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Abstract

The existence of the strange attractor discovered by Godfrey in the neighborhood of

a = 37T for the Pierce Diode is verified, and his numerical results are refined. The evolution

of this attractor is then followed as an external capacitance is introduced.

Introduction

The Pierce diode is perhaps the simplest realistic theoretical model for a bounded one-dimen

sional plasma system. It is comprised of two parallel electrodes with electrons injected at one of

the electrodes with velocity vo- Ions are considered to be infinitely massive, and in a uniform

background which neutralizes the charge density of the electrons at the electrode from which the

electrons are injected. The electrodes are also.held at the same potential, i.e., short-circuited (see

Fig. 1). This short circuit allowsfeedback, and leads to a wealth of interesting behavior. The Pierce

diode is completely characterized by a single dimensionless parameter a = ujpL/vq where wp is the

plasma frequency of the electron beam, and L is the distance between the electrodes [1].

One interesting feature of the Pierce diode which was discovered by Godfrey [2], is that for

a narrow range of the parameter a, the Pierce diode exhibits chaotic behavior without violent

disruption (violent disruption meaning virtual cathode formation and the return of electrons to the

emitter). This behavior was observed through simulations in the neighborhood of at = 2.85t, and it is

believed to recur approximately at intervals of 2tt. The observed behavior includes a Hopf bifurcation

followed by period doubling bifurcations leading to chaotic behavior following the scenario described

by Feigenbaum [3]. The reason for the formation of the observed strange attractor is uncertain, but

its sudden disappearance is associated with a near-by unstable equilibrium state.

The extended Pierce diode is similar to the standard (or classical) Pierce diode, but instead of a

short circuit between the bounding electrodes, a series RLC circuit is used (see Fig. 2). The behavior

of the extended Pierce diode in the linear regime has been worked out [4] and verified through

simulation [5], and its non-uniform equilibria have also been investigated [6]. In the work which



follows, I shall not consider the effect of varying the external resistor or inductor, but will vary only

the external capacitance. The external capacitance has the most profound effect on the non-uniform

equiUbria of the extended Pierce diode (indeed it is the only external circuit element to affect the

equilibria), and thus should be the first parameter varied in exploring the strange attractor.

General Properties of the Pierce Diode Equations

The equations of evolution for the Pierce diode with an external capacitor have been derived

elsewhere [6]. They are

T{t) =1- i / E(t) sma{t - r) dr (1)
a Jt-T

and

(l +i) E(t) =y (1 -T(t)2) -«ftT E{r){t -r) sin a(t -r) dr (2)
where T(t) is the transit time of theelectrons just leaving at time t, and E(t) is the electric field at

the injection plane at time t. These equations have several properties which are not obvious, and

these will be discussed. One important property which is not yet known is whether this equation is

reversible in time; specifically, given E(t) over a transit time, is E(t) is unique for earlier times than

those given. This question is of great importance in understanding the character and origin of the

strange attractor. Evidence will be presented for bothsides of this question, but a definitive answer

is not yet known.

The most obvious propertyof this equation is that it isnot what is usually called an equation of

evolution, since the formulas do not specify time derivatives of the variables, but rather the variables

themselves. This simplifies the numerical solution of the equations, but complicates the issue of

reversibility. Another fundamental property of the equations is that T(t) is purely an auxiliary

variable; given E(t) over a long enough initial time (long enough for the electron emitted at the

earliest time to have exited), T(t) can be computed for any time at which it is needed.

A less obvious property of these equations is that perfectly valid initial conditions for the

physical problem cannot always be translated into initial conditions for these equations. Consider,

for example, the perfectly reasonable condition of sinusoidally perturbed positions, and uniform

velocities, i.e., v(x) = 1 and x(t0) = t - to + esinkt (I shall use dimensionless variables throughout

this article). The equations for x and v as functions oft and t0 (from [6]) are

1 f*x = t-t0+- E(r) sina(t - r) dr (3)
a Ju



and

(4)v= 1+ / E(r) cos a(t- r)dr

If v = 1 for all to, then plainly, E{r) = 0 for all r < t. This precludes the desired perturbation in

position, however. Thus this initial situation could not have come about from the evolution of the

system, and the full fluid equations must be used to advance the system for one complete transit

time before Godfrey's integral equations can be applied. This in turn would seem to implies some

loss of information, and some irreversibility over at least the first transit time.

