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NORMAL FORMS FOR NONLINEAR VECTOR FIELDS — PART I:

THEORY AND ALGORITHM*

ft
Leon O. Chua and Hiroshi Kokubu'

Abstract

Normal forms are powerful analytical tools for studying the qualitative behavior of nonlinear vector fields.

This 2-part tutorial is aimed for the non-specialist in general, and circuit theorist in particular.

Part I of this paper provides the basic concept and foundation on the modem theory of normal forms for

nonlinear vector fields. After stating the Poincare and the Tokens normal form, this paper focuses on the latest

refinements due to Ushiki.

For pedagogical reasons, the familiar Jordan form is first derived and shown to be an appropriate normal

form for matrices. Rather than using a standard linear algebraic approach, our formulation is based on the

"method of infinitesimal deformation" which generalizes naturally to nonlinear vector fields.

1. INTRODUCTION

The concept of normal forms of nonlinear vector fields has emerged as an important analytical tool for

investigating the qualitative behavior of nonlinear dynamical systems [1-2]. Roughly speaking, the normal form

of a vector field is the simplest member of an equivalenceclass of vector fields, all exhibiting the same qualita

tive behavior. For example, consider the family of all linear systems described by x = Ax, where A is any

n x n real matrix withdistinct eigenvalues X\, X^,..., Xn. Since A is diagonalizable, the qualitative behavior

of the above family is identical to that of x = Ax, where A is a diagonal matrix with Xi, X2,..., Xn along its

diagonal. In this case, we say Ax is the normal form of the above equivalence class of linear vector fields.

Clearly, it is much simpler to investigate the qualitative behavior of this family of vector fields by working with

Ax rather than Ax.

In the more general class of linear vector fields where A is not diagonalizable, the normal form of this

equivalence classof vector fields is also given by Ax, whereA denotes the Jordan form [3] of A.

It is much harder to generalized the concept of normalform to equivalence classes of nonlinear vector

fields. Major advances have been made over the past decade, however, that though still undergoing development,

there is now a systematic procedure for formulating the normal form of nonlinear vector fields. Our main

*
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objective in this 2-part tutorial is to extract the main results from this rather complicated mathematical subject

and to rewrite them in a form that can be more easily understoodand applied by the non-specialist

The notion of normal form originated from Poincard's formal linearization theorem for formal vector

fields' of the form

x = v(x) = Ax + v2(x) + v3(x) + - + v*(x) + - (1.1)

where x = (x^ x2f •**, xn) e Cn denotes an n-dimensional vector of complex numbers, A denotes an n x n

complex matrix, and v*(x) denotes a homogenous polynomial of degree k in x. Note that Ax represents the

linear part of the nonlinear vector field v(x), where A is the Jacobian matrix of v(x) at the origin. For simpli

city, let us assume that the n X n matrix A is diagonalizable.

The eigenvalues [X\, X},..., Xn} of A are said to be resonant if a relationship of the form

V= E nti Xi (1.2)
i=l

n

holds for non-negative integers m,- satisfying £ mi ^2 for some index k satisfying 1 < k < n. Other-

wise, we say {A,j, Xi,..., Xn) are non-resonant. For example, [Xi, hrf = [i, —i} are resonant because X\ =

m X\ + (m—1)^2 and Xi = (m-l)Xi +m%i for any integer m>l. Here, we can choose either k = 1, m i = m,

m2 = m-l,orfc = 2, mi = m—1 andw2 = m.

For each combination of (m1( m2, . . . , mn} satisfying (1.2), the monomial Xj x2 . . . ^cn in the

right handside of (1.1) is called the resonant monomial corresponding to the resonant condition (1.2) associated

with Xk.

To transform (1.1) into its normal form, Poincare' introduces a formal coordinate transformation of the

form

X = Y(y) =y + y2(y) + y3(y) + •♦. + yk(y) + - (1.3)

where y = (yi, y2, ...,>„)€ C" denotes the new coordinate system, and \p*(y) denotes a homogeneous

polynomial of degree k in y. We are now ready to state the Poincare' normal form theorem.

Theorem LI (Poincare' Normal Form)

+

'By formal, we mean the question of convergence of an infinite series is ignored.

' The terminologies here are due to Poincare" and should not be confused with traditional usage in
circuit theory.

