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Abstract

We consider a linear (not necessarily time-invariant) stable unity-feedback system, where

the plant and the compensator have normalized right-coprime factorizations; we study two cases

of nonlinear plant perturbations (additive and feedback), with four subcases resulting from : 1)

allowing exogenous input to AP or not, 2) allowing the observation of the output of AP or not

The plant perturbation AP is not required to be stable. Using the factorization approach we

obtain necessary and sufficientconditions for all cases in terms of two pairs of nonlinear pseudo-

state maps. Simple physical considerations explain the form of these necessary and sufficient

conditions. Finally, we obtain the characterization of all perturbations AP for which the per

turbed system remains stable.
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Introduction

Robust stability of feedback systems under unstructured perturbations of the plant model

has been studied extensively. In the nonlinear case, the small gain theorem [Zam.l, Des.l] gives a

sufficiency condition for robust stability of a stable system under nonlinear stable additive pertur

bations. Sufficient robust stability conditions were also obtained in [Xstl, Cru.l, Des.3, Fra.l,

Owe.l, Pos.l, San.1]. In the linear time-invariant case, necessary and sufficient conditions for

robust stability for a certain class of possibly unstable plant perturbations have been obtained in

[Doy.l and references therein, Che.l]; for a general class of possibly unstable perturbations, the

factorization approach yields necessary and sufficient conditions for robust stability of the feed

back system under fractional perturbations of the subsystems [Che.2]. Furthermore, necessary

and sufficient conditions for the existence of a controller for plants with additive or multiplicative

uncertainty are given in [Vid.l].

For linear time-invariant stable unity-feedback systems with nonlinear additive plant per

turbations, necessary and sufficient conditions have been obtained in two cases: i) the additive

perturbation has an independent input, hence unmodelled dynamics which is not coupled to the

nominal plant inputs can be taken into account [Bha.l], ii) the peiturbed plant is considered as a

one-input one-output plant [Hua.1] (see also [Hua.2] for the linear time-invariant additive pertur

bation case).

In this paper we consider a linear (not necessarily time-invariant) stable unity-feedback sys

tem, where the plant and the compensator have normalized right-coprime factorizations; we study

two cases of nonlinear plant perturbations (additive and feedback), with four subcases resulting

from : 1) allowing exogenous input to AP or not, 2) allowing the observation of the output of

AP or not The plant perturbation AP is not required to be stable. Using the factorization

approach we obtain necessary and sufficient conditions for all cases in terms of two pairs of non

linear pseudo-state maps. Simple physical considerations explain the form of these necessary and

sufficient conditions. Finally, we obtain the characterization of all perturbations AP for which

the perturbed system remains stable.
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Notation: (e.g. [Wil.l, Saf.l, Des.l]) Let T c IR and let V be a normed vector space. Let

£ := {F IF :T -» V } be the vector space of V-valued functions on X. For any T e T, the

y y \F^ t<T tt*X
projection map nr :£ -» Q is defined by UTF(t) :=< q -. t = r where 0£ is the

zero element in £. Let A c £ be anormed vector space which is closed under the family of

projection maps {IIr }T e %. For any P e A, let the norm II IT(.)F II :T -> 1R+ be a nonde-

creasing function. The extended space Ae is defined by

A« := { F e £ I Vr e T, nTF g A} .

A map F : Ae -» Ae is said to be causa/ iff for all T e T, nT commutes with nrF;

equivalently, TlTF =UTFUT.

A feedback system is said to be well-posed iff for all allowed inputs, all of the signals in the

system are (uniquely) determined by causal maps.

In the following we will be considering a number of function spaces closely related to Ae .

The superscript i and the superscript o refer to "input" and"output", respectively. Let A£ and

A°e be extended function spaces analogous to Ae except that their functions take values in the

normed spaces V1 and V° , respectively; the associated projections nr are redefined accord

ingly.

A causal map H : A°e x A£ -» Ae is said to be S-stable iff there exists a continuous nonde-

creasing function <|># : 1R+ -> 1R+ such that

V(MltM2)€ A° xA' , \\H(ux%u^\\ < taClliitll+lliisll )•

An S-stable map need not be continuous. Note that the composition and the sum of S-stable

maps are S-stable.

