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ABSTRACT

The importance of the reduction of design time motivates a search for an alternative to traditional cus-
tom design. Array type layout creates a loss in circuit density, but greatly simplifies the effort for the
designers. In addition, many desirable features are gained by using array type layout such as technol-
ogy independence and fast tunaround for fabrication. In this report, we first set up the criteria for
evaluation, then we investigate some prototype array layouts. These layouts include gate matrix, sea of
gates, standard cell design, and some other new arrays. Basic design methodologies are discussed for
each design. Simulations and test chips are made to verify the electrical performance. At the same
time, we propose new design methods to improve the performance of each design. Relevant design
problems, such as CAD tool usage and layout strategies, are also discussed. Finally, we make a com-
parison of all the array-type layouts and give recommendations based on the comparison. The study
shows that sea of gates design has a number of advantages over the other designs. Also, tﬁe laser res-

tructurable techniques are particularly interesting due to their very short turnaround time.
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CHAPTER 1

INTRODUCTION

1.1. Why Array-Type Layouts

Custom VLSI (Very Large Scale Integration) design achieves high density and high perfor-
mance layouts, but at the cost of a long design time. Whenever there is a technology change, we have
to redesign all the cells in the cell library. From the design experience of LAGER! cell library, we
realize that we need to adopt a new layout style to attain the following goals:
(1) To simplify and unify layout procedure by using orderly structure.
(2) Whenever there is a technology change, the cell library can be easily updated.
(3) Adequate electrical performance.
(4) Short tumnaround time.

(5) Reasonable circuit density.

Array-type layouts, including gate matrix, gate array, standard cell, and sea of gates designs, are
investigated in this report. Compared with custom design, all these layout styles ease design pro-
cedures and thus help us to reach at least one of the above goals. As technology improves, we will see
more and more designs using array type layouts because it is no longer necessary to spend as much
time on custom design for the purpose of reducing area. This report discusses the kind of layout that is
the most appropriate for a given application. When a new technology is available, we can follow the

guidelines from this research and rapidly upgrade our design.

! LAGER is shon for Layout Generator. It is a sez of layout tools for ASICs (Application Specific Integrated Circuits)
design. For more information, sec [Raba85).



1.2. Array Type Layouts in Use

It is estimated that more than half of all semiconductors sold will be semicustom designs by
1990 [Gold85). Among them, gate arrays are probably the most widely used layout style today. Over
70 vendors currently provide gate arrays, and improvements are being made to make gate array design
more attractive. The sea of gates approach is basically a form of gate array. It makes use of multi-
level of metal for routing so that all the routing can be built on top of cells. That is to say, there is no
distinction between cell arrays and routing channels as are distinguished in gate arrays. With this
feature, sea of gates design is more flexible and able to achieve denser layouts. Sea of gates design
will be discussed in length in chapter 3. Design decisions are described and test results as well as

simulation results are presented to support these conclusions.

Gate matrix design was first brought out by Lopez and Law in 1980 (Lope80]. The concept was
to transpose the transistors in the logic cells of standard cell design onto the wiring channels. Due to
the regular structure, the gate matrix design simplifies layout procedures and achieves the feature of
technology independence. Chapter 2 will concentrate on the gate matrix design. Additional features

will be elaborated and test results on a test chip will be presented.

Standard cell design is a structured type design. Though not strictly an array, it has many of the
same characteristics. Compared with gate arrays, standard cell design has no predefined channels thus
has more flexibility and a higher utilization of chip area. Compared with custom design, the complete
and reusable standard cell library greatly shortens design time. Moreover, many CAD tools have been
developed to aid standard cell design. That is why we regard standard cell design as another alterna-
tive. We are going to discuss more about standard cell design in Chapter 4 in which the basic design
methodology will be described as well as simulation results.

New types of arrays are being developed. Even laser technology is being used in cell design to
reduce turnaround time. In this report, we will cover a number of the basic array type layouts.

Modifications of these layout styles may be made, but the essence would remain.



1.3. Prototype Datapath Used for Evaluation - LAGER AAU

To understand the tradeoffs between each layout style, we built some test chips for evaluation.
The prototype datapath we chose was LAGER Address Arithmetic Unit (AAU). The reasons for

choosing this datapath are as follows:
(1) Itis areal and useful datapath.

2) It contains basic logic gates and latches, which allows measurements of the electrical perfor-

mance.
(3) Routing of the AAU is not too complicated to handle.

The LAGER AAU designed by Pope [Pope85] contains three major parts: counters, decode sec-
tions, and adders. The schematic of a single bit slice for an AAU is shown in Figure 1.1 which includes
an IX section and an IY section. Other possible organizations are IX-section-only structure and IY-
section-only structure. IX sections are used for subprogram address calculation, while I'Y sections are
used for main program address calculation. The differences between these two sections are, first, IX
counters must be set to -1 during the main program, 0 during the first iteration of subprograms and so
forth; TY counters must be reset to 0 when initialized or used as registers. Secondly, the control slices
for IX sections and IY sections receive different control signals and have different functions. When
there is no main program, an IX counter can also be reset to 0 to cause the subprogram to start immedi-

ately.

The basic structures of IX counters and IY counters are the same. Figure 1.2 shows the counter
bit-slice schematic. In this figure, DIN is connected to GND when the counter is reset to 0, Vdd when
the counter is reset to -1, and YINPUT when the counter is used as a register. For even bits, carry-in
of the half adder is active low and carry-out is active high. For odd bits, carry-in is active high and
carry-out is active low. The advantage of this design is that it saves one gate delay for each carry pro-
pagation. The same technique is also used in the adder and the decoder design. A two-phase non-
overlapped clock is used for the AAU design. When clock] is high, input data (DIN) or evaluation

results of the half adders are loaded into the D latches, when clock2 is high, the data come out of the



latches and the half adders start next evaluation. LOAD and COUNT signals are complement to each
other. When LOAD is high, the counters are loaded into data or reset to the initial value. When
COUNT is high, the counters count up 1 if CIN* of the least significant bit is active low, and thus per-

form a counter function,

YINPUT INPUT

IX COUNTER

IX SECTION

IX DECODE INDEX
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l
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Figure 1.1 AAU bit-slice
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Figure 1.2 Counter bit-slice schematic

The decode section is empty unless a reference to a particular value of IX is made in the finite
state machine definition. For each such reference, a row of decoder cells are included in the decode
section. Basically, the decode section compares the counter value and the preset value in the decoder.
If a match is found, a test signal is sent out to the finite state machine and the counter is reset. The

decode section contains a NOR gate to decide whether the value from the counter is going to be added



in the adder. 1f INDEX* equals to one, then the value is not added in; on the other hand, if INDEX* is
equal to zero, the value will be added in the adder. The cells used in decode sections are shown in Fig-

ure 1.3.

We used carry propagate adders in the AAU design. The reasons are that we can easily
parameterize the AAU by using carry propagate adders, and that in general, carry propagate adders are
fast enough for normal AAU operation. Figure 14 is the circuit diagram for the adder cells.

The control slice contains many logic gates. The cells used are shown in Figure 1.5. The signal
INC in ix.ctl cell comes from the on-chip ROM. When this signal goes high, the counter increments
by one. The EOS signal in ix.ctl and the YCLOCK signal in iy.ctl are connected together. Both of
them come from the Program Counter to decide whether the counter should load into data or keep on
counting. The TEST signal is generated by the decoder cells in the decode section. TEST going high

means that a match is met and the IY counter should load data at this moment.

