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Abstract

Since Karmarkar published his algorithm for Linear Programming,
several different interior directions have been proposed and much effort
was spent on the problem transformations needed to apply these new
techniques. This paper examines several search directions in a common
framework that does not need any problem transformation. These
directions result to be combinations of two problem-dependent vectors,
and can all be improved by a bidirectional search procedure.

We conclude that there are essentially two polynomial algorithms:
Karmarkar's method and the algorithm that follows a central trajec
tory, and they differ only in a choice of parameters (respectively lower
bound and penalty multiplier). We finally present a complete path-
following algorithm with a new strategy for choosing multipliers.
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1 Introduction

In this paper we survey several internal search directions for linear program
ming that were proposed since Karmarkar published his algorithm [14]. The
resulting algorithms are classified and compared, to be then imbedded in a
general framework using a bidirectional search procedure on the original
feasible set.

Some of the interesting conclusions to be reached are:

• There is no need for problem transformations. Projective algorithms
have an underlying motivation based on the minimization of a zero-
degree homogeneous "potential function" on a cone, but this cone does
not have to be described.

• Karmarkar's direction is more general than was expected. In fact,
the following directions are equivalent (in the sense that the result
ing algorithms generate the same points): Karmarkar's direction, the
Newton-Raphson direction for the multiplicative potential function,
and any directions obtained by spherical trust region minimizations
of first or second order approximations of the potential functions on
the cone. Incidentally, this proves the complete equivalence between
Karmarkar's method and the algorithm by Iri and Imai [13], and es
tablishes quadratic convergence (when the optimal value is known)
and polynomial convergence for both algorithms.

• A conic function in the tradition of Davidon [4] can be used instead
of the potential functions, and exactly minimized in a spherical trust
region, giving rise to good descent directions.

• All surveyed algorithms generate at each iteration a step that is a
linear combination of cp = Pc and ep = Pe , where P is the
projection matrix onto Null(A) and e = [1 1... 1]'. All of them can
be understood as feasible direction methods with scaling, with direc
tions obtained by solving a spherical trust region minimization. Most
methods can also be understood as Newton-Raphson methods (and
then scaling is irrelevant).

• All algorithms can be improved by a natural extension of the trust
region, resulting in a bi-directional search in the directions cp and
ep. This searchcan be sophisticated by a goal programmingapproach



to ensure polynormality (when costs are minimized) or to ensure de
creasing costs (when potential functions are minimized).

• Karmarkar's algorithm and the homotopy method in [12] are not equiv
alent in general: they differ in the choice of a parameter at each iter
ation (respectively lower bound to the optimal cost and the penalty
multiplier). The penalty multiplierseems to be more controllable than
the lower bounds, and should lead to a better algorithm.

Algorithms will be classified according to the followingclasses:

(i) Underlying problem formulation: projective or affine.
(ii) Criterion: logarithmic potential, multiplicative potential, conic function,
barrier function, cost function.
(iii) Direction-finding procedure: projected gradient, trust region minimiza
tion, Newton-Raphson.
(iv) Special requirements: decreasing costs, decreasing criterion.

Although the classes above allow a large number of combinations, the
actual number of different algorithms is small.

The problem: All algorithms will solve the following linear programming
problem:

minimize c'x

subject to Ax = b (1)
x > 0

where 6, c, x € Mn, A is an m x n matrix, m< n.
The algorithms will always work in the relative interior of the feasible

set, and the following notation will be used:

s = {x € Mn\Ax = b,x > 0}

Q = {\x\Ax = b,\€ M}
c = {\x\x£S,\>0}
D = Null(A)

mi = {x € Mn\x > 0}

(2)

S is the relative interior of the feasible set, C the positive cone generated
by S , Q is the subspace generated by C and D is the set of feasible
directions from a point in S .

We usually assume that the feasible set is bounded (unbounded feasible



sets will be treated separately). We also assume that an initial non-optimal
feasible solution x is known.

Transformed problem: Since the dimension of Q is one unit higher than
the dimension the feasible set, the problem can be restated as:

minimize c'x

x € 'C (3)
a'x = 1

where a € Q and C is the closure of cone C .
The feasible set for this problem is a cone restricted by one constraint.

Projective algorithms are constructed by replacing the cost in 3 by a zero-
degreehomogeneous function. This is the characteristic format for projective
techniques, and it is easy to obtain it by computing a and a description
of C , as we shall do in section 2. The description of transformed problems
was studied in many papers, including [2], [7], [11], [14], [19]. Reference
[11] shows a transformation that preserves the dimension of the problem by
describingthe conicset as we areusinghere. All other references achievethis
format by increasing the dimension. We will show that there is no need to
describe the transformed problem, and all techniques can be applied directly
to formulation (1).

All algorithms evolveby a sequence of iterations composed of (possibly)
a scaling operation, the determination of one or two search directions and
a minimization along these directions. In this paper we shall concentrate
on the determination of the search directions from a given point x , in one
typical iteration of the algorithm. The notation is kept simple by assuming
that (1) is the formulation aftera master algorithm has scaled the problem
(if scaling is used).

Scaling: weshall usually assume that x = e, meaning that a scaling opera
tion has been performed. It is important to remark that scaling only affects
first-order methods, and is totally irrelevant to the behavior of Newton-
Raphson methods. The reason to use scaling to explain such algorithms
is that it simplifies the mathematical treatment, puting all techniques in a
common framework. The actual implementations do not depend on changes
of variables.

The paper begins by presenting some tools necessary to develop the
algorithms, and then examines separately projective methods in section 3,



affine methods in section 4, bidirectional search procedures in section 5 and
finally a complete new path-following algorithm in section 6.

