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ABSTRACT

This paper gives anelementary proofof Kharitonov's Theorem usingsimplecomplexplane
geometry. Kharitonov's Theorem is a stability result for classes of polynomials defined by letting
each coefficient vary independently in an arbitrary interval. The result states that the whole class
is Hurwitzif andonly if fourspecial, well-defined polynomials are Hurwitz.

The paper also gives elementary proofs of two previously known extensions: forpolynomi
als of degree less than six, the requirement is reduced to fewer than four polynomials; and the
theorem is generalized to polynomials withcomplex coefficients. Finally, we apply Kharitonov's
Theorem and the generalized stability theorem to find sufficient (but conservative) conditions for
a class of polynomials to be £7-Hurwitz for certain sets U of "undesirable" polynomial zero loca
tions in the complex plane.
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1. INTRODUCTION

In 1978 V. L. Kharitonov [1] published a stability theorem for classes of polynomials
defined by letting each coefficient vary independently in a specified (but arbitrary) interval. This
remarkable result states that the whole classof polynomials is Hurwitz if and only if four special,
well-defined polynomials are Hurwitz. Kharitonov also provided a generalizationof this theorem
for polynomials with complex coefficients [2].

Unfortunately, these results remained largely unknown or unappreciated for several years,
in partdue to the complicated induction argument of the original proof. Recently, however, the
result has been considerably simplified, applied and extended (e.g. [3-9]). The simplifications in
[3] and [4] involve using the behavior of this class of polynomials on the imaginary axis of the
complex plane. In [3], the class is partitioned into line segments and the behavior of each seg
ment is considered. In [4], the image of the whole class (when evaluated at a point on the ima
ginary axis) is shown to be a rectangle (in the complex plane)which can be analyzed all at once.

In this paper we extend the simplifications in [4] to prove Kharitinov's Theorem using only
simple complex plane geometry and eliminating the use of the Hermite-Bieler Theorem (the
"interlacing property"). Kharitonov's Theorem is sufficiently important to the engineering com
munity to motivate every effort to increaseits accessibility.

In Sections 5 and 6 we continue to use the complex plane geometry arguments to provide
elementaryderivations oftwo extensionsofKharitonov's Theorem. Forpolynomialsofdegree3,
4 or 5, we show that Kharitonov's criterion is equivalent to checking 1, 2 or 3 polynomials,
respectively. This result was first published by Anderson, Jury and Mansour [5]. Then we prove
the generalization to polynomials with complex coefficients, due to Kharitonov [2] and elucidated
by Bose and Shi [6].

In Section 7, we apply both the original theorem and the generalized theorem to produce
sufficient conditions for the classesof polynomials to be U -Hurwitz for special forbidden regions
U of polynomial zero locations. These conditions can be used to guarantee specified perfor
mance of linear systems in terms of damping ratio and settling time constraints. The conditions
are conservative.

2. NOTATION

A polynomial with real coefficients is said to be Hurwitz if and only if all of its zeroes lie in
<£_ (i.e. \fze<C p(z)=0 =*> Re{z} <0). A set ofpolynomials is said to be Hurwitz if and only if
every member is Hurwitz.

Fix /i^l and a,5"eRn, &£<** k=0,... ,n-l. We define the set N to be the set of monic
nth degree polynomials of the form

p(s) = sn +aH_lsn-l+ ••• +fl0 (1)

for all a0t...,an_i such that a^a^a^ k=0 n-l. Then for all coeR we define
H(Q>):=[p(jG>):peN}c<£; i.e. i/(co) is the image of N under the evaluation map at s=j(o
(where the evaluation map at s, es(-), maps polynomials into the complex plane and is given by

Next we define the polynomials (where q„ =an :=1):

k
n

8i(s):=go+a2s2+qtf*+ ••• = X/minO'*^,,/*^}*
*=0

g2(.s):=a0+g2s2+a4s4+ -• = JZJkmzx{jkqk,jkak}'Sk
Jt=0
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fciCs):=2i* +a3s3+gss5+ • = Ytjk'xrom{jk'-xqkJk'lak}sk
odd

aid

Finally, we define the Kharitonov polynomials:

*iiC*):=£iC*) +*i(*)

ki2(s):=gi(s) + h2(s)

k2i(s):=g2(s) + hi(s)

kaWi^giW + h^s)

