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INTRODUCTION

The set of all //-stabilizing compensators and achievable performance for a given plant P

has been of great interest in the analysis and synthesis of linear time-invariant MIMO systems.

//-stabilizing compensators were first characterized in [You.l] forcontinuous-time and discrete-

time lumped systems. An algebraic approach that incuded distributed as well as lumped

continuous-time and discrete-time systems was given in [Des.l]. Algebraic formulations were

used by many researchers; for a detailed review of the factorization approach and related topics

until 1985 see [Vid.l] and the references therein.

So far the parametrization of all //-stabilizing compensators has been based on a right-

coprime factorization (P =NpD~x) or a left-coprime factorization (P =D~lNp) of the plant

[Des.2f3,4,Vid.l,2,Netl]. In some cases however, abicoprime factorization (P =Npr D~xNp{) is

all that is available; a perfect example of this situation is the state-space representation. In

[Net.2], constant state feedback and output injection were used to go from a state-space represen

tation to a right-coprime fraction representation (r.c.f.r.) and a left-coprime fraction representa

tion (Lc.f.r.).

The problem studied in this paper is finding the class of all //-stabilizing compensators

direcdy from a bicoprime fraction representation (b.c.f.r.) of P. We also show that a r.c.f.r. and a

l.c.f.r. can be obtained directly from a b.cf.r. (Npr tD,Npi) and from the generalized Bezout

identities associated with this b.cf.r. The system we consider is the unity-feedback system

S(PtC) shown in figure 1; note that the compensator is a one-degree-of-freedom compensator.

This system is simpler than the two-input two-output MIMO plant and compensator system con

sidered in [Des.4,NeLl].

We use the following symbols and abbreviations:

I/O input-output

MIMO multiinput-multioutput

a := b a is defined as b
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detA the determinant of matrix A

171(H) the set of matrices withelements in H

I. ALGEBRAIC BACKGROUND

1.1. Notation [Vid.l, Lan.l]:

H is a principal ring (i.e., anentire ring in which every ideal is principal).

/ c H is thegroup of units of// .

/ c H is a multiplicative subsystem, 0 c I , 1 € / .

G =// /1 :={n Id :n e H td e/} isthe ring offractions of// associated with / .

Gs (Jacobson radical of the ring G ) := {x e Gs:(\+xy)~l e G for ally e G }.

Note that (i) / = the set of units of G which arein H. (ii)LetA e m(H),B e m (G),

then a) A"1 e /tt(//) iff det4 eJ and b) fi"1 e 7W(G) iff detB e/. (Hi) Let

Y e /M(Gj) , X,Z e m(G\ then Xr,KZ g m(Gs) and (7+X7)-1,

(/ +YZ)-1 g m(G) . (iv) Ut a,ft e //, then a& e / iff a and 6 g /. (v) Let

c.rf g // . Thencd e / iffc andd e / [Des.4].

1^. Example (Rational functions in s) : Let W 3 C+ be a closed subset of C , symmetric

about the real axis, and let C\ U be nonempty. Define U:=U KJ[ °» ). The ring of proper

scalar rational functions (with real coefficients) which are analytic in U is a principal ring; wc

denote it by Ru(s). Let H = Ru(s). Then / e / implies that/ has neither poles norzeros in

U.I is the multiplicative subset ofRu (s) such that / e / implies / («>) = a nonzero constant in

R ; equivalently, / c Ru(s) is the set of proper, butnot strictly proper, real rational functions

which are analytic in U. Then Ru(s)l I is the ring ofproper rational functions IR^Cs). The set

of strictlyproperrational functions )Rsp(s) is theJacobson radical of the ring IR^Cy).