2 The tools

This section describes mathematical tools to be used in the actual algo
rithms. The first two subsections deal with formulation (3) and with conical
projections, and have interest in themselves. The remaining results are
mostly common knowledge, included to fix the language and notation.

2.1 The problem transformation

Karmarkar's algorithm in its original formulation [14] needs a special for
mulation that coincides with (3) with a = c, that is, the feasible set must
lie on the unit simplex at each iteration (after scaling). A "projective trans
formation" is needed at each iteration to achieve this format, and this made
the original algorithm difficult to understand. Todd [19] Showed that Kar
markar's direction was actually the steepest descent direction for his poten
tial function, and the simplex constraint became irrelevant: any problem in
formulation (3) could- be treated with straightforward scaling transforma
tions.

A sequence of papers cited in section 1 improved the problem formula
tion, and in this paper we shall advance a step further by showing that no
reformulation is needed in the practical construction of the algorithms. The
actual description of the set Q will never be needed. In some cases (to
compute lower bounds to optimal solutions) the description of projections
onto Q will be needed, but this will be obtained indirectly.

Consider the problem (1) and the sets defined in (2). Let P be the
projection matrix onto D , P = J— A'(AA')~lA, and assume that e € S .

Lemma 2.1 S can be expressed as

S = CC\{xe tttn\a'x = 1} = {x > 0|x € Q.a'x = 1}

where a € Q is the unique vector computed by

e-Pe . .

s=iRf (4)
Besides this, for any y G C a'y > 0.



Proof: Q is the subspace generated by S and the origin. Then e 6 Q
by hypothesis, Null(A) C Q by construction and consequently Pe G Q,
e - Pe € Q, a 6 £.

Consider any y € C. Then y = Ax for some x € 5, A > 0.
But x = e + (x —e), and then

a'y = A[a'e + a'(x - c)] .

Note that a'(x - e) = 0, since x - e € iVit//(i4) and 6 - Pe _L JV«//(•/!), and
it follows that

a'y = Xa'e

Developing this expression

, _ (e-Pe)'e _ (e - Pe)'(e- Pe) _
"e- ||e-i»«|» - ||e-P«|» "

since (e —Pe)'Pe = 0. Finally, a'y = A, and consequently a'y = 1 if and
only if y = x € 5, completing the proof.

The lemma above guarantees that (1) can be recast into format (3), and
provides a unique value for a € Q.

Consider now an arbitrary vector d € Mn and define respectively dp,
dq and da as the projections of d onto D , Q and Null(a'). Assume
that dp = Pd is known, and note that da is easily computed. Next lemma
shows how to obtain dq .

Lemma 2.2 The projection of a vector d € Rn onto Q is given by

dQ =Wa+dp =jjfe^(e-e')+rf' (5)
Proof: From lemma 2.1, a GQ, and then Null(a') ±Q. It follows that dp
is the orthogonal projection of dg onto Null(a'), dp = dgo.

On the other hand, d—dg ± a, since a€Q, and consequently d0 —dga =
d —dp.
It follows that dg —dp = d —d,, or dg = dp + d —d0. We can now compute

A A d'a



and finally obtain
d'a

The expression in terms of e follows trivially from (4), completing the
proof.

Projections onto Q will be needed at only one point: the computation of
lower bounds in Karmarkar's algorithm, which depend on eg . This com
putation will then be inexpensive since cp and ep are used anyway by all
algorithms.

2.2 Conical projections

The projective algorithms to be studied in section 3 are based on solving a
problem with a different criterion, but equivalent to (1). The new criterion
is a zero-degree homogeneous function / : iRJ >-*- M (that is, for any x >
0,A > 0, /(Ax) = /(x)), and each iteration tries to improve the available
solution to the problem

minimize{f(x) | x € S]

The properties of zero-degree homogeneous functions become apparent if we
use formulation (3)

minimize f(x)
x e C (6)

a'x = 1

We shall study the special properties of descent directions for a problem in
formulation (6). The essential fact is that since /(•) is constant on rays and
C is a cone, the constraint a'x = 1 can be dropped and we can work in a
very simple set: the subspace Q with positivity constraints.

Definition 2.3 Given x € C, the conical projection of x onto S is the
intersection of S and the ray through x , computed by

ax

K(x) is well defined for any x 6 C, since then a'x > 0 by lemma 2.1. It is
immediate to verify that a'K(x) = 1 and f(K(x)) = /(x).

We now study the result of a line search from a point x € S along a.
direction in the cone, h € Q. Ifa'h^l then the points x + ah are infeasible



for the original problem, but the conical projections of these points are
feasible and have the same objective values. These conical projections follow
a direction in D , called the conical projection of h from x .

Definition 2.4 Given x € S and h € Q , the conical projection of h from
x onto S is given by

Kx(h)=:h-a'hx

Lemma 2.5 Let x 6 S, h € Q and a € M be given, and let h = Kx{h). If
x + ah € C then there exists fl € JR such that x + fih = K(x + ah).

Proof: Let us compute K(x + ah) —x.

vt . u\ x + ahK[x + ah) —x = —r, rr
v ; a'(x + ah)

Since a'x = 1, clearing denominators gives

1 a -
K(x + ah) - x = rr(<*f* - aa'hx) = —h .

v ' 1 + aaV ' \ + aa'h

Setting (3 = a/(l + aa'h) completes the proof.

