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CELLULAR NEURAL NETWORKS '

Leon O. Chua and Lin Yang ft

ABSTRACT

A novel class of information-processing systems called cellular
neural networks is proposed. Like neural network, it is a large-scale
nonlinear analog circuit which processes signals in real time. Like cel-
lular automata, it is made of a massive aggregate of regularly spaced
circuit clones, called cells, which communicate with each other directly
only through its nearest neighbors. Each cell is made of a linear capa-
citor, a nonlinear voltage-controlled current source, and a few resistive

linear circuit elements.

Cellular neural networks shares the best features of both worlds; its
continuous time feature allows real-time signal processing found want-
ing in the digital domain and its local interconnection feature makes it

tailor made for VLSI implementation.

Although still in its embryonic stage, some impressive applications
in such area as image processing will be demonstrated, albeit with only
a crude circuit. In particular, examples of cellular neural networks
which can be designed to recognize the key features of Chinese charac-
ters will be presented.
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1. INTRODUCTION

Analog circuits have had a very important role in the development of the modern
technology. Even in our digital computer era, analog circuits still dominate such fields
as communication, power, automatic control, audio and video electronics because of
their real-time signal processing capabilities.

Conventional digital computation methods have run into a serious bottleneck
problem due to its serial character. To overcome this problem, a new computation
model, called "neural networks", has been proposed, which is based on some aspects
of neurobiology and adapted to integrated circuits[1,2,3]. The key features of neural
networks are asynchronous parallel processing, continuous-time dynamics, and global
interaction of network elements. Some encouraging if not impressive applications of
neural networks have been proposed for various fields such as optimization, linear and

nonlinear programming, associative memory, pattern recognition and computer
vision[4,5,6,7,8,9].

In this paper, we will present a new circuit model, called a cellular neural net-
work, which shares some key features of neural networks and which has important
potential applications in such area as image processing. In Section 2, we will define
our cellular neural network model and discuss some related circuit problems, such as
stability, dynamic range etc., with the help of circuit and system theory[10]. In Section
3, we will provide some examples of its applications in image processing, especially in
the recognition of Chinese characters. In Section 4, we will discuss the mathematical
foundation of cellular neural networks and its relationship with two other well-known
mathematical models; namely, partial differential equation and cellular automata, We

will also formulate the generalized mathematical equations governing multi-layered
cellular neural networks.

2. CELLULAR NEURAL NETWORK MODEL AND SOME RELATED
THEORETICAL PROBLEMS
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2.1. Model of cellular neural networks

The basic circuit unit of cellular neural networks is called a cell. It is made of
linear and nonlinear circuit elements, which typically are linear capacitors, linear and
nonlinear resistors, linear and nonlinear controlled sources, and independent sources.
The structure of cellular neural networks looks like that found in cellular automata;
namely, any cell in a cellular neural network is connected only to its neighbor cells.
The connected cells can interact directly and the far away cells may affect each other
indirectly because of the propagation effect of the continuous time dynamics of cellular
neural networks. An example of a two-dimensional cellular neural network is shown
in Fig. 2.1. Theoretically, we can define a cellular neural network of any dimension,
but in this paper, we will concentrate on the two-dimensional case because here, we

will focus our attention on image processing problems.

Consider an Mx N cellular neural network, having Mx N cells arranged in M
rows and N columns. We call the cell on the ith row and the Jth column as

cell (i, j), and denote it as C(i, j) as in Fig. 2.1. Now let us define what we mean
by a neighborhood of C (i, j).

Definition 2.1

The neighborhood of a cell, C(i, J), in a cellular neural network is defined as

NG, j) = {C(k,l) ;max {Ik —il, |1 -jl}Sr, 1<k <M, 1<I<N } @2.1)

where r is a positive integer number.

Figure 2.2 shows 3 neighborhoods of the same cell ( located at the center ) with
r =1, 2 and 3, respectively. Usually, we call the r = 1 neighborhood as a 3x3 neigh-
borhood, the r = 2 neighborhood as a 5x5 neighborhood, and the r = 3 neighborhood
as a 7x7 neighborhood. It is easy to show that the neighborhood system defined above
has the symmetry property in the sense that if C@, j)eN(k,!), then C (k, eN(, j),
for all C(i, j) and C(k, !) in a cellular neural network.
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A typical example of a cell of a cellular neural network is shown in Fig. 2.3,
where the first suffix u, x, and y denotes the input, state, and outpur respectively.
The node voltage vxij of C(i, j) is defined as the state of the cell whose initial condi-
tion is assumed to have a magnitude less than or equal to 1; the node voltage Vuij 18
defined as the input of the cell and is assumed to have a magnitude less than or equal
to 1 for all time 7; and the node voltage vyij is defined as the output. C is a linear
capacitor; R, and R, are linear resistors; / is an independent voltage source;
L,@,jk,l) and ],y (i,jsk,l) are linear voltage controlled current sources with the

characteristics Ly (iojsk ) =A(i,jk,! Wy and L, (i,j:k,l)=B(,jk v for all

Ck,l)e N(, j); I, = -Rl— f (vx;j) is a piecewise-linear voltage-controlled current
y

source with its characteristic f (-) as shown in Fig. 2.4; and E;; is an independent vol-

tage source. All the linear and piecewise-linear controlled sources used in our cellular

neural networks can be easily realized by operational amplifiers (op amp)[10,11].

The circuit equations of a cell which satisfies KCL and KVL are easily derived as
follow : '

State equation :

d v, ()
c Sm® 1 i)+ X AG kv ()
dt R, C(k)eN(i,f)

+ ¥ B(.jiklwu+ I 1<i<M, 1Sj<N, (2.2a)
C(k)eN(,j)

output equation :
1 . .
wi0=7 (@411 = g@-11) 19,1990, @2

constraint conditions :
va,-j(O)I <1 1sisM, 1N, (2.2¢)

Ivij| 1 1sisM, 1<j<N. (2.2d)



Remarks :

(a)

(b

(©)

(d)

2.2,

All the inner cells of a cellular neural network have the same circuit structures
and the same circuit elements with the same values. The inner cell is the cell
which has (2r + 1)? neighbor cells, where r is defined in (2.1). All the other
cells are called boundary cells. A cellular neural network is completely charac-
terized by the set of all nonlinear differential equations associated the cells in the
circuit.

All the cells of a cellular neural network have at most three nodes. ( Some times
we will choose E,-j =0if B(i,j;k;l) = 0 for all the cells in a cellular neural net-
work. In this case, there are only two nodes in a cell circuit. ) Since all the cells
have the same datum node, and since all circuit elements are voltage controlled,
our cellular neural networks are ideally suited for the nodal analysis method.
Moreover, since the interconnections are local, the associated node equation is

extremely sparse for large circuits.