13. Definitions (Coprime Factorizationsin H):



(i) The pair (Np,Dp) , where Np ,Dp g JTl(H)% is called right-coprime (r.c) iff there

exist Up , Vp g m (H) such that

VpDp+UpNp = / (1.1)

(ii) The pair (Np, Dp) is called aright-fraction representation (r.f.r.) ofP g J7l(G) iff

Dp is square, detD, g / and P =A^^p"1 (12)

(iii) The pair (NptDp) is called a right-coprime-fraction representation (r.c.fs.) of

P g Jtt(G) iff (A^,Dp)isar.f.r.ofP and (Np,Dp)isr.c

The definitions of left-coprime (I.c), left-fraction representation Q.fx.) and left-coprime-

fraction representation (Kcflr.) are duals of (i), (ii), and(iii), respectively [Vid.l, NeLl, Des.4].

(iv) The triple (Npr,D,Npt),Npr,D .Afp/ g Ht(H) is called a bicoprime-fraction

representation (bxXr.) of P g Wl(G) iff the pair (NprtD) is right-coprime , the pair

(D ,A/,/) is left-coprime, detD g / and P =A^ D"1^ .

•

Note that every P g Wl(G) has a r.cf.r. (Np,Dp) , a l.cf.r. (DptNp) , and a b.c.f.r.

(iVp,, ,D%Npi)'mH because // isaprincipal ring [Vid.l].

H. MAIN RESULTS

Consider the system 5(P, C) in figure 1. We analyze this system with (i) a r.c.f.r. of P

and a l.cf.r. of C , (ii) a l.cfx of P and a r.cf.r. of C , (iii) a b.cf.r. of P and a Lc.f.r. of C , (iv)

a b.cfx of P and a r.cf.r. of C . The first two analyses give us thewell-known set S(P) of all

//-stabilizing compensators in terms of familiar r.cf.r. and Lcf.r. of P [Vid.l,2,Des.2].

2.1. Assumptions:

(A) P g Gs"*™ . Let (Np,Dp) be a r.c.f.r., (Dp,Np)be2L l.cf.r., (Npr , D,Npl) be a

b.cf.r. of P , where Np g H"*™ ,Dp g Hmxni ,Dp g //"•x* ,Np g /J*™ ,

JV g J/**1 ,D g //^ .ty g ff"3* .



(B) C g Gmxn° . Let (Dc,Ne) be a l.cf.r. and (NC,DC) be a r.cf.r. of C , where

Dc g HniXm,Nc g Hni™°,Ne g Hmxn°,Dc g //*>**>.

If P satisfies assumption (A) we have the following generalizedBezout identities:

(1) For the r.c pair (Np,Dp) and the l.c pair (Dp, Np) , where P =A/^Dp-1 = DplNp ,

there are matrices Vp,Up ,Up ,Vp g 171(H) such that

V, tf,

-", 0,

Dp -Up

N VUp vp

/« 0

(2.1)

0 I to

((Np, Dp), (Dp,Np)) is called adoubly-coprimefactorization of P.

(2) For the b.cf.r. (Npr ,D,Npl)v/e have two generalized Bezout identities: for ther.c. pair

(N^ ,D), there are matrices Vpr,f/pr,X ,Y ,U ,V e W(//)suchthat

vpt UPr D -U 0

-X JlNpr 0 l no

for the l.c pair (D , Np{) there are matrices V^ , Upi, X , Y, U , V g 171(H) such that

D -NPi Vp, X In 0

U -upi 0 /,m

Each matrix in equations (2.1), (2.2), (2.3) is unimodular.

Lety := ym

ym'
, u := the map Hyu :u Ky is called the I/Omap.

(2.2)

(2.3)

22. Definition (//-stability): The system S(P,C) in figure 1 is said to be H-stable iff

Hyu g 171(H).

23. Definition (//-stabilizing compensator): (1) C is called anH-stabilizing compensator

forP iff C g G mxn° satisfies assumption (B) and the system S(P, C) is //-stable.

(2) The set

S(P):={ C:C H-stabilizes P } (2.4)



is called the set ofall //-stabilizing compensators for P .

2.4. Analysis : Case (1) Let P =NpDp~l and let C =DclNe . where (Np,Dp) is r.c and

(Dc, Nc)\s l.c (see figure 2). S(P, C) is then described by equations (2.5)-(2.6).