The loss of information is more obvious from the simple consideration that in choosing the

initial conditions, one can choose p(x) and v(x) without constraint, whereas in choosing the initial

conditions for Godfrey's equations, only one function, E(t) may be chosen. Thus it is impossible to

run the integral equations backwards to reproduce an arbitrary initial condition, since not enough

information is present.

There is no strong reason to expect more loss of information after one transit time, though,

since after a transit time, all the electrons in the system are subject to the constraint that at their

time of injection, p = v = 1. This imposes a constraint between p and v which did not exist in the

initial conditions. This constraint is enough to guarantee that p and v can be reconstructed from

E(t). This loss of information can clearly be seen in Fig. 3 which shows a phase space plot for a

Pierce diode which was loaded with random perturbations in position. The potential behind the

last of the initially-loaded particles is smooth, but the potential ahead of it is still quite noisy. To

summarize, the complete fluid equations are irreversible (due to the loss of particles at uncontrolled

velocity and density at the collection plane), but the integral equations, which have an additional

constraint, may be reversible. The issue of reversibility will be brought up again when the return

maps are discussed.

Physical Validity of Solution

For Eqs. (1) and (2) to be physically valid, it is necessaryfor the velocityof the stream of particles

to be a single-valued function of position. The situation depicted in Fig. 4a is physically valid, but

the integral equations do not correctly model it. Since the velocity is a single-valued function of to,

it is only necessary for x to be a monotonic (in this case decreasing) function of to. From Eq. (3),

dx 1
— = -1 - -£(to) sina(t - t0) < 0 (5)
diQ a
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so physically, it is necessary for

£(t0) sina(t-t0) > -a (6)

Since a is large, this implies that whenever

\E(t)\ < a (7)

is violated, the solution will soon become unphysical.

Another situation which is not physically allowed, but can occur in the solution of Eqs. (1) and

(2) is that depicted in Fig. 4b. Here, the velocity of the "outgoing" particles has reversed, so that

particles which physically would have been absorbed (but which still exist mathematically), are re

entering the region of interest. Again, the Eqs. (1) and (2) allow this without contradiction, even

though the situation is unphysical. The simplest test for this situation is that when

§>1 (8)
the solution is no longer physically valid. The transit time T represents the "age" of whatever

particle is at the exit plane. If this age is increasing faster than the flow of time, then it must be

that particles which were once past the boundary are re-entering.

Mathematically speaking, the physical constraints on the solution are rather arbitrary. Since

the solution of Eqs. (1) and (2) may be of mathematical interest despite being unphysical, in the

work presented here, all purely physical restrictions have been ignored. The situations represented

in Figs. 4a-d are thus allowed, but Figs. 4c and 4d lead to problems of a mathematical character

whichdictate the termination of the solution. In Fig. 4c, the particles in the top part of the "S" are

affecting the solution even though they have passed beyond the physical boundary of the system,

because they were emitted at a time later than t-T, and so are still included in both Eq. (1) and

Eq. (2). This is mathematically acceptable. The difficulty arises when the lower bend of the "S"

moves across the right-hand boundary, and the solution for T (from Eq. (1)) ceases to exist. A

new solution could be found, but it would have to jump discontinuously, and since the solution has

already lost physical validity, there can be no justification for this.

In Fig. 4d, the opposite problem occurs as in Fig. 4c. Again, the solution for T ceases to exist,

and the integrationof the equationsmust stop. Both the situation in Fig. 4c and Fig. 4d occur when

dx/dto at the exit plane (t = tQ + T) becomes zero. Thus, from Eq. 5, when

1+Ij^t-T) sinaT^O (9)
a



the integration of the equations must end. This is the only criterion (other than a time limit) on

which the integration was stopped.

