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ABSTRACT

This paper gives an elementary proof of Kharitonov’s Theorem using simple complex plane
geometry. Kharitonov’s Theorem is a stability result for classes of polynomials defined by letting
each coefficient vary independently in an arbitrary interval. The result states that the whole class
is Hurwitz if and only if four special, well-defined polynomials are Hurwitz.

The paper also gives elementary proofs of two previously known extensions: for polynomi-
als of degree less than six, the requirement is reduced to fewer than four polynomials; and the
theorem is generalized to polynomials with complex coefficients. Finally, we apply Kharitonov’s
Theorem and the generalized stability theorem to find sufficient (but conservative) conditions for
a class of polynomials to be U-Hurwitz for certain sets U of "undesirable" polynomial zero loca-
tions in the complex plane.

Research supported by The Aerospace Corporation, El Segundo, CA 90245; Hughes Aircraft Company, El
Segundo, CA 90245; and the National Science Foundation grant ECS 8500993.



1. INTRODUCTION

In 1978 V. L. Kharitonov [1] published a stability theorem for classes of polynomials
defined by letting each coefficient vary independently in a specified (but arbitrary) interval. This
remarkable result states that the whole class of polynomials is Hurwitz if and only if four special,
well-defined polynomials are Hurwitz. Kharitonov also provided a generalization of this theorem
for polynomials with complex coefficients [2].

Unfortunately, these results remained largely unknown or unappreciated for several years,
in part due to the complicated induction argument of the original proof. Recently, however, the
result has been considerably simplified, applied and extended (e.g. [3-9]). The simplifications in
[3] and [4] involve using the behavior of this class of polynomials on the imaginary axis of the
complex plane. In [3], the class is partitioned into line segments and the behavior of each seg-
ment is considered. In [4], the image of the whole class (when evaluated at a point on the ima-
ginary axis) is shown to be a rectangle (in the complex plane) which can be analyzed all at once.

In this paper we extend the simplifications in [4] to prove Kharitinov's Theorem using only
simple complex plane geometry and eliminating the use of the Hermite-Bieler Theorem (the
"interlacing property”). Kharitonov’s Theorem is sufficiently important to the engineering com-
munity to motivate every effort to increase its accessibility.

In Sections 5 and 6 we continue to use the complex plane geometry arguments to provide
elementary derivations of two extensions of Kharitonov’s Theorem. For polynomials of degree 3,
4 or S, we show that Kharitonov’s criterion is equivalent to checking 1, 2 or 3 polynomials,
respectively. This result was first published by Anderson, Jury and Mansour [5]. Then we prove
the generalization to polynomials with complex coefficients, due to Kharitonov [2) and elucidated
by Bose and Shi [6].

In Section 7, we apply both the original theorem and the generalized theorem to produce
sufficient conditions for the classes of polynomials to be U -Hurwitz for special forbidden regions
U of polynomial zero locations. These conditions can be used to guarantee specified perfor-
mance of linear systems in terms of damping ratio and settling time constraints. The conditions
are conservative.

2. NOTATION

A polynomial with real coefficients is said to be Hurwitz if and only if all of its zeroes lie in
€_ Ge. vze€ p(z)=0=>Re(z}<0). A set of polynomials is said to be Hurwitz if and only if
every member is Hurwitz.

Fix n21 and g,a eR", g,<a; k=0, ...,n-1. We define the set N to be the set of monic
n' degree polynomials of the form

pGs)=5"+a,_;s" '+ - +a, ¢}
for all ag,...,a,_; such that g;<a,<a;, k=0,...,n-1. Then for all meR we define
H@)={p(jow):peN}cC; i.e. H(w) is the image of N under the evaluation map at s=j®
(where the evaluation map at s, e, (-), maps polynomials into the complex plane and is given by
e (p):=p(s)).
Next we define the polynomials (where g, =a, :=1):

n
g18)=ao+as?+as*+ -+ = ¥ j*min{j*a, j* 3, }s*
k=0
even
n
g2(s) =dg+as?+a,st+ -+ = 3 jAmax(j* g, j*a, ) s
k=0
even



n
hi(s)=ays +T353+ass>+ -+ = 3 min(jt g, j413, )k
k=l
odd

n
ho(s)=ays +a5s’ +ass>+ - - - = ¥ j*¥ Tmax{j* g, j* 13, }-s*
k=0
odd
Finally, we define the Kharitonov polynomials:

k1(s) =g1(s)+hy(s)

ki2(s) =g1(s) + hols)

k21(s) = g2(s) + hy(s)

