
 

 

 

 

 

 

 

 

 

Copyright © 1987, by the author(s). 
All rights reserved. 

 
Permission to make digital or hard copies of all or part of this work for personal or 

classroom use is granted without fee provided that copies are not made or distributed 
for profit or commercial advantage and that copies bear this notice and the full citation 

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to 
lists, requires prior specific permission. 



ADAPTIVE CONTROL OF

LINEARIZABLE SYSTEMS

by

S. S. Sastry and Alberto Isidori

Memorandum No. UCB/ERL M87/53

9 June 1987

(Revised March 1, 1988)



ADAPTIVE CONTROL OF

LINEARIZABLE SYSTEMS

by

S. S. Sastry and Alberto Isidori

Memorandum No. UCB/ERL M87/53

9 June 1987

(Revised March 1, 1988)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



ADAPTIVE CONTROL OF

LINEARIZABLE SYSTEMS

by

S. S. Sastry and Alberto Isidori

Memorandum No. UCB/ERL M87/53

9 June 1987

(Revised March 1,1988)

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720



Adaptive Control of Linearizable Systems

S. S. Sastry

Electronics Research Laboratory
University of California

Berkeley, CA 94720 U.S.A.

Alberto Isidori'

Dipartimento di Informatica e Sistemistica
Universita di Roma, "La Sapienza"

18 Via Eudossiana

00184 Rome, Italy

Abstract

In this paper we give some initial results on the adaptive control of "minimum-phase"

nonlinear systems which are exactly input-output linearizable by state feedback. Parameter

adaptation is used as a technique to robustify the exact cancellation of nonlinear terms which is

called for in the linearization technique. We review the applications of the techniques to the

adaptive control of robot manipulators. Only the continuous time case is discussed in this

paper—extensions to the discrete time and sampled data case are not obvious.
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1. Introduction

It is well-known that, under rather mild assumptions, the input-output response of a non

linear system can be rendered linear by means of state feedback. This was implicitly or expli

citly pointed out in several papers dealing with study of noninteracting control of nonlinear

systems, like those of Porter [1970], Singh and Rugh [1972], Freund [1975] and Isidori,

Kroner, Gori-Giorgi and Monaco [1981]. Independently, a substantially identical synthesis

technique was successfully implemented in some relevant practical applications, like the control

of flight dynamics (Meyer and Cicolani [1980]) and the control of rigid-link robot manipulators

via the so called "computed torque" method, to mention a few. Parallel to these developments,

beginning with the work of Brockett [1978], several authors studied the problem of when the

differential equation relating and input to the state can be rendered linear via state feedback and

coordinates transformation. The problem was completely solved by Jakubczyk and Respondek

[1980] and, independently, by Hunt, Su and Meyer [1983]. The former design technique is

often referred to as exact input-output linearization, while the latter one as exact state-space

linearization. The bridge between the two techniques lies in the fact that the design of a state-

space linearizing control is equivalent to the design of "output" functions for which input-

output linearization is possible. The theory is now well developed and understood (see for

instance, expository surveys in Isidori [1985], Isidori [1986] and Claude [1986]) for the con

tinuous time case. For the discrete time and sampled data versions of the theory, see Monaco

and Normand-Cyrot [1986], Monaco, Normand-Cyrot and Stomelli [1986] and Jakubczyk

[1987]. The class of systems is described (in the continuous time case) by



x =/(*)+Z &(*)"/
»=1

yi = hl(x)

yP =hp(x)

with* g R", uy v e R? and/, &, hj smooth functions.

A number of applications of these techniques have been made: their chief drawback

however appears to arise from the fact that they rely on an exact cancellation of non-linear

terms in order to get linear input-output behavior. Consequently, if there are errors or uncer

tainty in the model of the non-linear terms, the cancellation is no longer exact In this paper

we suggest the use of parameter adaptive control to help robustify i.e., make asymptotically

exact the cancellation of nonlinear terms when the uncertainty in the non-linear terms is

parametric. Some other attempts in this regard have been made by Marino and Nicosia [1986],

Nicosia and Tomei [1984], using a combination of high gain, sliding modes and adaptatioa

Some previous work in this spirit is in Nam and Arapostathis [1986]. Our development is, we

believe, considerately more general and straightforward than theirs (specifically, no error aug

mentation and stronger stability theorems) and was in turn motivated by our work in the adap

tive control of a specific class of linearizable systems—rigid link robot manipulators (see Craig,

Hsu, and Sastry [1987] for details), including implementation of the scheme on an industrial

robot arm.

We would also like to mention the work done in parallel by Taylor, Kokotovic and Mar

ino [1987] on the adaptive control of fully-state linearizable single input, single-output systems.

While our scheme specializes to their scheme in the instance that the system is state (rather

than input output) linearizable their paper also considers the effect of parasitic dynamics on the

adaptation scheme. Taylor, Kokotovic and Marino prove the robustness of their scheme to

parasitics; we have however not undertaken such a study here.



The paper is organized as follows: we give a brief review of input-output linearization

theory for continuous time systems along with the concept of a minimum phase non-linear sys

tem as developed in Byrnes and Isidori [1984], in Section 2. We discuss the adaptive version

of this control strategy in Section 3 along with its applications to the adaptive control of robot

manipulators. In Section 4, we collect a few comments about the discrete time and sampled

data cases along with some future directions.

