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Abstract

We consider a class of nonlinear continuous-time time-varying plants with a state-space

description which has a uniformly completely controllable linear part. For this class, we obtain by

calculation a right factorization. In the case where the state is available for feedback, we obtain a

normalized right-coprime factorization.
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Introduction

Forplants with finite-dimensional linear state-space description, right andleft coprime fac

torizations have been obtained in two cases: 1) the time-invariant stabilizable and detectable

case in [Netl, Vid.1,2], 2) the time-varying uniformly completely controllable anduniformly

completely observable case in [Man.1]. Hammer has proved that a nonlinear time-invariant

discrete-time recursive system with a continuous recursion function has a right coprime factoriza

tion [Ham.l].

In this paper we consider a class of nonlinear continuous-time time-varying plants with a

state-space description which has a uniformly completely controllable linear part. For this class,

we obtain by calculation a right factorization. Using input-output representationit can be shown

that each of the subsystems of a class of S-stable feedback systems has a right factorization

[Des.l]. In the case where the state is available for feedback, we obtain a normalized right-

coprime factorization.

Notation : In this paper, the <»- norm forvectors in R* and the corresponding induced norm

for matrices are denoted by 11*11. For vector valued functions x : R+ -»R" , we also write

llxll := sup lljc(f)N , a slight abuse ofnotation.

The extended space LI* [0,<») := ( x :R+-» R* I Vr e R+ , sup \\x(t)U < °o } is
t a (0, T]

the causal extension of L « [0,«) := { x : R+ -> R* I IIx II < °o }.

A causal map H :L^ [0,«») -»L"^ [0,«») is said to be S-stable iff for all a> 0 there

exists a p >0 such that 11 x 11 < a implies that 11 Hx 11 < (3. An S-stable map need not be con

tinuous. Note that the composition and the sum of S-stable maps are S-stable.

A causal map P :L% [0,<»)-»L'^ [0,«0 is said to have a right factorization

(Np ^p'yL"^ [0,<»)) iff there exist causal S-stable maps Np , Dp , such that

(i) Dp :L"Le [0,«>) -» Ll^ [0,oo) isbijective and has acausal inverse,
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and(ii) Np'.Lt, [0,«)->£,*« [OH,with NP[L*. [0,~)]=P[L*« [0,-)],

and (iii) P =NP Dfl [Vid.3, Ham.l].

(Np %DP \L"Lt [O,00)) is said to be a normalized right-coprime factorization of

P'.L'ZeiOrt-tL'^iO.oo) iff

(i) (Np ,Dp ;L^e [O,00)) is aright factorization of P ,

and (ii) there exist causal S-stable maps Up :L^ [0roo)->L%l [0,~) and

V, :LlLe [0,oo)-^L'5U [0,~) such that

UpNp + VpDp=I ,

where / denotes the identity map on Li* [0,«>).

Description of the system : Consider a nonlinear time-varying system whose input-output

map P '.Li* [0,«0-»Lt« [0,«») is specified by the following state-space description:

*i =A(t)x +f(t,x) +B(f)u (la)

P :u h+y \y =h(t,x,u) (lb)

*(0) = 0 , (lc)

where x(t) <= R* , u(t) € R* and y(r) e R"°, Vf s R+.

On the functions 4 (•), B (•), / (•, •) and h (•, *, •), we impose these assumptions.

Assumptions

L For the initial condition (lc) and for all inputs u e Li* [0,«), the differential equation

(la) has a unique solution. (Consequently, P : u H- y is a function.)

n. The nonlinearity / is bounded on E+xlR", more precisely there exists m>0 such that

sup \\f(t,x)\\<m . ( This assumption implies that /(*,*) does not have a
isR.xeR"

linear part in x .)

HI. For any causalS-stable map Hx : Li* [0,°o) ->Ll* [0,<»), Hx : u h» x , the causal map

Hy'.u h»y defined by y(t) = h(t,(Hxu)(t),u(t)) is an S-stable map, where
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h -.R+XR^XR* -•R*.

IV. The pair (A(•),£(*)) is uniformly completely controllable; equivalently, there exist

A > 0, Wmax£ Wain > 0 suchthat for all t e R+

Wna/£W(f,f+A)<Swmax/ , (2)

where W(t,t+A) is the controllability gramian [Bro.l].

r+A

W(f. r+A ):= J <&(f, x)S (x)B T(x)QT(t, T)dt , (3)
t

and <$(% •) is the state-transition function of x = A (t)x .

