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ABSTRACT

Circuit simulation, the solution of a set of nonlinear ordinary differential equations

(ODE's) that describe a circuit's behaviour, continues to be an important tool for the

design of integrated circuits (IC's). However, circuit simulation speeds have not kept pace

with the increasing number of transistors and complexity of IC's. Parallel processing, the

technique of partitioning a large problem into sub-problems and solving the sub-problems

simultaneously, is a potential method of improving the speed performance of circuit simu

lators. This dissertation addresses the issue of applying parallel-processing methods to

reduce circuit-simulation runtimes.

The nonlinear ODE's in circuit simulation are commonly solved using either direct or

mixed direct-relaxation methods. Since relaxation methods provide an implicit partitioning

scheme which makes parallel processing easy, the performance of a node-based relaxation

circuit simulator implemented on the BBN Butterfly Parallel Processor is studied and indi

cates that relaxation-based circuit simulation is an application well-suited to parallel pro

cessing. However, relaxation methods alone are not appropriate for the simulation of all



circuits and direct methods continue to be important

The parallelization of a direct-method circuit simulator is studied on the Sequent Bal

ance B8000 parallel processor. The major time-consuming phases of direct-method circuit

simulation, model evaluation and linear-equation solution, are evaluated for their suitability

to parallel processing. Model-evaluation time is observed to decrease almost linearly with

increasing numbers of processors, proving it is well-suited to parallel processing. Linear-

equation solution and synchronization points between the two phases are identified as obs

tacles to the efficient parallelization of direct-method simulators. A new pipelined direct-

method algorithm is presented that eliminates the synchronization point between model

evaluation and linear-equation solution, thereby improving parallel performance. «.



ACKNOWLEDGEMENTS

This dissertation has been made possible through the efforts of a number of people,

although attributed to but one. The following acknowledgements are an attempt to express my

immeasurable gratitude to those without whom this document would not have been. To the

numerous unmentioned due to constraints of space, time and, alas, memory, my apologies and

silent thanks.

Prof. Pederson, my thesis advisor, has been an able mentor and guide, providing advice

when I needed it and allowing me (or goading me, if the situation demanded!) to stand on my

feet when this was important. Prof. Newton has, through his constant demand for excellence,

pushed me to the conclusion of tasks that I might have been wont to leave half-done. Beyond

the guidance towards my research and dissertation, I have received from my advisors presenta

tion skills, an appreciation for good work and a sense of perspective that I shall always value.
«

This dissertation serves as adequate testament I am grateful to Prof. Sangiovanni-Vincentelli

for his support, and along with Profs. Pederson and Newton, for the excellent CAD-group

environment they have built at Berkeley. The financial support of the California State MICRO

program, the Semiconductor Research Corporation and DARPA are gratefully acknowledged.

I thank Prof. Jewell for his supportand for reviewing this dissertation. I also thank Profs.

Randy Katz, Larry Carter and Jeanne Ferrante for their support of my work. I am grateful to a

number of people at Bolt, Beranek and Newman, especially John Goodhue, Bob Thomas,

Walter Milliken and Will Crowther, for introducing me (gently) to the wonderful world of mul

tiprocessing, and to Jon Payne for introducing me to Jove. I am also grateful to Tony Mag-

payo and the folks at Sequent for putting up with the many questions I had about the Balance.

Karti Mayaram, Theo Kelessoglou, Wayne Christopher, Jeff Bums, Srinivas Devadas,

Lorraine Layer, Res Saleh, Ron Gyurcsik and Deana Ocneanu have been constant sources of



information, good cheer, humour and inspiration and I thank them for their steady support and

wonderful company. I am grateful to Don Webber, Young Kim, Seung Hwang, Ken Kundert,

Shelley Sprandel, Tom Boot and everyone in the CAD group for assistance at times when I

didn't have the foggiest idea of what was happening to the world around me, and to Randy

Cieslak, Tim Salcudean, Myra Boenke, Ted Baker, Giintekin Kabuli, Barbara Mills, John

Kunze, Roger Hale, and Herve' and Annick Da Costa for being around to talk to and divert

my attention when I found out I am also grateful to the many who permitted me to vent my

frustrations C,research-derived?M; "nay, sir, surely ye jest") on the squash or tennis court

I thanic my room-mates, Amit Bhaya, Aniruddha Das, Nazli Gundes and Sunil Kumar for

putting up with and without me, and Vidula Kirtikar, Susan Chacko, and Deb, Bruce and

Stephen Smith for their constant love and support Most of all, I am grateful to my brothers,

Jonathan and Rahul, for keeping me humble yet letting me believe I knew who was boss, and

to my parents, Jake and Sheila, for picking me off the street



TABLE OF CONTENTS

CHAPTER Is INTRODUCTION ———————————————————• l

CHAPTER 2: DIRECT-METHOD CIRCUIT SIMULATION—.- 7

2.1 Algorithmic Techniques 7

2.1.1 Problem Construction 10

2.1.2 Integration Schemes - 11

2.1.3 The Newton-Raphson Method 14

2.1.3.1 Linearization 15

2.1.3.2 Sparse Linear-Equation Solution 16

2.2 Hardware-based Acceleration Techniques 18

2.2.1 Vector and Array Processors 20

2.2.1.1 CLASSIE: Circuit Simulation on the CRAY-1 21

2.2.1.2 Improvements due to Gather-Scatter Hardware 22

2.2.2 Special-purpose Hardware for Parallel Simulation 24

2.2.2.1 MMAP - 25

2.2.2.2 BLOSSOM 27

2.2.2.3 Special-purpose Subcircuit Solver 29

2.23 Multiprocessor Sparse Linear-Equation Solution 30

2.2.3.1 Linear-Equation Solution: Dynamic Pivot Ordering 30

2.2.3.2 Linear-Equation Solution: Static Dependence Graphs 32

2.3 Conclusions 33

CHAPTER 3: PARALLELISM LIMITS IN CIRCUIT SIMULATION 34



u

3.1 Motivation for using MSPLICE 36

3.2 Algorithms » 37

3.2.1 Iterated Timing Analysis 38

3.2.2 The MSPLICE Algorithm 41

3.23 The Ideal Gauss-Seidel Machine .-. 42

3.3 TheBBN Butterfly Parallel Processor 43

3.3.1 Architecture 44

3.3.2 Programming Environment 48

3.4 Benchmark Circuits 51

3.5 The MSPLICE1 Program 53

3.5.1 Multiple-Queue Dynamic Scheduling 53

3.5.2 Multiple-Queue Static Scheduling ~ 55

3.53 Globally Shared Data in MSPLICE1 57

3.6 The MSPLICE2 Program 59

3.6.1 Differences between MSPUCEl and MSPUCE2 59

3.6.2 Single-Queue Dynamic Scheduling 60

3.63 Limitations of the Ideal Gauss-Seidel Machine 63

3.6.4 Performance using Floating-Point Accelerators 65

3.6.5 Parallel Processing and Iteration Counts 68

3.6.6 MSPLICE Simulating Tightly Coupled Circuits 70

3.7 Conclusions 7*

CHAPTER 4: PARALLEL DIRECT-METHOD CIRCUIT SIMULATION 74

4.1 Parallel Direct-Method Algorithms 75

4.2 The Sequent Balance B8000 79



Ill

4.2.1 Architecture 80

4.2.2 Programming Environment : 82

4.3 Parallel Model Evaluation 83

43.1 Algorithm 83

4.3.2 Performance 85

4.4 Parallel Linear-Equation Solution 87

4.4.1 Sparsity Considerations 88

4.4.2 Pivot Dependency Graph Algorithm 89

4.43 Performance and Analysis 94

4.5 Conclusions 95

CHAPTER 5: PARALLEL SPARSE LINEAR-EQUATION SOLUTION 97

5.1 Pivot-based Parallel Linear-Equation Solution. 97

5.2 Row-based Parallel Triangulation 101

5.3 Parallel Back Substitution 104

5.4 Pipelined Triangulation and Back Substitution 106

5.5 Conclusions HO

CHAPTER 6: INTER-PHASE SYNCHRONIZATION BOTTLENECKS 113

6.1 Pipelining Model Evaluation and Linear-Equation Solution 114

6.1.1 Algorithm 1M

6.1.2 Performance Analysis H8

6.2 Pipelined Linear-Equation Solution and Convergence Checking 118

6.2.1 Algorithm 120

6.2.2 Performance Evaluation 123

6.3 Overall Performance .* 126



IV

CHAPTER 7: CONCLUSIONS 130

APPENDIX A: PDSPLICE3 Source Listing 133

APPENDIX B: MSPLICEl Source Listing 134

APPENDIX C: MSPLICE2 Source Listing ~.~....~........^~~..-.~..-.~~~~....~.~~-. 135

R£FEREINCES —»»«»»»»»»»»»«•»—»»«««•«————««««»»»——————•—«—————»—•—•——————♦•——————x^o



CHAPTER 1

INTRODUCTION

Simulators are used extensively by Very Large Scale Integrated (VLSI) circuit

designers in order to study circuitbehaviour prior to fabrication. An accurate circuit simu

lator reads an input description detailing a circuit's connectivity and element parameters

and assembles a set of non-linear ordinary differential equations (ODE's) to represent the

circuitbehaviour. For a prescribed set of input signals over a desired time period, a circuit

simulator numerically solves the non-linear ODE's to yield the simulated circuitbehaviour,

typically presented graphically as output-signal waveforms. Circuit designers study the

output waveforms and then modify circuit elements or connectivity until the output signals

meet the required design specifications.

Fast circuit simulation is important for the design of electronic circuits, and reliance

on circuit simulators is expected to continue as circuit designs and device technologies

become more sophisticated. Today's commonly used circuit simulators, e.g., ADVICE,

ASTAP, SLATE and SPICE [1,2,3,4] which use direct methods to solve the circuit equa

tions, and SAMSON, SPLICE and RELAX [5,6,7,8,9,10] which use mixed direct-

relaxation techniques, are not able to simulate 100,000-transistor VLSI circuits within a

reasonable time and are growing increasingly inadequate as part of a circuit designer's

design-simulate-redesign cycle, especially for certain classes of circuits, e.g., mixed

analog-digital circuits and dynamic memories. As a result, significant research is being

conducted towards building faster circuit simulators using hardware accelera

tors [11,12,13,14,15,16,17,18].



Previous techniques for speeding up circuit simulators include generation of special-

purpose microcode for linear-equation solution [19], software [6,20,21,22] and

hardware [23] table-lookup for empirical model evaluation, and the use of vector proces

sors [24,25] such as the CRAY-1 [26] and array processors [27,28] such as the FPS-

164 [29]. For practical circuits, the overall speed improvement of the simulation has been

well under two orders of magnitude compared to SPICE2G [30]. The hardware-related stu

dies [23,24,25,28] are particularly interesting as they show that a significant amount of

parallelism is present during the linearization of the circuit matrix.

In [24], it was shown that the sparsity and irregular structure of the circuit matrix

caused the data gather-scatter time to dominate simulation time on vector processors. A

dominant gather-scatter time implies that simply fetching and storing data from and to

memory take longer than the actual computation using the data. More recently, vector pro

cessors such as the CRAY X-MP, the Hitachi S-810 and the CDC CYBER-

205 [31,32,33] have been developed with special-purpose hardware for gather-scatter

operations and have been utilized to overcome the gather-scatter problem in circuit simula

tion [34]. However, the Single Instruction Multiple Data (SIMD) operation mode of vec

tor processors [35] results in inefficient utilization of processors during model evaluation,

since differing regions of transistor operation necessitate program branches [36]. Thus,

efficient parallel techniques must exploit the inherent parallelism of circuit simulation while

simultaneously keeping as many processors busy as possible.

Parallel processing, the technique of decomposing a large problem into anumber of

(smaller) subproblems that are solved by a number of processors in parallel, provides one

effective solution to both, the gather-scatter and the SIMD problems. The gather-scatter



bottleneck is avoided because distributed processors access distributed data, rather than ini

tially distributed data being gathered to and scattered from centralized processors (as is the

case with vector processors). Since parallel processors operate in Multiple Instruction Mul

tiple Data (MIMD) [35] mode, processors can simultaneously evaluate transistors that are

in different regions of operation, thereby exploiting more parallelism than can the SIMD

vector processors. As a result, parallel processing appears well-equipped to improve the

speed performance of circuit simulators. Parallel processing is made even more attractive

by the recent emergence of a number of commercially viable multiprocessors that are built

using inexpensive microprocessors, such as the BBN Butterfly Parallel Processor, the Intel

iPSC and the Sequent Balance B8000 [37,38,39] or special-purpose IC chips for parallel

processing, as in the Alliant and ELXSI machines [40,41]. The introduction of these mul

tiprocessors also makes available a number of different parallel processor architectures,

providing users with an opportunity to examine the fit between particular applications and

the different architectures.

Efficient parallel processing for speedup requires the selection of an algorithm that

displays a high degree of parallelism. Today's circuit simulators use either direct or mixed

relaxation-direct algorithms. Direct-method simulators solve all the circuit equations

together simultaneously (as a single vector system), including those describing inactive

parts of a circuit, and have not proved efficient for rapid simulation of large digital circuits

with high levels of latency. Latency of a circuit is defined in terms of both space and

time: latency in space refers to the signals in the circuit that are inactive at a given

timepoint during a simulation, while latency of a signal in time indicates those timepoints

when the signal is inactive during the simulation period. Mixed relaxation-direct circuit

simulators decompose a circuit into subcircuits, solving active subcircuits using direct



methods and iterating between subcircuits, using relaxation, until they converge to a correct

solution [42]. Relaxation simulators initially appear better suited to parallel processing

than do direct-method simulators, as they naturally partition a circuit into subcircuits that

can be solved independently in parallel. However, since subcircuits are assembled on the

basis of coupling strength between circuit elements, there is often a large variance in sub-

circuit size. As a result, balancing load between processors is difficult because processors

assigned small subcircuits become idle while other processors continue to work on large

subcircuits [10,43]. Thus, for efficient load balancing, the (direct-method) subcircuit solu

tions themselves must be sub-divided into smaller subtasks which, in turn, can be pro

cessed in parallel. Also, direct methods continue to be important for the simulation of

tightly coupled circuits, as well as for dc analysis and for circuits that contain elements that

are not easily handled by relaxation methods. The parallel potential of direct-method circuit

simulation is investigated in this dissertation, through the use of the direct-method subcir

cuit solver in the parallel Iterated Tuning Analysis (TTA) relaxation simulator,

PSPLICE3 [43]. In order to distinguish the simulation program developed and described

in this dissertation from the unparallelized subcircuit solver in PSPLICE3, the program

developed here and listed in Appendix A is referred to as PDSPLICE3. PDSPLICE3

includes both, the parallel relaxation algorithms installed by Res Saleh in PSPLICE3, as

well as the parallel direct-method algorithms described in this dissertation.

An introduction to direct-method circuit simulation techniques is presented in Chapter

2. Previous work towards accelerating direct-method circuit simulation through the use of

parallel architectures is also described in Chapter 2. This presentation of uniprocessor,

direct-method algorithms and previous parallelization experiments provides background as

well as direction for the current study.



Experiments to increase the efficiency of a multiprocessor-based relaxation circuit

simulator, MSPLICE, are described in Chapter 3. This description presents useful guide

lines for prograrnming a large multiprocessor system, hence the parallel programming tech

niques used for the MSPLICE experiment are applied to the parallelization of direct

methods. In addition, MSPUCE's performance indicates that node-based relaxation simu

lators are highly parallelizable, as has been verified in [44]. The efficient parallelization of

MSPLICE also helps to identify load balancing as the cause for the inadequate parallel per

formance of subcircuit-based relaxation simulators as in [10,43].

The first step towards parallelizing an application is the straightforward development

of a parallel algorithm based on the best sequential algorithm for the application. Chapter

4 describes a parallel implementation of the most commonly used direct-method circuit-

simulation algorithm on the Sequent bus-based Balance multiprocessor. The two most

computationally expensive phases of direct-method simulation are the steps of the

Newton-Raphson iterative loop, i.e., linearization and linear-equation solution, which are

focussed on in this chapter. The linearization phase is demonstrated to lend itself easily to

parallelization, with minor task-clumping modifications for efficiency on the Balance. A

dataflow method using pivot-dependence graphs (PDG's) similar to those presented in [45]

is utilized as a straightforward means of parallelizing sparse linear-equation solution, but it

is shown to yield a small degree of parallelism which is difficult to realize on the Sequent

Balance.

With parallelization of sparse linear-equation solution identified as a bottleneck in the

performance of a parallel direct-method circuit simulator, further approaches to paralleliz

ing linear-equation solution are described in Chapter 5. Theoretical limits to the parallel-



ism available using different algorithms are calculated, displaying that the PDG technique

provides a larger degree of parallelism as circuit size increases. Further, row-based tech

niques are shown to have greater parallel potential than pivot-based methods, especially as

the density of the circuit matrix increases. A row-dependence graph (RDG) algorithm is

presented that efficiently exploits the limited parallelism available during sparse linear-

equation solution and results are presented for an implementation on the Sequent Balance.

In spite of the efficient exploitation of parallelism in both the linearization and

linear-equation solution phases, however, it is evident that the overall speedup for simula

tion is still limited by the low degree of parallelism during linear-equation solution and by

synchronization bottlenecks between the phases. Removal of inter-phase bottlenecks by the

use of pipelining improves the potential for parallelizing circuit simulation as a whole. In

Chapter 6, a global parallelization scheme that pipelines the highly parallel linearization

with the less-parallel linear-equation solution is presented. Pipelining simultaneously

removes the synchronization point between the two phases of the Newton-Raphson method

and improves the overall parallel potential. In addition, algorithms for parallel convergence

checking and for pipelining back-substitution (during linear-equation solution) and conver

gence checking are presented, which lead to improvements in parallel performance for the

direct-method solver as well as for the parallel relaxation simulator that utilizes the direct-

method solver only for subcircuitevaluations.

The work described in this dissertation provides insights into parallelizing direct-

method circuit simulation. The major conclusions of this study and possible directions for

future research are listed in Chapter 7.



CHAPTER 2

DIRECT-METHOD CIRCUIT SIMULATION

Transient analysis, one of the most commonly used tools in circuit design [6,19,24],

involves the solution of a system of nonlinear ordinary differential equations (ODE's) that

describe the dynamic behaviour of a circuit These equations may be written in theform

F{x,xj ) = «(r), x(0) = X0 (2.1)

wherex is the vector of circuitvariables, F represents a mapping function, u(t) is the vec

tor of input variables at time t, and X0 represents the values of the circuit variables at time,

t = 0 [46]. Techniques for constructing and solving Equation 2.1 using direct methods are

described in Section 2.1. In Section 2.2, a number of hardware-based approaches to

enhance the speed performance of direct-method circuit simulators are described and

evaluated, providing a basis and direction for this study.

2.1: Algorithmic Techniques for Direct-Method Circuit Simulation

A -complete representation of a circuit uses KirchchofFs Voltage Law (KVL),

Kirchchoffs Current Law (KCL) and branch equations for each element in the circuit,

assembled as the Sparse Tableau [47] shown in Equation 22:

(22)

where A is the reduced incidence matrix, Bt and Bv are submatrices that contain branch

equation coefficients for current and voltage, respectively, and 5 is the vector of indepen

dent source currents and voltages. Programs, such as ASTAP [2], solve this system using

A 0 0 b"
0 / -A' = 0

Bi B¥ 0 sm



Sparse Tableau Analysis [48]. However, a sparse-tableau representation contains n+2b

equations, where n is the number of nodes and b is the number of branches in the circuit,

while other techniques result in far smaller systems, e.g., Nodal Analysis has only n equa

tions. Because of their compactness, nodal and loop analysis techniques, presented in Sec

tion 2.1.1, are better suited for computers with limited memory sizes. As a result, most

circuit simulators use Modified Nodal Analysis [49], a mixed nodal- and loop-analysis

technique, which is described in Section 2.1.1.