2. Review of Exact Linearization Techniques

2.1. Basic Theory

A large class of non-linear control systems can be made to have linear input output

behavior through a choice of non-linear state feedback control laws. We review the theory

here in order to fix notation. Consider the single-input single output system

x = f(x) + g(x)u
(2.1)

y = Hx)

with x e R"; /, g, /* smooth. Differentiating y with respect to time, one obtains

y = Lfh +Lghu (2.2)

Here Lfh, Lgh stand for the Lie derivatives of h w.r.t /, g respectively. If

(Lg h)(x) * 0 V x e R", then the control law of the form a(x) + p(jc)v, namely

u = + -r~ (-Lfh +v)Lgh J

yields the linear system

y = v (2.3)



In the instance that Lg h(x) a 0, one differentiates (2.2) further to obtain

y =Lfh + (LgLfh)u (2.4)

In (2.4) above Lfh stands for Lf(Lfh) and LgLfh stands for Lg(Lfh). As before, if

LgLfh * 0 V x e R\ the law

linearizes the system (2.4) to yield

y =v .

More generally; if y is the smallest integer such that LgL}h a 0 for i = 0, ..., y-2 and

LgLff~lh CO * 0 Vjc e Rn then the control law

"=V^(-L'",+V) <«>
yields

y(7) = v . (2.6)

The theory is considerably more complicated if LgLj~xh =0 for some values ofx. We do not

discuss this case here. For the multi-input multi-output case, consider the p -input, p -output nonlinear

system of the form

x =f(x) + g1(x)ul+ ••• +gp(x)up

y\ = Ai(*)
(2.7)

yP =hp(x)

Here x e Rn, u € Rp, y e Rp and /, gt, /iy- are assumed smooth. Now, differentiate the out

puts yj with respect to time to get



yj = LfhJ + £ (V;)«/
1=1

(2.8)

In (2.8) Lfhj stands for the Lie derivative of hj with respect to /, similarly Lghj. Note that if each

of the (Lg.hj)(x) = 0, then the inputs do not appear in (2.8). Define yy- tobe the smallest integer such

(Y)that at least one of the inputs appears inyy ', i.e.,

y?* =L?hi+ £ V&/T/V<i
P

E

T,-lwith at least one of the Lg{(LfJ hj) * 0 Vx. Define thep x p matrix A(x) as

l^l/'-V) ... vl/-1^)
>K*) =

v^'v ••• VL/P"\)

Then equations (2.9) may be written as

y!Yl> £.;•/., "l

. = • + A(x) |

*v. ypv >.

If A(x) g RP*"P is bounded away from singularity, the state feedback control law

L?lhi
-lu =-A(x) + A(xTlv

L1PK

yields the closed loop decoupled, linear system

-6-

(2.9)

(2.10)

(2.11)

(2.12)



(Yi
y\ Vl

(2.13)

(YJ
yP

Once linearization has been achieved, any further control objective such as model matching, pole place

ment, tracking may be easily met The feedback law (2.12) is referred to as a static-state feedback

linearizing control law.

If A(x) defined in (2.10) is singular, linearization may still be achieved using dynamic state feed

back. To keep the notation from proliferating we review the methods in the case that p = 2 (two

inputs, two outputs). Suppose thatA (x) has rank 1 for all x. Using elementary column operations we

may compress A (x) to one column

A(x)T(x) =
anCO 0

a2i(*) 0

,2x2with T(x) e R^ a non-singular matrix. Now defining the new inputs w = T"l(x)u, (2.11) reads

y?
=

Lf\,

Lf2h2
+

3ll(*)

32l(*)

Also (2.7) now reads

w,

x = f(x) + gi(x)Wi + Mx)w2

where

[it 82] =[*i 8z]t
Differentiating the equations in (2.14) and using(2.15), we get

(2.14)

(2.15)



yr

y?1

(VD Ti

Lf 2 h2 +L§ Lf 2h2wi +Lf a21wi +Lg &2iwf

Yian ^L/Ai+I^anw,

Y2^21 1^1/1*2+^21^1 w2

c(x,wi)

Note the appearance of the control term Wj. Specifying h>j is equivalent to the placement of an

integrator before w \. Defining the coefficient matrix of w j, w2 to be

B(x,w{) :=

Yi311 LgL/hx + LganWx

tza2l LlLfZh2^Ll^2Xyfl

we see that if B (x ,w j) is bounded away from singularity then the control law

wx

.w2
= -B-1 -1<fl^Cx.w^cCx.W!) + £~l(xfw1)

yields the linearized system

Vl

V2

Vl

v2

(2.17)

(2.18)

(2.19)

The control law (2.18) is a dynamic statefeedback linearizing decoupling control law. In the instance

that B(x,wx) is singular, the foregoing procedure may be repeated on B(x,w{). The procedure ends

in finitely many steps provided that the system is right invertible (for details, see Descusse and Moog

[1985]).

2.2 Minimum Phase Non-linear Systems

We briefly review the definitions of minimum phase non-linear systems due to Isidori and co

workers (Byrnes and Isidori [1984], Isidori and Moog [1986]).



2.2.1. The Single-Input Single-Output Case

The theory is much simpler for the single input, single-output case. We recall the following

definition:

Def. The system (2.1) is said to have strong relative degree y if

Lgh(x) =LgLfh(x) = ••• =LgLff~2h(x) =0
and

LgL]rxh{x)*Q Vjc eRB-

Thus the system (2.1) is said to have strong relative degree y if at each x e RB the outputy needs to

be differentiated y times before terms involving the input appear on the right hand side as in (2.5), (2.6)

above.