[dcDp+NcNpYp= \j>c :.Nc]
Ml

' N, ' ym 0 0 "1

*,= +

.Dp ym' U 0 «i'

[5pDc+AyVc]k= [np : Dp]
Ml

Ml'

-Dc

5c =

ym

+

' 0 -/* Ml

Nc ym' 0 0 Ml'

(2.5)

(2.6)

S(P,C) is //-stable if and only if [5cDp+^c^,l gm(//) is unimodular [Vid.l,2,Des.4].
It is well-known (see for example [Vid.l,Des.2,4,Net.l] that the set S(P) of all //-stabilizing

compensators is given by

S(P)={ <yp -QNp)~l(Up+QDp) : Q g HniX*> } , (2.7)

where Vp ,Up ,Np ,Dp are asin equation (2.1).

Case (2) Now let P =Dp1Np ,C =NcD~l, where (Dp ,Np)is l.c. and (Nc ,Dc)is r.c

(see figure 3). S (P, C ) is then described by equations (2.8)-(2.9).

(2.8)

(2.9)

S(P,C) is //-stable if and only if \DpDc +NpNc g 171(H) is unimodular (which is

equivalent to DcDp +NcNp g 171(H) is unimodular). The set S(P) of all //-stabilizing

compensators is given by

S(P)= { (Up+DpQ)(Vp-NpQTl : Q g Hmxn° } , (2.10)



where U ,V ,Np,Dp are asin equation (2.1).

Case (3) Now let P =Npr D~lNpi and let C =D~lNc , where (Npr ,D, Npl) is ab.cfx

and (De, Nc ) is l.c (see figure 4). S (P, C) is then described by equations (2.11)-(2.12).

D : -Nr

NcNpr : Dc

Npr : 0

0 i / m

Npi : 0

o • ii.

Ml

Ml'

(2.11)

(2.12)

Equations (2.11)-(2.12) are of the form

DHZ>=NLu

NRZ>=y

where (NR , DH) is a r.c pair and (DH ,NL)isa. l.c pair, NR ,DH ,NL g 171(H). The system

5(P, C ) is //-stable if and only if Djj1 g 171(H); equivalendy, S(P, C ) is //-stable if and

only if

Vpi X
LetP :=

~Un! Y'Pi

D : -Npi

DH = is unimodular. (2.13)

NcNpr ': Dc

;by equation (2.3), R g 171(H) is unimodular. Post-multiply D# by 7?

D,,* =

In 0

WcAfprVpt -Dc^ A^C^X + DcY

But O// is unimodular if and only if DHR is unimodular, hence (2.13) holds if and only if

NcNprX +DCY =: DHR is unimodular. (2.15)

The set S(P) of all //-stabilizing compensators is then the set of all D~lNc such that equation

(2.15) is satisfied.

(2.14)



Case (4) Finally let P =NprD-lNpl and let C =NcD~l , where (Npr,D,Npl) is a

b.cf.r. and (Nc, Dc) is l.c (see figure 5). S (P, C) is then described by equations (2.16)-(2.17).

D : -NplNc

Npr : Dt

Npr : 0

0 : Nr

5x

5c

Npi i 0

0 : / Ro

Ml

Ml'

(2.16)

(2.17)

Following similar steps as in case (3) of the analysis, we conclude that S(P, C) is //-stable if

and only if

D : -NplNc

DH := is unimodular. (2.18)

Npr : Dc

LetL :=

Vpr Upr
; byequation (2.2), L g 171(H) isunimodular. Pre-multiply DH byL

-X Y

LDH =

In -VprNptNc+UprDc

0 XNplNc+YDc
(2.19)

ButD// is unimodular if and only if LDH is unimodular, hence thesetS (P) of all //-stabilizing

compensators is then thesetofallNcDc~l such that

XNptNc+YDc =: DHL is unimodular. (2.20)

2JS. Proposition: Let P g 171 (Gs) ; let (A^ ,D,Npt) be a b.cf.r. of P; hence, equations

(2.2)-(2.3) hold. Then

(N„, DD) := (NorX , y) is a r.cf.r. ofP ;'p>~p< *pr

(Dp,Np) := (Y ,XNpl)isz\.c.f.r.ofP

where X ,Y ,X ,Y g 171(H) axe defined in equations (2.2)-(2.3).

