated circuit computer integrated manufacturing (IC-CIM) whose
goal is to automate IC manufacturing [12].

+ This research was supported by grants from the Semiconductor Research Corp., Fair-
child Semiconductor, Harris Semiconductor, Philips/Signetics, and Siemens Corp., with a
matching grant from the State of California’s MICRO program.



Several applications have been developed to manage the MICROLAB
using a commercially available relational DBMS [30]. These applications
include: 1) a program to manage information on people authorized to use
equipment in the laboratory, 2) accounting programs to bill contracts and
grants for laboratory usage, and 3) a simple inventory control system to
track material consumed during processing. The relational database system
and associated application development tools that were used to implement
these applications (e.g., the forms-based query/update interface, the report
writer, and the embedded query language preprocessor for C) have been
very successful. However, other applications have been developed that,
although they used the DBMS, have not realized significant benefits from
storing the data in the database. These applications include: 1) a facility
management system and 2) a system to generate equipment recipes
automatically for a particular class of processing [8]. A major reason for the
lack of success was the absence of support for engineering/scientific data.

This paper describes a database design for two applications: a facility
management system and a work in progress (WIP) system. These applica-
tions were chosen for three reasons. First, they solve serious problems asso-
ciated with managing the MICROLAB. Second, analogous problems exist in
other manufacturing systems so the technology developed can be applied
elsewhere if we are successful. And third, the data managed by the applica-
tions is representative of the kinds of engineering/scientific data found in
other problem domains. The applications will provide a good test of a next-
generation database management system.

The applications will be implemented in OBJFADS [18] and the data
will be stored in POSTGRES [25]. OBJFADS is an object-oriented program-
ming environment for the development of interactive, multimedia database
applications. Applications are coded in a conventional object-oriented nota-
tion. However, part of the object hierarchy is stored in a POSTGRES data-
base so that the data and procedures can be shared by other applications
[17]1. OBJFADS provides high-level tools (e.g., windows, menus, forms, dia-
log boxes, etc.) for building graphical applications that run on a high perfor-
mance workstation with a bitmapped display and mouse. The system is
implemented in Common Lisp [23] and uses a standard window system
(“The X Window System” [9]) and object model (“The Common Lisp Object
System” (CLOS) [4]).

POSTGRES is a next-generation database system that provides several
features to support engineering/scientific applications. First, the system
allows users to define their own data types and access methods. Second, it



supports active databases (e.g., database alerters that can be used to signal
an application when a value changes in the database [5] and triggers that
can be used to spawn other database updates when a value changes [2]).
Third, POSTGRES provides support for historical data (e.g., data can be
archived to an optical disk and a query can access current data, historical
data, or current and historical data). Lastly, the system provides support
for rules [27] and data of type procedure [24] that will eventually be used in
CIM applications but are not required for the applications discussed here.

This paper describes the database design for a facility management and
WIP system application. The remainder of the paper is organized as follows.
Section 2 describes the applications. Section 3 describes an object-oriented
design model that is used to represent the database design and the data
types that will be added to POSTGRES to support these applications. Sec-
tions 4 and 5 describe the noteworthy features of the database design for the
two applications. A complete specification of the design is available from
the authors. Section 6 concludes the paper with a description of the current
status and future plans for the applications.

2. The Facility Management and WIP Applications

This section describes the two applications, the unusual data require-
ments they generate for a DBMS, and the features of POSTGRES that can
_ be used satisfy these requirements.

The facility management system maintains information on all data
representing the facility including: 1) spatial layout (e.g., the rooms, corri-
dors, and closets), 2) equipment locations (e.g., furnaces, sinks, steppers,
etc.), and 3) utility networks (e.g., electrical wiring, water pipes, and gas
lines). In addition, the application keeps track of the connections between
equipment and utility networks.

The main program in the facility management system is a “what you
see is what you get” (WYSIWYG) editor that allows laboratory personnel to
examine and update the facility data. Examples of the tasks that labora-
tory personnel must perform are: 1) find specific equipment and utility net-
works (e.g., “highlight the Tylan furnace” or “highlight the DI2 water net-
work”), 2) find connections between equipment (e.g., “highlight all equip-
ment connected to electrical circuit EC-4”), and 3) find entities within a par-
ticular area (e.g., “highlight all equipment within 6 feet of the NI gas line”).

The interface to this application must be graphical and it must be possi-
ble for people to express queries without having to write a program. More-
over, it must be easy for unsophisticated computer users to learn the
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system. The obvious solution is to develop a menu- and form-based inter-
face to a graphical editor that displays a 2-dimensional view of the labora-

tory.! Figure 1 shows a sample interface that uses a Macintosh-like inter-
face [1]. The menus (i.e., Application, Help, and Query) include opera-
tions to query and edit the facility database and to enter an on-line help
system that explains how to use the application.

The data requirements of this application require the database system
to store geometric data. Because the database for a moderately sized facility
can be quite large, the system must support access methods and query pro-
cessing strategies to implement spatial queries efficiently. Recent research
in the database community suggests that solutions exist, they just need to
be applied to a real application [11,16].

The second application is a “work in progress” (WIP) system that tracks

lots being processed in the fabrication facility.?2 This system is composed of
several applications including a WIP interpreter, a scheduler, a process-flow
editor, and a laboratory manager tool. The WIP interpreter actually runs
the laboratory. It instructs the equipment operators to execute the process-
ing steps to be performed. Or, if the equipment is connected to the system,
the WIP interpreter sends commands directly to the equipment to execute
the steps automatically. It interprets a process-flow specification that
describes how to manufacture a semiconductor. The process-flow
specification describes the sequence of physical processes that are to be per-
formed on the wafers. The interpreter also collects and stores measure-
ments collected during processing that are used to analyze and monitor the
manufacturing process and the products being produced.