-2-



A formal vector field

x =v(x) , x e €n (1.1)

can be transformed into the Poincare normal form

y =Ay +w(y) ,y e <Ert (1.4)

by an appropriate formal coordinate transformation x=y(y), where A denotes the Jacobian matrix of v(x) at

the origin, and each component wt(y) of w = (wlf w2, . . , wn) consists of all resonant monomials

corresponding to the resonant condition (1.2) associated with the eigenvalue A,* of A.

It follows from Theorem 1.1 that if the eigenvalues of A are non-resonant, then w(y) = 0 and the non

linear vector field (1.1) can be transformed into a linear vector field.

Example 1.1

Consider the case n = 2 and A =
i 0

0 -i
. The eigenvalues {/, —/} are resonant and the resonant mono

mials corresponding to X\ = i are of the form (yiyif* y\ for m = 1, 2, 3, . . . . Those corresponding to

Xi = —i are of the form (y \ y^f" y2. It follows from Theorem 1.1 that the Poincare' normal form is given by:

yi = iy\ + a&bi + "isbl + caybl + • 04)

y2 o -ry2 + bwl + bjy frf + bjy \y% + - (1.6)

Observe that each component of the normal form equation is an infinite series. We will usually truncate

the higher-order terms and focus our attention only to those terms up to the Ath order, henceforth referred to as

the "&th order normal form.**

By other clever choices of coordinate transformation, it is sometimes possible, especially in the case where

A contains multiply degenerate eigenvalues, to obtain a much simpler normal form than the one prescribed

above. We will focus our attention in this paper on two recent normal form results due to Takens [4] and Ushiki

[5], respectively.

In 1974, Takens [4] gave a rather geometric set-up of normal forms for vector fields using the Lie bracket

operation. His result is summarized as follows.

Theorem 1.2 (Takens normal form)

'Readers not familiar with the Lie bracket for vector fields should consult Appendix 1.



Let v be a vector field on Rn vanishing at the origin O. Expand v into a Taylor series at 0, namely,

v = vj + v2 + - + vk + - (1.7)

where vk denotes the kxh order term in the expansion. Let bk denote the Lie bracket [Yk, v.{] between Yk and

Vj,' where Yk denotes some homogeneous vector field of degree k.

If Vk=t>k+gk = [Yk,v1] + gk (1.8)

then there exists a coordinate transformation <f> which fixes the origin O such that

$* v = vj + v2 + - + v*_, + gk + - (1.9)

where §m v denotes the transformed vector field of v by <J>. That is, 4> does not change the terms in v up to the

(fe-l)th order but eliminates the bk component Of the kth order term vk.

It follows from Theorem 1.2 that every component [Yk, v{\ of v, k = 1, 2,. .., n, can be eliminated by

a coordinate transformation. In particular, if v* = [Yk, v,], i.e., if gk = 0, then the entire ton order term can be

eliminated by a coordinate transformation.

A similar normal form approach, couched in Poincard*s style, is due to Arnold [2]. Other more analytical

approaches, rather than geometric, are given in [6-7].

Takens normal form essentially makes use only information from the linear part v j of the nonlinear vector

field v in forming the Lie bracket [Yk, v{\. By exploiting the higherorder components, it is sometimes possible

to eliminate additional terms from the Takens normal form via further coordinate transformations. Although

Takens [4,8,9] was aware of this possibility, it was Ushiki who gave the detailed calculations needed to obtain a

normal form equation which is truly the simplest possible in the sense that no other terms can be eliminated by

any coordinate transformation [5,10,11].

Our main objective of this paper is to present a detailed and precise explanation of Ushiki*s normal form

for the non-specialist Consequently, detailed proofs will be given of the most basic results and numerous exam

ples will be given to illustrate the theory.

The remaining parts of this paper (Part I) contain 4 sections. In Section 2, we use an unconventional

approach, called the method of infinitesimal deformation, to derive the Jordan form as an appropriate normal

form for linear vector fields described by arbitrary matrices. We choose this approach, rather than the standard

linear algebraic approach, because it generalizes naturally to nonlinear vector fields. This generalization is made

in a fairly abstract setting in Section 3. The detailed normal form formulation is given in Sections 4 and 5,

where Section 4 contains the basic strategy and Section 5 presents an explicit algorithm due to Ushiki.

