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Abstract

This paper treats two fundamental problems in the kinematics and the control of

multifingered robot hands: grasp planning and the determination of coordinated control

laws.We develop dual notions of grasp stabilityandmanipulability and use these notions

to formulate grasp quality measures.We give a control law for the coordinated control of

a multifingered robot hand which takes into account both the dynamics of the object and

the fingers and assumes a point contact model.
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1. Introduction:

A new avenue of progress in the area of robotics is the use of a multifingered robot hand for fine

motion manipulation. The versatilityofrobot handsaccrues from the fact that fine motion manipulationcan

be accomplished throughrelatively fast and small motionsof the fingers and from the fact that they can be

used on a wide variety of different objects (obviating the need for a large stockpile of custom end effec

tors). Several articulated hands such as the JPL/Stanford hand [10], the Utah/MTT hand [19] have recently

been developed to explore problems relating to the grasping and manipuladon of objects. It is of interest to

note that the coordinated action of multiple robots in a single manufacturing cell may be treated in the

same framework as a multifingered hand.

Grasping and manipulation of objects by a multifingeredrobot hand is more complicated than the

manipulation of an object rigidly attached to the end of a six-axis robotic arm for two reasons: the

kinematic relations between the finger joint motion and the object motion are complicated, and the hand

has to firmly grasp the object during its motion.

The majorityof the literature in multifingeredhandshasdealtwith kinematic design of handsand the

automatic generation of stable grasping configurations as also with the use of task requirement as a cri

terion for choosing grasps (see for example the references [1 ~4], [6" 8], [10], [13 * 18]). Some of these

references ([23*6,12,14,16]) have suggested the use of a task specification as a criterion for choosing a

grasp, albeit in a some what preliminary form. A few control schemes for the coordination of a

multifingered robot hand or a multiple robot system have been proposed in ([8, 23 ~ 26]). The most

developed scheme is the master-slave methodology ([23,24]) for a two-manipulator system. The schemes

developed so far all suffer from the drawback thatthey either assume rigid attachment of the fingertips to

the object or are open loop. The schemes do not account for an appropriate contact model between the

fingertips and the object

This paper treats two fundamental problems in the kinematics and control of multifingered hands:

grasp planning and the determination of coordinated control laws. We develop dual notions of grasp sta

bility and manipulability and use these notions to formulate grasp quality measures (this constitutes an

extension of our earlier work in [2]). We give a control law for the coordinated control of a multifingered

robot hand which takes into account both the dynamics of the object and the fingers and assumes a point

contact model

A brief outline of the paper is as follows:

In section2, we define the grasp map and its associated effective force domain, and the hand Jaco

bian. We develop dual generalized force and velocity transformation formulae relating the finger joint



torques and velocities tothe generalized force on and generalized velocity of the body being manipulated.

Using these relations wedefine stability and manipulability of a grasp. In section 3,weextend our previ

ousworkin [2] to define taskoriented measures for grasp stability and manipulability. In section 4, we use

the machinery insections 2 and 3 todevelop anew "computed torque-like" control scheme for the dynamic

coordination of the multifingered robot hand,alongwith a proofof its convergence.
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2. Mathematical Background

2.1. Transformation Relations for Rigid Body Motions in R3

C,

Transformation matrices of the form

Figure 1. Arigid body inR.s

LetCu C2be thetwocoordinate frames inR3 as shown inFigure 1.Let r12 be thevector represent

ing theorigin of C2intheC1 frame andA12e /?3x3be theunitx,y,z vectors of the C2coordinate frame

in the C i frame. It follows that A12is an unitary matrix with determinant +1, i.e., A i2 e SO(3), and that if a

pointp has coordinates p2 in the C2 frame, its coordinates are A l2p2+f\i in we C\ frame, and conversely

that coordinates px in the C\ frame transform to A{2 px-A[2 rl2 in the C2 frame. These facts are con

veniently expressed by means of homogeneous coordinates [20] by appending the scalar 1 to the coordi

nates ofpi and noticing that

Pi
1

=

^12r12
0 1

Pi
1

£12=
A12 r 12

0 1

(2.1-1)

(2.1-2)

withA12e 50(3),r12e A3 constitute the Euclidean group SE (3) orthe group ofrigid body motions in/?3,

isomorphic to the group Rh<SO (3). The group operation inSE(3) is the usual matrix multiplication. Thus,

if C3 were the third coordinate frame with gz$representing the transformation from C3 coordinates to C2

coordinates, then,

^13 = ^12^23

with g 13 being the transformation relating C3 coordinates to C\ coordinates. Also

£21 ^^

(2.1-3)

(2.1-4)



The added payoff of the so-called homogeneous coordinates of (2.1-2) for the Euclidean group is

that they can beused torepresent rigid body motions inR3. Thus, if inFigure 1the coordinate frame C2 is

attached to the rigidbody, then the configuration of the rigidbody may be described by the matrix g 12 of

(2.1-2), with A12 representing the orientation of thebodyandr12 representing the position of theorigin of

the body coordinate frame C2.To describe the differential motion of the body, consider a trajectory of the

body, parametrized by aC'-curve g\2: [0, to) -» S£(3), where [0, to) is the time interval. Differentiating it

we obtain

ii2(0 =
Ai2(0 ri2(0

0 0
€ TgJEQ) (2.1-5)

where TgJSE (3)denotes thetangent space to SE (3) atg12, and Ai2satisfies

Ai2Ai2+A52Ai2=0 (2.1-6)

((2.1-6) is obtained by differentiating A*12A 12=/). Thus, A'12A12 isa skew-symmetric matrix of the form

^12*12 =
0 -©3 ©2
©3 0 -<0i

-C02®! 0
£ 5(<Dl2) (2.1-7)

with col2= (0)1,0)2,0)3)'. It is easy to verify that the operator S which takes a vector in R2 to the skew-

symmetric matrix satisfies

5(0))/ =fl)x/ forall ©,/ 6 R* (2.1-8)

and

ASfaM1 =5(Ao)) forall A e 50(3). (2.1-9)

We define 0)12=S~l(A[2Ai2) tobe therotational velocity and v12=A'12 ri2the translational velocity

of themoving rigid body. Thus, a generalized velocity of thebody isof the form (v[2,eofe)' and it follows

that

5(fl)i2) V12

0 0 - 812'812- (2.1-10)

It is obtained by left multiplying (2.1-5) by g \2.

Remark: The generalized velocity defined in (2.1-10) is theinstantaneous velocity of thebody frame C2

expressed in the body coordinates. The reader should compare this definition with the conven

tion of representing thebodyvelocity in the inertial coordinates, which is given by right multi

plying (2.1-5) by g Ti.



Figure 2

Consider now that a second coordinate frame C3 fixed to the body which is also used to

describe themotion of the rigidbody (see Figure 2). Let the trajectory ofC3be

£13 =
A13 Ti3

0 1
(2.1-11)

andits generalized velocity be (v'13,00/3)'. If therelative displacement of C3 from C2is givenby

the constant transformation

*23 =
A23 T23

0 1 i23 = 0 (2.1-12)

thegeneralized velocities (v'13, 0)1*3)' and (v'12, cof^' are related by thefollowing transformation

•A23 -A235(r23)"

0 A23
Vl3

©13

To see this, we observe that

8l3 = 8l2'8l3 =

from which we obtain that

5 (©13) = (A12A23)1 (A12A23) =5 (A23 ©12)

and

Vl2

©12

A12A23 Ai2T23 + ri2

0 1

(2.1-13)

(2.1-14)

(2.1-15a)



Vi3 = (Ai2A23)f(Ai2r23 + ri2) = -A23 5(r23)©i2+ A23Vi2. (2.1-15b)

Combining (2.1-15a) and (2.1-15b) gives (2.1-13). Hence, the generalized velocities of a rigid

body described using different coordinate frames are related by the constant linear transforma

tions (2.1-13).

