Copyright © 1987, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.



BICOPRIME FACTORIZATIONS OF
THE PLANT AND THEIR RELATION
TO RIGHT- AND LEFT-COPRIME
FACTORIZATIONS

by

C. A. Desoer and A. N. Glindes

Memorandum No. UCB/ERL MS87/57

14 August 1987




BICOPRIME FACTORIZATIONS OF THE PLANT

" AND THEIR RELATION TO RIGHT- AND LEFT-COPRIME FACTORIZATIONS

C. A. Desoer and A. N. Giindes
Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley CA 94720 USA

ABSTRACT

In a general algebraic framework, starting with a bicoprime factorization P = N, D"Np, ,
we obtain a left-coprime factorization, a right-coprime factorization and the generalized Bezout
identities associated with the pairs (N,,D,) and (5,,,17,,) . We express the set of all
H-stabilizing compensators for P in the unity-feedback configuration S(P,C) in terms of
(Npr D,Nyy) and the elements of the Bezout identity. The state-space representation

P = C(sI - A)™'B is included as an example.

Research sponsored by the National Science Foundation Grant ECS-8119763.



BICOPRIME FACTORIZATIONS OF THE PLANT AND
THEIR RELATION TO RIGHT- AND LEFT-COPRIME
FACTORIZATIONS

by

C. A. Desoer and A. N. Glindes

Memorandum No. UCB/ERL MS87/57

14 August 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720




- BICOPRIME FACTORIZATIONS OF THE PLANT

e

— AND THEIR RELATION TO RIGHT- AND LEFT-COPRIME FACTORIZATIONS

C. A. Desoer and A. N. Giindes
Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley CA 94720 USA

ABSTRACT

In a general algebraic framework, starting with a bicoprime factorization P = N, D"I\I“7 ,
we obtain a left-coprime factorization, a right-coprime factorization and the generalized Bezout
identities associated with the pairs (N,,D,) and (5,,,1\7,,) . We express the set of all
H-stabilizing compensators for P in the unity-feedback configuration S(P,C ) in terms of
(Npr »D,Np) and the eclements of the Bezout identity. The state-space representation

P = C(sl —A)B isincluded as an example.

Research sponsored by the National Science Foundation Grant ECS-8119763.



BICOPRIME FACTORIZATIONS OF THE PLANT AND
THEIR RELATION TO RIGHT- AND LEFT-COPRIME
FACTORIZATIONS

by

C. A. Desoer and A. N. Giindes

Memorandum No. UCB/ERL M&7/57

14 August 1987

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720



BICOPRIME FACTORIZATIONS OF THE PLANT

—_

- ~~AND THEIR RELATION TO RIGHT- AND LEFT-COPRIME FACTORIZATIONS

C. A. Desoer and A. N. Giindes
Department of Electrical Engineering and Computer Sciences
and the Electronics Research Laboratory

University of California, Berkeley CA 94720 USA

ABSTRACT
In a general algebraic framework, starting with a bicoprime factorization P = N, DN, ,
we obtain a left-coprime factorization, a right-coprime factorization and the generalized Bezout
identities associated with the pairs (N,,D,) and (5,,,1\7,,) . We express the set of all
H-stabilizing compensators for P in the unity-feedback configuration S(P,C) in terms of
(Npr +D,Nyy) and the elements of the Bezout identity. The state-space representation

P =C(sl —-A)'B isincluded as an example.

Research sponsored by the National Science Foundation Grant ECS-8119763.



INTRODUCTION

The set of all Fl-stabilizing compensators and achievable performance for a given plant P
has been of great interest in the analysis and synthesis of linear time-invariant MIMO systems.
H-stabilizing compensators were first characterized in [You.1] for continuous-time and discrete-
time lumped systems. An algebraic approach that incuded distributed as well as lumped
continuous-time and discrete-time systems was given in [Des.1]. Algebraic formulations were
used by many researchers; for a detailed review of the factorization approach and related topics

until 1985 see [Vid.1] and the references therein.

So far the parametrization of all H-stabilizing compensators has been based on a right-
coprime factorization (P = N,D,™) or a left-coprime factorization (P = 5;‘1\7 ») of the plant
[Des.2,3,4,Vid.1,2,Net.1]. In some cases however, a bicoprime factorization (P = N, D“N,,,) is
all that is available; a perfect example of this situation is the state-space representation. In
[Net.2], constant state feedback and ocutput injection were used to go from a state-space represen-
tation to a right-coprime fraction representation (r.c.f.r.) and a left-coprime fraction representa-
tion (Lc.f.r.).