Given the system of nonlinear ODE's describing the circuit behaviour, the simulation

proceeds over the desired time period as follows (also shown pictorially in Figure 2.1):

(a) At each timepoint the nonlinear ODE system is integrated numerically to

obtain a nonlinear algebraic system that represents the circuit at that timepoint;

(b) The system of nonlinear algebraic equations are iterauvely solved using the

Newton-Raphson method, Le.,

(i) the nonlinear equations are linearized about the old solution point;

(ii) the resulting sparse system of linear equations is solved using LU-

decomposition, forward- and back-substitution and yields voltage and

current values for a new solution point

(iii) convergence is checked for by comparing the old and new solution

points: if the two points are within allowed tolerances of each other, simu

lation proceeds at the next timepoint; else, the Newton-Raphson process is

continued at the same timepoint
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Figure 2.1. Standard Algorithm for Direct-Method Circuit Simulation
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2.1.1 - Problem Construction

The two techniques commonly used to reduce the dimensions of the Sparse Tableau

system of circuit equations are Nodal Analysis and Loop Analysis. Nodal Analysis [4,49]

starts with the KCL equations at each circuit node, which equate the sum of all the branch

currents entering each node to zero. Branch current-voltage relationships transform the

KCL equations to a set of equations in terms of branch voltages, which are then converted

using KVL to a system described by the circuit node voltages [47]. Since this system is

over-determined, a single node is assigned as the datum node (at zero potential), and all

other node voltages are calculated with respect to the datum node. The second technique,

Loop Analysis, is analogous to Nodal Analysis, but starts with the KVL equations: the

KVL equations are assembled for each loop in the circuit, and branch voltages are replaced

using the branch relations and KCL, resulting in a system described by the loop currents.

VLSI circuit devices, e.g., diodes, bipolar and metal-oxide semiconductor (MOS)

transistors, tend to be voltage-controlled and are therefore more easily represented by a

technique that describes a circuit in terms of voltages, such as Nodal Analysis, than a

representation in terms of currents,- as in Loop Analysis. Hence, most circuit simulators

use Nodal Analysis as a basis to assemble the circuit equations [50,4,5,7,10].

Nodal Analysis, however, is unable to handle either current-controlled devices ordev

ices without current terms in their branch equations, e.g., independent voltage sources and

voltage-controlled voltage sources, since branch relations for the former elements contain

no voltage term while branch relations for the latter do not contain a term for current In

addition to the Nodal Analysis equations, these non-nodal elements require Loop Analysis

equations of their branches. The resulting technique is known as Modified Nodal
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Analysis [49] (MNA).

The MNA technique first uses Nodal Analysis to describe the circuit behaviour,

ignoring currents for those branches with non-nodal elements. Then, branch equations for

the non-nodal elements are added to describe the system completely. As a result, the final

system to be solved has more than n-1 equations but is still significantly smaller than the

sparse tableau. This is illustrated in Equation 2.3 below:

Yn A

B C

Is

E,
(23)

where YN is the n-1 x n-1 nodal admittance matrix, /, is the n-1 x 1vector of independent

current sources, e is the n-1 x 1 vector of node voltages, A is an n-1 x y matrix represent

ing the effect of the y irreducible branch currents in nodal analysis, B and C are y x n-1

and y x y matrices that give the branch equations for the irreducible branches, /' is the

y x 1 vector of irreducible branch currents, and E, is the y x 1 vector of independent vol

tages sources in the irreducible branches. Circuit simulators use numerical techniques to

solve Equation 2.3.

2.1.2 - Integration Schemes

Numerical integration is employed to convert the nonlinear ODE system to a set of

nonlinear algebraic equations. For circuit simulation, the numerical integration techniques

used are linear, multistep methods, which divide the simulation interval into a number of

timesteps [51]. Then, for each timestep, the system's behaviour is approximated by a

linear function of past and present voltages, currents and charges. Thus, a linear, multistep

method starts from the known dc solution for the circuit, calculates the circuit variables at

the end of the first timestep and continues this process till the end of the simulation period,
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while limiting the error at each step. The procedure of numerical integration is illustrated

below using a single ODE for simplicity.

Given a first-order ODE of the following form:

y = f( ys )

linear, multistep methods divide the simulation period, T, into a number, n, of periods, tn,

such that

t0 = 0, • • • . fB+i = tn + nn+lt • • • , tN = T,n = 0,1,...^

where h„ is the timestep taken to arrive at the end of the nth period. Multistep methods

compute yn+1 on the basis of y and y atp previous time points, in the following form:

y«+i = i>. y»-f + £*»-• */ yn-i (2.4)

An example of an explicit method, where b.x = 0, is the Forward Euler (FE) method,

which is described by

yi,+i = yn + ««+i y« C2-5)
Note that the FE method, as with all explicit methods, requires merely a function evalua

tion in Equation 2.5. Implicit methods, like the commonly used Backward Euler and Tra

pezoidal methods, have *_i * 0 and require iterative solutions. For example, the Backward

Euler (BE) method is described as

while the Trapezoidal (TR) method can be represented as

y,,+i = y« + (*»+ifc) f?i.+i + y») (2/7>

Implicit methods, due to the "feedback loop" in their formulation, are generally more stable

than explicit methods and provide error control and are hence preferred for integration.
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Since an integration method approximates a continuous function by a linear

equivalent, an error may be introduced due to truncation of the function. At each timestep,

the truncation error due to a multistep method is dependent on the errors in the values cal

culated at the previous steps and is termed the Global Truncation Error. However, it is

possible to compare the accuracy of integration schemes in an approximate manner merely

by comparing their respective Local Truncation Errors (LTEfs), where the LTE is defined

as the error between the calculated and actual values of the function at a given timestep,

assuming that solutions at all previous timesteps were exact The LTE of an integration

method is a function of the timestep, the coefficients of the method, and the order of the

method (determined by the polynomial of the highest degree exactly solvable by the

method). Therefore, circuit simulators control the LTE at each timestep by controlling the

size of the timestep. In the limit, as the timestep tends to zero, the error tends to zero as

well; however, this increases the number of timesteps taken during the simulation period.

As a result, circuit simulators take the largest timestep possible to keep the simulation time

small, yet ensure that the LTE at each node in the circuit is always less than a certain pre-

assigned constant

In spite of restricted LTE's at each timepoint, an integration method may sometimes

be unstable, i.e., its use results in predictions of instability for stable systems. It can be

shown [46] that the FE method is stable for only a certain range of timesteps; the BE

method is over-stable, i.e., it will make unstable systems appear to be stable, thereby quel

ling real oscillations; and the TR method is A-stable, i.e., it represents stable and unstable

systems as being stable and unstable, respectively, regardless of the timestep used. The TR

method is commonly used in circuit simulators.
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Due to themany independent energy storage elements in a circuit, there is often more

than a single time constant associated with a circuit The chosen integration scheme should

thus be stiff [46], i.e., it should be able to handle a wide range of time constants. If the

integration method were only stable for small timesteps, as is the FE method, then the

simulation would require many timesteps, even though the signals in the circuit may notbe

changing rapidly. A stiffly stable integration scheme, such as BE and TR, is stable for any

size of timestep, and thereby facilitates the use of small timesteps when circuit signals are

changing rapidly, or large timesteps when circuit activity is slow.

Once the nonlinear ODE's have been integrated numerically, they yield a set of non

linear algebraic equations. These equations are then solved directly, using the Newton-

Raphson method.

2.13 - The Newton-Raphson Method

The Newton-Raphson (NR) method is an iterative technique used to solve a nonlinear

equation. Each iteration proceeds as follows:

(a) Estimatean initial solution to the equation,

(b)LineariT? the equation around theestimated solution, and

(c) Calculate the solution to the linearequation.

This process is repeated, using the solution from one iteration as the estimated initial solu

tionfor the next iteration, until the difference between the last two solutions is smaller than

the weighted sum of an absolute tolerance and the product of the current solution with a

relative tolerance, when the method is said to have converged to a solution.
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2.1.3.1 - Linearization of the Circuit Matrix

At each iteration, i, the NR method involves deterrnining a solution, *', to the follow

ing equation

xo>d B xt -J(xirlf(xi) (2-8)

where the elements of the Jacobian, /(*''), represent linearized circuit elements that would

be obtained by linearizing each branch equation independently at jc\ Given that J(x) is

lipschitz-continuous, i.e., J(x) is continuous and its rate of change is bounded and that

J(x') is non-singular, the NR method converges provided the initial estimate is close to x'.

Further, the NR method converges quadratically in the immediate vicinity of x', i.e., the

error decreases quadratically with successive iterations. Hence, the NR method has a high

rate of convergence when the estimated solution is close to the true solution, underlining

the need for a good initial estimate.

When the estimated solution is distant from the true solution, the NR method does

not converge rapidly and may not converge at all, e.g., when oscillations occur between

two or more incorrect estimates. This problem may be addressed by methods that increase

the region of convergence. For example, the source-stepping method allows sources to be

activated in small steps, thereby reducing the distance between the initial estimate and the

final solution.

While using the NR technique, it is possible to obtain some values of the local gra

dient (within the Jacobian matrix) that are high and predict unrealistic future values for cer

tain circuit variables. On a computer, this results in numerical overflow and must be lim

ited to allow the simulation to continue. The technique used in a number of circuit simula

tors to handle this problem is that of voltage and current limiting. Limiting schemes are
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imposed only when predicted circuit variables, namely voltages and currents, rise above a

certain threshold. In such cases, the highest-valued variables are reduced to a limiting

value, and all other predicted variables are adjusted proportionately.

Since circuit model evaluation is expensive, a number of techniques have been

employed to reduce the time taken for the linearization phase. Ithas been shown that table

lookup reduces model-evaluation time significantly, by eliininating the need for repeated

calculation of device-function coefficients [20,21,23,52]. Some circuit simulators save

time by not updating the Jacobian matrix at each NR iteration, arguing that the Jacobian

matrix is inaccurate when distant from the solution, while close to the solution the Jacobian

matrix's accuracy makes frequent updates unnecessary [53,10]. Finally, it has been exper

imentally shown [6] that an element-bypass technique, where models are only evaluated if

their input voltages and currents have changed by a significant amount, can result in

significant savings, especially for predorninantly digital circuits with large degrees of

latency. If all elements are by-passed, and only the right-hand-side vector is updated, this

approach is equivalent to theJacobian bypass scheme.

2.132 - Sparse Linear-Equation Solution

Gaussian Elimination (GE) is one of the most efficient algorithms available to solve a

system of linear equations represented as

Ax = b (2-9)

where A is a non-singular nxn matrix, and x and b are n-dimensional vectors for the

unknowns and right-hand side, respectively. LU-decomposition, a technique that uses the

same number of operations as Gaussian Elimination, is commonly used in circuit simula

tors because, unlike GE, it does not necessitate modification of the right-hand side and is
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hence useful for analyses where multiple right-hand sides are used. LU-decomposition

involves decomposing the system in Equation 2.9 to

LUx = b (2.10)

where L is a lower-triangular matrix and U is an upper-triangular matrix. Then, the sys

tem

Ly « b (2.11)

is solved for the unknown y using Forward Substitution, following which the system

Ux = y (2.12)

is solved for the unknown x by Back Substitution. LU-decomposition is attractive when

the Jacobian matrix is not updated at each iteration, since the linear-equation solution

involves only forward and back substitution and the decomposition need not be repeated

until the Jacobian matrix is updated.

Circuit simulators employ strategies to maintain the sparsity that characterizes circuit

matrices. Typically, a circuit matrix has three or four non-zero elements per row or

column, usually such that the matrix has an irregular structure. The Markowitz tech

nique [54], commonly used to determine pivoting order, assigns each pivot candidate a

Markowitz row count and a Markowitz column count, which are the number of non-zerces

in the row or column other than the pivot candidate itself. Then, the pivot candidates are

ordered to be eliminated in order of increasing Markowitz product (the product of the Mar

kowitz row count and the Markowitz column count). For circuit simulation, the pivoting

order is usually determined once each for dc solution and for transient analysis, although it

is possible that circuit dynamics may necessitate re-ordering during a transient analysis.

Circuit matrices are re-ordered during transient analysis only if the magnitude of one of the

diagonal elements in the matrix falls below a certain threshold.
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The example matrix shown in Figure 2.2(a) illustrates the ordering of a small matrix

using the Markowitz criterion. In Figure 2.2(a), non-zeroes in the matrix are denoted by

X's and zeroes are denoted by O's. With the configuration in Figure 2.2(a), after the first

row has been eliminated, all the zeroes in the matrix are filled in, and the matrix is subse

quently 100% dense, resulting in a total of 36 floating-point operations on the matrix.

However, using the Markowitz criterion, the configuration in Figure 2.2(b) is arrived at, no

fill-ins are created and a total of 16 floating-point operations are performed during the LU-

decomposition.

The diagonal elements of the matrix A, known as pivots when selected during matrix

ordering to stay on the diagonal, are crucial to the accuracy of linear-equation solution

since the elements in a row are divided by the corresponding pivot element Thus, if a

pivot element is much smaller than the rest of the elements in the row, inaccuracies may

occur due to computer finite-precision arithmetic. As a result, circuit simulators employ

pivoting strategies, to determine which matrix elements should be used as pivots in order

to ensure accuracy through the simulation [55].

22: Hardware-based Acceleration Techniques

While a number of algorithmic techniques [5,6,9,10,43,50,52] have led to electrical

circuit simulation that is almost two orders of magnitude faster than SPICE, large-scale

improvement in the speed performance of circuit simulators continues to depend on

hardware-based approaches, presented in this section.

In Section 2.2.1, work on vector and array processors is described [24,27], revealing

that a high degree of parallelism is available inmodel evaluation, but that early vector and
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array processors were not able to exploit this parallelism due to the gather-scatter

bottleneck, as is detailed in Section 2.2.1.1. Further research on vector processors with

special-purpose hardware for gather-scatter operation, described in Section 2.2.1.2, reveals

that pre-processing of a sparse matrix can accelerate the sparse linear-equation solution

process [34]. Special-purpose hardware approaches to parallel circuit simulation are

presented in Section 222. Research with special-purpose hardware that efficiently exploits

the high parallelism in the model-evaluation phase [23] is detailed in Section 2.2.2.1. In

Section 2.2.2.2, a special-purpose hardware configuration designed for parallel linear-

equation solution is described [56]. Ahardware subcircuit-solver co-processor for use in a

mixed relaxation-direct circuit-simulator multiprocessor system [17] is detailed in Section

2.2.2.3 and provides a hardware-based complement to the software approach to parallel

processing taken in this dissertation. While the parallelism inherent in model evaluation

has long been recognized [24], parallel sparse linear-equation solution has proven to be a

more intractable problem. In Section 2.23, different approaches to parallel circuit simula

tion are described. An attempt at parallel, sparse linear-equation solution on a general-

purpose multiprocessor is described in Section 22.3.1, serving to highlight some of the pit

falls to beavoided [56]. In Section 2.2.3.2, a parallel sparse linear-equation solution using

dependence graphs proposed in [45] is described. Aparallel version of the direct-method

simulator, ADVICE [1] running on the Alliant FX-8 [40] is described in Section 2.2.33.

22.1 - Vector and Array Processors

Early vector processors, such as the CRAY-1 [26], were the first parallel computers

available and used the Single-Instruction Multiple-Data (SIMD) stream mode of parallel

computation. Thus, the pioneering work on developing parallel circuit simulators was
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performed on vector and array processors and is described in this section. The first parallel

circuit simulator, CLASSIE [24], was implemented on the CRAY-1 and is described in

Section 2.2.1.1. CLASSIE performance indicated that the sparse irregular natureof the cir

cuit matrix hindered efficient parallel simulation, thereby underlining the need for special-

purpose hardware to handle the gathering and scatterring of data between processing units

and memory banks. The introduction of special-purpose hardware for gather-scatter opera

tions resulted in significant improvement of circuit-simulation speeds on vector processors

and one example of this improvement [34] is described in Section 22.1.2.

22.1.1 - CLASSIE: Circuit Simulation on the CRAY-1

A prototype circuit simulator, CLASSIE (implemented on the CRAY-1), is presented

in [24] as a means of performing fast, accurate, hierarchical analysis of large-scale

integrated circuits on vector computers. CLASSIE employs user-defined node tearing [57]

to decompose a circuit into cells, according to functional (and structural) hierarchy, at the

nonlinear-equation level Identical cells are analyzed in parallel using vector operations.

In addition to vectorization, CLASSIE provides a number of modifications to standard

circuit-simulation algorithms that improve its performance on a uniprocessor as well.

Firstly, CLASSIE orders semiconductor devices by models, thereby saving time while

gathering model parameters. Secondly, by decomposing a circuit into smaller subcircuits,

CLASSIE circumvents the linear-equation solution-time problem of standard circuit simula

tors. This is because sparse linear-equation solution time in standard circuit simulators,

which increases superlinearly with the number of nodes in a circuit, only dominates overall

circuit-simulation time for large circuits (over 2000 .nodes) [58]. It is believed that the
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superlinear solution time is due primarily to longer searches through the sparse-matrix

pointer structure (which would be aggravated by increased paging) and CLASSIE avoids

this problem by reducing the dimension of individual sparse matrices. As in [19], CLAS

SIE employs code generation to reduce linear-equation solution time. Due to these

modifications, CLASSIE runs twice as fast as SPICE2 on a VAX 11/780 uniprocessor for

large circuits.

Although CLASSIE (on the CRAY-1) in its vector mode runs faster than it does in

scalar mode and speed-up increases as circuit size grows, its performance is not encourag

ing on the whole. In particular, it is observed that data gather-scatter time for a bipolar

junction transistor (BJT) takes as much as 75% of the total model-evaluation time. As a

result, vectorized model evaluation in CLASSIE on the CRAY-1 yields a speed-up of

about 1.5 for mixed BJT-diode circuits and about 2 for a MOS benchmarkcircuit Vector-

ization results in a speed-up factor of under 2 for linear-equation solution, resulting in an

overall simulation speed-up of less than an order of magnitude.

Thus, while the CLASSIE experiment indicates that substantial gains are available by

decomposing and solving circuit-simulation problem data in parallel, the gather-scatter

problem in vector processors such as the CRAY-1 makes realization of these gains

difficult

22.12 - Vector Circuit Simulation with Gather-Scatter Hardware

In [25], it is shown that matrix computation, the dominant part of large-scale simula

tion, is difficult to vectorize due to the sparse, irregular nature of the matrix. This corro

borates the results obtained in [24] and described above in Section 22.1.1. However, it
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has sincebeen shown [34] that vectorized LU-decomposition can result in significant gains

in simulation speed, if the vector processor has special-purpose hardware for gather-

scatter operations (referred to as the "indirectly indexed vector feature"). Further, while

CLASSIE processes structurally identical subcircuits in parallel, the vectorization algo

rithms used in [34] do not require user-defined subcircuits but automatically detect paral

lelism within the irregular structure of the matrix. The Block Vectorization Algorithm and

Maximal Vectorization Algorithm used in [34] and their performance on the Hitachi S-

810 [32] are described below.

TTie Block Vectorization Algorithm (BVA) for LU-decomposition identifies parallel

ism in blocks of consecutive columns of a matrix pre-ordered using the Markowitz cri

terion [54], such that the columns within a block can be decomposed independently of

each other. Parallelism is exploited within each block using vectorized divide

(Aji = Aji,Aa) and update (A^ = A^ - A}i * A*) operations. This algorithm allows the

use of more efficient parallel dense-matrix operations towards the end of the LU-

decomposition.

The Maximal Vectorization Algorithm (MVA) is derived from the BVA but attempts

to locate parallelism all over the matrix at every step of the LU-decomposition and is not

limited by the Markowitz ordering. The MVA computes a data reference level for each

element, according to the earliest step at which the element can undergo division or updat

ing. The LU-decomposition is then performed symbolically for the entire matrix and ele

ments which produce the same data reference level are grouped together. Then, during the

actual decomposition, all elements in the same group are processed in the same vector step.
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In addition to the implementation of the BVA and MVA on the Hitachi S-810, the

LU-decomposition is also accelerated through the use of code generation. For a 2132

MOS-transistor circuit, a factor of 16.5 speedup is achieved in matrix solution due to code

generation alone. With the BVA and the MVA, overall speedups of 75.7 and 82.4 are

achieved for matrix solution, indicating speedups of 4.59 and 5.0 due to the BVA and

MVA respectively. While these results are encouraging and it is evident from [34] that

the speedups increase with circuit size, the actual speed improvement due to exploitation of

parallelism is still relatively small indicating the need for alternative algorithms. In addi

tion, vector processors, being SIMD machines, require the static scheduling inherent in

both the BVA and MVA and force all elemental operations to be of the same length. A

general-purpose parallel processor, using an MIMD architecture, allows more flexibility in

scheduling and can perform individual elemental operations according to their respective

requirements, optimizing through the use of local memory.