If a system has strong relative degree y, it is easy to verify that at each x°<= RR there exists a

neighborhood U°ofx° such that the mapping

r:tf°-»RB

defined as

Tx(x) = zn=h{x)

T2(x) = z12 = Lfh(x)

TJx) = zXy = L?-lh(x)
with

dTi(x)g(x) = 0 for / =yH n .

is a diffeomorphism onto its image. If we set z2 = (T^i, ••• >Tn)T, it follows that the equations

(2.1) may be written in the normalform as



zll = z12

zly-l = z1y

zly = /l(zl'Z2> + g\(Zl*Zz)u

z2 = V(z1^2)

(2.20)

y = zll (2.21)

In equation (2.20) above /1(21,22) represents L/h(x) and g1(21^2) represents LgLj*~lh(x). Now if

x = 0 is an equilibrium point of the undriven system (i.e., / (0) = 0) and h (0) = 0, then the dynamics

22 = V(0^2> (2.22)

are referred to as the zero-dynamics.

Remark The dynamics are referred to as the zero dynamics since they are the dynamics which are

made unobservable by state feedback. It might help the reader to note that the linearizing state feedback

law is the nonlinear equivalent of placing some of the closed loop poles at the zeros of the system,

thereby rendering them unobservable.

Note that the subset

L = {xeU°:h(x) = Lfh(x)
can be made invariant by choosing

u =
1

Sl(zl.z2)
(-/1(21,22) + V)

=Lf-1h(x) = 0) = [xeU°:zx =0}

(2.23)

The dynamics of (2.22) are the dynamics on this subspace. The nonlinear system (2.1) is said to be

minimum phase if the zero-dynamics are asymptotically stable.

Remark Note that the previous analysis identifies the normal form (2.20)-(2.21) and the zero-dynamics

(2.22) only locally, around any point x° of R". Recent work of Byrnes and Isidori [1987b], has

identified necessary and sufficient condition for the existence of a globally defined normal form. They

have shown that a global version of the notion of zero dynamics is that of a dynamical system evolving

10-



on the smooth submanifold of RR:

L ={^R" :h(x) =Lfh(x) = ••• =Lf~lh(x) =0}
and hereby defined by the vector field:

L?h(x)/(*)=/(*)- r / " xg(x) xeL
LgLflh(x)

(note that this is a vector field of L because f(x) is tangent to L). If L is connected and the zero

dynamics is globally asymptotically stable (i.e., if the system is globally minimum phase), then the nor

mal forms are globally defined if and only if the vector fields:

g(x)$adfg(x), ••• ,ad?~lg(x)

are complete, where:

Note that this condition can be guaranteed by requiring that the vector fields in question are globally

Lipschitz continuous, for example. In this paper we systematically assume global minimum phase pro

perty and the existence of globally defined normal forms.

An interesting application of the notion of normal form and minimum phase property is the fol

lowing one. Assume the control v in (2.23) is chosen so that y (f) tracks yM (f), i.e.,

y =y$> + ai(y$-l) - yiy-iy) ••• +afoM - y) (2.24)

with oti, • •• ,Oy chosen so mat sy +a^1 + ••• +Oy is aHurwitz polynomial. It is easy to see

that this control results in asymptotic tracking and bounded state Zi (or equivalently y, y, • • • .y*"1)

provided yw,yM, • • • ,y^15 are bounded.

Proposition 2.1. (Bounded Tracking in Minimum Phase Systems)

Assume that the new dynamics of the nonlinear system (2.1) or equivalently (2.20), (2.21) as

•11-



defined in (2.22) are exponentially-stable. Further assume that \\f(zhz>£ in (2.20) is Lipschitz in zx, z2.

Then the control law (2.24) results in bounded tracking (i.e., x e R" bounded and y (f) -» yM (f)),

provided that yM^M*'' >y$~1^ 3tQ bounded.

Proof. From the foregoing discussion it only remains to show that 22 is bounded. We accomplish this

using a converse theorem of Lyapunov (see Hahn [1967]). This proof technique has also been used in

Bodson and Sastry [1984].

First since (2.22) is exponentially stable and \\f is Lipschitz in z2 a converse Lyapunov theorem

implies that 3 V{zi) such that

a!l22l2 £ V(22) £ Oi\z2\2

^.¥(0,22),-a3lz2l2 (225)
l-^-l £ 04l22l

022

Now the control law (2.24) yields bounded 2 Xt Le.,

l2i(r)l £ K Vr (2.26)

Using (2.25) in (2.20) yields

VXO =-j^\|/(2i, 22) £ -03l22l2 +-7^ Wzi.z2)-¥(0,z2))
022 «22

£ -a3\z2\2 + a4fCL\z2\

withL representing the Lipschitz constant of \|f(2 ^22) wj.l 21. It is now easy to see that

OaKL
V £ 0 for lz,l > ——

- 03

Using this along with the bounds in (2.25) it is easy to establish that z2 is bounded.

Remarks: (1) Proposition (2.1) establishes that a bounded input to the exponentially stable, unobserv-

•12-
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able dynamics yields a bounded state trajectory z2.