We denote the space of generalized velocityof the rigid body at the identity configuration

by T4SE(3), andnotice that an element geT8SE(3) is pulled back toanelement of TtSE(3) by

leftmultiplying (2.1-5) by g~l (2.1-10). Dual to TtSE@) is thespace of generalized forces (or

wrenches) that can be exerted on the rigid body, and we denote it by T<SE (3). In the body coor

dinate frame, we can write a generalizedforce (or a wrench)r\ e T<SE(3) as

H =
h
nif,

(2.1-16)

where /*, m* e R3 are respectively the force and the moment exerted on the body. The work

doneper unittimeof t) ona generalized velocity (vf, co*)' is given by

l/^mj]{$=/»'v+mj© (2.1-17)

Similarly, when a second body coordinate frame C3 is used to described themotion of the

rigid body, we denote the set of generalized forces expressed in the C3 frame by

T|i3 = (fft43, m£ti3y. The wrench transformation between t^= (fb&* *"!>&)' and H13 are given

by thedualrelation of (2.1-13), using theprinciple of virtual work(2.1-17), as

A .12
w*,12

A23 0"

5(r23M23 A23
/*J3 (2.1-18)

(2.1-13) anditsdual(2.1-18) are thebasic transformation relations tobeused in thispaper.

- When we study grasping andmanipulation bya multifingered robot hand, C2 will be used

to denote thebody frame fixed to thecenter of mass, and C3 thecontact frame fixed to thecon

tact pointbetweenthe fingertip and the object

2o2 The Grasp Map G and the Hand Jacobian Jh



finger 3

Figure 3. A three-fingered hand graspingan object

Figure 3 shows a three fingered hand grasping an object There are four sets of coordinate

frames associated with the hand: a palm frame Cp, fingertip frames C/i, C/2* C/3, associated

with each of the fingertips, contact frames Cu C2, C3 associated with each contact point on the

object, and a body coordinate frame Cb fixed to the mass center of the object and oriented so that

the moment of inertia matrix of the object is diagonal. The coordinate frame C,, 1=1,2,3 are

chosen so that the z-axis coincides with the inward pointing normal to the body at the point of

contact In the following, the relative motion of a frame Cb with respect to a frame Ca will be

denoted by

gab =

For example,

Afik T/th

0 1

to =

Afl6e50(3), r^eR3

Apf* rpf'»
0 1

(23-1)

represents the relative motion of the i th fingertip frame with respect to the palm frame. Similarly,

we denote by (v^, co^)' thegeneralized velocity of frame Cb withrespect to Ca.

In this paper, we use three commonly accepted contact models to model the contact

between the fingertips and the object: (a) a point contact without friction, (b) a point contact with

friction, and (c) a soft finger contact It is well understood that the number of independent finger
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wrenches that can be applied to the object through the contact is one for a pointcontact without

friction (a force in the normal direction), three for a pointcontact with friction (a normal force

and two frictional components in the tangential directions), and four for a soft finger contact (the

three independent directions for a point contact with friction along with a torque in the normal

direction).

Let «i be the number of independent contact wrenches that can be applied to the body

through the ith contact and T'SEQ) the wrench space of the object Consider the following

definition.

Definition 2.1(contact): Acontact on a rigid body isa map yt: R* -» T*SE (3)given by

*il

Vi:

^IHt

Xi\ *il

a* o]
siruWti ah Bt

*

=T/4Bi
"

Xi* Xitk

(12-2)

Here Tfi is the transformation matrix specified in (2.1-18), and Bt e R6** is the basis matrix

which expresses the unit contactwrenches in the contact frame. Forexample, for a soft finger

contact we have that

A-

ro 0 1 01

0 100

1000

0000

0000

000 1

(23-3)

Here the first column of Bt denotes the normal force applied to the object the second and the

third denote the frictional forces and the last column denotes the normal torque for the soft finger

contact Thus, £,*, denotes the finger wrenches expressed in the contact frame.

When a multifingered hand consists of k fingers witheach finger contacting theobject ata

point p; with contact map \firR* -> T*SE(3) the grasp map for the hand isdefined tobe

Definition 2.2 (grasp map): The grasp mapfor a k-fingered robot hand holding an object is a

map G:R" -> T^SE (3), n^J^ni given by
j«i



G(xn, • •• ^iBl, x2i, • ••»*bJ = Vi(*i) + •'' +¥*(**)

-[r/i.-J>]

Bi 0 . . 0 0"

0 B2 . .
• • *i

. 0 . . . . .

. ... 0 .

•

. . B*-i 0 Xk

0 0.. . 0 Bk

(2.2-4)

= TfBx

Remarks: (1) The grasp map G transforms the applied finger wrenches expressed in the contact frames

into the body wrenches in the body frame.

(2) Since a normal contact force can only be exerted unidirectionally and friction forces are finite

in magnitude of size less than the normal force times the coefficient of friction, the domain of the

graspmap needs to be restricted to a proper subset of R". Forexample, for a soft finger contact

the effective force domain is

tfi ={(xh."-.*i4)€tf4, xn*Qtx&+x&Z\i}x& and IJ&4I Sp, jt^ }

where ft,p, are the Coulomb, torsional friction coefficients respectively. The effective force

domain for a pointcontact with andwithout friction areeasily defined similarly and areconvex

cones inR1 and R3 respectively. The effective force domain K for the grasp map G isthe direct

sumofall the force domains of thecontacting fingers [2].

(3) Other things being equal, when we choose a contact location we try to get away from the

edge of the objectbecause it is less "comfortable" there. Also in reality, all fingers have finite

contact area and passive compliances. When such a finger is pressed against the object the

fingertip tends to conform with the object Under these conditions can the pointcontact model

still predict accurately the force and velocity transformations? If we name the pointwhere the

object "matches" locally in shape with the fingertip a"regular point" and viceversa for a "irregu

lar point" (Notice thata pointon anedgewillbe therefore termed a very irregular point andso

on, see Appendix A for theexactdefinitions.) we will seethatwhena normal force is applied the

contact pressure for an irregular pointis much higher than for a regular point Consequendy, as

was experimentally verified in [11] it will be much more difficult to transmit frictional forces

through an irregular point than through a regular point However, the point contact model

developed with (G.K) does not distinguish between regular and irregular points. To have an

accurate modeland to enable an automatic grasp planner (see Section3) get away from irregular

points we needto incorporate thelocal contact geometry intothe model. An apparent solution is

to make Kt dependent on the local contact geometry in addition to the material properties of the
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object Thus, we assign to a "very regular" point the regular frictional cone and to a "very irregu

lar" point a very thin frictional cone (i.e., with smaller friction coefficients). The technical details

of this assignment are given in Appendix A. As the hardship in transmitting the frictional forces

is reflected by the thin frictional cones we see that this modification of Kt captures the physical

reality while still retaining the point contact model. In the sequel, the effective force domain K

will mean one compensated with this procedure.