The LAGER AAU can perform two addressing modes: indexed addressing and immediate
addressing. Its detail operation can be found in [Pope85). Starting from the next chapter, we will talk
about how we use different array type layouts to design the cells of the AAU. Simulation is made to
understand the electrical performance of layouts. Test chips will be made after satisfactory simulation
results are obtained. From these results, we can easily find out the tradeoffs between these layout

styles.,
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CHAPTER 2

GATE MATRIX

2.1. Basic Structure

The first array type layout we studied was gate matrix whose basic structure was originated by

Lopez and Law in 1980. We made some modifications on their structure for the following reasons:

(1) Technologies used are different. The technology we use is MOSIS 3 micron scalable CMOS

technology. We use two levels of metal for routing and different design rules.

(2) We need to interface these designs with other existing tools, such as the datapath compiler of
LAGER Il

Figure 2.1 is the gate matrix layout of a D-laich cell, which was generated by a program called
"game" [Sher86]. We will talk more about "game” in the next section. Basically, gate matrix structure
involves polysilicon lines running vertically. These lines are equally spaced and parallel to one
another. A transistor is formed if diffusion sits on top of polysilicon. Therefore, a polysilicon column
serves as the gate of many transistors which lie on the line and the common connect among these
transistors. Routing is simplified by these polysilicon lines since all the gate connections have been

made.

Diffusion connections run between two polysilicon columns. It is not advisable to use diffusion
for routing purposes due to its high resistance and capacitance. Therefore, a diffusion connection only
exists when the source or drain of a transistor is connected to a power or ground bus. All the PMOS
transistors are on one side, and all the NMOS transistors are on the other which reduces the overall
area. When using the CMOS datapath compiler! to connect these cells, we will get a sandwich struc-

ture as shown in Figure 2.2. Note that all the cells must rotate 90 degrees to meet the specification of

! DataPath Compiler (DPC) is a 1ol to generate magic layouts of bit-sliced datapath starting from a structural description
of the datapath in terms of interconnection of datapath functional blocks. For more information, see [Sriv87].

11
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the datapath compiler.

Metal can run horizontally and vertically. For a cell design, we only use first level metal for
interconnection. Metal two is reserved for global routing and providing feedthroughs. Metal one can

overlap diffusion, polysilicon or transistors. There is no restriction on the metal one running.
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Figure 2.1 Layout of a gate matrix cell

To layout a cell, we should plan ahead with regard to the column position of polysilicon lines

which may act as gates of transistors. The preparation stage of a layout consists of making a represen-
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tational line drawing or a stick figure using the levels of interconnection available. These levels are
polysilicon, diffusion and first level metal. The total number of polysilicon lines can never be less than
the total number of discrete inputs to the circuit. The position of a polysilicon output is arbitrary and
may be chosen for convenience. A transistor is formed by putting diffusion on the gating polysilicon
column. Subsequent transistor placements will be determined by the input columns and the serial or
parallel association among the transistors. Once the rows have been defined, further interconnection

may be done by first level metal or diffusion links.

local routing local routing
channel between channel between
celll and cell2 cell2 and cell3
! Y
CELL1 CELL2 CELL3
P-side N-side N-side P-side P-side N-side

Figure 2.2 Connection of gate matrix cells using CMOS datapath compiler

2.2. Layout Tool -- GAME

A gate matrix layout translator called "game" has been installed. Basically, this program accepts
symbolic input files and then translates them into layout files. Figure 2.3 shows a symbolic input file
and the cormresponding layout. Note that comments and notes can be put in the symbolic file. The
symbolic input is technology independent. That is to say, if there is a technology change, we only need
to modify the technology file referenced by "game”. The symbolic input files are still applicable.
Therefore, designers do not have to redesign the cells. Itis reasonable to put remarks in the symbolic
input files since these files will be kept regardless of technology changes. As shown in Figure 2.3(a),

the text outside the brackets and braces is the comment of the cell.

The symbolic layout starts with " (" on a separate line and ends with "}" on another separate line.

The legal symbols are listed as follows:



14

(1) ndiff: "n" (in horizontal and vertical directions)

(2) pdiff: "p" (in horizontal and vertical directions)

(3) nfet: "N" (can exist only on polysilicon channels)
4) pfet: "P* (can exist only on polysilicon channels)
(5) metall: "-" in horizontal and "I" in vertical direction
(6) metal2: forbidden inside the cell

(7) poly: ™" (only in vertical direction)

(8) crossover (no connection): "+" (all possibilities, except vertical metall over polysilicon or verti-

cal diffusion in which cases "game” can not handle.)
(9) metall on top of nmos: "%"
(10) metall on top of pmos: "&"
(11) contact: "*" (all possibilities)
Compared with the original structure proposed by Lopez, "game" provides more symbols and

flexibility. The layout generated is more compact and if compared with the custom design, the area

loss is only about 20%>.

"Game" provides another feature - labeling, which is not mentioned in the Lopez’s paper. The
text between brackets is the label description. For each label, designers must specify a label_name, a
symbol, the y coordinate, and the x coordinate. Figure 2.3(a) shows some label usage. These labels are
also shown in the layout of Figure 2.3(b).

To sum up, "game" provides a lot of desirable features:

(1) It can handle two kinds of technologies -- NMOS technology and SCMOS technology.

(2) Designers can specify the polysilicon pitch at will. There is a sparse option to provide a larger

polysilicon pitch. The default polysilicon pitch is six lambda, which is the minimal possible

2 The percentage is calculated from the matio of AAU1 and the custom design of the LAGER AAU. If considering the
leafcell design of AAU, the area loss ranges from 10% to 50%.
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pitch for the 3 micron SCMOS technology.

A new version of "game" provides a 90-degree rotation feature. To handle a cell which requires
more than 80 columns for the symbolic input, designers can make use of this feature to relieve
the restriction on the number of columns?. Since there is no limit on the number of rows, a

rotated symbolic input can have any number of rows to represent the columns desired.

"Game" will make vertical compaction on the layout automatically unless designers specify the
other way around. The compaction can save the cell area up to about 15%, and thus makes the

layout density comparable with custom design.

"Game" pfovides automatic design rule checking. If a design rule violation is found, an error
diagnosis will instruct the designers to make necessary modifications on the design. Error diag-

noses will also be given if there are typing errors.

Metal one usage is absolutely free if design rules are not violated. Metal one can overlap any
kind of material and runs in both directions. To reduce resistance and capacitance, we can even

replace polysilicon lines by metal one lines if possible. The free usage of first level metal pro-

vides a great flexibility for the users.

Different sizes of transistors can be implemented by "game”. To specify a wide transistor,
designers will have to type several consecutive rows of N's (represents NMOS transistors) or
P’s (represents PMOS transistors). To design a weak transistor, designers must "snake" the
transistor on a polysilicon column. This kind of design is not efficient from an area point of

view. However, according to our design experience, weak transistors rarely appear ina datapath

cell design.

As mentioned above, "game" has a labeling capability. This feature is very desirable for the

purposes of identifying terminals and routing.

3 "Game" only allows 80 columns of symbolic input. This limitation is due to the width of text terminals.
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Figure 2.3(a) Symbolic input of a logic cell for "game”
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Figure 2.3(b) The corresponding layout generated by "game”

"Game" has many attractive features as described above, but "game” also has some weaknesses,
which may be improved. First of all, its user interface is not good. Designers have to handle a lot of
symbols when designing a cell. Graphic input is strongly urged to make "game” more user friendly.
Secondly, the metal one width is fixed. Although "game" is able to chop off a piece of metal one when
a design rule violation is detected, we still require different widths of metal one for power buses or for

other routing requirements. Finally, well alignment will be a problem when it is incorporated with the
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CMOS datapath compiler. For the current version of "game”, there is still no way to specify the well
boundary of a cell.