The problem studied in this paper is finding the class of all H-stabilizing compensators
directly from a bicoprime fraction representation (b.c.f.r.) of P. We also show that ar.c.fr. and a
Lc.f.r. can be obtained directly from a b.c.f.r. (N, , D, Nyy) and from the generalized Bezout
identities associated with this b.c.f.r. The system we consider is the unity-feedback system
S(P, C) shown in figure 1; note that the compensator is a one-degree-of-freedom compensator.
This system is simpler than the two-input two-output MIMO plant and compensator system con-

sidered in [Des.4,Net.1].

We use the following symbols and abbreviations:
/0 input-output
MIMO multiinput-multioutput

a:=>b aisdefined asb



detA the determinant of matrix A

M @H)  the set of matrices with elements in H .

I. ALGEBRAIC BACKGROUND

1.1. Notation [Vid.1, Lan.1]:

H is a principal ring (i.e., an entire ring in which every ideal is principal).

J < H isthe group of units of H .

I < H is a multiplicative subsysiem, 0el,1el.

G=H/I={(n/d :n e H,d el }isthering of fractions of H associated with/ .
G, (Jacobson radical of the ring G ):={x € G;:(1+xy) ' € G forally € G }.

Note that (i) I = the set of units of G whicharein H. (iij)LetA € M @H),B € m(G),
then a) A~ € M(H) iff detA €J and b) B~ € M(G) iff detB e [. (iii) Let
Yem@G,) . X.zem@G) then Xv.YZe M@Gs) and (+XY),
I+YZ)Y'e m@G). (iv)Leta,b € H,thenab €J iff a andb e J. (v) Let
c,d € H. Thencd e I iffc andd e I [Des4).

1.2. Example (Rational functions in s) : Let U D C, be a closed subset of C , symmetric
about the real axis, and let C\ U be nonempty. Define U:=U \U( = }. The ring of proper
scalar rational functions (with real coefficients) which are analytic in i is a principal ring; we
" denote it by Ry (s). Let H = R, (s). Then f e J implies that f has neither poles nor zeros in
U.1 isthe multiplicative subset of R, (s) suchthatf e I implies f (e) = a nonzero constant in
IR ; equivalently, / < Ry (s) is the set of proper, but not strictly proper, real rational functions
which are analytic in ¥ . Then Ry (s)/ I is the ring of proper rational functions R,(s). The set

of strictly proper rational functions IR, (s ) is the Jacobson radical of the ring IR, (s ).

1.3. Definitions (Coprime Factorizations in H ):
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(i) The pair (N,,D,) , where N, ,D, € M (H), is called right-coprime (r.c.) iff there
exist U, ,V, € M (H) such that

VoD, +UpN, =1 (1.1)
(if) The pair (N, D,) is called a right-fraction representation (r.f.x)of P ¢ M (G)iff
D, issquare, detD, € I and P =N,D;" (1.2)

(iii) The pair (N,,D),) is called a right-coprime-fraction representation (r.cf.r.) of

P e m(G) iff (N,,D,)isarfr.of P and (N,,D,)isr.c.

The definitions of left-coprime (1.c.), left-fraction representation (1.f.x.) and left-coprime-

fraction representation (l.c.f.r.) are duals of (i), (i), and (iii), respectively [Vid.1, Net.1, Des.4].

(iv) The triple (N,

or D Npi) ,Npp D Ny € M(H) is called a bicoprime-fraction

representation (b.ef.r.) of P € M(G) iff the pair (N,, ,D) is right-coprime , the pair
(D ,Ny)is left-coprime,detD € I and P =N, D7'N, .

O

Note that every P € M (G) has a rcfr. (N,,D,) , a Lefr. (D,,N,) , and a befr.

(Npr D, Np;) in H tbecause H is a principal ring [Vid.1].

II. MAIN RESULTS

Consider the system S(P, C) in figure 1. We analyze this system with (i) a r.c.f.r. of P
and alcfr. of C,(ii)al.cfr.of P andar.cfr.of C , (iii) ab.c.f.r. of P and al.c.fr. of C , (iv)
ab.cfr. of P and arc.fr. of C . The first two analyses give us the well-known set S(P) of all

H-stabilizing compensators in terms of familiar r.c.f.r. and Lc.fir. of P [Vid.1,2,Des.2].