The scheduler controls equipment allocation. The development of
scheduling algorithms to maximize productivity in the presence of dynami-
cally changing products, processes, and equipment is a major research topic

1 A prototype version of this program has already been developed. Laboratory person-
nel and industrial visitors have been enthusiastic about the potential usefulness of the sys-
tem.

2 A lot is the unit of processing in semiconductor fabrication. It typically contains 25
wafers that are 4 inch diameter disks. Each wafer is broken up into 200 to 400 integrated
circuits (i.e., chips). The wafers in a lot are held in a plastic carrier that is moved from sta-
tion to station to be processed by different pieces of equipment. Some equipment has been
automated to the extent that processing descriptions can be loaded into computers connect-
ed to the equipment to control processing. We call these descriptions equipment recipes.
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Figure 1: Facility editor interface.

in the semiconductor industry. This continuous, rapid change makes sem-
iconductor manufacturing a particularly hard system to automate.

Process-flow specifications are coded in a language developed at Berke-
ley, called the Berkeley Process-Flow Language (BPFL), that is a mixture of
declarative and procedural specification [20]. A program in this language is
called a process description and a statement is called a process step. The
declarative constructs describe the desired effects or goal of a processing
step (e.g., “grow 1000 angstroms of oxide”). The procedural constructs



describe how to achieve the desired goal (e.g., “put the lot in tube 2 of the
furnace and run recipe 22”). Procedures are divided into generic equipment
procedures (e.g., a furnace operation) and specific equipment procedures
(e.g., a furnace operation implemented on a Tylan furnace) so that a process
can be run on different pieces of equipment by substituting a different
equipment specific procedure. BPFL is embedded into Common Lisp to sim-
plify the implementation of the WIP interpreter and other applications that
must read and interpret process specifications (e.g., process simulators and
schedule planners)

The process-flow editor is essentially a structured editor for BPFL that
allows process designers and laboratory personnel to enter and examine pro-
cess descriptions. Figure 2 shows a sample interface to the process-flow edi-
tor. The editor interface presents different views of a process to the user
simultaneously. The example in the figure shows: 1) the declarative
specification of the CMOS-Nuwell process, called the process-flow view, in the
tool window, 2) a procedural definition, called a module definition view, in a
second window, and 3) a detailed specification of a selected goal primitive,
called the flow primitive view, in a third window. The procedure shown in
the module definition view (CMOS-init-oxide) is a generic equipment pro-
cedure that implements the grow-primitive shown in the process-flow view.
The flow primitive view displays detailed information on the selected primi-
tive. This form-based view is used to enter process-flow primitives. The edi-
tor also provides access to a library of predefined procedures that can bg
queried to define or modify a process design.

Lastly, the laboratory manager tool is used to monitor all activities in
the laboratory including lots being processed, equipment status, and process-
ing and maintenance schedules. It also allows laboratory personnel to
respond to exceptional conditions (e.g., an equipment failure or an emer-
gency) by turning equipment on or off, initiating safety procedures (e.g.,
evacuate the laboratory), rearranging processing steps, or scheduling
maintenance tasks.

All data collected and managed by the WIP applications will be stored
in the database including:

process-flow specifications,

2. measurement data,
3. scheduling data,
4. equipment logs, maintenance reports, and manuals,
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Figure 2: Process-flow editor interface.




5. the WIP log (e.g., the record of completed processing steps), and

6. WIP interpreter data (e.g., the location of all lots currently being pro-
cessed, the wafers in a lot, etc.).

This data generates several unusual database requirements. First, process-
flow specifications are essentially Common Lisp programs. As data, they
can be viewed as complex objects (e.g., each procedure is an object) with
shared subobjects (e.g., procedures are shared between different programs).
However, the binding of objects to subobjects (i.e., the particular procedure
called by a statement in another procedure) varies dynamically depending
on the availability of equipment, the variations on the process being exe-
cuted, and the process and equipment testing being conducted during
manufacturing. Consequently, the database representation for process-flow
specifications must allow these bindings to be changed dynamically without
changing the text of the specifications.

The second unusual data requirement is the need to represent approxi-
mate values (e.g., measurements plus or minus an error term) and to keep
track of the units involved (e.g., angstroms). Since computations are per-
formed on this data, the database system must also support operators that
automatically maintain error terms and that implicitly convert values to
compatible units.

The last requirement is to maintain historical data. Many problems in
semiconductor manufacturing concern changes over time (e.g., production
yield, equipment availability, the processing history of a particular wafer,
etc.) and the only way to solve them is to compare current measurements
with past measurements. Consequently, an IC-CIM database must provide
a convenient mechanism to manage historical data. Historical data may be
gathered on a regular basis or it may be gathered to investigate a transient
problem. In other words, it must be easy to turn on and off the collection of
historical data without having to change the application programs that con-
trol the laboratory. The database system must also support easily
expressed, but efficiently implemented, queries on historical data.

POSTGRES provides direct support to meet these requirements or
mechanisms that allow application developers to extend the system to meet
them. The POSTGRES data model is based on the relational model [19].
The relational model simplifies the design and maintenance of the database
and it allows complex queries to be easily expressed. Current relational sys-
tems have acceptable performance for a wide range of applications and, as
the commercial systems mature, they will compete favorably with any other



database system.

POSTGRES extends the relational model to allow developers to define
their own data types, operators, and procedures so that application-specific
data representations and algorithms can be supported in the database sys-
tem. Moreover, the developer may define application-specific access methods
(e.g., spatial access methods) so that queries on these data types can be
efficiently implemented.

Finally, the POSTGRES storage system does not overwrite data [26].
An application designer can request the system to maintain a complete his-
tory of data in a relation, data since a particular date (e.g., “July 1, 19807),
or data in the recent past (e.g., “data in the relation in the last 30 days”).
We believe that these mechanisms can be used to meet the application data
requirements discussed above.

3. Design Model

This section describes the model that we have used for our database
design and the data types that will be added to OBJFADS and POSTGRES
to support the facility management and WIP applications.