The dynamics of a cellular neural network has both feedback and feed-forward
mechanisms. The feedback effect depends on the interactive parameter
A(i,j;k,l) and the feed-forward effect depends on B (i,j;k,!). Consequently, we
will sometimes refer to A (i J3k,l) as a feedback operator and B(i,jk,) as a

feed-forward operator.

The values of the circuit elements can be chosen conveniently in practice. R,
and R, determine the power dissipated in the circuits and are usually chosen to
be 103 ~ 105 Q. CR, is the time constant of the dynamics of the circuit and is
usually chosen to be 107! ~ 1078 seconds.

The dynamical range of cellular neural networks

Before we design a physical cellular neural network, we have to know its dynam-

ical range in order to guarantee that it will satisfy our assumptions on the dynamical

equations stipulated in the preceding section. The following theorem provides there-
fore the foundation for our design.



Theorem 2.1

All the states of the cells in cellular neural networks are bounded and the bound

Vmax Can be computed by the following formula for any cellular neural network :

=1+R_|I| +R [ A ,jk,
V max < 1] xlsisﬂn},al);jsN [C(k,[glv(i,j) | A@,j ) |
+ | B(@i,jk,0) | ]] . (2.3)

Proof:

First, we rewrite the cell dynamical equation (2.2) as

d inj(t) 1 R
71 =—Rxcvxij(t)'*‘fij(t)"'gij(u)’*']
for 1<i<M, 1Sj<N, (2.42)
where
f,,(:):% Y AGjklvy)  for 1SiSM, 1SjSN,  (2.4b)
Ck)eN(,j)
g,-j-(u)=% Y Bkl for 1SisM, ISjsN,  (2.40)
CkIIENG.j)
and

==, (2.4d)

A~

Equation (2.4a) is a first-order ordinary differential equation and its solution is given
by

=t r —(t-1)

—

Vyij(2) = Vaij (O)eRx_C + je R,C [fij () + g;j(u) + I ] dt. (2.5)
0

It follows that
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- t -t

vaij(t)' < vaij(o)em:l +|Ie k.C [f;j('t)+g,-j(u)+f ]d’tl
0

- t —=(-T

S @1+ e B (17501 + 15001 + 171 ] an
0

4 t —U-t

&C*'P%'*GU+|f|]P RC g
0

< va,-j(O)Ie

< |vyj (0] +RxC[Fij +Gj; + lil],

where

1 -
Fysmax|fy®Ol sz B 1 AGHKD |vy)]
‘ CkDEN )
1 ..
Oj =maxlg;)l = % | BGEjk) vl
“ C(k1)eNG,j)

(2.6)

(2.7a)

(2.7b)

Since |Vxij(2)] and |vuij | satisfy the conditions in equations (2.2c) and (2.2d),

and since lvy,-j (¢)| satisfies the condition

lvyij(t)l <1 for all ¢

in view of its characteristic function (2.2b).

It follows from (2.6) and (2.7) that

Ivzij(t)l < |V:“J(0)' +Rx{ Z [l A(l’.];kal) l'vyld(t)l
C(kl)eN(i,j)

F I BGjk) | vy ]+ 11 ]

(2.8)

51+Rx[ 2 [I ATk |+ | BG,jsk,l) | ]+ 17 ]

Ckl)eN(,j)

(2.9)



Now let

Vmax = max 1+Rx|]|+Rx Z [IA(i,j;k,l)l
.j) CkD)eN(,)

+ | B(i,jsk,0) | ]}, (2.10)

then since v,,, is independent of the time ¢ and the cell C(@,j) for all i and j, we

have

max | vy | < vy for all 1<i<M, 1<j<N. (2.11)
14

For any cellular neural network, the parameters R,, C, 1, A(i,j;k,l) and B(i,j:k,l)
are finite constants, therefore the bound of the states of the cells, v, is finite and can

be computed via formula (2.3). O

Remark :

In actual circuit design, we always choose the scale of the circuit parameters such
that R, [I| =1, R |A(i,j;k,0)| =1 and R |B(i,j:k,l)| =1, for all i, j, k and 1.
Hence, we can easily estimate the upper bound of the dynamic range of our cellu-
lar neural networks. For example, if a neighborhood of the cellular neural net-
work is 3x3, then we can have v,,, = 20 V, which is within the ball park for IC

circuits.

2.3. The steady states of cellular neural networks

One of the applications of cellular neural networks is image processing, which
will be discussed in the later sections. The basic function of a cellular neural network
for image processing is to map or transform an input image into another image;
namely, the output image. Here, we restrict our output images to binary images with
-1 and 1 as the pixel values. However, the input images can have multiple gray levels,
provided their corresponding voltages satisfy (2.2d). This means that our image pro-

cessing cellular neural network must always converge to a constant steady state after
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any transient initialized and/or driven by a given input image. How can we guarantee
the above convergence requirement of cellular neural networks and what are the condi-
tions or restrictions for such convergence to be possible? In this section, we will dis-

cuss the convergence property and its related problems for cellular neural networks.

For dynamic nonlinear circuits, one of the most effective approaches to study
their convergent behaviors is Lyapunov’s method. Hence, let us first define a

Lyapunov function for cellular neural networks.

Definition 2.2

We define the Lyapunov function, E (¢ ), of a cellular neural network by the scalar
function

1 . . 1
E@)= ~ 3 T AG.Jk vy ) + SR X Vi)
(7 )k D) X (i,j)

= T T Bk Wy = 3 Ivyi0). (2.12)
(i ,)kD) ()]

Remark :

Observe that the above Lyapunov function, E (), is a function of only the outpur
voltages Vyij and the input vyij of the circuit. Although it does not possess the
complete information contained in the state variables Vyij, W€ can nevertheless

derive the steady state properties of the state variables from the properties of
E ().

The Lyapunov function, E(z), defined above, can be interpreted as the "general-

ized energy" of a cellular neural network. In the following theorem, we will prove
that E(z) is bounded.



Theorem 2.2

The function E (r) defined in (2.12) is bounded by
max [E(t)| < E o (2.13a)
t

where

1 .. . .
max_i ElA(l’j;k’l)l + Z Z IB(Z:J;IC’I)I
G,k 1) @)Xk )

1
+MN(2R

X

+ 1), (2.13b)

for an Mx N cellular neural network.