In practice the effect of the physical restrictions is to impose an amplitude limit on the oscilla

tions. This has no effect on the bifurcation diagram for C = oo (the short circuit case), but as the

external capacitance is decreased, the amplitude of the stable oscillations tends to increase, and so

part of the high- amplitude end of the bifurcation diagram will be lost.

Numerical Integration Scheme

The integral equations areof non-standard form, and the method ofnumerical integration used

is therefore unusual. As with most methods of time integration, the continuous functions E and T

are discretized at uniform time intervals tn+i = tn + At so that En « E(tn), and similarly for T.

Inspection of Eq. (1) reveals that only the left-hand side of the equation (for t = tn) depends

on a quantity known at tn, since the kernel of the integral vanishes at r = t. Thus the integral

can be evaluated numerically, in order to find Tn (this is a little tricky since the lower integration

limit depends on T„, but somesimple algebrasolves the problem). This value of Tn can be put into

Eq. (2), and the integral in Eq. (2) can be evaluated just as the integral of Eq. (1) was, in order to

calculate En.

There is a slight difficulty in evaluating the integrals at the lower limit of r = t - T. Since

the transit time T will not be a multiple of the time step At, the last interval to be integrated will

not be a full time step wide. This fraction of a time step need not be evaluated as accurately as

the rest of the integral (since the error it produces occurs only once), but it cannot be ignored. If

the trapezoidal rule is used for the integration, then linear interpolation of the indefinite integral

is sufficiently accurate (some runs with a more sophisticated method of handling the last time step

verified this). It is not clear that a higher-order method of integration (e.g., Simpson's Rule) would

improve the accuracy of the results, since the derivation of these higher order methods assumes

that the function to be integrated is a known, smooth function, whereas our integrand is a discrete

approximation.

It is possible to speed up the numerical scheme considerably by expanding sin oc(t—r) and writing

/ E(r) sin a(t—r)dr = sin at \ E(r) cos ardr —cos at / E(r) sin ardr (10)
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The integrands on the right do not depend on time, and the limits of integration vary slowly with

time. This allows the integrals to be computed each time step by adjusting for the small change

in the limits of integration rather than recomputing the entire integral. This saves much computer

time. This scheme does require that a be strictly constant, which is a problem in generating

bifurcation diagrams; however, a can be varied by small jumps after which the integrals on the

right-hand sideof (10) must be completely re-evaluated. The solution before the jump in a becomes

the initial condition on the solution after the jump. If these jumps are infrequent, much computer

time can still be saved by using this scheme.

This numerical integration scheme was tested on some equilibrium solutions which are known

from theory [2], and the results were accurate to four decimals. It is to be expected that the time-

varying solution will be less accurate, but of the same order of accuracy.

As was mentioned in the previous section, the integration must be stopped when condition (9)

occurs. Not surprisingly, the left-hand side of Eq. (9) occurs as a denominator in the equation for

correcting the value of T each time step, and the method of integration fails when condition (9)

occurs. Testing condition (9) is therefore quite simple.

The study of discretized integral equations like this one has only just begun. The sole instance

I have found of such study barely touched on convolutions of the form of Eq. (1) and (2), and did

not include the variable interval of integration [7].

Verification of the Results of Godfrey

The results given by Godfrey havebeenconfirmed in each casein which they have been tested,

with oneexceptionwhichdoes not modify the important conclusions. Figure 5 shows the bifurcation

diagram obtained by Godfrey as a function of a. His time step (normalized to the unperturbed

transit time L/vq) was roughly 1/50. His Poincare section was chosen at the maximum value of

T(t) of each orbit. In order to make comparison of our results simpler, this same section was used

in the present work even though it is not clear that it is a truly valid Poincare section. (Choosing

the maximum of T as the Poincare section is not necessarily valid since the locus of all points which

are maxima of T for different cycles is not necessarily a continuous or well-behaved curve in E-T

space.)