(2) The hypothesis of Proposition (2.1) calls for a strong form of stability-exponential stability; in

fact, counter examples to the Proposition exist if the zero-dynamics are not exponentially stable, for

example, if some of the eigenvalues of —— xj/(0,22) lie on the yco-axis.
az2

(3) The hypotheses of Proposition (2.1) can, however, be weakened substantially by requiring only

that all trajectories of (2.22) are eventually attracted to a compact set, for instance, by requiring that

22^(0,22) < -ctl22l2for l22l £.R (2.28)

Condition (2.28) can be thought of as being an attractivity condition~a simple contradiction argument

involving

•^ l22l2 =2^(0^2)

should convince the reader that (2.28) guarantees that all trajectories of (2.22) eventually enter a ball of

radius R. With condition (2.28) replacing the exponential stability hypotheses of Proposition (2.1) and

the Lipschitz dependencies as before we see that the proofgoes through. Condition (228) itself can be

restated in a form reminiscent of (2.28) involving a more general Lyapunov function V(zz) with the

weakening that

JUL . mfl\9-\ < _/v-It.|2
dz2

\|/(0,22) £ -CC3I22I2 only for l22l 2.R . (2.29)

Thus bounded tracking only requires that the conditions (2.25) only hold outside a ball of radius R.

We refer to this condition as exponential boundedness of the zero dynamics.

2.2.2. The Multi-Input Multi-Output Case

Definitions of minimum phase for the square multi-input, multi-output nonlinear systems parallel

the development on the SISO case above only if the matrix A(x) defined in (2.10) is nonsingular for all

x e R". In this case, locally around any point x° ofRn, a diffeomorphism (zXlz2) = T(x) can be

defined, with:

•13-



z\ =ihtJLfhi, •••t]r\x,h2,' ' •£/Vl*2. •••,AP, •••/./' V

In these coordinates the equations (2.1) read

zn = z12

zlvj = /l(zl»z2) + ^l(zl»z2>M

zlVi+l = zlvx+2

zlm =/m(zl.z2) + ^m(zl.z2)M

i2 = \|fi(2i,22) + V&tfdu

yi = zll

yi - zivj+i

ym = zl(m-v.+l)

(2.30)

(2.31)

YtlIn equation (2.28) above, /1(21,2 2) stands for Lfhx(x), g x(z 1,22) for the first row of

A(x), • • • in the (21,22) coordinates. Note that the z2 variables are driven by the input. Conse

quently a change is needed in the definition of zero-dynamics. Let u (2 Xtzi) be the linearizing control,

i.e.,

Sl(zl.z2)
-1

/l(zl»z2)
u (21,22) = - (2.32)

&n(zl.z2) /m(z1^2)

Using this control in the equations for z2 and assuming as before that OeR* is the equilibrium point

of the undriven system (i.e., /(0) = 0) and hx(0) = • • • = hm(0) = 0 we see that the subspace

{(0,2^} c R" is an invariant subspace and the zero dynamics are the dynamics of

f2 = XJ/^0,2^ + \|f2(0,22)W*(0,Z2)

:= y(0,Z2).
(2.33)

If A(x) is nonsingular for all x e R", the global notion of zero dynamics and the conditions for the

existence of normal forms are still similar to those illustrated in the SISO case. When global normal

•14-



forms exist, then Proposition 2.1 can be easily verified to hold for tracking with bounded state variables

if (2.33) is exponentially stable (and Lipschitz in 2 Xl Zi). Also the same remarks as those made after

Proposition 2.1 hold for the case that the zero-dynamics are exponentially attractive.

If A (x) is singular, the definition of zero dynamics is more subtle. As a matter of fact, there are

different and non equivalent ways to extend the concept of "transmission zero," as pointed out in Isidori

and Moog [1986], depending on which linear definition one chooses to generalize: (1) the dynamics

associated with the subsystem that becomes unobservable when a certain state feedback is implemented

(to the extent of maximizing unobservability), (2) the internal dynamics consistent with the constraint

that the output is zero, (3) the dynamics of the inverse system. In particular, the notion that is behind

(2) has some interesting featutes that render it particularly suitable for the design of stabilizing feedback

(see Byrnes and Isidori [1987a]) and to study asymptotic tracking.

3. Adaptive Control of Linearizable Systems

In practical implementations of exactly linearizing control laws, the chief drawback is that they

are based on exact cancellation of non-linear terms. If there is any uncertainty in the knowledge of the

non-linear functions / and g, the cancellation is not exact and the resulting input-output equation is not

linear. We suggest the use of parameter adaptive control to get asymptotically exact cancellation. The

following simple example makes our philosophy clear.

3.1. The SISO Relative Degree One Case

Consider a SISO system of the form (2.1) with Lgh(x)*0 (Relative Degree One). Further let

/CO and g(x) have the form

fix) = £ e/ZiCO (3.1)
1=1

"2

g(.x) = £ Qfgjix) (3.2)

with 8,-, 1 = 1, • • • ,nx; 9y-, j = 1, • • • ,n2 unknown parameters and the /,(x), gjix) known func

tions. At time t, our estimates of the functions / and g are respectively

•15-



kx) = 2 %«)fi(x)
1=1

8(x) = 2 Qf(t)gj(x)
y=l

(3.3)

(3.4)

A « A*

with the 8/, Q2 standing for the estimates ofthe parameters 8/, Q2 respectively at time t. Consequently

the control law u is replaced by

u =^z i-Lfh+v)

and Lgh, Lfh are the estimates of Lgh, Lfh respectively based on (3.3), (3.4), i.e.,

4* =2 kl(f)Lflh
i=l

0 =2 &/e>V
y=l

(3.5)

(3.6)

(3.7)

If we define 8 e Rni+"2 to be the "true" parameter vector (81T,82r)T, 8 6 R"1+B2 the parameter
A

estimate and <J> = 8-8 the parameter error, then using u of (3.5) in equation (2.2) yields after some cal

culation.