Proof :

From the definition of E (¢), we have

|E(t)|S%ZEIA(i,j;kJ)HVy;,(t)II ()] + = Zv

)k ) Ry (.j
+ T T ABGj#kD vy @) vy, + Z 11 1vs. (2.14)
()R )

Since v yij (£) and Vuij are bounded as stipulated in (2.2 ¢ ,d), we have

E@| S =3 3 1AGj#0)| + MN—L-
G)Ed) 2R,

+ 2 X IBG,jskl)| + MN|I|. (2.15)
()0 D)

It follows from (2.13b) and (2.15) that E(¢) is bounded via (2.13a). DO

In addition to the above bounded property of the function E(r), we can prove
another important property.
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Theorem 2.3

The scalar function E (¢) defined in (2.12) is a monotone-decreasing function, that
is

<0. (2.16)

Proof :

To differentiate E () in (2.12) with respect to time ¢, take the derivative of Vyij (1)
on the right side of (2.12) with respect to v,;;(¢), and then differentiate Vxij (£) with

respect to time ¢ :

d E@)
dti

Vyij d vxi’(t)

d
@)k dvy; dt

vyld (t )

+ L d vy;j

1

vy (1) (2.17)

dv...
- Y X B(i,jkil)—2 Vo
Gk dvg; dt

]d Vyij d Vy;(2)
@) G Vxj dt

From the output functions in (2.2b), we obtain the following relations

d v, 1 v | <1
.o xif
d v, { 0 vglz21 (2.182)

and

Viij = Vyij lveij | < 1. (2.18b)
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V.::
X = 0, for lvx,-j | =1.) And according to our definition of cellu-

VJ“J

(Here, we define
lar neural networks, we have

AGi,jkd)=0, B(i,jk,])=0 for C(k,l) e N, j). (2.18¢)

It follows from (2.17) and (2.18) that

d E(t) d vy d vy;(t) ..
=-3 > AL j k()
d1 N Vhj At loanena. ¢

1 ..

-— -R—inj(t) + Z B(l,];k,l)vuu +1 ]
X C(k,l)eN(i,j)

d vy, ()

==X = T AGkbvue) (2.19)

v |<1 t Ck)eN(,j)

1 . .
-— R_vxij(t) + Z B(l,};k,l)vukl +I }
x Ck.eN(,j)

Substituting the cell circuit equation (2.2) into (2.19), and assuming C > 0, we obtain

i 12
dE(@) _ s ¢ d Vyij (1)
dt i<t L dt |
i 72
d vy (t)
=- ¥ c|—=2-2 (2.20)
Ivil<t L dt
2
=->:C[d Vy"’(t)]
) dt
<0. 0

From Theorems 2.2 and 2.3, we can easily prove the following important result :
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Theorem 2.4

For any given input v, and any initial state v, of a cellular neural network, we

have
imE () = constant (2.21a)
{ —oo
and
lim £ _ o (2.21b)
1 —oo d t
proof :

From theorem 2.2 and Theorem 2.3, E(¢) is a bounded monotone-decreasing
function of time r. Hence E(r) must converge to a limit and its derivative must con-
vergeto 0. O

Corollary

After the transient of a cellular neural network has decayed to zero, we always

get constant dc outputs. In other words, we have

limvy,-j (t) = constant I<i<M, 1<j<N. (2.21c)
100

Let us investigate next the steady state behavior of cellular neural networks. It

follows from the proof of Theorem 2.3 that under the condition -‘%’—) = 0, there are

three cases for the state of a cell :

d vxij (t)

) dt

=0 and |vg| <1; (2.22a)

d vxij(t)

) dt

=0 and |vg| > I; (2.22b)

d vy (t
3) %’t(—);ﬁo and vy | > 1; (2.22c)
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Since Theorem 2.4 says nothing when [vxij(t)| > 1, is it possible then for all
three cases to exist when a cellular neural network is in its steady state, or can only

one or two of them exist? We claim that only case (2) can exist in the steady state.

To prove this claim, let us rewrite cell equation (2.2) as follow :

C % ==f(vjt))+g(@) (2.23a)
where
Fuij@)) = =05AG./50.0) (| v+ 1| = | vgie) =1 |)
+ évxx‘j(t) (2.23b)
and
g(t) = > s + Bk )+ 1 @230

C(kl)eN(i,j)and=C (i ,j)

Let us first make some restrictions on the function F () in (2.23b). Suppose
A(jiij)> %; for convenience and without loss of generality, let A (i,j;i,j) = 2 and

R, =1 in the following analysis. Then f (vijy has the characteristic shown in Fig. 2.5.

Consider next the equivalent circuit of a cell in a cellular neural network as
shown in Fig. 2.6. There are only three circuit elements, a linear capacitor with a
positive capacitance C; a piecewise-linear voltage controlled resistor with its driving-
point characteristic i = f (v) ( f () is the same function as in Fig. 2.5 ); and a time-
varying independent current source having a time-dependent function given by g(z).
The two circuits in Fig. 2.3 and Fig. 2.6 are equivalent because they are both described
by (2.23a), which we rewrite for simplicity as follow :

dv(t
D = —f @)+ 5. (224)
For g(t) = 0, the equilibrium points and the dynamic route [10] of the equivalent cir-
cuit are shown in Fig. 2.7a. There are three equilibrium points in this circuit, one of
them, v =0, denoted by a circle is unstable; the other two, v =-2 and v =2, are

stable, and are denoted by solid points. The unstable equilibrium point is never
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observed in physical electronic circuits, because of the unavoidable thermal noise. So,
after the transient, and depending on the initial state, the circuit will always approach
one of its stable equilibrium points and stay there forever. For example, if the initial
state of the circuit is v = 0.5, then the steady state will be at the srable equilibrium
point v = 2; but if the initial state of the circuit is v = —0.5, then the steady state will

be at the stable equilibrium point v = -2,

If g(t) = constant # 0, there are six different cases of the dynamic behavior of
the equivalent circuit as shown in Fig. 2.7b-g. For the cases in Fig. 2.7 (b) and (c),
there are also three equilibrium points; one of them is unstable, while the other two
are stable. For the cases in Fig. 2.7 (d) and (e), there are two equilibrium points; one
is unstable and the other is stable. For the dynamic route in Fig. 2.7f and Fig. 2.7g,
there is only one equilibrium point for the circuit, and it is stable. It is very important
to notice that all the stable equilibrium points for the seven dynamic route cases of the
equivalent circuit of a cell in cellular neural networks share the common property
lv| > 1.

Let us return now to the basic cell circuit of our cellular neural networks. Since
g(z) is a function of only the outputs, Vyu (t), and the inputs, v,y , of the neighborhood
of the cell, it follows from the results of Theorem 2.4 that all the outputs of our cellu-
lar neural network are constants. Hence, after the initial transients our assumption
g(t) = constant is valid for the study of the steady state behavior of cellular neural

networks. Let us summarize our above observations as follow :

Theorem 2.5

Assuming the circuit parameters satisfy
c e 1
A (l sJ ot 1]) > ;', (2.25)

then each cell of our cellular neural network must settle at a szable equilibrium
point after the transient has decayed to zero. Moreover, the magnitude of all
stable equilibrium points is greater than 1. In other words, we have the following
properties
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lim |vxij ()] > 1 1<SisM, 1SN, (2.26a)
1 =00
and
limvy,-j(t) =+1 I<SisM, 1<j<N. (2.26b)
L —oo
Remarks :

(@) The above theorem is significant for cellular neural networks, because it implies
that the circuit will not oscillate or become chaotic.