(4) The null space( T)(G)) of the grasp map G is calledthe spaceof internal grasping forces [1,

4,8]. Any applied finger forces in r\(G) do not contribute to the motion of the object However,

during the course of manipulation a set of nonzero internal grasping forces is needed to assure

that the grasp is maintained. Usually, the set of desired internal grasping forces is higher for

manipulation under anuncertain environment than for manipulation under aknown environment

Both [1] & [8] have presented detailed discussions on the optimal choice of internal grasping

forces.

We now proceed todevelop the equations relating the joint velocities, torques tothebody velocities,

and wrenches: let the ith finger have ntt joints with joint variable denoted by 8; =(0,1,...^)'. The for

ward kinematics of the finger manipulator relates the position and orientation of the ith finger coordinate

frame Cfi by

4*:R*-»£ff<3), with g^ = 0 1
(12-5)

The generalized velocity (v*ft, (0^)' of the ith fingertip frame can be related to the 9,- through the

Jacobianof the forward kinematic equation (22-5) by

Vi = ZiOiWi (12-6)

Here A(6.) is the Jacobian of the ith forward kinematic equation. Now the contact frame C, and the

fingertip frame Cf, are located at the same point but may have different orientations. Consequently, the

velocity of the ith fingertip frame Cft seen from the ith contact frame Ct using (2.1-13) with (r^ =0) is

given by

©«.

Afe 0

0 Ak AmBi A MQM (12-7)

In (12-7) above, A^ expresses the the relative orientation of the ith fingertip frame with respect tothe ith

contact frame and is given by Affi =A^-A^-A^. On the other hand, the motion (y^, 0)/*)' ofthe body as



seen from the i th contact frame is given by

©„

11

AU -AUS^)

0 AU
Vpb
©pfr

(2.2-8)

Now, the velocities as specified in (2.2-7) and (2.2-8) are not identical but agree along the directions

specified by thebasis matrix Bt. For example, for a point contact with friction, if the pointof contact is not

slipping then the translational velocitiesof the fingertips and the body coincide. Fora soft finger contact

with no slipping the translational velocity as well as the z-axis (in the contact frame) rotational velocity

coincide. In contacts in which the fingertip rolls with respect to the surface of the body the constraintsare

more complicated [5,27]. We take these constraints into account by insisting that

*//,<&) = A**}
©pfr

Concatenatingequation (22-9) for i = 1, • • • Jt, and defining the hand JacobianJh(6) by

A(e)=S'/(9)

we obtain

where

/(0) =

Jh(&)Q=B'J(G)Q = G
©pfr

'AW o . . 0 "
"ei"

0 /jOj) .
•

.
•

. e =

0 0 . . /*0*) e*

(12-9)

(12-10)

(12-11)

(2.2-12)

andG( is the transpose of the grasp mapdefined in (12-4).

Equation (22-11) is the equation relating the joint velocities to the generalized body velocity. The

dual of equation (22-11) is an equation relating the joint torques of the fingers to the body wrench. We

proceed to derive this now. Define A *i € R6 tobe the finger wrench expressed in the ith contact frame

with theXi 6 R* representing the vector of applied finger wrenches. By thePrinciple of Virtual Work the

resulting joint torque vectorx,- e R"* is related toA*i by

x,- = mWiXi (12-13)

Aggregatingthis equation for i=\X • • • k we get
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x = J'(Q)Bx =/*(9)x with xe R", x e R\ and m =£ m,-. (22-14)

Also, as we have seen from the definition of the grasp map G in (22-4), that the body wrench (fb, and mb

respectively) is given by

JRfr
= Gx (22-15)

We claim that the equations (22-14),(22-15) are a dualof the equation (22-11). To make the duality more

explicit, we define

X= G
Vpfr

©pfr
A.6R"

Then we may summarize the equationsin the followingtable(see alsoFigure4)

Force Torque Relations Velocity Relations

Body to Fingertip
mb

= Gx Jt=G'
©pfr

Fingertip to Joints T=/j[(9)x /A(9)9 = X

Force/Torque
Space

Velocity
Space

Joint Contact

J'je)

Jh(e)

(22-16)

Object

Figure 4. The force/torque and velocity transformation relations.

The following dual definitions are now intuitive.
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Definition 23 (Stability and Manipulability of a Grasp) Consider a grasp by a multifingered hand with

k fingers each having mi joints, i=l, -—k and with fingertips having contacts with m degrees offreedom,

i=l, •• •k. Let 9 6 Rm. x e Km represent thejoint angles andtorques respectively. Then:

(i) The grasp is said to be stable if,for every wrench (fb\ mb )' applied to thebody, there exists a

choice ofjoint torque x to balance it.

(ii) The grasp is said to be manipulable if, for every motion of the body, specified by (v^.co^,)',

there exists a choice ofjoint velocity 9 to impart this motionwithout breaking contact.

Grasp stability and manipulability are now easily characterized for a given position of the fingers by

Proposition 2.4: (i) A grasp is stable if and only ifGis onto, i.e. the range space ofG is the entire R6.

(ii)A graspis manipulable if andonlyifR( Jh (&)) 3 R(G* ), where R( •)denotes therange spaceof.

Remark: The conditions (i) and (ii) superficially appear to be distinct but they arerelated. Let us beginby

examiningthe implications ofcondition(i) on grasp manipulability.

Consider Figure 4 focusing attention especially on the two orthogonal direct sum decompositions of

R" given by

R" =R(G*)Qi\(G) (22-17)

= R(Jh(B)QT\Vm)

If G is onto, then equation (22-15) hasa solution. Furthermore, the solution will be unique in the range

space of G' (the least norm solution of (22-15)). If for some bodywrench there exists anx that needs zero

joint torque, then R(G') nr\(Jj>($))*$ and consequendy the condition R(Jh(B))^R(G') fails. This

implies that the graspis not manipulable.

For the converse, consider the implication of condition (ii) on grasp stability. Suppose thatR(Jh)z>

R(G') and there exists a body velocity (vpb, co^) which produces zero Xand consequendy zero 9, then

T|(G') * <{> and therefore G can notbeonto. This implies that the grasp isnotstable.

To give simple examples to illustrate the foregoing comments, it is of interest to specialize the

definitions to the plane. For grasping in thex-y plane, theonly forces andtorques that need to be con

sidered are (fx,fy,m,)' e R3 and the velocities (v,,v,,o),y e R3. Figure 5 now shows a planar two

fingered grasp which is stable but not manipulable. The two fingers are one jointed and the contacts are

point contacts with friction. A force /, can beresisted with nojoint torque xu x2. However the grasp isnot

manipulable, sinceay -direction velocityon thebody cannot be accommodated.



Figure5: A stable but not manipulablegrasp Figure 6: A manipulablebut not stable grasp

Figure 6 shows a grasp of a bodyin R3 by twothree jointed fingers. The contacts are point contacts

with friction. The grasp is manipulable, sinceSA(9) hasrank6, though the object can spin around the axis

n-n with zero joint velocities9. Howeverthe grasp is not stable sincea body torque x„ abouttheaxis n-n

cannot be resisted by any combination of joint torques.