Lemma 2.6 Consider a direction h 6 C from x € S, and set h = Kx(h).
Then

inf{/(x + (fit) | x + ph > 0} < inf{/(x + o/i) | x + ah > 0} . (7)

Proof: immediate consequence of lemma 2.5.

Definition 2.7 Two directions hl,h2 € C are equivalent from x € 5 if
their conical projections are collinear.

At this point we must make some comments on equivalence. C is
always an unbounded set, and the line {x + ah \ a > 0} may be unbounded
in C. Then the 'inf in the right-hand side of (7) cannot be replaced by
'min' unless we know that a minimum exists. This is not relevant, since the
directions that really matter are in D (the conical projections), and we do
not need a minimum on the right-hand side. The 'inf in the left-hand side
is more important, and we need conditions to guarantee a the existence of



a minimum. The most usual is to assume that S is bounded, but weaker
assumptions were made in [2] and [11]. These references describe algorithms
in which the cost decreases in all iterations, and will be commented ahead.

Another remark is in place regarding equivalence: h1 equivalent to
h2 does not mean that the line search along both directions give the same
result: it means that the same result is obtained if we use their conical

projections. These details are actually irrelevant in general, since most al
gorithms guarantee the existence of minimizers on both sides of (7). Special
cases appear only for unbounded feasible sets, and will be treated separately
in this paper.

We now present the two most important lemmas on conical projections.

Lemma 2.8 Two directions hl,h2 € C are equivalent from a point x € C
if and only if there exist realnumbers a,/? , a > 0 such that h2 = ah1 +/3x.

Proof:

(«=) Assume that h2 = ah1 + /?x, a > 0. Using definition 2.4,

Kx(ahl+0x) = ah1 + fix - a'(ah} + 0x)x
= a(h} —a'h1!) since a'x = 1
= aKx(hl)

and the conical projections are collinear.

(^) Assume that Kx(h2) = aKx(hl), a > 0. Then, using definition 2.4,

h2 —a'h2x = ah1 —aa'hlx or

h2 = ahl+{a'h2-aa'hl)x ,
completing the proof.

Consider now an arbitrary vector d € Rn and its projections dp ,dg and
dtt respectively onto D , Q and Null(a').

Lemma 2.9 Given a vector de Rn, consider the direction dg and a point
xeC . Then

Kx(dQ) = dp- a'dxp . (8)

Proof: Using the definition,

Kx(dq) == dg —a dqx .



But for a € Q, a'dg = a'd, and

Kx(dq) = dg —a'dx .

Now project both sides orthogonally onto D = Null(A) . The left hand side
is already in D ; since D = Q D Null(a') and a € Q, it is easy to see that
(dg)p = dp, and the projection coincides with (8), completing the proof.

This result means that Kx(dq) is a linear combination of the projections
of the vectors d and x onto D . Conically projected directions can
then be computed directly from orthogonal projections, without explicit
knowledge of the subspace Q : only the vector a must be known, but
this is easy by lemma 2.1. This result will be used to construct projective
algorithms without transforming the original linear programming problem.
In particular, if a problem is scaled, then x = e and the conically projected
direction depends only on the projected vectors cp and ep , since by (4)
a depends only on ep and e .

2.3 Trust regions and search directions

Consider a general non-linear programming problem

minimize{/(x) | x 6 C C 2Rn}.

Most non-linearprogramming algorithms evolve by constructing a sequence
of points (x*) in C , such that xk+l is obtained by a line search along a
feasible direction from xk .

The procedures to obtain a search direction h can usually be interpreted
as a trust region minimization of some approximation of /(•) about xk .
More specifically, consider a function g(-) such that g(Ax) « /(x -I- Ax)
and a set T that contains the origin in its interior and such that the
approximation is good in T (that is the origin of the name 'trust region').
Then a promising direction to decrease the values of /(•) is computed by

h = argmin{^(Ax) | Ax 6 T}

The most typical trust region is a sphere, and the most typical approxima
tions are linear, quadratic and exact ($(•) = /(•)). A linear approximation
in a spherical region generates the steepest descent direction; a second order
approximation is used in the most usual "trust region methods", and the
Newton-Raphson direction corresponds to the limiting case of T = JRn.



Ellipsoidal trust regions can also be used, but the trust region minimiza
tion becomes more difficult. In all linear programming algorithms considered
in this paper spherical trust regions are used after scaling: this is equivalent
to an ellipsoidal trust region minimization without scaling.

One should note that there is no good reason (besides easy computation)
to adhere to spherical trust regions: if the region can be increased to better
approximate the shape of the feasible set and still keep a low computational
cost, this should be done. This is the reasoning that will lead us to bi
directional search procedures instead of simple line searches.

3 Projective algorithms

Projective algorithms consist of a "master algorithm" that at each iteration
starts with a feasible point, (possibly) scales the problem about this point
and calls an "internal algorithm". This internal algorithm constructs a zero-
degree homogeneous function /(•) and an internal problem in the format

minimize /(x)
subject to x G C (9)

a'x = 1

using the sets defined in (2). An initial point x is available, and if scaling
was used x = e.

This structure is described in [11], and the scope of each iteration is to
improve the value of the objective by finding a point x such that /(x) is
significantly smaller than /(x) . The essence of conical projection algorithms
is in the fact that (9) can be rewritten as

minimize f(x) ^
subject to x € C ^

This is the same as (9), without the constraint a'x = 1. The feasible set is
now very simple (the subspace Q with positivity constraints), and to each
point in C we can associate its conical projection with the same value for
the objective function. To each descent direction from x we can associate
its conical projection from x . Conical projection methods will then improve
the value of the objective function for (10) and then translate this result to
(9) by conical projection.

