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THE PIERCE DIODE WITH AN EXTERNAL CIRCUIT. II.
NON-UNIFORM EQUILIBRIA

William S. Lawson

21 July 1987

Abstract

The non-uniform (non-linear) equilibria ofthe classical (short circuit) Pierce diode and

the extended (series RLC external circuit) Pierce diode are described theoretically, and

explored via computer simulation. It is found that most equilibria are correctly predicted

by theory, but that the continuous setof equilibria of the classical Pierce diode at a = 2ir

are not observed. The stability characteristics of the non-uniform equilibria are also worked

out, and are consistent with the simulations.

Introduction

The classical Pierce diode is a theoretical model which was introduced by J. R. Pierce [1] to

predict the maximum electron current which could be passed through a plasma device without

instability. It consists of two parallel planes (plates or grids) and a cold electron beam traveling

between them. The electronsare neutralized by a background population of infinitely massive ions.

(In Pierce's model, this background was stationary, but for the purposes of this article it is better to

think of them as co-moving.) The planes are connected by a wire, and soare at the same potential.

The linearized behavior of this model has been studied in detail [2,3].

The extended Pierce diode is a similar device which has a passive circuit element — either a

capacitor, resistor, or inductor — in place of the short circuit between the electrodes (see Fig. 1).

This device is interesting as a second approximation to real bounded plasma systems. The linear

behavior of this device has been worked out by Kuhn and Horhager [4], and verified by simulation

[5].

Godfrey [6] has analyzed the stationary equilibria for the classical Pierce diode, and I shall

describe these first. Next the equilibriaof the extended Piercediode will be investigated by expanding

on the formulas derived by Godfrey. Finally, particle simulations will be presented which test and

support the predictions of the theory.
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In his investigations of the classical Pierce diode, Godfrey has discovered an elegant integral

equation formulation ofthe Pierce diode with the single requirement that the velocity ofthe beam

be asingle-valued function of position. This integral equation formulation is easily modified to cover

the extended Pierce diode, and is also ideally suited for linearization about any equilibrium.

Equilibrium Theory

Although Godfrey gives the equilibrium solution, he does not derive it, so I will give abrief

derivation here. The equilibrium equations are

p(x)v(x) =pov0 (x)

* ±£(x) (2)
dx m

dE _ p-po (3)
dx Co

with boundary conditions

/K0) =A) W

t>(0) =t»o <5)

ftE{x)dx =-V(E(Q)) (6)
Jo

where />, t;, E, V, g/m, and c0 represent the electron charge density, electron velocity, electric

field, potential drop across the diode, electron charge-to-mass ratio, and the dielectric constant of

the vacuum. The first three of these are functions of the position x. The potential drop V may

be a function ofthe electric field because ofthe external circuit element. For the classical Pierce

diode, V=0. The potential drop cannot depend on the time derivatives of the electric field, since

the problem is astatic one, but this implies that there can be no current flowing in the external

circuit (unless one considers the constant injection flux of electrons to be balanced by an external

current instead ofan equal flux ofmassive ions). This in turn implies that the external resistance or

inductance will have no effect on the equilibria. Only the capacitive case will produce new equilibria.



The equations can be made dimensionless by renormalizing as follows.

<*2 = €omv$ -(*)'
PO

/ = v_
Vo

*' =7

e' = -*Le
mvg

Note that the charge of the electron has been absorbed into the electric field, so that the electric

field is of the opposite sign as the physical electric field.

The resulting equations (dropping the primes) are

with boundary conditions

pv = 1 (7)

iv

dx

iE

dx

v*L =E (8)

>1

/ E(x)dx =-V(E(Q)) (12)
Jo

rfO) = 1 (10)

«(0) = 1 (11)

To solve these equations define t such that

dx

dt=V

and t = 0 at x = 0. This t represents the time it took a fluid element (or particle) to arrive at

position x from its time of injection. Equations 8 and 9 become

%=E (13)
^ =a'(l-„) (14)



(Equation 7 was used to derive (14), and is nowsuperfluous.) Either E or v may be eliminated to

yielda harmonic osciUator equation. The solution, taking the boundarycondition (11) into account

is

E = E0coaat (15)

„=l +£°sinai (16)
a

x==t+%l-cosat) (17)
a2

The constant of integration Eq represents theelectric*field at the injection plane, and may beeither

positive or negative.