'For each point x e R", the Lie bracket [Yk(x), Vx(x)]:Rn -» R" maps x into DYk(x) vx(x) -
Dvx(x) Yk(x).



2. JORDAN NORMAL FORM FOR MATRICES: ANOTHER PERSPECTIVE

Ann x/i matrix A can be transformed into several equivalent forms, the simplest of which is called the

normal form. The choice of a normal form is not unique, however, since it depends on the criterion used in

comparing the "simplicity'* between 2 matrices. For dynamical systems described by a linear vector field

x = Ax, the well-known Jordanform is generally regarded as the most appropriate normal form.

In this section, we will derive this normal form via an unconventional approach, called the method of

infinitesimal deformation because the same technique can be generalized to derive the normal forms for non

linear vector fields.

Let M(n, R) denote the vector space of all real n x n matrices and let GL(n, R) denote the group of

all non-singular real matrices of the same order.

Definition 2.1: Conjugate operation P+

Two matrices A and A' in M(n, R) are said to be conjugate of each other iff there exists some P in

GL(n, R) such that A' = PAP~l. In this case, we call A' the transformed matrix ofA via the transformation

P and denote it by P+ A. Here, GL(n, R) is considered as thegroup of transformations ofM(n, R).

The conjugacy relation defined above is an equivalence relation on M(/i,R) and the associated

equivalence class is called the conjugacy class.

Definition 22: Normal form of A

A normalform of a given matrixA is a representative of the conjugacy class of A.

The Jordan form of A clearly qualifies as a normal form: its non-zero entries consist of either the eigen

values or the integer 1.

For any Y in M(n, R), the exponential matrix ofY, denoted by eY is defined by the limit ofthe follow
ing absolutely convergent series:

We define the exponential map

exp : R x M(n, R) -*GL(n, R) (2.2)

by

(t,Y)»e'¥ (2.3)

Note that for jixed Y, the family of matrices etY parametrized by f is a one-parameter group in GL(n, R);
that is,

e«+s)Y =etY . esY (24)



We call Y the infinitesimal generator of the one-parameter group etY.

The crucial step in the method of infinitesimal deformation is to calculate the derivative

_d_
dt

1=0

JY(e").A

henceforth called the infinitesimal deformation of A by Y, where

(fi*).A A etY A (etYrl = e* Ae-<Y

(2.5)

(2.6)

in view of Definition 2.1. Differentiating (2.6) with respect to t and evaluating the result at t=0, we found the

infinitesimal deformation is given by the matrix

YA -AY £ [Y,A] (2.7)

where the Lie bracket notation is adopted here for simplicity. We can summarize the above result as follow:

Proposition 2.3: Infinitesimal Deformation of a Matrix

The infinitesimal deformation of the matrix A is given by

d_
dt

AY(e")>A=[Y,A]
/=o

JYSince e is a group,

dx
(fit™*). A

It=0

=jJ e*(etYAe-'Y)e-*Y

,iY> JY tY^

dx
(*T'M(e''),A} = [r,(e'')*A]

hM)

Introducing the notation

A, => (e'Y)„A

in (2.8) and (2.9), we obtain the following linear differential equation

-^At=[Y,At]

(2.8)

(2.9)

(2.10)

(2.11)

on M(n, R). Note that (2.11) consists of a system of n2 linear differential equations corresponding to the n2
elements of At. Solving (2.11) with the initial condition An= A, we obtain the one-parameter family (etY). A

-6-



of transformed matrices. If we visualize A0 as an initial point in the n -dimensional Euclidean space, then the

solution of (2.11) is a trajectory parametrized by the time t. To reconstruct the matrix solution of (2.11) at any

time t = tk, we simply identify the n2 coordinates of this trajectory at t = tk. This trajectory is uniquely
specified once Y and the initial matrix A0 are given. Hence, the linear differential equation (2.11) specifies the

evolution of A, for any given Y and A0.

