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Abstract

Experiments and theory are used to investigate the radial distribution of current at the cathode

of a cylindrically symmetric planar magnetron discharge. We have developed a simple model of

the distribution of incident ions at the cathode, in the form of an integral equation. Energetic

electrons, produced by secondary electron emission when ions strike the cathode, are accelerated

into thedischarge through a thin sheath. The Hamiltonian motion oftheenergetic electrons in the

magnetic field determines the birthplace of discharge ions, and thus, the distribution of ion current

density at the cathode. The radial current distribution has been measured for various magnetic

fields using a radially staggered array of sixteen 1 mm diameter current probes imbedded in a 9"

diameter cathode. In agreement with the model, the current distribution is peaked at the radius at

which the magnetic field is tangent to the cathode plate, and the width of the distribution scales as

the square root of the energetic electron larmor radius.



Introduction

Planar magnetron sputtering is a plasma assisted process used in the deposition of thin films.1 This

method of thin film deposition is used widely in the production of integrated circuits for deposition

of metallic films that interconnect circuit elements. A planar magnetron is a DC glow discharge in

which the anode is grounded and a negative voltage of 200 volts or more is applied at the cathode,

or target. The plasma shields the electric field through most of the chamber, and a cathode sheath

of the orderof 1 mm develops, which sustains most of the externally applied voltage. A magnetic

field is applied such that field lines enter and leave through the cathode plate. Argon ions in the

plasma, unconfined by the magnetic field, are accelerated toward the cathode and strike it at high

energy. In addition to sputtering target material, the impact of the ions producessecondaryelectron

emission. These electrons are accelerated back into the plasma and are confined near the cathode

by the magnetic field. The electrons undergo a sufficient number of ionizing collisions to maintain

the discharge before being lost to a grounded surface.

Investigation of the spatial structure of the plasma discharge is one route to understanding

discharge dynamics and has important implications for understanding and controlling nonuniformity

of target sputtering. One aspect of the spatial structure that can be measured noninvasively is the

distribution of current density at the cathode surface. Using current probes imbedded in the surface

of the cathode plate, local measurements of current density have been made. By observing the

dependence of this structure on external parameters and combining the observations with a model

of the discharge, insight into the dynamics of the discharge is gained.

Ion Current Distribution

A model of the radial ion current distribution at the cathode of a cylindrically symmetric planar

magnetron is developed to investigate the spatial structure of the discharge and its dependence on

the magnetic field. We summarize the procedure to determine the radial distribution of ion current

density, ji{r)1 at the cathode. We will not obtain an absolute current density, but will give a relative



measure of the radial dependence of ion current. At the cathode, the discharge current is carried

primarily by ions. Secondary electrons are produced only for a small fraction of the incident ions (7

is typically about 0.05), and thus make only a small contribution to the total discharge current. The

local current density of electrons leaving the cathode is jc(r) = fji(r). Assuming these electrons

are not collisional, they will undergo Hamiltonian motion in the magnetic field. Since the magnetic

field configuration in the system is known, the motion of an electron in the field can be determined.

The density of occupation of one of these high energy electrons is uniform over its range of motion

in the r-z plane. This range of motion is dependent on the structure of the magnetic field and is

different for electrons emitted at different radial locations on the cathode. In the simplest scenario,

the ions created in the plasmaare accelerated toward the sheath by a weak axial electric field (the

Bohm presheath), moving in a straight line perpendicular to the sheath surface from their point of

origin until they strike the cathode. This closes the cycle of discharge maintenance.

This model of discharge maintenance imposes a constraint on the discharge in order for it to

remain in the steady state. The electrons entering the discharge from the sheath must carry just

enough energy to maintain a constant flux of ions back to the cathode. This sequence of events is

expressed mathematically in the form of an integral equation for the ion current density, j,-(r).

Rectangular Geometry

Beforeattempting to solve the problemin the cylindrical geometry, a simplified version in a rectan

gular geometry is constructed (see figure 1). In this model, the cathode is an infinite strip of width

2R. The magnetic field is generated by a single current-carrying wire running parallel to the plate

under the midpoint at a distance a below thesurface. In this formulation ofthe problem, all lengths

will be normalized to units of o. The problem is posed as a two-dimensional problem in the plane

of the cross-section of the system across the short dimension of the cathode. The x-coordinate runs

parallel to the cathode surface, with the origin at the center and the y-coordinate is the perpendic

ular distance from the cathodesurface. The z-coordinate runs along the lengthof the cathode, and,

because of the symmetry in this problem, is an ignorable coordinate.