IT... . a27\y =V+f'Wj +<jr/W2 (3.8)

with

LAA

w, e R"1 := (3.9)

Lf h

and

wo € R 2 :=

ht

Lg h

(-Lfh+v)

V
(3.10)

•16-



The control law used for tracking is

v =yM +a<yM-y)

_ //K1T a27\T.and yields the following error equation relating y - yM := e to the parameter error <J> = (<J> ,<J> )

g + ae = <>rw . (3.11)

w e R"1 "2 is defined to be the concatenation of wXt w2. Now, it is easy to state the following

theorem.

Theorem 3.1. (Adaptive Tracking)

Consider a minimum phase non-linear system of the form (2.1) with the assumptions on /, g as

given in (3.3), (3.4). Define the control law

u = — i-Lfh+yM-HxOto-y)) (3.12)
V

Assume that Lgh as defined by (3.7) is bounded away from zero. Then, if y^ is bounded the parame

ter update law

<j> = -(y-yM)w (3.13)

yields bounded y(r) asymptotically converging to y^O). Further all state variables x{t) of (2.1) are

bounded.

Proof. The control law (3.12) yield the error equation

e +ae = tyTw ^3.11)

along with the update law

<t> = -**> • (3.13)

The Lyapunov function v(e,<J>) = —e2 + —<j>r<j> is decreasing along trajectories of (3.11),

-17-



v(c,<j)) =-etc2 < 0; thereby establishing bounded e, <j>. Also J e2dt <oo. However, to establish

that e —» 0 as f -» oo we need to verify that e is uniformly continuous (or alternately that e is

bounded). This in turn needs w, a continuous function of* (well defined since Lgh is bounded away

firom zero) to be bounded. Now, note that boundede, bounded y^ => y is bounded. From this and the

minimum phase assumption (cf. Proposition 2.1) it follows that x is bounded. Hence w is bounded and

e is uniformly continuous and so tends to zero as t —> oo.

Remarks: (1) Prior bounds on the parameters 02 are frequently sufficient to guarantee that Lgh is

bounded away from zero. Several standard techniques exist in the literature for this purpose. [See Sas

try and Bodson 1988]

(2) Theorem 3.1 makes no statement about parameter convergence. As is standard in the literature one

can conclude from (3.11), (3.13) that e, <j> both converge exponentially to zero if w is sufficiently rich,

i.e., 3 cti <X2, 8 > 0 such that

axI z. j wwTdt ^.OqI (3.14)
s

The condition (3.14) is impossible to verify explicitly ahead of time since w is a function of x.

(3) It has recently become popular in the literature to not use adaptation (e.g., Marino [1988]) but to

replace the control law of (3.12) by the "sliding mode" control law

1 ^ •k =p*Z (~Lfh+yM+k sgn(yM-y)) (3.15)

The error equation (3.11) is then replaced by one of the form

e +ksgne = d(t) (3.16)

where d(t) is a mismatch term which may be easily bounded using bounds on /,-, gj and the $;'s

above. It is then easy to see that if k > sup \d(t)\ then the error e goes to zero (in fact in finite
t

18-



time). This philosophy is not at odds with adaptation as described in Theorem 3.1 above. We feel that

it can be used quite gainfully when the parameter error $(?) is small. If however <|> is large, the gain k

is large resulting in unacceptable chatter, large control activity and other such undesirable behavior.

Adaptation offers a less traumatic scheme of parameter tuning in this instance.

(4) It is important to note that here and in what follows the parameter update laws require knowledge

of the state variables. This in turn is necessitated by the state-feedback linearization methodology.

3.2. Extensions to Higher Relative Degree SISO Systems

We first consider the extensions of the results of the previous section to SISO systems with rela

tive degree y, i.e., Lgh = LgLfh = ••• = LgLf~2h a 0 with LgLjf~lh * 0. The non-adaptive

linearizing control law then is of the form

u = +—-— (-L/h+v) (3.17)

If / an g are not completely known but of the form (3.1), (3.2), we need to replace Lfh and

LgLjf~lh by their estimates. We define these as follows

Lfh :=L/h (3.18)

LgLph := LgLfh (3.19)

Fory ^ 2, equations (3.18), (3.19) are not linear in the unknown parameters 8,-. Forexample,

and

2l _Hh = S2,=ly=l &
dh f
dxfj

lotW*j

«2 nl -\

,=1 y=l OX

dh f
dxJj

2a 1
gflt*}

(3.20)

(3.21)

and so on. The development of the preceding section could easily be repeated if we defined each of the

parameter products to be a new parameter in which case the 8/8y and 828J of (3.20) and (3.21) are

19-



parameters. Let 0 e R* be the k-(large !) dimensional vector ofparameters 8/, 82, 8/ 8y2, 8/ 0},

Thus for example if y =3 then 0 contains 8/, 8/, 8/8/, 8/8J8*1, 8/8y2, 8/8y-82. Now for the

purposes of tracking the control law to be implemented is

v =y8> + aftJt1^1*) + ••• +afyM-y)

where y = Lfh,y - Lfh, etc. are state feedback terms. In the absence of precise information about

Lfh, Lfh,... etc the tracking law to be implemented is

v =y& +^(yt^-Lfh) + ••• +ajyM-y). (3.22)

The overall adaptive control law then is

u=^J^ (-Lfh+v) .