The reason why conical projection methods should be more efficient than
methods based on a spherical trust region on S is that a sphere in the cone
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C is mapped by conical projection onto a larger ellipsoid in S . This
ellipsoid can be roughly visualized as the shadow caused by the sphere when
S is illuminated by a light source at the origin.

We shall study three different objective functions: the multiplicative po
tential function, its logarithm - the logarithmic potential function and the
"natural" conic function. For each of these functions, a descent direction
will be obtained by a spherical trust region minimization in C . The final
feasible direction will be the conical projection Kx(h) .

The main results: most of the section will be devoted to show that all

possible spherical trust region minimizations involving first or second order
approximations of both potential functions result in equivalent directions,
all reproducing Karmarkar's direction. The conical projection of these di
rections is given by a simple expression to be derived in lemma 3.1, and is
a combination of the directions cp and ep .

The natural conic function is also studied, and an exact minimization in
a spherical trust region also results in a combination of those two directions
in D . Similar conclusions will be obtained in the next section for affine

methods, suggesting bi-directional search procedures to be explored in the
last section.

3.1 Potential functions - Karmarkar's algorithm

The criterion used in Karmarkar's algorithm is the potential function

n

/(x) = nlog(c'x - v) - ^2log Xi (11)
fcal

where v is a lower bound for the value v of an optimal solution for (1).
Note that for x GS , c'x - v > 0 and /(•) is well defined. Since /(•) is
in general not zero-degree homogeneous, it can be rewritten as

n

/(x) = nlog c'x - 2 loS xi (12)

where c = c —va. Since a'x = 1 in S , both expressions are equivalent in
S and /(•) is now zero-degree homogeneous.

Let X = diag(x\,... ,xn). The derivatives for the potential function are
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given by:

VVW = -^jtSc'+Z Vj/(i) = -^cc'+X-2 (13)

References [10] and [19] show that Karmarkar's direction is the steepest
descent direction for /(•) on Q from x = e, given by -V/g(e), or
equivalently

c*e
h = -eg + —e (14)

n

This direction is in Q . The actual direction in D is obtained by computing
the conical projection of h .

Lemma 3.1 Karmarkar's direction for problem (1) from the point e is
given by

n° =-<h>+ ||e_e ||2(c/(e " ev) - v)ep (15)
Proof: Using lemma 2.8, it is immediate to see that the steepest descent
direction h (14) is equivalent to —eg . Computing the conical projection
for this direction using (8) ,

h° = A"e(-cg) = -cp + a'cep

Substituting now c = c - va and noting that ap = 0,

h° = -cp -r a'cep - ||a||2vep

Finally, substitute the expression for a from (4) to get

h° °~Cp+''iF^6'" IF^F"6''
Simplifying this expression leads to (15) and completes the proof.

Expression (15) gives Karmarkar's direction for the linear programming
problem in the general format (1), with no use of problem transformations.

The lemma to follow shows that this and all other directions obtained by
spherical trust region minimizations of approximations of /(•) are equiva
lent.
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Lemma 3.2 The following directions from e are equivalent for the loga
rithmic potential function:
(i)—V/g(e) : Karmarkar's direction
(ii)-cq
(iii)argmin{Ax'Vf(e)+\Ax'V2f(e)Ax \ Ax £ #,||Ax|| < a} for any a > 0;
trust region minimization of the quadratic approximation for any spherical
trust region.

Proof: If e is an optimal solution for (9) then the result is trivial. Assume
then that V/g(e) ± 0.

(i) The equivalence between —eg and h is an immediate consequence of
lemma 2.8.

(ii) Consider the second order approximation for /(•) :

g(Ax) = Ax'V/(e) +iAx'V2/(c)Ax (16)
Vg(Ax) = V/(e) + V2/(e)Ax

Let h = argmin{^(Ax \ Ax 6 Q, ||Ax|| < a)}, a > 0. Then the following
facts are true:

— h is a descent direction for g(-) : this is well known for a quadratic
function, since g(h) - g(-h) = 2h'Vf(e). Since g(h) < g(-h), necessarily
h'Vf(e) < 0

— By an immediate application of Kuhn-Tucker theorem on the subspace
Q ,

V$g(/i) + Xh = 0 for some A> 0 (17)

Developing the expression (16) with help of (13),

Projecting onto Q and using (17),

n n

cfe (e'e)

or

(1 + X)h = -/icg + e

pen -e + h + \h = Q with u = — ,., ^h

13



Now note that fi ^ 0. This is true because if ft = 0 then h —e and this is
not a descent direction, since V/(e)'e = 0.

It follows from lemma 2.8 that h is equivalent either to cq or to —c9,
depending on the sign of p. . But h is a descent direction, and thus can
only be equivalent to —eg , since by (i) this last direction is equivalent to
the steepest descent direction. This completes the proof.

The multiplicative potential function: Karmarkar's potential function
is the logarithm of the multiplicative potential defined by

**> =tS^T • (18)llisl Xi

Problem (9) is obviously equivalent for both potential functions as objec
tives, since the logarithm function is monotonically increasing, but the same
is not trivial with respect to the trust region minimizations. While /(•) is
not convex (and actually strictly concave along the direction —eg) and thus
not adapted to the Newton-Raphson method, p{-) is convex. This was
proved by Iri and Imai [13] for a different formulation of the linear program
ming problem, but the equivalence to our format is immediate.

The lemma to follow will show that unfortunately nothing can be gained
by choosing the multiplicative instead of the logarithmic potential, or even
by using Newton-Raphson algorithm. First let us write the expressions for
the derivatives of p(-) at e .