The design model is similar to the model provided by an object-oriented
programming language (OOPL) that supports multiple inheritance (e.g., the
Common Lisp Object System [4]). We chose an object-oriented model for two
reasons. First, the applications can be easily represented in an object-
oriented language. The facility management and process-flow editors mani-
pulate entities of varying types (e.g., rooms, equipment, procedures, etc.).
Using object-oriented programming, the editors can be written by creating
objects that represent the entities and associating the code with the object
definitions. An object-oriented database design seemed natural because it
closely resembles the data representation in the program. Another advan-
tage of object-oriented programming is that programs are easier to modify
which is important for IC-CIM applications because they are constantly
being changed to accommodate new manufacturing technology and products.

The second reason we chose an object-oriented design model is that it
simplifies the management of the design. The current database design has
more than 50 object types and we expect that number to grow by a factor of
10 as more applications are added to the system. An object-oriented design
will make this growth easier to manage.

The next few paragraphs describe the object-oriented design model. An
object can be thought of as a record with named slots. Each slot has a data



type and a default value. The slot data type can be a primitive type (e.g.,

integer), a structured type (e.g., array), or a reference to another object.?
The type of an object is called the object’s class. Class information (e.g., slot
definitions) is represented in another object called the class object.* A partic-

ular object is also called an instance and object slots are also called instance
variables.

Procedures that manipulate objects, called methods, take arguments of
a particular class (i.e., object type). Methods are associated with or bound to
the class of their argument objects In most OOPL implementations method
definitions are stored in the class object that represents the type of the argu-
ment object. Methods with the same name can be defined for different
classes. For example, two methods named area can be defined: one that
computes the area of a box object and one that computes the area of a circle
object. The method executed when a program makes a call on area is deter-
mined by the argument class (i.e., type). For example,

area(x)

calls the area method for box if x is a box object or the area method for circle
if it is a circle object. The selection of the method to execute is called
method determination.

Classes inherit data definitions (i.e., slots) and method definitions (i.e.,
procedures) from other classes unless a slot or method with the same name
is defined in the class. These other classes are called the superclasses of the
class being defined and it is called a subclass of the other classes. Figure 3
shows a type hierarchy (i.e., class hierarchy) that defines equipment. The
superclass of Furnace is the class Equipment so Furnace inherits all slots
and methods defined for Equipment.

Figure 4 shows class definitions for Equipment, Furnace, and Tylan.
An instance of a Tylan object inherits all slots defined for Furnace and
Equipment (i.e., Location, Picture, Date-Acquired, Number-of-Tubes, and
Max-Temperature). The only methods defined for Tylan are Compile-Recipe
and Load-Recipe because Furnace and Equipment do not have any methods.

3 Object references are represented by object identifiers (objids) that uniquely identify
each object. Given an objid, the type of the object can be determined.

4 The term class is used ambiguously to refer to an object type, the object that
represents the type (i.e., the class object), and the set of instances of an object type. In this
paper we will indicate the desired meaning in the surrounding text.
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Figure 3: Equipment class hierarchy.
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Class Equipment
Superclass Object
Instance Variables
Location
Picture
Date-Acquired
Methods

Class Furnace
Superclass Equipment
Instance Variables
Number-of-Tubes
Max-Temperature
Methods

Class Tylan
Superclass Furnace
Instance Variables
Methods
Compile-Recipe
Load-Recipe

Figure 4: Class definitions for equipment.

Slot and method definitions can be inherited from more than one super-
class. For example, the T'ylan class can inherit slots and methods that indi-
cate how to communicate with the equipment through a network connection

by including the Network-Mixin class in the list of superclasses.® Figure 5
shows the definition of Network-Mixin and the modified definition of Tylan.
With this definition, T'ylan inherits the slots named Host-Name and Device
and the methods Send-Message and Receive-Message in addition to the slots
inherited from Furnace. A name conflict arises if two superclasses define
slots or methods with the same name (e.g., Furnace and Network-Mixin
might both have a slot named Status). Name conflicts are resolved by inher-
iting the definition from the first class specified in the superclass list.

5 The use of the suffix Mixin is a naming convention that indicates that this object
defines behavior that is added to or mixed into other objects.
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Class Network-Mixin
Superclass Object
Instance Variables
Host-Name
Device
Methods
Send-Message
Receive-Message

Class Tylan
Superclass Furnace Network-Mixin
Instance Variables
Methods
Compile-Recipe
Load-Recipe

Figure 5: Multiple inheritance example.

Inheriting definitions from multiple classes is called multiple inheritance.

The design model assumes the existence of conventional data types for
slots including integer, float, boolean, date/time and arbitrary length text
strings and byte arrays. The model also assumes the existence of geometric
data types and type modifiers to support imprecise data with units.

Geometric data types are used to represent the physical and spatial pro-
perties of objects in a facility. Physical objects are specified in terms of a
base coordinate system. The data type point defines a point in a three
dimensional space. As described in the next section, objects are defined with
these data types to represent graphical objects (e.g., lines and polygons) and
application-specific objects (e.g., walls and rooms).

Most data maintained about semiconductor fabrication involves impre-
cise data. Data is imprecise because measurements are inexact or because a
design objective is stated as an approximation of what is expected in prac-
tice. Consequently, a single number is not always appropriate to represent
these values. Data types with accuracy errors (e.g., “3.05 % 0.02”) and inter-
val values (e.g., “[3.03, 3.07]") are used to represent these cases. These data
types are defined with the inexact and interval type modifiers. For exam-
ple, the definition
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Thickness: inexact integer

specifies that the Thickness slot has an inexact measurement of type integer.
Operations are defined on these imprecise values that carry through the
uncertainty or ignore it, depending on the needs of the application (e.g.,

assigning an inexact float value to an exact float slot discards the error
term).

Data collected from the fabrication facility will often be subjected to
statistical analysis. Consequently, null-value support is required. Null-
values simplify the recording and analysis of missing or unknown data so
that queries and aggregating functions can easily ignore inappropriate data.
The type modifier null specifies that the slot may contain a null value.