Remark: {*u(-).*i2(0t*2iO.*22(0}c:Art and V©sR, £i(/©) and g2(/G>) are purely real, while
h i(j ©) andh2(j ©) arepurely imaginary. Furthermore, V©£ 0, we have

Re{*i(/»)} £ Re{p(/©)} ^ Re{£2(/©)} VpQetf (2)

Imf/^O*©)} £ Im{p0'©)} ^ Im{/i2(/©)} Vp(')eN (3)

(V ©£0 we switch A! and h2 in Equation3). Thus we see that V©eIR, H(©) is a level
rectangle (i.e. the sides are parallel to the real and imaginary axes) with comers
kn(j<Q)f £i2(/©)t *2i(/©)» *22(/o>). as shown in Figure l.1 This picture of//(©) as a
rectangle inC was developed by Dasgupta [4].

3. ELEMENTARY PROPERTIES OF HURWITZ POLYNOMIALS

Property 1: If a monic polynomial p (•) is Hurwitz, thenallof its coefficients are positive.
Proof: The property is clear for n=1 and n=2 (since (s+v+j\i)(s+v-j p.) =s2+2vs+(v2+u,2)). In

general, we can write /?(•) as the product of A: monomials and / binomials (correspond
ing to real zeroesand complex conjugate pairs, respectively)

k I

p(s)=n(j+Y/)n(*2+a«*+fc)
jsl i=l

with fi, a,-, Pf all positive. Thus each coefficient of p (•) is a sumof products of positive
numbers.

Property 2: If p() is Hurwitz with degree n^l then arg(p(jca)) is a continuous and strictly
increasing function of ©.

A

Proof: /7()Hurwitz=>p(j)=n(^~Zi)withzi=al+/Pi andaf<0(/=l n). So

« n ©—B;
arg(p(jG>))= J>2(/©+laf h/ft)= *Zarctan{-—r)

and the summands are all continuous and strictly increasing functions of©.

1 Actually, we have only shown that H (©) iscontained in the rectangle denned bythe four Kharitonov
polynomials, and, indeed, thatis allwe require in thesequel. However, it is clear thatby taking convexcom
binations of the four Kharitonov polynomials, weremain in thesetN and covertherectangle. Thus we con
tinue to refer toH (©) asarectangle.



Figure 2 illustrates the proof of Property 2; if all the zeroes ofp (s) are in the open left half
plane, then the angle contribution of each zero increases as s moves up along the imaginary axis.
Hgure 3 shows the result; as © goes from 0 to +«>, p(/©) starts on the positive real axis and
smoothly circles strictly counterclockwise around the origin n rc/2 radians before going to infinity.

Iforg (p (j ©)) is continuous in © (i.e. ifp (J©)*0 V©), we can define

<*rgnet<P) := hm {arg(p(j(a))-arg(p(0))}
<»-»«>

where the right hand side of the equation denotes the nettotalangle, counting encirclements, sub
tended by p (j ©) as © goes from 0 to +«». Consideration of the s -plane of Figure 2 reveals that
each zero in<£_ contributes nil to arg^ty) while each zero in <£+ contributes -re/2 (pairwise for
complex conjugates, of course). Thus we have the following characterization of Hurwitz polyno
mials.

Property 3: An nth degree polynomial p (•) isHurwitz if and only if arg^(p ) is well defined
(i.e. p (j ©>jfcO V©) and equal to nn/2.

4. KHARITONOV'S THEOREM

Lemma: If the Kharitonov polynomials {&n()Jfci2(,).*2i(,)»*22()} are Hurwitz then
0*/f(©) V©eR.

Proof: For {fcnC)i*i2(*)»fc2i(0»fc22O} to be Hurwitz we must have &>0Vi (Property 1).
Clearly 0<£H(Q)=[a^a^. Since H{) is "continuous" (i.e. the four comers vary continu

ously with ©), if 0<=//(co) for some ©>0 then 0 must be on the boundary of H(&) for

some &<©. Since no comer may pass through zero (the comers are Hurwitz), we must
have an edge containing zero in its interior. Without loss of generality we assume it's

the "bottom" edge. Then, as illustrated in Figure4, kn(j &) is on the negative real axis

and fc2i(/©) is on the positive real axis. Property 2 implies that for 5©>0 sufficiently

small we have &n(/(&+6©)) in the open third quadrant and k2i(j(&+§&)) in the open
first quadrant Since Im{it110'©)}=Im{it2iO'G>)}=hn{/i10'©)}» this is clearly not possi
ble.

