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Abstract

This paper treats two fundamental problems in the kinematics and the control of
multifingered robot hands: grasp planning and the determination of coordinated control
laws. We develop dual notions of grasp stability and manipulability and use these notions
to formulate grasp quality measures. We give a control law for the coordinated control of
a multifingered robot hand which takes into account both the dynamics of the object and
the fingers and assumes a point contact model.
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1. Introduction:

A new avenue of progress in the area of robotics is the use of a multifingered robot hand for fine
motion manipulation. The versatility of robot hands accrues from the fact that fine motion manipulation can
be accomplished through relatively fast and small motions of the fingers and from the fact that they can be
used on a wide variety of different objects ( obviating the need for a large stockpile of custom end effec-
tors). Several articulated hands such as the JPL/Stanford hand [10}, the Utah/MIT hand [19] have recently
been developed to explore problems relating to the grasping and manipulation of objects. It is of interest to
note that the coordinated action of multiple robots in a single manufacturing cell may be treated in the
same framework as a multifingered hand.

Grasping and manipulation of objects by a multifingered robot hand is more complicated than the
manipulation of an object rigidly attached to the end of a six-axis robotic arm for two reasons: the
kinematic relations between the finger joint motion and the object motion are complicated, and the hand
has to firmly grasp the object during its motion.

The majority of the literature in multifingered hands has dealt with kinematic design of hands and the
automatic generation of stable grasping configurations as also with the use of task requirement as a cri-
terion for choosing grasps ( see for example the references [1 ~ 4], [6 ~ 8], [10], [13 ~ 18]). Some of these
references ([2,3,6,12,14,16]) have suggested the use of a task specification as a criterion for choosing a
grasp, albeit in a some what preliminary form. A .few control schemes for the coordination of a
" multifingered robot hand or a multiple robot system have been proposed in ([8, 23 ~ 26]). The most
developed scheme is the master-slave methodology ([23,24]) for a two-manipulator system. The schemes
developed so far all suffer from the drawback that they either assume rigid attachment of the fingertips to
the object or are open loop. The schemes do not account for an appropriate contact model between the
fingertips and the object.

This paper treats two fundamental problems in the kinematics and control of multifingered hands:
grasp planning and the determination of coordinated control laws. We develop dual notions of grasp sta-
bility and manipulability and use these notions to formulate grasp quality measures ( this constitutes an
extension of our earlier work in [2]). We give a control law for the coordinated control of a multifingered
robot hand which takes into account both the dynamics of the object and the fingers and assumes a point
contact model.

A brief outline of the paper is as follows:

In section 2, we define the grasp map and its associated effective force domain, and the hand Jaco-
bian. We develop dual generalized force and velocity transformation formulae relating the finger joint
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torques and velocities to the generalized force on and generalized velocity of the body being manipulated.
Using these relations we define stability and manipulability of a grasp. In section 3, we extend our previ-
ous work in [2] to define task oriented measures for grasp stability and manipulability. In section 4, we use
the machinery in sections 2 and 3 to develop a new "computed torque-like" control scheme for the dynamic
coordination of the multifingered robot hand, along with a proof of its convergence.



2. Mathematical Background

2.1. Transformation Relations for Rigid Body Motions in R?

Figure 1. ArigidbodyinR }

Let C,, C, be the two coordinate frames in R* as shown in Figure 1. Let 7, be the vector represent-
ing the origin of C, in the C, frame and A{, € R*3 be the unit x, y, z vectors of the C, coordinate frame
in the C, frame. It follows that A , is an unitary matrix with determinant +1, i.e., A2 € SO (3), and that if a
point p has coordinates p, in the C, frame, its coordinates are A 12 p» + ry5 in the C, frame, and conversely
that coordinates p, in the C, frame transform to A{; p; —A}; 71, in the C, frame. These facts are con-
veniently expressed by means of homogeneous coonimaws [20] by appending the scalar 1 to the coordi-

nates of p; and noticing that
A
-5 [

Apr .
g12= [ 0 {2] _ 2.1-2)

Transformation matrices of the form

with A, € SO (3), 712 € R3 constitute the Euclidean group SE (3) or the group of rigid body motions in R3,
isomorphic to the group R3<SO (3). The group operation in SE (3) is the usual matrix multiplication. Thus,
if C5; were the third coordinate frame with g,4 representing the transformation from C; coordinates to C»
coordinates, then,

813=8128n (2.1-3)

with g5 being the transformation relating C ; coordinates to C coordinates. Also

gn=81 (2.14)
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The added payoff of the so-called homogeneous coordinates of (2.1-2) for the Euclidean group is
that they can be used to represent rigid body motions in R3. Thus, if in Figure 1 the coordinate frame C is
attached to the rigid body, then the configuration of the rigid body may be described by the matrix g,, of
(2.1-2), with A, representing the orientation of the body and r,, representing the position of the origin of
the body coordinate frame C,. To describe the differential motion of the body, consider a trajectory of the
body, parametrized by a C!-curve g,2: [0, to) = SE (3), where [0, ¢o) is the time interval. Differentiating it
we obtain

éxz(t)=[A15(‘) i‘%(')] & T,SEQ) @.1-5)

where T, SE (3) denotes the tangent space to SE (3) at g1, and A 12 satisfies

ALAp+ALAR=0 (2.1-6)

((2.1-6) is obtained by differentiating A%d 1, =1). Thus, Al,4 1, is a skew-symmetric matrix of the form

. 0~ :
AlAp=| 03 0 -a 2 S(0) (2.1-7)
-, O 0
with @y = (0,,0,,05)'. It is easy to verify that the operator S which takes a vector in R? to the skew-
symmetric matrix satisfies

S(@)f =oxf forall o,f € R? (2.1-8)

AS(A' =S(Aw) forall A € SOQ@3). (2.1-9)

We define ;2= 5424 12) to be the rotational velocity and vy = A}z 712 the translational velocity
of the moving rigid body. Thus, a generalized velocity of the body is of the form (v{2, @{, ) and it follows
that ‘

[S(mu) Vlz] L
0 of =828 2.1-10)

It is obtained by left multiplying (2.1-5) by g7 .

Remark: The generalized velocity defined in (2.1-10) is the instantaneous velocity of the body frame C>
expressed in the body coordinates. The reader should compare this definition with the conven-
tion of representing the body velocity in the inerfial coordinates, which is given by right multi-
plying (2.1-5) by 273 .



Figure 2

Consider now that a second coordinate frame C fixed to the body which is also used to
describe the motion of the rigid body (see Figure 2). Let the trajectory of C; be

Apr
813=[ 0 {’] @.1-11)

and its generalized velocity be (vi3, ®fa)'. If the relative displacement of C3 from C, is given by
the constant transformation

A :
823=[ 0 'f’] ., én=0 @.1-12)

the generalized velocities (v{3, {2)* and (v{2, ®fo)° are related by the following transformation

. Al -ALS(r '
e =[5 5] [ @11y
To see this, we observe that
ApAn Appra+ry
8 13=812'824=[ 0 1 ] 2.1-14)
from which we obtain that
S(©19)= AAn) Apdn) =S@AK R 2.1-15a)

and
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Vis=(A12420) (A 12723 + F1) = =A%y S(rp) 1z + Abav o (2.1-15b)
Combining (2.1-15a) and (2.1-15b) gives (2.1-13). Hence, the generalized velocities of a rigid
body described using different coordinate frames are related by the constant linear transforma-
tions (2.1-13).