222 - Special-purpose Hardware for Parallel Circuit Simulation

As a result of the increasing sophistication and reduced cost of VLSI, application-

specific integrated circuits (ASICs) are becoming feasible. Thus, it is now economical to

synthesize hardware for the express purpose of performing a certain set of operations that

would previously have been performed using software. To this end, numerous designs

have been proposed that replace computation-intensive sections of circuit-simulation pro

grams with special-purpose hardware. Descriptions of a scheme for parallel MOS model

evaluation as well as one for large-scale parallel sparse linear-equation solution, both using

attached processors, are presentedbelow.
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222.1 - MMAP: An Attached Processor for Parallel Model Evaluation

To exploit the high degree of parallelism inherent in the linearization or model-

evaluation phase of circuit simulation [24,25,28,36] a special-purpose attached processor

(MOS-Model Attached Processor, MMAP) that evaluates the dc-MOS transistor equations

has been designed and evaluated in [23]. The special-purpose processor is attached to an

IBM PC-XT personal computer, and the circuit simulator used is BIASC [59], a subset of

SPICE written in the programming language C and designed to run on the IBM PC. A

prototype MMAP utilizes pipelining and local memory to evaluate linear models for four

MOSFET devices simultaneously. Experimental results indicate a high efficiency for paral

lel model-evaluation, limited by the 8-bit data bus of the IBM PC. The architecture of a

system using the MMAP is shown in Hgure 23.

The MMAP operates as follows: Transistor-model information is stored in the

MMAP's local memory. When the host computer requires the evaluation of a transistor, it

sends the transistor's input data, namelythe model reference, terminal voltages and channel

scale factor, to the MMAP, which evaluates the device coefficients at the operating point

and returns the results to the host computer. Through the use of multiple-stage pipelined

hardware, the MMAP is able to work simultaneously on several transistors. A novel

empirical model, designed for use with the pipelined MMAP, enables model evaluation

without conditional branching and uses only floating-point addition, subtraction and multi

plication.
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While experiments with the prototype MMAP show that it incurs a 20% communica

tion overhead, simulations of the MMAP indicate that with efficient operation of the sys

tem this overhead would be 60%, highlighting the slow transfer rate for floating-point data

over the 8-bit data bus as well as the need for a wider and faster bus. In addition, it was

observed that 40% of the MMAP's active time was spent transferring data between the

Model Processing Unit (MPU) and the MMAP's memory, which were on separate chips,

indicating that a single-chip implementation of the MPU with coefficient memory would

significantly enhance attached-processor efficiency.

2222 - BLOSSOM: A Systolic Array for Parallel Linear-Equation Solution

A comprehensive study of various techniques for the solution of large-scale linear

systems of equations has been conducted in [56]. This study includes analyses of the best

uniprocessor algorithms, as well as special-purpose hardware and multiprocessor algorithms

obtained by mapping the best uniprocessor algorithms on to different architectures. The

various techniques are compared on the basis of numerical stability, sparsity preservation,

computational complexity and convergence rates, while recognizing the dependence of

parallel-algorithm performance on the parallel-processing environment, which is difficult to

model accurately.

For large-scale systems, in the interests of preserving sparsity and maintaining low

computational complexity, Gaussian elimination with pivoting is identified as the most

efficient means of solving sparse linear equations. Further, block LU-factorization, using

inverses of the diagonal submatrices rather than of their L and U factors, is selected as the

basis for the proposed special-purpose hardware for parallel linear-equation solution.
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BLOSSOM, the special-purpose architectural system proposed for parallel, sparse

linear-equation solution, comprises of a reconfigurable systolic array connected to a host

computer. BLOSSOM uses its own memory, data bus and executive control unit to

operate independently once the system to be solved has been loaded into its local memory

by the host Submatrix operations to be performed by the processors in the systolic array

are assumed to be implemented as microprograms in the processors. The system architec

ture with the BLOSSOM unit is shown in Figure 2.4.

Results from a software simulator of the BLOSSOM system indicate that most of the

partitions are 2x2 submatrices; for a 1957x1957 matrix (from the simulation of a memory
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circuit) it is seen that a 2x25 processor array solves the system 9.25 times faster than a 2x2

array, indicating 74% efficiency. Given the high efficiency of the BLOSSOM system,

even without exploiting the parallelism that would be available by pipelining the submatrix

operations, it is evident that such a hardware-based approach shows promise for rapid

parallel sparse linear-equation solution.

The BLOSSOM experiment displays potential for accelerating sparse linear-equation

solution through the use of costly special-purpose hardware. A more inexpensive alterna

tive is the use of general-purpose multiprocessors, as is described in Section 2.2.3.

2223 - A Special-Purpose Subcircuit Solver

As mentioned in Chapter 1, there are circuit simulators, such as SPLICE and

RELAX, that utilize a mix of direct and relaxation methods to solve the circuit equations.

While subcircuits in a direct-relaxation scheme can be solved concurrently using relaxa

tion [60], each of the subcircuit solutions itself is a direct-method solution and is not

suited as well to parallel processing. Thus, a specialized subcircuit solver to perform the

direct-method solution in parallel has been designed [17] and is discussed briefly below.

The special-purpose subcircuit solver is a five-way parallel processor operating in

pipelined mode on independent instruction streams, with 512k bytes of local memory and a

128-bit datapath to memory. The pipelined implementation here, as in MMAP, circum

vents the need for branching due to dependencies. The 512k bytes of memory are shared

between the 5 processors as well as the host processor, eliminating the need to transfer

data after a subcircuit solution, while the wide datapath is designed to accommodate a (64-

bit) double-precision floating-point number in conjunction with a 32-bit pointer and a 32-
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bit integer. This permits simultaneous processing on all three fields of the data, allowing

the co-processor to step through a linked list while performing operations on matrix ele

ments, which is useful when working with sparse matrices.

Although no results are published in [17], it is evident that the subcircuit solver

exploits parallelism primarily during the model-evaluation phase. This is appropriate since

subcircuits typically contain a small number of circuit nodes (less than 100) hence model

evaluation dominates overall simulation time. However, this approach will not work

efficiently for large circuits since then sparse linear-equation solution dominates overall

simulation time.

223 - Multiprocessor Sparse Linear-Equation Solution

As stated early in Chapter 1, parallel processing is attractive as a technique to reduce

circuit-simulation runtimes for large VLSI circuits. As shown in Section 2.22, a number

of researchers have identified and successfully exploited the parallelism available in the

model-evaluation phase of circuit simulation, but sparse linear-equation solution, which

dominates simulation time for large circuits, continues to be difficult to parallelize. In this

section, two techniques that utilize general-purpose multiprocessors to exploit the parallel

ism in sparse linear-equation solution are described.

2.2.3.1 - Parallel Linear-Equation Solution: Dynamic Pivot Ordering

On multiprocessor systems, it has been shown that Gaussian elimination can be

efficiently parallelized when solving dense, large-scale linear systems [61] and that nested

dissection techniques allow efficient parallel solution of well-ordered sparse linear sys-



31

terns [11]. However, circuit matrices, in addition to their extreme sparsity (three to four

non-zero elements per row or column), have an irregular nature that makes most decompo

sition techniques, including nested dissection, difficult to use [57].

In [56] a parallel algorithm based on LU-decomposition, called Segmented Partial

Pivoting (SPP), is implemented on the BBN Butterfly Parallel Processor as a first step

towards parallelizing the solution of irregular, sparse linear systems. In the SPP algorithm,

each processor is assigned a block of rows from the system matrix; for each column in the

matrix, all the processors work within their assigned blocks to determine local pivot candi

dates and then to eliminate other non-zero elements in the column. Next, the processors

compete to set a lock. The local pivot of the processor that sets the lock becomes the glo

bal pivot for the given column, and the other processors use the global pivot to eliminate

their own local pivots. This process is repeated until the system matrix is triangular. For

ward elimination is also performed in parallel, as is back substitution. These operations

employ parallel multiplication (by matrix coefficients) and subtraction (from the right hand

side) after an unknown has been solved for, as well as parallel solution (division) which is

made possible by the sparsity of the matrix.

Experimental results using the SPP algorithm on the BBN Butterfly indicate a high

speed-up using up to about ten processors, butno improvement beyond that Further, the

competitive global pivot-selection scheme results in a large number of fill-ins, indicating

that even with the parallelism exploited parallel solution may not be faster than efficient

uniprocessor linear-equation solution. This study thus leads to two conclusions: first, there

is a relatively low degree of parallelism available in the parallel linear-equation solution for

circuit matrices; secondly, schemes that attempt to exploit as much of the small parallelism
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inherent in this solution process may result in excessive fill-ins, thereby nullifying their

advantage.

2232 - Linear-Equation Solution: Static Dependence Graphs

As shown in Section 2.23.1, significant cost is associated with allowing fill-ins dur

ing LU-decomposition for circuit matrices. Thus, even for parallel solutions, a scheme that

attempts to minimize the number of fill-ins, such as the Markowitz criterion, is desirable.

In [45] a task system represented by an acyclic directed graph is statically built after the

matrix has been ordered to minimize fill-ins. The task graph is assembled representing

divide and update operations as nodes, and inter-element dependences as arcs.

For a 400x400 microwave-amplifier sparse matrix of density 0.8%, simulations indi

cate that 100 processors could be kept busy 73% of the time for matrix triangulation and

33.8% of the time for back-substitution. The results also indicated that solution time

decreases inversely with the number of processors for small numbers of processors (10-

20% of the order of the matrix); however, as the number of processors increases the

amount ofparallelism in the matrix is unable to keep the processors busy and the time for

triangulation is limited by D, the depth of the task graph (the number of tasks along the

critical path of.the graph). These results are noteworthy because they demonstrate that a

significant amount of parallelism is available in sparse linear-equation solution using stan

dard sparsity-directed ordering of the matrix. The Pivot Dependency Graph (PDG) scheme

used in this dissertation, described in Chapters 4 and 5, is similar to the task graph scheme

and provides insight into practical issues associated with implementing dependence-graph

algorithms for sparse linear-equation solution.



33

23: Conclusions

While different algorithmic techniques have proved more efficient than standard direct

methods for the simulation of certain classes of circuits, direct-method simulators continue

to be important In the first section of this chapter a brief overview of direct-method simu

lation algorithms is provided. A number of hardware-based acceleration techniques,

described in Section 2.2, have been studied towards reducing runtimes for direct-method

simulation. All of these techniques, however, have been restricted to either special-

purpose hardware or single phases of the direct-method algorithm. In this dissertation,

parallel algorithms for direct-method circuit simulation are studied using general-purpose

multiprocessors.
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CHAPTER 3

PARALLELISM LIMITS IN CIRCUIT SIMULATION

Prior to parallelizing a particular technique for solving a problem, it is helpful to

establish theoretical limits to the basic parallelism available in the problem. Theoretical

limits can be determined by studying the realizable parallelism in the most-parallel algo

rithm known for the solution of the problem. If the theoretical study shows the most-

parallel algorithm has poor potential for parallelism, all parallel algorithms are bound to

perform poorly. Conversely, high theoretical parallelism limits, although not an assurance

of good performance, indicate that further research into other algorithms may not be fruit

less.

To determine a limit to parallelism in circuit simulation, a node-based relaxation

circuit-simulation algorithm, MSPLICE, has been implemented [62,63,64] on the BBN

Butterfly Parallel Processor [37]. Various scheduling and shared-memory storage schemes

have been investigated using both the initial implementation of MSPLICE (MSPLICEl) as

well as an improved implementation (MSPLICE2 [65]). Listings of MSPLICEl and

MSPLICE2 are provided in Appendices B and C respectively. While the initial implemen

tation of MSPLICE described in [62] was developed for an early version of the Chrysalis

Operating System [66], MSPLICEl, although using the same algorithms, is a modified

version of MSPLICE designed to run on the Chrysalis 2.2 version of the Butterfly operat

ing system [67]. Analysis of empirical data from the MSPLICE experiment described in

this chapter verifies that circuit simulation is well-suited to parallel processing at the node-

based (or fine-grained) level. This fact justifies further research into parallelizing general-

purpose circuit simulators.
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MSPLICEl has been implemented on both the Digital VAX 11-780 and the BBN

Butterfly machine. Only a 10-processor implementation of the Butterfly was available for

initial MSPLICEl development [62]. Further results using MSPLICEl running on up to

78 processors are presented here. With such a large number of processors, additional

insights into multiprocessor-based circuit simulation have been obtained and significant

bottlenecks in MSPLICEl have been removed in the new implementation, MSPLICE2.

Further, a version of the Butterfly multiprocessor has been developed which supports up to

256 processors [67]. Consequently, the upgraded program, MSPLICE2, has the capability

of utilizing up to 256 processors in parallel. MSPLICE2 results presented in this chapter

are for the 101 processors of a 128-processor Butterfly system that were functional at the

time benchmark studies were performed. In addition to the Ideal Gauss-Seidel Machine

presented in [62], a new technique has been developed [68] to determine the maximum

amount of latency available in the test circuits. Together, these meters provide a meaning

ful upper bound for measuring the parallel performance of MSPLICE with various bench

mark circuits.

In Section 3.1, the motivation for selecting the MSPLICE algorithm to measure paral

lelism limits is provided. The Iterated Timing Analysis (TTA) and MSPLICE algorithms

are reviewed in Section 3.2, while the Butterfly architecture and prograrnming environment

are described in Section 3.3 and the benchmark circuits used in this study are introduced in

Section 3.4. An analysis of the parallel performance of MSPLICEl on up to 78 processors

is presented in Section 3.5. Based on MSPLICEl performance, algorithmic modifications

were made to create the program MSFLICE2, which circumvents bottlenecks identified in

the original implementation. The modifications and results from the new implementation

are described in Section 3.6, and the conclusions observed through the MSPLICE
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experiment are summarized in Section 3.7.

3.1: Motivation for using MSPLICE as a measurement tool

For any parallel algorithm, there are a number of factors that determine the efficiency

with which the algorithm will perform. Thefour most important factors are listed below:

(1) The amount of parallelism in the algorithm, i.e., the number of tasks

that can be executedindependently at any stage of the computation,

(2) The ratio of task computation time to intertask communication andsyn

chronization time,

(3) The granularity of the tasks, i.e. the size of the smallest tasks, and

(4) Load balancing, or distribution of tasks between processors.

The selection of a node-based relaxation simulator has been made in light of these four

factors and is described below.

The MSPLICE algorithm is well-suited to parallelization primarily because it uses

relaxation which intrinsically provides a high degree of parallelism. Since a relaxation

simulator decouples the circuit equations, it solves them independently of each other, iterat

ing to ensure convergence to the correct solution. Thus, relaxation simulators provide an

implicit partitioning of a problem into a number of independent tasks. This is important

for parallel processing since each task can be executed on a separate processor, with no

inter-processor communication or synchronization. Inter-processor communication

degrades parallelization as it requires processors to synchronize with each other, thereby
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inhibiting uninterrupted program execution.

In addition to being node-based, the MSPLICE algorithm was also selected as a test-

bed to measure limits to parallel circuit simulation due to its node-based nature. A node-

based simulator intrinsically partitions a circuit into small and fairly uniform tasks, which

results in efficient load balancing. Load balancing, the equal distribution of work across a

number of processors, is best illustrated by thefollowing analogy: given thejob of placing

either grains of sand or (larger) stones in a number of jars, the grains of sand provide for a

more equitable weight distribution between the jars. Efficient load balancing is important

for parallel processing as it ensures that all the processors finish their work at approxi

mately the same time, thereby reducing time wasted at synchronization barriers.

Although it is node-based and uses relaxation, both qualities desirable for parallel

processing, MSPLICE has not yet proven to be a generally applicable circuit-simulation

algorithm. MSPLICE is used only to determine the potential for parallelism in circuit

simulation, with the recognition that it may not always be efficient as a simulation algo

rithm.

3.2: Algorithms used in MSPLICE

MSPLICE is a parallel algorithm based on the Iterated Timing Analysis (TTA) [7]

relaxation-based approach. The ITA method, described briefly in Section 3.2.1, is a

successive-over-relaxation Newton method which uses event-driven analysis and selective-

trace to exploit the temporal sparsity of the electrical network [7]. Because event-driven,

selective trace techniques are employed, the algorithm lends itself to implementation on a

data-driven computer. The MSPLICE worker algorithm that runs on each processor is
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described below in Section 3.2.2.

3.2.1 - Iterated Timing Analysis (TTA)

The ITA method is a form of electrical analysis derived from timing simula

tion [7,69]. The starting point for a description of ITA is the electrical circuit equation

formulation. A Nodal Analysis [47] formulation will be used to illustrate the ITA algo

rithms. The following assumptions are used:

• All resistive elements, including active devices, are characterized by constitutive

equations where voltages are the controlling variables and currents are the controlled

variables.

• All energy storage elements are two-terrninal, possibly nonlinear, voltage-controlled

capacitors.

• All independent voltage sources have one terminal connected to ground or can be

transformed into independent current sources with the use of the Norton transforma

tion.

In the nodal network equations there are N equations in N unknown node voltages. For

the circuit N+1 nodes are present, where node Af+1 is the reference node, orground. The

equations can be written as:

C(v,u)v = -f(vju) (2,1*

v(Q) = V.

where v(t) e 1R" is the vector ofnode voltages at time /, v(t) e R" is the vector oftime

derivatives of v(t), u(t)e TRn is the input vector at time t, CO : Rfl-HRnxn represents

the nodal capacitance matrix, / : R^xR"-^", and:
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f(v(t).u(t)) =\fi(v(t),u(t)), •",fN(v(t).u(t))f
where f,(v(t), u(t)) is the sum ofthe currents charging the capacitors connected to node

i. The differential equations are converted to a set of nonlinear, algebraic difference equa

tions using a stiffly stable integration formula to give:

g(x) = 0 P-2)
where x e R* is the vector of node voltages at time tH+1 and gO is the non-linear func

tion. An iterative method, e.g., Gauss-Jacobi or Gauss-Seidel relaxation, is used to solve

the equations. However, unlike timing analysis where a single relaxation iteration is used

per time-point, in the ITA approach the relaxation process is continued to convergence at a

time-point

Only one Newton-Raphson iteration is used to approximate the solution of each nodal

equation per relaxation iteration. Event-driven selective-trace techniques may still be used

to exploit latency, as for timing simulation. Since in ITA the nonlinear circuit equations

are solved by an iterative method until satisfactory convergence is achieved, the numerical

properties of the integration methods used to discretize the circuit equations are retained.

Thus, the stability and the accuracy problems typical of the timing simulation algorithms

are not an issue here [42].

The following algorithm, written in "Pidgin 'C" [70], illustrates the principle steps

involved in TTA analysis, using a Gauss-Seidel iteration, for use on a conventional com

puter. At each time at which one or more nodes are scheduled to be processed, two event

lists, Ek(ta ) and Ek^(tn) are used to separate the nodes to be processed in successive itera

tions, k and k +1, of the Gauss-Seidel-Newton process.



Gauss-Seidel-Newton Iteration:

Put all nodes that are connected to independent sources in event list Ek(0);
tn =0;
while ( tn < TSTOP ) {

*<-0;
while ( event list Ek(tn) is not empty) {

foreach (i in Ek(tH)) {
-*+i,/

*+>_,*_*<* }-

where v**1'"* [v{+1, •••, vf +1. vf+1, •••v£f
if ( Iv* *l •v* I£e; i.e., convergence is achieved) {

use LTE to determine the next time, t,, for processing node i;
add node i to event list Ek(t,);

} else {
add node t to event list Ek+l( ta);
add fanout nodes of node i to event list Ek(tn) if not already on Ek(t„);

)
}
Ek(ta)^-EM(tny,

Ek+i(tn)*- empty;
*<-*+l;

}

}
where tn is the present time for processing and tn +1 is the next time in the time queue at

which an event was scheduled. In this way, the "time-step" is -handled independently for

each node. The foreach construct requires that the block be executed for each member of

the set in a specified order.

This simplified algorithm does not illustrate how such issues as time-step reduction

and local truncation-error estimation are handled. These and other important details of the

algorithm are described elsewhere [7]. While a nodal formulation was used to describe the

approach, a Modified Nodal formulation [49] can also be derived.

40
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322 - The MSPLICE Algorithm

MSPLICE uses the data partitioning approach to multiprocessing, where anumber of

processors perform identical functions on separate parts of the problem data. Nodes

described using Nodal Analysis methods are statically stored in the memories of different

processors. Typically, the number of nodes in the circuit greatiy exceeds the number of

processors in the multiprocessor system. Thus, anumber of circuit nodes are allocated to

each processor's memory. Having allocated data pertaining to particular nodes in the

different processors, one can choose either of two approaches to task scheduling. A task is

defined as the evaluation of a particular node voltage and is described below. In

MSPLICEl, task scheduling can be done either statically, where a processor is responsible

for evaluating voltages of all nodes that reside in its memory, or dynamically, where a pro

cessor is assigned atask when it becomes free. In the event of dynamic scheduling, which

aids load balancing, a central scheduler can be used to distribute tasks to processors. This

produces a serialization bottleneck. Instead, both the MSPLICE implementations, as

described in Sections 35 and 3.6, use distributed schedulers, where each processor is

responsible for its own scheduling.