For this model, we assume that thesheath thickness is small compared to the range ofelectron

motion, so that we may start the calculation above the sheath. The electric field in the sheath is

treated as an impulse, giving an initial velocity to electrons emitted at the plate. There are no

important electron dynamics in the sheath, and the only role of the sheath is to provide initial

energy to the electrons coming from the cathode.

The problemis formulated in terms of j,(xo), the current densityof ions incidenton the cathode

plate at x = xo. The total current of ions incident at xo in a strip of width dxo and length L in

the z direction is Ji(xQ)LdxQ = eTi(xQ)L dxQ. Thus the current of secondary electronsemitted from

that strip is je(zo)LdxQ = yji(xo)Ldxo. The area in the x-y plane accessible to electrons emitted

at xq is called r(xo). Assuming that the density of occupation of the energetic electrons is evenly

distributed over this area, ionization willalso be distributed uniformly over the same area. The rate

of change of density within r of fast electrons emitted between xo and xo + dxq is

dn(xQlx,y) _ 7 ,,_xrJ- ,n
—dt " 7PmMo) °* (1)

Inside the region r, within a volume Ldxdy, there are Ldndxdy fast electrons that were emitted

between xo and x0 + dx0 in a time dt. We let H be the number of ion-electron pairs created in

the plasma by each energetic electron. The total number of ions created in a time dt in the volume

Ldxdy is HL dn dx dy. To find the number of ions incident in a time dt between x and x -J- dx from

this pool, HLdndxdy must be integrated over y for a fixed value ofx, since the ions move parallel

to the y direction. Because the integrand is zero outside the electron range of motion and constant

within it, the integral can be performed by multiplying the integrand by the distance between the

two y values that bound the motion for a given x. Calling this distance A(x,xo), the flux of ions

incident at x due to electrons emitted at xo is

Hh(x, x0) Z£Mf°li dx <fx0. (2)
er(x0)

In order to find the total ion flux at x, the contribution from electrons emitted at all values of

xq must be included. This is achieved by integrating (2) over xq. Thus the current of ions falling



on L dx is

Jxq t\x0J

or

irf.) =T*£*.*^iK«.>. (4)
This is a Fredholm equation of the second kind. The values of r(x0) and A(x,x0) can be expressed

analytically for the case at hand.

Toobtain expressions for r(xo) and A(x, xo), we introduce the radialcoordinater, measured from

the location of the magnetic field-producing wire. If <f> is the corresponding azimuthal coordinate,

the magnetic field is

B=*-A (5)

where Bo is the field at r = 1, the radius at which the field line is tangent to the cathode surface at

x = 0. The corresponding vector potential is

A=-zBo Inr = -zB0 In [x2 +(y +l)2] * (6)

Since pz is a constant, the Hamiltonian for an electron in this field is

In the region of interest, there is no electric field, so V can be set to zero. In this geometry, z is

an ignorable coordinate, so that the corresponding conjugate momentum, pz, is a constant of the

motion. From Hamilton's equations,

dH pt —eAx

so

P:= mz+ eAz(x,y). (9)

The value ofpx for an electron is equal to its value at the point of origin of the electron at the

cathode plate, corresponding to x = x0, y = 0, and i = 0. Thus,

Pz = Pzo = eAz(xo,0) (10)



The Hamiltonian can be written in terms of an effective potential, ^:

2m 2m 2m (n)

2m + 2m + **

where

g2 2m (12)
=^[^2(x,y)-^(x0,0)]2

Using (6) for the vector potential in (12), we obtain

(13)
8m *H^)]

For a newly generated electron, * = 0, and the electron energy consists only of its initial kinetic

energy, e$0i gained in acceleration through the sheath potential. The boundaries of the electron

motion are located where the initial electron kinetic energyhas been converted to potential energy.

These boundaries are found by equating the potential energy, ¥, equal to the initial kinetic energy,

e$o. This entails finding the values of x and y for which

«*°=i^-H «§+i )\ • (14)
Writing e$0 = ^mwjj and introducing the electron gyroradius A= v0/uc, the condition satisfied at

the boundary can be written

*2 + (y + l)2 = (*2 + l)e±2A. (15)

Thus, electron motion is bounded by a pair of concentric circles. The radii of the inner and outer

potential boundaries will be referred to as r_ and r+ respectively, where

r± = r0e±A, (16)

and t*o is the value of r corresponding to the location of xo on the plate. The cathode plate serves

as a third boundary. Since there is a sharp potential fall at the cathode plate, corresponding to the

sheath, it is treated as an infinite potential step, reflecting incident electrons. For electrons emitted

near x = 0, the electron never reaches its inner circular boundary because of the presence of the

cathode, and is bounded only by the cathode plate and the outer boundary. The value of xo below
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which an energetic electron is confined by the outer potential boundary and the cathode and above

which an electron is confined by both circular potential boundaries and the plate is xi, the value of

x0 for which the inner potential boundary is tangent to the cathode plate. On using (15),