(2.21)

(2.22)

Proof of proposition 2.5: By assumption, P =NprD~xNpt , and equations (2.2)-(2.3) hold.



Clearly NprX , Y , Y , X Npl g 171 (H) . We must show that (NprX ,Y) is a r.c pair with

dety g / and that (Y ,XNpl) is aLcpair with detf g /.

Now P g 171 (Gs) . Post-multiply P by Y ;then using N^Y =£>X from the Bezout equa

tion (2.3), we obtain

PY =A^ D-1^ =N^X g AW (Gj) . (2.23)

Now pre-multiply P by Y ; then usingY Npr=X D from the Bezout equation (2.2) we obtain

YP ^YNprD^Npt^XNp, g 17l(Gs). (2.24)

Using equations (2.2)-(2.3) we now obtain ageneralized Bezout identity for (NprX , Y) and

(?,H/):

V+^W UUpr

-XNpi

Y -UpiU Iru 0

NprX V +NprVplU 0 /«o

(2.25)

Note the similarity between equations (2.1) and (2.25). Each of the three matrices in equation

(2.25) has elements in H and hence is unimodular. From now on we referto the matrices on the

left-hand side as M and M, respectively; equation (2.25) then reads

MM = I /Io+W (2.25a)

By equation (2.25), (NprX , Y) is a r.c pair and (Y , X Npt) is a l.c pair, morespecifically,

if(NprX ,Y)=:(Np,Dp)and(Y ,XNpi)=:(Dp,Np),then

VpDp + UpNp =Im , Np Up +DpVp =/^ , (2.26)

where

Vp :=V+UVprNpl, Up :=UUpr , Up :=UplU ,Vp=V +NprVptU (2.27)

Since Np:=NprX g 171 (Gs) and UpNp := UUprNprX g 171 (Gs), equation (2.26)

implies that detO^Dp) =det(/w - t/pA^) g / and hence, detVp g / and detDp := det7 g /.

Similarly, since Np :=X Npl g 171 (Gs) from equation (2.24), equation (2.26) implies that

fet(DpVp) =dct(Ino-NpUp) g / and hence, detV, g / anddetD, :=detf g / .



At this point we know that Y~l g 171(G) and f"1 g 171(G) . Then equation (2.23)

implies that

P =NorXY-1,'pr (2.28)

and similarly, equation (2.24) implies that

P=Y-lXNpt. (2.29)

Finally, since equations (2.28) and (2.26) hold and since detT g / , (NprX , y)=: (Np,Dp),

with Np ,Dp g 171(H) , is a r.cfx of P. Since equations (2.29) and (2.26) hold and since

detf g I ,(Y ,XNpl)=:(Dp,Np),vnthDp,Np e m(//),isal.cf.r.ofP .

•

Comment: If P g 171 (G) but not 171 (Gs) , equations (2.21)-(2.22) still give a r.cf.r. and a

l.cf.r. of P , respectively. The only difference in this case is in showing that dety g / and

detf g / :

Consider the Bezout equation (2.2) for the r.c pair (Npr ,D). Since P g 171(G), detV^

is not necessarily g /. Take T g 171(H) such that det(Vpr-7X) g / [Vid.l]. Rewrite

equation (2.2):

Vpr-TX Upr + TY D -U -DT In 0

(2.30)

-X Npr V -NprTj 0 / no

Since detD g /, from equation (2.30) we get det [(V^ - TX )DJ=det(/„ - (Upr +TY )Npr) =

dettfnt-NprWpr +TY)) =detf(V -TNpr)Y 1 g /; equivalently, det(V -77^) e I and

det? g /.

Similarly, consider the Bezout equation (2.3). Take T g 171(H) such that

dtA(Vpi -TX) g / .Rewrite equation (2.3):

D -Npi

U+TD V-TNB

Vpt-XT X

-Upi-YT Y

Since detD g /, from equation (2.31) we get det HVpi -XT)d] =det(/„ -Npl(Upl +IT)) =

In 0

(2.31)

0 /
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detffn-iUpi+fryt,!) =det fy(V-?#,/)] g/; equivalently, det(V -TNpl) g/ and
dety g /.