A well-posed (nonlinear) feedback system is called S-stable iff, for all allowed inputs, all of

the signals in the feedback system are determined by causal S-stable maps.

A causal (nonlinear) map P :Ale->A°e is said to have a right factorization

(Np ,Dp;Xp) iff there existcausal S-stable maps Np ,Dp , such that

(i) Dp :Xp c a£ -» AJ is bijective and has acausal inverse,
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and(ii) Np :Xp -*A°e .with Np[Xp] =P[AJ],

and (Hi) P =Np Dpl [Vid.2, Ham.l].

Xp is called the factorization space of the right factorization (Np ,Dp ;Xp) [Ham. 1].

(Np tDp ;Xp) is said tobeanormalized right-coprimefactorization of P :AJ -» A°e iff

(i) (flp , Dp ;Xp) is aright factorization of P ,

and (ii) there exist causal S-stable maps Up :A°e -* Xp and Vp : A'e -» Xp such that

t/pJV^ +VpDp=Ix , where /* denotes theidentity map on Xp .

Note that any causal S-stable map P : AJ -> A* has a normalized right-coprime factoriza

tion, namely (P./^AJ).

1. Assumption : Consider the well-posed linear unity-feedback system S(P, C) in Figure 1 :

the plant and the compensator are given by causal linear (not necessarily time-invariant) maps

P :AJ -»A°e and C :A* -»AJ which have normalized right-coprime factorizations

(NprtDpriA^) and (A^,D^.; AJ), respectively; iVpr, D^, //„. and D^. are /w^ar maps (see for

example [Man.1] for the continuous-time linear time-varying case).

u2

1
1

1

c i .

1

V> 1 Dcr1 Ncr 1' -l Dp} v
1*2

s
1

1

I
1

c' i P'

Figure 1 The feedback system S(P,C)

2. Lemma : Let Assumption 1 hold. From Figure 1, we obtain the causal S-stable linear map

Af, defined by*

M:A*exA£->AJxAJ , M : 5c°
h>

"1

"2
= ~Ncr Dpr (1)

Then the system 5(P, C) is S-stable if and only if the bijective map M in (1) has a causal S-

♦Equation (1) is written using matrix notation: the first equation states that U\— D^(^) + N— (£„ ) .



stable inverse.

Proof : By Assumption 1, P and C have normalized right-coprime factorizations. Hence the

o..well-posed system S(P, C) is S-stable if and only if the pseudo-state maps H^: "1

"2
K^°

and H%: «i

"2
h»?p are S-stable: the sufficiency follows by Figure 1 and the S-stability of

Np, , Dpr, No. and D^ ; thenecessity follows by the fact that the maps C and P have normal

ized right-coprime factorizations. Writing the summing node equations in Figure 1, we obtain

-l(1); hence the system S(P, C) is S-stable if andonly if M~l= is S-stable.

•

Let Assumption 1 hold and let 5(P, C) be S-stable. Then the map M defined in (1) has a

causal S-stable inverse M"1. This inverse map is linear and is given by

Nf-1: A°e XAJ ->A°e xAJ , M~l: «1

"2
h>

5?
=

Dpi -Npl
Nd Dd

"l

"2
(2)

r-l .where N^ , Dc/ , N^ and Dp/ denote the four subinaps of M~l; they are causal linear S-stable

maps.

3. Comment : The causal S-stable maps denoted by Dpl and Dcl in (2) are bijective with

causal inverses Dp~il: A°e -> A°e and DJ1: A£ -»A£ , respectively (indeed, using (3b) and (3c)

below, DJ1 =(I +PC y)^ ,DJl =(I +CP )Dpr ). From the equation

M"1M=/AoxAi , (3a)

we have 'left factorizations" Dp*Npl and DdlNd ofP and C , respectively; in fact these are

"left-coprime factorizations" since

DpiDcr+NplNcr=IA%

DclDpr+NclNpr=IM .