' kn(s) :=go(s) + hy(s)
Remark: {k11():k120)k21()k22()}=N, and Yoe R, £,(j @) and g,(j ®) are purely real, while

h,(j ®) and h,(j @) are purely imaginary. Furthermore, Y® 20, we have

Re{g1(m)} < Re(p(jw)] < Re{gjm)}  VYp()eN ()
Im{h,w)} < Im(p(j)} < m{hjw)} VYp()eN 3

(¥ ®<0 we switch &, and A, in Equation 3). Thus we see that Voe R, H (®) is a level
rectangle (i.e. the sides are parallel to the real and imaginary axes) with comers
k11(J @), k12 @), k21(j @), k12(j ®), as shown in Figure 1.1 This picture of H (w) as a
rectangle inC was developed by Dasgupta [4].

3. ELEMENTARY PROPERTIES OF HURWITZ POLYNOMIALS
Property 1: If a monic polynomial p () is Hurwitz, then all of its coefficients are positive.

Proof: The property is clear for n=1 and n=2 (since (s +v-+j p)(s+v—j 1) = s242vs HvZ+H12)). In
general, we can write p () as the product of k¥ monomials and / binomials (correspond-
ing to real zeroes and complex conjugate pairs, respectively)

k 1
PG) =TI6+¥) [T+ o5+B;)
i=1 i=l1
with ¥;, o;, §; all positive. Thus each coefficient of p () is a sum of products of positive
numbers.

Property 2: If p () is Hurwitz with degree n21 then arg (p (j )) is a continuous and strictly

increasing function of ®.

n
Proof: p () Hurwitz => p (s)=]](s-z;) with z; =o;+jB; and 0;<0 (i=1, ...,n). So

i=l
argp(jw))= f‘,afg(iml o; 1-jB;) = Zarctan (,—aﬂ—‘)
i=1 i=1 ]

and the summands are all continuous and strictly increasing functions of ®.

. ! Actually, we have only shown that H (®) is contained in the rectangle defined by the four Kharitonov

polynomials, and, indeed, that is all we require in the sequel. However, it is clear that by taking convex com-
binations of the four Kharitonov polynomials, we remain in the set N' and cover the rectangle. Thus we con-
tinue to refer to H () as a rectangle.



Figure 2 illustrates the proof of Property 2; if all the zeroes of p (s) are in the open left half
plane, then the angle contribution of each zero increases as s moves up along the imaginary axis.
Figure 3 shows the result; as ® goes from O to +eo, p (j @) starts on the positive real axis and
smoothly circles strictly counterclockwise around the origin n n/2 radians before going to infinity.

If arg (p (j ®)) is continuous in @ (i.e. if p (j )#0 Yo), we can define
T8 (p) = lim {arg (p (j)-arg (p (0)}

where the right hand side of the equation denotes the net total angle, counting encirclements, sub-

tended by p (j ®) as @ goes from O to +<o. Consideration of the s-plane of Figure 2 reveals that

each zero in €_ contributes ®/2 to arg,..(p) while each zero in (ﬁ. contributes —n/2 (pairwise for

- complex conjugates, of course). Thus we have the following characterization of Hurwitz polyno-

mials.

Property 3: An n* degree polynomial p () is Hurwitz if and only if arg,,,(p) is well defined
(i.e. p(j ®)#0 V) and equal to n /2.

4. KHARITONOV’S THEOREM
Lemma: If the Kharitonov polynomials (k;;(-).k12()k21()k22()} are Hurwitz then
O¢ H(0) VoeRR.

Proof: For {kji().k12().k21(")k22(")} to be Hurwitz we must have g;>0 Vi (Property 1).
Clearly 0¢ H (0)=[gg.aol. Since H () is "continuous” (i.e. the four comers vary continu-
ously with @), if Oe H (@) for some o> 0 then 0 must be on the boundary of H(®) for
some <. Since no corner may pass through zero (the comers are Hurwitz), we must
have an edge containing zero in its interior. Without loss of generality we assume it’s
the "bottom" edge. Then, as illustrated in Figure 4, k,,(j ®) is on the negative real axis
and k,,(j ®) is on the positive real axis. Property 2 implies that for 3> 0 sufficiently
small we have k,(j (®+0®)) in the open third quadrant and k,,(j (®+3w)) in the open
first quadrant. Since Im{k,(j ®)}=Im(k4;(j w)}=Im{A(j ®)}, this is clearly not possi-
ble.