A new condition is implicit in this solution; x must be a monotonically increasing function of

i, so that dx/dt = v must be greater than zero. Therefore we must require that

l +^sinat>0 (18)
a

for 0 < t < T. For most cases, this will imply the condition \Eo\ < <*• Note that since v is a single-

valued function oft, the condition (18) isenough to ensure that v isa single-valued function ofx,

which is necessary for the fluid approximation to be valid.

The condition that v be single-valued is not at all restrictive, since allequilibria of interest must

satisfy this condition anyway. When the system is in equilibrium, the total energy ofan electron is

constant, and equal to l/2mv2 + q<f>. Thus only two values ofv are possible at any given position,

implying that the electron trajectory can either go from the injection plane to the opposite plane

without turning around at all, or it can turn around once and return to the injection plane. The

case in which the electrons are turned around implies a large potential barrier, which cannot be

created by the background ions, and cannot be sustained bya passive external circuit element in

the fece of thelarge ion current. Therefore, only the case inwhich v isa single-valued function ofx

is of interest.

Equation 17 applied at x = 1gives an important relation between the time T that a particle or

fluid element takes to transit the system, and Eq,

r=:l-f£(l_cosar) (19)
Of*



The second boundary condition (12) can now be appUed. Let T be the time it takes afluid
element (or particle) to transit the system. The new boundary condition involves the potential drop
across the system,

-V(E)= f Edx
Jo

= J Eocosat- (l +—sinatj dt

-V(E) =—sin aT•f1+̂ sin ctT) (20)

Equilibria without a Capacitor

Let us first consider the classical Pierce diode. In this case, V(E) = 0, so

Eo = 0 (0

or

sinaT=0 (")

or

(l +̂ sinar)=0 (»«)
The first case (i) is the uniform equilibrium, and the third case (in) implies that v(l) = -1 which

violates the condition that the velocity be positive, so the second case (u) is the interesting one.

The solution is simply

T=— (21)
a

Putting this into (19) yields two results depending on whether n is even or odd. If n iseven,

a = tit (22)

and Eo is unconstrained (except for condition (18)). If n is odd,

£0=f(a-n,r) (23)

The condition that the velocity be positive requires (except for n = 1 when Eo > 0) that

\Eo\/a < 1. For any given n this condition limits the range of a over which a valid solution
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exists. The case n = 1 is different for E0 > 0, since sinot is always positive in this case. Thus

for n = 1, there is no upper bound on E0. This equilibrium structure can be diagrammed as in
Godfrey (see Fig. 2). The stabiUty of these modes will not be dealt with systematicaUy yet, but
the equiUbria with E0 <0are, in tact, unstable whfle those with E0 >0are stable. If the initial
value of the electric field at the injection plane is less sUghtly less negative than the value E0 for an
unstable equiUbrium, then the system wiU decay either to the uniform equUibrium (if the uniform
equiUbrium is stable), or to an oscillating state. If E0 is more negative than the equiUbrium value,
then the growth of the unstable mode requires that a virtual cathode form.

Equilibria with a Capacitor

When the external circuit contains acapacitor, the equations become more compUcated. First,
let us derive the proper expression for V(E(0)) (which can also be written as V(E0)). The voltage

across the capacitor is

c

where the sign of Qis chosen as in Fig. 1. The total surface charge on the injection plane must be
a=Q/A (where Ais the area of the injection plane) if the unperturbed state Eo =V=0is to be
accessible. This surface charge gives rise to the electric field at the injection plane, Bo, such that

Putting aU this together,

Converting to normalized units gives

Eo = ~~

V(Eo)^Eo <24)

V\Eo) =t£«IC

Com
c

= ^£o

Where C0 is the vacuum capacitance between the injection and collection planes. Thus, defining

° Co

yields the dimensionless equation (again dropping the primes)

v_^ (25)
C



Equation 20 now becomes

fsin0r.(l +|sin«r)=-t <*>
This equation can be solved parametricaUy by setting aphase variable <f> =aT, and combining it
with (19). The result is

__ 4> ♦ \sin2 <f> - sin^ -(1 - zos<f>) /27\
a" £sin2*+£(l-cos#

Eo _ sin^+& (28)
a £sin2^+£(l-cos^)

Figure 3shows several diagrams like Fig. 2which give the equiUbrium values of E0 as afunction
ofa for various values ofC. For finite values ofthe capacitor, it can be seen that the modes which

were at a =2mr merge with the modes which are at the next smaUest value ofa. For large values

ofC and smaU values ofa, this merging occurs at values of E0 which exceed the constraint (18),

and so are not seen in the graphs. When the graphs are extended to unphysical values ofE0 (Fig.