We denote the space of generalized velocity of the rigid body at the identity configuration
by T,SE (3), and notice that an element g € T, SE (3) is pulled back to an element of T, SE (3) by
left multiplying (2.1-5) by g~! (2.1-10). Dual to T,SE (3) is the-space of generalized forces ( or
wrenches) that can be exerted on the rigid body, and we denote it by T,SE (3). In the body coor-
dinate frame, we can write a generalized force (or a wrench) 1) € T,SE (3) as

3= [ /i b] _ 2.1-16)

b

where f,,m, € R? are respectively the force and the moment exerted on the body. The work
done per unit time of 1| on a generalized velocity (v*, @ )’ is given by

Ifs' mil-[:,] =fsv +mo 2.1-17)

Similarly, when a second body coordinate frame C, is used to described the motion of the
rigid body, we denote the set of generalized forces expressed in the C; frame by
MNi3= (fs'13, mf, 13) . The wrench transformation between N2 = (f5}12, m3 12)° and M3 are given
by the dual relation of (2.1-13), using the principle of virtual work (2.1-17), as

ford| _[ 42 %Mfes .
[mb.lz T|Srn)Azn Axn| | my s 2.1-18)
(2.1-13) and its dual (2.1-18) are the basic transformation relations to be used in this paper.

When we study grasping and manipulation by a multifingered robot hand, C will be used
to denote the body frame fixed to the center of mass, and C the contact frame fixed to the con-
tact point between the fingertip and the object.

2.2 The Grasp Map G and the Hand Jacobian J,



Figure 3. A three-fingered hand grasping an object.

Figure 3 shows a three fingered hand grasping an object. There are four sets of coordinate
frames associated with the hand: a palm frame C,, fingertip frames Cyy, Cy2, Cy3, associated
with each of the fingertips, contact frames C;, C3, C; associated with each contact point on the
object, and a body coordinate frame C,, fixed to the mass center of the object and oriented so that
the moment of inertia matrix of the object is diagonal. The coordinate frame C;, i=1,2,3 are
chosen so that the z-axis coincides with the inward pointing normal to the body at the point of
contact. In the following, the relative motion of a frame C, with respect to a frame C, will be
denoted by '

Ag T
8ap = o 1|° Ap € SOQ3), ra € R3 (22-1)

For example,

Apt, Ty,
& = [ 0 1 ]
represents the relative motion of the i th fingertip frame with respect to the palm frame. Similarly,
we denote by (v, 03;)° the generalized velocity of frame C, with respectto C,.
In this paper, we use three commonly accepted contact models to model the contact
between the fingertips and the object: (a) a point contact without friction, (b) a point contact with
friction, and (c) a soft finger contact. It is well understood that the number of independent finger
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wrenches that can be applied to the object through the contact is one for a point contact without
friction (a force in the normal direction), three for a point contact with friction (a normal force
and two frictional components in the tangential directions), and four for a soft finger contact ( the
. three independent directions for a point contact with friction along with a torque in the normal
direction).

Let n; be the number of independent contact wrenches that can be applied to the body
through the ith contact and T,SE(3) the wrench space of the object. Consider the following
definition.

Definition 2.1 (contact): A contact on a rigid body is a map y;: R* — T,SE (3) given by

Xi1 Xi1 Xi1
Al o)A ol lor ]| (22-2)
Vit | 2] Stwdas an| B3] | TTR5
Xin, Xin Xin,

Here T is the transformation matrix specified in (2.1-18), and B; € R®* is the basis matrix
which expresses the unit contact wrenches in the contact frame. For example, for a soft finger
contact we have that

00107

0100

1000
B; = 0000 . (22-3)

0000
0001

Here the first column of B; denotes the normal force applied to the object, the second and the
third denote the frictional forces and the last column denotes the normal torque for the soft finger
contact. Thus, B;x; denotes the finger wrenches expressed in the contact frame.

When a multifingered hand consists of & fingers with each finger contacting the object ata
point p; with contact map y;:R™ — TSE (3) the grasp map for the hand is defined to be
Definition 2.2 (grasp map): The grasp map for a k-fingered robot hand holding an object is a

: k
map G:R* - T,SE(3),n =Y, n; given by
inl
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G(X11,°** Kime X1 s Xwm) = W1(ED+ o0 +Yr(xe) (224)
B, 0 ... 0 0]
0 Bz DY . . x‘
=[Tom |00 ||| = e
. . ...By Of|x
0 0... 0 B,

Remarks: (1) The grasp map G transforms the applied finger wrenches expressed in the contact frames
into the body wrenches in the body frame.
(2) Since a normal contact force can only be exerted unidirectionally and friction forces are finite
in magnitude of size less than the normal force times the coefficient of friction, the domain of the
grasp map needs to be restricted to a proper subset of R*. For example, for a soft finger contact

the effective force domain is
Ki={(n, - xd e R x,20,x5 +x5 Spix? and Ixql Sy, x; )

where p;, 1, are the Con;lomb, torsional friction coefficients respectively. The effective force
domain for a point contact with and without friction are easily defined similarly and are convex
cones in R! and R3 respectively. The effective force domain X for the grasp map G is the direct
sum of all the force domains of the contacting fingers [2].

(3) Other things being equal, when we choose a contact location we try to get away from the
edge of the object because it is less "comfortable” there. Also in reality, all fingers have finite
contact area and passive compliances. When such a finger is pressed against the object the
fingertip tends to conform with the object. Under these conditions can the point contact model
still predict accurately the force and velocity transformations? If we name the point where the
object "matches” locally in shape with the fingertip a "regular point” and vice versa for a "irregu-
lar point" ( Notice thata point on an edge will be therefore termed a very irregular point, and so
on, see Appendix A for the exact definitions.) we will see that when a normal force is applied the
contact pressure for an irregular point is much higher than for a regular point. Consequently, as
was experimentally verified in [11] it will be much more difficult to transmit frictional forces
through an irregular point than through a regular point. However, the point contact model
developed with (G,K) does not distinguish Mwn regular and irregular points. To have an
accurate model and to enable an automatic grasp planner (see Section 3) get away from irregular
points we need to incorporate the local contact geometry into the model. An apparent solution is
to make K; dependent on the local contact geometry in addition to the material properties of the
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object. Thqs, we assign to a "very regular” point the regular frictional cone and to a "very irregu-
lar” point a very thin frictional cone (i.e., with smaller friction coefficients). The technical details
of this assignment are given in Appendix A. As the hardship in transmitting the frictional forces
is reflected by the thin frictional cones we see that this modification of X; captures the physical
reality while still retaining the point contact model. In the sequel, the effective force domain K
will mean one compensated with this procedure.

(4) The null space (1(G)) of the grasp map G is called the space of internal grasping forces [1,
4, 8]. Any applied finger forces in (G ) do not contribute to the motion of the object. However,
during the course of manipulation a set of nonzero internal grasping forces is needed to assure
that the grasp is maintained. Usually, the set of desired internal grasping forces is higher for
manipulation under an uncertain environment than for manipulation under a known environment. -
Both [1] & [8] have presented detailed discussions on the optimal choice of intemal grasping
forces.