In the next section, we are going to use "game” to design all the cells we need for building the
test chip AAU1. The layout strategy will be described in length to illustrate the tradeoffs of using gate

matrix design.

2.3. Layout Strategy for Test Chip AAU1

LAGER AAU has a bit-slice structure which allows easy parameterization. For a complete
datapath, the first slice is a ground slice which contains a ground bus and some simple interconnec-
tions. The last slice is a control slice which involves some control logic for generating the control sig-
nals of the cells in the same block. Power buses and system clock buses also run in the control slice.
Between the ground slice and the control slice are the even and the odd bit slices of the datapath. See

Figure 2.4 for the detailed structure.

We planned (o use "game" to design each individual cell then used the CMOS datapath compiler
to construct the bit slices and the whole datapath. Unfortunately, these two tools are not compatible.
We need to make some modifications on the cells before we can use the datapath compiler to construct
the whole structure. We will talk more about the incompatibility between these two programs in a

later section.

Due to the bit-slice structure, we would like to make all the cells in a bit slice of approximately
the same width. Therefore, we have broken larger cells into two pieces. The adder cell and the counter
cell are the examples. For smaller cells, such as the decoder cell, we combined other logic inside the
cell to make it have approximately the same width as the other cells. Using "game”, we can easily
predict the width of a cell; however, the height of a cell is unpredictable due to the compaction feature
of this program. The well alignment for each cell in the same block is another problem since "game”
does not provide with the feature of well specification. We will discuss more on these problems in a
later section. In designing AAUL, all the interconnections were made by hand, no CAD tools were

involved. Therefore, the above problems can be solved by proper placement of cells. In addition,
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routing area is minimized. The disadvantages are long design time and the higher possibility of rout-

ing ermrors.

AAUI is a ten-bit address arithmetic unit. It includes both IX and IY sections. The preset value
of the decode section is randomly chosen. The only criterion is the convenience of testing. Beside the
ten-bit AAU, there is another one-bit single section AAU on the test chip. The reason for designing
this one-bit AAU is that we can easily generate complete test vectors for it to insure the correctness of
the AAU logic design. The 10-bit AAU testing, on the other hand, can provide us the information of

propagation delay and the correctness of the function.
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Figure 2.4 Bit-slice structure of the LAGER AAU

AAUTI has 48 pins in total. Figure 2.5(a) shows the whole layout of the chip. The 10-bit AAU
has a height of 762 lambda and a width of 1083 lambda. Note that the datapath has been rotated 90

degrees to simulate the final result that will be generated by the datapath compiler. From Figure 25,
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we can sze that the whole layout is very compact. The isolated part below the main datapath is the

one-bit AAU. It shares the same power pins and clock pins with the 10-bit AAU.
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2.4. Test Results of AAU1

Having designed all the cells, we used ESIM [Term82] to simulate the logic and crystal to find
out the longest delay, then we used SPICE to find out the transient response. If there was a logic error
or the delay was too long, then we redesigned the cell until the electrical performance met the
specification. Our goal is to achieve a 10 MHz clock rate. Therefore, the total propagation delay can

not be longer than 100 nsec. Table 2.1 lists the area and electrical performance of the final design.

The longest propagation delay* of the adder is about 50 nsec for an 8-bit AAU. The performance of an

8-bit double-section AAU can approximately meet our specification.

To calculate the worst case delay of a 10-bit double-section AAU on a test chip, we need to con-

sider at least the following terms:
(1) delay caused by input pads and output pads : 14 - 18 nsec according to test results.
(2) delay caused by clock signal driving : about 5 - 7 nsec according to simulation.
(3) delay caused by the counter, the inverter, and the decoder : about 15 nsec according to simula-
tion.
(4) delay caused by a 10-bit adder : 55 nsec.
(5) delay caused by the second 10-bit adder : 10 nsec.
(6) delay caused by the output buffer : 5 nsec.
therefore, the total delay will be
18+7+15+55+10+5=110nsec
The test chips were made by MOSIS on run M66V and M67Z. Testing eciuipmem used was the
Tektronix DAS. Generally speaking, the logic design is correct, but the electrical performance was not

adequate. There is a significance difference between the simulation and test results. The reasons will

be discussed later. The test results of AAU1 can be summarized as follows:

The worst case carry propagation delay of an adder is 4.5 nsec per stage, and the delay caused by sum evaluation is 10.5
nsec. Hence, the total delay of an 8-bit adder is 4.5* 8-+10.5=46.5 nsec.
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The one-bit single section AAU functions well. The test results confirm that the logic design of
AAU1 is correct. To test the 10-bit double section AAU, we designed several groups of test vectors to
test different cells. The results showed that all the counter cells, the decode section, and the adder
cells worked fine. For the testing of the counter cells and the decode section, the clock rate can go up
to more than 10 MHz. But for the testing of the adder cells, the clock rate can only go up to 5.6 MHz
under the test of the most critical propagation delay. The difference between the simulation and the
testing results are within 50% and there are three main reasons for the difference. First, the clock sig-
nal used for the testing was not good. The square waves generated by the signal generator included a
lot of harmonics and noise when the frequency went up too high ( about several MHz ) and the two-
phase non-overlapping clock was not exacty achieved. Second, the model used for the SPICE simula-
tion were different from the real parameters due to process variations. Third, some distributed resis-
tance and capacitance were ignored in the simulation. All these factors caused the difference between
the simulation and the testing. A new test chip has been built and fabricated by MOSIS on run M73T.
Figure 2.5(b) shows the die photo of the new design. In designing the new test chip, we used the
specifications of the LAGER CMOS datapath compiler. Some of the cells have been redesigned to
increase their driving capability®. The test results show that the new chip has better electrical perfor-
mance than AAU1. The chip can work up to 6.5 MHz under the test of the most critical propagation
delay. Again, this limitation is due to the adder cells. The counter cells and the decode section can go

to frequencies higher than those of AAU1.

5 The pew design of AAU1 used a new logic to implement the adder cells. Some of the gate matrix rules are violated, but
basically, it stili belongs to the gate matrix design style.



Table 2.1 Area and Simulation Results of AAU Leafcells
cell name area transistor density propagation delay
(ambda * lambda) | (# of transistors per unitarea) | (simulated by SPICE
Cout: 4ns
ctre 102*64 1/544
sum of half adder: 8ns
Cout: 4ns
ctr.o 100*64 .1/533
sum of half adder: 7ns
’ Dout: 5.5ns
dff 76*56 1/423
Dout* : 7.5ns
b:ns
dec.e.0 60*42 1/252
Cout : 2ns
b:8ns
dec.e.l 60*44 1264
Cout ;: 2.5ns
b:6ns
dec.ex 52%44 1286
Cout : 2ns
b:8ns
dec.0.0 56%44 17246
Cout: 1.5ns
b:6ns
dec.o.1 56*44 17246
Cout : 2ns
sum : 10ns
adder_even 48%202 1/440
Cout : 3.5ns
sum : 10.5ns
adder_odd 48*192 1/418
Cout : 4.5ns
iy.ctl 46*28 1214 ns

2.5. Possibility of Interfacing GAME with CMOS Datapath Compiler

Although "game” has a lot of features, it was not popular because of the poor user interface.
Another problem of "game" is its incompatibility wixh the CMOS datapath compiler. However, both
of these problems can be solved by introducing a graphic input capability and a postprocessor to
modify the layouts to meet the requirements of the datapath compiler. The postprocessor should be

able to handle the following problems:
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Well alignment and cell height unification: The CMOS datapath compiler requires all the cells in
the same block to have an equal height and an equal well boundary. This requirement can be
achieved easily for custom design; nevertheless, "game”, which has to take care of cell compac-
tion, can not easily provide this feature. One possible solution to this problem is that designers
specify all the cells which may appear in the same block in a single symbolic file. "Game”
translates and makes compaction on all the cells at the same time. Thus all these cells will have
the same height and well alignment automatically. If the sum of the columns of all the cells
exceeds 80, designers can make use of the 90-degree rotation option provided by "game" to
solve this problem. Another more natural solution is to modify "game” so that well boundary

and cell sizes can be specified by the users. This feature is still not available now.