4), it is seen that the curve doubles back in order toconnect these modes.

Some interesting points can be shown analytically; for instance, the points at which there are

bifurcations with the uniform equiUbrium (t.e., when Eo -• 0), (26) reduces to

sina = —-5? (27)
C

(since Eo =0impUes T= 1). These are the values of a at which the uniform equUibrium goes from

stable to unstable behavior. Note that this equation has only a finite number of roots, implying that

beyond a certain value of a (for a given C), there are nomore bifurcations.

The different branches of the curves in Fig. 3 correspond to ranges of <f> which are bounded

below by an odd multiple of ir, and above by an even multiple ofv. Other ranges of <ft yield a very

negative .Eo- As might be expected, as C —• co, the sloping part of each branch corresponds to <f>

near to theodd multiple of*r, and the part of the branch which isapproaching vertical corresponds

to ^ near to the even multiple of ». It is useful to note that at <j> = ir, the limit of E/ot is —*r/2

regardless of the value ofC. While this solution ata = 0 is ofno interest physically, since it violates

condition (18), it does constrain the first branch of the curve.

Simulation Results

The particle simulation code PDWl [7] was used tosimulate theexpected equiUbria. Aswith the

theory, thesimulation results wiU bebroken upinto classical (short circuit) and extended (capacitive

external circuit). The simulation parameters are shown in Table I.



Classical Pierce Diode

The easiest equiUbria to simulate are the stable ones. Tosimulate these, the uniform equiUbrium

was given a sUght perturbation, and theequiUbria came about naturally. Figures 5-7 show the phase

space plots after equUibrium has been reached, and time histories of the electric field at x = 0 as

the simulation approaches equiUbrium for a equal to 3ir/2, 7jt/2, and llff/2. These equiUbria were

observed by Crystal and Kuhn [3], although they did not compare them with theory. While in aU

three cases the electric field at x = 0 settles down rapidly to the average value predicted by (23),

the results are not without surprises. The electric field at x =0 for both a =7ir/2 and a = ll*r/2

shows osciUations about the equiUbrium value which are only weakly damped. These oscUlations

wiU be examined shortly, when the general issue of stabiUty wiU be addressed.

The stable equiUbrium with n = 1 extends to aU values of a > v - 2. This can also be

simulated in regions where other equUibria are preferred, such as a = 5*r/2. To do this, it is not

enough to perturb the uniform equiUbrium, since this perturbation will not grow to the desired

equiUbrium. Instead, the electric field at the injection plane E0 is held fixed at the predicted

equiUbrium value, overriding the circuit condition for one transit time. This constraint should

force the desired equiUbrium. After a transit time (or more), the constraint can be removed, and

the self-consistent circuit condition reinstated. The result for a = 5ir/2 is shown in Fig. 8. There

are no oscillations about the equiUbrium value ofE0. Table II summarizes the results for the stable

equiUbria. The values for a =3t/2 and a =5*/2 are extraordinarily accurate, but the values for

a =7ir/2 and a = llx/2 seem to deviate significantly. Halving the grid spacing and the time step

reduced the error for a = llw/2 from 5% to 1.5%, and Richardson extrapolation assuming second

order accuracy reduces this to 0.5%, so it appears that the deviation is ofnumerical rather than

physical origin.

The unstable equiUbria are rather difficult to simulate. One approach is to again fix £b, over

riding the circuit constraint, at avalue either above or below the predicted equUibrium value of E0
for a transit time, then restore the circuit constraint and see whether the simulation moves away

from the predicted equUibrium. This was done for the a = x/2 equUibrium. The predicted value

for Eo in equiUbrium is Eo = -it1/* « -1.23, so two simulations were run at initial values of E0

at -1.2 and -1.3 (recall that the sign ofEo is different in the theory from the simulations with

negatively charged electrons). The results ofthe simulation starting at E0 =-1.2 are shown in Fig.