We now proceed to develop the equations relating the joint velocities, torques to the body velocities,
and wrenches: let the ith finger have m; joints with joint variable denoted by 6; = (6;1,....0;w,)’. The for-
ward kinematics of the finger manipulator relates the position and orientation of the ith finger coordinate
frame C; by

Ap(0:) 75,0

g,!,:R"'-)SE(Z}), with 8pf = [ 0 1
The generalized velocity (v, , @%,)* of the ith fingertip frame can be related to the §; through the
Jacobian of the forward kinematic equation (2.2-5) by

[“,’;;’f] = ;08 22:6)

Here J;(6;) is the Jacobian of the i th forward kinematic equation. Now the contact frame C; and the
fingertip frame Cy, are located at the same point but may have different orientations. Consequently, the
velocity of the ith ﬁflgﬂﬁp frame C;, seen from the ith contact frame C; using (2.1-13) with (ri, =0) is
given by

vl |a&of o,
al =0 ag| @0 & 5@ @2-7)

In (22-7) above, Ay, expresses the the relative orientation of the ith fingertip frame with respect to the ith
contact frame and is given by Ay, = Ag*Ag-Ayy,. On the other hand, the motion (V75 0p5)" of the body as
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seen from the i th contact frame is given by

Vu Ag -ALS(red] [y b
[w:] = [ o AL o (22-8)

Now, the velocities as specified in (2.2-7) and (2.2-8) are not identical but agree along the directions
specified by the basis matrix B;. For example, for a point contact with friction, if the point of contact is not
slipping then the translational velocities of the fingertips and the body coincide. For a soft finger contact
with no slipping the translational velocity as well as the z-axis (in the contact frame) rotational velocity
coincide. In contacts in which the fingertip rolls with respect to the surface of the body the constraints are

more complicated [5, 27]. We take these constraints into account by insisting that
\/
B}J,(8;) = BT}, [ m':] | (22-9)

Concatenating equation (2.2-9) fori =1, - - - ,k, and defining the hand Jacobian J,, (6) by

7,(8)=B* J(6) (2.2-10)
wé obtain
7,(6)0=B'J(0) = G'[;‘:] (2-11)
where
[Ji®) 0 .. O ] .e.
0 Jx6).. .‘
J@=| 0 T |, e=|. @2-12)
L 0 0 : . Jg(.eg) _e.k_

and G* is the transpose of the grasp map defined in (2.24).

Equation (2.2-11) is the equation relating the joint velocities to the generalized body velocity. The
dual of equation (2.2-11) is an equation relating the joint torques of the fingers to the body wrench. We
proceed to derive this now. Define B; x; € RS to be the finger wrench expressed in the ith contéct frame
with the x; € R™ representing the vector of applied finger wrenches. By the Principle of Virtual Work the
resulting joint torque vector 7; € R™ is related to B;x; by

T = J{(8;)Bix; (22-13)

Aggregating this equation for i=1,2, - - - k we get
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k
T=J'0)Bx=Ji(0)x with teR"™, xeR*,and m=3 m;. (2.2-14)
i=l

Also, as we have seen from the definition of the grasp map G in (2.2-4), that the body wrench ( f,, and m,,

respectively) is given by
fol _
[ mb] = Gx (2.2-15)

We claim that the equations (2.2-14),(2.2-15) are a dual of the equation (2.2-11). To make the duality more
explicit; we define

A= G'[;P;], AeR* . (2.2-16)

Then we may summarize the equations in the following table (see also Figure 4)

Force Torque Relations | Velocity Relations
Body to Fingertip Tl _ Gx A=G| P
my Wpy
Fingertip to Joints | ©=J£(6) x J,(0)8=2
Joint . Contact Object
J\(e) G
Force/Torque T - space X - space [f o]e R®
Space « R® ¢« R° my
Velocity @ - space X - space . Vo ¢R®
Space ¢ R® J ’,(e) ¢ R® G ! Wy
\_/ v

Figure 4. The force/torque and velocity transformation relations.

The following dual definitions are now intuitive.
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Definition 2.3 (Stability and Manipulability of a Grasp) Consider a grasp by a multifingered hand with
k fingers each having m; joints, i=1, - - - k and with fingertips having contacts with n; degrees of freedom,
i=1,---k. Let® € R™, t € R™ represent the joint angles and torques respectively. Then:

(i) The grasp is said to be stable if, for every wrench (fy', my ) applied to the body, there exists a

choice of joint torque < to balance it.

(ii) The grasp is said to be manipulable if, for every motion of the body, specified by (Vps.©0p5)°,

there exists a choice of joint velocity Y7 impart this motion without breaking contact.

Grasp stability and manipulability are now easily characterized for a given position of the fingers by
Proposition 2.4: (i) A grasp is stable if and only if G is onto, i.e. the range space of G is the entire RS.
(ii) A grasp is manipulable if and only if R( J,(8)) > R( G' ), where R( -) denotes the range space of.
Remark: The conditions (i) and (ii) superficially appear to be distinct, but they are related. Let us begin by

examining the implications of condition (i) on grasp manipulability.

Consider Figure 4 focusing attention especially on the two orthogonal direct sum decompositions of
R* given by

R* = R(G")® n(G) (22-17)
= R(U»(0)® nU(®))

If G is onto, then equation (2.2-15) has a solution. Furthermore, the solution will be unique in the range
space of G* (the least norm solution of (2.2-15)). If for some body wrench there exists an x that needs zero
joint torque, then R(G*) nn(J(0)) # ¢ and consequently the condition R (J,(6)) o R (G*) fails. This
implies that the grasp is not manipulable.

For the converse, consider the implication of condition (ii) on grasp stability. Suppose that R (/3 ) ©
R(G") and there exists a body velocity (vps, 0ps) Which produces zero A and consequently zero 8, then
T(G*) # ¢ and therefore G can not be onto. This implies that the grasp is not stable.

To give simple examples to illustrate the foregoing comments, it is of interest to specialize the
definitions to the plane. For grasping in the x—y plane, the only forces and torques that need to be con-
sidered are (f;,fy,m,)' € R?® and the velocities (v, vy, ®,)* € R%. Figure 5 now shows a planar two
fingered grasp which is stable but not manipulable. The two fingers are one jointed and the contacts are
point contacts with friction. A force f, can be resisted with no joint torque t,, . However the grasp is not
manipulable, since a y-direction velocity on the body cannot be accommodated.
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Figure 5: A stable but not manipulable grasp Figure 6: A manipulable but not stable grasp

Figure 6 shows a grasp of a body in R3 by two three jointed fingers. The contacts are point contacts
with friction. The gmsp is manipulable, since J;, (0) has rank 6, though the object can spin around the axis
n-n with zero joint velocities 6. However the grasp is not stable since a body torque 7, about the axis n—n
cannot be resisted by any combination of joint torques.