V. 5 (•) is bounded on R+; more precisely, there exists b > 0 such that sup 11B (t) 11 £ b .
re R,

We now construct a right factorization of P : namely, we construct a causal S-stable bijec-

tive map D with acausal inverse and acausal S-stable map N suchthat P =ND~l.

Proposition 1 : Let the nonlinearmap P be described by (la-c) and satisfy Assumptions I-

V. Then P has a right factorization.

Proof : The proof is in two steps: 1) using Assumption I, we obtain a causal bijective map

D :L1* [0,°°)->Ll* [0,«>) with a causal inverse D"1 and a causal map

N :L1* [0,<») -* L*Z* [0,«>) such that P =ND~l; 2) using Assumptions II-V, we show that

both N and D are S-stable maps.

Step 1 : Define the causal map D : Li* [0,«) -*Ll* [0,°°) by

xl = (A+BK)(t)xl+f(t,xl) + B(t)vl (4a)

D:vi K«i \ux=K(t)xx+vx (4b)

*i(0) = 0 , (4c)

for some piecewise continuous K : R+ -» R^'*" . We claim that D has a causal inverse

D'l:Ll* [0,«) -» LlLe [0,~); indeed D~l is given by
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X2= A(t)X2+f(t,X2)+B(t)U2

i-i.D~l:ii2 Kv2 V2ss-K(t)X2 + U2

(5a)

(5b)

(5c)*2(0) = 0 .

We show that D is bijective by showing that D~lD =DD~x = l. Consider

DD~l luzh+ui; thus Vi = v2= -K(t)x2 + U2 and from equations (4a-c) and (5a-c), we

obtain

,-i.DD~l :k2 Ku

D~lD : vt h»v2 i

xl = (A+BK)(t)xl+f(t,xi) + B(t)u2-(BK)(t)x2

X2=A(t)X2+f(t,X2) + B(t)U2

Ux=K(t)(Xi-X2) + U2

(6a)

(6b)

(6c)

*i(0) = ;t2(0) = 0 . (6d)

For any input u2, using Assumption I it is easy to check that (x \(t) sx2(r), x2(r)) is the solu

tion of the system of differential equations (6a-b) under the initial conditions (6d). Hence by

equation (6c), we get Mi =u2 and DD'x-l on Li* [0,°°). Similarly, consider

D~lD :v i hv2; then ux- «2=K(t)x \ +v \, and by equations (4a-c) and (5a-c) weobtain

i1 = (A +BAT)(r)x1+/(r,^1) + 5(r)v1

x2=A(t)x2+f(t,x2) + (BK)(t)xl+B(t)vl

v2 = tf"(0(*i-*2) + vi

(7a)

(7b)

(7c)

*i(0) = ;c2(0)= 0 . (7d)

For any input v x, (x x(t), x2(t) s x \(t)) is rAe solution of the system of differential equations

(7a-b) under (7d). Hence by equation (7c), we obtain vx=v2; so D~lD =1 on £*« [0,<»).

Hence D is bijective and D"1 defined by (5a-c) is the causal inverse of D .
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Now define N :Ll* [0,«°) ->L^, [0,«») by equations (8a-c) for the same K(') in equa

tions (4a-b).

i3 = (A +B/5r)(^3+/a,^3) + S(Ov

N : v l-»y y=A(f,;c3,tf(0;c3 + v)

(8a)

(8b)

(8c)x3(0) = 0 ,

From equations (5a-c) and (8a-c), we obtain

x2=A(t)X2+f(t,X2) + B(t)u

i3 = (A +SAT)(Ox3+/(f,^3) + B(r)M -CMT)(0*2

(9a)

(9b)

»-i.ND~l: u h*y
y =h(t,x2tK(t)(x3-X2) + u ) (9c)

x2(0)=*3(0) = 0 . (9d)

For any input k , by Assumption I, (x3(t) =x2(t), *2(0) is r/ie solution of the system of dif

ferential equations (9a-b) under (9d). Hence, equations (9a-d) is an equivalent description of P

as ND~l.