9. The system quickly settles to the stable uniform equUibrium (£0 =0, v= 1). When E0 =-1.3,
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however, avirtual cathode forms (see Fig.10). Kthe duration of the simulation is increased, it is
seen that avery regular, though non-sinusoidal, virtual cathode oscUlation has set in (see Fig. 11).
RecaU that this oscUlation occurs at a value of a which is only half of the value at which the Pierce

diode first becomes Unearly unstable.

The unstable equiUbrium at a - 5ir/2 was also simulated. The results are shown in Fig. 12.
Since no regular virtual cathode oscUlations were expected (and none were found), E0 was again
fixed for a transit time, this time at exactly the value predicted for the equUibrium. There are two

pieces of evidence that the predicted equUibrium exists at very nearly the predicted value of E0.
First, the potential returns almost to zero at x = 1, and second, when released, the growth away

from the equiUbrium appears to be exponential rather than linear. The equiUbrium is marred by the

presence of two trapped electrons (just visible near x= .75 and x= .85, sUghtly below the passing

electrons). According to continuum theory, these trapped particles should not be there, but the

errors inherent in simulation allow them to become trapped during the initial transient (the diode is

initiaUy in the uniform state). Ifthese particles were not there, the agreement might be even better.

The equiUbria at o = 2wr are especiaUy interesting because any value ofE0 which does not

violate (18) should be a vaUd equiUbrium. Trouble can be expected, however, since the dispersion

relation of the uniform equUibrium has a double root of zero at a = 2nw, implying a secular

instabiUty (linear growth with time). This secular instabiUty may (and the section on stabUity

wiU show shortly that it does) extend to the non-uniform equiUbria. This secular instability is

of interest, but my simulation efforts have not met with success. Particle simulation at a = 2*

produces a slowly but exponentiaUy growing mode, and a simulation based on Godfrey's integral

equation formulation produces a mode which oscUlates slowly about the uniform equUibrium with

large amplitude. The reason for the failure of these simulations seems to be the singular nature of

the a = 2wr points. For values of a near these points, the dominant solution of the dispersion

relation varies as 0 ~ (2n*r —a)1'2. Thus, a very smaU numerical error can produce relatively

large deviations. For instance an error which alters the effective value ofa by 1/1000, may create a

growth rate or frequency of1/30, which isquite noticable in simulation.

Equilibria with External Capacitor

Totest the predictions for the equUibria with an external capacitor, a was again chosen to be

half-integer multiples of» in the simulations. The results for thestable equiUbria are in Table III.



10

Theresults arevery good for a = 3ir/2, andsomewhat less good for a = 7ir/2. As was demonstrated

for the short circuitcase, this less-accurate agreement is most Ukely due to the error inherent in the

simulation, since the timestep is larger relative to a plasma period (i.e., wpAt is larger).

Interestingly, the equiUbrium for a = 7ir/2 and C= 20 isnot truly stable. There is anosciUatory

mode which hasa smaU but unmistakable growth rate (see Fig. 13). This growth wiU be explained

in the next section.

The unstable equiUbrium at a = 7*/2 and C = 10 was also simulated, and the phase space plot

is shown in Fig. 14. The growth rate for this mode is quite slow relative to the unstable equilibria

in the short circuit case.

Stability of Non-uniform Equilibria

The most direct method ofanalyzing the stabiUty ofan equUibrium is tocompute thespectrum

of linear perturbations about that equiUbrium. Fortunately this is possible for the extended Pierce

diode. One simple method of doing this is to extend the set of integral equations discovered by

Godfrey for the classical Pierce diode. Godfrey's integral formulation of the Pierce diode, extended

to the case with an external circuit, is comprised ofthe two integro-differential equations

and

T(t) - 1=-i / E(r) sino(f - r) dr (28)

^ +̂ +^+l)E(f)=^(l-r(f)2)-a£T^(r)(t-r)sina(t-r)dr (29)
where xand t represent position and time respectively, Erepresents the electric field at the injection

plane, Trepresents the transit time of the electron just leaving the system, a is the classical Pierce
parameter, and R, L, and Crepresent the external resistance, inductance, and capacitance. AU these
quantities have been normalized (see Appendix Afor a complete description of the normalization

factors and a derivation of (28) and (29)).