Remark: We see that the whole rectangle /?(©) must travel counterclockwise through a total
angle ofnn/2, always completely entering one quadrant before crossing into the next

Theorem: The class of polynomials N is Hurwitz if and only if {£n(0.*i2(*).*2i().*22O} is
Hurwitz.

Proof: The "only if is immediate since {*ii(),*i2().*2iO»*22(*)}<=W. So suppose
{A:u()^12()^2i0)»*22()} is Hurwitz, and p(-)eN. The Lemma implies that
/?(/©>*0V©, so arg^ip) is well defined. Furthermore, p(J(&)eH(sti) V©, so
&r8mt(p)=n7C/2. Property 3implies thatp(•) has n zeroes in<£_ and isHurwitz.

Remark: The theorem can be proven without refering to the net angle property and moving rec
tangle argument by using the continuity of zeroes of polynomials and the fact that N is
pathwise connected (it is a parallelepiped in the space of polynomial coefficients). If
{^n(*)^i2(')^2i(')^22(*)} were Hurwitz and p(-)eN were not Hurwitz, then on any
path in N connecting kn() to pQ there would be a polynomial, p (•), with a zero on

the imaginary axis, say at $=/<&. This implies that^06)=0» which is forbidden by
the Lemma.

Remark: We can clearly extend Kharitonov's Theorem to any set S of polynomials satisfying

{*iiCUi2('U2i()^22()} cSciV
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smce

S Hurwitz => {*n0^i2()^2i()»*22()} Hurwitz =*> N Hurwitz => S Hurwitz

where the first andthird implications follow from containment and the secondimplica
tion follows from Kharitonov's Theorem. Forexample, we can have a;eA,-cR where
each A; is bounded (but not necessarily an interval) and contains aj :=wfA,- and
5j \-sup A/.

5. SIMPLIFICATIONS FOR DEGREE LESS THAN 6

Anderson, Jury and Mansour [5] demonstrated that the Kharitonov condition could be
reduced for polynomials of low degree. For polynomials of degree 3,4 or 5, the Kharitonov test
is equivalent to checking 1, 2 or 3 of the Kharitonov polynomials, respectively. For degree
greater than 5, all four polynomials must be checked.

We demonstrate the results pictorially, relying heavily on Dasgupta's picture of //(©) as a
rectanglein the complex plane with comers given by the Kharitonov polynomials. Again, we use
only simple complex plane geometry (in contrast to the detailed calculations of [5]). In the pro
cess of proving these results, we also develop a strongersense of the roles played by the Kharito
nov polynomials to force //(©) to circle counterclockwise aroundthe origin through a total angle
of null radiansas © goes from zero to infinity.

We begin by noting that the angles of all monic polynomials of degree n converge to
nn/2Qnod 2n) as ©-»+<» (since p(j<Q)=(j(ti)n[l+0(1/©)]). So for any choice of & and ak,
k=0,... t«-l, the rectangle #(©) will go to infinity at an asymptotic angle ofnn/2 (mod 2n).
The only question is whether or not it will circle the origin n/4 times (or /tic/2 radians) counter
clockwise, without intersecting the origin, in the process.

n=3: Assume Qq >0;2 then N isHurwitz if and only if £2i0) is Hurwitz.
Proof: The "only if* is immediate since k2l()eN. So we assume that Jfc2iO is Hurwitz, and

argue pictorially, refering to Figure 5. k2l(j(ti) will always be the "lower right comer"
of the rectangle //(©) (for ©>0), so as k2l(j<o) travels away from the positive real axis,
through the first quadrant and then the second, it essentially "pushes" //(©) off the posi
tive real axis (tf (0) lies in the positive real axis because of our assumption that Qq> 0),
into the open first quadrant and then the second, forcing //(co) to completely enter the
second quadrant before crossing the real axis into the lower half plane. Once k2l(j(o)
has crossed into the second quadrant, it can never cross the imaginary axis again (since
arg(k2i(j(o)) must increase monotonically and approach 3n/2). Since &2i(/©) lies on
the "right" edge of //(©), //(©) cannot enter the right half plane again. We have shown
that //(co) must travel counterclockwise around the origin, through the first quadrant
and completely into second, and then remain in the open left half plane as it goes to
infinity at an asymptotic angle of 3n/2. Thus we see that argMt(p)=3tc/2 VpeN, and
conclude that N is Hurwitz.

n=4: Assume Oq> 0; then N is Hurwitz if and only if [k2l(;)Jc22(')} is Hurwitz.