2.1. Assumptions:

(A) P e GJ* . Let (N,,D,) be arc.fr., (Dp, Np) be a Le.fr., (W, , D, Npy) be a

14
befr. of P, where N, € H"™ D, e H""% D, ¢ H" N, e H"*" |

Ny € H™* D ¢ H™® N, ¢ H"™%
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B) C € G  Let (D.,N,)be alcfr. and (N,,D,) be a r.cfr. of C , where
D, € H"* N ¢ HMXo N o HWXto p g H NMoXno

If P satisfies assumption (A) we have the following generalized Bezout identities:

(1) For the r.c. pair (N, D,) and the L. pair (D,,N,) , where P = N,D;' = D,'N,, ,

there are matrices V,, , U, ,ﬁp ,‘7,, e M H) such that

2.1)

S
O
=
o
=}

In,
((Np. Dp) , (D, N,)) is called a doubly-coprime factorization of P.
(2) For the b.c.fr. (Npr » D, Np; ) we have two generalized Bezout identities: for the r.c. pair

(N , D) , there are matrices V,, , Uy, ,X ,Y ,U ,V e M (H)suchthat

Vor Up D =U I, 0
; 2.2)

for the 1.c. pair (D , N) there are matrices Voo U ., X,Y, U,V € m (H ) such that

D Ny 1| Va X I, ©

= . (2.3)
u v Uy Y 0 I

Each matrix in equations (2.1), (2.2), (2.3) is unimodular.

Lety := [I™|, u = “11. themap Hy, :u >y is called the I/O map.
Ym u

22. Definition (H-stability): The system S(P,C) in figure 1 is said to be H-stable iff
H, e mH).

2.3. Definition ( F-stabilizing compensator): (1) C is called an H-stabilizing compensator
for P iff C € G™*" satisfies assumption (B) and the system S (P, C ) is H-stable.
(2) The set

S@P):={ C:C H-stabilizes P } (2.4)
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is called the set of all H-stabilizing compensators for P .

24. Analysis : Case (1) Let P = N,D, and let C = D;'N, , where (N, D,) is r.c. and

(ﬁc, ﬁc) is L.c. (see figure 2). S(P, C ) is then described by equations (2.5)-(2.6).

U
(6, +8.N, J&p = [B. ]| | @.5)
- ul'
Np Ym 0 0 u
§p= I O oo ] (2.6)
DP ym' Im 0 ul'

S(P,C) is H-stable if and only if [15;0,, +N.N, ] e M (H)is unimodular [Vid.1,2,Des.4].

It is well-known (see for example [Vid.1,Des.2,4,Net.1] that the set S(P) of all H-stabilizing

compensators is given by

S®)={ v,-0oN,)y'U,+0D,) : 0 € H"*™ }, Q@.7)

where V, , U, ,1\7‘D » D, are as in equation (2.1).

Case (2) NowletP =D;'N, ,C =N.D;}, where (D,,N,)islc. and (N, D, ) is rc.

(see figure 3). S (P, C) is then described by equations (2.8)-(2.9).

“
[Epoc+ﬁ,,Nc ]§c= [ﬁ, : 15,] | (2.8)
u;’
D, rym 0 —Ino u,
§c= PN PN R e ], (2.9)
N. Ym' 0 0 ||uf

S, C) is H-stable if and only if |D,D, +N,N, ] e MH) is unimodular (which is
equivalent to [Ech +1\7ch ] e M (H) is unimodular). The set S(P) of all H-stabilizing
compensators is given by

S®)={ (U, +D,0)V,-N,0)" : 0 € H"*" }, (2.10)
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where U ,V ,N, ,D, are as in equation (2.1).

Case (3) Now let P =N, D™'N, and let C = D;'N, , where (N,, , D, Ny ) is a b.c.fr.

and (D, N, ) is 1.c. (see figure 4). S (P, C ) is then described by equations (2.11)-(2.12).

D - ol E_,x Npl 0 ui
. N 1 IO | P (2.11)
Ty i 5. ||| [0 F AL fur
Npw © 0 ||& Ym
e I e (2.12)
0 Ly, | |lym’ Ym'

Equations (2.11)-(2.12) are of the form

DHE', = NLu
Np€ =y
where (Ng , Dy) is a r.c. pair and (Dy , N, ) is a L.c. pair, N; , Dy ,N, € M (H ). The system

S(P,C) is H-stable if and only if D' € M (H); equivalently, S(P, C) is H-stable if and

only if
Dy = <e -+« | isunimodular. (2.13)
NN, : D,
Va X
LetR = : by equation (2.3), R € M (H) is unimodular. Post-multiply Dy by R :
Uy Y
DyR = . 2.14)

ﬁcherl-b-cUp’ ﬁchrx +5CY
But Dy, is unimodular if and only if DyR is unimodular; hence (2.13) holds if and only if
ﬁch,X + 5CY =: Dyp isunimodular. (2.15)

The set S(P) of all H-stabilizing compensators is then the set of all D:"ﬁc such that equation
(2.15) is satisfied.
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Case (4) Finally let P =N,, D™'N,, and let C =N_.D;! , where (N, ,D,Ny) is a

b.c.f.r. and (N, D, ) is l.c. (see figure 5). S (P, C ) is then described by equations (2.16)-(2.17).