D

2.6. Theorem (Set of all //-stabilizing compensators): Let P g 171 (Gs) and let

(N^ ,D,Npt)bedLb.cfx of P , hence equations (2.2) and (2.3) hold. Then

S(P) ={ (V +UVprNpt -QXNptT^UUpr +QY) : Q g 171 (H) } ; (2.32)
equivalently,

S(P)={ (UplU +YQ)(Y +NprVplU -NprXQT1 :Q g 171(H)}; (2.33)

where the matrices in equations (2.32)-(2.33) are as in the generalized Bezout equation (2.25).

Comment: By proposition 2.5 we know how to obtain ar.cf.r. (Np, Dp) and al.cf.r. (Dp, iip)

from ab.cf.r. (Npr ,D, Afp/) of P g 171 (Gs): with (Np,Dp) as in equation (2.21), (Dp, Np) as

in equation (2.22), and Vp , Up , Vp , Up as in equation (2.27), the generalized Bezout equation

(2.25) is the same as the Bezout equation (2.1). Furthermore, observe that equation (2.21) substi

tuted into equation (2.15) implies

DHR=NcNp+DcDp ; (2.34)

and hence, //-stability using analysis 2.4-case (3) is equivalent to establishing //-stability using

case (1). Therefore it is no surprise that S(P) in equation (2.32) is the same as S(P) in equation

(2.7), with equations (2.22) and (2.27) in mind. Similarly, equation (2.22) substituted into equa

tion (2.20) implies

DHL=NpNc+DpDc; (2.35)

and hence, //-stability using analysis 2.4-case (4) is equivalent to case (2). Therefore, S(P) in

equation (2.33) is the same as S(P) inequation (2.10), with equations (2.21) and (2.27) inmind.

Although the discussion above justifies theorem 2.6, we now give a formal proof.

Proof of theorem 2.6: We only prove that the set S(P) in equation (2.32) is the set of all

//-stabilizing compensators; the proofofequation (2.33) isentirely similar.
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If C is defined by the expression in equation (232) then C //-stabilizes P

Let

C =5"WC , Dc =V+UVprNpi -QXNpj , Nc =UUpr+QY . (2.36)

We must show that (i) C satisfies assumption (B), i.e., Dc , Nc g 171(H) with detDc g /

and thepair(Dc,Ne) is l.c, and (ii) 5 (P, C) is //-stable, i.e.,equation (2.15) holds.

(i) From equation (2.36) clearly Dc ,NC g 171(H). Using the generalized Bezout equa

tion (2.25) we obtain

DHR=NcNprX+5cY
= (UUpr + QY )NprX + (V +UVprNpt - QXNpt)Y = Im . (2.37)

By equation (2.37) (DC,NC) is a l.c pair. In the proof of proposition 2.5 we showed that

NprX g 171 (Gs) (see equation (2.23)), and hence NcNprX g 171 (Gs) . We conclude from

equation (2.37) thatdet(Dcy) =det(/w -NcNprX) g / , therefore detDc g / ; consequently,

(Dc, Ne) is a l.cf.r. of C.

(ii) From equation (2.37), DHR = Im. Therefore S(P, C) is //-stable since equation (2.15)

holds.

Any C that //-stabilizes P isan element of the set S (P) defined by equation (232):

Let C g 171(G) //-stabilize P . Let (Dc, Ne) be a l.cf.r. of C .By assumption, S(P, C) is

//-stable; equivalently, bynormalizing equation (2.15), DHR = /„,.Then

[dc :Afc]
-tfpftf

^X V +NprVplU

where g := -DcUpiU +Ne(V +NprVpiU) g //,i,'x/i» . Post-multiply both sides of equation

(2.38) by the unimodular matrix M defined in equations (2.25)-(2.25a):

=: [/* :0] .