Remark: We see that the whole rectangle H () must travel counterclockwise through a total

angle of n /2, always completely entering one quadrant before crossing into the next.

Theorem: The class of polynomials N is Hurwitz if and only if {k;;(-).k12()k21().k22()} is

Hurwitz.

Proof: The "only if* is immediate since {k;;(-).k12(")k21()kn()}cN. So suppose
{k110)k12(D) k21 ()k2o()} is Hurwitz, and p(-)eN. The Lemma implies that
P(0)¥0 Ve, so arg,,(p) is well defined. Furthermore, p(j®)eH () Vo, so
arg,..(p)=nn/2. Property 3 implies that p (-) has n zerces in®_ and is Hurwitz.

Remark: The theorem can be proven without refering to the net angle property and moving rec-

tangle argument by using the continuity of zeroes of polynomials and the fact that N is
pathwise connected (it is a parallelepiped in the space of polynomial coefficients). If
{k11()k 120Dk 23(-)k22()) were Hurwitz and p ()e N were not Hurwitz, then on any
path in N connecting k1;(*) to p (-) there would be a polynomial, 5 (-), with a zero on
the imaginary axis, say at s=j®. This implies that 5 (j ®)=0, which is forbidden by
the Lemma.

Remark: We can clearly extend Kharitonov’s Theorem to any set S of polynomials satisfying

(k11 ik 12C) k() k()= S N



since
S Hurwitz = [kn('),klz('),kzl('),kzz(’)} Hurwitz = N Hurwitz = S Hurwitz

where the first and third implications follow from containment and the second implica-
tion follows from Kharitonov’s Theorem. For example, we can have q;eA; CR where
each A; is bounded (but not necessarily an interval) and contains g; :=inf A; and
a; =sup A;.

5. SIMPLIFICATIONS FOR DEGREE LESS THAN 6

Anderson, Jury and Mansour [5] demonstrated that the Kharitonov condition could be
reduced for polynomials of low degree. For polynomials of degree 3, 4 or 5, the Kharitonov test
is equivalent to checking 1, 2 or 3 of the Kharitonov polynomials, respectively. For degree
greater than 5, all four polynomials must be checked.

We demonstrate the results pictorially, relying heavily on Dasgupta’s picture of H (®) as a
rectangle in the complex plane with comers given by the Kharitonov polynomials. Again, we use
only simple complex plane geometry (in contrast to the detailed calculations of [5]). In the pro-
cess of proving these results, we also develop a stronger sense of the roles played by the Kharito-
nov polynomials to force H (@) to circle counterclockwise around the origin through a total angle
of n7/2 radians as @ goes from zero to infinity.

We begin by noting that the angles of all monic polynomials of degree n converge to
nw/2 (mod 2x) as ®@—>+ee (since p (j @)=(j )" [1+0 (1/m)]). So for any choice of g, and g,
k=0, ...,n-1, the rectangle H(m) will go to infinity at an asymptotic angle of nn/2 (mod 2x).
The only question is whether or not it will circle the origin n/4 times (or # /2 radians) counter-
clockwise, without intersecting the origin, in the process.
n=3:  Assume g,>0;2 then N is Hurwitz if and only if k() is Hurwitz.