Proof: The "only if" is immediate since {k2i(-)Jc22(')} c^- So we assume that &21C) and
^22(0 a16 both Hurwitz. As with the case for n=3, &21O'®) pushes //(©) off the posi
tive real axis into the open first quadrant then completely into the second quadrant
before //(co) can cross into the lower half plane. Once //(co) is in the second quadrant

2 Of course, there is no loss of generality in assuming that Qi > 0 for any or all I. If any Oj < 0, then
Property 1 of Section3 tells us that at leastone Kharitonov polynomial will not be Hurwitz, thus N will not
be Hurwitz.



we see that *22(/©)~the "upper right comer"--now pushes //(©) completely into the
third quadrant before H (©) can crossinto the righthalf plane. Once &22O' co) entersthe
open third quadrant, it can never crossthe realaxis again, thus H (©)must remain in the
open lower half plane as it travels to infinity at an asymptotic angle of 2rc (or 0). We
have shown that //(co) must travel counterclockwise around the origin through a net
angle of2it, and we conclude that N is Hurwitz.

n=5: N is Hurwitz if andonly if {&i2(')f&2i(')i&22(')}is Hurwitz-
Proof: The "only if* is immediate since {k^Jc^OJc^)} cN. So assume that £12(0,

£2iQ. and fc^C) are Hurwitz. As before, k2\(jto) pushes //(©) off the real axis,
through the first quadrant and completely into the second; k22(j<ti) pushes H (©) from
the second quadrant completely into the third; andkl2(j(o) pushes //(co) from the third
quadrant completely into the fourth. Once kl2(j<o) enters the fourth quadrant, it cannot
cross the imaginary axis again, and since it is on the "left edge" of //(©), //(©) must
remain in the open righthalf plane as it goes to infinity at an asymptotic angle of 5rc/2
(or rc/2). We have shownthat//(co) circles the origin counterclockwise through a total
angleof5tc/2, and so argnet(p)=5id2 VpeN. We concludethat AT is Hurwitz.

6. EXTENSION TO POLYNOMIALS WITH COMPLEX COEFFICIENTS

In 1978Kharitonov [2] published a generalization of the theoremof Section 4 forclasses of
polynomials with complex coefficients, defined by letting the real and imaginary parts of each
coefficient vary independently in arbitrary intervals. Such a class of polynomials is Hurwitz if
and only if eight special, well-defined polynomials are Hurwitz. (NoEnglish translation of [2] is
known to the authors, and ourbriefreferences to [2] are paraphrased from references made in
[6].) The proof of this generalization was recently simplified by Bose and Shi [6], although their
derivation was still complex, requiring considerable notation.

We use Dasgupta's rectangle concept and simple complex plane geometry to present an ele
mentary derivation of the generalization, completely analogous to the derivation in Sections 2-4
of the original theorem.

A prime motivation for this result for control engineers is provided in Section 7, where we
establish sufficient tests for the whole class N to have CT-Hurwitz properties which insure
specified settling times and/or damping ratios of linear systems. Other motivations are given in
[6].

We beginby definingthe set N* of polynomials of the form

p(s) msn +(ctB.1+ypn.1),sn-1+ ••• +(00+7^0)

where g^o^cfe and p^p^p*, jfcsO,... ,n-l. For all ©eR we define
//*(©) := {p(j<&):pczN*}, the image of N* under the evaluation map at s=j©. Our develop
ment of the theorem will follow two parallel lines of reasoning, one for ©£0 and one for ©£0.
The following polynomials willbeused when considering ©> 0:

£i"(j) := Qb+ZPi-y +02S2+j^s3+^sA+ •••

gi (s) := ob+ygjj+c&j2+yp3j3+6V4+ •••

h\(s) '-= j&i+ttis +j$2s2+ais3+j$4s4+ •••

n2(s) :=ypo+«i^+/fcy2+c^3+yp4-y4+ •••

*ii(*):=*i+(*) + *i+(*)

kt2(s):=gt(s) + h}(s)



kii(s):=g}(s) + ht(s)

*22(*):=*2+(*) + A2+(*)

Remark: {*fiO£&O£a(0422(')}c#*v and V©eIR, gfO'©) and g}(j<o) are purely real
while hi (J©)andh2 (j ©)are purely imaginary. Furthermore, Vp(•) e Af* we have

Re{**(/(D)) £ Re{p(/©)} ^ Rel^O'©)} V©2>0

Im{/i+(/©)} £ lm[p(jG>)) £ Jm{hi(J(Q)} V©£0

Thus we see thatV© £ 0, //* (©) is a level rectangle (i.e. the sides are parallel to the real
and imaginary axes) withcomers k ft 0'<»), £ ft 0'©)» fcft 0'<*>). and £&0'©)•

The following polynomials will be used whenconsidering ©£0:

8i(s) := gb+yfii* +C62j2+yp3j3+gi4j4+ •••

Si" CO := cfe+yPi* +^2+yg3,y3+cV4+ •••

*2 (*) ^3yfc+a1j+yBaff2+c^3+yp4j4+ •••

*nc»)5=»*r(»)+Ar(»)

kn0i)^gT(s)+h2(s)

k2i(s):=g2(s)+hi(s)

k2l(s):=g2(s)+h2(s)

Remark: {*n 0)^12(0^210)^22OJciV*, and V©€lR, gf(/©) and sJO'©) are purely real
while h1 (j o) andAJ(/ co) are purely imaginary. Furthermore, Vp (•) e N* we have

Re{£f (/©)} £ Re{p(/©)} ^ Re{*2 (/«)) V©<0

Im{Af 0*cd)} < Im{p(/©)} ^ Imf/iJO'©)} V©<0

Thus we see that V©£0, //*(©) is a level rectangle with comers k^ 0'©), ^nO'co),
*2i 0' ©)» and £220* <*>).

Finally, we define the set tf* of Kharitonov polynomials:

K* := {*ft OUfeOJkfi 0^22OUfi (UuOUJi OJfcaO).

Now we state the critical propertyof Hurwitz polynomials with complex coefficients.

Property 1: If p (•) is Hurwitz with degree n >1 then org (p (/©)) is a continuous and strictly
increasing function of ©.

The proof is identical to that of Property 2 in Section 3, and Figures 2 and 3 still illustrate the
property (with the modification that, in Figure 3, p(0) need not be on the real axis and p(/©)
need not go through an angle of nn/2; the important point is thatp(/©) circles strictly counter
clockwise around the origin).

Lemma: If the eight Kharitonov polynomials in K* areHurwitz then 0£ H* (©)V©e R.

Proof: Firstwe note that, as © goes to infinity, the rectangle H*(©) must travel to infinity at an
uniform asymptotic angle ' of nn/2 (mod 2%) (since peN =^»
P(/<*>)=(/<»)"[ 1+0(1/©)]). So OS //*(©) for © sufficiently large. Now suppose
Oe//*(©) for some ©eIR. Since //*(©) is continuous, 0 must be on the boundary of
H* (©) for some © >©. Since the comers are Hurwitz, 0 must be in the interior of an
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edge of H*(6); without loss of generality, we assume it's the "bottom" edge. If ©>0,

we conclude that Jfcft (/&) is on the negative real axis while Jfcft (j&) is on the positive
real axis (referto Figure 4). It follows from Property 1 that for 6©>0 sufficiently small,

Jfcft (/(&+&*>)) is in the open third quadrant while k2X (/(w+6©)) is in the open first qua
drant Since Im{£ft(/©)} = ImfJfcftC/©)} :=s toM* *(/<*>)} V©eIR, this is clearly not
possible. If &<0, we substitute fcfi (•), k2\(•) and h\ (•) for fcft (•), fcft () and hi() in
the preceding argument and deduce the same contradiction.

Theorem: The class of polynomials N* is Hurwitz if and only if AT* is Hurwitz.