(b) Theorem 2.5 guarantees our cellular neural networks have binary-value outputs.

This property is very important for the classification problems in image process-
ing applications.

3. APPLICATIONS OF CELLULAR NEURAL NETWORKS IN IMAGE PRO-
CESSING

In the following, we will use the cellular neural network model analyzed in the
previous sections to solve some image processing problems. So far we have stressed
only the steady-state behavior of cellular neural networks. However, for applications
in image processing, the transient behavior is equally important. In fact, it is the tran-
sient behavior which makes it possible to extract different features from the same pic-
ture or to deal with various image processing problems. The role played by the cellu-

lar neural network’s transient behavior will be cleared from the following examples.

3.1. A simple example

Before we consider the real image processing problems, it is instructive to look at
a very simple example. Although it is a much simplified image processing problem,
this example will help us understand some of the dynamic behaviors of cellular neural
networks and derive some intuitive ideas on how to design cellular neural networks for

a specific practical image processing problem.
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One of the important problems in image processing is pixel classification [12].
To illustrate this concept, consider a small image as shown in Fig. 3.1a. This image is
a 4x4 pixel array with each pixel value P;; e [-1, 1], for 1<i<4 and 1<j<4. Suppose
that the pixel value, -1, corresponds to the brightest gray level or the white back-
ground, and the pixel value, 1, corresponds to the darkest gray level or the black
object point value. The pixel classification problem is to classify each pixel of an

image into two or more classes.

From the mathematical point of view, pixel classification can be considered as a
map, F, which maps a continuous vector space to a discrete vector space as defined
below

MxN
F : [a,b]M"N—>{A,B,C,'~-} (3.1

where Mx N is the number of pixels in the image. To use our cellular neural network
for pixel classification, assume the output images belong to the two-class case. For
this simple example, we wish to assign to each pixel in the array one of the two
values, -1 and 1, based on some -classification rules. For this case, the pixel
classification map, F, is

MxN
F: [-1.0, 1.0]M><N—>{—1,1} ) (3.2)

Suppose that we want to design a horizontal line detector by using a cellular
neural network to check whether or not there are horizontal lines in the input image in
Fig. 3.1a. To simplify our analysis, we have chosen a very simple dynamic rule for
this "horizontal line detector" circuit. We chose the circuit element parameters of the
cell C(i,j) as follows:

C=10°F; R, =10°Q; I=0;
AGJi=1Lj=1) = A(,j5i-1,j) = A(i,j;i-1,j+1) =0 ;
AGLJ58,0) = 2x107Q75 A j5i,j-1) = A(,j3 j+1) = 1073Q7! ;

AGJI+Lj=1) = A(L,j5i+1,j) = A, j5i+1,j+1) = O;
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for the 3x3 neighborhood system. Since the interactive rules, which is determined by
the feedback operator A (i,j;k,/) shown above, are independent of the absolute posi-
tion of a cell, that is each cell has the same interactive relation with its neighbors as
the other cells in the same cellular neural network, we can simplify the expressions of
the parameters A (i ,j ;k,!) for the cell C(i,j) by coding them as follow :

AF1-1)=A(-1,00=A(-1,1)=0;
A(0,0) = 2x107Q; A(0,-1) = A(0,1) = 1073Q ;
A(1,-1)=A(1,00=A(1,1) = 0.

The indices in the above interactive parameters indicate the relative positions with
respect to C(i,j). Therefore we can express the above interactive voltage-controlled
current source parameters in the neighborhood of a cell by a two-dimensional operator
as shown in Fig. 3.2, and call it the templet of the interactive operator of the cell with
its neighbor cells. This templet is constructed as follow : the center entry of the tem-
plet corresponds to A (0,0); the upper left corner entry of the templet corresponds to
A (-1,-1); the lower right corner entry of the templet corresponds to A (1,1); and so
forth. Since this templet expression is a very convenient way to characterize the
interactions of a cell with its neighbors, we will use the templet expression to express

the neighborhood controlled sources in the following examples.

The cell dynamical equations of the cellular neural network corresponding to the
above parameters are given by :

d vy (2)
y Jt = 106 [—-vxij (t) + Vyij_l(t) + 2Vy,‘j (t) + Vy"j_,_l(t)] (333)
and
Vij () =05 (| v @) + 1| = | vyi(r) = 1 |) (3.3b)

for 1<i<4, 1<j<4.

Note that we have chosen the feed-forward operator B(i,j:k,0)=0 for all i,j,k,0 in
this circuit.



- 18-

Suppose that the initial state of the cellular neural network is the pixel array in
Fig. 3.1a. From above analysis, we know that the circuit equations in (3.3) are first
order nonlinear ordinary differential equations. In system theory, they are also called a
piecewise-linear autonomous system. So, the cellular neural network in this example is
a piecewise linear autonomous circuit. Now, let us first analyze the steady state of this
cellular neural network. The equilibrium points of the circuit can be found by solving

the equivalent DC equations
Vx"j (l) = Vy"j_](t) + 2vyij @)+ vyij+l(t) (343)

Vij8) =05 (v (1) + 1| = | wy(e) =1 |), (3.4b)

In this case, there are 32 unknown variables and 32 equations ( 16 linear equa-
tions and 16 piecewise linear equations ). In general, for piecewise linear circuits, we
can find all the solutions of the DC circuit equations either by the brute force algo-
rithm [13] or by some other improved efficient algorithms [14, 15]. However, even
for this very simple example, it is time consuming to find all of the equilibrium points
of the cellular neural network by using the algorithms mentioned above because of the
large size of its circuit equations. ( Note that if the circuit is not piecewise linear,
there is no general method to find all its equilibrium points. )

To simplify our problem, we will take advantage of various features of cellular
neural networks in our analysis. As mentioned before, every cell in a cellular neural
network, has the Same connections with its neighbors. Therefore, each cell circuit
equation is the same as that of the other cells in the same circuit. ( Here we ignored
the difference of the inner cells and the boundary cells again. ) Hence, we can under-
stand the global properties of a cellular neural network by studying the local properties

of its cell. This approach is a very important and typical method for cellular neural
networks analysis and design.

Before analyzing this example, it is helpful to introduce the following definitions.

Definition 3.1



-19 -

The local equilibrium states of a cell circuit are the solutions Vyij Of the DC cell

circuit equations under the condition that all outputs vy;; of its neighbor cells are

in a stable steady state, that is either -1 or 1;

Definition 3.2

The local stable equilibrium states of a cell circuit are its local equilibrium states

with their corresponding outputs equal to +1.

Definition 3.3

A global stable equilibrium point of a cellular neural network is the circuit state

vector with all its state components consisting of local stable equilibrium states.