Example 2.4

Choose A0 =
-1 1

-1 1
,Y =

P Q

r s
and A, =

at b,

ct dt

d
at bt p q at b,

dt ct dt r s
» [c< dt\

. In this care, n = 2 and (2.11) becomes

qct - rbt -q(at - dt) + (p - s)bt

riflt -dt)-(p - s)ct -iqct - rb,)
(2.12)

To obtain as simple a solution as possible, let us choosep =s,q = 0, and r = -1 as the elements of Y. The

resulting solution can then be solved trivially to obtain

bt=b0=l

at =a0- rbtt =-1 + t

dt -d0-¥rbtt = 1 -t

ct =Cn+ f r(at -dt)dtlr(«
=-l+2[(l-t)dt=-l+2t-t2 =-(l- t)2

Observe that the "simplest** solution occurs when t = 1 in

a\ b\ 0 1

cx dx = 0 0

In fact, we have obtained

exp
p o

-1 p *

-1 1

-1 1
=

0 1

0 0

where the resulting matrix is precisely the Jordan form of
-1 1

-1 1

Since all matrix solutions of (2.11) with the initial matrix A0 =

-7-

-1 1

-1 1

(2.13)

(2.14)

(2.15)

are equivalent to each other, it



suffices to choose the simplest solution A j =

4-dimensional space at t = 1. •

The preceding approach for deriving the Jordan form is the fundamental idea used to develop the normal

form theory in the following sections; namely, choose an appropriate infinitesimal generator Y and integrate the

associated linear differential equation (2.11). Needless to say, for linear vector fields, our above approach is less

efficient than the usual linear algebraic method. However, our approach becomes extremely useful for nonlinear

vector fields.

Remark

tY
The preceding method of infinitesimal deformation assumes a transformation of the form e . This

transformation is not completely general because its determinant

det etY = e""*™ > 0

is always positive; whereas in the general transformation group GL (n, R), matrices having a negative deter

minant are also present Because of this restriction, some matrices may not be reducible to the Jordan form via

-1 1

0 1

0 0
corresponding to the point on the above trajectory in the

the preceding method. For example, if we replace A =

A =
1 -1

1 -1
, we would obtain the normal form

0 -1

0 0

-1 1
from Example (2.4) with another matrix

instead of the Jordan form
0 1

0 0
. This lack of

generality, however, is only superficial because we can always reduce the transformed matrix into the Jordan

form by another transformation having a negative determinant For example,

1 0

0 -1 *

0 -1

0 0
=

0 1

0 0
(2.16)

The above remark applies also to the general framework for normal forms in the following sections.

3. GENERAL FRAMEWORK FOR NORMAL FORMS: A UNIFIED APPROACH

The same approach used in the preceding section for deriving the normal forms of linear vector fields can

be generalized to a much larger class of vector fields. For complete generality, we will present a unified

approach in this section in an abstract setting so that the normal forms derived in the following sections, as well

as elsewhere [12], will clearly be seen as special cases. In our unified approach, the general framework for nor

mal forms requires a vector space M of abstract objects and a group G of transformations. In fact, for even

greater generality, we can generalize the vector space M to a manifold.

For linear vector fields considered in Section 2, we have M = M(n, R) and G = GL(n, R). For the

class of vector fields to be considered in the following sections, M is, roughly speaking, the set of all vector

fields on Rn and G is the group of all coordinate transformations.

•8-



For each x in M and g in G, we denote the transformed object by g+x. We say x and x' in Af are

equivalent iff x' = g * x holds for some g in G. A normal form of x is a representative of the equivalence

class of x. This representative is chosen to be the "simplest" member according to some criterion of com

parison.

Suppose there exists a local one-parameter group g (t) (t e R) in G satisfying

*(M* >*(*)•* CO (3.1)

for sufficiently small t and 5. Here, "local" implies that V is sufficiently small. If our group G of transforma

tions is so tame that it admits a differentiable structure and g{t) is smooth in t, then the following expression

4L*(,)=rdt l/=o

is well defined and the resulting object Y is called the infinitesimal generator of g(t). In order to specify the

infinitesimal generator Y, we frequenUy use the notation exp(r7) instead of g(t), even though exp(f Y) is not

necessarily the exponential map defined in (2.1).

In this paper, the set of infinitesimal generators is denoted by Q. Sometimes, Q =Af, as in the case of
all n x n matrices or vector fields on Rn. However, in more general cases, such as those considered in [12],

Q ±M.
Since exp (tY) is an element of Q, for each x in M, the transformed object (exp (tY)). x is awell-

defined member of M parametrized by t. We define the infinitesimal deformation of x by Y by the derivative

dt
(exp (tY)). x (3.2)

t=o

Since Af is a vector space, this derivative can be considered as an element of M, which we denote by [Y, x}.