Figure 6 shows the bifurcation diagram with a time step of 1/64. Although the attractors are

very similar, there are significant differences, particularly in the smaller values of a. Successive



halving of the time step reveals that the diagrams generated by time steps of 1/256 and 1/512 are

visually indistinguishable (see Fig. 7), but quite different from the diagram generated by Godfrey.

While the strange attractor remains, as well as all other important results, it is necessary to conclude

that the time step in Godfrey's work was not small enough to produce the accuracy necessary for

generating the correct bifurcation diagram. In all the work which follows, a time step of 1/256 is

used.

One casualty of the better convergence of the bifurcationdiagram is the break Godfrey observed

in a period-5 window (the attractor shifted suddenly from one position to another as a was varied .

continuously), since the entire period-5 window is an artifact of the incomplete convergence. (A

window is a range of values of a over which the motion is regular, and the period number is the

number of cyclesabout the center of the attractor the orbit makes before closing on itself.) An even

more striking jump from one chaotic attractor to another was observed, however, in the bifurcation

diagram for C = 1000 (C being the external capacitance), as will be discussed.

One of the most important results obtained by Godfrey is that the return map (a plot of each

point of the Poincare map versus its predecessor) appears to be one-dimensional, i.e., a line with no

thickness or structure. If the return map is truly one-dimensional, then it generates an irreversible

sequence of points, i.e., knowing everything about a point tells you what its successor will be, but

its predecessor may be indeterminate. To verify this result, rather than use Godfrey's Poincare

section (which carries no guarantee of being a continuous section, i.e., a smooth curve cutting

across the trajectories in E and T space), a section is made at T = 0, dT/dt < 0. Also, consecutive

values of E are plotted rather than values of T. Figure 7 is marked with the values of a for which

return maps are shown in Figs. 8-12. Note that although the maps are not single-valued, they have

no discernible structure within the line (except for one small spur on the most complex one). This

implies that either the equations of motion are irreversible, or that the subdominant eigenvalue of

perturbations about the chaotic orbit is much less than the dominant one. There is one clue that

the second possibility may be the correct one in that very near the point at which the attractor ends

(Fig. 12), the curve develops a spur on one of the bends in the lower right corner of the return map,

which indicates that an infinitude of such spurs may exist for all values of a, but lie so close to the

rest of the attractor that they cannot be seen. If this is the case, then the attractor is actually of

fractional dimension (probably very close to dimension one), and the flow could then be completely

time reversible.
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The second, third, and fourth period-doubling bifurcations can be used to find an approximation

to what one would expect to be Feigenbaum's number [3]. The values of a at these points are

ai = 2.8581090 ± .0000005, a2 = 2.8578912 ± .0000002, and a3 = 2.8578442 ± .0000001, from which

the value (ori —a2)/(<*2 —<*3) = 4.63 ± .03 which is in fairly good agreement with Feigenbaum's

number 4.669.

An interesting, and to my knowledge unreported, phenomenon is noticeable in these bifurcation

diagrams. A pattern of short vertical lines seems to follow a straight horizontal line from the last

band-merging (at a = 2.85671ir) on. Fainter patterns can be seenstarting fromother band-mergings.

This effect can be seen better in a blow-upof the regionof the last band-merging (see Fig. 13). The

effect is also observable in bifurcation diagrams derived from one-dimensional non-invertible maps

(see [8]). This apparent structure is due to the presence of an unstable cycle. The system orbit is

not likely to pass near this unstable cycle, but when it does, it tends to stay near it for a longer

time, since both the approach and retreat are exponential (just as a ball rolling up and over a hill

will spend most of its time near the top). Thus, sinceonly a limited number of orbits are completed

for each value of a, some values of a will show no points near the unstable cycle, and others will

showmany. On the average, the density of points is neither enhanced nor depleted at these unstable

cycles.

Godfrey also commented on the destruction of the strange attractor resulting from the collision

of the attractor with an unstable equilibrium, a situation called a crisis [9]. Discussion of this

phenomenon will be deferred until the results for finite values of the external capacitor have been

described, since they add much to the evidence.