Now, let us compute the local stable equilibrium states of an inner cell of the
preceding circuit example. Considering the condition in the above definitions, the
local stable equilibrium states can be solved by setting (3.3a) to zero and solving for

Vxij With vy;; taking on either the value +1 or -1 :
Vyij = sign [vy,-j_l] + 2sign [vy,--] + sign [vy‘-j +1] (3.5a)
lveij | 21 (3.5b)
l<si<M,1<j<N.

Substituting Vyij-1 and vy, in the above equations by +1, we obtain the follow-
ing four cases:

(@) For vy ; =-1 and Vyij+1 = —1, we have vy; = -2 + 2sign [vx,-j ], and
hence Vyij = —4.
(b) For Vyij—1 =+1 and vy, = —1, we have Vxij = 2sign [vx,-j ], and hence

Vx"j = —2, or 2.
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(©) For vy;;_; =-1 and Vyij+1 = +1, we have v;: = 2sign [vxij ], and hence

Vx"j = —2, or 2.

(<)) For vy;; 1 =1 and Vyij+1 = 1, we have v,;; = 2 + 2sign [vx,-j ], and hence

inj = 4.

It follows from the above analysis that the local stable equilibrium states of any
inner cell circuit for our present example are -4, -2, 2 and 4. We can also compute
the dynamic range of this circuit by using (2.3). The result is v, =5 V.

The local stable equilibrium state of each cell depends on the local stable equili-
brium states of its neighbor cells. Of course, if the input of the cellular neural net-
work is not zero, then the local stable equilibrium states of the cell circuit will depend
also on the input. So, the global stable equilibrium states of a cellular neural network
depend on the initial conditions, the inputs and the dynamic rule of the circuit. The
properties of the global stable equilibrium states can be determined by those of the

local stable equilibrium states.

From the above analysis, we can see that any input image will be mapped to a
specific output image by a cellular neural network. For a given cellular neural net-
work, the output images have some spatial structures resulting from the dynamic rule
of the circuit. For instance, it is impossible to have a row like [1, -1, 1, -1],which is a
confused pattern, in the output image of the cellular neural network in the above sim-
ple example. Hence, an appropriately chosen dynamic rule could imbued a cellular
neural network with the ability to recognize and extract some special patterns in the
input image. Hence, different input images may be mapped to the same output images
if they have the same patterns, and the same input image may be mapped to different
output images by different cellular neural networks for different image processing or
pattern recognition purposes.

The dynamic behavior of the cellular neural network with zero feed-forward
operators and nonzero feedback operators in this example is reminiscent of the two-
dimensional cellular automata. The theory and application of cellular automata is

presently an active research area [16]. N.H.Packard and S.Wolfram, in a recent
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paper[17], have provided some basic results for two-dimensional cellular automata. A
cellular automata machine, called CAM-6, has been built at the department of artificial
intelligence at MIT [18). The only difference between a cellular neural network and a
cellular automata machine is their dynamic behavior. The former iS a continuous
dynamical system while the latter is a discrete dynamical system. Because the two
systems have many similarities, we can use the cellular automata theory to study the
steady state behaviors of cellular neural networks. Another remarkable distinction
between them is that while the cellular neural networks will always reach their equili-
brium points, cellular automaton usually has a much richer dynamical behaviors, such
as periodic, chaotic and even more complex phenomena. This is because we have
chosen a particular nonlinearity for the nonlinear circuit elements in our cellular neural
networks. If we choose some other nonlinearity for the nonlinear elements, there will
be many complex phenomena in the cellular neural networks. In Section 4, we will

compare these two models again.

3.2. Simulation of cellular neural networks

Since cellular neural networks are nonlinear dynamical systems, there are
presently no analytical methods for studying their transient behaviors. Consequently, it
is necessary to use computer simulation. The circuit simulator we used is PWLSPICE,
which is a modified version of SPICE.3 [19] for piecewise-linear circuit analysis
developed by You-lin Liao from our laboratory. In this section, we will introduce a
preprocessor of PWLSPICE, called CELL, which automatically generates the input cir-
cuit files for PWLSPICE according to an easily understandable circuit description file
and a data file. We will also describe an two postprocessors, called BINF and PLOT,
which transfer the standard outputs from PWLSPICE into a binary data file and then
feeding them into a color graphics terminal for display.

Our computer simulation procedure consists of the following steps :

Step 1: write a cellular neural network description file for CELL. As an exam-
ple, the circuit description file for the simple example in the preceding
section is shown in Fig. 3.3. The first word of each line in the descrip-

tion file is a key word: it tells CELL the meaning of the following
parameters.
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Step 2: write a data file for CELL, which consists of the initial condition and/or
the input of the cellular neural network. The data file for the horizontal
line detector is shown in Fig. 3.4. Note that, we have quantized the
pixel values in this example into 11 discrete levels to simplify the
display.

Step 3: after running CELL with the circuit description and data files, we obtain
the input file for the circuit simulator PWLSPICE. The input
PWLSPICE input file of the horizontal line detector is shown in Table
3.1 in the Appendix.

Step 4: obtain the transient simulation output of PWLSPICE. The transient
simulation of the horizontal line detector is shown in Table 3.2 in the
Appendix.

Step 5: transfer the PWLSPICE output file to a binary data file by using BINF.

Step 6: display the output image on a color graphics terminal ( we use a

MASSCOMP terminal ) by using PLOT with the binary output data file.

Our simulation result of the simple example in section 3.1 is shown in Fig. 3.1b.
Note that row 3 stands out as a black horizontal line and flanked by a white back-
ground. Hence, even such a crude horizontal line detector circuit is capable of extract-
ing the horizontal line structures in the given image in Fig. 3.1a. ( Of course, this

simple dynamic rule cannot handle more sophisticated line detection problems. )

If we change the dynamic rule of our circuit, say, instead of (3.1a), we use

d vxij (t) 6 N
T =10 —inj(t) + vyi-lj(t) + 2Vyij(t) + Vyi+1j(‘)] (3.33. )

then this cellular neural network becomes a simple vertical line detector. Its simula-
tion result for the pixel array in Fig. 3.1a is shown in Fig. 3.1c. Here, all pixels are of
uniformly white color. From the simulation results of the above two detector circuits,

we know that the pixel array in Fig. 3.1a has horizontal lines but no vertical lines.
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3.3. Cellular neural networks for noise removal

Now, let us consider the most important problem in image processing. Since the
input pictures usually come from the real world by a camera or some other optical
equipment , there are always some noise on the images of the objects. In this paper,
we will concentrate on the text processing problems, specifically, on the Chinese char-
acter recognition problems. Suppose that the characters in the input images are
smeared in some way such as the picture shown in Fig. 3.6a. ( We use colors to indi-
cate the different gray levels of the pixels on the image.) For this case, the smeared
character in Fig. 3.6a is generated from a perfect binary image by adding a Gaussian
white noise with ¢ = 0.2, m = 0. The size of the image in Fig. 3.6a is 16x16, so the
noise removing cellular neural network should have 16x16 cells. In image processing,
the simplest way to delete noise from the image is to use an averaging operator. We
choose therefore the averaging operator as the dynamic rule for our "noise removing"
cellular neural network. This averaging operator is shown in Fig. 3.5a, and we use it
as the feedback operator. Assuming the other circuit parameters are the same as those

in the simple example in Section 3.1, the resulting cell circuit equation is given by :

d vy;(t)
_djt"_ = 10° [" Vaij (8) + Vyi1; () + vy (1) + 2vy;(2)
+ Vyija1(t) + vy )] (3.6a)
and
Vyij () = 0.5 (| vy () + 1] = | vgi () =1 1) (3.6b)

Note that the rate change of the state of cell C(i, j) is proportional to the average of
the outputs of the neighborhood N (i, j). Hence, the steady state of C (i, j) depends
on the average of those of its neighbor cells.