In MSPLICE, a single global variable called GlobalRemainingNets is used to coordi

nate the processors at a given time point It is incremented whenever a node is scheduled

at a particular time point and is decremented when a node has finished being processed.

When GlobalRemainingNets reaches zero, all processors move to the next time point of the

simulation.

From the point of view of a single processor, P, once it has been allocated a set of

electrical nodes,M, it proceeds as follows at time /„: -



foreach ( node i in M scheduled at tn ) {
/» STEP (I): */

foreach (fanin element at i )
obtain its fanin node voltages, vf, j*i, K = k or*+l;

/* STEP (2): */
foreach (fanin element at i )

compute its contributions to nodal equation;
obtain v* +* using a single Newton-Raphson step as described in Chapter 2;
if (convergence is achieved) {

if (Vi.n * v,fJI_i) {
schedule/ at rn +i;
decrement GlobalRemainingNets;

>
)
else {

schedule / again at t„;
forall (fanout nodes of i ) {

increment GlobalRemainingNets;
Schedule fanout node at *„ according to scheduling convention.

}
)

>
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3.23 - The Ideal Gauss-Seidel Machine

For any circuit simulated using the MSPLICE algorithm described above, there is an

ideal performance that would be expected of an ideal multiprocessor that incurs no

scheduling or communication overhead. This performance is predicted by an Ideal Gauss-

Seidel Machine (IGSM) [62,64,63]. The Ideal Gauss-Seidel Machine simulates an ideal

multiprocessor for the Gauss-Seidel algorithm, where communication time between proces

sors is negligible with respect to local computation time and all communication is non-

blocking. In addition, each processor inthe IGSM can solve an equation (i.e„ process one

task) in a single unit of time.

The IGSM model ignores such factors as contention for shared global data and the

overhead of queue handling, which degrade performance of a parallel program as the
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number of processors increases. Further, in its assumption that each processor takes a sin

gle unit of time to solve a single node equation, the IGSM implicitly assumes that all

nodes have the samenumber and type of devices in identical states.

Although the IGSM model is an optimistic one, it does provide a theoretical limit to

the amount of parallelism available during the simulation of a particular circuit The

degree of optimism in the IGSM model becomes more apparent as the applications upon

which it is based become less valid. Actual simulation times are used, in Section 3.6.3, to

estimate the accuracy and the limitations of the predictions from the model of the ideal

machine.

33: The BBN Butterfly Parallel Processor

MSPLICE has been implemented on the BBN Butterfly (TM) Parallel Processor[37]

(see Figure 3.1), which is described in this section. The Butterfly has been chosen as a

test-bed multiprocessor for its high-speed Omega interconnection network [71]. The high

speed network results in a ratio of remote-memory access time (4 microseconds) to local-

memory access time (625 nanoseconds) near 6, which is similar to the uniprocessor ratio

between a cache miss and a hit [37]. In addition, the Omega network is extensible to 256

processors, making the Butterfly useful for the investigation ofthe performance ofan algo

rithm as the number of processors increases.

The Butterfly comprises a number of identical processor-memory elements linked to

each other through the Omega-connected network, which is built using high-performance

switches (see Figure 3.2). The combination of the local memories of all the processors in

the system acts as a single, shared global memory, with each processor able to make refer-
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Figure 3.1. The Architecture of the BBN Butterfly Parallel Processor

ences to memories other than its own. Thus, once a datum is placed in shared memory,

the responsibility for determining where the datum is located falls on the individual proces

sors, rather than on the programmer. This makes programming easier, although it may

affect program efficiency. For the Butterfly, the fast interconnection-network usually over

comes tiie degradation in performance due to remote accesses.

33.1 - The Butterfly Architecture

In addition to a processor and memory, each independent module of the Butterfly,

referred to as a Processor Node, also comprises a Processor Node Controller (PNC), an

input-output (I/O) bus, an interface to the Butterfly switch and a start-up EPROM, shown
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Figure 3.2. 16-processor Butterfly Switch

in Figure 33. The I/O bus is responsible for interaction between the Processor Node and

tiie host machine, as in the reading or writing of data from or to the host's disk. The pro

cessor performs computations on data resident in either its own (local) memory or the

(remote) memory of other processors. The PNC determines whether a datum addressed by

the processor is in local or remote memory and then accesses the datum through the

Butterfly switch. Each of the three major components of the Processor Node, i.e. the pro

cessor itself, the PNC and the Butterfly switch, is described in more detail below.

The Processor Nodes in the Butterfly Parallel Processor for the experiments described

in this chapter used the Motorola MC68000 microprocessor. More recently, the MC68000
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Figure 3.3. Block Diagram of a Butterfly Processor Node
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has been replaced by a platform that holds an MC68020 microprocessor and a M68881

floating-point unit, which significantiy enhances Butterfly performance, especially for

floating-point intensive applications like circuit simulation. The effect of this enhancement

is to reduce a single task computation time, thereby decreasing the ratio of computation to

communication time for each task. Consequently, as is shown at the end of Section 3.6,

speedup performance of MSPUCE2 is degraded due to the improved technology. Nor

mally, however, new technology would improve both the processor as well as the inter

connection network, resulting in no relative change between computation and
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communication time.

The PNC intercepts all the associated processor's memory references and determines

where the addressed data is located. If the data is resident in local memory, it is accessed

directly; if, however, the data is in another processor's memory, the PNC sends a request

message to the other processor's PNC through the Butterfly switch. When the remote PNC

receives the message, it accesses the requested datum and sends a reply message to the first

PNC, which, if necessary, communicates the result of the transaction to its associated pro

cessor. The PNC also provides efficient microcoded implementations of a number of

atomic operations, such as queue handling, test-and-set and scheduling. As a result, it con

tributes significantly to efficientparallel performance of the Butterfly.

The Butterfly switch uses packet-switching techniques between sets of switching

nodes configured as a "serial-decision" network. The topology used is similar to that of

the Fast Fourier Transform Butterfly algorithm [72], hence the name. Each switching node

has four inputs and four outputs, and the entire configuration ensures that there is a path

through the switch network from each processor node to every other node in the system.

Communication between the processors is performed via message "packets", tiiat contain

the address of the receiving node and the data to be transferred. At each step of the

switching network, part of the address is stripped and the remaining message is transmitted

according to the rest of the address, as illustrated in Figure 3.4. The switch has a

bandwidth of 32 Mbit/sec, which is needed when performing block transfers. In the event

of contention for a particular switching node output port, one of the messages is allowed to

proceed, while the other is re-transmitted after a short delay.
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332 - The Butterfly Programming Environment
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Applications on the Butterfly operate under the Chrysalis operating system [67].

MSPLICEl and MSPLICE2 are programmed in the C programming language, although the

Butterfly supports both Fortran and Lisp as well. Programs for the Butterfly are written,

modified and cross-compiled on the host front-end system, and then loaded and run on the

Butterfly. The Chrysalis operating system [67] provides a rudimentary Unix-like high-

level system, as well as a library of low-level subroutines. Of prime importance for paral-
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lei processing are the process control, memory management and synchronization primitives

provided. Process schedulers use real-time, flexible scheduling algorithms that are micro-

coded for fast process switching. A segmented, virtual-memory management system pro

vides access to up to 4 Gigabytes of memory, although only 16 Megabytes can be

addressed ata time. To address memory outside the current 16 Mbytes, a new set of Seg

ment Attribute Registers must be mapped in, which is a time-consuming process on the

present implementation. As regards interprocess communication, the data structures pro

vided include dual queues and events, which are handled in the microcode for fast interpro

cess communication.

Chrysalis treats all data structures on the Butterfly asv objects. Each object is

addressed by a 32-bit object handle, which specifies the 8-bit address of a processor and a

24-bit virtual address. When a memory object is to be used by a process, tiie object is

mapped into the address space of the process. At this time, the memory object, or seg

ment, is assigned a new Segment Attribute Register (SAR) in the process' SAR array.

Subsequently, the processor node is capable of addressing any data within the memory seg

ment, regardless of the segments actual physical location.

Events and dual queues are two synchronization mechanisms provided by Chrysalis

that serve to make parallel programming on the Butterfly easy and efficient Events are

created by server processes and sent to client processes. When clients require service from

the server process, they post the event to the server process. The server process may or

may not react to the event posted and may have a number of outstanding events at any

time. Events are identified by event-handles, which are recognized across the entire sys

tem. Dual queues provide an efficient queuing scheme, by utilizing events to prevent
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busy-waiting on a queue. A dual queue can hold either data or event-handles, butnotboth

concurrentiy. When a server attempts to dequeue a datum from the dual queue, if the

queue is empty or only contains event-handles, the server will place its own event-handle

on the dual queue. Subsequently, when a datum is placed on the dual queue, the server

process whose event-handle is at the top of the queue is notified by the client process

enqueing the datum. Thus, instead of servers constantly polling the queue for work, they

are notified of work as and when it arrives.

In addition to normal programming considerations, parallel programming also requires

efficient, easy processor and storage management On machines with large interprocess

communication time, the most efficient paradigm for process and data management is that

of cooperating sequential processes, where each process operates on independent data,

occasionally sending messages to other processes in the system [73]. However, there are

numerous applications where large, independent tasks are difficult to identify; hence, paral

lelism must be exploited at a far finer granularity. For such applications, a shared-memory

environment is far more desirable, where all the processors can simultaneously work on the

same data, without having to alert each other of modifications explicitly. The Uniform

System, a programming environment that uses Chrysalis primitives to implement a shared-

memory system, has been implemented on the Butterfly. In order to keep all memories

equally busy, the Uniform System provides a set of routines that allow the user to distri

bute shared memory across the entire processing system. As aresult, contention for shared

memory is distributed across the system, and hot spots are minimized. The Uniform Sys

tem treats processors as a group of identical workers, each able to perform any task. Thus,

an application must be broken into two functionally separate parts: generators, which iden

tify the next task to be performed, and workers, which actually perform the task itself.
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3.4: Benchmark Circuits

A number of benchmark circuits have been used for this analysis and for the subse

quent identification of performance bottlenecks. The first of these circuits is a digital-filter

circuit (Digfi) whose netlist and parasitic capacitor values were obtained from an analysis

of the mask layout of an industrially designed circuit Other benchmark circuits used for

the analysis of MSPLICEl's performance and early MSPLICE2 performance include a

chain of 50 NMOS inverters (Chain) and a four-bit binary counter (Counter).

An a posteriori analysis of all of the waveforms generated by MSPLICE has been

used to determine the nMntmnim amount of latency available in the three benchmark cir

cuits used [68]. The procedure used is as follows: two sets of waveforms for all circuit

nodes are simulated, using MSPLICE and a direct-method circuit simulator. The number

of timepoints, M, simulated using MSPLICE are compared against the corresponding

number of timepoints, D, used by the direct-method simulator. The percentage ratio

<D '* JxlOO*
D

provides an indication of the amount of latency actually exploited by MSPLICE. The a

posteriori analysis of the waveforms produced by the direct-method simulator is used to

estimate how many points ideally needed to be used. The resulting number of timepoints,

/, provides a measure of the activity in thecircuit The percentage ratio

<D •' >ximh
D

indicates the murinmm latency that can be exploited during the simulation of the circuit

Actual (using MSPLICE) and ideal latency exploitation figures for the benchmark circuits

are presented in Table 3.1, along with dimensional information about the circuits. The

small exploitation of latency for the inverter-chain circuit causes more of the circuit to be
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active at each time point This results in a larger number of tasks and this circuit is thus

capable ofkeeping alarge number ofprocessors busy, as is shown in later sections.

Oct

Chain

Counter

Digfi

# of Nodes

54

222

385

# of MOSFET's

102

517

698

Actual Latency

12.5

39.0

70.0

Ideal Latency

54.5

49.0

78.0

Table 3.1: Characteristics of the Benchmark Circuits

All three circuits have been simulated on the ideal Gauss-Seidel machine

model [62,63,64], as shown in Table 32 below.

#Procs Chain Counter Digfi

1 1.00 1.00 1.00

2 1.98 1.98 1.97

4 3.85 3.90 3.81

8 7.26 7.51 7.28

16 12.94 14.00 12.82

32 2134 24.32 20.66

64 32.05 38.35 28.82

128 3833 53.52 34.87

Table 3.2: MSPLICE Performance Predicted by the Ideal Gauss-Seidel Machine
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The model predicts that the marginal utilization falls as additional processors are

added since there is a maximum limit to the parallelism available in the circuit at any

timepoint Thus the ideal machine model provides an upper-bound for the performance of

a real machine simulating the circuit and using the ITA algorithm.

3.5: The MSPLICEl Program

The MSPLICEl program, developed by Deutsch [62], was the first implementation

of the MSPLICE algorithm and was run on 10 processors of the BBN Butterfly. On 10

processors, both static and dynamic scheduling schemes performed equally well. In this

section, the performance of the MSPLICEl program on up to 78 processors of the

Butterfly is described and indicates shortcomings in both schemes, thereby providing the

direction for the next generation of the MSPLICE simulator.

3.5.1 - MSPLICEl Performance: Multiple-Queue Dynamic Scheduling

Figure 3.5 shows the results obtained while simulating the benchmark circuits on up

to 78 processors, using dynamic allocation of tasks to processors. It is evident that with up

to about 40 processors, the experimental results compare reasonably with the predicted per

formance of the ideal Gauss-Seidel machine. With 32 processors, the digital-filter circuit

simulation runs 68% as fast as predicted by the ideal. However, as the number of proces

sors is increased further, performance falls off relative to the ideal Gauss-Seidel model. In

addition, after a certain point the performance begins to fall off in absolute terms as well,

implying that the additional processors are degrading rather than improving performance.

This runs contrary to the predictions of the ideal 'Gauss-Seidel machine which claims
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60

40

20

#Procs piain Counter Digfi

1 1.00 1.00 1.00

2 1.83 1.84 1.82

4 3.15 3.48 3.14

8 6.15 6.60 5.76

16 936 11.21 9.62

32 9.67 14.93 12.00

64 7.94 11.02 10.62

78 732 8.73 9.81

deal(Cov nter)

-Ideal(Chflin)

Idcal(Pilt5r)

50 100 150

No. of Processors

54

Rgure 3.5. Performance curves for MSPLICEl using distributed, dynamic task allocation.
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uniformly increasing improvement withup to 128 processors.

The above experiments have been run with MSPLICEl using a distributed scheduler

which implements a dynamic balance of tasks between processors. A dynamic balance

here implies that each scheduling processor places a task for processing on the queue of

the processor with the least number of tasks in its queue at that time. This leads to two

problems. First, the number of tasks scheduled on each processor is stored within a global

data structure. Distributed dynamic task allocation promotes contention for the global data

structure. Second, as the number of processors increases, each scheduler must check the

number of tasks scheduled on all the processors. Thus, as the number of processors, n,

increases, the number of schedulers contending for the global data structure increases

linearly with n, and each scheduler has to look through n locations in this data structure.

The overall contention for the global data structure consequently grows as n2, underlining

the need for an alternate scheme for queue selection.

3.5.2 - MSPLICEl Performance: Multiple-Queue Static Scheduling

One solution to the problem of contention during queue selection is the enforcement

of static task allocation. Under a static scheduling scheme, each processor works only on

those electrical nodes that are assigned to the processor at the beginning of the simulation.

The speedup curves resulting from this modification are shown in Rgure 3.6. It is evident

that static allocation of tasks, which removes the scheduling bottleneck, resulted in

significant performance improvement For all three benchmark circuits performance is

improved when using 78 processors, although there are slight degradations (less than 3%)

in speedup at 32 processors relative to the multiple-queue dynamic scheduling scheme



(compare with Figure 3.5).

Speedup

60

40

20

#Procs Chain Counter Digfi

1 1.00 1.00 1.00

2 1.87 1.84 1.74

4 3.25 3.53 3.14*

8 6.05 6.72 5.88

16 10.40 11.00 9.98

32 14.85 14.20 12.62

64 2037 18.72 1426

78 22.82 20.95 1430

gital Filter

deal(Cox nter)

Ideal(Chein)

deal(Piltsr)

50 100 150

No. of Processors

Figure 3.6. Performance curves for MSPLICEl using static task allocation.
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The results and analysis above indicate one major reason for the poor performance of

MSPLICEl relative to the ideal machine model with more than 40 processors. The ideal

machine model for the scheduling process predicts better performance than occurs in prac

tice, as it does not model the contention for the scheduling queue or the overhead of the

scheduling process. It is evident that the removal of the scheduling bottleneck, by the

implementation of the static task allocation scheme, causes significant improvement of per

formance on a large number of processors. The approach taken here, of static allocation of

tasks, is not without problems. As the number of tasks and processors increases, inade

quate load-balancing measures can lead to significant inefficiency. This may explain why

performance did not improve for the digital-filter benchmark circuit as much as it did for

tiie other two benchmark circuits, as shown in Figure 3.6.

3.53 - Globally Shared Data in MSPLICEl

Although the basic MSPLICE algorithm detailed in Section 322 uses only a single

shared data value, namely GlobalRemainingNets, the actual implementation of MSPLICEl

requires the various processors to share other data, as listed below. Sharing of these data

is insignificant when utilizing small multiprocessor systems, but becomes more noticeable

as the size of the multiprocessor system grows.

Shared dynamic data, i.e., data that is changing during the course of the simulation,

in MSPLICEl includes the following:

(a) Current-time Queues on all processors

(b) Next-time Queue

(c) GlobalRemainingNets Counter
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(d) Next-time Counter

(e) Node data structures

(f) Device data structures

In addition to the above, MSPLICEl also uses the following variables which consti

tute shared static data:

(a) Addresses for all nodes

(b) Addresses for all devices

(c) Addresses for all models

(d) Addresses for all node fanin and fanout lists

(e) Addresses for all queues

(f) Model data structures

(g) Fanin and fanout list data structures

(h) list of active processors

While local copies are made of some of the shared static data on each processor,

memory restrictions prevent the maintenance of local copies of all shared static data. In

addition, due to the state of the Chrysalis programming system atthe time MSPLICEl was

implemented, globally shared objects had to be explicitly mapped in to a processor's

memory space before the object could be used. Although MSPLICEl implemented a fast

mapping system, the mapping had still to be performed thereby adding to the cost of

accessing remote shared memory.
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3.6: The MSPLICE2 Program

In order to investigate the effect of load-balancing and memory distribution, a single

queue dynamic-scheduling scheme has been utilized in the new implementation of the

MSPLICE algorithm, called MSPUCE2. MSPLICE2 has been implemented within the

BBN Butterfly Uniform System programming environment In Section 3.6.1, differences

between the MSPLICEl and MSPLICE2 implementations are highlighted, with emphasis

on memory distribution and scheduling techniques. The performance of MSPLICE2 is

described in Section 3.6.2. Profiling techniques that are now available on the BBN

Butterfly are used, as described in Section 3.6.3, to study the efficiency of MSPLICE2.

Tuning profiles show that the IGSM is optimistic in its prediction of MSPLICE perfor

mance and that processors spend more time waiting on the queue than the IGSM predicts.

In Section 3.6.4, performance of MSPLICE2 using a 64-processor BBN Butterfly with

floating-point accelerators is described, showing that the relative increase in overheads

results in poorer performance of the MSPLICE2 program.

3.6.1 - Differences between MSPLICEl and MSPLICE2

Since queue selection during distributed scheduling had been identified as a signficant

cause for the poor performance of MSPLICEl, the Uniform System's single-queue system

appeared well-suited to MSPLICE*s needs and was installed in MSPLICE2. This

modification significantiy reduced the amount of globally shared dynamic data as well.

The increased memory available at the time of implementation of MSPLICE2 (1M byte

instead of 256K bytes) also made it possible to maintain local copies of shared static data,

thereby reducing contention for the interconnection network further.
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In addition to the scheduling and memory distribution problems identified in the

MSPLICEl study, certain other shortcomings in MSPLICEl were also apparent First, the

size of the benchmark circuits is limited by the size of a single processor's memory, since

all simulations are run on a single processor for the purpose of comparison. Few problems

can fit within the memory of a single processor and yet provide enough work for 128 pro

cessors. In another stody on the Butterfly, it was determined that the cost of distributing

data across the memories of 128 processors while using only one processor for computa

tion is about 6% [37]. This is not significant when weighed against the fact that it helps

prevent processor starvation. The use of the term starvation here refers to the state where

there are notenough tasks for the available processors to work on. MSPLICE2 distributes

data across the memories of all available processors, thereby allowing larger circuits to be

simulated.

Another optimization used in MSPUCE2 is that of memory interleaving, which is

achieved on the Butterfly by distributing global data across the memory of all the proces

sors in the system. Memory interleaving is especially significant for frequently referenced

global data, since the possibility of hot-spots due to excessive traffic at one switch port are

reduced.