In view of the preceeding discussion, we will requn'e the grasp to be both manipulable and stable,

ie.,
R(G)=R® and R(,(0)DR(GH (22-18)

Condition (i) suffers from the drawback that the force domain is left completely unconstrained. As
we have seen earlier the forces are constrained to lie in a convex cone K, taking into account the unidirec-
tionality of the contact forces, finite friction, etc, in which case the image of K N R (J;) under G should
cover all of RS, If we genéralize the previous definitions to formally define a grasp tobe Q=(G, X, J,(0)) '
we have the modified stability and manipulability conditions of a grasp by
Corollary 2-5: A grasp under unisense and finite frictional forces is both stable and manipulable if and
only if

G NR({,))=RS, and R{J,)> R(G") (22-19)
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3. Grasp Planning

Typical tasks associated with multifingered robot hands include scribing, inserting a peg into a hole,
assembly operations. Common to these tasks are the fact that the robot hand must manipulate an object
from one configuration to another, while exerting a set of desired contact forces on the environment. Suc-
cessful execution of such tasks amounts to having the robot hand perform a sequence of operations: (1)
selecting a "good" grasp on the object, and (2) using the cooperative action of the fingers to control the
object. As we can see that the first operation is essential to the execution of the task. For example, if a
pencil is not grasped at the right position and with the right postures of the fingers, it will be extremely
difficult to perform a scribing task. In this section we study how to generate a "good” grasp for a given task
and in the next section we study how to manipulate the object with the cooperative action of the fingers.

The term "a good grasp” is not well defined unless a criterion for evaluating a grasp is given. In the
literature various stability criteria used to characterized a grasp have been proposed and studied extensively
(3, 10, 13]. But, in many cases such a criterion is too rough as it may generate a large number of stable
grasps to a given object. For example, for a pencil there exist infinitely many choices of stable grasps, and
while some are satisfactory for the scribing task some others are not. To solve this problem, additional cri-
teria have been proposed in (2] & [17], for example the minimum singular value of the grasp matrix G, the
determinant of GG* [2], and some objective functions defined in [17].

After investigating human grasps, the author in [6] has suggested using the task requirement as the
criterion for evaluating a grasp. Several other researchers also have had studies in incorporating the task
requirement into the selection of a grasp. In [3, 15] a task is modeled by a desired compliance matrix and
the final grasp is then required to have the desired compliance property. In [16] a task is modeled by a
desired inertia matrix about some operating point, and the final grasp is required to have the desired inertia
property at the operating point. In [2] a task is modeled by an ellipsoid, called the task ellipsoid, in the
wrench space of the object, and the final grasp is required to maximize the task ellipsoid with unit control
effort. While all the above three approaches were concerned with the selection of a task oriented optimal
grasp, the nature of the tasks addressed among them are different. In [3, 15] the tasks are quasi static and
the system potential energﬁsassumedtodominateuwkineﬁc energy. In [16] the tasks are purely dynamic
and the inertia property rather than the compliance property is the main concem in the grasp selection pro-
cess. On the other hand, the approach via [2] does apply to both classes of tasks, but it lacks the level of
generality in the sense that only the wrench space and the grasp map G were considered in the optimiza-

tion process.
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In this section, we extend the work of (2] to consider in the selection process the aggregated behavior
of Q = (G, K, J};) in both the wrench space and the twist space. Task modeling by task ellipsoids will take
place in both the wrench space and the twist space. As in [2] the methodology of modeling a task is to asso-
ciate each task one ellipsoid (A) in the wrench space and another ellipsoid (Bp) in the twist space. The
shape of the ellipsoid A « ( Bp respectively) reflects the relative force requirement ( or the motion require-
ment) of the task. For example, if the relative force requirement in a certain direction, such as the normal
direction of the grinding application with a grinding tool, is high the task ellipsoid A then is shaped long
in that direction. To demonstrate the precise implications of the methodology we study task modeling for
the following two tasks.

Example 3-1: Consider the peg insertion task depicted in Figure 7 where the robot grasps the workpiece
and inserts it into the hole. '

In order to execute the task, a nominal trajectory is planned before grasping. After grasping the hand
follows the planned trajectory until some misalignment of the peg causes the object to deviate from the
nominal trajectory and collide with the environment.

Figure 7: Peg-in-hole task

With the body coordinate chosen as shown, the likehood of collision forces in each force direction
of decreasing order would be —f,, £t,, Ty, 1f;, 1f;, T, and +f,. If we denote by ()&, the ratio of
maximum expected collision forces in each direction, we obtain a set A, parametrized by o € [0, ), in
the wrench space space of the object by

Gy+e 2 B2 (fa-ch fE w
= e 6 ¥y 7 L 4+.2Z _—.;._.‘._Saz 0-1a
Ag {(f,, 1,) € R®, 77 +r§+r}+ ;> 72 72 A3 )

where the constant ¢, reflects the offset of maximum expected collision force between +f, and -f)
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directions, and ¢, reflects the gravitational forcg on the object. The set A4 is an ellipsoid in the wrench
space centered at (0, ¢, €2, 0, 0, 0), with the principal axes given by the generalized force directions, and
axes lengths by the comresponding ratios ;. The size of the ellipsoid is scaled by the parameter o

By appropriately assigning a set of values to the constants (r;, i=1, ... 6) and (c;, i=1, 2) we can
decide on the shape of the ellipsoid so that it reflects the task requirement in the wrench space. In particu-
lar, the peg insertion task requires that (7; 2 r;) whenever i 2 j and ¢, to be large when collision forces in
+f, direction are very unlikely.

On the other hand, since the peg insertion task requires precise positioning the grasp should provide
good manipulation capability ( or dexterity) in certain directions. First, in the v, direction relatively large
motion is needed. Then, the grasp should be very sensitive in ®,, v, and v, directions. If we model by

6
(5;)i=1 the ratio of relative maximum motion requirement among the six generalized velocity directions we
obtain an ellipsoid Bg in the twist space, parametrized by B € [0, o), define by

2 2

B,:{(v,..--,m,)ek ?— L+—+% % —2 2} (3.0-1b)

The shape of By reflects the task requirement in the twist space. In this case 3,, 8, and 8, are relatively
larger than the other constants. Precise values of these constants can be obtained from experiments or
experience through error-and-trial procedures.

Example 3-3: Consider the task of scribing with a pencil. Human experience tells us that, in order to exe-
cute the task efficiently, the grasp should provide, (1) good dexterity at the lead and (2) sufficient normal
forces. With the body coordinate shown in the figure, the task requirement can be translated into require-
ments on the two task ellipsoids by (a) the task ellipsoid By in the twist space should be long in @, and ®,
directions and flat in the other directions, and (b) the task ellipsoid A 4 in the wrench space should be long
in f, direction and then <, and ¢, directions. Applying this reasoning we obtain in (3.0-2) two task ellip-
soids A4 and By that describe the relative force and velocity ratios of the task.
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Figure 8. A scribing task.

2 2 .2
Aa={(f,.---,1:,)eR° ks °)2+f—’z+—'z+%+i+t—'25a2} (3.0-22)
r? r3 r3 r? r} ré
Wrench Space Task Ellipsoid
v2 v v o2 @ o
Bp={ (n - sope RS, E L 2o 08 B %l (o2
= on o orent e o o Lo Far) . oom
Twist Space Task Ellipsoid

To conclude these examples, we emphasize that to each task we can associate two task ellipsoids,
one in the wrench space that represents the relative force requirement and the other in the twist space that
represents the relative motion requirement of the task. The constants (r;, §;, c;) that &etermine shapes of
these ellipsoids can be obtained from experiments or from experience with similar tasks. Hence, we need to
store in a library a set of ellipsoid data for a set of interesting tasks, which usually involves considerable
modeling effort. In the sequel, A, will denote a task ellipsoid in the wrench space and By one in the twist
space.