Another characteristic of engineering/scientific data is that most data
has an associated unit (e.g., microns, grams, meters per second, etc.) and
dimension (e.g., length, volume, weight, temperature, etc.). Applications are
easier to write if the programs can manipulate such data without having to
know the specific units involved. For example, inventory from different
storage areas can be added together to compute the total stock on hand
without having to check for and perform unit conversions if the builtin
operators do so automatically (e.g., “1 gallon + 1 quart = 1.25 gallon”).
The type modifier scaled specifies that the slot value will have an associ-
ated unit specified and that the operators on the values should perform the
required unit conversions.

An array type-constructor is provided to define structured data types.
The elements of the array have the same type. They are accessed with an
index number. For example, the definition

Vertices: array[point]
defines an array of points. Particular vertices can be referenced by
Verticesli]

which returns the i-th vertex that is a value of type point.

4. Facilities Management Data Design

This section describes the database representation for the facility
management data including: rooms, equipment, and utility networks.

A facility is represented by an instance of the class:
Facility(Name, Manager, Usage, Rating)

which has slots for the facility name, manager, the intended usage (e.g.,
RESEARCH, PRODUCTION, etc.), and rating (e.g., CLASS-100). All other

14



data about the facility is related to this object.

The facility layout uses a straightforwaré graphical representation. A
hierarchy of graphical objects is defined that includes the primitives: Line,
PolyLine, Box, and Circle. The hierarchy is shown in figure 6.

Walls and areas are used to represent rooms in the laboratory. They
are defined by the following objects:

Wall(Facility-ID, Name, End-Points)
Area(Facility-ID, Name, Center, Clean-Level)

The slot Facility-ID is an object identifier for the facility that contains this
wall or area.®

Walls and areas are given external names (e.g., “WALL-32" or
“ROOM-4") to make it easier to relate the facility layout to the actual

Line(Start-Point, End-Point)
Box(Upper-Left, Width, Height)
PolyLine(Point-Array)
Circle(Center, Radius)
Icon(BitMap)

Figure 6: Graphic class hierarchy.

§ We use the convention of appending the suffix ID to a class name to name a slot that
contains a reference to an instance in that class. The value stored is an object identifier.
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laboratory. The End-Points slot in Wall is an array of points that contain
the two end points of the wall. The Center slot in Area is a point that
specifies the center of the area. Each area in a laboratory must have a cer-
tain level of cleanliness. A value representing the required cleanliness is
stored in the slot Clean-Level.

The Wall class has two subclasses that represent different kinds of
walls: doors and windows. The Area class also has two subclasses that
represent different kinds of areas: rooms and service chases. Typically, a
service chase is located on the two opposing sides of a room to run utilities
to equipment in the room without having to run it through the room. Slots
are defined for these subclasses to represent the salient characteristics of
each object. For example, Door has a slot that indicates whether the door

has a window in it and Room has a slot to represent the safety level of the
room.

Areas and walls must be related to complete the definition of an
enclosed area. This relationship is represented by an object that maps areas
to walls:

Area-Wall-Map(Area-ID, Wall-ID»

Notice that to describe a room, several instances of Area-Wall-Map are
required (one for each wall).

Equipment in the laboratory is represented by pictures that are created
from the graphical primitives. Pictures are represented by the objects:

Picture(Name, Represents)
Picture-Element(Picture-ID, Graphic-ID, Transform)

A Picture object describes a particular picture. It has two slots: the name of
the picture (e.g., “Furnace”) and a reference to the class object for the entity
it depicts (e.g., the class object for a particular type of equipment).

The picture itself is represented by a collection of Picture-Element
objects that specify the specific graphic object (e.g., lines, bitmaps, etc.). The
Transform slot is an array that specifies a transformation of the element
(e.g., translation, scaling, or rotation). Picture is also a subclass of Graphic
so pictures can be built recursively. We plan to take advantage of a precom-
putation mechanism in POSTGRES to store a bitmap representation of the
picture in a slot in each Picture object (not shown above) so that a picture

can be fetched to display it without having to fetch all constituent elements
[24].
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A facility typically has many different utilities that must be
represented in the database (e.g., electricity, deionized water, regular water,
etc.). Each utility is represented by an instance of an object in the utility
hierarchy shown in figure 7.

A utility network is essentially an undirected graph with points that
represent equipment connections and junctions. A point in the graph with
only one edge represents a utility source or sink or an equipment connec-
tion. A point with two or more edges is a junction (e.g., a circuit box in an
electrical network). The network is represented by the following objects:

Junction(Utility-ID, Location, Picture-ID)
Connection(Source, Destination, Picture-ID)

An instance of Junction corresponds to a junction point in the graph. It has
slots to represent the utility to which it belongs, its location (i.e., a point
value), and a picture. An edge in the graph is represented by a Connection
object that has slots to represent the source and destination and an optional
picture for the connection (e.g., a pipe might be displayed as a sequence of
shaded rectangles). The source and destination objects may be junctions or
pieces of equipment..

Figure 8 show, a small example of a utility network. The junctions
(labelled “ji”) are connected to a sink and a furnace. Figure 9 shows tables
of instances that represent this example. The actual values in the tables

N

—_—

Electricity Deionized-

Water

Figure 7: Utility network class hierarchy.
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Figure 8: Utility network example.
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Junction
Flﬁlity-ID Location | Picture-ID|
DI-Source Jl
DI-Source Jj2
DI-Source Jj3
DI-Source j4
DI-Return Jjs
DI-Return Jjé
DI-Return Jj7
DI-Return Jj8

Connection
Source | Destination | Picture-ID
Jjl Jj2
Jj2 Jj3
Jj3 Jjé
: js T j6
jé Jj7
Jj7 Jj8
Jj2 sink
sink J6
J3 furnace
furnace Jj7

Figure 9: Utility example database representation.

are object identifiers. We show the name of the object as the value to make
it easier to understand the example.