Proof: The "only if" is immediate since k5;(-)e N. So we assume that k,;(-) is Hurwitz, and
argue pictorially, refering to Figure S. k,;(j @) will always be the "lower right corner”
of the rectangle H (®) (for > 0), so as k,;(j ®) travels away from the positive real axis,
through the first quadrant and then the second, it essentially "pushes” H (®) off the posi-
tive real axis (H (0) lies in the positive real axis because of our assumption that gy> 0),
into the open first quadrant and then the second, forcing H () to completely enter the
second quadrant before crossing the real axis into the lower half plane. Once k;(j ®)
has crossed into the second quadrant, it can never cross the imaginary axis again (since
arg (k,1(j ®)) must increase monotonically and approach 3w/2). Since k,(j @) lies on
the "right" edge of H (), H (®) cannot enter the right half plane again. We have shown
that H (w) must travel counterclockwise around the origin, through the first quadrant
and completely into second, and then remain in the open left half plane as it goes to
infinity at an asymptotic angle of 3n/2. Thus we see that arg,,,(p )=3n/2 VpeN, and
conclude that N is Hurwitz.

n=4: Assume gg>0; then N is Hurwitz if and only if {k,(-),k22(-)} is Hurwitz.
Proof: The "only if" is immediate since {k,;(*).k22()} €N. So we assume that k,,(*) and
ko(*) are both Hurwitz. As with the case for n=3, k,;(j ®) pushes H (®) off the posi-

tive real axis into the open first quadrant, then completely into the second quadrant
before H (®) can cross into. the lower half plane. Once H (®) is in the second quadrant,

2 Of course, there is no loss of generality in assuming that @; >0 for any or all i. If any @; <0, then
Property 1 of Section 3 tells us that at least one Kharitonov polynomial will not be Hurwitz, thus N' will not
be Hurwitz.



we see that kx»(j m)--the "upper right comer"--now pushes H (@) completely into the
third quadrant before H (@) can cross into the right half plane. Once k,(j ®) enters the
open third quadrant, it can never cross the real axis again, thus H (®) must remain in the
open lower half plane as it travels to infinity at an asymptotic angle of 2z (or 0). We
have shown that H (@) must travel counterclockwise around the origin through a net
angle of 2%, and we conclude that N is Hurwitz.

n=s: N is Hurwitz if and only if (k12(-).k21(-)k22()} is Hurwitz.

Proof: The "only if" is immediate since {k;3().k2;()k22()} ©N. So assume that ky4(),
k21(), and k(") are Hurwitz. As before, k5;(j®) pushes H(®) off the real axis,
through the first quadrant and completely into the second; k,(j ®) pushes H (@) from
the second quadrant completely into the third; and & ,(j ®) pushes H (@) from the third
quadrant completely into the fourth. Once k,(j @) enters the fourth quadrant, it cannot
cross the imaginary axis again, and since it is on the "left edge" of H (®), H (®) must
remain in the open right half plane as it goes to infinity at an asymptotic angle of Sr/2
(or ©/2). We have shown that H () circles the origin counterclockwise through a total
angle of 5/2, and so arg,,,(p)=572 V¥peN. We conclude that N is Hurwitz.

6. EXTENSION TO POLYNOMIALS WITH COMPLEX COEFFICIENTS

In 1978 Kharitonov [2] published a generalization of the theorem of Section 4 for classes of
polynomials with complex coefficients, defined by letting the real and imaginary parts of each
coefficient vary independently in arbitrary intervals. Such a class of polynomials is Hurwitz if
and only if eight special, well-defined polynomials are Hurwitz. (No English translation of [2] is
known to the authors, and our brief references to [2] are paraphrased from references made in
[6].) The proof of this generalization was recently simplified by Bose and Shi [6], although their
derivation was still complex, requiring considerable notation.

We use Dasgupta’s rectangle concept and simple complex plane geometry to present an ele-
mentary derivation of the generalization, completely analogous to the derivation in Sections 2-4
of the original theorem.

A prime motivation for this result for control engineers is provided in Section 7, where we
establish sufficient tests for the whole class N to have U-Hurwitz properties which insure
specified settling times and/or damping ratios of linear systems. Other motivations are given in
[6].