(3b)

(3c)

•

LetAP :A£ -» A°e ( AP : A°e -> Ale) be any causal nonlinear map such that the feedback

system S ((P, AP )22, C ) in Figure 2 ( 5((P, AP )22, C ) in Figure 3 ) is well-posed.
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%

•*<3- 'cr N
\yt

cr *& >pr N
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Figure 2 The feedback system 5 ((P, AP )22» C )

•*& ^DC'}
t

N cr

\t, ^H-^4o >pr tf
/"*

I ?2

AP

Figure 3 The feedback system S((P, AP )22, C)

We consider four perturbation cases:

i) 5((P, AP)22,C) ( 5((P, AP)22,C)): This perturbed system is obtained from S(P,C)

by replacing P with a nonlinear perturbedversion (P, AP )22 which has rwo inputs (e2» "3)

( (?2»tt 3) ) and aw observed outputs (y 2, y3) ( (y 2. £3)).

Suppose that incase i)we observe only z2 (£2); then we obtain

ii) S((P, AP)2i, C) (5((P, AP)2i, C) ) : the perturbation (P, AP)2i has rvw inputs

(*2»M3) ( (?2»M3))and0'1* observed output z2 (y2).

Suppose that we set w3 = 0 in case i), then we obtain

iii) S ((P, AP )12, C ) ( 5 ((P, AP )12, C ) ) : the perturbation (P, AP )12 has one input e2

( e 2 ) and m>0 observed outputs (y2,y3) ((y 2» y 3) ).

Suppose that in case i), we set k3s0 andobserveonly z2 (V2 ); then we obtain

iv) 5(P+AP,C) (5((P,AP)n,C)): the perturbation P+AP ((P, AP)U )has one
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inputi2 ( ^2 ) and one observed output z2 (y2)-

Note that for ij = 1,2 , the (i+l)-input system S((PtAP)ijt C) (S((P,AP),-,-, C) ) is S-

stable iff the j+l outputs (i.e. j outputs of (P,AP);y and yx (yx ) ) are determined by

causal S-stable maps.

4. Theorem : (Necessary and Sufficient Condition for Robustness ) Let Assumption 1

hold. Let the linear system S(P,C) be S-stable. Then for any causal nonlinear map

AP:AJ-»A* (AP:A*e->AJ),

i) the well-posed 5((P,AP)22,C) (£((P,APy^X) ) is S-stable if and only if

AP (/ +NcrDplAPTl (AP(I+ NprDclAP Tl) is S-stable.

ii) the well-posed 5((P,AP)2i,C) (S((P,AP^C) ) is S-stable if and only if

DplAP(I +NcrDplAP)~1 (NplAP(I +NprDclAPyl ) is S-stable.

iii) the well-posed 5((P,AP)12,C) (5((P,AP)12,C) ) is S-stable if and only if

AP(/ +NcrDplAP)-lDpr (AP(I +NprDelAPy1Npr)isS-st3blQ.

iv) the well-posed 5(P+AP,C) (5((P,AP)n,C) ) is S-stable if and only if

£>,,AP(/ +NcrDplAPTlDpr (tfp/AP(/ +NprDdAPT1Npr ) is S-stable.

5. Comment: We offer the following explanation on the forms of the necessary and sufficient

conditions for S((P, AP )(j,C), i, j = 1,2. Similar explanations apply for

$(CP,AP)(j.C),J,7 =l,2.

1) The effect ofnot observing y 3:

Since y^ is not observed, instead of considering the system S((Pt AP)22,C) (i.e. the S-

stability of the map (ux, u2, u3) h> (yi,y2.y3))» we consider the system 5((P, AP)2i, C) (i.e.

the S-stability of the map (uitu2*u3) h> (y j, zi) ). Using the "left factorization" of P men

tioned in Comment 3, we redraw the latter system as in Figure 4.
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Figure 4 The feedback system S ((P, AP)2!, C)

Now view Figure 4 as a feedback system Z consisting of the nonlinear, possibly unstable,

subsystem DplAP closed in a feedback loopby theS-stable subsystem whose inputis at a and

output at b ; note that b = -Ncra + DprNdu\ + DprDdu2. The resulting closed loop system I

is S-stable ifand only if (DplAP)(I +Ncr(DptAP)T1 is S-stable [Des.2].