Well contacts and power buses: The current version of "game” is unable to handle well contacts
or power buses. However, the datapath compiler takes power lines as control lines, that is to
say, cell designers must put power buses inside cells. To enable "game" to handle well contacts,
we must introduce new symbols; to handle power buses, we should have a way to instruct
"game" 10 adjust the widths of metal lines. Both problems can be solved, but the complexity of

the symbolic input is even more unacceptable.

Usage of metal two: Metal two is not allowed for cell design in "game”. But for routing
efficiency, the datapath compiler requires cell designers to provide feedthroughs on top of cells
using metal two. To introduce metal two into "game”, we will have to use a lot more symbols
than it has now since metal two can overlap any kind of material and it should be able to run in
both vertical and horizontal directions. We can not afford such a complicated symbolic input;
therefore, a graphic input is the only solution to this problem. If "game” can provide a graphic

user interface, it will be a very popular and useful tool for the gate matrix cell design.

2.6. Comments on Gate Matrix

Gate matrix design simplifies the layout procedure by its regular structure. Another attractive

feature of gate matrix design is its technology independence. To make use of these features, better
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tools, such as "game" with a graphical user interface and compatibility with the CMOS datapath com-
piler, should be installed. In fact, a lot of designs are making use of gate matrix layout [Poon85]
[Asad87] and better tools are being developed to facilitate these designs.

Gate matrix design can achieve approximately the same area efficiency as custom design. How-
ever, the electrical performance degrades due to the fact that it uses polysilicon or diffusion for inter-
connections. One solution to improve this problem is try to replace polysilicon or diffusion by metal
as much as possible. The layout tool “game” provides users with the capability to do that and future

tools have to provide users with the same capability.

The layout time for gate matrix design is shorter than that for custom design, but compared with
gate array design, it takes longer. Gate matrix design provides designers a simple and unified pro-
cedure to layout cells, and the performance of the design can approximately reach the level of custom
design without losing too much area. As long as proper tools can be supplied, gate matrix will be an

important layout style.



CHAPTER 3

SEA OF GATES

3.1. Basic Idea of Sea of Gates Design

Conventional gate arrays [Holl87] have alternate rows of cell columns and routing channels of
fixed widths to be used for first metal routing. This kind of structure has the following constraints on

layout:

(1) The number of metal one tracks allocated must large enough to handle the routing of macrocells
in the most congested area of the chip. But in reality, the channel width requirement varies from
design to design and changes across the chip. More tracks have to be allocated than actually

needed to ensure routability and thus results in wasted area.

(2) In many cases, the number of metal one tracks allocated is not enough in the adjacent routing
channel and the metal lines have 1o detour through other channels. This causes undesirable

congestion in adjacent channels and increases delay due to longer metal wires.

A double metal HCMOS Sea of Gates array [Hui85) and a channelless gate array [Hsu86], were
brought out to tackle these constraints. The innovation of these designs is that the whole chip has no
pre-defined first metal routing channels. Routing is built by running metal over cell columns. The
number of tracks in each channel can be adjusted and it is easier to achieve 100% auto-routing with a
high percentage of gate utilization. The authors claimed that a close to three fold improvement in
internal gate density is achieved. In one particular circuit, 46 percent of the raw gates were utilized.
With this approach, macrocells can grow in both directions. There will be no area wasted in
predefined channels.

With this idea, Wong built up a high performance 129K-gate CMOS array [Wong86). A Bit
Map Controller was laid out on a 14.95 mm * 14.95 mm die. The operation frequency is over 20

MHz. Table 3.1 lists some of the key process parameters used by Wong's design. These parameters

27
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are quite different from the MOSIS SCMOS design rules which are available to us. Therefore, we will

have to design our own Sea of Gates template, but the basic structure is the same as the Compacted

Armay.
Table 3.1 LSI and MOSIS Key Process Parameters

PARAMETERS TYPES LSIRULES MOSIS RULES
GATE LENGTH NMOS/PMOS | 1.5/1.5 micron | 2/2 lambda
EFFECTIVE CHANNEL LENGTH | NMOS/PMOS | 0.9/0.9 micron | “1.77/1.64 micron*
GATE OXIDE THICKNESS 0.25 micron 0.0423 micron*
THRESHOLD VOLTAGE NMOS/PMOS | 0.8/08V 0.82/0.78 V*
GRID SIZE XY 5.6/6.0 micron | 7/8 lambda
CONTACT HOLE SIZE 1.2 micron 2 lambda
FIRST METAL LINE/SPACE | 1.9/2.1 micron | 4/3 lambda
VIA SIZE 1.6 micron 2 lambda
SECOND METAL LINE/SPACE | 2.5/2.1 micron | 4/4 lambda

* Parameters are based on MOSIS 2 micron SCMOS technology.

3.2. Design of Sea-of-Gates Templates

The template of sea of gates design is similar to the gate array template except that there is no
pre-defined channel. The whole chip is filled with cell columns. Because all the routing is built on top
of the cells, the template has to be carefully designed to meet the requirement of grid-based routing. In
another word, at any possible intersection of metal one and metal two, sufficient spacing should be

allowed for a via to be placed.

Figure 3.1 shows the template designed for sea of gates layout. Basically, metal two runs hor-
izontally and metal one runs vertically in the cell columns used for routing channels. Metal one is
used for the interconnection in both directions inside the cells. The minimum size of a transistor is 2
lambda / 32 lambda. The reason for designing such wide transistors is to provide enough wiring grids
for a cell column. In addition, wider transistors provide stronger driving capability. The power con-
sumption is larger than gate matrix design but reasonable. In the following section, we will see from
simulation results that the propagation delay is shorter than that of gate matrix design. Readers may
worry about the area efficiency for wide-transistor templates. Compared with gate matrix design, the

area loss for a cell is not serious ( about 30% to 70% ) even though the transistors are much wider.
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The reason is that for gate matrix design, most cell area is devoted to interconnection. Although most
transistors are of the minimum size, the total cell area can not be reduced due to the fixed routing area.
For sea of gates design, all the routing is built on top of cells and will not cause extra area consumption
if the transistors are properly sized to accommodate the routing. Cell area is decided by the number of
transistors needed for each cell. In short, we can say that the cell area for gate matrix design is routing
bound, while for sea of gates design is transistor bound.
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* SYMMETRIC CELL STRUCTURE
* NO PREDEFINED ROUTING CHANNELS
* EVERY 2 CELLS HAVE P-WELL AND SUBSTRATE CONTACT

Figure 3.1 Intemnal array structure of Sea of Gates design

The possibility of designing weaker transistor templates is considered. According to the layout
experience, 6 grids per cell column is about the optimal value. A weaker transistor template will
degrade electrical performance. Also, it may cause more area consumption due to the fact that more
cell columns are needed for completing interconnection. The optimal value certainly depends on the

complexity of routing and cell design. For a simple cell design, smaller number of grids per cell

62 lambda
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column may be desired. Take the AAU design for an example, 5 grids per cell column is the optimal

value when considering the area. If we use this template to design AAU?2, the area of AAU2 can be
reduced by 13%.