Using this yields the errorequation, (with O := 0 - 0 representing the parametererror)

(3.23)

e® + a^f-V+ ... +oy? =o^i +OrW2 (3.24)

The two terms on the right hand side arise respectively from the mismatch between the ideal linearizing

law and the actual linearizing law and the mismatch between the ideal tracking control v and the actual

tracking control v. For definiteness, consider the case that y = 2 and nx = n2 = 1. Then with

0r = [81,82,(81)2,8182]weget

Wj = (3.25)

and

rT _W2 = [axLfh I 0 I 0 0] . (3.26)
1 x i

Note that Wx and W2 can be added to get a new regressor vector W. It is of interest to note that 6

cannot be explicitly identified in this case since the regressor multiplying it is zero. Also note that W

is a function of both x,yM 61 Note that terms involving only 82 or even any products of the 82 are
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absent and so may be dropped from the vector 0.

We keep the form (3.24) of the error equation. Note that sy + a^"*-1 + ••• +oty is Hurwitz

by choice of tracking control. Now for the purposes of adaptation we need a signal of the form

ex = $xe<*~l)+ • +$ye (3.27)

with the transfer function

Pl5TM + . . . +$y\st+ axs^ + ••• +cty (3.28)

strictly positive real. Indeed if such a signal e xwere measurable the basic tracking theorem would fol

low immediately from arguments similar to the linear arguments. The difficulty with constructing the

signal (327) is that e, d®, • • • e^1^are not measurable since

e = JM - Lfh

e =yw -Lfh

and soon with the Lfh notexplicitly available.

Motivated by the linear case where a so-called augmented error scheme is necessitated we define

the augmented error. Some notation is needed at this point Define

"^'itn^rl...^- C3.29)
Then the equation (3.29) may be written as

e =M(s)- OtW (3.30)

with the convention (standard in the adaptive control literature) that the hybrid notation (3.30) refers to

the convolution between the inverse Laplace transform of M(s) and <bTW. Also the exponentially

decaying initial condition terms are dropped since they do not alter the stability proof (for these points

and a review of linear adaptive control we refer our forthcoming book Sastry and Bodson [1988], or the

survey paper Sastry [1984]). Define the polynomial
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L(s)=M~\s) (3.31)

and the augmented error

ex=e + (eTL-\s)W-L"\s)QTW) (3.32)

Note that the last two terms are not equal and refer respectively to each component of W being filtered

by L~l(s) before being multiplied by 0T and filtering ofQTW by L~\s). If ©were indeed constant

they would be identical. This observation enables us to rewrite

ex = e + (<SrTL-\s)W-L-\sWTW) . (3.33)

Note that e x in the form (3.32) can be obtained from measurable signals unlike (3.33), since O is not

available. However (333) is critical to our analysis, since we may use (3.30) in (3.33) to get

ex =®TL-\s)W . (3.34)

For convenience we will denote

5:=L_1(5)WeR* . (3.35)

Error equation (3.34) is key to the choice of the identification algorithm. Here is one choice of parame

ter update law:

e=* =-^ 0.36)
(3.36) is referred to as a normalized gradient-type algorithm (unlike the unnormalized update law

(3.13)). Some properties of O, ex follow immediately with no assumptions on the boundedness of £.

In what follows we will use the following notation

(i) p is a generic L2C\L function which goes to zero as to t —» oo

(ii) y is a generic L2C\L function
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(iii) K is a (large) bound

(iv) II 2 \\ t will refer to the norm sup Iz (f ) I, the truncated L norm.

Proposition 3.2 (Properties of the Identifier)

Consider the error equation

<?i=Ot5 (3.35)
with the update law

1+5T5

Then

OeL ,$6L2nL and
(3.37)

l<Dr5(OI * 7(1+11511/) V*.

Proof: Consider the Lyapunov function

V(<D) = Or<D

Then we have

-2e2
V = —r- <i 0 (3.38)

so that we get that Oe L^. since Jvtff <oo, we also have that c1/(l+5T§)1/2e L2. Further since

*=̂ rj" <3-39)
we have that OeL . Also since

oo
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i6i2 =-47T'-^lr <3-40>

we see that Oe L2 (the first term in (3.40) is integrable see (3.38) above and the second bounded).

Finally, define

Y=_i>_. JML
JiW£ 1+115II, '

The first term is in L2 n L and the second bounded. Thus y is indeed in L2 n L . Hence (3.37)

follows.

•

Remarks: The conclusions of Proposition (3.2) are generic identifier properties. Other identifiers such

as the normalized least squares identifier also yield these properties...for details see [Sastry and Bodson

[1988].

We are now ready to state and prove the main theorem:

Theorem (3.3) (Basic Tracking theorem for SISO for Relative Degree Greater than 1)

Consider the control law of (3.22), (3.23) applied to an exponentially minimum phase nonlinear

system with parameter uncertainty as given in (3.1), (3.2).

KyM»yhi » *• ' »yST1^ are bounded, LgLp~l^h is bounded away from zero, f, g,h, Lfh,
L A A

LgLfh are Lipschitz continuous functions of*, and W(x,fy has bounded derivatives in x, Qthen the

parameter update law

*=l3^ (3-36>
with

§ = L~\s)W (3.35)

yields bounded tracking (i.e., x is bounded and y -> yM as t —» oo).

Proof: The proof uses three technical lemmas proven in Sastry-Bodson [1988] and summarized in the
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Appendix.