Since exp (tY) is a one-parameter group, all the steps used in the preceding section for deriving the linear

differential equation (2.11) is also applicable, mutatis-mutandis, to the above abstract version of (2.5). Hence, by
a mere change of symbols, we obtain the following differential equation

j;Xt ={Y,Xt) (3.3)

for the abstract vector space, where

xt k (exp(/y))„x (3.4)

Following the procedure from Section 2, we can derive the normal form of any x in M by choosing first

an appropriate Y and then solving the differential equation (3.3). In the next section, we will illustrate this gen
eral approach for deriving normal forms for the class of nonlinear vector fields on Rn which vanishes at the ori

gin.



4. NORMAL FORMS FOR VECTOR FIELDS: BASIC STRATEGY

In this section, the vector space M of the general framework for normal forms will be specialized to the

class ofall smooth (i.e., C°°) vector fields* defined on a neighborhood ofthe origin O ofR" and which vanish
at O. We will denote the set of all such vector fields by 9Cq(/i), or simply y(0.

When one considers the dynamical behavior of vector fields, it is often the case that only the terms of

finite order, say k, are essential in the analysis. Hence, we may neglect all terms in >Xq beyond order k.
Since the formulation of the normal form requires various coordinate transformations and derivative operations,

and the evaluation of Lie brackets, it is not clear whether the higher-order terms can be truncated at each inter

mediate calculation steps, or whether one has to work with the complete expansion and then truncate only at the

final stage. Since the latter would have been extremely messy, it is highly desirable to truncate at all intermedi

ate steps. In order to do this rigorously and to avoid ambiguity, we will apply the concept and notation of k-jets,

which is reviewed in Appendix 2.

Let 9C<? denote the vector space ofall k-jets ofthe vector fields in 9C0 at O (obtained by truncating all
terms ofdegree greater than k). Let jk and jk* denote the natural projections

/ :9C„ -» %* (4-D

jkJ:9Q^9C& (k il) (4.2)

respectively. Hence, if v 6 y(o is a smooth vector field, then v' = jkv can be identified with a vector field
v' obtained by truncating all terms of the Taylor expansion of v at 0 beyond the degree k. Similarly,

v" = jk* v' truncates further all terms ofv' (whose highest order term has degree k) beyond degree I < k.
It follows from Proposition A2.4 that jk and jk,t are surjective vector space homomorphisms [13]. Let
Hk = Ker(jktk~l) denote the kernel of jk,k~l, i.e., the set of all elements of 9Cq which maps to O. Clearly,
Hk consists of all vector fields described by a homogeneous polynomial of degree k. It follows that

9^0=^1 ®H2® + -®Hk (4.3)

where © denotes the direct sum operation. Hence, every v* in ;Xo can be decomposed uniquely into the form

v* = vj + v2 + - + vk (4.4)

where v{- € //,. Here and in the sequel, the suffix i represents the ith order part, while the superfix k

represents the k -jet

From here on, we assume the vector space M of the general framework for normal forms to be 9Cq, i.e.,

'A function / : R" -» R" is said to be C°° iff all partial derivatives of/(•) exist for all orders
1,2, •••.
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all nonlinear vector fields of degree up to k. It remains for us to pick an appropriate group G of transforma

tions.

Let v be a vector field on R" which vanishes at 0 and let <J> be a coordinate transformation of R" satis

fying <K0) = 0* Then the transformed vector field <J>* v by <j> is given by

v(y) & (*» v)(y) = DWl(y)) •vQTl(y)) (4.5)

This transformation is best depicted by the following commutative diagram:

V

The above transformation was chosen because we have identified the vector field v with the ordinary differential

equation (ODE)

x=v(x) (4.6)

and under the change in coordinates x -» <J)(x) = y, we have

y=D$(x)x=D$(x)v(x) = DWl(y))v($-l(y)) (4.7)

which we would like to identify with (4.5).

It follows from Appendix 2 that if v and v' are k-jet equivalent at O, i.e., if they have identical terms up

to order k, then <J>* v and <J>* v' are also k-jet equivalent. Moreover, the higher-order part of <J) (beyond k) does

not affect the k-jet of <j>* v. Consequentiy, if <j> and <$>' are k-jet equivalent at O, then <|>* v and <j>*' v are also

k-jet equivalent. Thus, we can define the following transformation group:

Let Diff0 denote the group of coordinate transformations of R* having origin O as a fixed point and let

Diff0 denote the k-jets of Diff0 at O. The following proposition summarizes the properties of Diffg.
Proposition 4.1

(1) Diff0 forms a group.