3.3. Layout Decisions Made for Test Chip AAU2

To investigate the performance of sea of gates design, we used the same logic as AAU1 to build
a test chip AAU2. In laying out AAU2, we had to make some decisions on the datapath structure and
the routing strategies. Should we keep the bit-slice structure for the sea of gates design? Should we

use the CMOS datapath compiler to build up the datapath?

' For the first problem, we need to consider the compatibility between bit-slice structure and sea
of gates design. Basically, these two issues have no conflict, but would it be more efficient to use gen-
eral purpose place-and-route algorithms than using the bit-slice structure? To use general purpose
place-and-route algorithms for sea of gates design, we must have powerful CAD tools. Place-and-
route algorithms for sea of gates design is different from conventional place-and-route algorithms in
that the number of cells to handle is much larger. The conventional layout algorithms have difficulties
in handling such large problems. For the time being, there is still no CAD tools available to support
general purpose place-and-route design for very large sea of gates layouts. In addition, the bit-slice
structure has many nice features such as parameterizability and regularity that will be lost if we adopt
general purpose place-and-route design. Therefore, we decided to keep the bit-slice structure in

designing AAU2.

Since we decided to keep the bit-slice structure for the AAU2 design, should we use the CMOS
datapath compiler for bu.ilding up the whole macrocell? The decision is no and the reasons can be

summarized as follows:
(1) The CMOS datapath compiler does not use a grid-based router.

(2) The CMOS datapath compiler requires all the data terminals brought out to the top or to the bot-

tom boundary and the control terminals brought out to the right or to the left boundary of a cell'.

! The way the CMOS datapath compiler treats a cell is always 90-degree rotate of a usual cell. In another word, usually a
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For a sea of gates design, this restriction will increase the layout difficulty because usually the
width of a sea-of-gates cell is not wide enough to accommodate all the data terminals. Besides,
unlike gate matrix design, the sea-of-gates cells can not make use of polysilicon or diffusion for
intra-cell routing. This even increases the difficulties of bringing all the data terminals to the cell

top/bottom boundary.

(3) The CMOS datapath compiler treats power and ground buses as control signals and makes them
run perpendicularly to data signals. But for sea of gates design, it is natura! to make the power
and ground buses run in parallel with the data signals.

After thorough consideration, we decided on the bit-slice structure of AAU2 shown in Figure
3.2. Basically, it has the same structure as AAU1 except that the power lines run vertically instead of
horizontally. Also, all the data signals were brought out to the right boundary and use global routing
channels for connection if they can not be routed by local interconnections between the two cells. Fig-
ure 3.3 shows the whole layout of AAU2. The total area for the 10-bit AAU is 1413 lambda * 993
lambda. Compared with the gate matrix design, it is about 70 percent larger. The number is accept-
able since the transistor sizes are so much bigger. If we use a weaker transistor template, say 5 grids
per cell column, about 50% area loss can be achieved. In addition, the sea of gates design has many
desirable features which are not achievable with the gate matrix design. We will talk more about the

tradeoffs in the latter sections.

bit slice structure has data signals going vertically, control signals going horizontally. But for the datapath compiler, data signals
go horizontally and control signals go ventically. To unify the directions, we take the direction of a normal bit slice as standard.
What we see generated by the CMOS datapath compiler should rotate 90 degrees o get a correct direction.
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Figure 3.3 Chip layout of AAU2

3.4. Simulation and Test Results of AAU2

A basic cell layout is shown in Figure 3.4. Note that some of the transistors are not used due to

the connection problems. Basically, most of the transistors are of the minimum size except those with
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different driving capability required. A double size transistor can be made by two minimum size

transistors in parallel and a half size transistor can be made by two minimum size transistors in series.

But either kind of transistors will need twice the area of the minimum size transistor.
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Figure 3.4 Counter cell 1aid out in sea of gates style

To design a cell, designers only need to perform the first and second level metal routing. Both
the layout time and the turnaround time is greatly reduced. In addition, all the cells are technology

independent. We don’t need to redesign the cells in the cell library if technology changes. Table 3.2
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lists the cell areas and the SPICE simulation results of some of the AAU2 leafcells. We expect that the
electrical performance of AAU2 will be better than that of AAU1 from these simulation results. Note
that the data of decoder cells are not listed in this table. The reason is in the difference between the
designs of gate matrix and sea of gates. For the gate matrix design, we combined some other logic into
the decoder cell to make the cell width approximately equal to those of the other cells in the same bit
slice. For the sea of gates design, a decoder cell is simply a NOR or a NAND gate. It is unnecessary

to combine other logic since all the cell widths are equal. Therefore, we did not list the simulation

results of the decoder cells.
Table 3.2 Cell Area and Simulation Results of AAU2 Leafcells
cell name area % larger than propagation delay
(lambda * lambda) gate matrix simulated by SPICE
Cout: 2ns
counter 113*81 25%
sum of half adder: Sns
dff 70*84 30% 2ns

sum : 5.5ns

adder_even 190*83 70%
Cout : 4.5ns
sum : 8.5ns

adder_odd 190*83 70%
Cout : 4.5ns

A test chip of sea of gates design has been fabricated by MOSIS on run M73T. Figure 3.5 shows
the die photo of AAU2. The same test procedure as AAU1 has been carried out and the test results
show that AAU2 can work up to 6 MHz. The performance is slightly better than AAU], but worse
than the new design of AAU1. Nevertheless, the performance difference is not significant. Unlike the
gate matrix designs, the performance limitation of AAU2 is due to the counter cells. The adder cells
of AAU2 can work up to 7 MHz under the test of the most critical propagation delay, which is better
than those of AAU1 and its improved version. However, the counter cells of AAU2 can only work up
to 6 MHz. Above 6 MHz, a charge sharing problem shown on the oscilloscope will introduce some

noise, and thus limits the performance.
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3.5. Comments on Sea of Gates Design
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Sea of gates design meets most of the goals we set up in Chapter 1.
It greatly simplifies and unifies layout procedures by its regular structure.

All the cell design is technology independent. We only need to redesign the template accord-
ingly when technology changes. The cell design which includes only the first and the second

level metal routing will remain the same.

From the simulation results, the electrical performance for the sea of gates design is better than
that of the gate matrix design. The test results show that these two designs have approximately

the same performance and AAU?2 is slightly better than AAUL.

Fast turnaround is an important advantage of sea of gates design over other array type designs.
Wafers can be made just by going through the final stage of metalization; hence, significant sav-

ings in both cost and time can be attained.

The decreased layout density is an important handicap of sea of gates design. AAU2 is 70%

larger than AAUI. Further optimization in area can be made by properly choosing the number of grids

per cell column. For an ASIC chip, memory costs most of the chip area. A reasonable increase in

datapath area is not as significant as that in memory cell design. With all these features, sea of gates

design will become a very important design style for datapath design. ASICs with 13K usable gate

arrays and 4Kb SRAM on a single chip based on the Compacted Array design [Chan87] have been

built. This implies that the area problem can be solved when more advanced technology is available

since the design even used stronger transistor templates. In addition, useful CAD tools have been pro-

vided to facilitate the design. Sea of gates design will replace gate array design in the future and

become one of the most important layout styles since the weaknesses of gate array design have been

substantially removed by this new array type design.



CHAPTER 4

STANDARD CELL DESIGN

4.1. Standard Cell Library From MSU

Standard cell design is one of the most important structured type layouts. Unlike gate array
design, standard cell design has no predefined routing channels, and thus can make use of chip area
more efficiently. Basically, standard cell design needs a standard cell library in which all the cells
have the same height. Other characteristics of the cells in the library are that the power and the ground
buses are connected automatically when cells are juxtaposed and that all the data and control terminals

are brought out to the top or to the bottom boundaries of the cells for routing.