D i-NuN, [[&c] [Mu i 0 ][uy
.. oo l=1--- - ], (2.16)
Ny : D, £, bo DL, | |uy
NprE 0 & Ym
ceel=1---]. 2.17)
0 ENcJ & Im'

Following similar steps as in case (3) of the analysis, we conclude that S(P,C) is H-stable if

and only if
D :-NyN,
Dy =|--- --- |isunimodular. (2.18)
N, : D,
VP’ UP’ .
LetL := : by equation (2.2),L € M (H ) is unimodular. Pre-multiply Dy by L :

LDy = ) (2.19)
0 XNuN.+YD,

But D g is unimodular if and only if Lb y is unimodular; hence the set S(P) of all H-stabilizing

compensators is then the set of all N.D.! such that

X NyN.+Y D, = Dy isunimodular. (2.20)
2.5. Proposition: Let P € M (Gs) ; let (N, ,D,Npy) be a befr. of P; hence, equations
(2.2)-(2.3) hold. Then

(Np,Dp) == (N, X ,Y)isa rcfr.of P ; (2.21)
(D,.N,) = (Y ,XNp)isalcfr.ofP, (2.22)

where X ,Y, X , Yem (H ) are defined in equations (2.2)-(2.3).

Proof of proposition 2.5: By assumption, P = N, D"Np , and equations (2.2)-(2.3) hold.
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Clealy N,,X ,Y ,Y ,XN, € M(H) . We must show that (N,,X ,Y) is a r.c. pair with’
detY e I andthat (Y ,X N,)isalc. pairwithdet? e .
Now P € M (Gj) . Post-multiply P by Y ; then using Np Y = DX from the Bezout equa-
tion (2.3), we obtain
PY =N, D7'N,Y =N,,X € m(Gsy). (2.23)
Now pre-multiply P by Y ; then using Y Ny, = X D from the Bezout equation (2.2) we obtain
YP=YN,D N, =XN,; e m(Gy). (2.24)
Using equations (2.2)-(2.3) we now obtain a generalized Bezout identity for (N, X , Y') and
& .XN,):
V+UV,Ny UU, Y S mij I, 0

= . (25)
-X Ny Y NpX V +N,VuU 0 I

Note the similarity between equations (2.1) and (2.25). Each of the three matrices in equation
(2.25) has elements in H and hence is unimodular. From now on we refer to the matrices on the
left-hand side as M and M, respectively; equation (2.25) then reads
MM = I . (2.252)
By equation (2.25), (N,,X , Y) is a r.c. pair and (f , X Npy) is a L.c. pair; more specifically,
if NpX , ¥) = (Np, Dp) and (¥ ,X Npy)=: (Dp, N,) , then
VoD, +UN, =lp, N,U,+D,V, =1y, (2.26)
where
Vo=V +UV, Ny, U, :=UU, , U, =UuyU , V, =V +N, VU .  (227)
Sincc N, =N,X € M(G;) and U,N, = UU,N,X € M(G;), equation (2.26)
implies that det(V,D,) = det(l,, — U,N,) e I and hence, detV, e I and detD, :=dety e [.
Similarly, since ﬁp =X Ny em (Gs) from equation (2.24), equation (2.26) implies that

det(D,V,) = detl,, —N,U,) e I andhence,detV, e [ anddetD, :=detY e [ .
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At this point we know that Y~! € M (G) and Y ! ¢ M (G) . Then equation (2.23)

implies that

P =N, XY -1, (2.28)
and similarly, equation (2.24) implies that

P=Y"IXN,. (2.29)
Finally, since equations (2.28) and (2.26) hold and since detY e I, (Npr X , Y) = (Np, Dp),
with N, ,D, e M (H) , is a rc.fr. of P. Since equations (2.29) and (2.26) hold and since
detY € I ,(Y ,XN,)=(D,,N,),withD, ,N, ¢ M(H),isalcfrofP .