In view of the proceeding discussion, we will require the grasp to be both manipulable and stable,

i.e.,

14-

*(G) = R6 and R(Jh(9))z>R(G') (22-18)

Condition (i) suffers from the drawback thatthe force domain is left completely unconstrained. As

we have seen earlierthe forces are constrained to lie in a convex cone AT, taking into account the unidirec-

tionality of thecontact forces, finite friction, etc, in which case the image of K n R(Jh) under G should

cover allof R6. If we generalize theprevious definitions to formally define a grasp tobe Q.=(G,K,Jh(Q))

we have the modified stability and manipulabilityconditionsofa graspby

Corollary 2-5: A grasp under unisense andfinite frictional forces is both stable and manipulable if and

only if

G(K nR(Jh))=R6, and R(Jh)z> R(G') (22-19)



15-

3. Grasp Planning

Typical tasks associated with multifingered robot hands include scribing, inserting a peg into ahole,

assembly operations. Common to these tasks are the fact that the robot hand mustmanipulate an object

from oneconfiguration to another, whileexerting a setof desired contact forces on the environmentSuc

cessful execution of such tasks amounts to having the robot hand perform a sequence of operations: (1)

selecting a "good" grasp on the object and (2) using the cooperative action of the fingers to control the

object As we can see that the first operation is essential to the execution of the task. For example, if a

pencil is not grasped at the right position and with the right postures of the fingers, it will be extremely

difficult to perform a scribing task. In this section we study how to generate a "good" grasp for a given task

and in the next section we study how to manipulate the object with the cooperative action of the fingers.

The term "a good grasp" is not well defined unless a criterion for evaluating a grasp is given. In the

literature various stability criteriaused to characterized a grasphave been proposedand studied extensively

[3,10,13]. But in many cases such a criterion is too rough as it may generate a large number of stable

grasps to a given object Forexample, for a pencil thereexist infinitely many choices of stable grasps, and

while some aresatisfactory for the scribing task some othersarenot To solve this problem,additional cri

teria have been proposed in [2] & [17], forexamplethe minimum singular valueof the grasp matrixG, the

determinant ofGG( [2], and someobjectivefunctions defined in [17].

After investigating human grasps, the author in [61 has suggested using the task requirement as the

criterion for evaluating a grasp. Several other researchers also have hadstudies in incorporating the task

requirement into the selection of a grasp. In [3,15] a taskis modeled by a desired compliance matrix and

the final grasp is then required to have the desired compliance property. In [16] a task is modeled by a

desired inertia matrix about someoperating point andthe final grasp is required to havethe desired inertia

property at the operating point In [2] a task is modeled by an ellipsoid, called the task ellipsoid, in the

wrench space of theobject andthe final grasp is required to maximize the taskellipsoid with unitcontrol

effort While all the above three approaches were concerned with the selection of a task oriented optimal

grasp, the nature of the tasksaddressed among them are different In [3,15] the tasksarequasi static and

thesystem potential energy is assumed todominate thekinetic energy. In [16] the tasks are purely dynamic

and the inertia property rather than thecompliance property is themain concern in thegrasp selection pro

cess.On the otherhand, the approach via [2] does applyto both classes of tasks,but it lacks the level of

generality in the sense thatonly the wrench space and the grasp mapG wereconsidered in the optimiza

tion process.
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In this section,we extend the work of [2] to consider in the selection processthe aggregated behavior

ofQ 3 (G, K, Jk) in both the wrench spaceand the twist space. Task modeling by task ellipsoidswill take

place in both the wrench space and the twist space. As in [2] the methodology of modeling a task is to asso

ciate each taskone ellipsoid (Aq) in the wrench space and another ellipsoid (£p) in the twistspace. The

shape of theellipsoid A0 ( 2?p respectively) reflects therelative force requirement (or the motion require

ment) of the task. For example, if the relative force requirementin a certain direction, such as the normal

direction of the grinding application with a grinding tool, is high the task ellipsoidAa then is shapedlong

in that direction. To demonstrate the precise implications of the methodologywe study task modeling for

the following two tasks.

Example 3-1: Consider the peg insertion task depicted in Figure 7 where the robot grasps the workpiece

and inserts it into the hole.

In orderto execute the task,a nominal trajectory is planned beforegrasping. After grasping the hand

follows the planned trajectory until some misalignment of the peg causes the object to deviate from the

nominal trajectory and collide with the environment

Figure7: Peg-in-hole task

With the body coordinate chosen as shown, the likehood of collision forces in each force direction

ofdecreasing order would be -/,, ±x,,±t„±/„±fx, ±t, and +/,. Ifwe denote by (rf)/Li the ratio of
maximum expected collision forces ineach direction, we obtain a set A0, parametrized by a 6 [0, °°), in

the wrench space space of the object by

^Jtf.....0.*i^+« +«+<^+£+4«rf} (3.0-..
[ r* r2 rf rA r5 r6 J

where the constant ci reflects the offset of maximum expected collision force between +/, and -fy
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directions, and c2 reflects the gravitational force on the object The set A0 isan ellipsoid in the wrench

space centered at (0, cuc*0,0,0), with the principal axes given by the generalized force directions, and

axes lengths by the corresponding ratios n. The size of the ellipsoid isscaled by the parameter a.

By appropriately assigning a set of values to the constants fa, i=l,... 6) and (c,-, i=l, 2) we can

decide onthe shape of the ellipsoid sothat it reflects the task requirement inthe wrench space. In particu

lar, the peg insertion task requires that fa £ rj) whenever i 2 j and ci tobelarge when collision forces in

+fy direction are veryunlikely.

On the otherhand, since the peginsertion taskrequires precise positioning the grasp should provide

good manipulation capability ( ordexterity) in certain directions. First in thevy direction relatively large

motion is needed. Then, the grasp should be very sensitive in (Oy, vx and vx directions. If we model by
6

(S;)j«i the ratioof relative maximum motion requirementamong the six generalized velocity directions we

obtainan ellipsoidBain the twist space,parametrized by {3 e [0,*»), define by

\ V^ V^ V^ CO? fl)? 0)^ I,-|fc.- *).*«. i +£ +̂+*+^+.£iU«j (3.0-lb)
The shape of £a reflects the task requirement in the twist space. In this case 82,83 and 54 are relatively

larger than the other constants. Precise values of these constants can be obtained from experiments or

experience through error-and-trial procedures.

Example 3-3: Consider the task of scribing with a pencil Human experience tells us that in order to exe

cute the task efficiendy, the grasp should provide, (1) good dexterity at the lead and (2) sufficient normal

forces. With the body coordinate shown in the figure, the task requirement can be translated into require

mentson the two task ellipsoids by (a) the taskellipsoid Bain the twist space shouldbe long in co, and cox

directions and flat in the other directions, and (b) the task ellipsoid A 0 in the wrench space should be long

in fx direction andthenx, andx, directions. Applying thisreasoning we obtain in (3.0-2) two taskellip

soids Aa and Bs that describe the relative force and velocity ratiosof the task.
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Figure8. A scribingtask.