We begin by defining the set N* of polynomials of the form

P(s) = 5" +(Cyy+jBpp)s™ 1+ - - - +(agHi Bo)

where o, <oy <& and B, <P, <Py, k=0,...,m=1. For all welR we define
H*(@):={p(jo):peN*}, the image of N* under the evaluation map at s=j®. Our develop-
ment of the theorem will follow two parallel lines of reasoning, one for ®=0 and one for ®<0.
The following polynomials will be used when considering ®=0:

81 () = o +jPys +Tps%+jBys? + s+ - - -
83 () i= Go+jBis + 052+ jPas +0us*+ - -
hi(s) = jBo+ous +jBos?+0as 3+ jBest+ - -
h3(s) = J'Eo'l'als +j B2+ 053+ jBust+ - -
k() = gi(s) + hi(s)
kiz(s) = gi(s) + h3(s)



k31 (s) = g3 (s) + h{ (s)
k2 (s) = g3 () + hi(s)
Remark: (kf; ()ki()k3 (Dkh ()} CN*, and VoeR, gi (jo) and g3 (jo) are purely real
while k1 (j®) and k5 (j o) are purely imaginary. Furthermore, ¥p () € N* we have
Re{gi (@)} < Re(p(jo)} < RefgF (o)} V20
Im{h{ (@)} < Im{p(jo)} < Im{h3 (j0)} Vo020

Thus we see that Yo 20, F* () is a level rectangle (i.e. the sides are parallel to the real
and imaginary axes) with comers £, (j @), k3 (j @), 5} (j @), and &5 (j @).

The following polynomials will be used when considering ®<0:
8T (8) = go+jBys +Gps+Bas +ays®+ - - -
82 (5) = Go+jBis +aps”+jBas’ + s+ - -
hi(s) = jBy+0ys +jBas?+ a3+ jBust+ - - -
h7(s) = jBo+ous +jBys?+Bas+ jPast+ - -
ki1 (s) =g (s)+hy(s)
kia(s) =gr(s)+hz (s)
k21 (s) =85 (s)+h{(s)
kn(s) =gz (s)+hz(s)
Remark: {kg; (k1 (ks ()kz (D} cN*, and YoeRR, g (j®) and g5 (jo) are purely real
while A1 (j®) and 45 (j @) are purely imaginary. Furthermore, Vp () € N* we have
Re{g; (m)} s Re{p(jw)} < Re{gz(jw)} VYo<0
Im{h; j0)} < m{p(j)} < Im{h5(w)} Yo<0
Thus we see that Yo <0, H*(®) is a level rectangle with comers k1; (j ), ki (j @),
k21 (j @), and k5 (j o).
Finally, we define the set K* of Kharitonov polynomials:
K* = {kfy Ok {2 (k3 (A Ok 1y ki kg (k2 ().
Now we state the critical property of Hurwitz polynomials with complex coefficients.
Property 1: If p(-) is Hurwitz with degree » 21 then arg (p (j ®)) is a continuous and strictly
increasing function of .
The proof is identical to that of Property 2 in Section 3, and Figures 2 and 3 still illustrate the
property (with the modification that, in Figure 3, p (0) need not be on the real axis and p (j ®)
need not go through an angle of n/2; the important point is that p (j ®) circles strictly counter-
clockwise around the origin).

Lemma: If the eight Kharitonov polynomials in K* are Hurwitz then 0¢ H* (@) Yoe R.

Proof:  First we note that, as @ goes to infinity, the rectangle H* (®) must travel to infinity at an
uniform  asymptotic  angle ~ of n®2 (mod 2x) (since peN =
p(o)=(a)'[1+0(l/w)]). So 0¢H*(w) for @ sufficiently large. Now suppose
Oe H* (o) for some welR. Since H*(w) is continuous, 0 must be on the boundary of
H*(®) for some & =o. Since the comers are Hurwitz, 0 must be in the interior of an



edge of H*(®); without loss of generality, we assume it’s the "bottom" edge. If ®=0,
we conclude that k{; (j ®) is on the negative real axis while k5 (j ®) is on the positive
real axis (refer to Figure 4). It follows from Property 1 that for 3@ > 0 sufficiently small,
k{1 (j (®+5w)) is in the open third quadrant while £5; (j (B-+5w)) is in the open first qua-
drant. Since Im{4{; (o)} = Im{k5; (@)} = Im{h{ (j®)} YoeR, this is clearly not
possible. If ® <0, we substitute k1 (), k3; () and k7 () for k7 (), k3, () and A{ () in
the preceding argument and deduce the same contradiction.
Theorem: The class of polynomials N* is Hurwitz if and only if K* is Hurwitz.