Step 2 : We use a technique due to Cheng [Che.l] to show that there exists a

K : R+ -* R1*"1 such that the causal map HX:L1* [0,«) -*Ll* [0,«>) defined by

i =(A + flAT)(0* +/(r,*) + 5(0v
/Jx : v l-» x <

(10a)

(10b)

is S-stable. Let

*(0) = 0 ,

t+6,

W&, r+A) := J «('wt)<E>(r,x)5(i)Br(x)<I>r(r,T)rfT

Using (2), (3) and (11), for all t e R+,

^oJ^lC^^J ,

(11)
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hence for all t e R*,

Wbb'1/^!^,^^^-1/ . (12)

Note that

4-W i(t ,t+A) =e-*®(t, t+A)B (r+A)£ 7(r+A)Or(r, t+A)
of

- B (r )flT(r) +Wx(t, r+A)+A (t)Wx(t, r+A)

+W1(r,f+AMT(0 . (13)

For all t e R+, let AT (•) be defined as

tf(0 :=-£T(r)Wf!('. r+A) . (14)

So K : R+ -» R***1 is bounded on R+. Let V : R+ x Rn -» R+ be a Liapunov function can

didate where

V(ttx):=xT(t)Wfl(t,t+A)x(t) . (15)

Differentiating equation (15) along the solution of (lOa-b) we obtain for all

-%-V(t,x(t)) l(iofl) =2xr(r)Wf1(r,r+A)x(0
dt

-xT(t)Wfl(t, r+A^l^iC, t+A))Wfl(t, f+A)x(f) . (16)
For the time derivative of V( •, •) along the solution of (10a) with £"(•) given by (14) we

obtain

^V(t1x(t))=2xT(t)AT(t)Wl''\tft+A)x(t)
-2xT(t)WC\t, t+A)B(t)BT(t)Wfl(t, t+A)x(t)

+ 2fT(t,x(t))Wf\t,t+A)x(t) + 2vT(t)BT(t)Wf\t,t+A)x(t)

-xT(t)e-*Wf\t, t+A)Q(t, t+A)B(t+A)BT(t+A)®T(t, t+A)Wfl(r, t+A)x(t)

+xT(t)Wfl(t, t+A)B(t)BT(t)Wf\t, t+A)x(t)

-xT(t)Wi-\t, t+A)x(t)-2xT(t)AT(t)Wfx(t, t+A)x(t) . (17)

Performing the appropriate cancellations and neglecting nonpositive terms in (17), we obtain
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|v(r,x(r))^xr(r)^f!(f, f+A)x(0 +2/r(r,^(rPf!(f, r+A)x(0
+2vT(t)BT(t)Wfl(t,t+A)x(t) . (18)

By assumptions n, IV, V and (12), (18), we obtain

^V^x(0)£^«rlll*(Olli
A _!

+2(m +JhTb llv II )e 2wmin 2llx(f)ll2 . (19)

A -1
Let p(llvll):=2(/n +Vn^ llv II )e 2wmin 2wmax. From inequality (19) we conclude that

Vf eR+ , H*(Oll2^P(Nvll) . (20)

Since all norms arc equivalent in R* , by (20), we conclude that for any y> 0 there exists

T>0 such that llv II £y implies that ll#xv II £I\ Hence Hx defined by (lOa-b) is S-

stable.

For the choice of K(-) as in (14), by Assumption V and (12), there exists a> 0 such that

sup IIK(t)II See . (21)
(a R.

Then by Assumption HI, (21) and the S-stability of Hx , the causal map N is S-stable. By (21)

and the S-stability of Hx , the causal map D is S-stable. Hence (N,D\L1* [0,«)) is a right

factorization of P .

a

Proposition 2 : Let the map P be described by (la-c) and satisfy Assumptions I, n, IV, V

and let h(t,x(t\u(t))&x(t). Then P has a normalized right-coprime factorization.

Proof : By Proposition 1, (N\D\Ll* [0,<»)) given by (4a-c), (8a-c) is a right factorization

of P for K(") as in (14). We claim that (NfD;Ll* [0,«»)) is a normalized right-coprime

factorization of P when h(t,x,u)ax. Let the causal S-stable maps

U :Lt« [0,~)->L^ [0,oo) and V :Ll* [0,~)-» £, ^ [0,~) be defined as V =1 and

U:y Kv jv(0:=-/C(r)y(r) .
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Then, using (4a-c), (8a-c) and h(t,x,u) = x , we obtain

UN +VD :vi h»v2 «

i1 = CA+MTXOxi+/(f.*i) + B(Ovi

i3 = (A +BK)(t)x3+f(ttx3) + B(t)vl

v2=K(t)(xi-x3) + vi

(22a)

(22b)

(22c)

*i(0) = x3(0) = 0 . (22d)

For any V!, under (19d), the solutions of (19a-b) are identical. Hence, by (19c), v2 = vl. So

UN + VD is the identity map and (N,D;Ll* [0,«»)) is a normalized right-coprime factoriza

tion of P when h(t,x,u)=x .

•

In the time-invariant case, Assumptions I and n can be replaced by "/(*) is Lipschitz and

does not have a linear part" and the second step in the proof of Proposition 1 can be simplified by

selecting the eigenvalues of (A + BK).
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