O
Comment: If P € M (G) but not M (Gj) , equations (2.21)-(2.22) still give a r.c.fr. and a

lcfr. of P , respectively. The only difference in this case is in showing that detY I and
detY e I:

Consider the Bezout equation (2.2) for the r.c. pair (N, ,D). Since P € M G, detV,,
is not necessarily € /. Take T e M (H) such that de(V,, —TX ) e I [Vid.1]. Rewrite
equation (2.2):

V,,,-D? Up,-i-ﬁ D =U -DT I, O

_ ) = : (2.30)
-X Y Ny V =N,T 0 I,

Since detD e I, from equation (2.30) we get det [(Vp, -TX )D] = det(lp — (Up, + TY W) =

det(, = Npp (U, +TY )) = det [(‘7 —TN,,,)?] e I; equivalently, det(V —7TN,,) € I and
detY e I.
Similarly, consider the Bezout equation (2.3). Take f e M@H) such that
det(V,y - TX) e I . Rewrite equation (2.3):
D ~Np Vu-XT X I, 0

= . (2.31)
A A A
U+TD V ~-TNy “Up-YT Y 0 I

Since detD € I, from equation (2.31) we get det [(Vp, —Xf)D] = det(/p = Ny (Up; + Y?)) =
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det(l,, — Uy +TYIN,) = det [Y(V -ﬁvp,)] e I; equivalently, dex(V —TN,) e I and

dety e 1.

O
26. Theorem (Set of all H-stabilizing compensators): Let P € M (Gg) and let

Npr s D, Ny ) beab.cfr. of P, hence equations (2.2) and (2.3) hold. Then

S®)={ (V+UV, Ny -0X N,y \UU,, +0Y) : 0 e m(H) }; (2.32)
equivalently,

S®)={ WU +YQ)V +N,V,U -N,,X0)' : 0 e mH)};  (233)

where the matrices in equations (2.32)-(2.33) are as in the generalized Bezout equation (2.25).

Comment: By proposition 2.5 we know how to obtain a r.c.f.r. (N,,D,) and a L.cfr. (D~,,. N )
fromab.cfr. (N, ,D,N,)of P e M (Gs) : with (N, D,) as in equation (2.21), (5,,, 1\7,,) as
in equation (2.22),and V,, , U, , ‘7, U p» as in equation (2.27), the generalized Bezout equation
(2.25) is the same as the Bezout equation (2.1). Furthermore, observe that equation (2.21) substi-

tuted into equation (2.15) implies

Dyr =N.N, +D_.D, ; (2.34)
and hence, H-stability using analysis 2.4-case (3) is equivalent to establishing H-stability using
case (1). Therefore it is no surprise that S@) in equation (2.32) is the same as S@)in equation
(2.7), with equations (2.22) and (2.27) in mind. Similarly, equation (2.22) substituted into equa-
tion (2.20) implies.

Dy, =N,N.+D,D,; (2.35)
and hence, FH-stability using analysis 2.4-case (4) is equivalent to case (2). Therefore, S(P) in

equation (2.33) is the same as S (P) in equation (2.10), with equations (2.21) and (2.27) in mind.

Although the discussion above justifies theorem 2.6, we now give a formal proof.

Proof of theorem 2.6: We only prove that the set S(P) in equation (2.32) is the set of all

H-stabilizing compensators; the proof of equation (2.33) is entirely similar.
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If C is defined by the expression in equation (2.32) then C H-stabilizes P :
Let

C=D;N,, D ,=V+UV,Ny-QX Ny, N .=UU,+0Y . (2.36)
We must show that (i) C satisfies assumption (B), i.e., D, , N, € M (H) with detD, e [

and the pair (D, N,)isLc.,and (i) S(P, C ) is H-stable, i.e., equation (2.15) holds.

(i) From equation (2.36) clearly 5., . ﬁc e M(H) . Using the generalized Bezout equa-
tion (2.25) we obtain
Dyg = N.N,, X +D_Y
= (UUps + QY Ny, X +(V + UV Npy = QX Np)Y =1, . 237
By equation (2.37) (EC,ﬁc) is a Lc. pair. In the proof of proposition 2.5 we showed that
NX e M (Gy) (see equation (2.23)), and hence N N, X € M (G;) . We conclude from
equation (2.37) that det(D,Y) = det(l,, — NN, X) € I , therefore detD, e I ; consequently,

(5“ ﬁc) isalcfr.of C.