Proof: The "only if" is inmediate since K* cN*. So assume K* is Hurwitz and note that N*
is pathwise connected (N* is a parallelepiped in the space of polynomial coefficients).
Since the zeroes of a complex polynomial depend continuously on its coefficients, if
p()eN* were not Hurwitz, then on any path in N* connecting k{; (*) to p () there

would be a polynomial § (-)e N* with a zero on the-imaginary axis, say at s =j®. So
P (j ®)=0, which is forbidden by the Lemma.

Remark: We could not use the arg,,, (*) property (Property 3) of Section 3; since the complex
zeroes are not symmetric about the real axis, we cannot conclude that they each contri-
bute 7/2 radians of phase as ® goes from zero to infinity. However, we can easily
modify arg,,., () to accommodate complex polynomials. If p (j @)+0 VoeR, we define
argn.* (p () to be the asymptotic net change in phase of p (j ®) as ® goes from —o° to
+o00, We easily see that each zero in €_ contributes +=x to arg,., * (p (-)) while each zero
in (ﬁ+ contributes —t. Thus we have the following characterization for Hurwitz complex
polynomials: an n* degree polynomial p (-) is Hurwitz if and only if arg,.* (p (")) is
well-defined and equal to nn. Now suppose K is Hurwitz. Since
arg(p (j w)) o :)4« nw/2 (mod 2r) and arg(p(jw)) o _-:)_“ -nn/2 (mod 2w)

Vp (-)e N*, the Lemma implies that arg,,, * () is constant on N* ., We conclude that N*
is Hurwitz.

7. APPLICATION TO U-HURWITZ POLYNOMIALS (PERFORMANCE ROBUSTNESS)

The use of desirable pole locations of linear time-invariant dynamical systems to specify
system performance is quite common, and the relationship between system pole locations and the
damping ratios and settling times of system modes is well understood by the control engineering
community. Thus the most common specified domains for system poles are the type shown in
Figure 7. An angular sector in the left half plane, symmetric about the real axis, specifies the
damping ratio ({ =sin™0, where 8 is shown in Figure 7). A o-half-plane (the region to the left of
the vertical line {s:Re(s}=-0c} for 6>0) specifies the settling time (T, =4/c, where T is the
"2% settling time"). Of course, the complement of a desirable region is an "undesirable"--or
forbidden--region. In the case of multiple specifications, the forbidden region is the union of all
the individual forbidden regions--we denote it by U (as shown in Figure 7). A polynomial with
no zeroes in U is said to be U -Hurwitz.

We do not have a general necessary and sufficient condition for a polynomial class of the
form N to be U -Hurwitz. However, for the types of U described above (specified damping ratio
and/or settling time) we apply Kharitonov’s original and generalized stability theorems to provide
a sufficient condition. The condition for the settling time problem involves checking that four
derived polynomials with real coefficients are Hurwitz (not U -Hurwitz). The condition for the
damping ratio problem involves checking that eight derived polynomials with complex
coefficients are Hurwitz. For combined specifications, of course, all twelve polynomials must be
checked.



Problem 1. The Settling Time Problem: U ={s:Re{s}2-c). Consider the complex plane

transformation w =s +o. For any polynomial p () define § (-) by § W)=p (w—06)=p(s). Kp ()
is of the form

p(S) =s" +a,,_1s"'l+ c++aq
then

P W)= W=0)" +a,_w—0)"1+ - +aq
=w" +[a,,_1—n0]wn-l+ .o +[a0_.alo+a2°-2_ oo +(_o)n]

=wh +bn—lwn-l+ .o +b°
LY N .
by = Z[ ;c] a;(~o)y~*
i=k
where a, :=1. Clearly p () is U -Hurwitz if and only if § (-) is Hurwitz. Given independent inter-
vals for a;, k=0,...,n-1, we can easily determine the corresponding range for b,,

k=0,...,n—1; ie. by=ay—T10+a0%~ -, Bo=8g-@0+d,0°~+ - - , etc. Now we define N
to be the set of polynomials with coefficients b, ,k=0, ... ,n-1 satisfying b, <b, <b,, and we

consider the polynomial transformation T @o::ayDH>(bg - by N is the smallest paral-

lelepiped containing f'(N ). Note that 7 is affine, so that the size of R is proportional to the size
of N. The four Kharitonov polynomials based on b, and b, are easily defined, and if these poly-

nomials are Hurwitz, then N will be Hurwitz. This implies that f'(N ) cN is Hurwitz, which
implies that N is U -Hurwitz. Thus we have shown that N is guaranteed to be U -Hurwitz if four
well-defined polynomials with real coefficients are Hurwitz.