[dc :A?c] =[/ni : fi]
V + UVprNpt UU^

-X Npl Y

Clearly from equation (2.39), C =DclNc is in the set S(P) in equation (2.32) for some

(2.38)

(2.39)
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q e n nvuio (m fact^ mere is a unique q foreacn q ; weprove thisin corollary 2.7).

•

2.7. Corollary: Let Ci, C2 g S (P) ; then Cx- C2if and only if Qi = Q2 . Equivalentiy, the

mapQ h+C ,Q g 171(H), C g S(P), is one-to-one.

Proof: LetS(P) begiven asinequation (2.32); theproof forequation (2.33) is entirely similar.

Let Ci =Dclifc 1>C2 =DcliiC2. By equation (2.38)

and

But

[dc1 !A?c1]m =[/m :g,] =Dcl [/m :Ci]a# , (2.40)

[dc2 :Nc2]m =[/„, : fi2] =Dc2[/m iC2]m . (2.41)
Ci=C2 in equations (2.40)-(2.41) implies \lns ': C\ \m =

Dcl^m : fiiJ=ATi|/m : G2J andhence,Dcl =Dc2; consequently, Qx =fi2.

Now suppose C i is given by a Lcf.r. (Dci, Nc\) but C2 is given by a r.cf.r. (AfC2, £C2) •

Then by equations (2.33) and (2.25),

-Nc2 -Qi

M =

Dc2 u

(2.42)

Then multiplying equation (2.42) on the left by equation (2.40) and using equation (2.25a) we

obtain

[dc1 :Ncl]MM
-Nc:

D c2

=f. ifl,]
-Q.

lno

(2.43)

But C i = C2 implies that NcXDc2 = Dc\Nc2. Therefore by equation (2.43),

^DclNc2+NclDc2]=Qi-Q2 =0.
We conclude that, foreach C g S(P) there is a unique Q g 171(H) such that C is a member

of thesetS(P) in equation (2.32) (equivalently, inequation (2.33)).

D
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2.8. Example: Let H =Ru(s) as in example 1.2. Let P g JR^s)"*** be represented by its

x -Ax +Bu

y -Cx

where (C ,A ,B) is stabilizable and detectable. Then P =
s+a

-AG C \ U . The pair
C (J/-A)

s+a * (s+a)
is r.c. in Ru(s) and the pair

(si-A)

(*+0)

fr/-A)

(s+a)

C (si-A)Ru(s),anddQt^f A? g / . Therefore,(N^ ,D,Npl) =
(s+a) ^ * (s+a) ' (s+a)

,B

-l

£ , where

,5 is l.c. in

is a b.cf.r. of

P. Then(AL,DD) =
P'*-7>' fr+a)

X ,Y is a r.cf.r. and (Dp, Np ) = (Y , X B) is a l.cfr. of P .
p*"/>

D

m. CONCLUSIONS

Given a b.cf.r. (Npr,D,Npi) for P g 171 (Gs), we find the class of all //-stabilizing

compensators; with V ,U ,Vpr ,Upr ,X ,Y asin equation (2.25),

C =(Dc, ife) =(V +C/W - fiX Nplrl(UUpr +QY ) (3.1)

//-stabilizes P, where Q g 171(H) is a free parameter. If we design a two-degrees-of-freedom

compensator C = C2i C22 as in [Des.2,3], then C =D~l \Q2\ Wc L where

C21 e 171(H), and (Dc,Ne) is given by equation (3.1) above; in this case there are two free

parameters.

From the given b.cf.r. (Npr ,D,Npi)v/& also obtain a r.cf.r., a l.cf.r. and the associated

generalizedBezout identity. The methods used in this papermake it easier to establish some fun

damental results in decentralized control theory (work in progress).
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Figure Captions:

Figure 1 The system S(P ,C).

Figure2 S(P,C)withP =A/pDp"1andC =D?iic .

Figure3 5(P,C)withP =D-W, andC =NcD~l.

Figure4 S(P,C) withP =NprD~lNpl andC =D?iic

Figure5 S(P,C) withP =NprD~lNpl andC =A^CD<T1
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