A database representation for the facility data will allow laboratory
personnel to get the answers to many important question by querying the
database. Some examples are:

1. What facilities have a plasma etcher?

2. What equipment is connected to electrical circuit “EC-4"?
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3. What equipment is within 10 feet of the furnace in “ROOM-2"?

The query language must support transitive closure queries to solve the
second question and the database system must support spatial access
methods to solve the third question efficiently. The POSTGRES query
language supports transitive closure queries and we plan to implement a

spatial access method and add it to the system as a user-defined access
method.

5. WIP System Data Design

This section describes the software architecture and database design for
the WIP system applications including: process-flow specifications, state
information for the WIP interpreter, and equipment status and scheduling
data. At the end of the section, questions that can be easily answered by
querying the database created by the WIP system are discussed.

The description of the WIP system is presented as though there was a
single centralized database, and the WIP interpreter is presented as though
there was a separate interpreter for each lot that is being processed (i.e., an
interpreter per lot). While our initial implementation will have this archi-
tecture, we realize that many fabrication facilities require more concurrent
users and higher WIP thruput than a centralized database and interpreter
per lot architecture can achieve. Solutions to these problems already exist
that we will use if and when we need better performance. The solution to
the centralized database problem is to use a distributed database system
that allows data to be distributed to different computers but still provides a
centralized database view. In other words, applications can be written
without having to know where the data is stored. Distributed database
technology is well-understood and commercial products have recently
become available [10,22,29].

The solution to the interpreter per lot problem is to have a single inter-
preter control many lots. This software architecture, called an application
server architecture, is commonly used in high transaction rate on-line sys-
tems [13,28]. A “mini-operating system” is written to run in the application
program that manages resources and multiplexes between several applica-
tion tasks. In the WIP interpreter, an active lot (i.e., a lot currently being

processed) corresponds to a task or process in a conventional operating sys-
tem.

The application server architecture works well for applications that
require transaction rates that can be achieved on a large, centralized com-
puter. However, many factories will require much higher transaction rates.
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The solution to this problem is to run several application servers at the
same time (i.e., distributed application servers). In this architecture, the
WIP interpreters can be located on a larger shared computer or distributed
to computers at each work cell (i.e., operator workstation or equipment con-
trol computer). The two alternatives are shown in figure 10. In a central-
ized WIP interpreter, commands are sent to the cell computer to execute
processing steps on a lot. Commands are sent to a different computer when
the lot is moved to another cell. In a distributed WIP interpreter, the
process-flow program is passed from one interpreter to another when the lot
is moved [31]. We chose a centralized WIP interpreter architecture because
the transaction rates in the MICROLAB are low and it simplifies the imple-
mentation. The database design changes required to implement a distri-
buted WIP interpreter are relatively straightforward.

The remainder of the section describes the database design and ques-
tions that can be asked of the database.

5.1. Process-Flow Program Representation

Process-flow programs are essentially Common Lisp (CL) programs. CL
programs are represented as lists of function calls which are themselves

represented as lists.” For example, the function call “f(x,y)” is represented in
CL as '

fxy)
A function call is also called a symbolic expression or s-expression (s-exp).

The class hierarchy for BPFL procedures is shown in figure 11. Slots
are defined to represent the procedure Name, Version, and Owner (i.e., the
person who created the procedure). The Body slot is a text data type that
contains the procedure body. The body is represented by a Lisp lambda
expression which specifies the formal arguments to the procedure and the
sequence of s-expressions that constitute the code of the procedure. Subc-
lasses of BPFL-Proc are defined for each procedure type: flow, generic equip-
ment, and specific equipment. Notice that slots are only defined on BPFL-
Proc and that they are inherited by the subclasses.

7 A list is the primary data structure that Lisp programs manipulate. Consequently,
program representations are the same as data representations. This ability to treat pro-
grams as data is one benefit of using Lisp as the host language for BPFL.
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Figure 10: Centralized versus distributed WIP interpreter.
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BPFL-pree

BPFL-flow-proc BPflL-goneric-proc BPFL-specific-proc

BPFL-Proc(Name, Version, Owner, Body)

Figure 11: BPFL procedure class hierarchy.

The WIP interpreter keeps track of the currently executing statement
(i.e., s-expression) in a BPFL-Proc. In addition, it must have access to a
symbol table of local variables declared in each procedure. The current s-
expression is ehcoded as a list of integers that identify a particular function
call in the procedure. For example, given the list

((s1) (s2) ((s3) (s4)) ...)

a reference to the s-expression containing s4 is represented by
(3 2)

because it is the 2-nd element in the 3-rd element of the list.

The symbol table is represented by a class that maps a procedure
identifier and variable name to a unique identifier. The class definition is

Symbol-Table-Entry (BPFL-Proc-ID, Variable-Name, Variable-Type)

The interpreter uses the objid for an instance of a Symbol-Table-Entry to
access the current value of the variable in the data structures maintained
by the WIP interpreter.

The term process has different meanings to the different people
involved in IC manufacturing. To the production manager, it means a com-
plete process to manufacture chips. To a process designer, it means a com-
plete process or a step in a process. Process design engineers typically
develop steps for a particular piece of equipment (e.g., LPCVD furnace
operations) or complete process designs. Engineers want access to a library
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of processes (complete processes and process steps) that have already been
developed and tested. Consequently, the database representation for
process-flow specifications must provide a process model that allows all users

to view the data in a way that is compatible with the way they think about
it.

Another problem with the design of a database representation for
process-flow specifications is that it must be easy to change the equipment
on which a particular process is run. For example, it should be possible to
move a process to a different laboratory with different equipment without
requiring a complete re-design of the process. By substituting the equip-
ment specific procedures for the equipment in the new laboratory, the pro-
cess should run. This type of change must also be possible while a lot is
being processed because a particular piece of equipment might have failed
or been replaced and you want to continue processing the lot.