The sufficient condition derived above is not a necessary condition. Since f’(N ) does not
contain N, we have no indication that f‘(N ) should contain the four Kharitonov polynomials for

N.m fact, we note that (assuming 6+ 0) the choice of a;’s required to produce bg (namely ay, a;,
as, as, ... ) will also produce b, (and b, V k odd, and b, V k even). Assuming # 23 and all inter-

vals [a;,3, ] are nontrivial, the pairs (bg,5,) and (5¢,b,) cannot be in T (N). It follows that none of

the Kharitonov polynomials for N can be in f'(N ). Thus we see that our sufficient condition is
conservative.

Problem 2. The Damping Ratio Problem: U ={s:—(n/2+0)<arg s <n/2+0}. We will also
consider U*:=(s:—n2+0<arg s Sw2+0} and U~ :={s:—~(m/2+0)<arg s Sw2-0}, the right
half plane "tilted" counterclockwise by an angle 6 and —9, respectively. Since the zeroes of a
polynomial with real coefficients are symmetric with respect to the real axis, U-Hurwitz, U*-
Hurwitz and U~-Hurwitz are equivalent properties.

Now, considering U*, we make the transformation x=se”® and define
7 (x)=pxe/®=p(s)and p(x) =% (x); i.e.

P (x)=(xe’%" +a,_(xe/®* 1+ -« +a,
=eM0(x" +a,1e7%" 1+ - - +ageY)
=2 e/ [x" +(Cy- 1) Bp-)x" 7+ - - +(0g+j Bo)]
= ™% (x).
So p () is U-Hurwitz if and only if p(-) is Hurwitz (if and only if p (-) is Hurwitz). We consider
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the transformation TF:(gqg- - - @, (00,80 * * * (Cy—1,Br—1))- Under T+, each coefficient

(0t Br) of 5 () depends only on a; i.e. T* is "decoupled.” Thus we abuse our own notation and
write (00,B0)=T"(ag), ..., (On-1.B5-)=T"(a,—1). Since T* is linear, we can easily find the
extreme coefficients o, G, B;, and B, from the real and imaginary parts of e *®g, and e/*%,.
We define the class N* of polynomials with complex coefficients to be all polynomials satisfying
O SOy SO and By <P <Py k=0, ...,n~1; N*is the smallest parallelepiped containing T*(V).
The eight Kharitonov polynomials for N* are defined as in Section 6, and if these eight polyno-
mials are Hurwitz then the generalized stability theorem implies that N* is Hurwitz. This implies
that T*(W') is Hurwitz, which in tum implies that N is U -Hurwitz. Thus we have shown that N is
guaranteed to be U-Hurwitz if eight well-defined polynomials with complex coefficients are
Hurwitz. :

The sufficient condition derived above is not a necessary condition. Although the
coefficients in T#(N') vary independently, the real and imaginary parts of each coefficient are
linearly dependent; i.e. T7([g;,a;]) is either the line segment connecting (0 ,8;) to (Gy,By) or the
line segment connecting (¢y,B;) to (&y.B:) (depending on whether ¢/*° is in an even or odd
quadrant--T~([@; .3, ]) would be the other line segment). So T*(N) will not contain N*; indeed,
T*(N) is an n-dimensional linear slice of the 2n -dimensional parallelepiped N*. Thus we see
that our sufficient condition is conservative,

Remark: It is clear that the derivation above can be extended to half planes defined by any line in
€ by considering transformations of the form z =o+se’/®. The test would involve test-
ing at most eight polynomials with complex coefficients. Combining such tests, we can
then derive tests for any desirable region defined by a polygon in the s-plane with m
sides. The test would involve testing 8m polynomials. Such polygons might be used,
for instance, to define desirable regions in the unit circle for discrete systems.
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Figure 1:
Rectangular image of N at s=j ® (@>0).
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Figure 2:
Angle of p (j ®) for Hurwitz p (-).
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Figure 6:
Polynomials of degree n=4.

-13-



Figure 7:
Forbidden region U for systems with
specifications on settling time and damping ratio.
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