Jcf ... u)L^<f^^ fy\ft' xj X} X} ]

JJ =| (v,.
Wrench Space Task Ellipsoid

6? ' S22 532 +

Twist Space Task Ellipsoid

To conclude these examples, we emphasize that to each task we can associate two taskellipsoids,

one in the wrench space that represents the relative force requirement and the other in the twist space that

represents the relative motion requirement of the task. The constants fa, 5*. ct) that determine shapes of

these ellipsoids can beobtained from experiments orfrom experience with similar tasks. Hence, weneed to

store in a library a set of ellipsoid data for a set of interesting tasks, which usually involves considerable

modeling effort In the sequel, Aawill denote a task ellipsoid inthe wrench space and Baone inthe twist

space.

5? 5? 82

, Vx" V V 0), (ftf 0),* ,_,].o^6*^+̂ +̂ +̂ +̂ +̂£p2J

(3.0-2a)

(3.0-2b)

3.1. The Task Oriented Quality Measures for Grasp Planning

We have shown that agrasp CI =(G, K,Jk) contains information about the locations of the fingertips

on the object (G and K) and the postures of the fingers (/*). Also, we have modeled aparticular task by

two ellipsoids Aa and Bp. We now integrate these to develop two quality measures for agrasp, one in the

twist spaceand the other in the wrench space.
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Definition 3-5 (The Twist SpaceQuality Measure Ji,): Following the previous notation we let OT cRM

denote theunit ballinRm, thespace offinger jointvelocities, anddefine thetaskoriented twistspacequal

ity measureu* (CI) ofa grasp CI by

Ut(Q)= sup {& sach\haLJh(0?)z>G'(B*)} (3.1-1)

The geometric meaning of u*( CI) is as follows( see Figure 9): the unit ball 0\ in the finger joint

velocity space is mapped into the space of fingertip velocity by Jh. On the other hand, a task ellipsoid 2?a

in the twist spaceis mapped back into the fingertip velocityspace by G'; u,( CI) is then the radius p of the

largest task ball Basuch that G'( flp) is contained inJh( 0"). From a theoretical point of view, |i,(CI) is

the ratio of the "structured'' output (i.e., the task ellipsoid) over the input (i.e., the finger joint velocity).

We also see from the figure that u*(CI) is at its maximum if the inner ellipsoid has the same shape and

orientationas the outer ellipsoid.

Joint Contact Object

Velocity
Space

Figure 9

TeSE(3)

Definition 3-6 (The Wrench Space Quality Measure u*): We define the wrench space task oriented

qualitymeasure Ji* ofCI by thefollowingprocedure:

(a) Define Ai cR6to be the unit task ellipsoid in the wrench space, and 0$ the ball ofradius y,
ye [0, °o),in thefinger wrenchspace;

(b)Definea= inf ft, such that G( 0$ r\K nJ?(/A))z>A,;. Thus, 0{J is the smallest ball in
y& «*

thefinger wrench spacethatwillcovertheunit task ellipsoid.

(c) Define C(a)=,/){( 0on AT nR(Jh)) to be the corresponding set in the finger joint torque

space,it is theset ofjoint torques thatwill covertheunittaskellipsoid.

(d)We define the worstcase costfunction of the input setC(a) by

Cbst(C(a))= sup || y
7 g C(a)

(3.1-2)

where || y || stands for the magnitude of the vector y, and the wrench space quality measure

\L»(Cl)by



20

Mw(Q) =
1

Cost(C (a))
(3.1-3)

Remark: We interpret the geometric meaning of the abovestepsas follows (see Figure 10 ): (1) in steps

(a) and (b) we find the smallestball in the finger wrench space thatwin cover the unit task ellip

soid through the transformation G; (2) such a ball is mappedback into the joint torque space and

its cost function is defined by (3.1-2), which is the distance of the furtherest point in the set from

the origin. (3) The quality measure is then the inverse of this cost (Notice that one may also use

the quadraticcost function, or any other cost functions in (3.1-2)).

CM

Force/Torque
Space

Figure 10

Object

7tSE(3)

These quality measures defined in Definition3-5 and 3-6 provide useful characterization of a grasp,

but are difficult to compute ( see for e.g. [2]). However, when the task ellipsoidsare specializedto the unit

balls in their respective spaces and K is R• itself we do have the following results:

Proposition 3-7: Under the condition that K=R*,Ax and Bx are unit balls in R6 the quality measures

defined in Definition3-5 and 3-6 are givenby

H,(Q) = GmaxiG') ~ <WG)
(3.1-4)

and

MQ) = (3.1-5)

wherea^ cmta are theminimum, maximum singular valuesrespectively.

The proof follows from applying thedefinition of thesingular value decomposition of a matrix

to Definition 3-5 and 3-6 respectively.

Remark: The quality measures defined here are called themin-max typeof measures [2]. In the special

case of a single manipulator, G is the identity matrix and the two quality measures (3.1-4) and

(3.1-5) are justa,^(Jk) and c^JJh) respectively. To generalize thevolume measures defined in
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[2,9, & 12] to a multifingered hand, we first assume that the grasp is both stable and manipul

able, i.e., Proposition 2-4 holds, and denote the singular values of G by (Si £ 62 £ ••• ^56 >0),

and the singular values ofJk by (at £ <j2 £ ••• £ o\ >0).Then, thecorresponding manipulabil

ity and stability volume measuresofa grasp canbe definedas

»«•<* * "S&Sl (3.Mb)

and

MQ)=-~ rr= ,1 ^^rx (3.i-5b)(5i og) det(G Gr)

The quality measures given by (3.1-4) and (3.1-5) can be easily computed using the singular value

decomposition data of G and Jh. A grasp Clx is said to be a better grasp than another grasp Q2 if f^ has

higher quality measures in both spaces than Cl-z, and a "good grasp" is defined to have high quality meas

ures in both spaces. Notice that the definitions (3.1-4)and (3.1-5) exhibit an interestingdual relationshipin

the following sense (see also Section 22): &(&) increases if a^J/h) increases or if a^G) decreases,

and u^(Q) increases ifGmJiJh)decreases or if o^G) increases. Thus, we can simultaneously increase

both quality measures only to a certain point and then the quality measure in one space decreases as the

quality measure in theotherspace increases. We propose the following procedure forgrasp planning:

(1) Define the performance measure(PM) ofa grasp CI by

«kf-Y|it(Q) + <l-'flMq> (3.1-6)

where y e [0,1] is called the relative importance ratio betweenthe manipulability measure and the

stability measure. y> 0.5 indicates that the task is motionoriented andy <0.5 indicates that the task

is stability oriented. We suggestfurther studies on determining the relation ofy with the tasknature.

(2) Use the performance measure, geometry of theobjectandstructures of the handto formulate the

corresponding optimization problem(see [2] fordetails).

(3) Solve theoptimization problem to find theCI thatmaximizesthe performance measure.

Example 3-8: Consider the two-fingered planar manipulation system shownin Hgure 12. We model the

contact to be a pointcontact with friction, andchoose the following values for the systemparameters:

Fingermanipulatorspacingr = 1;

Fingermanipulatorlink length lx= l2= 1.