The chip layout of a standard cell design has interleaved cell rows and routing channels. The
width of the cell rows is fixed and equal to the height of the cells in the library. On the contrary, the
width of the routing channels is variable and depends on the number of tracks needed for routing.
Currently, we have a standard cell library designed by Mississippi State University (MSU). This
library contains some logic cells, latches, buffers, multiplexers, and pads. All these cells are ordered
by a four-digit number. For examples, 1100 is a dual inverter cell, 1340 is a tri-state buffer etc. The
heights of these cells are all 109 lambda. Most of the transistors inside the cells are large. A typical
transistor has a width ranging from 20 to 60 lambda. The reason for this kind of design is to provide
strong driving capability. .Nevenheless, when driven by other circuitry, these cells may need a buffer

stage in front of them to provide enough drive.

The cell library documentation provides the SPICE simulation results as well. Simulation runs
are based on normal-case and worst-case delay respectively. Simulation results of various technologies
are also available. The delay of a certain cell is calculated by assuming that the cell is driving the
inverter cell of the library. Relevant delay information about driving other cells can be calculated

from the delay provided. We can take those data as a reference since the information consists of simu-
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Iation results. It is advised to build up test chips or do more precise simulation to obtain more reliable

circuit performance in designing a datapath which has critical timing requirements.

4.2, CAD Tools Used for Standard Cell Design

With the standard cell library, we tried to build up a test chip AAU3 using the same logic as

AAUIL. The design involves a number of CAD tools. By using these tools, we can simply specify

high level inputs and get the layout. Taking the IX section of AAU3 as an example, the design went

through the following steps.

a

@

€))

Divide the datapath into different cells which are available in the cell library. Connect these
cells properly and draw a block diagram for the datapath. This is just a preparation stage which
does not need any CAD tools. Figure 4.1 shows the block diagram of the IX section which is
going to be laid out using standard cell design.

According to the block diagram, prepare a LISP like syntax input for a program called "eqn2sdl”
which will generate sdi syntax as its output. "Eqn2sdl” provides many desirable features which
enable users to prepare .sdl files without getting into the messy cell specification and net assign-
ment business. Figure 4.2 is the input file to "eqn2sdl" corresponding to the block diagram of
Figure 4.1. This file contains parent terminal declarations, internal terminal declarations, and
some logic expressions which specify the connection of these terminals. After preparing this

file, we can fire up "eqn2sdi” and get the .sdl file for the next step.

Use design manager [Shun87] to run different layout generators. For our case, we need "wolfe”
to do the standard cell placement and routing {Rude87] [Brau86). Therefore, the design
manager will send necessary information to "wolfe”, then "wolfe” will make use of these infor-
mation and "Oct" database to generate the layout. Other layout generators, such as Timlager and
the CMOS datapath compiler, can also be called by the design manager to generate layouts.
After this process, we got the layout as shown in Figure 4.3 which is a one-bit single section

AAU in standard cell design.
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(parent! CtrCout INC EOS Din ckl ck2 test
index a AdrCout out)
(var! AdrCin CtrCin* load count TestCin* TestCout index*

templ temp2 x1 x2 x s b Dout Dout* sum)
sdeclare useful functions

(defun dell! (x) (del! x PHI1l))
(defun del2! (x) (del! x PHI2))

;Control slice

(set! index* (not! index))
(set! CtxCin* (not! INC))
(set! count (not! EOS))
(set! load (eql! EO0S))
(set! test (eql! TestCout))

;Ground slice
(set! AdrCin (zero!))
(set! TestCin* (zero!))

;1 bit

(set! CtxCout (nor! CtrCin* Dout*))
(set! s (xor! CtrCin* Dout*))

(set! x1 (del! s count))

(set! x2 (del! Din load))

(set! x (merge! x1 x2))

(set! templ (del! x ckl))

(set! temp2 (not! templ))

(set! Dout* (del! temp2 ck2))

(set! Dout (not! Dout*))

(set! TestCout (nor! TestCin* Dout))
(set! b (nor! index* Dout*))

(set! AdrCout (carry! a b AdxCin))
(set! sum (sum! a b AdrCin))

(set! out (eql! sum))

Figure 4.2 Input file of "eqn2sdl” for generating IX section
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Figure 4.3 Standard cell layout of IX section

Using the same process, we designed AAU3 which requires a more complicated input and
longer debugging time. The layout of AAU3 is shown in Figure 4.4, The area of the 10-bit double
section AAU is 1628 lambda * 1220 lambda. Compared with AAU1 which has an area of 762 lambda
* 1083 lambda and AAU?2 which has area of 1413 lambda * 993 lambda, AAU3 is even more area
consuming. The reasons are first, the transistors are much bigger compared with either the gate matrix
design or the sea of gates design. Secondly, the placement and routing is not as efficient as that of the
bit-slice structure because of the large number of cells. It is interesting to notice that the standard cell
design which is closer to the custom design than the gate array design costs more area than the sea of
gates design. This implies that the sea of gates design has greatly improved the area utilization of the
original gate array design. If we properly reduce the transistor sizes by 40% of the cells in the library
and assume that the placement and routing remains unchanged, we may reduce the area of AAU3 by

about 18%. However, the area utilization is still worse than AAU2 by 15%.
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After all the CAD tools needed are complete, standard cell design will be attractive because of
the ease of the design. If we can further improve the cell library by introducing more cells, properly
adjusting cell sizes, and reducing the propagation delay, then this design style will be even more use-

ful.
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Figure 4.4 Chip layout of AAU3



4.3. Simulation Results

To check the correctness of the logic design of AAU3, we can use ESIM to do the simulation.
Another possibility is to use the simulator DSIM built inside the design manager. DSIM can perform
different levels of simulation, including function level, gate level, and switch level simulation. The
commands to this simulator are very similar to those of ESIM. The main advantage of building a
simulator inside the design manager is that we can simulate the operation of a datapath before we actu-
ally build it. In addition, we can use the same interconnections for both layout generation and simula-

tion. With this facility, standard cell design is even more effective and attractive.

As described above, the SPICE simulation results for each individual cell are available in the
cell library. These results provide designers with the basic information of a cell performance. If the
pecformance does not meet the design requirements, designers will have to increase the transistor sizes
or use more cells in parallel to increase the driving capability. According to the SPICE results pro-
vided, we expect AAU3 to work up to about 6MHz under nominal case and up to about 4MHz under
the worst case. ‘The main reason is that the carry chain of the 10-bit full adder, which is the critical
data path of AAU3, takes about 13 nanosecond' per bit under the nominal case and about 20
nanosecond under the worst case. The performance is much worse than the simulation results of either
the gate matrix design AAU1 or the sea of gates design AAU2. Therefore, we need to redesign the
adder cell for a better performance. In fact, the adder cell in the cell library was not meant to be used
for datapath design. To implement a datapath, designers should design their own cells for critical path

usage.

For completeness, ‘we want to point out that the SPICE simulation results provided in the cell
library are dubious. Take the adder cell for an example, the worst case propagation delay 1 -> 0 of CI
- CO is 16 nanosecond for 3 micron technology and 1.2 nanosecond for 2 micron technology. SPICE
simulation was done for this case and the results were 8 nanosecond for 3 micron technology and 3.5

nanosecond for 2 micron technology. Some other examples confirm us our belief that more precise

Notice that the carry-in signal of a full adder has to drive three inverters, i.c., the fanout is three. Therefore, the propaga-
tion delay provided in the cell library has to be properly modified to get the comrect propagation delay for each stage.
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simulation is necessary to complete the cell library.