Vp(e) = p(e)Vf(e) , V2p(e) = p(e)(V2f(e) + V/(e)V/(e)') (19)

Lemma 3.3 The following directions from e are equivalent for the multi
plicative potential function:
(i)—V/g(e) : Karmarkar's direction
(U)-VpQ(e)
(iii)argmin{Ax'Vp(e) + \Ax'V2p(e)Ax \ Ax 6 Q, ||Ax|| < a} for any
a > 0; trust region minimization of the quadratic approximation for any
spherical trust region.
(iv)A Newton-Raphson direction, if any exists,
(v) A Newton-Raphson direction restricted to D .

Proof: The equivalence between (i) and (ii) is trivial, since the directions
are collinear. We must prove an equivalence for (iii).

14



Following the same procedure as in the proof of lemma 2.1, construct

g(Ax) = Ax'Vp(e) + -Ax'V2p(e)Ax

Taking the gradient and substituting (19)

-LVg(Ax) =V/(e) +V2/(e)Ax +V/(e)'AxV/(e)

If h solves (Hi), then again using Kuhn-Tucker theorem and (13),

JLcq -e+h- j^c'hcq +Vf(e)'h^cQ +Xh =0 (20)
Again an expression with the format (1 + X)h = -/?cg + e is obtained, and
h is equivalent to -eg by lemma 2.8.

(iv) A Newton-Raphson direction is a solution of (20) with A = 0. The
equivalence to (iii) is then trivial.
If h is a Newton-Raphson direction, then we can easily see that h + ae is
also a Newton-Raphson direction, for any real a , since Vp(e)'e = 0.
In particular, for h+ ae € 5, the resultingdirection is the conical projection
of h onto S , and must be a Newton-Raphson direction restricted to D .
This argument shows (v) and completes the proof.

Iri and Imai [13] studied the multiplicative potential function for a problem
stated with inequality constraints. Their conclusions are easily transported
to our formulation by the introduction of slack variables, and we conclude
that p(«) is strictly convex on S whenever the origin is not an optimal
solution to (1). The direction is then given by the unique Newton-Raphson
direction restricted to D . Using the lemma above, the resulting direction
is equivalent to Karmarkar's direction, and the algorithms are equivalent.
Following IriandImai, we conclude that iftheoptimal value for (1) isknown
and v = t), then Karmarkar's algorithm is quadratically convergent.

Directions of decreasing cost: Consider the transformed problem (9)
and the Karmarkar direction from e , h° = Ke(h). It is well known that h°
can be a direction of increasing cost, and modifications of this direction to
avoid this behavior were proposed by Padberg [17] , Anstreicher [2] and in
[11]. Following this last reference, whenever h° isa direction ofdecreasing
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cost, a modified direction

h = h-za , z > 0 (21)

can be found such that c'Ke(h) < 0. Reference [11] shows and explicit
expression to achieve equality, and a straightforward algorithm to achieve
inequality while preserving the same polynomial bound as Karmarkar's al
gorithm. The result is very simple: (21) corresponds to an increase in the
value of the parameter v . The lower bound must be increased in the ex
pression for h° until this direction becomes a direction of decreasing cost
(and v may become larger than v ).

These modified directions are important to deal with unbounded feasible
sets. If we guarantee that the cost decreases strictly along the search direc
tions, then convergence in values can be guaranteed for unbounded feasible
sets. If we guarantee non-increasing costs, then Anstreicher [2] shows that
only the optimal set must be bounded to guarantee Karmarkar's polynomial
bound.

Steepest descent without scaling: Whenever the problem is rescaled a
new projection matrix must be computed. It may be convenient to do steep
est descent iterations without rescaling to get the most of the last projection
matrix. In this case the steepest descent is not equivalent to second order
descent directions. A complete algorithm using such iterations is described
in [U].

The steepest descent direction from a point x will be proportional to
—V/(x), expanded in (13)

h=-CQ +^-^+xq ,x- =[xr1] (22)
n ^

To obtain the conical projection of h , we can use (8), again noting that
ap = 0. The simplified expression results in

h°= Kx(h) = -Cp + a'[c - va- wx~]xp + wx~ (23)

where
c'x-v

w = and xB = (x )p
n v y .

The computation of (23) needs only the computation of one projection x~ =
Px~ with the available matrix P . The vector xp is computed from
xv = ev + x —e since x-egD
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3.2 The conic function

We now study the zero-degree homogeneous function defined on C by

/(*) =£ (24)
Functions of this form were first used by Davidon [4], in a different context.
/(•) is well defined, since a'x > 0 for any x € C by lemma 2.1. It is a
zero-degree homogeneous function and for any x € C, f(x) = c'K(x).

An interesting feature of this function is that a spherical trust region
minimization can be easily solved exactly. Consider then the trust region
minimization for initial point e :

minimize{/(e + h)\heB] (25)

where

B = {hemn\heQ,\\h\\<i}

This problem is equivalent to

minimize{c'x | x € K(B)}

where K(B) is the set of conical projections of points in B . The set K(B)
is the intersection of a cone and a hyperplane, and therefore an ellipsoid.
We conclude that problem (25) has a unique solution that must be on the
boundary of B , corresponding to a point on the boundary of the ellipsoid.

The ellipsoid can be much larger than the sphere B f\ S that would be
the trust region in the affine gradient projection method (see section 4.1
ahead), and therefore the resulting direction can be more efficient than the
projected gradient direction.