Strange Attractor with an External Capacitor

Before examining the behavior of the strange attractor as the capacitance is varied, it is im

portant to examine the linear and equilibrium characteristics of this region as a function of the

capacitance. The real part of the growth rate is shown as a function of a for several values of

the capacitance in Fig. 14. Note that for infinite capacitance, the growth rate is zero for or = 2tt,

and negative for a short region of a just less than 3tt. With the introduction of a large external

capacitance, the growth rate at 2ir becomes negative (the transition from negative to positive, at a

slightly larger than 2ir, also becomes a Hopfbifurcation), and the growth rates near a = 3;r become

less negative. This trend continues until the external capacitance C = 8, at which point the growth
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rate at a = Zir becomes exactly zero (as can be shown from the dispersion relation). At C = 8, the

growth rate is entirely non-negative near a = 37r. The growth rate for a = Ztt peaks at C = 8. so

for C < 8, it once again becomes negative near a = 3?r (see Fig. 15). As C becomes smaller, the

growth rate is positive for a narrower and narrower range of a, until at roughly C = 4, the system

is linearly stable for all 2ir < a < Zir.

The unstable equilibrium, which is responsible for the crisis which terminates the strange at

tractor, is a sensitive function of C. Figure 16 shows the value of Eq at the unstable equilibrium

versus a for several values of C. The equiUbrium ceases to exist physically for Eo < —a, but is still

present mathematically, and may still have an effect on the trajectory of the solution. The equilib

rium values of T tend to increase as C is decreased.

Nowlet us examine how the attractor changeswith the external capacitance. First I willsimply

describe the changes, then I will offer some interpretations.

The shape of the bifurcation diagram changesrapidly with even rather large values of C. Fig

ure 17 shows the bifurcation diagram for C = 1000, and already the shape is much altered (compare

Fig. 7). This bifurcation diagram shows an interesting jump in the attractor at a = 2.8515tt. Both

attractors appear to be chaotic, but the solution jumps suddenly from one to the other.

Figures 18 and 19 show the bifurcation diagrams for C = 100 and C = 20. One obvious trend

is that as the capacitance is decreased, the amplitude at which the crisis occurs increases. Between

C = 11 and C = 10, the strange attractor rapidly disappears. Figures 20-22 show the bifurcation

diagrams for C = 11, C = 10.7, and C = 10.4. The bifurcation diagram for C = 10 shows no

bifurcations (aside from the initial Hopfbifurcation leading to the non-uniform solution).

While the strange attractor has vanished, the behavior for values of C less than 10 is interesting.

BetweenC = 9 and roughly C = 6, the stable limit cycleseems to cease to exist. In fact, it probably

is just stable over a very narrow range of values of a, with the possible exception of C = 8, which

has no Hopf bifurcation (the growth rate is not negative, and a double root exists at a —3tt.

In the meantime, the solution for smaller a (the point of zero linear growth near a = 2jt is a

Hopf bifurcation for all finite values of C), becomes stable over a wider and wider range of a as C

is decreased. At no time, however, does this other stable limit cycle show signs of bifurcations or

chaotic behavior. At roughly C = 5, this limit cycle meets the limit cycle originating at higher a,

forming one continuous limit cycle as a function of a (see Fig. 23). At roughly C = 4, the most
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unstable growth rate becomes zero, and only the uniform equilibrium is stable for all a between '2~

and 3tt.

Returning now to the strange attractor, Fig. 24 shows the orbit in E and T of the solution for

C = 11 near the crisis (a = 2.758*). The unstable equilibrium is marked as a large dot (not to be

confused with the large blob at E = 0, T = 1). Just as in the C = oo case the unstable equilibrium

is clearly disturbing the attractor to the pointat which it may create a hole in the attractor basin.

The shape of this orbit is rather complex, and it can be seen that one orbit does not even cross

T = 1, making the chosen Poisson section ofdubious value. Forthe sake ofconsistency, though, the

return map will still be plotted at T = 1.