3.6.2 - MSPLICE2: Single-Queue Dynamic Scheduling

While the Uniform System eases distribution of shared global data and the mainte

nance of local copies of shared static data, the most significant modification between

MSPLICEl and MSPUCE2 is the single-queue dynamic scheduling scheme of

MSPLICE2. In addition, the removal of the necessity of explicitly mapping nodes, dev-
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ices, models and fanin and fanout lists into a processor's address space reduces the over

head of accessing remote data. The performance of MSPLICE2 detailed in this section is

improved due to these modifications.

The performance using the MSPLICE2 implementation is shown in Figure 3.7 for the

three benchmark circuits described in Section 3.4. For all three benchmark circuits, load-

balancing is seen to improve performance so much so that the speedup at 32 processors

here is greater than or comparable with the speedup at 78 processors using static task allo

cation. However, again the effects of queue contention are apparent as performance

degrades or does not improve as more processors are used. It is evident from the

improved performance shown in Figure 3.7 that dynamic scheduling does address the issue

of load-balancing adequately, resulting in improved performance over static scheduling

using only 32 processors.
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Rgure 3.7. Performance curves for MSPUCE2 using single queue, dynamic task allocation.
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3.63 - Limitations of the Ideal Gauss-Seidel Machine

It is evident from Figure 3.7 that MSPLICE2 performance, like that of MSPLICEl

using either dynamic or static scheduling, falls significantly short of the performance

predicted by the IGSM for large numbers of processors. In order to determine the reason

for performance using MSPLICE2 falling short of the IGSM predictions, a profiling tool

developed for the BBN Butterfly [67] has been used to measure the amount of time the

average processor spends waiting on the queue. Results from this profiling, shown in

Table 3.3, indicate that processors actually spend more time waiting for work to appear on

the queue than is predicted by the IGSM. This is because the IGSM, through its assump

tion of uniform task size, predicts that all tasks will be completed at the same time. How

ever, in reality, tasks are of different sizes depend on the type, number and state of the

devices attached to each node; as a result, processors that are assigned short tasks become

idle long before those assigned long tasks and hence spend more time busy-waiting on the

queue.

The IGSM model ignores the effect of the different numbers and types of devices

attached to each node, which contribute to non-uniform task sizes. The profiled data in

Table 3.3 does take this effect into account and indicates that the average processor spends

67% of its time waiting for work to appear on the queue, thus performing useful work only

33% of the total simulation time. This implies that with 96 processors, only 33%, i.e. 32

processors, can be fully utilized, thus providing a new ideal performance that can be

expected of MSPLICE2. Similar calculations have been made for the Counter benchmark

circuit for different numbers of processors, and the performance of MSPLICE2 relative to

the profiled ideal (as opposed to the Gauss-Seidel Machine ideal) is presented in Table 3.4.



Subroutine No. of calls % of total calls

MWait 30018 67

.shift 4144 9

afdivf 2698 6

afmulf 2300 5

.offset 1389 3

afsubf 902 2

_itoe 818 2

Sundry 2534 6

Table 33: Subroutine-call Profile for a Typical Processor running MSPLICE2
(Simulating COUNTER benchmark using 96 processors)

No. of Processors

1

10

20

30

40

50

60

70

80

90

100

Utilization(%)

100

100

85

73

65

56

50

44

39

35

32

Eff.(IGSM,%)

100

100

99

96

93

85

81

76

73

70

67

Eff.(Prof.,%)

100

100

99

96

95

90

88

84

82

80

78

Table 3.4: MSPLICE2 Performance relative to IGSM and Profiled Ideals
(For COUNTER benchmark)
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The results presented in Table 3.4 indicate that MSPUCE2 performance does

approach the ideal performance achievable for the Counter benchmark circuit, when non

uniform task-evaluation times are accounted for. The fact that MSPLICE2 performance

still falls short of ideal performance, with increasing degree as more processors are used,

points to the effect of memory and interconnection-network contention on memory-access

time, i.e., the effect of contention on task size.

3.6.4 - Performance of MSPLICE2 using Floating-Point Accelerators

In parallel processing, it is common to reduce task size in the interests of improving

load-balancing, subject to the constraint that task size does not become so small that

scheduling and communication overhead swamp out the improvement due to load balanc

ing. The temptation to reduce task size in MSPLICE from a node evaluation to a model

evaluation was resisted all along in anticipation of the availability of floating-point

hardware, which reduces floating-point computations by an order of magnitude, thereby

reducing task size considerably, since floating-point computations dominate circuit simula

tion.

The BBN Butterfly is now equipped with Motorola M68881 floating-point co

processors which serve to speed up the overall simulation significantiy (an average factor

of about 12) but simultaneously reduce task size so that scheduling and memory-access

overheads become noticeable when more than 16 processors are used, as is evident from

Figure 3.8. In addition to the benchmark circuits used in the MSPLICEl and early

MSPLICE2 experiments, three larger benchmark circuits have been added to this study.

These include a 4-bit, 1039-node, 1692-MOSFET counter-decoder-encoder circuit
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Figure 3.8: MSPLICE2 Performanceusing Floating-Point Accelerators
(**: Only 16 processors were available when simulating the ALU)
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(Codec2), a 155-node, 416-MOSFET switched capacitordigital-to-analog converter (Scdac)

and the critical path through a RISC microprocessor ALU (ALU), with 1097 nodes and

2650 MOSFETs. These benchmark circuits have been used for the analysis of MSPLICE2

only while using hardware floating-point acceleration, primarily because the availability of

the acceleration hardware significantly reduced simulation runtimes for these circuits.

It is evident that once again, as with MSPUCE1 using dynamic scheduling, increas

ing numbers of processors (over 32) result in degradation of performance, i.e. simulation

with 63 processors takes longer than with 32 processors. This indicates contention for a

shared resource. Given that floating-point acceleration reduced MSPLICE2's simulation

time on 1 processor from 19,010 seconds to 1269 seconds, i.e„ an increase of a factor of

14.98, it is obvious that the acceleration places more strain on the interconnection network.

As with the change from MSPUCE1 to MSPUCE2, this strain can be alleviated by reduc

ing access to shared data, in this case the single queue. One solution to contention for the

shared queue implemented in [61] is the use of multiple queues, such as 2 or 4 queues on

a 64-processor Butterfly.

While tuning of the scheduling scheme in MSPLICE2 will continue to berequired as

the number and power of processors and the interconnection network increases, it is

. interesting to compare the absolute performance of MSPUCE2 using floating-point

hardware to that of typical uniprocessors with floating-point accelerators. The performance

of MSPUCE2 on a Digital NficroVAX (VAXstation n/GPX), a VAX 8800 and a 32-

processor Butterfly is presented in Table 3.5 below.

It is evident from Table 3.5 that MSPLICE2 running on a single Butterfly processor

with floating-point hardware is about half as fast as a. Digital MicroVax workstation, while



Circuit MicroVax Vax8800
Butterfly

1-proc 32-proc

Scdac

Chain

Counter

Digfi
Codec2

189.2

510.6

547.5

576.9

1238.8

26.02

68.96

76.88

86.88

194.69

375

1186

1269

1341

2762

24.9

90.5

803

• 983

202.01
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Table 3.5: Simulation Times (sees) for MSPLICE with Floating-Point Accelerators

MSPUCE2 running on a 32-processor Butterfly is almost as fast as a Digital VAX 8800.

It is also interesting to note the effect of multiprocessor chaotic relaxation on the CHAIN

and COUNTER benchmark simulations: on a single processor, the inverter chain simula

tion takes slightly less time than thecounter simulation; however, with multiple processors,

the reverse is true indicating both, the deleterious effect of ignoring Gauss-Seidel ordering,

as well as the advantage of multiprocessing when there is more than a single signal path in

a circuit

3.6.5 - Parallel Processing and Iteration Counts

For SPUCE1.7 [7], which like MSPLICE is a node-based relaxation simulator, it has

been noted that the effect of tight coupling (namely, floating capacitors) is to increase the

number of iterations per node from 3-5 to 6-20. The recognition that tight coupling causes

a node-based simulator to run slower on a uniprocessor is the reason that state-of-the-art

relaxation simulators use mixed direct-relaxation algorithms to solve the circuit equa-
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tions [7,9], solving tightly coupled subcircuits using direct methods. However, for a

multiprocessor-based relaxation simulator, such as MSPLICE, an increased number of

iterations does not necessarily translate to slower simulation, since the additional iterations

can be performed on different processors. The relationship between the total number of

iterations for a 10-nanosecond simulation and the number of processors performing the

simulation are presented here for the benchmark circuits investigated.

It is evident from Table 3.6 that in general there is a tendency that with an increasing

number of processors less iterations are required, i.e., the additional processors, by making

up-to-date information available earlier during each timestep simulation, reduce the number

of iterations necessary. It is encouraging to note that for the Scdac and Digfi benchmarks,

which have the most analog nature of the benchmark circuits, the number of iterations pro

gressively decreased, indicating that the early availability of updated information is more

significant for analog than for more digital circuits. However, Scdac and Digfi are not

tightly coupled circuits, hence further investigation is necessary into the performance of

#Procs Chain

1

2

4

8

15

1577

1816

1848

1826

1854

Scdac

14545

14382

13845

13506

12929

Counter Digfi

9876

9976

9908

9875

9758

24734

23651

23502

23042

22235

ALU

6153

6143

6127

5982

6017

Table 3.6: Total Iteration Count (Cumulative over all nodes)
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MSPLICE with tightly coupledcircuits.

3.6.6 - MSPLICE2 simulating tightly coupled circuits

Towards investigating the properties of MSPLICE2 while simulating tightly coupled

circuits, a 395-node 723 MOSEET Sense Amplifier circuit was used. Since MSPUCE2 is

a node-based simulator, each node is normally permitted a maximum of 200 iterations

before MSPLICE terminates with a non-convergence error (as opposed to the 3-10 itera

tions that direct-method simulators permit before reducing the timestep). However, even

allowing 1000 iterations per node, MSPLICE2 was unable to obtain dc convergence for the

Sense Amplifier circuit, underlining the limitations ofa node-based simulator using a poor

initial guess. MSPUCE2 does, however, converge to a dc solution for this circuit using

source-stepping techniques, i.e., by simulating certain dc sources as being switched on a

few nanoseconds after the beginning of simulation.

A 5-node, 3-MOSFET boot-strapped inverter circuit, with a floating capacitor [7] was

also simulated using MSPLICE2. Speedup figures and iteration counts for this simulation

are shown in Table 3.7 below.

While the low speedup figures in Table 3.7 are not significant since the circuit is

small and hence has a small degree of parallelism, it is significant that performance degra

dation can be observed with 15 processors, while for a similar-sized inverter circuit no per

formance degradation occurred till 64 processors were used. This indicates, as is evident

from the increasing iteration count, that increasing numbers of processors degrade

MSPLICE2 simulation performance. For the boot-strapped inverter circuit, it was observed

that multiprocessing resulted in inappropriate ordering of node-equation solutions, thereby



#Procs Speedup No. of Iterations

1 1.0 982

2 1.3 1094

4 1.3 1119

8 13 1220

15 12 1361

Table 3.7: MSPLICE2 Simulation Results for Boot-strapped Inverter Circuit
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increasing the number of iterations, and the boot-strapped node in the circuit often fails to

converge at dc when 15 processors are used. This experiment further underlines the limita

tions of node-based relaxation simulators when simulating tightly coupled circuits.

3.7: CONCLUSIONS

The MSPLICE algorithm has been implemented on a Butterfly multiprocessor using

101 processors as well as on a 64-processor Butterfly with floating-point acceleration

hardware. The results for a number of test circuits have been used to compare the perfor

mance of the program with the behaviour of an ideal Gauss-Seidel machine. In addition,

the ability of the multiprocessor implementation to exploit the latency available in the cir

cuit has been compared with the maximum amount of latency present, for comparable

timestep control and convergence criteria.

A number of modifications have been made to the initial MSPUCE1 implementation

to improve performance with a large number of processors. In particular, the distributed
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multiple-queue dynamic-scheduling bottleneck has been identified and removed. The

scheduling bottleneck was circumvented using static scheduling, which eliminated the con

tention during queue selection but does not adequately address the problem of load

management A new implementation of the MSPLICE algorithm, MSPLICE2, has been

built and uses dynamic scheduling scheme with a single task queue.

The new program, MSPUCE2, uses copies of globally shared static data to reduce

contention for shared memory — this is facilitated by increased memory availability on

each Butterfly processing node. MSPLICE2 uses memory interleaving to scatter dynami

cally varying shared data and thus avoid memory hotspots. These modifications allow the

simulation of larger circuits, circumventing the starvation problem identified with earlier

benchmark circuits.

The dynamically varying part of the global data structure cannot be totally eliminated,

since it is necessary for communication between the cooperating processes. Given the

recognition of the importance of the memory-contention problem as the number of proces

sors increases, it is evident that effort must be directed towards minimizing both the size of

the dynamically varying part of the data structure as well as the number of references to it

In MSPLICE, the GlobalRemainingNetscounter contributes to the dynamically varying part

of the global data structure.

The benchmark circuits presented here are predominantly digital, with little feedback.

Traditionally, feedback paths tend to degrade performance of relaxation simulators. How

ever, when there is a starvation problem, feedback leads to increased work. For a mul

tiprocessor circuit simulator with a starvation problem, the increased work results in better

performance relative to the uniprocessor version of the same circuit simulator. There is a
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danger of viewing this relative speedup as an indicator of the effectiveness of the

multiprocessor-based circuit simulator. Up to a point, the multiprocessor simulator may

actually be effective as was seen in the case of the Scdac and Digfi benchmark circuits.

However, further increases in utilization may actually be indicative more of shortcomings

in the algorithm than of improved multiprocessor performance. This was evident from the

boot-strapped inverter experiment

In conclusion, it has been observed for MSPLICE that while random static scheduling

works well for a few processors, large-scale parallel processing (using on the order of 100

processors) requires either more intelligent static scheduling or dynamic scheduling, the

latter being the approach taken here. The single-queue dynamic scheduling is not without

problems, since a single queue becomes abottleneck as the number or power of processors

increases making it necessary to use a distributed-queue system. However, for a system

like the Butterfly, with a fast interconnection network, it is seen that between 16 and 32

processors can share each queue without severe contention. Finally, although load balanc

ing varies with application and architecture, it is seen that a single circuit-node evaluation

is an effective task size for the prototype simulator, MSPUCE2, on the Butterfly when

using software floating point With special-purpose hardware for accelerating floating-point

operations, a single equation-solution task begins to lead to contention with about 64 pro

cessors, since the reduced task computation time is now comparable with the interprocessor

communication time. This problem can be solved either by reducing the interprocessor

communication time by increasing the number of queues or by increasing the task compu

tation time by clumping anumber of nodes together to form a single task. Floating-point

hardware also significantly reduces simulation time, resulting in MSPLICE2 performance

on a 32-processor Butterfly that approaches the performance of aVAX 8800.
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CHAPTER 4

PARALLEL DIRECT-METHOD CIRCUIT SIMULATION

It is evident from the MSPLICE experiment described in Chapter 3 that circuit simu

lation is an application well-suited to parallel processing. However it was observed in

Chapter 3 that a node-based relaxation simulator makes many .iterations when simulating

tightly coupled circuits; for tightly coupled circuits, there are often a small number of

inter-dependent nodes that are active and it has been observed that an increasing number of

processors appears to increase the number of iterations required to converge rather than

decrease them. Hence, further research into parallelizing practical circuit simulators is

necessary. Parallel subcircuit-based relaxation-direct simulators, which decompose a circuit

into a number of loosely coupled subcircuits, using relaxation to solve between the subcir

cuits and direct methods to evaluate the tightly coupled nodes within each subcircuit, retain

the decoupling intrinsic to an iterative method and would seem to be natural successors to

MSPLICE. However, as experiments with PRELAX [10] and PSPLICE [43] have shown,

efficient parallelization of subcircuit-based relaxation simulators is limited by load-

management problems due to subcircuits with nonuniform sizes. Nonuniform subcircuit

sizes result in irregular task sizes, which in turn cause load-balancing problems as some

processors become idle while others continue to work on large subcircuits. Hence, parallel

direct-method simulators are needed for two reasons: to improve performance of programs

such as PRELAX and PSPLICE, as well as to obtain an alternative parallelization method.

The best uniprocessor algorithms for circuit simulation have been optimized for

speed, so it is advisable that initial attempts at parallelizing simulation use an intuitive

parallelization of the best serial algorithm for the application. If the best serial version
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parallelizes well, it is unlikely that a better parallel implementation will be found. For

example, an 0(nlog(n)) algorithm for sorting will perform better even in parallel than an

0(n2) algorithm, where n is the number of elements being sorted, unless the overhead

(which contributes as the constant of proportionality) of the former parallel scheme greatly

exceeds that of the latter. Note that if the best serial algorithm parallelizes poorly, e.g.,

with significant overhead per task, it is possible that the parallel version of a less-efficient

serial algorithm will perform better.

In this chapter, an experiment in parallelizing the best-known algorithms for direct-

method circuit simulation is described. In Section 4.1 the direct-method algorithms

described in Chapter 2 are recapitulated, identifying the most CPU-time expensive phases

of direct-method transient-analysis simulation and proposing straightforward schemes to

parallelize these phases. In Section 4.2 the test-bed Sequent Balance multiprocessor is

described. Parallelization of linearization and linear-equation solution, the Newton-

Raphson loop phases that dominate circuit-simulation time, are described in Sections 43

and 4.4, respectively. In Section 4.5, the results of this experiment are summarized, indi

cating the potential for parallelization of different phases of the best uniprocessor direct-

method algorithms.

4.1: Analysis of Direct-Method Algorithms for Parallelization

The direct-method circuit-simulation transient-analysis process, described in Chapter

2, is repeated here: Start with a set of first-order nonlinear ordinary differential equations

(ODE's) modelling the circuit Based on the smallest estimated timestep, integrate the

nonlinear ODE's using a stiffly-stable integration method, at each simulation time-point
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This yields a set of nonlinear algebraic difference equations, which are solved using an

iterative Newton-Raphson technique. Each iteration involves replacing all nonlinear ele

ments by linear companion networks. Fmally, solve the resulting set of linear equations

using sparse-matrix LU-decomposition.

The process description above indicates the three dominant phases of direct-method

simulation, all of which are candidates for parallelization. First, determination of the

fastest-changing circuit variable can be performed in parallel, yielding the time-step. Next,

multiple processors can concurrently linearize nonlinear devices and store the Jacobian

coefficients. Finally, the set of sparse, linear equations can be solved co-operatively. A

pictorial representation of this basic parallel algorithm is shown in Figure 4.1.

Although the approach to parallelization presented above produces obvious synchroni

zation bottlenecks between the three different phases, if the phases themselves display

significant parallelism, efficient load balancing during each phase should keep the loss in

parallelism due to end-effects low. An end-effect refers to the degradation in parallelism

that occurs towards the end of a computation, due to there being less tasks than processors

available, and hence not enough work to keep all the processors busy. This underlines the

importance of exploiting fine-grained parallelism, since small tasks would cause minimal

degradation of load balancing due to end-effects. The cost for using a fine granularity is

that of increased overhead for scheduling. Thus, a multiprocessor with a small scheduling

overhead will handle small tasks inexpensively, thereby increasing the potential for

effective load balancing.

From previous studies of direct-method circuit simulators [4,6,19], it is apparent that

most of the transient-analysis solution time is spent in the Newton-Raphson phase of the
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Random, Equal distribution of Circuit

Figure 4.1. Parallel Direct-Method Circuit-Simulation Algorithm
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direct-method algorithm. The two primary components of the Newton-Raphson method are

the linearization and the solution of the resulting set of linear equations. Linearization

involves computing ii««ir companion models for the nonlinear devices in the circuit The

time for linearization is 0(n), the number of nodes in the circuit, while the time for the

solution of the system of linear equations is Oin1^15) [6,24] using optimized sparse-

matrix solution techniques. Thus, as circuits with increasing numbers of nodes are simu

lated, linear-equation solution time begins to dominate over linearization time. The value

of n for which the linear-equation solution becomes the dominant factor in determining

solution time depends on the complexity of the device models, the efficiency of the

sparse-matrix solution algorithms and computer memory-access and floating-point computa

tion times.

The third step of importance in the circuit simulation is the determination of the

integration timestep for the differential equations. This step involves computation of the

rate of change for all the circuit variables. Once these rates have been calculated, it is

necessary to determine the fastest among them. The integration timestep for the ODE's is

chosen such that the expected error for the fastest-changing signal does not exceed a user-

specified mflTimiim error. Timestep selection is parallelized in two steps: circuit variables

are first divided equally between processors which compute the variables* respective rates

of change; simultaneously, each processor keeps track of the maximum rate of change

among the variables it has solved for. As processors become free, they compare between

each other to determine the globally fastest changing variable.