4.4. Comments on Standard Cell Design

CAD tools are now available for standard cell design. The design time will be greatly reduced
in the near future when all these tools are fully developed. Another even more important issue of stan-
dard cell design is a complete cell library. The cell library available now is not complete yet. More
information, such as measured propagation delay for each cell, more precise simulation results, and
documentation on logic diagrams, circuit diagrams, naming conventions etc. has to be included to
make the cell library more useful. In addition, some of the cells must be redesigned to achieve better

performance. Standard cell design will not be adopted until a fully functional cell library is achieved.

From the design experience of AAU3, we concluded that the current status of standard cell

design is not appropriate for a datapath design for the following reasons:

(1) The electrical performance does not meet our goal of 10MHz operation frequency.
(?) ‘The area used is much bigger than other array-type layouts.

(3) Tumaround time can not be reduced by standard cell design.

Although standard cell design is not a good choice for a full datapath design, it is suitable for -
some random logic design, such as the design of a control slice. When timing requirements and area
consideration are not critical, standard cell design is still a good candidate for its ease of design. The
impact of technology changes on standard cell design is not serious since we only need to update the
cell library. All the placement and routing can be easily upgraded by rerunning "wolfe". With these

advantages, standard cell design will still be a good choice on some random logic designs [Aldr87] in

the near future.



CHAPTER §

COMPARISON AND CONCLUSION

5.1. Laser Restructurable Techniques in Array Type Layouts

Laser Restructurable Techniques (LRT) were first used in wafer scale integration to improve
yield rates [Garv83] [Raff85). The idea was to make use of laser techniques to remove or form con-
nections on fabricated wafers in order to interconnect working cells and wire around defective ones,
thereby incorporating redundancy for improved yield on very large area circuits. A working system is
being built in Lincoln Laboratory and a new "diode-link" has been developed that can be manufactured
as part of a normal CMOS process. Some ASICs based on this technology have been designed, an
example is a speech recognition system built by Lincoln Laboratory using Dynamic Time Warping
1 evel-Building Algorithm [Mann86).

LRT can also be used in array type layouts to achieve very short turnaround time [Orba87]. A
company called Western Microtechnology has used the laser techniques to provide customers with one
day turnaround time laser programmed arrays [Bois86). 1410 equivalent 2-input NAND gates are
designed on a single chip to provide 80 selectable macrocell functions. Each chip has 92 bonding pads
including 84 configurable I/O pads and 8 power pads. Figure 5.1 shows the primitive cell layout and
Figure 5.2 shows how 10 use this cell to implement a 2-input NOR gate. There are 15 switches in a
single cell with only four transistors. Therefore, the area utilization for transistors is very low. Much
more restricted design rules for laser restructurable switches makes the utilization even worse. To
improve the area utilization, we should try to reduce the number of switches per cell. Of course, tech-

nology changes, which allow less restricted design rules, can also improve the area utilization.

Using the technology developed by Lincoln Laboratory for wafer scale integration, we tried to

layout the primitive cell of Figure 5.1. The cell size is 60 lambda * 62 lambda which can achieve

46
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about the same layout density as that designed by Western Microtechnology'. Figure 5.3 shows the
layout. We can see that most of the area is occupied by the metal cuts or the diffusion links, active

area is only a small part of the whole cell.

Another primitive cell design is proposed to improve the area utilization. Figure 5.4 is the new
primitive cell design which makes better use of the cell area. A cell area of 58 lambda* 46 lambda
which contains even more switches inside the cell is achieved. In addition, the cell has a much more
regular structure which helps designers in dealing with the massive laser rés;tmcturable switches.
Other advantages are that wider transistors are used to increase the driving capability, more switches
are added to make the design more efficient and flexible, and like the sea of gates design, cell columns

can also be used as routing channels, and thus greatly increase the chip area utilization.

TO NEXT CELL

2 N 0 A 2

N-channel i S 11 $ P-channel

TO NEXT CELL ROUTING CHANNEL
Figure 5.1 Primitive cell layout

! The laser technology used by Westem Microtechnology can only cut metals. They do not have diffusion links.
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Figure 5.2 Laser cuts for a 2-input NOR gate



49

e RN S i‘/‘swﬁﬂﬂﬂi 2 :
T (S LA x5
=5 S e ZZ

. NEE 5
775 A, 55 %5

7.
&z

/)

M A Al AL
B

A O,
Z

7

P X > 1321 5% S s £
o . ity s s s
3% ; (X LS KL %, g‘?.
+out 5 S &S BS
T AN AT 55 T5s 2 23
' S A, ZAABNAN 5, FAA
N N N N
y: Py »s y
[ 5 A5 AL AR £53 s
ANES e XSRS S
Rl 0 AR £
SRl s!‘;’-g‘{"{“n-:x. 52
K %4 A R X5z

Figure 5.3 Layout of the primitive cell shown in Figure 5.1



50

O :SWITCH
O :CONNECTION

%
i

{i1]
o

——

[11]

p

GND

CELL COLUMN
Figure 5.4 New primitive cell layout

Some cells have been laid out using the primitive cell. Figure 5.5 is an example which shows a
2-input XOR gate layout. More complicated cells, such as full adder cells and counter cells can also
be laid out easily by diffusion links or metal cuts. The counter cell has an area of 188 lambda * 88
lambda. Compared with the gate matrix layout of the same counter cell which has an area of 102
lambda * 64 lambda or the sea of gates layout with a size of 113 lambda * 81 lambda, this counter cell
has an acceptable area utilization. As to the electrical performance, since all the counter cells use the
same logic, they have approximately the same propagation delay. According to the SPICE simulation
results, the carry propagation delay of the counter cell using LRT is 4 nanosecond, the same as that of

the gate matrix design.
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Figure 5.5 A 2-input XOR gate layout using LRT

Basically, this kind of design is very similar to gate array design. The only difference is that
instead of using another mask for metal routing, laser restructurable techniques are used to cut metal or
connect diffusion; therefore, no mask process is needed for routing and very short turnaround time can
be achieved. The greatest problem of using LRT in array type layout is its low circuit density. How-

ever, as technology improves, we should be able to attain a higher area utilization.

All the features of gate array design can be obtained by the LRT design. The design process is
greatly simplified compared to custom design. Designers only need to decide which pieces of metal to
cut or which pieces of diffusion to connect, then a chip is made. No modification is necessary when

technology changes since a chip is simply "a set of specifications on switches”. The electrical perfor-
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mance is about the same as the cther array type designs. In conclusion, using laser techniques in chip
layout can achieve most of the goals we set up in Chapter 1 and is particularly interesting due to the

feature of very fast turnaround.

5.2. Another Configurable Array Structure Design -- LCA

Logic Cell Array (LCA) is a user programmable reconfigurable logic array developed by Xilinx
Incorporation [Cart86] [Hsie87]. Although itisalsoa restructurable array, it is different from the lay-
out using LRT as described in the previous section. All the structures of LCA are electrically pro-
grammed; therefore, we can easily reprogram the array by specifying a different configuration. A
graphic design system called XACT has been developed to specify the LCA designs. It contains some
software and hardware packages including the LCA editor, a timing analyzer, a simulator, and the
XACTOR development tools. The basic package runs on an IBM PC/XT or AT compatible computer
with a color monitor and a mouse. Generally speaking, the whole system is very well developed and

easy to use.

Three basic building blocks are contained in a LCA device: Configurable Logic Blocks (CLBs),
Input/Output Blocks (IOBs), and Interconnects. A LCA device has 64 CLBs, arranged in an 8-by-8
matrix. Interconnects occupy the space between the rows and columns of CLBs and between the

CLBs and the surrounding IOBs.