*i=(e2A-l)*. (17)

For some initial conditions, x0, the outer boundary is ata radius so large that it does not intersect

the cathode. These electrons are lost from the system before producing appreciable ionization and

thus are ignored in the calculation. This upper limit for x0 is computed by finding the x0 for which

the outer boundary intersects the plate right at the edge x= R. The corresponding boundary will

have radius rR = VI + R2. Then xm, the maximum allowable value of x0, is given by

rR = (*m + 1) e2\ (18)

or

*m = r-Re 2A - 1. (19)

The area of the arc region, r(x0), can be computed explicitly by combining the areas of simple

geometric shapes. This area can be expressed simply in terms of x_ and x+, the points on the

cathode surface that are intersected by the potential boundaries, and the angles <j>_ and <f>+, defined
as

0± = arcsec(r±). (20)

Thus, the area ofthe region of access for an electron emitted at x0 is

(r2 <f>+ - x+) L xo < xL
r(x0)= (

(r^+ - ri^_ - x+ +x,) L xi < x0 <

For xQ > xm, the energetic electrons are lost from the system and we set r(x0) = oo. The height

of the strip of width dx within r(x0) containing electrons emitted at x0 that contribute to the

production of ions striking the cathode at x, is

A(x,xq) = <

(21)

y/rl-xl-yjri-x2 x<x_
n (22)

Vr+ - *2 - ! x_ < x.



Now the integral equation may be written out analytically. The equation cannot be solved

analytically, but it can be discretized and solved numerically as an eigenvalue problem. Defining the

kernel, fc(x,x0), in (4) such that

ji(x) = yH <fx0&(x,xo)ji(x,xo), (23)

the integral is converted to a sum:

if. =* ]£*«.&. (24)
n

where n and m are indices corresponding to the discretized values ofxo and x, respectively. Writing

this in vector notation, we obtain a standard eigenvalue equation:

Ji(K-Ai!) = 0. (25)

where Jj is the vectorof values of jf at the discrete locations alongthe cathodesurface, and Kis the

matrix containing the kernel elements. This is solved numerically for the eigenvalues, A,- = \fiH

and the eigenvectors Jj. We are interested only in the lowest eigenmode of the system, since the

flux must be positive everywhere on the plate. Thus we determine numerically the eigenvalue with

the smallest magnitude and its corresponding eigenvector.

Results and Discussion

Results are shownin figure 2 for two different magnetic field strengths. The ion current distribution

is peaked at the center of the plate and falls to zero near the edge. The units of the ion current are

arbitrary, since this is a model of relative ioncurrent density. Thus, the eigenvectors are normalized

to be 1 at their peak. The distribution becomesmore sharply peaked as the magnetic field strength

is increased. The value of a, the distance of the magnet current wire below the surface of the plate,

was chosen so that the curvature at the cathode surface corresponds approximately to the curvature

of the magnetic field lines at the cathode plate in the experimental system. The width of the plate

is chosen to correspond to the radius of the electrode in the experiment.

The presence of the magnetic field has a focusing effect on the plasma discharge. Electrons

emitted at the cathode plate far from xo = 0 travel along magnetic field lines to produce ionization

8



in the region of accessibility for that electron. The range of motion perpendicular to the magnetic

field is inversely proportional to the strength of the magnetic field. On any magnetic field line, an

energetic electron generated far from the center of the plate can produce ionization near the center

of the plate since it passes above the center as it travels parallel to the field line. However, it can

only produce ionization further away from the center than its origination point by its cross field

travel, which depends sensitively on the size of A, the larmor radius of the energetic electrons.

This suggests a natural scaling for the width of the distribution. Call r'(xo) the volume of the

portion of r that corresponds to |x| > x0. Little current will fall at the cathode for the value of x

above which the region r'(x0) does not contribute significantly to r(xo). Thus we approximate the

width of the current distribution by the width of r(xi) at the cathode, wherext is the valueof xo

(defined in (17)) for which the inner potential boundary is tangentto the cathode surface. The result

is that the mean width of the region of ion flux, w, scales as the square root of the unnormalized

electron larmor radius, and as the squareroot of the magnetic field line radius of curvature:

uToc(aA)*. (26)

This scaling is observed in the results of the model, as long as w is small compared to 2R, the width

of the plate.