The parallel circuit simulator, PDSPLICE3 (listed in Appendix A), implemented on

the Sequent is based on the direct-method circuit simulator used in PSPLICE3 [43]. This
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has been done for two reasons: first, the parallel direct-method simulator is designed to be

modular, so as to augment easily the parallelism that a parallel relaxation simulator is able

to exploit by decoupling loosely coupled subcircuits; secondly, PSPLICE3 has the infras

tructure to exploit the circuit property of latency, i.e., to bypass simulation of those parts of

the circuit that are not active at a particular time. Since direct-method simulators can

exploit circuit latency, albeit to a lesser degree than in relaxation simulators [6], it is

intended that the parallel direct-method simulator make use oflatency.

42: The Sequent Balance B8000

The Sequent Balance B8000 has been selected as atest-bed multiprocessor because it

is easy to use for initial development of parallel processing algorithms due to its UNIX-like

operating system, DYNDC Indeed, both PRELAX and PSPLICE have been developed on

the Balance, providing further incentive to use the Balance. Further, use of the Balance

allows for easy comparison with uniprocessor direct-method circuit simulators, since a

uniprocessor program compiles and runs on the Balance without modifications. However,

performance of a bus-based architecture degrades as the number of processors increases,

and the extensibility ofthis architecture for large-scale systems is still unknown.

The Balance machine available at the time of this research had eight general-purpose,

32-bit microprocessors that share a common high-bandwidth bus, as shown in Figure 4.2.

At the time of this research, the largest Sequent Balance (B21000) system available has 30

processors and further extensions with more processors are planned. Processors are tightly

coupled, share a single memory system, and are identical in all respects. Exclusive access

to shared data structures is provided by hardware spinlocks. The programming environ-
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ment is that of a proprietary operating system, known as DYNDC, which strongly resem

bles UNIX. The following sections provide a brief overview of the architecture and pro

gramming environment of the Sequent Balance B8000, emphasizing those features that are

important when developing parallel algorithms to run on the machine.

4.2.1 - Architecture of the Sequent Balance B8000

Each processor on the Balance B8000 is a National Semiconductor Series NS32032

CPU. As the NS32032 was not designed to be part of a multiprocessor system, extra cir

cuitry is required to support the microprocessor's interaction with its environment The

support circuitry includes a System Link and Interrupt Controller (SLIC) chip, which han

dles communication between the CPU and the rest of the system; 8 Kbytes of local RAM,

for frequently accessed kernel code, and 8 Kbytes of cache RAM, for blocks of most

Shored Memory

i
Bus

PC « Processor

—Cache

Figure 42. The Sequent Balance B8000
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recently used system memory; an NS32082 Memory Management Unit, that controls

access to memory, and supports virtual addressing; and an NS32081 Floating Point Unit

for floating-point operations.

The Balance is built around the SB8000 bus, which links the 8 processors, 14 Mbytes

of system memory and I/O subsystems. 32-bit data and 28-bit addresses are time-

multiplexed on the bus, which has a channel bandwidth of 40 MB/s and supports data

transfers at up to 26.7 MB/s. Bus operations are pipelined, so that the bus is available for

transactions between the making of a request and the system memory's response to the

request The system memory can respond to aread request in 3cycles (300 ns) and to a

4- or 8-byte write request in 2 cycles, and is capable of correcting single-bit errors and

detecting double-bit errors. In addition, when two equal-sized memory modules are avail

able, alternate 8-byte address blocks are interleaved between the two modules.

As each of the Balance processors has a cache, and all the processors may work on

the same data, a cache coherency scheme is used to ensure that all the processors use the

correct data [74]. The Balance uses a Snoopy Cache [75,76] consistency scheme, which

operates as follows: when a processor writes into its cache, an update message is sent to

the system memory as well; meanwhile, all the other processors monitor the bus, and those

that recognize the updated data as residing in their own caches, update their copies of the

data.

As mentioned above, the Balance contains a System Link and Interrupt Controller

(SLIC) bus which is a 1-bit data path in the backplane that connects all the SUC's in the

system. The processors use the SLIC bus to ensure that only one processor can access a

shared data structure, such as a lock, at a particular time. The SLIC bus provides an
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efficient and easy way of ensuring mutual exclusion between the processors.

422 - Programming environment on the Sequent Balance B8000

The parallel programming environment on the Balance runs within the UNIX-like

DYNIX operating system. The various operations that DYNIX provides for parallel pro

cessing are detailed in the following section. Parallel processing relies on five basic ele

ments that single-process programs do not, namely: process creation and termination, crea

tion of shared memory, scheduling of tasks between processes, interprocess communica

tion, and inter-task synchronization and mutual exclusion. Operations for each of these

elements is briefly described below.

To create a new (child) process, which is a duplicate of the old (parent) process,

DYNIX provides a fork() operation. Since creation of a new process is relatively expen

sive (55ms on the Balance), all new processes are created at the beginning of the program

and terminated, through an exit()t only after the entire simulation is completed. Shared

memory allocation, also performed at the beginning of the program, is facilitated by the

command p_shmalloc(), which facilitates inter-process synchronization. Among process

synchronization tools, the barrier is particularly useful because it smooths out the wait ata

synchronization point

Debugging parallel programs is often a tedious task, since different executions of a

program will probably result in different execution orders. As a result, it is difficult to

duplicate the set ofcircumstances that exposed a particular program bug. To assist in the

endeavour of identifying bugs in parallel applications, the Balance is equipped with PDbx,

a parallel version of the Unix program Dbx. Prime among PDbx's features is the ability to
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open up windows, control and monitor progress of all the processes simultaneously, which

enables a user to observe the changes in the program as and when they occur. This is a

useful tool.

Performance measurement tools are essential when attempting to parallelize an appli

cation. To this end, the Balance is furnished with an impressive suite of tools, including

the trace program ptrace% the monitor program and profilers prof said gprof [39,74].

43: Parallel Model Evaluation

Model evaluation, the linearization phase in circuit simulation, has been previously

identified as a good candidate for parallel processing. This section details the parallel

model-evaluation algorithm used, and the performance of the algorithm on an eight-

processor Balance.

43.1 - Parallel Model-Evaluation Algorithm

The linearization step of the Newton-Raphson algorithm is easily and efficiently

parallelizable: once the node voltages for a particular device are known, evaluation of the

linear companion network for the device is performed independently of all the other dev

ices in the circuit The scheme used is as follows: the devices in the circuit are parti

tioned into approximately equal-sized groups of devices called tasks, which are placed on a

queue at the beginning of the linearization; when free, each processor takes a task off the

queue, evaluates the linearized equivalents for all the devices in the task and loads the

coefficients in the Jacobian matrix. This process is continued until all the tasks have been

removed from the queue.
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Since the Jacobian matrix is in shared memory, loading of the matrix involves inter

process synchronization to ensure atomic additions to the matrix. The synchronization is

achieved through the use of row-locks, i.e., a lock for each row of the matrix, which are

locked prior to each addition and unlocked after the addition is completed. Since the time

for locking, adding to amatrix location, and unlocking, is small compared to that of atypi

cal transistor model evaluation, the synchronization overhead is not significant for transistor

evaluations. Further, the circuit devices are divided equally between processors to ensure

efficient load-balancing.

It is evident that in order to exploit the parallelism available during the linearization

phase, the model-evaluation task time should be significantly longer than the time to load

the corresponding Jacobian matrix locations. The probability ofprocessors colliding while

trying to load the shared matrix increases with the ratio of the matrix loading time to the

model-evaluation time. For this reason, and to reduce scheduling overhead, it is desirable

that models that can be evaluated relatively inexpensively, like nonlinear resistors and

capacitors, be clumped together to form large-grained tasks. For the current implementa

tion, devices are clumped together to form tasks with estimated computation times of 5

milliseconds. The estimated computation times used for devices are listed in Table

4.1 [43].

For small circuits, where model evaluation dominates total circuit-simulation time,

parallel model evaluation alone speeds circuit simulation up significantly. Thus, on the

Balance, amultiprocessor with asmall memory on which only small circuits can be simu

lated, parallel model evaluation is sufficient to speed up the overall simulation time.



Device Time (us)

MOSFET

Diode

Resistor

Capacitor

1890

580

280

140

Table 4.1 Device Model-Evaluation Times on the Sequent Balance B8000
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432 - Performance of Parallel Model Evaluation

Speedup curves for parallel model-evaluation are shown in Figure 4.3 for three

benchmark circuits, displaying the near-ideal efficiency of the parallelization scheme. The

benchmark circuits are a Programmable Logic Array (PLA) with 116 MOSFETs and 65

nodes, a Random-Access Memory (RAM) with 277 MOSFETs and 149 nodes, and a

Digital-to-Analog Converter (DAQ with 416 MOSFETs and 155 nodes. Since all the

processors work concurrently and independently on the linearization, the ideal speedup fac

tor is nearly equal to the number of processors and is represented by the unit-slope line in

Figure 4.3. The reduced parallelism due to end-effects, at the beginning and end of the

parallel algorithm when processors outnumber tasks, is negligible since there are many

more tasks than processors for most of the linearization phase (46, 138 and 109 tasks for

the PLA, DAC and RAM respectively).

For small circuits, where model evaluation dominates transient analysis, paralleliza

tion of model evaluation alone makes circuit simulation noticeably faster. Table 4.2 shows

the speedup in overall simulation time due to parallel model evaluation. Note that, in accor

dance with Amdahl's law [77], maximum speedup is limited by the unparallelized part of
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Figure 43. Speedup for the Parallel Model-Evaluation Phase

#of Procs PLA RAM DAC

actual ideal actual ideal actual ideal

1 1.00 1.00 1.00 1.00 1.00 1.00

2 1.57 1.57 1.48 1.50 137 137

4 2.18 2.18 1.91 2.01 2.17 2.17

6 2.49 2.51 2.10 2.26 2.48 2.48

8 2.60 2.72 2.17 2.41 2.65 2.68

Table 42: Simulation Speedup due to ParaUel Linearization
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the total simulation time (between 28 and 33% for the benchmarks), and hence the max

imum speedup in all cases is under a factor of 3, in spite of the high efficiency of the

parallel model evaluation.

As the number of processors increases to the hundreds or thousands, it is expected

that algorithms that work on smaller multiprocessors will break down due to contention for

the shared resources in the system, namely the bus and the memory. In addition, the

shared single queue that is used in this algorithm will provide a potential bottleneck. It

will then become necessary to use clusters of processors to solve smaller parts of the prob

lem, and then solve between the clusters. The current approach prepares for this transition

by arranging the problem into clusters with re-definable size. This approach is manifest in

the algorithms described above, and it is expected that these algorithms will continue to be

efficient as larger multiprocessing systems are utilized, albeit with multiple queues.

4.4: Parallelizing Linear-Equation Solution

It was stated in Chapter 2 that linear-equation solution time dominates overall simula

tion time for large circuits (over 3000 nodes). Unfortunately, parallelization of linear-

equation solution time is difficult for circuit simulation, as is shown in Section 4.4.1. An

efficient parallel Gaussian-elimination algorithm for full matrices is described in Section

4.4.2 and is used as a basis for the proposed parallel sparse-matrix solution algorithm.

Performance of the sparse-matrix solution algorithm is detailed in Section 4.4.3.
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4.4.1 - Sparsity considerations

With a full matrix, it has been shown [61] that near linear speedup is achievable for

large matrices using Gaussian elimination on a Butterfly with up to 128 processors. It is

observed that a speed-up factor of between 110 and 115 can be achieved for 400x400

matrices. Although back substitution has not been shown to achieve a speed-up factor

greater than 80 [61], the overall linear-equation solution time, which is dominated by the

triangularization phase, is accelerated by a factor greater than 105, implying a highly

efficient parallelization. However, the situation is more complicated for sparse matrices.

When solving sparse matrices, in order to perform a small number of matrix opera

tions, it is necessary to retain the matrix sparsity while picking pivots and eliminating

lower triangular elements. Thus, the effectiveness of a sparse-matrix technique is measured

by its ability to nunimize tiie number of fill-ins into the sparse matrix, where afill-in refers

to the conversion of a matrix zero element that becomes nonzero during the elimination

process.

As described in Chapter 2, standard direct-method circuit simulators use the Mar-

kowitz criterion [54] to pick a pivot The Markowitz algorithm is a greedy algorithm that

picks, at any stage, the pivot element that will give the least number of fill-ins if the pivot

is used for elimination at that stage. The Markowitz criterion for pivot selection associates

a worst-case count of expected fill-ins with each potential pivot This count is the product

of the number of nonzero elements in the pivot column and the number of nonzero ele

ments in the pivot row, excluding the pivot element itself. The Markowitz algorithm is

sequential by nature, requiring each pivot to be selected before the next one can be chosen.

For most circuits, once the pivoting order has been selected at the beginning of the tran-
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sient analysis, re-ordering is rarely necessary. Thus, efforts are concentrated towards paral

lelizing the triangularization and back substitution of a matrix with a known pivot order.

4.4.2 - The Pivot Dependency Graph (PDG) technique

A study of different pivot-selection algorithms and their respective concurrency

potentials has been made, using dataflow dependence-graph analysis [78]. The pivot-

dependence graph (PDG) is defined as a graph that displays pivots as nodes and depen

dence along the arcs and is similar to the parallel linear-equation solution graph proposed

in [45]. Dependence indicates that there are certain elements in the row of the child pivot

that are .not known until the parent pivot has been used for elimination; hence, the child

pivot cannot begin elimination until the parent element has completed its elimination. The

root element in this graph, the topmost node, indicates a pivot that is not dependent on any

other pivots and can be eliminated at the beginning of the linear-equation solution. An

example matrix is shown in Figure 4.4(a), where alphabets denote pivot (diagonal) ele

ments, O's denote zeroes and X's denote off-diagonal non-zeroes. The corresponding PDG

for the example matrix is shown in Figure 4.4(b).

Given a PDG, dynamic scheduling was first investigated as a means of data-driven

ordering of the solution. With dynamic scheduling, a task can be performed as soon as the

task's pivot becomes a root in the PDG. However, since the PDG is known at the begin

ning of transient analysis, dynamic scheduling introduces an unnecessary overhead in terms

of locking and unlocking a globally shared queueand was discarded on that basis.

Given the unchanging nature of the PDG, static scheduling is an effective means of

overcoming scheduling overhead without compromising load balancing. Indeed, in [61],



a x x x

x b x x

x x c x

x x x d

x x x x

0 0 0 0

o o o o

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Figure 4.4(a).

xo o o o o o

xoooooo

xo o o o o o

xoooooo

e o o o o o o

of xo o o o

ox go o o o

o o oh xo o

o o ox i o o

o o o o oj X
o o o o ox k

Example Sparse Matrix

Pivot Dependency Graph

90

Figure 4.4(b). Pivot Dependency Graph (PDG) for Example Matrix in Fig.4.4(a)
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static, sequential scheduling has been used effectively for full matrices, which have a large

number of elimination tasks per pivot; hence, task-computation time greatly exceeds com

munication and scheduling overhead. However, for circuit matrices, with typically 3

nonzero elements per row or column, sequential scheduling of pivots does not effectively

utilize a large number of processors.

For a sparse matrix, the PDG often has several root elements. A totally static way of

exploiting parallelism is to schedule tasks according to their distance from the root of the

PDG, thereby ensuring that all pivots at a particular level are eliminated before the next

level down is started on. This works well for PDG's with multiple paths of approximately

equal length. However, if one path is much longer than the rest, it is possible to have less

crucial tasks, from the shorter paths, being performed by processors that would be more

effectively used on tasks in the critical path. An alternative scheduling scheme is thus

required.

The above shortcoming can be circumvented by assigning pivots priorities according

to their distance from the bottom of the PDG. Now, tasks are taken off queues in order of

decreasing priority. This scheme is dynamic and allows more critical pivots to pre-empt

less critical ones for limited processing resources, but utilizes the known PDG to statically

assign priorities. Unlike totally dynamic scheduling, there is no difficulty of having to

insert tasks in the middle of a queue since each priority level is assigned a unique queue.

The example in Figure 4.5 illustrates the use of the prioritized queue system. In this

example, it is assumed that 2 processors are available. Figure 4.5(a) shows the scheduling

order that dynamically results when tasks are not prioritized according to their position in

the PDG. It is evident that less-important tasks (h and J) are superceding the more-
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important task (d), thereby holding up other tasks in the critical path of the computation

such that the total decomposition takes 5 time units. In Figure 4.5(b), where the resulting

order due to scheduling using task prioritization is shown, it can be seen that the more-

important task (b) pre-empts the less-important tasks (h and J) and thereby reduces the

matrix decomposition time to 4 time units.

The scheduling scheme proposed is quasi-dynamic. It exploits static scheduling by

using the known PDG, yet dynamically permits high-priority tasks to pre-empt less impor

tant pivot eliminations. The scheme does not address the issue of task granularity for load

balancing, i.e., subdividing a pivot task into individual row tasks, since the task size is

already relatively small. As the number of fill-ins increases, the matrix for elimination

becomes more dense, increasing the number of tasks per pivot elimination. The resulting

increased task size would make it imperative that large tasks be further subdivided into sin

gle or clusters of row-elimination tasks for finer load balancing. This approach can be

used in the event of load balancing significantly degrading performance.

The parallel PDG technique has been implemented [79,80] within the body of the

SPARSE package [81]. As part of the initial OrderAndDecomposeMatrixO [81], the PDG

is constructed and pivots are assigned levels from the bottom of the PDG. Then, during

each call to DecomposeMatrix() [81], the processor decomposing the matrix places all

level-1, i.e., independent, tasks on the queue and waits until the other processors have

completed eliminating level-1 pivots before placing level-2 pivots on the queue, and so on.

Note that this implementation keeps one processor constantly busy-waiting for the others to

complete pivot eliminations. A synopsis and analysis of results obtained using this imple

mentation of the PDG algorithm are presented in the next section.
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Figure 4.5(a). Scheduling without Task Prioritization
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Figure 4.5(b). Scheduling with Task Prioritization
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4,43 - Performance and Analysis

For the parallel PDG algorithm, it is possible to determine a theoretical maximum

possible speed-up, Speedy, using the following formula:

Speedz

Circuit

Decpla
Scdac

Cramb

AU

56

150

139

Npiv
CPkngth

where Npiv is the number of pivots in the matrix, and CP^a, is the length of the PDG crit

ical path. From Eqn.4.1, the maximum possible speed-up for the three benchmark circuits

is shown in Table 4.3 and is achievable iff

where Npme is the number of processors and N^ is the number of pivots at the widest

level of the PDG.

In spite of the already small Speedy for all three benchmark circuits, it is observed

that the parallel PDG algorithm results in significantly longer solution times for multiple

processors than for a single processor. This phenomenon is due to the implementation of

the algorithm as explained below.

It is observed that the PDG for all three of the benchmark circuits has a wide top,

Le„ a lot of independent (level-1) pivots, but narrows as the level within the graph

CPleneth

17

23

26

Speedy

33

6.5

5.3

Table 43: Maximum Possible Speedup using Parallel PDG Algorithm

(4.1)
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increases. As a result, there are a number of tasks that can be performed in parallel at the

beginning of the solution, but the triangularization process becomes essentially sequential

after a stage. Once the solution reaches the point in the PDG after which there is only one

pivot per level, the current algorithm is extremely wasteful since it involves one processor

scheduling tasks for another processor to perform, explaining the slowing down of the

solution process.

4.5: Conclusions - Performance and Extensibility of Parallel Direct-Method Solver

Although the results in Section 4.3.2 indicate that efficient parallel model-evaluation

can be achieved, it is not clear that these results are extensible on a Balance-like architec

ture with increasing numbers of processors. In particular, it is expected that as the number

of processors increases, contention for the shared resources, ie., the bus and shared

memory, will increase until communication and scheduling overhead swamp out the useful

computation. Initially this effect can be countered by increasing, task size, but it is evident

that increased task size ultimately leads to degradation in load balancing. Hence, an archi

tecture that distributes memory and interconnection network is required for the continued

efficacy of the parallel model-evaluation algorithm used here.

The matrix-loading algorithm used in the parallel direct-method solver is random by

nature, i.e., nothing is done to ensure that different processors aren't working on the same

row of the Jacobian matrix (and hence competing for the same lock) or to stagger task

sizes such that all processors aren*t attempting to update the matrix or take tasks off the

queue simultaneously. Although more sophisticated algorithms may become necessary as

more processors are used, for the purposes of this study it has been concluded that the
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current scheme is adequate.