These equations are idealy suited to Unearization about non-uniform equilibria.

Linearization About an Equilibrium

Assume that E - E0, T= T0 is a solution of (28) and (29) for some given a and C, then (28)



11

and (29) can be Unearized.

1 ft i rt-To
6T= -- 6E(t)svaa(t-r)dT-~ \ E0sina(t- r)dr

aJt-T <*Jt-T

«_I / 6E(t)sina(t-r)dr-— sinaTo-ST
<* Jt-To °

so

(i+5°.8in aTo) 6T =~ [ 6E(r) sin a(t - r) dr (30)
\ a / a Jt-To

The equation for E(t) can be similarly Unearized.

(i^4t+h+1)SE=-aiT"ST-T^
- a / &E?(r)(t - r) sina(t - r) dr

Jt-T

—a / 2?o(< - t) sin a(t —r)dr

«-a2T0 (l +—sinaT0J6T- / $£(r)(t - r) sina(t - r) dr
Substituting in (30),

U^+R±+±;+l\6E =aj M?(r)(r0-* +r)sina(t-r)dr
/•To

= a / *£(t - t')(TQ - i')sinat' dt' (31)

Both sides of (31) are Unear in 6E, so a solution of the form 6E = exp(0t) can be sought. When

this form for 6E is substituted into (31), the result is

L$* +m+L+i=aJ \-9i'(To-t')Bmt'dt'

=£$2 ~(tt2 +02)2 M (1 - '-To°«*«To) +(a2 - *2)sinaTo] (32)
Note that this equation does not contain Eq.

This formula (without the external circuit elements) wasfirst derived by Godfrey. It can now

be appUed to some special cases of interest.

Uniform Equilibrium

In the uniform (E = 0 for aU x) equiUbriumTo = 1, so

L^ +̂ +^+^^4.(tt2^2)j2ag(l-e-^osa) +(a2-g2)sma]=0 (33)
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This is the dispersion relation found by Kuhn and Horhager [4], which has been verified by simula

tions [5].

Non-uniform Equilibrium with Short Circuit

AsGodfrey showed, the non-uniform equiUbria when the external circuit is a short (classical

Pierce diode) are oftwo classes depending on whether an integer parameter n is odd or even. When

n is even, the equUibrium is given bya = mr, T0 = 1, and E0 with any value as long as -a < E0 < a

(as per Equation 22). Putting these values into (32) with L= R=1/C = Qgives

02 I 2nV* (1 c-')-0 (34)n2*2 +02 + (n2*2 +02)2K '

Note that the same dispersion equation applies for all values of E0. The dominant root of this

equation is 0= 0, which is adouble root, implying that a secular instabiUty is possible. As was

mentioned, this secular instabiUty was not observed in simulations, and the singular behavior near

a = imt with r» evenseems to be responsible for the poor simulation results.

When n is odd, To =nir/a, and E0 = H" ~ n*)' Substituting these values into (32) gives

n*« 2a20 r (_™,)1,n
1 a2 +*2 + (<*2 +*2)2l ^ <* ^

(35)

Figures 15-17 show the dominant solutions of this dispersion relation as a function of a for the
regions of interest (n» - 2<a<n* +2) for n=1,3,5. For n* - 2<a<rnr, the dominant mode
is purely growing in aU cases. For nx <a< imt +2, the dominant mode is always purely damped
for n = 1, but for n > 1a second mode, which is damped and oscUlatory, appears, and seems to

touch Re0 =0. This is not an iUusion, and the values ofa at which the real part ofthe eigenvalue

0 is zero can be found by setting 0= iw and setting the real and imaginary parts of (35) to zero.

The result is a Diophantine equation,

i«r2a nm ^
x n2 —m2

in which m must be odd. Only values ofa/* - n between -2/* and 2/* are of interest. In this

region, one quickly finds that

n>{Wn) 171

is anecessary condition. From this it is plain that for n=1, no such solutions are expected, and
for n = 3 and n= 5, one such solution isexpected. Two solution wUl not appear untU n = 15.
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The simulations from the previous article agree with the predictions ofthis dispersion relation

as weU as can be determined from the graphs (the eigenvalues were not computed numericaUy from

the simulations).