In conclusion, whenever we fail to.observe y3 , the necessary and sufficient condition for

S-stability has D^ as an additional left factor.

2) The effect of setting m3 = 0:

By linearity and S-stability of 5(P,C), the map y3 h>e2 (see Figure 2) is given by

e2=-NcrDply3 + Dpr (Nd ui + Ddu-i). Now consider Figure 2 as a feedback system Z consist

ing of the subsystem AP in a closed loop with the S-stable subsytem whose input is y3 and output

is e2. Whenever u3 = 0, the inputs to this equivalent system £ arein the range of Dpr , hence the

necessary andsufficient condition forS-stability has Dpr as a right factor.

Proofof Theorem 4 : Since S(P, C) is S-stable by assumption, the linear map M~l given by

(2) is causal S-stable. Writing the summing node equations in Figure 2 ( Figure 3 ) in terms of

%e , %p and e3 ( ^ , £p and e3), we obtain

M
5c
5,

w1-APe3

"2
M i "1.

u2 —APe3

e3=u2+u3+Ncr%c . [S3 =u3+Npr%. j
r-lBy linearity ofM~l and equation (2) we obtain

=
— APe-

ft

= —

Drf.
AP?3 .

*

(4a)

(4b)

(5)



From (4b) and (5), e 3 ( e 3 ) is determined by

e3 =u2+u3 +Ncrg-NcrDplAPe3. [ e3 =u3 +NprQ-NprDclAP23 .] (6)
Substituting equation (2) in (6) and using the equalities I-N^Npi -DprDd and

N^Dpi =DprNd from the equation MM"1 =/ ,we obtain

e^d+N^DptAPT^Dp^^ Dc/] /]

?3=(/+^rDc/AP)-1[^r[^/ DcZ] */]

"1
u2

•

.u\
^

"1

"2 •

U3
,

(7a)

(7b)

Substituting (7a) ( (7b) ) in (5), we obtain the pseudo-state map
•

"i
u2

u3

K

P ^ H

5?. :
"1

"2

"3

h* [*]
*

, where

»

"t
V

* = ^

0*

AP(/ +iVcrD|rfAP)-|[ D,r [Nd Dd] /]

APa+^D./APr^A^^^ Dd] /]

"1

"2 •

."3.
n

"1

K2 •

M3
.

(8a)

(8b)

Now we state the necessary and sufficient conditions for the four cases in terms of the pseudo-

state maps given by (8a) ((8b)).

i) the well-posed 5((P, AP^ C) (S((P, AP^ C)) is S-stable if and only if H^ and

H^ ( H$t and H\^ ) are S-stable. The sufficiency follows from Figure 2 ( Rgure3), and

the S-stability ofNpr, Dpr, Ncr and D^. The necessity follows by the fact that C and P

have normalized right-coprime factorizations. Using similar reasoning, we get the follow

ing:

ii) the well-posed S((P, AP)2i,C) (S((P, AP^i, C) ) is S-stable if and only if H^

( H\t ) is S-stable.



iii) the well-posed S((P,AP)12,C) (5((P,AP)12,C)) is S-stable if andonlyiftf^ IUjh0

andtf^l,^ (H\s IUjss0 and #£, IBjis0) are S-stable.

iv) the well-posed S(P +AP,C) (£((P, AP)n,C) )is S-stable if and only ifH^ IU3s0

(#|JM3Js0) is S-stable.