11-



(2) For tyk in Diffo and v* in 9^o» me transformed vector field <J>** v* is well defined and is given by

<}>*♦ vk=jk)($.v) (4.8)

where <j> and v are representatives' of $* and v*, respectively. Moreover,

$*♦ (\|/** v*)= (<J>* o yfx v* (4.9)

holds for all <J)*, \jf* € Diffo and for all v* e s^o* where " ©•• denotes the "composition*' operation.

Proof

(1) We define the group multiplication operation between $* and \jr* in Diffo ty

<j>* o x|f*=yj (<|) o y) (4.10)

where <j> and y are representatives of <j>* and \|f*, respectively. This binary operation is well defined
because, by the chain rule, the composition (J) o y up to order k is determined by the derivatives of $

and y of order only up to A:. The above multiplication operation clearly satisfies the axioms defining a

group.

(2) By the same reasoning as above, (4.8) is well defined. To prove (4.9), let <|>, \|f, and v be representatives

of$k, \|/*f and v*t respectively. Then

$k.(yk. v*)=$K ySOfc. v) =yJoMv* v»

=Jo(® • V)* v) =;S(<|) o V)* ;'o v = (<1>* o x/x v*
•

Let us choose Diffo as the group G of the general framework for normal forms. Our next task will be to calcu

late the infinitesimal deformation (3.2). It is instructive to consider first a simple example.

Example 42

Consider a vector field v defined by the following ODE on R2

x=y+xy , y --y2 (4.11)

Let us identify (4.11) with the differential operator

v=^+^>i-^i (412>
The quadratic terms xy — y2 — of v can be expressed compactly by the following Lie bracket (see

dx By

T(J> is said tobea representative of (J) iff the part of (J) up toorder k is identical to <J) .

12-



Appendix ly

d 2 d a d
(4.13)

where 7 = y — coincides with the linear part of v in (4.11). The vector field X = xy — in (4.13) can
dx dy

be identified with the ODE

x = 0 , y =xy

whose solution can be trivially obtained as follows:

x(t) = x0

y(t) = yoex*

wherex(0) = x0aridy (0) = y0 is the initial condition.

Corresponding to the above solution, consider the following family of transformations, parametrized by t:

x =x

y =yext

ttIn terms of the new coordinates (x, $), the ODE (4.11) becomes, for each fixed parameter value t,

i=x=y+xy=(l + x)j> c"fi

— •»; *** xt z.y = y en + rye" x

=-yV* + ty(y +xy)^

= [(t - 1) + rx]y2 «"*

(4.14)

(4.15)

(4.16)

(4.17a)

(4.17b)

Expanding 6~* in a Taylor series about the origin, the quadratic terms of the transformed vector field (4.17) is

given by (parametrized by t):

on

Using the Lie bracket operation [X, Y] = DY • X - DX - Y between two vector fields X and Y

R2with* =fel —r-fe]. we obtain fi j] ft] - g fl ft]- ^2
-r

. We remark here

that in applying this definition of Lie bracket operation to the case of matrices, the sign is opposite to
that of Lie bracket for matrices. Compare formulae (2.8) and (4.23).

''To avoid confusing with the independent time variable t associated with x and y, one could re
place t in (4.16) with x.

•13-



\y(-xt) +xy] •£- +«- l)y2 -|- =(1 - t)
ox by

„ a -2 a
xy y —

dx d?

Observe that if we choose t = 1 in (4.18), i.e„ if we choose the coordinate transformation

x =x

y =yex

(4.18)

(4.19)

then the quadratic term of the transformed vector field will be eliminated. This is precisely the goal of Takens

normal form (Theorem 12).