3.1. The Task Oriented Quality Measures for Grasp Planning

We have shown that a grasp Q = (G, K, J,) contains information about the locations of the fingertips
on the object (G and K) and the postures of the fingers (J,). Also, we have modeled a particular task by
two ellipsoids A 4 and B, We now integrate these to develop two quality measures for a grasp, one in the
twist space and the other in the wrench space.
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Definition 3-5 (The Twist Space Quality Measure W, ): Following the previous notation we let OT cR™
denote the unit ball in R™ , the space of finger joint velocities, and define the task oriented twist space qual-
ity measure |1, (Q) of a grasp Q2 by

ll:(ﬁ)=psgg { B, such thatJ,(OT)> G'(Bp)} @G.1-1)

The geometric meaning of p,( Q) is as follows( see Figure 9 ): the unit ball OT in the finger joint
velocity space is mapped into the space of fingertip velocity by J, . On the other hand, a task ellipsoid Bg
in the twist space is mapped back into the fingertip velocity space by G*; p, ( Q) is then the radius B of the
largest task ball Bg such that G*( Bp) is contained in J,( OT). From a theoretical point of view, i, ( Q) is
the ratio of the "structured” output ( i.e., the task ellipsoid) over the input ( i.e., the finger joint velocity).

We also see from the figure that p,( Q) is at its maximum if the inner ellipsoid has the same shape and

orientation as the outer ellipsoid.
Joint Contact Object
T e
. 1 //' \‘\ P - | K\ Bﬂ
Velocity __4 Lo £ ' 3 v
smce "‘ l; ' \\~ : '4"; *
A =~ : A T SE(3)
Figure 9

Definition 3-6 (The Wrench Space Quality Measure p,,): We define the wrench space task oriented
quality measure \,, of Q by the following procedure: |
(a) Define A, cR® té be the unit task ellipsoid in the wrench space, and 0% the ball of radius v,
Y€ [0, =), in the finger wrench space;
(b) Define a=1l;n{. {Y,suchthatG(03 N"K NR(J,)) D Ay ). Thus, OF is the smallest ball in
the finger wrench space that will cover the unit task ellipsoid.
(c) Define C(0)=J5(0aN K NR(J})) to be the corresponding set in the finger joint torque
space, it is the set of joint torques that will cover the unit task ellipsoid.
(d) We define the worst case cost function of the input set C () by

Cost(C@)=_sup [ 71 G.12)

where || y || stands for the magnitude of the vector y, and the wrench space quality measure
W () by '
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1

H- (= Gontctan

3.1-3)

Remark: We interpret the geometric meaning of the above steps as follows (see Figure 10 ): (1) in steps
(a) and (b) we find the smallest ball in the finger wrench space that will cover the unit task ellip-
soid through the transformation G; (2) such a ball is mapped back into the joint torque space and
its cost function is defined by (3.1-2), which is the distance of the furtherest point in the set from
the origin. (3) The quality measure is then the inverse of this cost ( Notice that one may also use
the quadratic cost function, or any other cost functions in (3.1-2)).

Joint Contact Object
Tz J: Xz on G { > /.'A‘
C(o()/]\ /”\ /,.n-“—\\o( /—\ L
i Vs \ o \\‘
Force/Torque _ | | } { \ z'//ﬁ\ N f
Space i 1 -._\‘ ,."i ! “.\ ! I *
\g/ ."'s....../" T | -
TESE(3)
Figure 10

These quality measures defined in Definition 3-5 and 3-6 provide useful characterization of a grasp,
but are difficult to compute ( see for e.g. [2]). However, when the task ellipsoids are specialized to the unit
balls in their respective spaces and K isR“.itselfwe do have the following results: '
Proposition 3-7: Under the condition that K =R", A, and B, are unit balls in R® the quality measures

defined in Definition 3-5 and 3-6 are given by

_ Smin(Jn) _ Ominls)
" OnalG")  Oma(G)

1 (Q) (3.14)

i G) _ OminlG)
Ol Omalln)

()= @3.1-5)

WHhETe G pin, Cmax are the minimum, maximum singular values respectively.
The proof follows from applying the definition of the singular value decomposition of a matrix
to Definition 3-5 and 3-6 respectively.
Remark: The quality measures defined here are called the min-max type of measures [2]. In the special
case of a single manipulator, G is the identity matrix and the two quality measures (3.1-4) and
(3.1-5) are just G,,(/;) and o;.L(J,) respectively. To generalize the volume measures defined in
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2,9 & lé] to a multifingered hand, we first assume that the grasp is both stable and manipul-
able, i.e., Proposition 24 holds, and denote the singular values of G by (§; 28,2 -« - 286> 0),
and the singular values of J, by (67 20,2 *+ 26, >0). Then, the corresponding manipulabil-
ity and stability volume measures of a grasp can be defined as

(81' cee '56) _ det(G Gl)

) - 3.14b
T () ©1° -+ -0y)  det(Jy JH) ( !
and
(01' ce -o'n). det(l;.-li)
) - 1-5b
e (©) G- - -8 det(G G) R

The quality measures given by (3.1-4) and (3.1-5) can be easily computed using the singular value
decomposition data of G and J,. A grasp €, is said to be a better grasp than another grasp Q, if Q) has
higher quality measures in both spaces than Q,, and a "good grasp” is defined to have high quality meas-
ures in both spaces. Notice that the definitions (3.1-4) and (3.1-5) exhibit an interesting dual relationship in
the following sense (see also Section 2.2): i1, ( Q) increases if G, (/;) increases or if 0,(G) decreases,
and p,, ( Q) increases if Gp(J)) decreases or if G,;,(G ) increases. Thus, we can simultaneously increase
both quality measures only to a certain point and then the quality measure in one space decreases as the
quality measure in the other space increases. We propose the following procedure for grasp planning:

(1) Define the performance measure (PM) of a grasp Q by

PM =y, (Q) +(1 -, (Q) (3.1-6)

where ¥ € [0, 1] is called the relative importance ratio between the manipulability measure and the
stability measure. ¥ > 0.5 indicates that the task is motion oriented and ¥ < 0.5 indicates that the task
is stability oriented. We suggest further studies on determining the relation of y with the task nature.
(2) Use the performance measure, geometry of the object and structures of the hand to formulate the
corresponding optimization problem ( see [2] for details).

(3) Solve the optimization problem to find the Q that maximizes the performance measure.

Example 3-8: Consider the two-fingered planar manipulation system shown in Figure 12. We model the
contact to be a point contact with friction, and choose the following values for the system parameters:
Finger manipulator spacing r = 1;
Finger manipulator link length I; = [, = 1.
At the grasping location shown in the figure, the grasp map G is



G={0 01
= - 1 3.1-
0 -rQ-r @17
and the hand Jacobian J, is
J
= [ o‘,"z] (3.1-8)
where
7, =[ cosa -sina] -5in@y; — sin(6y; + By2) —sin(®y; +6;2) (.19)
17| sine cosa coseu +¢0s(0y + 012) cos(0y; + 612 T
and
27| —sinoe —cosat| | cosOy +cos(B2 —02) —cos(6y + 620) .