Cylindrical Geometry

In order to make a more direct comparison between the modelling and experimental results, the

model was extended to a cylindrical geometry. Instead of approximating the magnetic field by

that produced by a single straight wire, it was determined by POISSON, a computer code that

computes magnetic field strengths and field lines for a given configuration of iron and current-

carrying elements and was used in designing the magnet for the experimental system. A comparison

was made between the output of POISSON and the actual magnetic field produced by the magnet

in order to verify the reliabilityof the POISSON output. Measurements weremade of both the axial

and radial magnetic field strengths using a Hall effect gaussmeter. The variation in field strength as

a function of radius was found to be consistent for both the radial and axial fields. The magnitude



of the field calculated by POISSON was found to be within 10 percent of the measured field, giving

confidence to the use of the POISSON output in calculating the range of electron motion. POISSON

was used to determine both the magnetic field and the vector potential on the gridpoints of a

mesh covering the r-z plane. The dimensions of the magnet used in the experiment, including both

the current carrying element and the iron core were fed into the program, along with the magnet

current for the case of interest. The vector potential thus produced, A(r,z) = #A^(r,r), is then

used to determine the effective potential well. The vector potential for each starting position ro in

the discretized problem is determined by linear interpolation between the grid points on the mesh.

This is then used in the cylindrically symmetric Hamiltonian,

along with the initial kinetic energy to determine the value of A$ at the boundaries of the electron

motion in the potential well. The values of vector potential on the grid are again interpolated, this

time to find the values of r and z at which the particle is reflected. Once the region of access for

an electron is determined, the values of r(ro) and h(r,ro) can be calculated directly, and the kernel

constructed and the eigenvalue problem solved.

Preliminary results are consistent with those for the rectangular geometry, and further studies

are underway.

Ion Current Distribution Experiments

In conjunction with the modelling described above, we are conducting experiments to measure the

ion current distribution. We have designed and constructed an experimental system for the purpose

of studying the planar magnetron . The system consists of a 12" diameter cylindrical aluminum

vacuum system. Two parallel 9" diameter copper electrode plates, mounted on axis, are water cooled

and insulated from the vacuum vessel. The electrodes can be moved independently along the axis,

allowing variation of electrode separation and permitting the axial movement of the discharge past

fixed diagnostics for spatially resolved measurements.
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A variable magnetic field for the planar magnetron is provided by a DC electromagnet mounted

behind the cathode plate. The design of the iron core electromagnet was optimized for our system

using POISSON. The presence of the magnetic field results in the reflection of electrons moving

back and forth along the field lines, so that they are confined near the cathode. The output of

POISSON suggests that magnetic mirroring is important at the inner radius, but is unimportant at

the outer radius of the electron's motion. This is presumably the case in other planar magnetrons.

Thus, electrostatic reflection at the cathode sheath plays an important role in electron confinement

in the planar magnetron.

Cathode Current Probes

Sixteen current probes have been installed in a radial array in the cathode plate. Each probe is a 1

mm diameter pin, whosesurface is flush with the cathode surface and is electrically isolated from the

cathode. The current collected by the probes is determined by measuring the voltage across a small

resistor connected between each pin and the cathode. The presence of the pins does not appear to

disturb the discharge or affect the operation of the magnetron. There is a voltage difference between

the pins and the cathode plate, but that difference is small (~ IV) compared to the cathode voltage

(~ 400V) and causes only a minor perturbation on the local electric field. In addition, since the pin

size is small, the perturbation is localized.

Experimental Results

Preliminary results have been obtained with the cathode current probes. A series of current profiles

have been measured in a planar magnetron discharge in 5 mtorr argon, with a fixed total discharge

current of 0.5 A. The magnetic field was varied between 140 G and 570 G. Because of the variation

in the magnetic field, the discharge voltage was also varied in order to keep the total current fixed.

The current distribution is found to be peaked at r = 5.0 cm, the radius at which the magnetic field

lines are tangent to the cathode surface, as predicted by the model. In addition, the width of the

distribution becomes narrower as the strength of the magnetic field is increased. These results are
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illustrated in figure 3. We see a scaling ofthe width ofthe distribution:

tFocA*, (28)

as predicted by (26). However, this scaling is observed for a restricted range of magnetic field

strengths. Once B is raised beyond a certain level (in this case it seems to be about 430 G, but it

depends on the discharge current), no further decrease in wis observed. This suggests that there

is another mechanism that is producing cross field particle transport, which may be insignificant at

lower field strengths, but which controls the value of wat higher magnetic fields.
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Figure Captions

1. Two dimensional, rectangular geometry model for current distribution at the cathode.

2. Theoretical current distribution at the cathode for the rectangular model at two different

values of the energetic electron gyroradius A(cm). For both cases, a = 2. cm.

3. Experimental current distribution at the cathode for two magnetic fields strengths of 140

and 430 gauss at thecathode. The corresponding electron larmor radii for the two cases

are A= 0.68 cm and 0.14 cm, respectively.
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