At the grasping location shown in the figure, the grasp mapG is
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G =
-10 10
0-101
0 -rO-r

and the hand Jacobian Jh is

where

and

r _ I" cos a -sina]
1 l sina cosaj

j _["-cosa sina 1
2 L -sina -cosaj

/* =
J\ 0
0 72

-sin8n - sui(8u + 812) -sm(8n + 812)
cos8n + cos(8n + 812) cos(8n + Bx2)

-SU1821 - sin(82i- 822) sin(82i- 822)
COS821 + cos(82i- 822) -005(821 + 822)

(3.1-7)

(3.1-8)

(3.1-9)

(3.1-10)

Subject to thekinematic constraint (2.2-9) the system has three degree of freedoms. If we further constrain

the system so thatthe object moves vertically and with constant orientation angle a = 0 the system hasa

single degree of freedom. Let us choose On to be the generalized coordinate of the system and study the

simplified optimization problem, wherethe quality measures (3.1-4), (3.1-5) andthe performance measure

are maximizedby varying 9n. Hgure 11 showsplotsof the quality measures and the performance meas

ureas functions of 9U. We seethatthemanipulability measure \it isatitsmaximum when8u is about 30"

( a 0.52 radian), which corresponds to the grasping configuration with 812 = 120" , 821 = 150° and 822 =

120*. The stability measure decreases monotonically as On is increased. However, the performance meas

ure with y= 0.5 and 7= 0.75 reaches its maximum at8n = 18* (8i2= 144*, 821 = 162" and 822= 144*),

and at 8n = 24°( 812= 132°, 821 = 156° and 822= 132°) respectively. The grasp has zero manipulability

measure bothat 9U=90" andat 8n =0*, where me first case corresponds to Figure 5. The optimal value

of 8u for the performance measure goes up when more weight is given to the manipulability measure.

Thus, we see thatthe parameter y is an important factor in grasp planning.
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o.to

Hgure 11. Quality measures and performanceindex versus 9n.
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4. Coordinated Control of a Multifingered Hand

In this section, we develop control algorithms for the coordinated control of a multifingered robot

hand. The goal of the control scheme is to specify a set of control inputs for the finger motorsso that the

gripped object undergoes a desired body motion while exerting a set of desired contact forces on the

environment

Previous researchers have suggested the so-called"master-slave" control methodology for two robot

manipulators (see, for e.g. [23,24]). Others have generalized this method to a group of several manipula

tors (or a multifingered robot hand) [25]. In [26] an alternative approach was proposed. But it assumed

rigid attachment of the fingertip to the object and each fingermanipulatorneeded to be six jointed.

We present a generalization of the computed torquemethodology as our methodology for the control

of a groupof manipulators. Without loss of generality, we may assume that the desiredtask is: (1) to mani

pulate the object along the following prespecified trajectory

SpbAO =
Apb4(t) rpt,4(t)

0 1
e SO(3)xR: (4.0-1)

and (2) to maintain a set of desired internalgrasping forces during the course of manipulation. We make

the following assumption about the grasp:

(Al): The grasp is both stable and manipulable (see Corollary 2-6).

A necessary condition for (Al) to hold is that both the grasp map G and the hand Jacobian

Jh(B)=B'J(B) be of full rank. From Section 22, we know that in order to maintain the contactduring

manipulation the finger joint velocity 9 and the object velocity [v^.co^]' must satisfy the following velo

city constraint relation:

Jh(B)B = G
®pfr

Differentiating (4.0-2), we obtainthe following acceleration constraint equation

« rJ/*(8)e+7A(8)e = G Y**
(Opt

(4.0-2)

(4.0-3)

Since R(Jk(B))^R(G') by assumption (Al), we may express the joint acceleration 8 in terms of the

object acceleration [v£» ,(&/»]' by

v.p>
<0p6

-A+A0 + Be (4.0-4)
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here Jf^JlWhY1 &tne generalied inverse ofJh, and B0ex\(Jk) is the internal motion of redundant

joints not affecting the object motion.

Remark: (1) Using (4.0-4) wecan develop the control algorithm intheoperational space of thebody being

manipulated. But ifwe express theobjectacceleration in terms of 6 by

we can develop a controlalgorithm in the joint space of the fingers. In future work we will con

sider this alternative since it appears to hold some interestingand different possibilities.

(2) When Jh is square, its generalized inverse J? is just the usual inverse, and 80 disappears from

(4.0-4). This also implies that the joint motion is determined uniquely by the motion of the

object.

The dynamics of the object are given by the Newton-Euler equations

(4.0-5)

where m € R3*3 is thediagonal matrix with the object mass in the diagonal, / e U3x3 is the object inertia

matrixwith respect to the body coordinates, and [fbt ml ]r is the appliedbody wrench in the body coordi

nates which is also related to the applied fingerwrench xeR* through

m 0

0 /
Y*
ay

+
(QpftXmv,*

VpbXltopb
=

mb

Gx o
h
mb

Since we have assumed that the grasp is stable, i.e., G is onto, we may solve (4.0-6) as

™ n+x = G
h
m^

+x0

(4.0-6)

(4.0-7)

where G+=G'ipG'Y* is the left inverse of G, and Xo e r\(G) is theinternal grasping force. Part of the

control objective is to steer theinternal grasping force x0 toacertain desired value xo4e r\(G).

Combining (4.0-5) and (4.0-7) yields

^ n*.x =G
m 0

0 /

(OpiXmVpi,

4.1. The Control Algorithm

The dynamics of the i th finger manipulator is given by

>+Xo (4.0-8)
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JfjCftft +Ni(BitBi) = xt -WW* (4.1-1)

Here, as is commonin the literature M,• (Bi)eR*** is themomentof inertia matrix of the i th finger manipu

lator, tfj(8;,6j)€/?* the centrifugal, Coriolis and gravitational force terms, x,- the vector of joint torque

inputs and Btxt e R6thevector of applied finger wrenches. Define

Af(8) =

Afi(8i) 0
0 Mi(fiz)

Mk(Bk)

N(BJS) =

#1(81,81)" *i

•
and t =

•

Nk(Bk.Bk) tit

Then, the finger dynamics can be grouped to yield

M(8)8+JV(8,8) o x-JkQSfx

(4.1-2)

(4.1-3)

The control objective is to specifya setof jointtorque inputs x so thatboththe desired body motion

gnAt) andthedesired internal grasping forcex^ are realized.

Since SO(3) is a compact three dimensional manifold, we may locally parametrize it by either the

Euler angles, the Pitch-roll-yaw variables [20,22], or the exponential coordinates ([22]). Let

$pb =Kh.fo.W bea parametrization ofSO(3), wecan express the body trajectory g^(t) as

and the body velocity as

8pb(?) = 0 1
e SO(3)xR:

Vpt(t)
«W(0 = tf (4*G*r*C0)

*>(0
MO

(4.M)

(4.1-5)

where U(^pb(t)^pb(t))eR6>t6 is a parametrization dependent matrix that relates the derivatives of the

parameterization to thebody velocity. Differentiating (4.1-5) yields

Vpb(t)
= U

r>(0
MO

+u
Tpbit)
MO

(4.1-6)

Theorem 4-1: Assume that (Al) holds and that the fingers are nonredundant, i.e., w,- = nit for

i =1, ••• k.Define the position error epeR6 to be

ea =
rpb rpb4

$pb4
(4.1-7)

n-6where [r^^, ^4] isthe desired body trajectory, and the internal graspingforce error ef e R* to be
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ef = x9-xo4 (4.1-8)

where x0j is the desired internal graspingforce. Then, the control law specified by (4.1-9) realizes not

only the desired body trajectory but also the desired internalgraspingforce.

where

x = N(BtB)+Jfc<
(Upb^mVpf,
(OpbXlWpt,; -M(B)Jk~lJkB+Mku\ >

+n(Xo4-KI\ef) +MhU

-\r.tMk = MWW +J'kG
m 0

0 /

(4.1-9a)

(4.1-9b)

and Kj is a martix that maps any vector in the null space ofG into the null space ofG.