Subject to the kinematic constraint (2.2-9) the system has three degree of freedoms. If we further constrain
the system so that the object mové vertically and with constant orientation angle o = 0 the system has a
single degree of freedom. Let us choose 6y, to be the generalized coordinate of the system and study the
simplified optimization problem, where the quality measures (3.1-4), (3.1-5) and the performance measure
are maximized by varying ,;. Figure 11 shows plots of the quality measures and the performance meas-
ure as functions of 0;;. We see that the manipulability measure y1, is at its maximum when 6y, is about 30°
( = 0.52 radian), which corresponds to the grasping configuration with 8y, = 120° , 8, = 150° and 65 =
120°. The stability measure decreases monotonically as 8y, is increased. However, the performance meas-
ure with ¥ = 0.5 and y=0.75 reaches its maximum at 6, = 18°( 6, = 144°, 05 = 162° and 6, = 144°),
and at 0y, = 24°( 0y,=132°, 0 = 156° and 6 = 132°) respectively. The grasp has zero manipulability
measure both at 0;; =90° and at 6, =0°, where the first case corresponds to Figure 5. The optimal value
of 6, for the performance measure goes up when more weight is given to the manipulability measure.

Thus, we see that the parameter v is an important factor in grasp planning.
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4. Coordinated Control of a Multifingered Hand

In this section, we develop control algorithms for the coordinated control of a multifingered robot
hand. The goal of the control scheme is to specify a set of control inputs for the finger motors so that the
gripped object undergoes a desired body motion while exerting a set of desired contact forces on the

environment.

Previous researchers have suggested the so-called "master-slave” control methodology for two robot
manipulators (see, for e.g. [23, 24]). Others have generalized this method to a group of several manipula-
tors (or a multifingered robot hand) (25). In [26] an alternative approach was proposed. But it assumed
rigid attachment of the fingertip to the object and each finger manipulator needed to be six jointed.

We present a generalization of the computed torque methodology as our methodology for the control
of a group of manipulators. Without loss of generality, we may assume that the desired task is: (1) to mani-
pulate the object along the following prespecified trajectory

App a(t) Tppa(t)
8».4(‘)='[ ”; ’"; ] € SO3)xR? 4.0-1)

and (2) to maintain a set of desired internal grasping forces during the course of manipulation. We make
the following assumption about the grasp:
(A1): The grasp is both stable and manipulable (see Corollary 2-6).

A necessary condition for (Al) to hold is that both the grasp map G and the hand Jacobian
J4(8)=B*J(6) be of full rank. From Section 2.2, we know that in order to maintain the contact during
manipulation the finger joint velocity 6 and the object velocity [v%,@,]° must satisfy the following velo-
city constraint relation:

7,(0)9 = G*[:;; . 4.0-2)

Differentiating (4.0-2), we obtain the following acceleration constraint equation
1, (0)6+J,(0)0 = G‘[?"’] 4.0-3)
Opp

Since R (J,(8)) o R(G*) by assumption (Al), we may express the joint acceleration 0 in terms of the
object acceleration [, .6);,,]‘ by

0= J,:'G‘[“;;"'] -6 + 6, (4.04)
b
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here Jj* =J5(J,Ji)™ is the generalied inverse of Jj, and 8,en(/,) is the internal motion of redundant
joints not affecting the object motion.
Remark: (1) Using (4.0-4) we can develop the control algorithm in the operational space of the body being
manipulated. But if we express the object acceleration in terms of 0 by
5 051" = (GG'Y' (46 +,8)
we can develop a control algorithm in the joint space of the fingers. In future work we will con-
sider this alternative since it appears to hold some interesting and different possibilities.
(2) When J,, is square, its generalized inverse J;" is just the usual inverse, and 8, disappears from
(4.0-4). This also implies that the joint motion is determined uniquely by the motion of the
object.

The dynamics of the object are given by the Newton-Euler equations

mo| |y
Vpb Qo Xmvps | _ | f5
where m € R*4 is the diagonal matrix with the object mass in the diagonal, I € R¥3 is the object inertia

matrix with respect to the body coordinates, and (f,’, mj 1’ is the applied body wrench in the body coordi-
nates which is also related to the applied finger wrench xeR"® through

_|fe
Gx = [ ms 4.0-6)
Since we have assumed that the grasp is stable, i.e., G is onto, we may solve (4.0-6) as

x =G {':] +Xx, “4.0-7)

where G*=G*(GG*)™! is the left inverse of G, and x, € N(G) is the internal grasping force. Part of the
control objective is to steer the internal grasping force x, to a certain desired value x, 4 € N(G).

Combining (4.0-5) and (4.0-7) yields
mOo |y W, XMy
= Vpb pb XMV
x =Gt [0 I] [mpb] + I:W»XI@»] +x, 4.0-8)

4.1. The Control Algorithm

The dynamics of the i th finger manipulator is given by
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M;(0,)8; +N;(8;.8;) = 7, —JX0,)B;x; @.1-1)

Here, as is common in the literature M;(0;)e R™** is the moment of inertia matrix of the i th finger manipu-
lator, N;(6; ,é, )JeR™ the centrifugal, Coriolis and gravitational force terms, 1; the vector of joint torque
inputs and B; x; € R the vector of applied finger wrenches. Define

Ml(()el) Mz(zez) .. 0 Nl(elyél) 7
M@ =| - R LCOE : and T=|. @.1-2)
6 6 : : M,,ia,,) Nk.(ek'ék) T
Then, the finger dynamics can be grouped to yield
M@©)P+N@©9) = T1=J,(6) x 4.1-:3)

The control objective is to specify a set of joint torque inputs < so that both the desired body motion
8 4(t) and the desired internal grasping force x,4 are realized.

Since SO(3) is a compact three dimensional manifold, we may locally parametrize it by either the
Euler angles, the Pitch-roll-yaw variables [20,22], or the exponential coordinates ([22]). Let
Ops = [01,92:05]° be a parametrization of SO(3), we can express the body trajectory g, (¢) as

Ap (Ops (1)) ()
g(0) = [ w ¢(‘)’° . ] e SOG)R? @.14)
and the body velocity as
e ®)] _ £ ©) )

where U (tlb,,b(t),r,,,,(t))eR“"‘6 is a parametrization dependent matrix that relates the derivatives of the
parameterization to the body velocity. Differentiating (4.1-5) yields

V()| _ A @ | 5l Fas(t) 4.1
[wpb(t)] U[%b(‘) v b5 (£) o

Theorem 4-1: Assume that (Al) holds and that the fingers are nomredundant, ie., m; = n;, for

i =1, k.Define the position error e,€ R® to be

= || _| T 1-
% = [%a] [‘#pu] @1

where [Tps 4. Opp 4] is the desired body trajectory, and the internal grasping force error e; € R* S to be
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€ =X, =X 4 4.1-8)

where x, 4 is the desired internal grasping force. Then, the control law specified by (4.1-9) realizes not
only the desired body trajectory but also the desired internal grasping force.