The case in which 0 is purely imaginary isofspecial interest, since any growth or decay must

be determined by non-linear effects. Figure 18 shows the result ofsimulating the marginaUy stable

case at a = (3 +3/8)ir. The simulation moves toward equUibrium and quickly reaches a steady

oscUlation of smaU amplitude about the equUibrium.

Equilibria with an External Capacitor

The equUibria with external capacitance were worked out earlier, such that a, To, and Eo are

aU functions of <f> - oT0. These can be plugged into (32), and (32) can then be solved numericaUy.

Figures 19-21 show the eigenvalues, 0, as functions of a for several different values of C. The range

of a in the plots is again from nit —2 to nit+ 2, although this is no longer quite the right range

physically. Note that the oscillatory modes which were stable in the short circuit case have become

unstable for some values of a with the addition of an external capacitor, counter to the stabilizing

influence of the capacitor on the modes of the uniformequUibrium.. These theoretical results agree

with the simulation results obtained earlier.

The newly unstable modes are the most interesting ones. A natural question is whether they

saturate at some finite ampUtude due to non-Unear effects. Figure 22 shows that for C —20, the

a —7/2tt case, at least, does not. The initial transient brings the system close to the (unstable)

equiUbrium (at t ~ 10), but then the instability takes over, and grows until finally electrons are

turned back to the injection plane. Since their charge remainson the left side of the system (and the

left side of the external capacitor), the system is no longer in a state which aUows the unperturbed

(Eo ss 0, V = 0) equiUbrium, and so the resulting equilibrium (shown at t = 64) has not been

included in my analysis of equUibria. (Such equilibria could be worked out, but require the addition

of another parameter, specifically, the sum of the charge on the injection plane and the side of the

capacitor tied to it.)

Once a certain amount of charge has been returned to the emission plane, the system is in an

equiUbrium which has a stable spectrum. Interestingly, the potential drop across the system in this

new equUibrium is nearly zero. It seems unUkely that this could be coincidence, but it also seems
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unlikely that a gross process such as virtual cathode formation could return precisely the correct

amount of charge for this to occur.

Conclusion

The theory for non-uniform (non-linear) equiUbria of the Pierce diode with anexternal capacitor

instead of a short circuit between its electrodes was worked out, and simulations were performed

which verified the theory for both the capacitive Pierce diode, and the classical Pierce diode.

The spectra of oscUlations about non-uniform equiUbria of the Pierce diode with and without

an external capacitor have also been calculated and the results are consistent with the simulation

results, although the simulations were not examined to high precision.

Of particular interest is the observation that strong, regular virtual cathode oscUlations can

occur at current levels which are much smaller than the current level at which the Pierce diode

becomes linearly unstable (simulations were performed at one quarter of this current value). As

Godfrey showed, it is also possible to exceed the current level at which the Pierce diode becomes

unstable by any amount desired, if the proper stable non-uniform equUibrium can beattained.

Theeffect oftheexternal capacitor isto stabiUze thelinear modes somewhat, and also to increase

the current value at which virtual cathode oscillations can be excited. The external capacitance

has the detrimental effect, however, of Umiting the maximum current which can be carried by the

non-Unear modes. The most useful mode (n = 1) ceases to exist for values of a greater than some

maximum, and the other modes tend to becomeunstable.
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APPENDIX A: Derivation of Integral Equations

Renormalization of Equations

The physical equations of evolution are

$+£«-• (al)

(£+•£)•-£* (o2)
dE __ p— po
dx ~ co

and

(«8)

V-Ldt2+Kdt+C K }

ith boundary conditions of, respectively,

p(x = 0) =-Po

v(x = 0) =zvo

E(x.= 0) =
Acq

f £dx =-V

2 _ gft>/2 _
«omwJ'--»-(*)'

(o5)

(«6)

(a7)

(a8)

The initial conditions must also be specified. The independent variables are x (position) and t

(time). The dependent variables are p (charge density), v (velocity), E (electric field), V (voltage

across the system), and Q (charge on the capacitor). The last two (V andQ) depend only on time.

The constants in the equations are q/m (electron charge-to-mass ratio), eo (dielectric constant of

the vacuum), po (equUibrium charge density), v0 (injection velocity), / (length of the system), A

(area of end plates), L (external inductance), R (external resistance), C (external capacitance), Qq

(initial charge on capacitor), Jo (initial current through external circuit). The condition that the

electric field at x = 0 be proportional to the chargeon the capacitor could be relaxed to aUow for a

constant offset, but then the Q = E = 0 state would not be an aUowed state, and this is the desired

equiUbrium.