In summary, a direct-method circuit simulator, implemented on the Sequent Balance

B8000, serves to provide a measure of the concurrency potentials of the best uniprocessor

algorithms and a metric for the efficiency of other parallel-processor circuit simulators. An

intuitive parallelization scheme is presented, and it is seen that this scheme results in

efficient parallelization of the linearization phase of circuit simulation, i.e., model evalua

tion. However, the proposed pivot-dependency graph technique does not yield a high

degree of exploitable parallelism for linear-equation solution, as shown by the results in

Section 4.4.2. Improved implementations of the PDG scheme are presented in Chapter 5,

along with an analysis of the Speedy figures for larger circuits.
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CHAPTER 5

PARALLEL SPARSE LINEAR-EQUATION SOLUTION

The potential for parallelization of a direct-method circuit simulator is described in

Chapter 4 and reveals that parallel processors can efficiently exploit the parallelism in

circuit-matrix linearization. To parallelize linear-equation solution, a pivot-dependency

graph (PDG) scheme is proposed in Chapter 4, but results from the initial implementation

indicated poor parallel performance. Results from an efficient implementation of the PDG

scheme are presented in Section 5.1. It is concluded that the PDG scheme is not viable for

the exploitation of large-scale parallelism in linear-equation solution, predominantly due to

tiie limitation of its use of pivot-sized tasks. As a result, in Section 5.2, parallelism is

investigated on the basis of elemental operations, using a finer granularity than pivots to

exploit a higher degree of parallelism. Parallelization techniques applied to back substitu

tion are described in Section 5.3, revealing that elemental techniques again have higher

parallelization potential than pivot-based approaches. Results from an implementation to

remove the synchronization bottleneck between the triangulation and back-substitution

phases are listed in Section 5.4. Conclusions are presented in Section 5.5.

5.1: Pivot-based Parallel Linear-Equation Solution

The Pivot Dependency Graph (PDG) scheme, a technique designed to exploit as

much parallelism as is available during the solution of a sparse system of linear equations

ordered using the Markowitz criterion, is described in Chapter 4 (see also [79,80]). A

PDG is a graph that determines the order in which pivots may be eliminated during LU-
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decomposition, by establishing which pivots affect the final values of other pivots. For cir

cuit simulation, the PDG is determined at the beginning of transient analysis and rarely

needs to be changed during a simulation since the matrix order itself usually remains

unchanged. Independent pivots are eliminated at the beginning of the linear-equation solu

tion, while dependent pivots are processed as they become ready to be used. The PDG

scheme yields a low degree of parallelism, merely because it deals with a sparse system of

equations with typically two or three non-zero off-diagonal elements in each row or

column. Indeed, for the PLA, DAC and RAM benchmark circuits described in Section

4.3, the ratios of the total number of pivots to the maximum depth of the PDG - which

may be used as a measure of the parallel potential of the algorithm - are 3.29, 632 and

5.34, respectively.

Apart from direct inter-pivot relationships, however, it is also necessary that succes

sor elements (below and to the right of pivots) are eliminated in the same order as they

would have been eliminated by a single processor. In the initial implementation, described

in 4.4, this secondary dependency was handled by busy-waiting for an element to become

the leftmost uneliminated element in its row. This scheme reduced the already-small PDG

parallelism limits for the PLA, DAC and RAM to 2.00, 337 and 3.31, respectively.

Further, pivots were scheduled through the global queue, and it is observed that the over

head of queue handling, including locking and unlocking, far outweighs the useful compu

tation of an elimination task, even for a single Balance processor. Also, synchronization

between the LU-decomposition, forward and back substitution phases leads to end-effects

that further degrades parallel performance. As a result of the numerous inefficiencies in

the implementation of the PDG algorithm, even the small parallelism available could not be

exploited. In fact, multiple processors took longer than a single processor for the sparse
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linear-equation solution.

A new implementation counters the above problems as follows: At the beginning of

an equation-solution, each processor, P,, is assigned a unique number, Q: (through the

queue), giving the processor responsibility for a set of pivots, PivotSet, during that solution.

The set of pivots that a processor is responsible for are determined using the formula

below:

PivotSet = Qit Q; + A^, Q, + 2 * NpreeSt • • •

while Pivot„„„!„ £ Matrix dimension,

where Np^, = the number of processors working on the parallel linear-equation solution.

The queue is thus used only once at the beginning of each solution, greatly reducing

queue-handling overhead. The busy-waiting problem is overcome by having processors set

a flag when an element can be eliminated, but isn't because there are elements to its left

that have not yet been eliminated. The processor that eliminates the previous element in

the same row will notice the flag and perform the elimination. •This ensures that all ele

ments are eliminated, while relieving processors from having to wait when useful work can

be done elsewhere. Finally, Gaussian elimination is used instead of LU-decomposition to

remove the synchronization bottleneck between decomposition and forward solution.

Results from this experiment, for the three benchmark circuits described in Chapter 4, are

shown in Figure 5.1 and Table 5.1.

Although the actual speedup is still lower than the ideal speedup, performance is

significantly better than with the previous implementation. Note that the ideal speedup in

all cases is less than the maximum possible speedup figures (3.29, 5.34 and 632 for the

PLA, RAM and DAC, respectively). This is because of the structure of the PDG, which is

wide at the top and narrow at the bottom. As a result, a number of processors can work
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Figure 5.1: Speedup using PDG-based Parallel Linear-Equation Solution
(RAM Benchmark Circuit)

# of Procs PLA RAM DAC

actual ideal actual ideal actual ideal

1 1.00 1.00 1.00 1.00 1.00 1.00

2 1.28 1.60 1.19 1.81 132 1.76

4 1.74 2.24 1.62 2.83 1.73 2.83

6 2.06 2.67 2.03 3.48 2.08 3.66

8 2.16 2.80 2.34 3.86 2.25 4.17

Table 5.1: Speedup with PDG Linear-Equation Solution
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concurrently at the beginning of the linear-equation solution as shown in Table 4.3, while

all three benchmarks require only one processor at the end of the solution. However, as

long as the number of actual processors is less than the greatest width of the PDG, the

ideal speedup is less than the maximum speedup possible. This highlights another limita

tion of thePDG algorithm: in order to attain themaximum parallel speedup, it is necessary

to have a large number of processors available to perform triangulation at the beginning of

the linear-equation solution, due to the unbalanced nature of thePDG.

5.2: Fine-grained Parallel Triangulation

Studies such as [34] indicate that there is a substantial degree of parallelism available

in sparse linear-equation solution for large systems when a fine-grained parallel technique

is used. In this section, the parallel potential of element-based, rather than pivot-based,

operations is investigated. Although element-based parallelism is harder to exploit on a

medium-granularity parallel processor such as the Balance, the investigation provides a

more accurate estimate of the limit to parallel linear-equation solution. For purposes of

implementation, it is possible to clump together elemental tasks, as was in fact done

in [34], to overcome system scheduling and synchronization overheads.

In order to estimate element-based parallelism, a concept similar to PDGs, Row-

Dependency Graphs (RDGs) are used. The RDG technique provides relationships between

row operations for a matrix. For an element-based analysis, each of the pivot tasks defined

by the PDG method is further subdivided into basic row operations, i.e., division for nor

malization and multiplication-subtraction for elimination. For Gaussian elimination, the

atomic operation involves operation on all theelements in a row simultaneously, so the ele-



102

mental operations are merely row normalization and elimination tasks. In Table 5.2, paral

lelism limits using row-based and element-based computations are presented. The depth of

the RDG, RDGjepn, remains the same for both cases, and the parallelism limits calculated

for row-based and element-based cases, Speedup^ and Speedupamtttt% respectively, are cal

culated as follows:

Operations*
Speedup*

where Operations^ is the number of row normalizations and eliminations , and

Speedup,ltmtns =
Operationselematt

RDGtUpth

where OperationseUm4fU is the number of divisions and multiplication-subtractions.

The results in Table 5.2 indicate that there is a significant amount of parallelism that

can be exploited during sparse linear-equation solution, but this parallelism is only avail

able at a very fine granularity. While the parallelism available using row-based tasks is

approximately twice that available using the PDG technique (compare Table 5.2 with Table

Circuit RDG Depth Max. Speedupraw Max. Speeduptlemtnx

PLA 39 456 6.26

RAM 41 12.66 1833

DAC 49 11.06 16.0

DIGFI 48 27.69 39.63

EPROM 93 32.47 51.40

Table 5.2: RDG-based Parallelism Limits
(Using row- and element-sized tasks)



103

5.1), the mpTimiim speedup using element-based calculations is about three times as much.

This corroborates the results published in [34,56], indicating that the parallel processor

used to exploit this parallelism must be constructed such that scheduling and memory

access overheads are negligible when compared to a single division or multiplication-

subtraction operation.

Results from implementations of the row-based RDG algorithm are presented in Fig

ure 5.2 and Table 53.

0 2 4 6 8

No. of Processors

Figure 5.2: Speedup of Triangulation using Parallel RDG Methods
(DAC Benchmark Circuit)



Circuit RDG Depth # of Procs Speedup^

1 1.00

2 2.61

PLA 39 4 2.41

6 2.83

8 2.51

1 1.00

2 1.73

RAM 41 4 2.73

6 3.44

8 3.93

1 1.00

2 1.84

DAC 49 4 3.15

6 3.85

8 4.47

Table S3: Row-based RDG Parallel Triangulation Speedup

53: Parallel Back-substitution
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For dense matrices, LU-decomposition is 0(n3), while back-substitution is only

0(n2); hence parallel performance of triangulation far out-weighs the effect of parallel

back-substitution [61], especially when the matrices are large. However, for a sparse

matrix, triangulation and back-substitution are both of 0(nl2~is)% since tracing down the

sparse-matrix pointer structure and the increasing (relative) density of the sparse matrix

equally affects both phases of the linear-equation solution. As a result, although back-

substitution typically takes about half as long as triangulation (as is shown for the exam

ples that follow) since half as many elements are being utilized, speedup through parallel

processing depends significantly on efficient parallel hack-substitution as well.
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In this section, the parallel potential of back-substitution is analysed using the PDG

and RDG techniques described earlier. The matrix order is pre-determined on the basis of

sparsity and parallelism for triangulation. Hence, back-substitution uses the same order,

and the PDG constructed merely starts from the bottom-right of the matrix and moves

upwards, i.e., the opposite direction to that used in the PDG technique for triangulation.

Parallelism limits using the PDG technique are shown in Table 5.4. These results are

identical to those in Table 5.1, because the circuit matrix is symmetric after fill-ins have

been inserted; therefore, the back-substitution PDG is merely the inverted triangulation

matrix.

For back-substitution, a single row operation is actually a column operation, but is

referred to as a row operation for convenience. Since each pivot-operation involves a sin

gle vector multiplication-subtraction operation for one column, the RDG is identical to the

PDG. As a result, as shown in Table 5.5, the critical path through the RDG has the same

length as the corresponding path through the PDG, i.e., maximum pivot-based speedup

Circuit Equations PDG Depth MaxSpeedup

PLA 56 20 2.8

RAM 139 21 6.62

DAC 150 23 6.52

DIGFI 378 33 11.45

EPROM 630 37 17.03

Table 5.4: PDG-based Parallelism Limits for Back-substitution
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equals ma-rimum row-based speedup. In addition, due to the symmetric nature of the cir

cuit matrices, the number of elemental operations are observed to be half the number of

elemental operations in Table 5.2. Also evident from Table 5.2. is the fact that, except for

the largest example, EPROM, the maximum parallel speedup is slightly lower for back-

substitution than it is for triangulation.

Results from implementations of the row-based RDG back-substitution algorithm are

presented in Figure 5.3 and Table 5.6.

5.4: Synchronizing Triangulation and Back-substitution

Although element-based parallel-limit calculations, presented in Sections 5.3 and 5.4,

indicate a reasonably high speedup potential for the two phases of linear-equation solution,

triangulation and back-substitution, this potential is available only at a very fine task granu

larity. As a result, an efficient parallel linear-equation solver mustexploit as much as pos-

Circuit Equations RDG Depth Element Ops. MaxSpeedup

PLA 56 20 122 6.1

RAM 139 21 380 18.1

DAC 150 23 392 17.04

DIGFI 378 33 951 28.82

EPROM 630 37 2390 64.59

Table 5.5: RDG-based Parallelism Limits for Back-substitution
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Figure S3: Speedup for Back-substitution using Parallel RDG Algorithm
(RAM Benchmark Circuit)
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Circuit RDG Depth #of Procs Speedup^

1 1.00

2 2.00

PLA 39 4 1.52

6 1.99

8 1.63

1 1.00

2 1.48

RAM 41 4 1.77

6 2.05

8 2.30

1 1.00

2 1.16

DAC 49 4 1.72

6 1.99

8 1.66

Table 5.6: Row-based RDG Parallel Back-substitution Speedup
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sible of the available parallelism. This involves reducing the serial bottleneck between the

triangulation and back-substitution phases, as is described in the paragraph below. In this

section, the synchronization point, or serialization bottleneck, between matrix triangulation

and back-substitution is investigated, and methods of reducing its length are proposed and

studied.

In the implementation of the parallel linear-equation solver described so far, linear-

equation solution proceeds as follows: at the beginning of the solution, each processor is

assigned, through the centralized queue, a unique number, which it utilizes through the tri

angulation to determine which pivots, rows or elements it is responsible for normalizing or

eliminating. The last processor to complete triangulation places a new set of numbers on

the queue, which the processors take off the queue- to determine which pivots, rows or
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elements they must work on for back-substitution. Towards the end of the triangulation,

some processors are idle because they have no work to do. All but one of the processors

continue to be idle while new tasks are being placed on the queue. Finally, once tasks are

placed on the queue, processors compete for the queue lock in order to obtain their

assigned tasks. Although the costs of such a synchronization bottieneck and the associated

end-effects are marginal on a system with a few processors, such as the Sequent Balance,

these costs rise significantly as the number of processors which are idling or competing for

tiie shared lock increases.

For full matrices, where all the equations depend on each other, back-substitution

cannot be started until the end of triangulation, because a full matrix has a PDG that is a

single chain, where pivots affect each other sequentially. Hence, if the PDG for triangula

tion are to be concatenated with that for back-substitution, the resulting PDG is a single

chain as well, indicating that the synchronization bottleneck between triangulation and

back-substitution cannot be removed by pipelining the two phases. For sparse matrices,

however, the PDG has a number of parallel chains and the concatenation of PDGs for tri

angulation and back-substitution can provide a number of parallel paths, thereby reducing

the impact of the synchronization point

Analysis of the structure of the PDGs for the five benchmark circuits indicates that

the PDG reduces to a singlechain towards the end of triangulation and is therefore a single

chain at the beginning of back-substitution. As a result, the concatenation of the two

PDGs results in a single,chain and does not remove the serial bottleneck between the two

phases. However, the logical concatenation of the two PDG's provides a means of elim

inating the necessity of placing flags on the queue to demarcate the beginning of back-
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substitution. Instead, processors work on the same set of pivots for back-substitution as

they did for triangulation. Thus, while pipelining of pivot tasks does not curtail end-

effects, it does serve to reduce inter-processor contention.

While the PDG and RDG structures are essentially sequential towards the end of tri

angulation, there are a number of elemental operations that can be performed simultane

ously. Thus, due to finer granularity, elemental parallel linear-equation solution provides

an efficient way of reducing not only end-effects, but also the synchronization bottleneck.

Results using elemental operations as tasks are shown in Table 5.7.

5.5: Conclusions

The analysis and results from the PDG experiment for linear-equation solution are

encouraging, although the effectiveness is less than that from parallel linearization.

Linear-equation solution, which dominates simulation time for very large circuits, does not

display as high a degree of parallelism as does circuit linearization using the PDG scheme,

but the parallelism does appear to increase with circuit size. The experiments conducted

indicate that the organizational overhead for the PDG scheme is significant when compared

with the useful work done, but part of this is due to issues of implementation of the algo

rithm on the Balance architecture, as is evidenced by the significant reduction in linear-

equation solution time when queue usage is dispensed with.

A study of fine-grained parallelism, based on row and elemental operation and

described in Section 52, shows that maximum parallel potential does increase significantly

as the task size increases. In order to exploit this higher degree of parallelism, inter

process synchronization and task-handling overheads must be reduced significantly.



Circuit RDG Depth #of Procs Speedupro*

1 1.00

2 1.67

PLA 39 4 2.28

6 2.78

8 2.39

1 1.00

2 1.71

RAM 41 4 2.60

6 3.11

8 3.43

1 1.00

2 1.88

DAC 49 4 3.02

6 3.52

8 3.57

Table 5.7: Pipelined Row-based Linear-Equation Solution
(ConcatenatedPDG's for Triangulation and Back-substitution)

Ill

Back-substitution is shown to have as high a degree of parallelism as triangulation

using PDGs or row-based RDGs, and slightly less potential for speedup for element-based

tasks.

While pipelining is an attractive way of reducing the effect of the serial bottleneck

between triangulation and back-substitution, the structure of the PDGs and RDGs does not

provide additional parallelism around the synchronization point, due to the serial nature of

these graphs towards the end of the triangulation phase and at the beginning of the back-

substitution phase. However, it is seen that element-based tasks mitigate the effect of this

serialization since more tasks are available for processing immediately before and after the
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synchronization point As a result, end-effects due to improper load balancing are reduced

and an effective parallelization of the otherwise-serial synchronization bottieneck is

achieved.
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CHAPTER 6

INTER-PHASE SYNCHRONIZATION BOTTLENECKS

Bottlenecks due to synchronization constraints between the main phases of direct-

method simulation are studied in this chapter. The direct-method simulation process has

been described in detail in Chapter 2, with emphasis on the main phases of the simulation.

In Chapter 4, it has been demonstrated that model evaluation is efficiently parallelizable.

However, as is described in Chapter 5, parallelizing the sparse linear-equation solution is

not as straightforward. One possible solution to this problem is the pipelining of the two

phases of the Newton-Raphson process such linear-equation solution begins before the end

of model evaluation, thereby reducing idle time at the beginning of linear-equation solu

tion. •In addition, the synchronization bottleneck between linear-equation solution and con

vergence checking also produces a bottieneck to efficient parallel simulation.

In Section 6.1, the mismatch between the parallel potentials of the two phases of the

Newton-Raphson method is examined, and an algorithm is described that pipelines these

two phases to overcome the limitations of this mismatch. Pipelining linear-equation solu

tion with convergence checking is not as simple as combining the two phases of the

Newton-Raphson iteration, but certain speedups are possible due to pipelining and are

described in Section 6.2. Further, parallel model evaluation serves to reduce convergence

checking time substantially, which is also shown in Section 62. The combined effects of

parallel model evaluation, sparse linear-equation solution and convergence checking, as

well as the effects of pipelining the different phases, results in an efficient parallel direct-

method solver, as is shown in Section 6.3. Also in Section 6.3 are speedup figures for

PSPLICE3, with and without the parallel direct-method solver, displaying the utility of
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parallel direct-method simulation within a parallel relaxation simulator.

6.1: Pipelining Model Evaluation and Linear-Equation Solution

This section deals with combining the high parallel potential and implementation

efficiency of model evaluation with sparse linear-equation solution through the use of pipe

lining. The intent of this combination is to swamp the low parallelism in linear-equation

solution with the high parallelism in model evaluation. The increase in task size, due to

pipelining, and the reduced pointer-manipulation overhead, due to localization of refer

ences, further contribute to increased parallel efficiency.

In Section 6.1.1, the mismatch between the parallel potentials of the two phases of

the Newton-Raphson method are presented and analysed, and a pipelining algorithm to

overcome this mismatch is presented. Results from an implementation of this algorithm on

the 8-processor Sequent Balance are presented in Section 6.1.2.

6.1.1 - Pipelined Algorithm: The problem and its solution

The prime reason for the poor parallel performance of sparse linear-equation solution

is the low degree of parallelism available. As shown in Chapter 5, even using element-

based tasks the maximum parallel speedup for a 150-equation matrix (DAC) is a factor of

only about 17. By contrast, as is evident in Chapter 4, model evaluation has a parallelism

potential equal to the number of devices in the circuit, if single-device tasks are used.

Thus, for the same DAC benchmark circuit, the maximum parallel speedup for model

evaluation is a factor of 416. This underlines the essentially sequential nature of sparse

linear-equation solution and the highly parallel nature ofmodel evaluation. As a result, the

parallel algorithms described in Chapters 4 and 5 result in sufficient work to keep all the
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processors busy during the first phase of the Newton-Raphson algorithm and then only

enough work to keep a few processors busy during the second phase of the algorithm.