Remarks: (1). (4.1-9) can be generalized to the redundant case and the results are given in Appendix B.

(2) The first four components in (4.1-9a) are used for cancellation of Coriolis, gravitational and

centrifugal forces. These terms behave exacdy like the nonlinearity cancellation terms in the

computed torque control for asingle manipulator; the term Jk(Xo4~ Ki fa )is the compensation
for the internal grasping force loop, and the last term is the compensation for the position loop.

We will see in the proof that the dynamics of the internal grasping force loop and that of the posi

tion loop are mutually decoupled. Consequendy, we can design the force error integral gain Kj

independendy from theposition feedback gains Kv andKp.

Proof:

The proof is very procedural and straightforward. First, we substitute (4.0-4) and (4.0-8) into (4.1-3)

to get

^(e^VG'l^ -/A-1/Ae|+iV(e.e) =x-7i( m 0

0 /
Y/*
topb

+ GH
topbXlMpb -nx0

(4.1-10)

Note that in (4.0-4) the generalized inverse for non-redundant fingers reduces to the regular inverse

JklandB0 = 0.If wechoose the following control in(4.1-10)

x = N (8,8)+/JG'
(OptXmVpi,
(OpbXlUpb -M(B)JklJkB +x1 (4.1-11)
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where xx is to be determined, we have that

or

r , r»* oiliMW^G'+XG* 0 j VY* = *i-JkX0

Mk
V0

topb
= ti-/j(^,.

Substitute (4.1-6) into the above equation, we have

Mk<

Further, let the control input Xi be

*i

and apply it to (4.1-13) to yield:

U

v L

!>
**

+ U t]}-^*-

=M*4fe] -j;*-j*4+ji** fc +^^-^/>

Mfcd e> +Kvep +Kpe\ =-J&ef +K,\ef).

Multiply the above equation by GJh~*, we obtain the following equation.

GJk-MkXR ep +Kvep +KpepY=G(ef +Ktjef) =0.

(4.1-12)

(4.1-13)

(4.1-14)

(4.1-15)

(4.1-16)

where we have used the fact that the internal grasping forces lie in the null space ofG, Le.,

G(e/+AT/Je/) =0, (4.1-17)

Since GJk~tMk =GJk"*M(B)JklGt +[q/] * positive definite and Uis non-singular, (4.1-16)
implies that

ep +Kvep +Kpep - 0

Thus, we have shown that theposition error ep can bedriven to zero with proper choice of the feed

backgain matrices Kv andKp.

The last step is to show that ef also goes to zero. If we substitute (4.1-18) into (4.1-15) and notice

that Jk is nonsingular, we have the following equation.

ef+Ktjef =0, (4.1-19)

(4.1-18)
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With proper choice of KIt the above equation implies that the internal grasping force error ef con

verges to zero.

Q.E.D.

4.2. Simulation

Consider the two-fingered planarmanipulation system shown in Hgure 12.

1„ ©12

Figure 12. A two-fingered hand manipulating an object

where the two fingers are assumed to be identical. We model the contact to be a point contact with friction.

The grasp matrix and the expression for the hand Jacobian are given in (3.1-7) and (3.1-8). It has been

shown in Example 3-8 that the grasp configuration in the figure is both stable and manipulable. We have

simulated the system to follow the following desired trajectory of the body:

x(t) = cisin(0* y(t) = C2+ciCOs(f), a(f) = C3sin(r).

The dynamic equation of the i th finger (i=l,2) used in the simulation is

m\h\ +m\d\ +m2l\ m2lih2C(Bi2—Bn)
Mi = m2llh2C(Bi2-Bn) w2(A22+rf22)

m2l\h2B2S(8i2~8iiHw i8h i^ Bi i+migl iS 8,*
m2l ih^faS (8,*2~8» i)+m2gh2SB&

Ni =

(42-1)

(42-2)

(4^-3)

where mj = mass of thej th link,^=radii of gyration of j th link, /i;=thedistance between thej th jointand

the cm. of the j th link. The mass matrix of the object is

m 0 0

OmO

0 0/

(4.2-4)
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wherem is mass of the object and/ is the rotational inertial aboutthe z axis of the object

The simulation used a programdesigned to integrate differentialequationswith algebraic constraints.

Figure 13 shows that the initial positionerror(in Cartesian space) diminishesexponentially as predictedby

equation 4.2-18.

t a 10"I

209.00

error-x
•

160.00
•

100.00
-

50.00

>. error-a
•

-00.00 •

•100.00 / error-y -

•100.00 -

•200.00 -

<>.o© 0.00 1.00 1.50 2.00 2.00

Hgure 13. Position error.

The simulation was fed to a movie package (Courtesy of John Hauser) whichshowsthe continuous motion.

Hgure 14and 15aresequences of sampled pictures from a typical simulation. Inboth figures, thelineseg

mentat eachcontactshowsthe magnitude andthedirection of the total force thatis exertedto the objectby

the finger. The desired grasp forces areset to 0 and 10 unit force in figure 14 and 15respectively. Note

thatwithout the grasping force (Hgure 14), the total exerted force maybe away from the friction coneand

consequendy break thecontact if thiswerea real experiment rather than a simulation. In related works, our

colleagues, Richard Murray andKris Pister have constructed such a two-fingered hand and are in thepro

cess of implementing this and other control laws.
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Hgure 14. Simulation without internalgrasping force.
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Hgure 15. Simulation with 10 units of internal grasping force.
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5. Concluding Remarks

We have studied techniques for the determination of grasp stability and manipulability of an object

by a multifingered hand. We have also provided a control algorithm to generate the appropriate motor

torques required to manipulate an object in a certain prescribed fashion. The scheme is shown to converge

in the sense that the true body trajectory converges to the desired body trajectory. An application of our

scheme to a planar manipulation ofan object by a two-fingered hand is presented.

In future work we will study more sophisticated models for contact of a body by a multifingered

hand and their implications for the schemes of this paper.
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Appendix A. How Does a Grasp Depend on the Local Contact Geometries?

In thisappendix,we presentan approach to incorporate the localcontactgeometries in the definition

of the effective force domain K of a grasp map G (see Remark (2) following Definition2-2). We will see

especially in Section 3 thatwhen the neighborhood of a contact pointdoes not match thatof the fingertip

the qualityof the resulting grasp will in general be inferior. Hence, using this approach in the processof

automaticgraspselection ( Section 3) the edges of an object can be avoided.

First, we follow the notation of [21] to review some elementary geometry of surfaces. Consider the

surface shown in Hgure Al (a), which locally can be described as the graph of a differentiable function

(Chapter 3, [21]).

«<w)

(a) A regular surface inR.3 (b) A contacting surface pair inR.3

Figure Al.

Thus, a neighborhoodofa point p in S can berepresented in the form z =h(x,y), (x,y) e U <zR2,

where U is an open set and A is a differentiable function with h(0,0) =0, A*(0,0) =0 and h,(0,0)= 0.