The analytical solution of the trust region minimization is summarized
in the following lemma:

Lemma 3.4 The trust region minimization problem (25) has a unique so
lution h whose conical projection is given by

ftl =-cp+i!r^p(!¥-^W (26)|e-e.||^ 0 -»•

where fi € (0,1) is the positive root of the second order equation

(*2 +||e - e,||J)/J2 - 2fc/J+1- ||e - e„||J =0 ,k=^
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Proof: From the reasoning above, the problem has a unique solution h ,
||A|| = 1. The point e + h is in the boundary of the ball, and consequently
the ray {A(e + h) | A> 0} is tangent to the ball (otherwise h would not be
unique).
It follows that h _L e + A, or

h'e = -h'h = -1 (27)

Now consider the set

P = {e + d\ A(e + d) = A(e + h)} = {e + d\Ad = Ah}

Now, h must solve

minimize{/(e + d) \ e + d 6 P, \\d\\ < 1}

This set is a "slice" of the ball B parallel to S. In particular, for e + d 6 P,
a'(e+ d) = a'(e+ h), and the denominator of /(e + d) = c'(e+ d)/(a'(e + d))
is constant in Q . It follows that h must solve

minimize{c'(e + d) \ Ad = Ah,\\d\\ < 1}

The solution for this problem (minimization of a linear function in a ball)
must satisfy

^ = -077-^ , for some/?>0 (28)
llcpll

But hp —(hq)p = ha, since h €Q, and by definition of projection,

h = ha + aa ,||/i||2 = ||/i0||2 + a2|H|2

for some real a. Substituting (28) into these two equalities, and noting that

m = i.
h=aa-l}^! , (29)

/?* + a'lMI2 = 1 . (30)

Merging now (27) and (29),

Defining k = cpe/||cp||, and noting that a'e = 1,

a = k0-l _ (31)
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Computing now a2 from (31) and substituting into (30), we arrive to the
expression

(||affcJ)/3J-2fc||a||^ + ||o||2-l = 0

and the final result is obtained by setting ||a|| = ||e —ep||_1 from (4).
Since we know that the solution is unique and that P > 0 from (28), (3 must
be the positive solution to the equation, and the proof is complete.

3.3 Conclusions for projective methods

Summing up the results in this section, we end with very simple results.
Projective methods are built without changing the original problem. All
directions based on potential functions are equivalent, and produce the di
rection (15), repeated here:

ho m Ae-er)-v
\e-*,F

e,

The lower bound: In this expression v is a lower bound to an optimal
solution of (1). To find a lower bound following the method in Todd and
Burrell [19] and in [11], we must find v such that the vector eg = eg - va
has a non-positive component.
Using lemma 2.2,

eg =cp +(c'(e - ep) - v) C~* (32)

If a value of v is available such that cq has a nonpositive component, then
t; is a lower bound for v. Otherwise, a lower bound t; is found by a simple
ratio test to solve maximize{v|cg > 0}:

i—i,...,n ^e — "p)\

Guaranteed descent for the cost function is not assured by the direction
h°, but it can be obtained by increasing the value of v until c'h° becomes
negative, and polynomial complexity can still be obtained.

The other direction obtained by a projective method is the "natural" con
ical projection direction h1 in (26). This does not depend on lower bounds
for an optimal solution, but does not guarantee polynomial complexity.
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We saw then that there are only two different directions coming from
primal feasible direction projective methods. Both have the format

-cp + Pev ,

a linear combination of the directions —cp and ep . The extension to
bi-directional search procedures is immediate, and will be studied in section
5, after examining affine methods.

4 Affine methods

Affine methods are based on directions obtained by spherical trust region
minimizations on D = Null(A). Again we assume that the problem has
been rescaled to bring the current point to e .

4.1 Projected gradients

This method was immediately considered after the publication of Karmar
kar's algorithm, and uses the direction

h2 = -Cp (34)

Studies of this direction were made by Vanderbei, Meketon and Freeman
[21], Cavalier and Soyster [3] and a computer code was built by Adler, Re-
sende and Veiga [1]. The line search alonge+ Xh2 is a simple ratio test, and
the next point is chosen by a heuristic rule to avoid approaching too much
the boundary of 2RJ .

4.2 Barrier methods

Barrier function methods work with the penalized function

n

x eS*~* ftW^c'x-e^logXi , (35)
*=i

where € is the penalty parameter. They were first introduced by Frisch [6],
and developed by Fiacco and McCormick [5]. The similarity between Kar
markar's potential function and a barrier function method was immediately
noticed, and the use of a gradient method for this function was proposed by
Gill and al. [8].
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The derivatives of the penalized function are given by

V/e(e) = c-€e ,V2/e(c) = €/ (36)

and the steepest descent direction from e is given by

h3 =-±cp +ep (37)

Since the Hessian matrix is a multiple of the identity, /<(•) is strictly convex
and the steepest descent h3 coincides with the Newton-Raphson step, as
well as with the result of any spherical trust region minimization of the
second order approximation.

There is actually no need for scaling the problem, since the Newton-
Raphson direction can be computed directly for any point in S , but this
computation is precisely equivalent to scaling and projecting [11].

Barrier methods need at each iteration a value for the parameter e .
The master algorithm generates a sequence of values i* , and it is known
that the minimizers of the corresponding sequence of penalized problems
converge to an optimal solution of (1) under our assumptions. It is not easy
to design a strategy to reduce the values of the penalty parameter: large
reductions tend to reproduce the projected gradient method, while small
reductions produce path-following algorithms as we shall see below. The
method is closely related to Karmarkar's algorithm, and the values of € are
related to the values of the lower bounds v used by that method (we shall
also comment on this below).