We believe the solution to both problems is a very flexible mechanism
to control which procedure is called by each process step that can be
changed without having to modify the source code. In other words, the
implementation of each process step can be arbitrarily changed. For exam-
ple, figure 12 shows the definition of a process including the procedures that
implement each step. The defflow, defgeneric, and defgeneric functions
define flow, generic, and specific procedures, respectively. The comment
(i.e., the text following the semicolon) indicates the procedure that imple-
ments each process step. For example, the grow step in CMOS-Nwell is
implemented by CMOS-init-oxide. We call this mechanism implementation
binding because it specifies the implementation of each procedure call in a
process. All procedures, except WIP interpreter primitives, require an
implementation binding.

Processes and implementation bindings are represented by the follow-
ing two classes:

Process(Process-Name, BPFL-Proc-ID, IBind-Number)
IBind(BPFL-Proc-ID, S-Exp, Process-ID, IBind-Number)

Each process, whether it is a complete process or a process step, has a Pro-
cess object that identifies the name of the process (Process-Name), the pro-
cedure that specifies the processing to be performed (BPFL-Proc-ID), and a
set of implementation bindings for the procedure (IBind-Number). The
implementation bindings are represented by IBind objects. Each IBind
object indicates that a particular procedure call, specified by the slots
BPFL-Proc-ID and S-Exp, is implemented by the process specified by the
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(defflow CMOS-Nwell

(grow "initial oxide" ...) ; implemented by CMOS-init-oxide
(measure "measure oxide" ...) ; implemented by measure-oxide

we)
(defgeneric CMOS-init-oxide
(furnace ...) ; implemented by tylan-run-sequence
ves)
(defgeneric measure-oxide
(visual-check-oxide ...) ; implemented by operator-dialog

(nano-spec-measure-oxide ...) ; implemented by operator-dialog

ees)
(defspecific tylan-run-sequence ...)

(defspecific operator-dialog ...)

Figure 12: Process definition with step implementations.

slot Process-ID. Notice that a process is composed of a procedure and a set
of implementation bindings for the procedure.

Figure 13 shows how the example in the previous figure is represented.
The column Process-ID is added to the Process table to show what entry is
referenced by Process-ID in IBind. The tables show the binding for a pro-
cess named CMOS-1. The implementations for the procedures called by
measure-oxide are represented by instances of IBind with IBind-Number
equal to 3. The process that implements the visual-check-oxide step is Pro-
cess 5 (i.e., an operator-dialog call). To change this process to run on a
different furnace, the Process-ID entry for CMOS-init-oxide in IBind is
changed to a process that uses the other furnace. Of course, you may want
to keep both processes around which requires that the CMOS-1 entries in
Process and IBind be copied and given a new name.

Although the representation of bindings complicates the database
representation, we believe it will simplify the manipulation of process
descriptions.
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Process

Process-ID | Process-Name{ BPFL-Proc-ID IBind-Number
1 CMOS-1 CMOS-Nwell 1
2 CMOS-1 CMOS-init-oxide 2
3 CMOS-1 tylan-run-sequence 0
4 CMOS-1 measure-oxide 3
5 CMOS-1 operator-dialog 0
IBind
BPFL-Proc-ID | S-Exp Process-ID | IBind-Number
CMOS-Nwell (grow ...) 2 1
CMOS-Nuwell (measure ...) 4 1
CMOS-init-oxide | (furnace ...) 3 2
measure-oxide (visual-check-oxide ...) 5 3
measure-oxide (nano-spec-measure-oxide ...) 5 3

Figure 13: Implementation binding example.

5.2. WIP Interpreter State Representation

The WIP interpreter maintains database objects that represent runs,
lots and wafers, the execution state of the currently active runs, and a log of
steps executed and measurements collected during processing.

A class Wafer is defined to track wafers processed in the laboratory:

Wafer(Number, Orientation, Purity, 02, IsTest)

The Number slot is a unique number etched on the wafer so that it can be
identified. The Orientation, Purity, and 02 slots maintain information
about the wafer. The IsTest slot indicates whether this wafer will be used
to produce chips or to test the process and equipment. For example, in
many processing steps a blank wafer will be run along with the production
wafers to check the effect of the step. By using a blank wafer, the test will
be independent of the effects of previous steps.

A lot may contain production wafers, production and test wafers, or just
test wafers. A logical lot is a set of wafers that a BPFL procedure processes.
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For example, the production wafers may be in one logical lot (e.g., the lot
named PRODUCT) and test wafers may be another logical lot (e.g., a lot
named WELL-Control). An optional argument to all BPFL procedures
identifies by name the lot to which the procedure should be applied. The
WIP interpreter must keep track of these different logical lots and the
wafers they contain.

The WIP system interprets a process (i.e., a procedure and implementa-
tion binding) to manufacture or test wafers. Each distinct run that the WIP
system executes can create many logical lots. These logical lots are held in
physical lots that represent the plastic carriers that hold the wafers. The
system must keep track of the logical lots, physical lots, and the wafers they
contain. In addition, the system must keep track of the past history of these
entities and relationships because lots can be split apart and merged back
together and several logical lots can be mapped to one physical lot. Lot
splitting and merging is used to control testing and to allow more than one
product to be produced in the same run.

The database representation for this data is represented by the follow-
ing classes that define runs, logical lots, and physical lots:

Run(Run-Number, Owner, Created-At, Process-ID)
Logical-Lot(Logical-Lot-Name, Run-ID)
Physical-Lot(Physical-Lot-Number, Status)

An instance of a Run object is created for each run in the laboratory. It
identifies the Run-Number, the person who is responsible for the run
(Owner), the date and time it was created (Created-At), and the process that
was run (Process-ID). A Logical-Lot object is created for each logical lot
created by a run. The two slots in this object identify the name of the lot
(Logical-Lot-Name) and the run that created it (Run-ID). By convention,
the logical lot named PRODUCT is the lot that contains the production
wafers. The class Physical-Lot tracks each carrier for wafers. It identifies
the serial number (Physical-Lot-Number) and the current status (e.g., IN-
USE or FREE) of the carrier.