Proof: The "only if' is immediate since K* <zN*. So assume K* is Hurwitz and note that N*
is pathwise connected (N* is a parallelepiped in the space of polynomial coefficients).
Since the zeroes of a complex polynomial depend continuously on its coefficients, if
p()eN* were not Hurwitz, then on any path in N* connecting A:ft (•) to p() there
would be a polynomial p()eN* with a zero on the*imaginary axis, say at s =y©. So
p(j&)=0, which is forbidden by the Lemma.

Remark: We could not use the arg^t() property (Property 3) of Section 3; since the complex
zeroes are not symmetric about the real axis, we cannot conclude that they each contri
bute n/2 radians of phase as © goes from zero to infinity. However, we can easily
modify argMt(•) to accommodate complex polynomials. Ifp 0' <o)-£0 VcoeR, we define
ar8ntt* (P()) to be the asymptotic net change in phase ofp (/co) as co goes from -«»to
+oo. We easily see that each zero in<C_ contributes +rc toarg^*(p (•)) while each zero
in <£+ contributes -k. Thus we have the following characterization for Hurwitz complex
polynomials: an n01 degree polynomial p (•) is Hurwitz if and only if argMt* (p (•)) is
well-defined and equal to nn. Now suppose K is Hurwitz. Since
arg(p(j(a)) —> nn/2 (mod 2k) and org(p(/©)) -> -nn/2 (mod 2n)

Vp ()e N*, the Lemma implies that argmt * (•) is constanton N*. We conclude that N*
is Hurwitz.

7. APPLICATION TO tf-HURWITZ POLYNOMIALS (PERFORMANCE ROBUSTNESS)

The use of desirable pole locations of linear time-invariant dynamical systems to specify
system performance is quite common, and the relationshipbetween system pole locations and the
damping ratios and settling times of system modes is well understoodby the control engineering
community. Thus the most common specified domains for system poles are the type shown in
Rgure 7. An angular sector in the left half plane, symmetric about the real axis, specifies the
damping ratio (c^suT^, where 9 is shown inFigure 7). A o-half-plane (the region to the leftof
the vertical line {.s:Re{,s} =-o) for o>0) specifies the settling time (Ts =4/o\ where Ts is the
"2% settling time"). Of course, the complement of a desirable region is an "undesirable"-or
forbidden-region. In the case of multiple specifications, the forbidden region is the union of all
the individual forbidden regions-we denote it by U (as shown in Figure 7). A polynomial with
no zeroes in U is said to be U -Hurwitz.

We do not have a general necessary and sufficient condition for a polynomial class of the
form Af to be U -Hurwitz. However, for the types of U described above (specified damping ratio
and/or settling time) we apply Kharitonov's originaland generalized stability theorems to provide
a sufficient condition. The condition for the settling time problem involves checking that four
derived polynomials with real coefficients are Hurwitz (not {/-Hurwitz). The condition for the
damping ratio problem involves checking that eight derived polynomials with complex
coefficients are Hurwitz. For combined specifications, of course, all twelve polynomials must be
checked.



Problem 1. The Settling Time Problem: U = [s:1te{s}Z-o}. Consider the complex plane
transformation w=s+o\ For anypolynomial p() define /?(•) by£(w)=p(w-a) =p(s). lfp()
is ofthe form

p(s) = sn +an-iSn-l+ - +a0
then

p(w) =(w-o)B +an_1(w-a)'|-1+ •• +a0

=wn +[an_l-no]wn~l+ ••• +[a0-a1a+a2<*2 +(-<J)11]

= w" +ftn_1w""1+ ••• +60

bk =|( J] ^(-cy-
wherean := 1. Clearly p (•) is 1/-Hurwitz if andonly ifp (•) is Hurwitz. Given independentinter
vals for ak% k=0 n-1, we can easily determine the corresponding range for bk,

k=0,...,«—1; i.e. &>=ob-a iC+feO2 , bQ-aQ-q\C-¥a2csi , etc. Now we define ft
to be the set of polynomials with coefficients bkJc=0f... ,/t-l satisfying b± £bk £bk, and we

consider the polynomial transformation T: (a0 •••a„_i)f-> (b0 ••&„_i). ft is the smallest paral
lelepiped containing t (N). Note that f is affine, so that the size of ft is proportional to the size
of N. The fourKharitonov polynomials basedon g* andbk are easily defined, andif these poly

nomials are Hurwitz, men N will be Hurwitz. This implies that f(N)<zft is Hurwitz, which
implies that N is U -Hurwitz. Thus we have shown that N is guaranteed to be U -Hurwitz if four
well-defined polynomials with real coefficients are Hurwitz.