4.3 Homotopy algorithms

The minimizers of the penalized function (35) for € varying between +oo
and 0 describe a smooth trajectory that has been known for a long time.
It was described by Fiacco and McCormick [5] for non-linear programming
problems, and recently by Megiddo [15] for linear programming. An algo
rithm to solve (1) by following this trajectory was proposed by the author
in [9], resulting in a complexity of 0(n3L) arithmetical operations with L
bits of precision. The algorithm proceeds by changing e by small steps
€k+i = (1 —o*)cjfe, a < 0.05 in each iteration, with improvements obtained
by one Newton-Raphson search per iteration. The algorithm is essentially
the classical barrier function method, and the originality is in the strategy
used to update the penalty parameter.
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Other homotopy equations can be considered, and again we will show
that several variations result to be equivalent. Consider the following func
tions, each dependent on a parameter:

x€EL+ hh. nlog(c's - v) - ^ log xt- (38)
*=i

n n
x e iR+, c'x<J *-> -——- - 53log*i (39)J -dx fel

n

x 6 JR", c'ar < A' *-+ -n log(JT - c'x) - £ log a:,- (40)
t=i

(38) corresponds to Karmarkar's criterion, and the other two correspond to
the problem of finding centers for the regions in which they are defined. For
(40), the problem of centers is

n

maximize{log(if - c'x) + ^logx,-1 x 6 S,c'x < K}
t=i

This problem was studied by Renegar [18], who by the first time designed
an algorithm to solve (1) in 0(no,5.£) iterations. The same problem was
studied by Vaidya [20], who proved a bound of 0(n3L) operations for a
path-following algorithm.

Each of the functions above contains a parameter, and varying these pa
rameters generates solution paths for the respective minimization problems.
Next lemma shows that these paths coincide.

Lemma 4.1 The solution paths associated to thefunctions (35), (38), (39)
and (40) coincide. If x minimizes the penalized function (35) for a pa
rameter € , then x minimizes the other functions for parameters given
respectively by

v = c'x —n€ , J = c'x + y/ne , K = c'x + ne (41)

Proof: The minimizers for all functions correspond to points in which the
projected gradients vanish. All we need to do is to compare the projected
gradients for all functions at a point x . They are, for the functions in the
order presented above:

CD - €X~
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n
*>•"*

dx —v p
Xp

n
— 3"™"

(J--c'x)2'* XP

n

•XPK — ex

It is immediate to check that the substitution of the parameter values in (41)
reduce all four expressions above to identical formulas, and consequently
with the same solution, completing the proof.

This lemma shows that again, there are few possible variations on algorithms
to follow these trajectories, since they coincide and the projected gradients
are similar. The barrier function is the simplest of these functions, and
is strictly convex. Karmarkar's function is not convex, and can impose
difficult numerical problems in the line-search procedures; the methods of
centers are limited by the need to keep the present iterate feasible (K >
c*xk for Renegar's function), thus preventing great reductions in cost per
iteration. The barrier function approach is the the most promising, since
bold variations of the parameter can be used without serious numerical
problems.

A complete algorithm to follow the center trajectory can be stated now,
but we shall first look at bidirectional search procedures, and a further step
in the equivalence of algorithms.

5 Bi-directional search procedures

Summing up the results of the previous sections, all studied algorithms are
composed by iterations with the following structure:

Consider (with someabuse of notation) Karmarkar's potential function /„(•)
and the barrier function /«(•)» with parameters respectively denoted by v
and € .

Start at point e.

Choose an objective function (/«(•)» /«(*)» dx).

Choose a parameter value (v, e) if one is used.

Choose a direction of the form h = —cp + aep.
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Do a line search along h to minimize the chosen objective along the
chosen direction.

The line search procedure examines points e —Acp + Aaep, with fixed
a , reflecting the fact that fixed spherical trust regions were used in all
the algorithms. But there is no reason (besides simplicity) to use spherical
regions. A still simple but expanded trust region corresponds in each case
to the bi-directional search on the bi-dimensional region defined by

B = {e-acp + /?ep|a>0,/?€iR,e-acp + /3epG jR£} (42)

The search region is now the same for all methods surveyed by us. The
only difference is in what to minimize. All methods are improved, since the
region in which the minimization is done always increases.

Some insight in the role of the parameters is gained by the following
lemma:

Lemma 5.1 Let x = e —acp+ Pep be a point in B . Then x minimizes
fv(') in B if and only if x minimizes /«(•) in B with

<=^^ (43)
Proof: The proof is essentially the same as that for lemma 4.1: choosing
the value of € , given by (43), the gradients of both functions at x become
collinear, and the optimality conditions on B coincide.

The lemma above asserts that given the parameter for one of the methods
there exists a value for the parameter in the other method such that the
search gives the same results for both methods. But it does not say how
to relate the parameters without knowing the solution of the bi-directional
search. We end up with two different methods, but the only difference is in
the choice of the parameter.

There is a natural way of choosing a lower bound at each iteration of
Karmarkar's method, as we commented before (33), but there is no guar
antee neither that this is a good lower bound nor that even for v = v the
resulting improvement is good.

There is also a natural way of choosing the parameter € in a path-
following algorithm, and we shall show it in our last section.

The bi-directional search procedures: minimizing one of the three
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criteria in B is an optimization problem in two dimensions. If the criterion
is cost, then it is a linear programming problem, which can easily be solved
by heuristic techniques based on geometric reasoning. For the other criteria,
it is easy to compute derivatives along the variables a and P , and use a
Newton or Quasi-Newton method.