Now some general comments comparing the crisis observed in the Pierce Diode and the crises

studied by Grebogi, Ott, and Yorke [9] are in order. Grebogi et al. studied non-invertible maps

with one variable whose return map was known as a function of some parameter. It is possible that

the Pierce diode attractor can be reduced to such a map, and it can almost certainly be reduced

to a similar problem which is a non-invertible, one-dimensional map [10]. If this can be done, the

E is almost certainly not the best variable to use. A change of variable is in order, but the proper

variable, one which contains all the relevant information and no extraneous information, has not

been found. This variable, if it exists, would produce a simple, roughly parabolic return map as has

been studied by Ott and Grebogi, and it is to be hoped that its value at the uniform equilibrium

would exactly coincide with the crisis.

In the cases studied by Ott and Grebogi, the strange attractor ceased to exist only when the

unstable cycle exactlycontacted the attractor. It is this predictive power which makes the concept so

powerful. Here, though, only the existence of the unstable equilibrium is known, and the destruction

of the attractor, while clearly associated with the unstable equilibrium, cannot be predicted with

any accuracy. Plainly there is more of importance to the system at any given time than E and T

at that time, since these values pass over and around the equilibrium values without creating any

large disruption. Only when the value of E remains near the equilibrium value for a longer period

of time does the equilibrium seem to greatly influence the solution.

An interesting question is whether the unstable equilibrium is necessary for the formation of

the strange attractor. The lack of any strange attractor in the region just above a = 2* for any

value of C is suggestive of this, since the unstable equilibrium for this region is far away from the

solution (in fact, the unstable equilibrium is in the unphysical E < —a region).
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Also suggestive is the character of the orbits. The orbits seem regular, and seldom cross just

before they encounter the unstable equilibrium (T < 1 and E < 0), but as they pass near it, they

diverge, and immediately afterward, they reconverge, crossing in the process. This seems to indicate

that the unstable equilibrium is responsible for the exponential divergence of neighboring orbits

required for a strange attractor, and that without it (if such an idea is meaningful) the orbits would

quickly converge to a steady (oscillatory) state.

Summary

The work of Godfrey on the Pierce diode strange attractor has been verified (with one minor

correction). The strange attractor was found where expected, and followed the prediction ofFeigen-

baum regarding the cascade of bifurcations leading to chaos. Only the detailed structure was found

to differ from Godfrey's result, this being attributed to insufficiently small time steps in Godfrey's

numerical integration of the equations.

The strange attractor wasstudied as an external capacitance was introduced and varied, and

the results were discussed. In particular, it was suggested, on the basis of circumstantial evidence,

that the unstable equilibrium is necessary not only for the destruction of the attractor (in a crisis),

but for the existence of the strange attractor.
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the model return; in (c) and (d), the transit time T ceases to exist.
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Fig. 11. Return map for a = 2.8505t
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Fig. 12. Return map for a —2.85007T. Note the spur in lower right-hand section ofcurve,

indicating that the curve may have much unresolved structure.
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Fig. 13. Blow-up of bifurcation diagram near last band-merging, showing the effect of the

unstable equilibrium



Fig. 14. Real part of the linear growth rate from the uniform equilibrium between a —2tt

and a —Zir for several values of the external capacitance C
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Fig. 15. Real part of the linear growth rate at a = Zir as a function of the external

capacitance C



Fig. 16. Values ofEq at the unstable equiUbrium as a function ofa for several values ofthe

external capacitance C
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Fig. 17. Bifurcation diagram for C = 1000
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Fig. 18. Bifurcation diagram for C = 100
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Fig. 19. Bifurcation diagram for C = 20
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Fig. 20. Bifurcation diagram for C —11
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Fig. 21. Bifurcation diagram for C = 10.7
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Fig. 22. Bifurcation diagram for C = 10.4
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Fig. 23. Bifurcation diagram for C = 5
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Fig. 24. Orbit trace for a = 2.758jt and C = 11, which is just above the crisis value of a
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