The sufficient condition derived above is not a necessary condition. Since T(N) does not

contain ft, we have no indication that t (N) should contain the four Kharitonov polynomials for
ft. In fact, we note that (assuming o*0) the choice ofat *s required to produce bQ (namely a0, gi,
a2, Qi* •••) will also produce b2 (and bk V k odd, and£* V k even). Assuming n £ 3 and all inter

vals [a* ,5*] are nontrivial, the pairs (ibo.^2) and (b0,bi) cannot be in f(N). It follows that none of
the Kharitonov polynomials for N can be in T(N). Thus we see that our sufficient condition is
conservative.

Problem 2. The Damping Ratio Problem: U = {s:-(ni2*&)<targ s £rc/2+8}. We will also
consider U+:={s:-n/24Q<arg s£rc/2+e} and U~:=[s:-(n/2-^)^arg s£n/2-Q), the right
half plane "tilted" counterclockwise by an angle 6 and -8, respectively. Since the zeroes of a
polynomial with real coefficients are symmetric with respect to the real axis, U-Hurwitz, U+-
Hurwitz and I7"-Hurwitz areequivalent properties.

Now, considering U+, we make the transformation x=se~J9 and define
p(x) :=p (xeJ&)=p (s) andp (x) :=e~jnBp(x); i.e.

p(x) = (xe'*)n +an_l(xeJ*)n~l+ ••• +a0

= ejn&(xn +an_le~j9xn~l+ ••• +a0e"^e)

=: e>n*[xn +(*n-i+jVn-i)xn-l+ ••• +(cxo+ypo)l
= eJn9p(x).

So p (•) is U -Hurwitz if and only if p (•) is Hurwitz (if and only ifp"() is Hurwitz). We consider



the transformation T+:(aQ • • •tfB_i)i-K(ao'Po)' **fc-i-Pn-i))- Under T+, each coefficient
(°*»P*) ofp (•) depends only on ak; i.e. T+ is "decoupled." Thus we abuse our own notationand
write (a0,po)=T+(flo),..., (aB-i,pa_i)=7H"(all_1). Since T+ is linear, we can easily find the
extreme coefficients a*,o^, g^, and p* from the real and imaginary parts of e~^e& and e~jkBak.
We define the class N+ of polynomials withcomplex coefficients to be all polynomials satisfying
<& £ ak £ c^fe and& £ p* £ p* fc=0,..., n-1; AT1" is the smallest parallelepiped containing T+(N).
The eight Kharitonov polynomials for N+ are defined as in Section 6, and if these eight polyno
mials are Hurwitz then the generalized stabilitytheorem implies that N+ is Hurwitz. This implies
that T+(N) is Hurwitz, which in turn implies thatiV is U-Hurwitz. Thuswe haveshown that N is
guaranteed to be U -Hurwitz if eight well-defined polynomials with complex coefficients are
Hurwitz.

The sufficient condition derived above is not a necessary condition. Although the
coefficients in T+(AO vary independently, the real and imaginary parts of each coefficient are
linearly dependent; i.e. 7H"([afc2^fc]) is either the line segment connecting (c^,&) to (c^.p^) orthe
line segment connecting (a*,p*) to (a*&) (depending on whether ejkB is in an even or odd
quadrant--7,~([ait,5i]) would be the other line segment). So T+(N) will not containN+; indeed,
T+(N) is an n-dimensional linear slice of the 2/t -dimensional parallelepiped N+. Thus we see
that our sufficient condition is conservative.

Remark: It is clearthat the derivation abovecanbe extended to half planes definedby any line in
<C by considering transformations of the form z =o+se'*. The test wouldinvolve test
ing at most eight polynomials with complex coefficients. Combining such tests, we can
then derive tests for any desirable region defined by a polygon in the s -plane with m
sides. The test would involve testing 8m polynomials. Such polygonsmight be used,
for instance, to define desirable regions in the unit circle fordiscrete systems.
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Figure 1:
Rectangular image ofN at 5=; co (©>0).

Figure 2:
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Figure 6:
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