= N@O.& Opp X1V 1o o | T ]
t= N(°'°)+J’:G+[m,,, xm”] M8V, + MU [ %] (4.1-92)

i/ .
+Ji(xoa = K; fer )+MAU{[£;:] -K,é, -K,ep}

where

mO0
M, = M(OYJ'G" +J,‘,G*[o ,] (4.1-9b)

and K; is a martix that maps any vector in the null space of G into the null space of G .

Remarks: (1). (4.1-9) can be generalized to the redundant case and the results are given in Appendix B.
(2) The first four components in (4.1-9a) are used for cancellation of Coriolis, gravitational and
centrifugal forces. These terms behave exactly like the nonlinearity cancellation terms in the '
computed torque control for a single manipulator; the term J£(x, 4 — K} fey ) is the compensation
for the internal grasping force loop, and the last term is the compensation for the position loop.
We will see in the proof that the dynamics of the internal grasping force loop and that of the posi-

- tion loop are mutually decoupled. Consequently, we can design the force error integral gain K

independently from the position feedback gains X, and X,.

Proof:

The proof is very procedural and straightforward. First, we substitute (4.0-4) and (4.0-8) into (4.1-3)
to get

~ v P . mO||y W XMy
M(O){J,.‘G‘[é;;] -J; 11,,9} +N(©8) = t-Jf G+[o ,] [;ﬂ +G*[m:)dw:] - Jiz,

(4.1-10)

Note that in (4.0-4) the generalized inverse for non-redundant fingers reduces to the regular inverse
Ji! and 6, = 0. If we choose the following control in (4.1-10)

“’P""’"""’] —MON, 8+ ' (@4.1-11)

t= N(9.9)+J,{G'[mpbx,%



where 1, is to be determined, we have that

m 0
{M(O)I;‘G‘H,.G"[o ,]}[v:] = 1y -Jix, (4.1-12)

)/
M, -Pb =‘C;-J’:I,.
["’P"]

Substitute (4.1-6) into the above equation, we have

Ml

Further, let the control input T) be

= Mk(’{[;’b;] -Kyep =K ep} +MkU|i¢Pb] +J‘(Xod -K,Ie,) (4.1-14)

and apply it to (4.1-13) to yield:
M,.(J{é',, +K,é, +K,e,} ==Ji(es +Kifer). (4.1-15)
Multiply the above equation by GJ;~, we obtain the following equation.
GIi*M,, u{.?, +K,é, +x,,e,} =G(er +Krfes) = 0. (4.1-16)

where we have used the fact that the internal grasping forces lie in the null space of G, i.e.,
Gles +K;fes) = 0, (4.1-17)
Since GJ'M, = GI7*M(8)J;'G" + ['{,‘ ‘}] is positive definite and U’ is non-singular, (4.1-16)
implies that '
i +K,é, +K,e, = 0 4.1-18)

Thus, we have shown that the position error e, can be driven to zero with proper choice of the feed-
back gain matrices X, and K.

The last step is to show that e, also goes to zero. If we substitute (4.1-18) into (4.1-15) and notice
that J;, is nonsingular, we have the following equation.

er +K,Ie, =0, 4.1-19)
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With proper choice of K}, the above equation implies that the internal grasping force error ey con-

verges to zero.

QE.D.

4.2, Simulation

Consider the two-fingered planar manipulation system shown in Figure 12.

Figure 12, A two-fingered hand manipulating an object.

where the two fingers are assumed to be identical. We model the contact to be a point contact with friction.
The grasp matrix and the expressibn for the hand Jacobian are given in (3.1-7) and (3.1-8). It has been
shown in Example 3-8 that the grasp configuraticn in the figure is both stable and manipulable. We have
simulated the system to follow the following desired trajectory of the body: '

x(t) = cy8in(t), y(¢) = ea+cicos(t), o) = c3sin(e). @2-1)
The dynamic equation of the ith finger (i=1,2) used in the simulation is

L [ myhE+mddmyl? mzlthC(O,-z—Ou)]

mal1hoC(0;-611)  ma(h3+d3) @422)
N, = mal lhzézzs (9.:9:-9.' HmghyS 6;1+maglyS 6,y @23
‘ mal1ha028 (8iz-0i1y+maghsS Oi

where m; = mass of the jth link, d;=radii of gyration of jth link, h;=the distance between the jth joint and
.the c.m., of the jth link, The mass matrix of the object is

OmoO (4,2.4)
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where m is mass of the object and / is the rotational inertial about the z axis of the object.

The simulation used a program designed to integrate differential equations with algebraic constraints.
Figure 13 shows that the initial position error (in Cartesian space) diminishes exponentially as predicted by
equation 4.2-18.

¥ 2 1073

200,00 4
€rmor-x
150,000 4
100,00 4
50,00k
error-

=100,00

=150,00|

=200,00]

N [T M 1
T — ) —

S reeameed
1,00 1.50 2,00 2.50

Figure 13, Position error.

The simulation was fed to a movie package (Courtesy of John Hauser) which shows the continuous motion.
Figure 14 and 15 are sequences of sampled pictures from a typical simulation. In both figures, the line seg-
ment at each contact shows the magnitude and the direction of the total force that is exerted to the object by
the finger. The desired grasp forces are set to 0 and 10 unit force in figure 14 and 15 respectively. Note
that without the grasping force (Figure 14), the total exerted force may be away from the friction cone and
consequently break the contact if this were a real experiment rather than a simulation. In related works, our
colleagues, Richard Murray and Kris Pister have constructed such a two-fingered hand and are in the pro-

cess of implementing this and other control laws.
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frame 334 framo 341 frzne 358
frame 387 framo 399 frame 414

Figure 14. Simulation without intemnal grasping force.

frame 334 frame 341 fame 358
frace 387 framo 399 framo 414

Figure 15. Simulation with 10 units of internal grasping force.
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5. Concluding Remarks

We have studied techniques for the determination of grasp stability and manipulability of an object
by a multifingered hand. We have also provided a control algorithm to generate the appropriate motor
torques required to manipulate an object in a certain prescribed fashion. The scheme is shown to converge
in the sense that the true body trajectory convel;ges to the desired body trajectory. An application of our
scheme to a planar manipulation of an object by a two-fingered hand is presented.

In future work we will study more sophisticated models for contact of a body by a multifingered
hand and their implications for the schemes of this paper.
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Appendix A. How Does a Grasp Depend on the Local Contact Geometries?

In this appendix, we present an approach to incorporate the local contact geometries in the definition
of the effective force domain K of a grasp map G (see Remark (2) following Definition 2-2). We will see
especially in Section 3 that when the neighborhood of a contact point does not match that of the fingertip
the quality of the resulting grasp will in general be inferior. Hence, using this approach in the process of
automatic grasp selection ( Section 3) the edges of an object can be avoided.

First, we follow the notation of [21] to review some elementary geometry of surfaces. Consider the
surface shown in Figure Al (a), which locally can be described as the graph of a differentiable function
(Chapter 3, [21]).

A {-.v)

(a) A regular surface inR ? (b) A contacting surface pairinR >
Figure Al.