A complete bi-directional search for the barrier function will be presented
in the next section.

6 The complete path following algorithm

We are ready to present a complete path following algorithm using the bar
rier function and a bi-directional search solved by a quasi-Newton algorithm.
The master algorithm is the same as in [12]. Each iteration scales the prob
lem, chooses a value for t and performs a bi-directional search to reduce
/«(•) . The key point is the choice of € , to be discussed in detail below.
Weassume that an initial feasible point x° is given.

Algorithm 6.1 Path-following : given x° eS, r 6 (0,1), S > 0.

k := 0

Repeat

Scale the original problem about xk obtaining problem (1) with
initial point D~lxk = e, with D = diag(x\,... ,£*).
Compute the projection matrix P onto the feasible set and set

Cp := Pc , ep := Pe

Compute c by algorithm 6.2 below.

Use a bi-directional search algorithm (see below) to find a new
point y € S such that ft(y) < /e(e)

Return to the original space with xk+1 = Dy
k:=k + l

Until e < 6

The choice of e :
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Reference [12] shows that good results may be expected if one tries to follow
as closely as possible the central trajectory

{x€ € S | xc > 0, xt minimizes /«(•) on 5}

The choice of the penalty parameter will be based on an estimate of the
distance from e to this trajectory.

Consider the scaled problem and the feasible point e . At this point the
penalized function for a given e > 0 has

V/e(e) = c-ee , V2/€(e) = €/

The projected Newton Raphson step h€ from e is the given by

-PV/e(e) + €lht = 0 , or

K=-C-f +ep (44)
Given a value € > 0, the Newton-Raphson direction h€ corresponds to
the minimization of the quadratic approximation of /e(*)i and consequently
e + ht estimates the point xt , and \\ht\\ estimates ||e —xe||. The distance
from e to the central trajectory is then estimated by

rf = inf{||/ie||[€>0} (45)

If cJ,cp ^ ° then for anv €> °» II ~ ^ +epll > llepll» and d = llepll for € ~~* °°-
In this case the only possible conclusion is that e is too far from the central
trajectory for the estimate to be reliable. Otherwise, we shall be concerned
with

?=argmin{||-^ +ep|||€>0}
The solution to this problem is easily obtaining by differentiating the ex
pression for \\he\\2 and equating the derivative to zero:

2(-^+ep)'ep^ =0

€=!!£e£ ,forcpep>0 (46)
cpeP

The algorithm below will examine these two possibilities.

Algorithm 6.2 Computation of € : given a reduction factor r € (0,1)
(typically 0.1).
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If c'pep < 0 then set e := ||c,

Else set € := re, with € computed by (46)

In the algorithm above, if e is far from the central trajectory then e
is chosen to weight equally cost reduction and proximity to the "center" of
the feasible set (the point that maximizes J2?=i logx,-).

Otherwise, I is found corresponding to a point in the central trajectory
near e , and the parameter is reduced for the next iteration. Small reductions
of the penalty parameter produce well behaved sequences that follow the
trajectory and guarantee polynomial complexity; bold reductions of € may
lead to fast convergence. A typical value of the reduction is r = 0.1, and it
can be made adaptive: a deeper reduction can be used in an iteration if the
former search produced a point very near the central trajectory.

An interesting remark about the computation of e is obtained by sub
stituting (46) into (44) to get

cLepy

p\
^-TrhjjCp +e,

and then Cp/i7 = 0. The Newton-Raphson direction associated to e is
orthogonal to the cost, and corresponds to moving from e to a point on
the central trajectory with the same cost as e .

The bi-directional search

The searchproblem corresponds to a minimization of the penalized criterion
/«(•) in the bidimensional region B defined in (42). Let us state this as a
problem in two dimensions.

For each pair (a,/?) € JR2, define p(a,/?) = e-acp + /?cp, and define

9c(a, P) = Mp(a, P)) for (a, P) such that p(a,P) > 0 (47)

Then the bi-directional search problem is

minimize^(a, p) \ a > Q,p(a,P) > 0}

The derivatives of ge(>) are :

9a ~ M +t^P.(a,/3)
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It is also easy to compute the hessian matrix:

cpi ~~cpiepi*(«•« =<£n7z-
Now any non-linear programming algorithm can be used to find the unique
solution to the two-dimensional problem. The objective function is strictly
convex, and Newton-Raphson algorithm can be used. We chose BFGS al
gorithm, with good preliminary results in about three iterations.

We shall not describe the algorithm, since it is well known. Each iteration
chooses a direction d = —H~xVgt{a,P) in the two-dimensional space, where
H is either the hessian matrix or an approximation to it that is updated
at each iteration. A line search in S along the direction h = -d\cp + d2ep
produces the new iterate. The line search can be efficiently implemented
using an algorithm by Murray and Wright [16].

7 Conclusions

At this time only small problems have been solved by us using the path-
following algorithm. These preliminary results show a very good behavior,
but the affirmation that it is the best among the algorithms cited in this
paper is still premature. It was definitely superior to all others, including
the bi-directional versions of Karmarkar's algorithm for the small problems
tested up to now, including the problem in Iri and Imai [13] with 29 variables
(after introducing slacks) and 17 restrictions and some problems of similar
size generated randomly.

The theoretical advantage of the method in relation to the others is in
the sound interpretation of the parameter € from the homotopy approach.
This parameter is much more controllable than the lower bounds used in
Karmarkar's algorithm, since there is no way of predicting how well the
available methods to compute them will approach the optimal value of the
problem.
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