The mapping of logical lots to physical lots and wafers to positions in
physical lots is represented by the following two classes:

Logical-Physical-Lot-Map(Logical-Lot-ID, Physical-Lot-ID, Start-Time, End-Time)
Wafer-Physical-Lot-Map(Wafer-Number, Logical-Lot-ID, Position)

The slots Logical-Lot-ID and Physical-Lot-ID in Logical-Physical-Lot-Map
represent the mapping of logical lots to physical lots. The Start-Time and
End-Time slots indicate when the logical lot was mapped into the physical
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lot. The class Wafer-Physical-Lot-Map identifies the position of a wafer in a
physical lot. It has slots to store the wafer number (Wafer-Number) and the
position (Position) of the wafer in the carrier. The position is needed
because some statistic analysis of process measurement data depends on
whether the wafer was on the outside or inside of the carrier.

An example will make this design easier to understand. Suppose that a
run was composed of three logical lots (PRODUCT, TEST-1 and TEST-2),
that PRODUCT had two wafers (WAFER-1 and WAFER-2) and the two test
lots each had a single wafer (WAFER-3 and WAFER-4), and that PRO-
DUCT and TEST-1 were mapped to physical lot PL-1 and TEST-2 was
mapped to physical lot PL-2. This data would be represented in the data-
base by objects shown in the tables in figure 14. Entries in columns that
hold object identifiers (i.e., slot names that end in ID) are shown as values
in italics.

The state of lots currently being processed is maintained in three
classes that correspond to the “process table” and “run-time stack” in a con-
ventional operating system and programming language environment. The
currently active runs are represented by instances of the class

Active-Runs(Run-Number, Stack-Frame-ID, State)

The Run-Number indicates the run, the Stack-Frame-ID indicates the
current stack frame, and the current state of the run is stored in State. The
state (e.g., PROCESSING, WAITING, or SUSPENDED) indicates that the
lot is being processed by a piece of equipment, waiting for equipment, or
suspended from processing (e.g., the student who is responsible for the run
may be attending class).

The run-time stack for BPFL procedures is represented by instances of
the following two classes:

Stack-Frame(BPFL-Proc-ID, Current-S-Exp, Parent-Stack-Frame-ID, LogIt)
Variables(Stack-Frame-ID, Variable-ID, Value)

A Stack-Frame object is created for each active BPFL procedure. The
BPFL-Proc-ID and Current-S-Exp slots indicate the next process step to exe-
cute when this run is resumed. Local variables for the procedure are stored
as instances of the class Variables. The Parent-Stack-Frame-ID identifies
the stack frame of the procedure that called this one (i.e., the dynamic link
in a conventional programming language stack frame). Lastly, the Loglt
slot indicates whether the execution of the current procedure should be
logged into the WIP-Log. If this slot has the value true, a WIP log record is
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Run

Run-Number | Owner | Created-At | Process-ID

Run-1 Chris 15-April-87 | CMOS-Nwell
Logical-Lot
Logical-Lot-Name | Run-ID
PRODUCT Run-1
TEST-1 Run-1
TEST-2 Run-1
Physical-Lot
Physical-Lot-Number Status
PL-1 IN-USE
PL-2 IN-USE

Logical-Physical-Lot-Map

Logical-Lot-ID | Physical-Lot-ID| Start-Time
PRODUCT PL-1 1530 15-April-87
TEST-1 PL-1 1645 15-April-87
TEST-2 PL-2 0840 16-April-87
Wafer-Physical-Lot-Map
Wafer-Number | Logical-Lot-ID| Position
WAFER-1 PRODUCT | 1
WAFER-2 PRODUCT 2
WAFER-3 PRODUCT 3
WAFER-4 TEST-1 4
WAFER-5 TEST-2 1

Figure 14: Database representation for lot mapping.

written that describes the execution of the procedure (e.g., the start and end
times and the return result). The Loglt slot can be set by the person run-
ning the WIP interpreter or by a procedure call in the process. This
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mechanism allows the granularity of logging to be changed dynamically.

The WIP interpreter receives events from a piece of equipment or an
operator which causes it to perform some action on a run. The action can be
to resume interpretation of a BPFL procedure, suspend execution of a run,
or change the state of a run to processing. The event contains the Run-
Number which the interpreter uses to retrieve the current state of the pro-
cess (e.g., the stack frame). The interpreter then executes process steps in
the procedure until an interpreter primitive suspends the run or enters a
wait state pending completion of a processing step.

A transaction log is written by the WIP interpreter that provides a
trace of processing steps initiated and completed. A hierarchy of log objects
is defined that allows arbitrary log entries to be written. A sample hierar-
chy is shown in figure 15. Notice that all log records inherit the slots from
WIP-Log which give a generic description of the logged event and that each
subclass defines additional slots to represent information specific to that
event represented by the subclass. The capability to dynamically add
classes (e.g., new WIP-Log subclasses) makes the WIP system easier to -
develop and maintain.

5.3. Equipment Scheduling Data Representation

This section describes the database representation for keeping track of
equipment status and schedules.