Using equation (8a) ( (8b)), we consider the four cases just mentioned,

i) Equation (8a) ((8b)) shows that H^ and H^ ( H\t and H\p) are S-stable if and only

ifthemapPi (Pi),where

^i:=

dpI

-Npi
Dd

APd+NcrDptAPT^D^N,, Dd~\ /]

AP(I+NprDdAPrl[Npr[Nd Dd] /]

(9a)

(9b)

is S-stable. Since Dd , Dc/ , //^ , Nd , Npr and Dpr are S-stable maps, Fi (Ft) is S-stable if

AP(/ +N^DpiAPy1 ( AP (I +NprDdAPy1) is S-stable. Conversely, by (1), (2) and equation

(9a) ((9b)),

APd+NrDjAP)-1=[/>„, A^]fj

AP(/+iv/w.Dc/APr1=[-iVcr D^JFi

is S-stable ifF j ( Fi ) is S-stable. Hence case i) follows.

ii) Equation (8a) ( (8b) ) shows that H^ (H\t ) is S-stable if and only if the map F2

(F2)>

F2:=DplAP(I+NcrDplAP)-1

[ F2:=NplAP(I +NprDdAP)-l[Nl

"0"
0

*

o
L/

.

Nd Dd

Nd Dd

-l \-iis S-stable. F2 (F2 ) is S-stable if D^APd +NcrDplAPyl (NplAP(I +NprDclAPyl ) is S

stable. Conversely, F2

lows.

"0" y\ "0"
0 (^2 0
/ /

) is S-stable if F2 (F2) is S-stable. Hence case ii) fol-
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iii) Equation (8a) ( (8b) ) shows that H^ IBjBo and H%p IM3530 ( H\c IBja0 and H\f IUjs0 )

are S-stable if and only if the map F3 ( F3),

F3:=

F3:=

"pi
Nd

-Npi
Dd

AP(I+NcrDplAPylDpr[Ncl Dc/]

APQ+NprDjAPyiNpr^Nct Dc/]

(10a)

(10b)

is S-stable. F3 (F3 ) is S-stable if AP(7 +NcrDdAPylDpr (AP(I +NprDclAPylNpr ) is S-

stable. Conversely, by (1), (2) and equation (10a) ( (10b) ), D^ Npr F:

( [~Ncr Dp^ N,

D
pr

pr

) is S-stable ifF3 ( F3) is S-stable. Hence case iii) follows.

N
pr

iv) Equation (8a) ((8b) ) shows that H^ IMje0 (H^ Ittjs0) is S-stable if and only if the

mapF4 (F4)

F4 :=D„AP(/ +NcrDplAPylDpr

[ F^NplAP(I +NprDclAPylNpr[Nd Dd
Nd Dd

)
is S-stable. Case iv) follows by the fact that I A^ Dd\ is S-stable and has an S-stable right

inverse, namely
N

pr

Solving for AP in the four ( three ) necessary and sufficient conditions in Proposition 4,

we obtain a characterizationof the set of all nonlinear perturbations AP for which the perturbed

system remains S-stable (called addmissable perturbations):

6. Corollary: (Characterization of admissable AP 's) Let Assumption 1 hold. Let the linear

system 5 (P, C) be S-stable. Then

i) the well-posed 5((P,AP)22,C) (S((P,AP)22,C) ) is S-stable if and only if

AP =Qd -NcrDptQy1 (AP =Q(I -NprDdQyl) for some causal S-stable map Q.

ii) the well-posed S((PtAP)2lX) (^(P.AP^.C) ) is S-stable if and only if

AP =Dp11Q(I -N^Qy1 (NpiAP =Q(I - D^Q)'1) for some causal S-stable map Q.
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iii) the well-posed 5((P, AP)12,C) (S((P,AP)12, C) ) is S-stable if and only if

AP =Q(I -NdQylD~l ( APNpr =Q(I~DdQ )~l) for some causal S-stable map Q.

iv) the well-posed S(P +AP, C) is S-stable if and only if AP =D^Q (Dpr -N^Q )_1

for some causal S-stable Q.

D

Conclusion

From Corollary 6 i)-iii), we conclude that for AP to be an admissable perturbation, AP ,

DpiAP and APDpr (AP , NplAP and APNpr ) must have the specific normalized right-

coprime factorizations.

In the case that the plant P has right- and left-coprime factorizations (see [Vid.3] for the

linear time-invariant case, [Man.l] for the continuous-time linear time-varying case ), the set of

all stabilizing compensators C for the nominal plant is given in terms of the plant factorizations

and a free linear stable parameter, hence the factors Nd , N^ , Dd and D^ of C in Corollary

6 would also depend on this free linear stable parameter.
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