This problem is especially important because linear-equation solution dominates simulation

time for large circuits.

In addition to the mismatch in parallel potential between the two phases of the

Newton-Raphson process described above, there is also a difference in the size of tiie ele

mental tasks used for each of the phases which affects implementation and hence perfor

mance of the parallel algorithms described in Chapters 4 and 5. In particular, the average

model-evaluation task is far longer than the average decomposition task. Thus, while

implementation of an algorithm which uses single-device tasks works well for parallel

model evaluation, a single-pivot elimination is observed to be a task-size too small for the

overhead associated with task handling and scheduling on the Sequent Balance.

The combination of the two factors described above contribute to largely differring

speedups during the two phases of direct-method circuit simulation. However, the second,

more sequential, phase follows the highly parallel first phase, thereby providing an

effective manner to reduce the time spent during the sequential sparse linear-equation

phase: pipelining.

The scheme proposed is as follows: once a row of the Jacobian coefficient matrix

has been completely loaded during model evaluation, it can be normalized andits successor

rows can be scheduled for elimination. If the row requires elimination before it can be

normalized, then the processor that completes the loading task can perform the necessary

eliminations prior to normalizing the row. On the basis of such a scheme, the sequential

linear-equation solution is started during the loading process, thus reducing the size of the
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pivot dependency graph that is to be normalized and eliminated after the Jacobian matrix

has been loaded. With proper ordering, only the last few rows of the matrix will require

triangularization and back-substitution after the model-evaluation phase. Further, the small

normalization and elimination tasks are incorporated into larger device-evaluation tasks,

thereby reducing the relative importance of the task handling and scheduling overhead.

For maximal efficiency from the pipelining it is necessary to order device evaluations

such that the Jacobian coefficient matrix is loaded from top to bottom, i.e., in the order that

the linear-equation solution proceeds. Thus, after the matrix has been re-ordered (after the

first LU-decomposition), devices are assigned priorities according to the lowest row

number that they update. Thus, for example, if devicel contributes to elements in rows 2,

4, 6 and 7, it is assigned a priority of 2. Now, if device2 contributes to elements in rows

1, 2 and 3, it is assigned a priority of 1. Then, the devices are placed in the task vector

(described in Chapter 4) according to their respective priorities (device2 and then devicel,

in the preceding example). This scheme is designed to fill the early rows of the Jacobian

matrix first, thereby exploitingthe pipelining as efficiently as possible.

During model evaluation, each time a device evaluation is completed, the evaluating

processor increments a count, numCoefficientsDone[row], for each of the rows affected by

the device. Following this incrementing, the processor compares

numCoefficientsDone [row] with the number of coefficients required for the particular row,

numCoefficientsReqd[row]. If the two numbers are equal, implying that the row has been

completely loaded, the processor performs the decomposition function, Le., it eliminates all

nonzeroes to the left of the pivot in the row, normalizes the row with respect to the pivot

element and marks all the pivot's successor elements as being ready for elimination. Thus,
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when the last processor has completed its model-evaluation task, the Jacobian matrix is

completely triangularized as well.

In the parallel sparse linear-equation solver described in Chapter 5, thedecomposition

function for each pivot waits while its predecessor pivots are un-normalized. Since pivots

are scheduled going from the top down in the PDG, the danger of deadlock is avoided

implicitly since the scheduling scheme ensures that a pivot is not scheduled before its

predecessors. However, with the ordering scheme described above, it is possible for a

pivot to be scheduled before its predecessors. Although the ordering scheme reduces the

risk of this happening, it does not completely eliminate the possibility of deadlock This is

because while it does ensure that pivots near the top of the PDG are ready for normaliza

tion early, it does not ensure that pivots lower in the PDG are not also available for nor

malization early. Thus, it is possible that the ordering scheme may result in the early

scheduling of pivots low in the PDG. If the number of such schedulings exceeds the

number of processors available, it is evident that a condition of.deadlock results, since all

the available processors are waiting.

To avoid the possibility of deadlock described above, if a processor cannot normalize

a pivot because one of the pivot's predecessors is not ready for normalization, the proces

sor simply returns to further device evaluations (the row is already marked as being ready

for normalization, since numCoefficientsDone «= numCoefficientsReqd). Since the devices

are ordered to maximize loading towards the top of thematrix, it is unlikely that there will

be a large number of rows that require treatment as special cases. Thus, when a processor

encounters a predecessor pivot that has not yet been normalized, the processor checks to

see if the predecessor can be normalized before going on with further model evaluations.
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In view of the low frequency of this occurrence, this scheme is viewed as being more

efficient than other alternatives, such as a single processor performing the leftover linear-

equation solution at the end of all the model evaluations, which would compromise the

effect of pipelining significantly.

6.1.2 - Performance of Pipelined Algorithm

While pipelining model evaluation and matrix triangularization contributes to more

efficient parallel linear-equation solution, it serves to reduce the parallelism during model

evaluation by increasing interprocess communication time. In addition, the already small

parallelism during linear-equation solution is also marginally compromised due to back

tracking when the pipelining results in the incorrect scheduling of a low-priority pivot for

normalization. Thus, the ideal speedup for pipelined linearization and triangularization is

lower than that for linearization alone, as is evident from Table 6.1.

The performance of the pipelined linearization-triangularization algorithm is compared

against the performance of the simulator without pipelining in Table 6.1 above. It is evi

dent that performance with pipelining is uniformly better than that without pipelining with

a myrimnm improvement of about 16% for the RAM with 8 processors. Also, it can be

seen that the effect of the pipelining is most noticeable as the size of the circuit and the

number of processors increases.

62: Pipelined Linear-Equation Solution and Convergence Checking

For each Newton-Raphson iteration it is necessary to determine whether a stable solu

tion has been reached, after the setof sparse linear equations have been solved. In Section

6.2.1, an algorithm for parallelizing convergence checking and pipelining it with the end of
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No. of Processors

Figure 6.1: Pipelined and Unpipelined Speedup for CRAMB Benchmark

#of Procs PLA RAM DAC

No pipe Pipe No pipe Pipe No pipe Pipe

1 1.00 1.00 1.00 1.00 1.00 1.00

2 1.98 2.00 1.93 1.98 2.00 2.00

4 3.73 3.77 3.50 3.81 3.82 3.96

6 5.19 5.27 4.71 532 5.40 5.67

8

—'•

6.22 6.39 5.67 6.55 6.49 7.06

Table 6.1: Speedup due to Linearization and Triangulation
(Unpipelined and Pipelined)
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the linear-equation solution phase that precedes it, is presented. Performance of the paral

lel simulator using this algorithm is evaluated in Section 6.2.2.

6.2.1 - Parallel Algorithm for Convergence Checking

A stable solution is denned as one where all node voltages and currents have settled

within a certain tolerance limit Thus, for example, the largest change in the node voltages

between two consecutive iterations, MaxDV, is compared against pre-defined absolute and

relative tolerance figures, VAbsTol and VRefTol, as given by the following equation:

MaxDV £ VAbsTol + ( VReVTol * AvgV ) (6.1)

where AvgV is the average of all the node voltages. A similar equation is used to deter

mine whether the currents flowing in the circuit have settled to within a weighted tolerance

of the currents at the previous iteration.

For a uniprocessor direct-method solver, the algorithm used to determine whether the

solution has converged is as follows:

Convergence Checking:

Assume convergence.
/* Determine maximum delta V, i.e. maximum change in node voltage */
MaxDV o 0.0;

foreach ( row i ) {
MaxDV a MAX{ MaxDV, dabs{rhs[i]))\

)
/* Voltage limiting, if m^imnm delta V exceeds nralpha */
if ( MaxDV > nralpha ) {

temp = nralpha I MaxDV',
foreach ( row i ) {

rhs[i] = rhs[i]* temp;

)
)
/* Determine average node voltage */
AvgV = 0.0;
foreach ( row i ) {
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nodevolt[i] = nodevolt[i] - rhs[i];
AvgV = AvgV + dabs(nodevolt[i]);

)
AvgV /= number of rows;
/* If max delta V exceeds threshold of tolerance, not converged */
if ( MaxDV > {VAbsTol + (VRelTol * AvgV)) ) {

not converged;
/* Else, examine currents */
} else {

Evaluate models and Load the right-hand side vector,
foreach ( row / ) {

dtemp = alpha0 * charge[i];
rks[i] = dtemp + oldq[i] + current [i];
isum = dabs (dtemp) + dabs(oldq[i]) + dabs (current [i]);
/* If current exceeds threshold, not converged */
if ( dabs(rhs[i]) > ((IReWol * isum) + IAbsTol) ) {

not converged;

}
}

}

Given the serial algorithm above, an algorithm for parallelizing convergence check

ing, as well as for pipelining linear-equation solution with convergence checking has been

developed. This procedure is presented below.

It is evident from the serial convergence-checking algorithm that until the maximum

change in node voltages, MaxDV, has been determined, none of the other convergence

checking operations can be performed, since any voltage limiting depends on whether nral

pha is exceeded. Thus, determination of MaxDV presents a bottleneck to pipelining linear-

equation solution and convergence checking. However, the determination of MaxDV itself

can be easily pipelined with the back-substitution phase of linear-equation solution, since it

depends only on the value of rhs[i], for a given row i. Thus, for pipelined convergence

checking, MaxDV is updated as each row is solved for during back-substitution.

If MaxDV exceeds nralpha, it is necessary to scale the change in the node voltages.

Since this operationmust be performed on each row of the matrix, it has a parallel speedup
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potential equal to the dimension of the matrix, ignoring scheduling and task handling over

heads. In addition, since these operations are performed on the rhs array, it is well suited

to vector processing.

Although the next step, which is the determination of the average node voltage, can

be pipelined with voltage limiting to eliminate the synchronization point between the two

steps, voltage limiting is not performed frequently enough to justify this pipelining, and the

two phases are parallelized individually and independently. Determination of average node

voltage is done as follows: each processor updates node voltages for all the nodes it has

been assigned, maintains a local sum of all its assigned node voltages, and then, synchron

izing through the use of a global lock, adds its local sum into a global sum for the circuit's

average node voltage.

After another synchronization bottleneck, i.e., the determination of whether the node

voltages have converged, convergence is checked for the currents. The model evaluation

for the loading of the right-hand side vector is performed in parallel using the same algo

rithm as is described in Chapter 4 for loading of the Jacobian coefficient matrix.

Once the right-hand side vector has been loaded, the serial algorithm determines

whether the solution has converged by examining the current for each node in the circuit

Using the parallel model of each processor working on a dynamically assigned set of

nodes, each processor performs the same current convergence checking operation, but only

for those rows (i.e. those nodes) that it has been assigned. If at any stage a processor

determines that convergence has not been achieved, it can update the global flag for con

vergence and suspend further convergence checking.
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Note that the serialization between convergence checking for voltages and currents is

unnecessary, and that parallel checking of both sets of variables is possible if the degree of

parallelism available is small, or if the overhead associated with convergence checking is

large. Indeed, since current convergence checking takes a longer time, due to the model

evaluation phase, this phase is started at the same time as voltage convergence checking,

and processors constantly monitor the global convergence flag to cut short their individual

checking efforts in the event of non-convergence among one of the other processors'

assigned node voltages or currents.

622 - Performance Evaluation

The algorithms described in section 62.1 have been implemented and simulation

results from this implementation are presented in Table 62.

The significant improvement due to pipelining and parallel convergence checking is

due to the model evaluation for the loading of the right-hand side vector, which is per

formed in parallel using the same algorithm as is used for linearization. As with parallel

linearization, significant reduction in simulation time results from parallel loading of the

right-hand side vector, as is evident from Table 6.2.

Figure 6.3 shows a profile of the number of processors busy during a single iteration

of the Newton-Raphson loop for the Cramb benchmark circuit, with model evaluation and

matrix triangulation being performed independently and sequentially. For this profiling, 12

processors were available on the Sequent Balance, of which 11 were used. It is evident

that after the model evaluation, which keeps all 11 processors busy, matrix triangulation

and back-substitution are unable to utilize all the processors consistently. The last pulse in
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Figure 62: Speedup for Parallel RHS Loading

# of Procs PLA RAM DAC

1 1.00 1.00 1.00

2 1.99 1.90 1.86

4 3.83 3.40 3.61

6 5.08 4.93 5.43

8 6.73 6.28 7.14

Table 62: Speedup due to Parallel Loading of the Right-hand Side Vector

the graph displays the high processor utilization during convergence checking.
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Figure 63: Processor Activity Profile during Sequential Newton-Raphson iteration
(Cramb benchmark, using 11 processors)

In Figure 6.4, the processor activity profile is shown with pipelining between the

model evaluation and matrix-triangulation phases. As in Figure 6.3, 11 of a 12-processor

Sequent Balance were used for this profiling. It is evident that the pipelining leads to an

increased model-evaluation time, but a significantly reduced triangulation time. Thus, the

total time between the beginning of the model evaluation and the end of the convergence

checking falls from 690ms without pipelining to 570ms with pipelining. This yields a

speed improvement of about 20%, which is slightly compromised by the additional over

head for settingup data structures to facilitate pipelining.
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Figure 6.4: Processor Activity Profile during Pipelined Newton-Raphson iteration
(Cramb benchmark, using 11 processors)

63: Effect of inter-phase synchronization on overall parallel performance

Table 63 and Figure 6.5 show the improvement in the parallel direct-method solver

due to the combined effect of pipelining and exploitation of parallelism at each of the

important stages of the simulation algorithm. It is evident that the effect of the efficient

parallelization of model evaluation results in higher speedups for the PLA and DAC cir

cuits, for which model evaluation takes 72% and 71% of the total simulation time. Also

interesting is the fact that overall speedup for the DAC benchmark circuit is higher than for

the PLA circuit, which has a higher fraction of model evaluation time. This result reflects

tiie importance of efficient pipelining of model evaluation with linear-equation solution.
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Figure 63: Overall Speedup for Direct-Method Simulation
(DAC Benchmark Circuit)

# of Procs PLA RAM DAC

1 1.00 1.00 1.00

2 1.88 1.80 1.89

4 3.20 2.98 3.30

6 4.10 3.76 4.36

8 4.75 4.29 5.18

Table 63: Overall Direct-method Simulation Speedup due to Pipelining
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As is mentioned in Chapter 4, the parallel direct-method solver developed in this

study is part of an ITA relaxation simulator, PSPLICE3. The parallel performance of

PSPUCE3 on the 8-processor Sequent Balance achieved a maximum speedup of a factor

of about 3.25 by merely scheduling different subcircuits in parallel [43]. This low

speedup is obtained because only a few subcircuits are active at a given time during the

simulation (a feature characteristic of predominantly digital circuits) and poor balancing of

tiie load between the different processors. Sub-division of a subcircuit evaluation task

results in improved speedup figures for the parallel relaxation simulator as is shown in

Chapter 4.

The improvements in parallelizing the direct-method solver, detailed in Chapter.5 and

in this chapter, lead to corresponding improvements in the speed performance of

PSPLICE3, the parallel relaxation-direct simulator. Speedup figures for the three bench

mark circuits after the implementation of parallel linear-equation solution, the pipelining of

model evaluation and linear-equation solution and the parallelization and pipelining of con

vergence checking are shown in Table 6.4 and Figure 6.6. It is evident that a parallel

direct-method solver significantly improves the performance of a parallel relaxation-direct

simulator, primarily because the elemental tasks of the former have a far finer granularity

and are not as dependent on the connectivity of the circuit being simulated.



129

ed Relaxation-Direct

elaxation

4 6 8

No. of Processors

Figure 6.6: Relaxation and Mixed Direct-Relaxation Speedup for RAM

# of Procs
PLA RAM DAlC

(a) W (a) W w W

1 1.00 1.00 1.00 1.00 1.00 1.00

2 1.85 1.84 1.81 1.79 1.81 1.88

4 3.16 3.27 2.47 2.93 2.56 3.52

6 3.59 4.11 2.62 3.61 2.86 4.86

8 3.22 5.11 2.71 3.89 2.99 5.74

Table 6.4: Relaxation Simulator Speedup

(a) Parallel Relaxation, and (b) Parallel Mixed Relaxation-Direct methods"
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CHAPTER 7

CONCLUSIONS

A number of issues pertaining to parallel processing in circuit simulation are

presented in this dissertation. This work establishes that node-based relaxation circuit

simulation is well-suited to parallel processing on up to 100 processors. It is observed that

model evaluation in parallel direct-method circuit simulation can be accelerated through the

use of parallel processing; however, linear-equation solution and the synchronization points

in the standard direct-method simulation algorithm prove to hinder efficient parallel simula

tion. A new pipelined algorithm is presented and is shown to reduce the time for parallel

direct-method circuit simulation.

From the study and extension of MSPLICE, a node-based relaxation circuit simulator

using up to 100 processors of the omega-connected BBN Butterfly Parallel Processor, it is

observed that efficient parallel processing in a shared-memory environment requires proper

distribution of data: multiple copies of shared static data and an equitable distribution of

shared dynamic data serve to keep contention for the interconnection network and memory

low. It is also seen that while both dynamic and static scheduling perform well on small

parallel-processor systems, single-queue dynamic scheduling is most efficient as the

number ofprocessors increases, simultaneously addressing the issues of load balancing and

queue selection. Using MSPLICE2, up to 78% ofideal speedup performance predicted by

profiling for a 222-node, 517-MOSFET transistor counter benchmark circuit is achieved.

With floating-point hardware acceleration, simulations using MSPLICE2 on a 32-processor

Butterfly run about as fast as MSPLICE simulations on a VAX 8800.
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Parallel direct-method circuit simulation has been studied using the subcircuit solver

within the PSPUCE3 mixed direct-relaxation simulator, implemented on up to 8 processors

of the Sequent Balance B8000. The new program is referred to as PDSPLICE3. The two

most time-consuming phases of direct-method simulation, model evaluation and linear-

equation solution, are studied in detail. It is seen that model evaluation is well-suited to

parallel processing and that model-evaluation time decreases almost linearly with increasing

numbers of processors. However, linear-equation solution is observed to have low parallel

ism potential due to matrix sparsity, which results in small task sizes, and matrix fill-ins

which impose a sequential schedule of operations towards the end of the matrix triangula

tion and at the beginning of the back substitution. Further, the serial synchronization point

between the parallelized model evaluation and linear-equation solution phases further

reduces the efficiency of the parallel direct-method simulator.

A new pipelined parallel direct-method circuit-simulation algorithm is presented that

simultaneously addresses the problems of poor linear-equation solution parallelization and

the inter-phase bottleneck. The combination of model-evaluation and linear-equation solu

tion tasks serves to reduce the relative overhead associated with each of the individual

tasks. Further, pipelined model evaluation and linear-equation solution, where triangulation

begins at the top of the Jacobian matrix while the bottom of the matrix is still being

evaluated, ameliorates the effect of the inter-phase bottleneck. The resulting pipelined,

parallel direct-method solver, PDSPLICE3, significantly reduces circuit-simulation run

times. For a 155-node, 416-MOSFET transistor digital-to-analog circuit, simulation

speedup using parallel direct methods is 5.18 on an 8-processor Sequent, while a speedup

of 5.74 is achieved using parallel mixed direct-relaxation techniques.



132

There are a number of areas where further research is required:

(a) schemes of matrix ordering, such as representation in a Bordered Block

Diagonal Form or using nested dissection, that will make linear-equation

solution more parallel —this will require heuristic schemes to partition the

matrix;

(b) improved pipelining between model evaluation and linear-equation solu

tion to further reduce the effect of the synchronization point between the

two phases;

(c) investigation of matrix-assembly techniques, such as Sparse Tableau

Analysis, to determine whether memory usage can be traded off against

speed —although a larger matrix may increase the parallelism due to spar

sity, partitioning of the matrix will probably be more difficult;

(d) extension of the results presented in this dissertation to larger systems

(medium-scale, such as the BBN Butterfly, and large-scale, such as the

TMC Connection Machine [82]);

(e) parallelization of sequential phases in direct-method simulation that

become more important as the more parallel phases take less time due to

parallel processing.



133

APPENDIX A

The Source Listing of the Program PDSPLICE3 is available at the following address:

Software Distribution Office,

Industrial Liaison Program,

Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley,

Berkeley, CA 94720.
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APPENDIX B

The Source Listing of the Program MSPLICEl is available at the following address:

Software Distribution Office,

Industrial Liaison Program,

Department of Electrical Engineering and Computer Sciences,

University of California at Berkeley,

Berkeley, CA 94720.
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APPENDIX C

The Source Listing of theProgram MSPUCE2 is available at the following address:

Software Distribution Office,

Industrial Liaison Program,

Department of Electrical Engineering and Computer Sciences,

University of Californiaat Berkeley,

Berkeley, CA 94720.
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