The Equipment class contains information on all aspects of equipment
including its current status, location in the facility, and display information
for the facility editor. The class definition is:

Equipment(Status, Allocated-To, Estimated-Time-Available, Time-Last-Used,
Facility, Location, Picture-ID, Orientation)

The Status slot indicates the current status of the equipment. Equipment
can be available for use (FREE) or currently being used (PROCESSING).
Equipment that is unavailable (e.g., some equipment can only be operating
during normal working hours) has status OFF-LINE. And, equipment that
is waiting to be repaired, currently being repaired, or being serviced as part
of a regular maintenance program has status WAITING-REPAIR, BEING-
REPAIRED, or REGULAR-MAINTENANCE. The Allocated-To slot indi-
cates who has control of the equipment when it has been allocated. It con-

tains the reservation identifier (described below) that indicates who reserved
it.
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Log-BPFL-Prac

Log-Messurement Leg-Lot-Split

WIP-Log(Run-Number, Physical-Lot-Number, Logical-Lot-Name,
Start-Time, End-Time)

Log-BPFL-Proc(Caller, S-Exp, Called-Proc, Args, Result)

Log-Measurement(Wafer-Position, Device, Measurement, Value)

Log-Lot-Split(Split-Lot-Name, Wafers-Split-Array)
Log-Lot-Merge(Logical-Lots-Merged, Result-Lot-Name)

Figure 15: WIP-Log hierarchy.

The Estimated-Time-Available slot indicates when the equipment will
be free if is not currently available for processing (e.g., if it is off-line or
being repaired). The Time-Last-Used slot is kept so that laboratory person-
nel can easily determine the recent use of a piece of equipment. This value
is displayed in an equipment status summary that is displayed by the
laboratory manager tool.

The Facility, Location, Picture, and Orientation slots store data about
the location of the equipment and the graphical picture and orientation that
the facility editor uses when displaying it. The Picture and Orientation slots
use the data representations described in the previous section.

The scheduling programs also need information on equipment reserva-
tions. This data is kept in instances of the following class:

Equipment-Reservation(Equipment-ID, Reserved-At, Duration,
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Usage, Reserved-By, Commenced-At)

The Equipment-ID slot identifies the piece of equipment covered by this
reservation. The Reserved-At and Duration slots specify the date and time
at which the equipment is to be reserved and the length of the reservation.
The Usage slot indicates how the equipment will be used. Possible values
for this slot are: PROCESSING, MAINTENANCE, TRAINING, and OFF-
LINE. The Reserved-By slot indicates who made the reservation and the
Commenced-At slot indicates when the reservation was used (e.g., when pro-
cessing or maintenance began).

Reservations in the Berkeley MICROLAB are made by laboratory users
with a simple reservation scheduling tool. In essence, the system works as
a simple sign-up sheet. In a larger facility, elaborate scheduling programs
generate reservations to maximize laboratory thruput. An additional class
is needed that environment to keep track of the run that will be processed
during the reservation period. A reservation may involve processing several
runs at the same time in a piece of equipment. For example, several physi-
cal lots can be processed in a furnace at the same time. In a production
facility, as many lots as possible are run at the same time -because it
significantly improves thruput.® The Run-Reservation class keeps track of
this data:

Run-Reservation(Equipment-Reservation-ID, Run-ID)

This object maps a run (Run-ID) to a reservation (Equipment-Reservation-
ID). Equipment scheduling algorithms will need other information (e.g.,
expected running times for the processing steps in a particular process). We
expect this part of the database design to change considerably when these
algorithms are added to the system.

The equipment status and reservation data is queried and updated by
the WIP interpreter and a scheduling demon. When a process requests a
piece of equipment, the WIP interpreter sends a message to the scheduling
demon to request that it be allocated to the run. The scheduling demon
determines if a reservation exists for the run to use the equipment. If not, a
reservation can be defined if the equipment will be available during the
required time. Assuming that the reservation exists, the scheduler demon
sets the Commenced-At time for the reservation and notifies the WIP

8 Furnace runs take many hours to complete.
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interpreter that the equipment has been allocated to the run. The WIP
interpreter receives the notification and resumes the execution of the pro-
cess.

5.4. WIP Analysis

One advantage of storing the WIP system data in a database is that a
variety of questions can be answered about the status of a laboratory and
the past history of processing wafers by querying the database. This section
describes example of the kinds of questions that can be answered. We do
not present the actual queries because the important point is not how to
express them but that they can be expressed.

Questions on three aspects of the WIP system database will be illus-
trated. First, questions can be asked about the past history of processing:

1. What other wafers were processed by the same furnace that did oxide
deposition on WAFER-123?

2. What is the average yield for wafers processed by the CMOS-Nwell pro-
cess?

3. Retrieve a complete processing history of WAFER-123.

The last question would generate a cémplete histdry of the processing steps,
the results of measurements, and the logical and physical lots that con-
tained the wafer during processing.

The second aspect of WIP data that can be queried is the current and
past status of the laboratory. The following types of questions can be asked:

1. What percent of the time has the plasma etcher been free during nor-
mal office hours in the past 10 working days?

2. What was the weekly availability (i.e., percentage of time free) of all
furnaces in the last 6 months.

3. Which equipment has been unavailable the most time because of
maintenance or repair this week?

The last aspect of the WIP system data concerns future activities and
plans. OBJFADS and POSTGRES allow versions of object classes to be
created. These versions can be updated and queried. A run simulator could
be written that simulates laboratory processing under various constraints
(e.g., improved equipment reliability, addition of new equipment, or changes
in processing times). After the simulator has been run, the hypothetical log
(i.e., the version of the WIP log created by the simulator) can be queried to
determine the improvements in yield and equipment utilization. This
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combination of simulated processing and querying hypothetical logs would
provide a powerful tool to conduct “what-if” analysis on laboratory or pro-
cess changes.

6. Current Status and Future Plans

We are just beginning the implementation of the applications. Our
plan is to implement the WIP interpreter first since it requires the fewest
features from OBJFADS and POSTGRES. The initial implementation will
be done using commercial INGRES. We plan to install the WIP interpreter
in the MICROLAB if the performance is acceptable.

This summer (1987) we will implement the data types required by both
applications for POSTGRES starting with the geometric data types. After
these are completed we will build a prototype version of the facility editor to
test the performance of the system.

The most significant research question is whether OBJFADS and
POSTGRES will be fast enough to make this approach to implementing
CIM applications practical. We believe they have the right features, but
now we must prove it!
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