CLBs are the logic and storage circuitry. They are organized in a matrix and have outputs that
implement the truth table or the Karnaugh map of their inputs. The logic element of a CLB can gen-
erate any combinational-logic function of its four inputs. The CLB also has a general purpose storage

element that can be used to implement sequential functions.

IOBs provide the interface between the external pins and LCA internal resources. Any IOB can
be defined as an input, an output or a bi-directional element with a tri-state control on the output. Each
IOB also contains a flip-flop, which can capture input data and provide captured data as an alternative

or direct-input data.
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Interconnect wires connect CLBs and IOBs. When a function is configured, "switches” are used
to connect interconnect segments to CLBs or IOBs. Different types of interconnect are available for

different signal-routing requirements.

Configurations of LCA devices are specified with XACT design system, which produces
configuration data. The configuration data is loaded into an LCA, enabling it to perform the functions.
When power is removed from the LCA, the configuration is lost and the LCA retumns to the
unconfigured state. The configuration data can be passed to an LCA device from either an external
memory using parallel stream or an external processor using a serial bit-stream. Multiple LCAs can be

daisy-chained to be programmed simultaneously.

Figure 5.6, 5.7, and 5.8 show the three building blocks of LCAs. Three types of interconnect:
direct interconnect, local interconnect, and long lines, as shown in Figure 5.8, perform connections
under different situations. All interconnections are implemented by switches which can be dis-
tinguished as programmable interconnect points and switching matrices respectively.

An LCA device has a chip size of 7.92mm * 7.55mm under 2u CMOS double metal technology.
LCAs have a lot of desirable features:

(1) The design process is very easy. To design a chip, designers only need to specify the logic func-
tions of CLBs and IOBs and the interconnections between these blocks. In effect, there is no
layout or circuit design involved. All the design belongs to logic level design. In addition,
XACT system is well developed and easy to use. The timing analyzer, the simulator interface,

and the design-rule checker greatly help designers to understand the circuit performance.

(2) LCA design is technology independent since all the design is logic level design. When new

technology is available, new LCA devices will be used and the configuration data remain

unchanged.

(3) Compared to EPROMs or EEPROMs, LCAs use dual port static memory, thus very short pro-

gramming time is achieved. The ability of quick reconfiguration makes exhaustive testing prac-
tical.
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However, like laser restructurable layout, LCAs can not perform very complicated functions on
a single chip. In order to achieve high flexibility, LCAs have to use crossbar switches to implement
interconnections and use PLAs (Programmable Logic Arrays) like memory arrays to implement CLBs.
In other words, RAM cells ( 5-T SRAM ) are used in all possible interconnections and probably inside
CLBs too. A lot of redundancy is provided as a tradeoff for programmability. Therefore, a very com-

plicated chip only has the logic capability of a 1000 to 1600 unit cell gate array.
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Another problem inherent in the LCA design is that its electrical performance is difficult to
predict. Nevertheless, this is a natural consequence of logic design and can only be improved by use
of better technology. The development of the LCA system involves new exploration of array type
design. The easy learning capability of XACT tools, the idea of electrical programmability, and the

high flexibility of chip usage are the greatest achievements in developing the LCA system.
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5.3. Comparison of Layout Techniques

Figure 5.8 Types of interconnect and switches
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Using array type layouts is the key to simplifying the design procedure. All the array type lay-

outs discussed so far have simplified layout procedure by using orderly structures. However, different
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types of layout have very diverse features and are suitable for various applications. Table 5.1 is the

test results summary of the AAU designs in different layouts and Table 5.2 is a summary and com-

parison of the array type layouts described in this report. From these tables, we can easily make judge-

ments on choosing a proper layout style.

Table 5.1 Summary of AAU Test Results
Chip Name Layout Style Chip Area Highest Working | Performance Limit
(lambda * lambda) | Frequency (MHz) | Factor
AAU1 gate matrix 762 * 1083 5.6 adder
AAUI1 (new version) | gate matrix 741 *1089 6.5 adder
AAU2 seaof gates | 1413 * 993 6.0 counter
AAU3* standard cell | 1628 * 1220 4-6 NA

* AAUS3 is being fabricated by MOSIS on run M76G; the data listed are based on simulation results.

Table 5.2 Comparison of Array Type Layouts

Layout Style | Orderly | Technology Electrical Turnaround Design Area
Structure | Change Performance* | Time Time Utilization**
no change slightly same as shorter “20% worse
Gate Matrix yes on symbolic | worse than custom than custom than custom
inputs custom design | design design design (1)
redesign depends same as shorter
Standard Cell | yes cell on cell custom than gate 3)
library library design matrix
depends on shorter shorter
Gate Array yes redesign template than custom | than gate (€))
template design design matrix
slightly same as same as ~70% worse
Seaof Gates | yes redesign better than gate gate than gate
template gate matrix array array matrix (2)
depends on very fast same as
LRT yes redesign template turnaround | gate < (4)***
template design "1 day array
redesign
LCA*#** yes LCA NA NA programming | ~(4)
devices time

* Electrical performance depends highly on logic and circuit design; readers should refer to simula-

tion and test results for detail performance.
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*+ ] means best possible on this chart, 2 means second best, etc. The data given are based on the

AAU designs of different layout styles.

*s+ Area utilization depends on template design. The rank here is based on the data given by

Western Microtechnology.

wx¥+ Ip effect, LCA design is not a layout style, but a logic design.

Among all these layout styles, gate-array-type layouts, including gate arrays, sea of gates, and
LRT design can be most easily upgraded when technology changes. Gate matrix design has the best
area utilization since it is closer to custom design than any other array type layout. LRT design has the
fastest turnaround through its use of laser technology. LCA design has the shortest design time,
because it is basically a logic level design. However, taking all the characteristics into consideration,

the sea of gates design, which has high performance in almost all respects, is the best layout style.

5.4, Final Remarks and Future Work

Mauch research is devoted to investigating various layout styles. All these new design methods
aim for simplicity and regularity. Custom design which aims for electrical performance but takes long
design times will only be adopted when area or timing considerations are very critical, such as in the
memory cell design or very high frequency datapath design. Array type design which takes consider-
ably less design time enables more and more ASICs to be designed to greatly improve system perfor-

mance. Therefore, amray type layout will be the main design methodology in the future.

It is important to survey the array type layouts presently available while investigating some new
design methods. That was also the motivation of this research. Through all this research, we get to
understand the features of different layouts; and, through our discussion, we are able to propose some

solutions to make these array type layouts more useful.

Chip layout is highly susceptible to technology changes. But array type layout can be easily
upgraded, so it is much more adaptable than custom design. New technology will also activate new

array type design. Using laser techniques in chip design is a good example. With the same technol-
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ogy, the quality of array type design influences electrical performance. From this report, we under-

stand the tradeoffs between different array type designs and their characteristics.

As to memory cell design, custom design of individual cells and then using module generators to
generate a whole memory array is the most popular way. Sea of gates arrays and gate arrays usually
have on-chip RAM to increase processor speed. Examples are LSA1500 series [Chan87] and
[Kawa87). Using sea of gates templates to design memory cells is also considered. A 3-transistor
RAM cell is laid out with an area of 62 lambda * 27 lambda. Compared with the custom design of the
RAM cell, the area is about twice as large and the speed is about the same. Since area consideration is
especially important in memory cell design, custom design of memory cells will still be the major

design methodology.

It is believed that more research will be directed toward array type design and laser restructur-
able techniques. New tools are being developed for array type design and more chips are being 1aid
out in array styles. In particular, tools for standard cell design in LAGER III and tools for sea of gates
design will be available in the near future. If the laser technology is available, we will also try to
develop CAD tools for this kind of layout and design prototypes for evaluation. All the work will have

great significance on the future ASIC design.
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