Step 1. Bound on the Error Augmentation

By the Swapping Lemma (Lemma 3 of the Appendix) with L"1 (playing the role of H) =

c(sI-A)'xb.

<5>TL-lW - L'WW =- c(sI-A)-l{[(sI-A)-lbWT]®} . (3.41)

Using the fact that Oe L2 and that (sI-A)~lb is stable (since L~l is stable) we get

\[(sI-AT1bWT]0\ < y\\W\\t+y. (3.42)

Now using Lemma 2 of the appendix and the fact that c(si-Ay1 issttictiy proper we get

\&TL-lW - L'WW I < p || W ||, + P.

Step 2. Regularity of W,OtW

Note that the differential equation for

zi = (yo>, ••• .y^fis

zx =M(s)

' 1
®TW +

yM

f^\ ytl\

(3.43)

(3.44)

Since <E> is bounded and yM, • • • , y$~^ are bounded by hypothesis and skM(s) are all proper

stable transfer functions we have that

zHI, Z K\\W\\t+K . (3.45)

Using (3.45) in the exponentially minimum phasezero dynamics

Z2 = V(Zl,Z2) (3.46)

we get
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||z2||, < K\\W\\t+K . (3.47)

Combining (3.45), (3.46) and noting that x is a diffeomorphism of zx, z2 we see that

|U||, < K\\W\\t+K

and

\\x\\t Z K\\W\\t+K . (3.48)

Using the facts that || dW/dx || and || dW/dQ || are bounded and (3.48) we get

II W Hr <S K\\W\\t+K . (3.49)

thus W is regular => 5 = L~lW is regular as well (since L~l is stable). A similar calculation yields.

<E> W to be regular as well. For consider,

-i- (^W) =QTW +<&W . (3.50)

Using (3.49) and 0,6 e L we get

||^(0TW)||r £ tf||W||,+tf . (3.51)

But from equations (3.44), (3.47)

II* ||, <S K\\0TW\\t+K (3.52)

so that

|| W || £ K \\<S>TW \\t+K . (3.53)

Combining (3.53) with (3.51) yields the regularity of ®TW. From the regularity of ^,OtW one can

establish that ——„ J*— has bounded derivative and so is uniformly continuous. Since by (3.37)
1+115 II*
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1+ II5II /

we see that it infact goes to zero as t —» oo. (A uniformly continuous Lx function tends to zero as

t -» oo.) Thus

\®T%(t)\ < p(l+|| 5 ||,) . (3.54)

Step 3. Final Estimates

e = ex +®TL-lW - L"WW

is the equation relating the true output error to the augmented error. Using (3.43) we get

\e\ < leil+p||WM|r+p.

Using (3.53) we get

lei £ lei I +p||<D7> || r +p. (3.55)

Apply the BOBI lemma (Lemma 1) of the Appendix to

e =M(s)&TW

along with the established regularity ofOrW to get

\\d>TW ||, £ K\e\ +K . (3.56)

Using (3.56) in (3.55) we get

\e\ < \ex\ +p||e ||, +p. (3.57)

Using (3.54) for ex = <DT£ we get

lei < Pile II,+P + Pl|g||, (3.58)

5 is related to W by stable filtering. Hence
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|| ^ ||, < K\\W\\t+K . (3.59)

Using the estimate (3.53) followed by (3.56) in (3.55) we see that (3.58) may be written as

lei < pile ||,+p. (3.60)

Since p —> 0 as f —>oo wesee from (3.60) that e goes to zero as t —» oo. This in turn can be

verified to yield bounded W, x, etc.

•

Remarks

(1) The parameter update law appears not to take into account prior parameter information such as the

mutual existence of 6;, 9,, 6;6,- and so on. It is important, however, to note that the best estimate of
A A

8,0y in the transient period may not be 0,8;. If, however, the parameters are close to their correct

values such information is useful But, since parameter convergence is not guaranteed in the Proof of
A A

Theorem (3.3), it may not bea good idea toconstrain the estimate of 9t8y to beclose to 8,9;.

The preceding remarks are not designed, however, to ameliorate completely one's concerns that

the number of parameters increases very rapidly with y.

(2) In several problems it turns out that Lfh and LgLf~lh depend linearly on some unknown param

eters. It is then clear that the development of the previous theorem can be carried through.

(3) Thus far we have only assumed parameter uncertainty in / and g; but not in h. It is not hard to

see that if h depends linearly on unknown parameters then we can mimic the aforementioned procedure

quite easily.

(4) Parameter convergence can be guaranteed in Theorem (3.3) above if W is sufficiently rich in the

sense stated after Theorem (3.1).

(5) If some of the 6t<? are known they can be replaced in the algorithm by these true values and

adaptation for them turned off.

(6) The parameter update law is a state feedback law as before.
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3.3. Adaptive Control of MIMO Systems Decouplable by Static State Feedback

From the preceding discussion it is easy to see how the linearizing, decoupling static state feed

back control law for square systems (minimum phase) can be made adaptive—by replacing the control

law of (2.12) by

l/'a,
-lu = + A(x) + V (3.61)

L]'hf

Note that if A (x) is invertible then the linearizing control law is also the decoupling control law. Thus

ifA(x) and the L/'A/ depend linearly on certain unknown parameters the schemes ofthe previous sec

tions (those of section (3.1) if yi = y2 = • • • = yp = 1 and those of section 32 in other cases) can

be readily adapted. The details are more notationally cumbersome than insightful. Instead we will

illustrate our theory on a important class of such systems which partially motivate this present work