(ii) From equation (2.37), Dyg = I,,,. Therefore S(P, C ) is H-stable since equation (2.15)
holds.

Any C that H-stabilizes P is an element of the set S (P) defined by equation (2.32):
Let C € M (G) H-stabilize P . Let (D,,N,) be a Lcfr. of C . By assumption, S(P, C ) is

H-stable; equivalently, by normalizing equation (2.15), Dyp = I,,. Then

Y -UyU
[Ec : ﬁc] = [1,,,. : Q] , (2.38)
NyX V +N,V,U
where Q = —D UyU +N.(V +N,VyU) e H"™*" Post-multiply both sides of equation
(2.38) by the unimodular matrix M defined in equations (2.25)-(2.25a):

V+UV,Ny UU,

[5c : ﬁc] = [1,., : Q] n, - | (2.39)

Clearly from equation (2.39), C = D[N, is in the set S(P) in equation (2.32) for some
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Q e H ™*Po (in fact, there is a unique Q for each C ; we prove this in corollary 2.7).

a
2.7. Corollary: Let C,,C5 € S(P); then C = C, if and only if Q1 = Q, . Equivalently, the

mapQ BC,0 € MH),C e S(P), is one-to-one.
Proof: Let S(P) be given as in equation (2.32); the proof for equation (2.33) is entirely similar.

Let C;=D:}N.;,Cy=D;IN.,. By equation (2.38)

Doy i NalM= |, 0\|=D.ll, i c. |, (2.40)
and
D,y i Ng|M= I, : Q2| =Dzl i Co2IM. (241)

But C;=C; in equations (240)-241) implies [Im : cl]ﬁ =
D} [Im 5 Ql] =D} [’m : Qz] and hence, D, = D, ; consequently, 0; = Q5.

Now suppose C is given by a l.c.fr. (5c1 , 1\7,_. 1) but C, is given by ar.c.fir. (N2, D.2) .
Then by equations (2.33) and (2.25),
—Nea 2

M- |=|-]. (2.42)
Dc2 I'lo

Then multiplying equation (2.42) on the left by equation (2.40) and using equation (2.25a) we

obtain

-0
(243)
I

[5c1 fﬁcl]ﬁM[;f2]= [Im 5 Qn]
c2

no

But C; = C, implies that ﬁc 1De2 = Ec 1N¢2 . Therefore by equation (2.43),

[Beea+HeiDez| = 01-02=0.
We conclude that, for each C € S(P) there is a unique @ e M (H ) such that C is a member

of the set S(P) in equation (2.32) (equivalently, in equation (2.33)).
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2.8. Example: Let H = Ry (s) as in example 1.2. Let P € R,(s)™*™ be represented by its

X =Ax +Bu
y=Cx
I—-A) -
where (C ,A ,B) is stabilizable and detectable. Then P = GI-A) B , where
s+a (s+a)
- . C (sI-A) (sI-A)
-a € C\U. The pair [—s+a ’_—(s+a) ]1s r.c. mRu(s) and the pair [(s+a) B] islc. in

(sI-A) C (sI-A) .
Ry (s), and det-—>——= Ga) © I . Therefore, N, ,D,Np) = [(s+a) »1a) ,B]lsab.c.f.r.of
P . Then (N,,D,) = G fa)X Y] isar.cfr. and(D,,,N )= (Y XB)xsalcfr of P .

III. CONCLUSIONS

Given a b.c.fir. (Npr , D, Ny ) for P € m (G;), we find the class éf all H-stabilizing
compensators; with V , U , V,, , U ,X , Y asin equation (2.25),
C =D, N,) = (V + UV, Ny — OX Ny) (UU,, + QY ) (3.1)
H-stabilizes P, where Q € M (H ) is a free parameter. If we design a two-degrees-of-freedom
compensator C = [C a C 22] as in [Des2,3], then C =D;! [Qzl ﬁc], where
Q2 € MH), and (Ec, ﬁc) is given by equation (3.1) above; in this case there are two free
parameters.
From the given b.c.f.r. (N, ,D,Ny) we also obtain a r.c.fr., a lc.fr. and the associated

generalized Bezout identity. The methods used in this paper make it easier to establish some fun-

damental results in decentralized control theory (work in progress).
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Figure Captions:

The system S(P,C).

S(P,C)withP =N,D; and C =D;'N, .
S®,C)withP =D;'N, andC =N.D;.
S®P,C)withP =N, DN, and C =D;'N, .

S(P,C)withP =N,, DN, andC =N.D;!.
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