These equations can be renormalized reducing them to two independent variables, three inde

pendent variables, four parameters and initial conditions as foUows. First define



and

then setting

E0(i) = E(x = 0,t)

1 r

Pf?= JL
Po

v0

E' =-^E

C' = C
Aeo

R!=V-^R

r,_vlA£oL -—j3—L

yields the equations (dropping the primes)

16

(&+•&)-* (ol0)
P =a3(/)-l) (oil)
dx

and

jf**-(4+4+J)* (al2)
with boundary conditions

p(x = 0) = l

and

»(x = 0) = 1

Derivation of Integro-differential Equations

We begin by taking the partial derivative with respect to time of (all), and using (a9) to

substitute for the partial derivative of p with respect to time. The result is the familiar (aside from
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the appearance of a2) equation
d fdE ^ 2 \ n

This equation impUes that the quantity inside the parentheses is a function only oftime. We can

therefore take its value for any value of x to be its value at x = 0, so that

8E ^ dE0 2j-+* = -%• +*

The left-hand side of this equation can be rewritten as

dE BE dE t ( dE\

yielding

dE , 2
dt *

dV 2

d?v , 2 dE0 , 2

(al3)

(al4)

This equation is analogous to the Llewellyn equation [8] for electron beams (v = J(t)). Since

v = dx/dt, this equation can be integratedoncewith respect to time. Let to be the time at which a

particle (or fluid element) at time t and position x was emitted at x = 0, then

dvdv

dt dt
+ a2x = Eo(t) - £o(<o) + a%t - to)

J2,

— + a2x= E0 + a2(t-to)

The boundary conditions on this equation are

x(t = t0) = 0

and

dt
= 1

l=«o

The solution, by standard methods of calculus, is

1 /' •= t - t0+ - / E0(r)sina(t - t)dr
<*Ju

(al5)

(ol6)
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Let T be the transit time of the particles just leaving the system, i.e., x = 1 when t —to = T. Note

that T is a function of time. The first of the two integro-differential equations to be derived is

T-l =-i / £00-)sina(t-r)dr (all)

So far, to has been viewed as a parameter in a solution bycharacteristics, but a more powerful,

and now necessary view is that we have made a change in independent variable. To consider t0 to

be an independent variable, and x a function ofit, it is necessary only to show that thedifferential

operator we have been denoting as d/dt is actually the partial derivative with respect to t with t0

held fixed.

d_
dt .♦•*

d

r et
.dto

+ *

a

." at0
^ dto a

,' at0 t

d

" dt

dx

to"*
dto d

t' dto
_,_ at0

t+vax"
a

,' at0

~ dt

We are now free to make use of to as an independent variable.

Using this change ofvariable, we can integrate the electric field to find the potential drop across

the system, in order to convert (al2) into an integro-differential equation.

J1E(x,t)dx =j" E(to,t)^-dto (*18)
Note that it is necessary toassume at this point that x is amonotonic function oft0. Since dx/dto

is negative for small values of Eo, it foUows that the condition

(al9)

be true for aU t - T < t0 < t. This condition wUl always besatisfied if \E+ 0| < o.

Since x is known explicitly as a function oft and to, and

o9x

-^- =1+i^0(<o)sino(t -10) >0
dto &

E =
dt2

the integral can be reduced to asingle explicit integral The algebra is lengthy but straight-forward,
and wUl not be reproduced here. The only difficult points come when one must use the identities

J dxf dyf(y) =J dyJ dyf(y)
=[\v-a)f(y)dy

Ja
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and

Ja îl dyf(x)f{y)=\ [[ /(X) dX\
The final result is

f E(x,t)dx =Eo-^(l-T2) +a f £o(r)(t-r) sina(t-r)dr (a20)
Jo 2 «/«-T

Plugging this into (al2) gives the desired integro-differential equation

^ +ij^+^+l^0 =̂(l-r2)-a^,T^o(r)(t-r)sina(t-r)dr (a21)
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System length 1

Number of grid cells 128

Time step 1/128

Number of time steps 2048

€0 1

qe/me -1

mt 00

v0 1

Injected electron current -a2

Background current a2

Injected electron flux 2048

Table I. Simulation parameters



EQUILIBRIA FOR CLASSICAL PIERCE DIODE

a Eo Theory Eo Simulation

3*/2 -3.70110 -3.7009

5*/2 -18.50551 -18.5061

7»/2 -8.63590 -8.528

llx/2 -13.57071 -12.895

| (-13.357)*

Table II. Values of the electric field at the cathode for different values of a.