(see Craig, Hsu, and Sastry [1987])-the adaptive control of rigid link robot manipulators. We sketch

only a few of the details of the application relevant to our present context; the interested reader is

referred to the paper referenced above. The example (unfortunately) has no zero dynamics. If

q e R" represents thejoint angles of a rigid linkrobot manipulator its dynamics may be written as

M(q)q +C(q,q) = u (3.62)

In (3.62) M(q) e RnXB is the positive definite inertia matrix, C(q,q) represent the Coriolis, gravita

tional, and friction terms and u e R" represents the control input to the joint motors (torques). In

applications M(q) and C(q,q) are not known exacdy but depend linearly on some unknown parame

ters (such as payloads, frictional coefficients, ...) i.e.,

M(q)= ^QfM^q)
«=1

«2
(3.63)

C(q,q) = X 0}Cj(qxq)

Writing the equations (3.62) in state space form with xT = (qT4fT) and y - q; we see that the
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system is decouplable in the sense of Section 2 with yx = • • • = yn = 2,

A(x)=M-\q)
and

L^nJ

(3.64)

= -M-\q)C(q,q)

with decoupling control law given by

u =C(qj)+M(q)v (3.65)

Note that the quantities in equation (3.64) depend on a complicated fashion on the unknown parameters

6 , 6 while the equation (3.65) depends on them linearly. For the sake of tracking v is chosen to be

v =qM+ <*\(qM-q) + OiiqM-q) (3.66)

and the overall control law (3.65), (3.66) is referred to as the computed torque scheme. To make this

adaptive the law (3.65) is replaced by

u = C(q,q) + M(q)v . (3.67)

resulting in the error equation where e = qM-q

e +<Xie +o^e =M~\q) £ ^}Cj(q4) +ATl(q) £ M^qYq^f (3.68)
y=i i=l

This may be abbreviated as

e + ctie + ctqe = W® (3.69)

where W e R l "^ is a function ofq, q, and q and O is the parameter error vector. The param

eter update law

6 =- WTEX (3.70)
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5+a3
where Ex = e + O^e is chosen so that —•r is strictly positive real can be shown to yield

s2+axs+ct4

bounded tracking. The error augmentation of Section 32 is not necessary in this application since both

y >)> (q*q) are available as states so that Lfht do not have to be estimated. Note that the system is

minimum phase-there are infact no zero dynamics at all. It is however unfortunate that the signal W

is a function of q— this, however, is caused by the form of the equations. As in the previous cases it is
A

important to keep M(q) from becoming singular, using prior parameter bounds.

We end this section with two remarks:

(1) Adaptive control of square multivariable non-linear systems decouplable by static state feedback is

straightforward...it is however important to have the linearizing control depend linearly on parameters.

(2) Adaptive control of nonlinear systems not decouplable by static state feedback is not easy or

obvious...some of the reasons are also discussed in the next section.

4. Concluding Remarks

We have presented some initial results on the use of parameter adaptive control for obtaining

asymptotically exact cancellation in linearizing control laws for a class of continuous time systems

decouplable by static state feedback. The extension to continuous time systems not decouplable by

static state feedback is not as obvious for two reasons:

(i) The different matrices involved in the development of the control laws in this case, namely T(x),

c(x, wx), B(x,wx) in equations (2.14), (2.16), (2.17) depend in extremely complicated fashion on the

unknown parameters.

(ii) While the "true" A(x) may have rank q <p,its estimate A(x) during the course of adaptation

may well be full rank in which case the procedure of Section 2.1 cannot be followed.

The discrete time and sampled data case are also not obvious for similar reasons:

(i) The non-adaptive theory, as discussed in Monaco, Normand Cyrot and Stornelli (1986) is fairly

complicated since
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yk+i = h o (f(xk) + g(xk)uk) (4.1)

is not linear in uk in the discrete time case and a formal series for (4.1) in uk needs to be obtained

(and inverted!) for the linearization. Consequendy the parametric dependence of the control law is com

plex.

(ii) The notions of zero-dynamics are not as yet completely developed. Further, even in the linear

case, the zeros of a sampled system can be outside the unit disc even when the continuous time system

is minimum phase and the sampling is fast enough (Astrom, Hagander, Sternby [1985]).

Thus, we feel that the present contribution is only a first step in the development of a comprehen

sive theory of adaptive control for linearizable systems.

Appendix Technical Lemmas

We state three important lemmas which are proven in Sastry-Bodson [1988]. The notation y, p,

K from the text is widely used in the appendix.

Lemma 1 (BOBI Stability)

Let y = H(s)u be the output of a proper, minimum phase linear system with input u. If u,

u € L and u is regular i.e.,
OOg

\\u ||, <; K\\u \\t+K

Then

IUH, <i K\\y \\t+K .

Remark: If the input is regular and the plant is minimum phase then bounded system output implies

bounded system input

Lemma 2

Let y - H(s)u be the output of a proper stable system H(s) driven by u.

if II" 11/ ^ yll<7ll,+y

Then ||y ||, ^ y||<7 ||, + y
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If, in addition H is strictlyproper

\y\t < p|U||,+p.

Remark: This is a slight generalization of several standard results; note that if H is strictly proper we

get aL2f\L function which goes to zero as the bound.

Lemma 3 (Swapping Lemma)

UH(s) = c(sI—A)b + d is the minimal realization of a proper transfer function then

H(s) (WT&) - (H(s)WT)& =- c(sI-A)-l{[(sI-ATlbWT]&}
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