Fig. 3.6b-d are the outputs of the cellular neural network at time step 10, 20 and
30 respectively. This cellular neural network has the same properties as two-
dimensional low-pass filters. It retains the low frequency components while eliminating
the high frequency components. Consequently, the comers of the objects in the
images suffer the same problem as they do in the two-dimensional low-pass filter

cases. The problem is that, at the comers of the objects, there are high frequency



-2 -

components, and these high frequency components are removed along with the high
frequency noise because of the low-pass filter effect. Therefore, the pixel classification
will not be correct at the corners of object. To see this point, consider the picture in
Fig. 3.7a, the only difference between Fig. 3.7a and Fig. 3.6a is that the variance of
the Gaussian white noise in Fig. 3.7a is 0.4 (0=0.4). We use the same circuit to
process the image in Fig. 3.7a. The results are showed in Fig. 3.7b-d, for the time
step 10, 20 and 30. For the comer points in the images, their steady states depend
mainly on their initial states. This can be seen from the the dynamic rule we used for
the above noise removing cellular neural networks. If we change our cell circuit
dynamic rule as shown in Fig. 3.5b, that is we add more weight for the cell itself, then
we have the results as shown in Fig. 3.8 and Fig. 3.9 for 6 =0.2 and 6 = 0.4 respec-
tively. We can see that the results in Fig. 3.8 and Fig. 3.9 are better than those in Fig.
3.6 and Fig. 3.7. The image in Fig. 3.8d, which is the output image of the cellular
neural network with its interactive operator as shown in Fig. 3.5b, is exactly the origi-
nal undisturbed character.

The above cell circuit dynamic rules all involve only four nearest neighbors. If
we change the cell circuit dynamic rule to one which relate all eight neighbors, such as
the averaging operator shown in Fig. 3.5c, then the results will be as shown in Fig.
3.10 for 6 = 0.2, and in Fig. 3.11 for ¢ = 0.4.

The above examples all involved images corrupted by a Gaussian white noise.
Now, let us consider the non-Gaussian noise case, since the Gaussian noise is usually
not a good model for disturbed images. Fig. 3.12 shows a result for a non-Gaussian

noise image using a cellular neural network under the dynamic rule shown in Fig.
3.5a.

To see the effects of the interactions of the cells in cellular neural networks, Fig.
3.13 gives the results of a non-Gaussian noise image being processed byunder the cir-
cuit using the dynamic rule shown in Fig. 3.5d. ( Note that, the pixel values of the
yellow points in the output image of Fig. 3.13f are zeros. They are the unstable local
equilibrium states. Unlike those in a physical electronic circuit, the wunstable local

equilibrium states can be obtained by computer simulation. )

From the above results, it can be seen that cellular neural networks are effective

for removing noise in image processing, especially for images with large objects and
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few corners. Fig. 3.14 and Fig. 3.15 are the simulation results for 6 = 0.6 and 6 = 1.0
respectively by using the operator in Fig. 3.5a.

3.4. Cellular neural networks for feature extraction

Feature extraction is another important problem in image processing. As we
have seen in the previous simple example in Section 3.1, the cellular neural network
can extract the horizontal lines in the input image in a very simple case. In this sec-
tion, we will give some other examples of cellular neural networks for fearure extrac-

tion in image processing.

3.4.1. Extract the edges of a diamond

Consider the upper left image shown in Fig. 3.17; namely, the picture of a dia-
mond. What we want here is to extract the edges of this diamond, since they con-
tained most of the information regarding the shape of the diamond. This time we will
use another two-dimensional filter, called the Laplacian operator, as the cell circuit
dynamic rule for our cellular neural network. The Laplacian is a well-known operator
which is good for edge detections [20,21]. The dynamic rule of the Laplacian operator
is shown in Fig. 3.16, and is chosen as the feedback operator. We still use the same
parameters C, R, and B (i,j;k,l) as those in the circuit in Section 3.1. However, we

choose I = -1.75x10~3 A for our diamond edge-extraction cellular neural network.

The cell circuit equation of this cellular neural network is given by :

d vxij (t) 6
T =10 ‘-Vx"j (t) + _O‘SVyf—lj (t) + _O‘Svyij-l(t) + 2Vyij (t)
+ =05vy5141() + 0.5vy1,1; (1) - 1.75] (3.7a)
and
Vyij () = 0.5 (| v (1) + 1 | = | vgi(@)=11) (3.7b)

The result of our circuit simulation is shown in Fig. 3.17. This result is just what

we expected. But if we choose the circuit parameter / =-1.5x103A or
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I =-20x103A and keep the other circuit parameters the same as those above, then
the results of the circuit simulations are shown in Fig. 3.18 and Fig. 3.19 respectively.
From the above circuit simulations we can see the effects of the parameter / for

feature extraction in image processing.

3.4.2. Extract corners of a square

If we use the cellular neural network designed in the preceding section with the
equation (3.5) to process the upper left image shown in Fig. 3.20, we would obtain the
circuit simulation results shown in Fig. 3.20. The output image, or the output of the
cellular neural network at the steady state, has not extracted the edges of the square,
but its corners in this case. Why is that? Let us take a closer look at the dynamic
rule of the cellular neural network circuit. At the initial time of the circuit transient,
t =0, there are six relationships for the cells in the circuit with their neighbors as
shown in Fig. 3.21. ( here we have ignored the cells on the boundary of the image. )
The derivatives of the state voltage with respect time, ¢, for the inner cells are -

@@ -1.75 () -1.75 () -2.75;(d) -0.75; ) -175; (f) 0.25.

We can see that only the cells from case (f) have positive state voltage deriva-
tives and the other cells all have negative state voltage derivatives at the initial time of
the circuit transient. The state voltage derivatives of the cells of the cellular neural
network during the transient period can be computed by using the same method
presented above. However, circuit simulation with graphics output, just like the image

shown in the Fig. 3.20, can help us analyze the transient behavior of the cellular neural

network in a very convenient manna.