Here fix(x,y) and hy(xty) stand for the partial derivative of h with respect to x andy respectively. In

otherwords, S locally canbe parametrizedby the map

X: U cR2 -> R3, X(utv)=(utv,h(u,v)) (a-1)

where u =x, v -y. From (a-1) we obtain

Xu = a. 0, K\ X* - (0,1, Ay). Xm = (0,0, O (a-2)

Xm a (0,0, K,\ X„ = (0,0, K,)

We can choose a unit normal vector at each point ofX (U) by the rule

Am *\ «*ti

*(*>= ,„" „ •(?)» « 6 X(U)I Xu xXv I

Thus, we havea differentiable mapN: X(U) -> R3 that associates toeach point q e X(U) a unitnormal

(a-3)
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vector N(q).

The mapN : S -> S2 is called the Gauss map of S. It is straightforward to verify that the Gauss

map isdifferentiable. The differential dN(q) ofN at qe S isalinear map from Tq(S) to7V(ff)(Sa). Since

Tq(S) and TV^S2) are parallel planes, dN(q) can be looked upon as a linear map on Tq(S). The matrix

representation of the linearmap dN(q) is a 2 by 2 matrixgivenby [DeCarmo, Chapter 3]

where

and

dN(q) =
flu «i2

a21 fl22

fF -eG eF -fE

fll=£G^F' *21=*G-F2
„ XF'-JG _ fF-gE

n~EG-F2 ^EG-F2

(a-4)

£ S < Ay, Au>, /* —< AB, Ay >, G = < Ay , A, >

-« = <A^, XM >, -/ =<Nut Xv>, -g =<Nvt X¥ >

Remark: The determinant ofdN(q) is calledthe Gauss curvature of the surface at the pointq.

We then consider a contacting surface pair shown inHgure Al (b). Here 5/ stands for die fingertip,

S0 forthe objectand p is the pointof contactWe mayassume without lossof generality thatthe possible

region of contact for the fingertip is fixed and is denoted by Q,andbefore the fingertip deforms the initial

point of contact p is at the center of Q. We further assume that both surfaces are differentiable and the

edges of a surface canbe accounted for by taking the limitof a differentiable surface. Consequendy, we

can choose two maps Xf and Xf to parametrize 5/ and S0 by

X'lUcR2 -> S' <zR3; X'(u,v) =(u,v,A'(tt,v)) (a-5a)

and

X°:U <zR2 -> S° cR3; X0(utv) = (u,v,h°(u,v)) (a-5b)

where hf and h° are both differentiable functions. Assume that X° is defined on QCf)~l(Q) and and

define the relative curvature form of the contacting surface pair atapoint m(X/)~1(Q)lob&

dN°+dN' (a-6)
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The surface conforming coefficient c(p, Q) of S0 with respect toSf over the region Qisdefined by

where H is the l2 inducedmatrixnorm.

The surface conforming coefficientc is a function of thecontact pointandthe localgeometries of the

contact surface pair atp. If two surfaces have contact of order 2over (Xf)~l (Q) then c is identically zero

and the two surfacesagree.We define such a contactpoint to be a very regular point But as the two sur

faces differ from each other over Q the furfaceconformingcoefficient will be nonzero. In the limiting case

when the point of contact is at the edges of an object c increases to infinity and the point of contact is

defined to be "very irregular". Consequendy, tangential component frictional forces or torional frictional

forces are difficulty to apply over the gripped object

Finally, we use the information contained in c(p, Q) to modify the definition of the effective force

domain Kt of the contact map (2£-2) as follows: choose a montonically decreasing function

g:[0,<») -> [0, 1] such that

g(0) = Uand lim g(n) = 0 (a-8)

define the effective Coulomb, and/or torsional frictional coefficient u» by

M.=/(c)Mo (a-9)

where Uo is the nominal frictional coefficient measured when the pair of surfaces agree, and apply this \it

to the definition ofKi.

Remark: Note that if the two surfaces agree u« is just the nominal frictionalcoefficient and the frictional

forces will be transmitted as predictedby the point contact model. If the two surfaces disagree,

or p is a very irregular point the frictional forces will be transmitted also according to u*. This

shows that under this modification the point contact model is always valid.



38

Appendix B. Coordinated Control for Redundant Fingers

In this appendix, we supplement to Theorem 4-1 the control algorithm for redundant fingers, where

the number of joints m,-,i = 1, ...,k is greater than the number of constrained directions /»,-, i = 1,... k. In

many industrial applications, several robots which often have more than three degree of freedoms are

integrated to maneuver a massive load. Under the frictional point contact model such a system is redun

dant The dynamic distinction of a redundant hand from a nonredundant hand is the internal motion given

by 90 in (4.0-4). We claim that the following control law will achieve the desired control objective for a

hand with redundant:

x = N(BtB)+J'kG<
(Opt xmvpo
(QpoXltOpi, -M Jj?Jk B+MJjtVhM'1 Jl) Mk U 0* (b-la)

t(JkM'lJtk)(xo4 -K, jef )+MJk+(Jk M-lJL)Mk u\ >* -AT„ ep -Kp ep\+ MJ>

where

Remark: Please compare (b-1) with (4.1-9) and observe that the Mk is different here.

To see this, we use (4.0-4) and (4.0-8) in (4.1-3) and suppress the 0 dependence ofM to get

M iA+G' t& -/*+^4+Af§o+A^(e,e)=t

-Jh\G L0/J[(op6J +G[co^x^Jj-7* x0

(b-lb)

(b-2)

Comparing to(4.1-10) we see that there isan extra term MSo in (b-2), as well as Jkl isreplaced bythe

generalized inverse Jk.

Choosing the following control input:

x=N(B,B)+J'kG+

where ti is to be determined, we have that

(UpgXmVpi,
(Opt, XltOp,,

Af/A+G'+/j|G+[£j]j V*

-MJj?JkB+xl

+ M 90=Ti-/j(Xo

Multiplying theaboveequation by Jk M~l andusingthe fact thatJk 60=0 yields

(b-3)

(b-4)
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JG» +JihJ#"1 JX G*[ JJ]| £ =/*Af-Ix1-/AAf-l/j[xo (b-5)

Since Jk isonto, JkM~lJk is nonsingular and wecan further multiply (b-5) by (JkM~lJk)~l toobtain

= (JkM'lJ'k)'1 JhM'1 x.-xo (b-6)

Substituting (4.1-6) into (b-6) and choosing the following remaining control input for xt we obtain

<Mr»/flrlG'+G+[5j]j

t^JI/fl^ir1^ Jfcff Tjb4
$pb4

~ Ay £p +**p fip +J#fcf7 5* + (*M -*>/'/>} (b-7)

and

MAtf#, +KV ep +Kpep} =-(ef +Kt jef)

Multiplying (b-8) byGand using the fact that G(ef +Kt Jef)=0we obtain that

G MkU{ep +Ky ep +KP ep}=0 (b-9)

Since GMk =G(Jk Jf"1/*)"1 G' +[qJJandUare both nonsingular (b-9) immediately implies that

ep+Kvep+Kpep=0 (b-10)

which shows thattheposition error ep canbe driven to zero by proper choice of the feedback gain matrices

Kv and Kp.

On the other hand, using (b-10) in (b-8) we finally obtain that

ef +A*/Je/=0

(b-8)

(b-H)

which shows that the internal grasping force errorcan also be driven to zero by properchoice of the forec

integralgain matrix Kt.
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