Thus, a neighborhood of a point p in S can be represented in the form z = h(x,y), (x,y) € U cR?,
where U is an open set and 4 is a differentiable function with £(0,0) =0, 4, (0, 0) =0 and A, (0, 0)= 0.
Here h,(x,y) and h,(x, y) stand for the partial derivative of 4 with respect to x and y respectively. In
other words, S locally can be parametrized by the map

X:UcR? 5 R3 X(u,v)=(u,v,h(u,v)) (a-1)
where 4 =x, v =y.From (a-1) we obtain
Xu=(1,0,h), X, =0, 1, b)), Xii = (0, 0, ) (-2)
X =0,0,4,), X,, =(0,0, A,,)

‘We can choose a unit normal vector at each point of X (U') by the rule

Moy Tu XX
@@= m-l-@), qeXU) (a-3)

Thus, we have a differentiable map N: X (U) — R? that associates to each point q € X (U) a unit normal
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vector N (q).

The map N : § — S2is called the Gauss map of . It is straightforward to verify that the Gauss
map is differentiable. The differential dN(g) of N atq € § is a linear map from T,(S)toTN(q,(Sz’. Since
T,(S) and TN(.,,(Sz) are parallel planes, dN(q) can be locked upon as a linear map on T, (S). The matrix
representation of the linear map dN (q) is a 2 by 2 matrix given by [DeCarmo, Chapter 3]

awcq)=[2;; ::] (a4)
where
f12= EZ _F? “”ymL-gﬁ%
and

E=<X,, X,>, F=<X,, X, >,G=<X,, X, >
-e=<N,, X, >, -f =<N,, X,>, ~g =<N,, X, >
Remark: The determinant of dN (q) is called the Gauss curvature of the surface at the point g.

We then consider a contacting surface pair shown in Figure Al (b). Here Sy stands for the fingertip,
S, for the object and p is the point of contact. We.may assume without loss of generality that the possible
region of contact for the fingertip is fixed and is denoted by Q, and before the fingertip deforms the initial
point of contact p is at the center of Q. We further assume that both surfaces are differentiable and the
edges of a surface can be accounted for by taking the limit of a differentiable surface. Consequently, we
can choose two maps X/ and X/ to parametrize S; and S, by

X/:UcR? 5 8 <R% X (u,v)=(,v,h (u,v)) (a-5a)

X°:UcR? > §°cR? X°(u,v)=(,v,h°u,v)) (a-5b)

where &/ and h° are both differentiable functions. Assume that X° is defined on (X /)™(Q) and and

define the relative curvature form of the contacting surface pair at a pointin (X /)™(Q) to be

dN° +dN' (a-6)
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The surface conforming coefficient c(p, Q) of S, with respect to S/ over the region Q is defined by

c@2)=][yg | W+ | dudv @7)

where[] { is the I, induced matrix norm.

The surface conforming coefficient ¢ is a function of the contact point and the local geometries of the
contact surface pair at p. If two surfaces have contact of order 2 over (X/)™ (Q) then c is identically zero
and the two surfaces agree. We define such a contact point to be a very regular point. But, as the two sur-
faces differ from each other over Q the furface conforming coefficient will be nonzero. In the limiting case
when the point of contact is at the edges of an object ¢ increases to infinity and the point of contact is
defined to be "very imegular”. Consequently, tangential component frictional forces or torional frictional
forces are difficulty to apply over the gripped object.

Finally, we use the information contained in c(p, Q) to modify the definition of the effective force
domain X; of the contact map (22-2) as follows: choose a montonically decreasing function
g:[0,0) = [0, 1] such that ' '

8©)=1, and 'li_l’n. g(n)=0 (a-8)
define the effective Coulomb, and/or torsional frictional coefficient p, by
Ke=f(c)Ho @9)

where |, is the nominal frictional coefficient measured when the pair of surfaces agree, and apply this j,

to the definition of X;.

Remark: Note that if the two surfaces agree 11, is just the nominal frictional coefficient and the frictional
forces will be transmitted as predicted by the point contact model. If the two surfaces disagree,
or p is a very irregular point, the frictional forces will be transmitted also according to y,. This
shows that under this modification the point contact model is always valid.
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Appendix B. Coordinated Control for Redundant Fingers

In this appendix, we supplement to Theorem 4-1 the control algorithm for redundant fingers, where
the number of joints m;, i = 1, ...,k is greater than the number of constrained directions »;,i =1,...k. In
many industrial applications, several robots which often have more than three degree of freedoms are
integrated to maneuver a massive load. Under the frictional point contact model such a system is redun-
dant. The dynamic distinction of a redundant hand from a nonredundant hand is the internal motion given
by 30 in (4.0-4). We claim that the following control law will achieve the desired control objective for a

" hand with redundant:

T=N(@®,8)+J} G*‘[ :’):: 9 }":,:] -M I3 0y 0+ MIFUMT I M, U [ g:] (b-1a)

- - F : |
+ MITMTI) 204 =Ky [ e )+ MIZUL M7 TDOM,, U{ [ ﬁj ] -K, é -k, e,}

where
M, =U, M7 I G +G* [ ’3‘,’] (b-1b)
Remark: Please compare (b-1) with (4.1-9) and observe that the M, is different here.

_To see this, we use (4.0-4) and (4.0-8) in (4.1-3) and suppress the 8 dependence of M to get

M{J:G' [ x] -t é} +M 8,+N(@©,8)=1

I G [ | e agr| e |y 2
Comparing to (4.1-10) we see that there is an extra term M 60 in (b-2), as well as J;! is replaced by the
generalized inverse J,'.

Choosing the following control input:

z:N(e,é)+J,{G+[g: :;'z:] —M I}, 0+7 ®-3)
where 7, is to be determined, we have that
{MJ,.*G‘+J,: G*['g‘,’]}[ ‘-’P"] +M 8=~ Jf z0 (-4)
Opp

Multiplying the above equation by J, M~ and using the fact that J;, 80 =0 yields
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{G' Ll '6'9]} [ ‘-”"] =M™ 5 =T M7 T} xo ®-5)
Opp
Since J, is onto, J, M~J{ is nonsingular and we can further multiply (b-5) by (/; M~7£)™! to obtain

{(J;.M“ IHGt +G* [ '{,‘?]} [ Z;:] = (WM UHT LM 1 - x (b-6)

Substituting (4.1-6) into (b-6) and choosing the following remaining control input for T, we obtain

T =MIH I M J,{){ MU [[ 2:: ] -K, é,+K, e,,] +M,,t)[ g::] +@oa—Ki [ef )} ®-7
and
MJU{E, +K, é, +K,e,] =—(ep +K; [ ef) (b-8)
Multiplying (b-8) by G and using the fact that G (e, +K; [ e;) =0 we obtain that
G M\U(E, +K, é, +K, ¢,} =0 (®-9)
Since G M, =Gy MUIHG* + ['g (}] and U are both nonsingular (b-9) immediately implies that
& +K,é,+K,e,=0 ~ (b-10)
which shows that the position error e, can be driven to zero by proper choice of the feedback gain matrices
K, and X,.
On the other hand, using (b-10) in (b-8) we finally obtain that
e +K; [ep=0 (b-11)

which shows that the internal grasping force error can also be driven to zero by proper choice of the forec
integral gain matrix X;.
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