3.4.3. Extract the edges of the square

How can we extract the edges of a square by using the cellular neural network?
After the analysis of the transient behavior of the above circuit, We choose the Lapla-
cian operator as shown in Fig. 3.22, and the circuit parameters as the same as those in
Section 3.1 with / = —2.0x1073 A. The circuit simulation result is shown in Fig. 3.23.
Unfortunately, in addition to extracting the edges of the square, we have also extracted
four other meaningless points. This is because during circuit transient, the derivatives

of the state variables of the cells keep changing. Although some of them are the same
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at the initial time, they can be very different after a long period of time. For instance,
the cell C(6,7) in Fig. 3.23a has a negative derivative, but in Fig. 3.23c, after 15 time

steps of transient simulation, we found its derivative changes to positive.

The reason for this problem is that we did not keep the original information of
the image in the circuit transient. If we choose a nonzero feed-forward operators for a
cellular neural network, and use the input image both as the input and as the initial
condition of the circuit, then we will be able to over the above problem, since the

input (input image ) will maintain the same value during circuit transients.

3.4.4. An edge detecting cellular neural network

Using our above experience in designing cellular neural networks for structural
feature extractions, let us now design a more practical edge detector. In this edge
detecting cellular neural network, both the feedback and feed-forward operators are
nonzero, whose templets are shown in Fig. 3.24a and Fig. 3.24b, respectively. The
other circuit parameters are chosen as follow: C =10~ F ; R, =103Q; and
I =-15x103 A. The circuit simulation results of the above designed cellular neural
network for detecting edges of a diamond and a square are shown in Fig. 3.25 and Fig.
3.26, respectively, where the input images are chosen for both the inputs and the initial
conditions of the edge detector. From the pictures in Fig. 3.25 and Fig. 3.26, we can
see the perfect performance of this cellular neural network. Note that, although we
can use a digital computer to do the same job as the above edge detector, here the pro-
cessing speed of the cellular neural network is much faster than that of digital comput-
ers. For the circuit parameters chosen in this example, the processing speed is about
1075 seconds. Moreover, the processing speed of cellular neural networks are indepen-
dent of the circuit size, this means that we can process a 16x16 and a 512x512 images
using the same time.

3.4.5. A corner detecting cellular neural network

To obtain a corner detecting cellular neural network, we chang only the circuit
parameter / into —1.5x10~3 A and keep the other circuit parameters the same as those
in the edge detector designed in the preceding section. The circuit simulation results

of the this corner detector for detecting the comers of a diamond and a square are
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shown in Fig. 2.27 and Fig. 2.28, respectively.

3.5. Cellular neural networks for Chinese character recognition

There are about 60,000 Chinese characters and approximately 6,000 of them are
used in the daily life. The prohibitively large number of the Chinese characters makes
the Chinese character recognition problem much more difficult than other character
recognition problems. For the past twenty years, research on the Chinese character

recognition problem has focused exclusively on algorithms using digital computers.

Theoretically, the Chinese character recognition problem has been solved for the
6,000 most commonly used characters [22]. But the slow recognition speed remains
the main bottle-neck in practice. To the best of our knowledge, the current average
speed for the Chinese character recognition using ordinary digital computers is 2 char-
acters/ second. This recognition speed is much too slow for practical needs. The rea-
son for this low recognition speed is that the nature of the algorithm for Chinese char-
acter recognition involves mainly parallel processing, because of the two-dimensional
structure of the characters, but the conventional digital computers are sequential pro-

cessing machines.

From the above feature extraction examples, we have seen that the cellular neural
networks can extract certain features of images using appropriate dynamic rules. Con-
sequently, the cellular neural network could be an efficient tool for solving the Chinese
character recognition problem. First, we can design various cellular neural networks for
extracting different features from Chinese characters. Then we can pass the character
image simultaneously to all distinct feature extraction circuits in parallel. After the
transient has settled down, ( the time constants of cellular neural networks are gen-
erally less than 1078 seconds ) we would have extracted the different features of the
original input character, which can then be used for a higher level character recogni-
tion by using computers or any other kind of processing machines. In the following,
we will present a feature extraction circuit and use it to process a few simple Chinese
characters.

The feature we want to extract is the convex corners of the strokes of the Chinese
characters. So, we will use the corner detector designed in Section 3.4.5 as our feature

extracting cellular neural network. Fig. 3.29 to Fig. 3.36 are the circuit simulation
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results of 8 Chinese characters obtained by using our above feature extraction circuit.
From the simulation results, it can be seen that the convex corners of the strokes of the
characters have been extracted. These corners contain most structural information of
the characters, and can be used for coding the characters. The purpose of these exam-
ples is to demonstrate the feature-extraction capability of cellular neural networks in
image processing. What kind of structural features are useful for Chinese character
recognition and how to extract them using cellular neural networks represent two

important future research problems.

The resolution of the character images in this figures is poor because of the small
size of our pixel array. In Chinese character recognition, the typical pixel array for the
character images is 48x48 or 64x64. Our experience shows the larger the size of the
cellular neural network, the better is the feature extraction capability for the characters.
The VLSI technique will make it possible to implement large-size cellular neural net-
works.

4. MATHEMATICAL FOUNDATION

In the above sections, we have presented the cellular neural network model and
some examples of its applications in image processing. In this section, we will discuss
some related research topics on cellular neural networks.

4.1. The mathematical model of cellular neural networks

In general, cellular neural networks can be characterized by a large system of
ordinary differential equations from the mathematical point of view. Since all the cells
are arranged in a regular array, we can exploit many spatial properties, such as regular-

ity, sparsity and symmetry in studying the dynamics of cellular neural networks.

There are two mathematical models which can characterize dynamical systems
having these spatial properties. One is partial differential equations, and the other is
cellular automata. Our objective in this section is to find the relationships between

our cellular neural networks and these two mathematical models.

Consider the partial differential equations first. The well known hear equation
from physics is
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BZu(x,y,t)+ 9%u (x,y,t) _1ldu@eyt) @.1)
ox? oy? x dt

where x is a constant, called the thermal conductivity. The solution, u (x,y,t), of the
heat equation is a continuous function of the time, t, and the space variables, x and y.
Suppose we use a set of functions u;j(t) to approximate the function u(x,y,r) by

discretizing the continuous two-dimensional space into a two-dimensional grid, that is
u;j(t) = u(ihy, jhy,t) 4.2)

where k, and h, are the space interval in the x and y coordinates. Then, the partial

derivatives of the u (x,y,r) respect to x and Yy can be replaced approximately by

Pu@yr) Pu@yr) _ 1
Ox2 N ay2 4

[“ij—l(t) Ui () i) + sy (2) ] i)

forall i, j. 4.3)

So, the hear equation can be approximated by a set of equations

1 du;() 1
X dr "% [“ij—l(t)+u:j+1(t) Ui () + Ui (1) ] A

for all i,j. (4.4)

Comparing equation (4.4) with equation (2.2), we can see a remarkable similarity
between these two equations. They are both the ordinary differential equations with
the nearest neighbor variables involved in the dynamic rules. The important difference
between these two equations is that our cell equation (2.2) is a nonlinear (piecewise
linear) ordinary differential equation whereas equation (4.4) is a linear ordinary
differential equation.