* Ax and At reduced by half



EQUILIBRIA FOR EXTENDED PIERCE DIODE

c Eo Theory Eo Simulation a

20 -3.1399 -3.1398

3ir/210 -2.5306 -2.5306

5 -0.4863 -0.4885

20 -5.3689 -5.336 7ir/2

Table III. Values of the electric field at the cathode for different values of a and C.
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Fig. 1. Extended Pierce Diode model



-1L

Fig. 2. Non-uniform equiUbria for short circuit (C = oo) case. AU linesend at \Eo\ = a, except for first Une
(with arrow), which extends indefinitely.
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Fig. 3. Non-uniform equiUbria for (a) C = 20, (b) C = 10, and (e) C = 5. Note that in (a), the first line
does not go on indefinitely, but ends at shown.
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Fig. 4. Non-uniform equiUbria for C = 20 withoutrequirement that potential be a tingle-valued function of
position
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Fig. 5. Phase space at end of run and history of EQ for short circuit case with a = 3*/2. (Phase space plot
it actually comprised of many particles, and not a single curve, at it appears.)
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Fig. 6. Phase space at end of run and history of Eo for short circuit case with a = 7ir/2
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Fig. 7. Phase tpace at end of run and hittory of Eo for short circuit cate with a = llx/2. (Figure (c) is a
blow-up of the last half of fig. (b).)
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Fig. 8. Hittory of £b for short circuit case with a = 5*/2 (n = 1 branch).
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Fig. D. Early and late phase tpace plott (a) and (b) with history of E0 (c) for thort circuit case with an
initial Eo = -1.2
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Fig. 10. Early and late phase tpace plott (a) and (b) with hittory of the natural log of the electrostatic
energy £ (c) for thort circuit cate with an initial Eo = —1.3
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Fig. 11. Virtual cathode otcUlationt in ttable region with initial Eo = —1.3. £ represents the total
eleetrottatic energy.
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Fig. 12. Early and late phase tpace plots and history of Eo for unstable equUibrium in short circuit case
with a = 5t/2. Again, £ represents the total electrostatic energy.
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Fig. 13. Phase tpace plot and history of Eo for almost-stable mode at a = 7r/2 with C = 20
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Fig. 14. Phase tpace plotand history of Eo for almost ttable modeat a = 7t/2 with C = 10and initial E0
near equUibrium value
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Fig. 15. Ditpertion curve for dominant mode of non-uniform equiUbriumin thort circuit case for 0 < a < 2»
(Im 0 it sero for thit mode)
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Fig. 16. Ditpertion curvet for dominant modet of non-uniform equiUbrium in short circuit case for 2x <
a < 4t. The modewhich it dominant for a/x < 3 it purely growing.
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Fig. 17. Dispersbn curves for dominant modes of non-uniform equUibrium in short circuit case for 4x <
a < 6x. The mode which is dominant for a/x < 5 it purely growing.



-2-

-4-r

-6L

0 8

t

(a)

-6.16

-6.18 -

-6.20 -

16

Fig. 18. History of E0 for marginally stable equiUbrium in short circuit case at a s 3 - 3/8 x. Figure (b) is
a blow-up of the last half of fig. (a).
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Fig. 10. Ditpertion curvet for dominant modes of non-uniform equiUbrium for C as 20. Mode which is
dominant for 2 < a/x < 3 it purely growing.
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Fig. 20. Ditpertion curvet for dominant modet of non-uniform equUibrium for Cs 10. Mode which is
dominant for 2 < a/x < 3 it purely growing.
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Fig. 21. Ditperskm curve for dominant mode of non-uniform equiUbrium forC s 5
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Fig. 22. Phase space at t = 64 and history of charge on external capacitor Q. Between <= 35 and t = 40,
electrons are turned back to the injection plane, producing a state which cannot return to the uniform
equiUbrium. Note there are two trapped electrons in the first half of the system.
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