Consider next the relationship between our cellular neural network cellular circuit
model and the cellular automata model. The two-dimensional cellular automaton is
defined by [14]

a;;i(n+1)=¢ [a,d(n) forall Ck,)e N(, j) ] 4.5)

If we discretize the time, ¢, in the cell equation (2.2) and let B(i,j;k,/) = 0 for all
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i,j,k and I, we would obtain

c 1 .
ry [vx,-j((n+l)h) = Vyij(nh) ] =% wij(nh) + Y ' 'A(z oJ 3k L)vyi (nh) + 1
x (k,1)eN (i ,))

l<si<M, 1<j<N (4.6a)
and
Vyij (#h) = 05Ry (|vyj(nh) + 1] = |vgi(nh) = 1]) 1<i<M,I<j<N.  (4.6b)

After rearranging equation (4.6a) and substituting the resulting expression for
Vxij ((n+1)h) into equation (4.6b), we obtain

vy;j(n+1) = ¢’ [inj(" ),vy,d(n) for all C(k,l)e N(, J) ] 4.7
where
Vyij(n) = Vyij(nh),  vyi(n) = vy (nh), (4.8)
¢'[v--(n)v forall C(k,)e N(i j)]: g[[ i + 1 ]v-~(n)
xij sV ykl ’ s CRx xij
+ % > . .A(i:j;k,l)vyij(n)'*'%‘] (4.8b)
(kJd)eN(i,j)
and
glzl=2 (Iz +1] = |z = 1)), (4.8¢)

Comparing equation (4.5) and equation (4.7), we can once again see a remarkable
similarity between them. The main difference is that for cellular automata, the state
variables are binary value variables and the dynamic function is a logic function of the
previous states of the neighbor cells, whereas for cellular neural networks, the state
variables are real-valued variables and the dynamic function is a nonlinear real func-
tion of the previous states of the neighbor cells.

Our comparisons of the above three mathematical models are summarized in
Table 4.1.
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Table 4.1. Comparison of three mathematical models having spatial regularities

Model Cellular neural network | Partial differential equation | 2-D cellular automata
—f— =i

time continuous continuous discrete

space discrete continuous discrete

state value real real binary number

dynamics nonlinear linear (for (4.1)) nonlinear

4.2. Multilayer cellular neural networks

A direct generalization of the cellular neural network introduced in Section 2.1 is
the multilayer cellular neural network model. The generalization is that instead only
one state variable there may be several state variables in a cell of the multilayer cellu-
lar neural network. To avoid clutter, it is convenient to define an operator * as fol-
lows. (It is similar to the two-dimensional convolution operator in image processing.

)
Definition 4.1

For any templet, T, of the dynamic rule for the cell circuit shown in Fig. 3.2, we

define the convolution operator * by

T*v;= ¥ Tk-il-j)v; (4.9)
(k,1)eN(i,j)

Observe that A (i,j;k,/) and B (i,j;k,l) are always independent of i and j in cellular
neural networks. This property is said to be space invariant in image processing,

which implies the following equivalent forms :
A(i,jskd)=Ak—i,l-j)and B(i,jk,l)=Bk—i,l-j)

for all i,j,k and / (4.10)
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Using the above notation, we can rewrite (2.2a) as

d vyi(t) _
C ;"t =& Viij () A ¥ v (t) + B * v + 1

l<i<M, 1<j<N. (4.11)

For multilayer cellular neural networks, the cell dynamic equations can be expressed in
the following compact vector form :

d Vx"'(t) -1 " *
C_d—t—= —R Vx"j (t )+ A vyij (t) +B Vm'j +1
1<i<M, 1<j<N, (4.12)
where
.
C, Ry
C= . . R R = . . ; (4.13a)
C, "R,
r r
A Alm By, B
A= . - B=]| | | (4.13b)
:4m1 Amm ?ml Bmm
r 3 , e
Y 1xij V1yij V 1uij
Vyij = ; Vi = - | Viij = R (4.13c)
Vmxij b“’myi j ) .vmui j )
F]l
1= . (4.13d)
I

and m denotes the number of the variables in the multilayer cell circuit. Here, the
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convolution operator * between a matrix and a vector is to be decoded like matrix

multiplication but with the operator * inserted between each entry of the matrix and of
the vector.

Observe that C and R are diagonal matrices, whereas A and B are square

matrices whose elements are entries of the templets of the dynamic rules for each state
variables in the cells.

Remarks :

(@) For multilayer cellular neural networks, all the results presented in Section 2 still

hold except for some minor modifications.

(b) Since there are several state variables in a cell circuit, we can choose multiple
dynamic rules concurrently for the different state variables. This property makes
it extremely flexible for us to deal with more complicated feature extraction prob-

lems, or other related image processing problems.

(¢) In addition to using multiple dynamic rules as mentioned in (b), we can choose
different time constants for the different state variables of the cell circuits. As a
limiting case, we can choose C, = 0 for some state variable Vaxij» thereby obtain-
ing a set of differential and algebraic equations. This property give us even more

flexibility in the design of the cellular neural networks for practical problems.

4.3. Improving the efficiency of computer simulation of cellular neural networks

All computer-generated results presented in this paper are produced by the circuit
simulator, PWLSPICE, which is a general purpose circuit simulator for nonlinear cir-
cuits. It does not take advantage of many special properties of cellular neural net-
works. The average speed of circuit simulation for a 16x16 one-layer cellular neural
network with a 3x3 cell neighborhood is about 10 minutes running on a
MICROVAX-II. In practice, the required circuit size is much large than 16x16, for
instance, in the Chinese character recognition, the circuit size needed is 48x48 or
64x64. Therefore, it is necessary to develop a more efficient special circuit simulator
for the design of the cellular neural network circuits. The properties of parallelism,

regularity, sparsity and the piecewise-linear nonlinearity can all be exploited to
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improve the simulation speed.

S. CONCLUDING REMARKS

In this paper, we have proposed a new circuit model, called a cellular neural ner-
work, and discussed both the theoretical and practical problems associated with this
model. We have proved some theorems concerning the dynamic range and the
steady-states of cellular neural networks. We have presented some examples of the
application of cellular neural networks in image processing and Chinese character
recognition. In view of the nearest neighbor interactive property of cellular neural
networks, they are much more amenable fore VLSI implementation than general neural
networks. But since this is the first study of cellular neural networks, there are many

theoretical and practical problems yet to be solved in future research on this subject.
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