The vector field resulting from the transformation (4.19) would still contains higher order terms beyond

order 2. Let us now consider a different transformation

x =x

y ~y +xy

In this case, the transformed vector field becomes

i =x =y +xy =J

j = (1 +x)y +xy = (1 +x)(-y2) + (y + xy)y =0

Note that the transformed vector field y — is linear and the vector field v in (4.11) is therefore linearizable by
dx

the transformation (4.20). Observe that the two transformations (4.19) and (4.20) are 2-jet equivalent at 0. •

Recall next that a vector field Y on R" generates a flow <j>', that is, a local 1-parameter group of transfor

mations of R". This transformation is obtained by solving the associated ODE x = Y(x) with the initial condi

tion x(0) = x0; namely,

*(0 = <t>'(*o) (4.22)

If Y vanishes at 0, then (J)' (0) = 0. To derive the normal form, we need the following fundamental formula

from differential geometry:

Theorem 4.3: Infinitesimal deformation of vector fields

(4.20)

(4.21)

Let tf be a flow generated by Ye y(0. Then the following formula holds:

d

dt
<J>'* v = lim ~ (<j)r* v - v) = -[Y, v]

t=Q t~*° *
(4.23)

For a proof of this standard result, see p. 15 of [14]. Here, we will demonstrate the validity of (4.23) with an

example.
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Example 4.4

Let v in (4.23) be the vector field considered earlier in Example 4.2, namely,

Let Y in (4.23) be the vector field defined by

dy

The flow generated by Y is obtained from the solution

x(t) = x0 ,y(t) = yoeX(/

of the associated ODE

i=0 , y=xy , x(0) = x0 , y(0)=y0.

The resulting 1-parameter group {<)>'} of transformations is therefore given by

V(x,y) = (x,ye*)

For each value of the parameter t, the transformed vector field <j>'* v is given by

(1 +x)ye~* -|- +[(1 +x)t - l]yV* ^-.
dx dy

Diferentiating <J>'*v with respect to t at t = 0, we obtain:

dt
r=0

<J>',v =-xy(l +x) ^- +y2(l +2x) -$-
dx dy

One can easily check that (4.30) coincides with the Lie bracket

-[Y,v] £ - xy-t, (y+xy)-2--y2-2-
dy dx dy

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4.31)

as predicted by Theorem 4.3. •

Since we have set up M —9X<J and G = Diffo Ma framework for our normal forms, we must translate
Theorem 4.3 to corresponding k-jet spaces.

Corollary 45: Infinitesimal deformation for k-jets of vector fields.

.k\tLet ($ ) be the local 1-parameter group of k-jets of transformations in Diffo which is generated by

Yk e 9(0*. Then

•15-



d_
dt

(#*)'. vk =-[Yk, vk]k , v*e9Co* (432)
t=o

holds, where [Yk, vk]k denotes the k-jet of [Yk, vk] at 0.

Proof. Let us first verify that (<{**)* is well defined: Indeed, if Y and Y' are representatives of Yk, i.e., if 7 and
Yf are k-jet equivalent at 0, then the flow ty* generated by Y and the flow <|>" generated by Yf are also k-jet

equivalent at 0 for every t. This property is proved in Appendix3.

The k-jet [Yk, vk]k is also well defined because both Yk and vk vanish at 0. Consequendy, by taking

the k-jet of both sides of (4.23), we obtain (4.32). •

Let us summarize what we have established so fan we have chosen the framework for normal forms with

M=QCo. G =Diffo, and the infinitesimal deformation given by (4.32). It follows from (3.3) that (4.32) can
be recast into an ODE

-|v*=-[r*, vk]k (4.33)

upon defining v, = ($)'*. Following the strategy described in the preceding section, we can obtain the kth

order normal form of v* by solving (4.33) for some appropriate choices of y*'s. Consequently, our next task is
to solve (4.33).

Our basic strategy is to solve (4.33) recursively. First we let k = 1 and derive the 1st order normal form.

Then we proceed to k = 2 by an appropriate transformation which allows us to find the simplest but equivalent

2-jets without affecting the previously derived 1-jet This procedure can in principle be repeated to derive the

normal form of any order.

To derive the 1st order normal form of v*e yCi, let v =Ax + . . . be its representative. Let
<|> =Px + . . . be a representative ofV e Diffo1. Since 0 isa diffeomorphism at 0, P is non-singular and we
have

<J>* v = (PAP~x)x + . . . (4.34)

Note that the 1-jet equivalence relation on 9^0 coincides with the conjugate relation on M(n, R) (see

Definition 2.1). Hence, the 1st order normalforms for vector fields coincides with the Jordan normalforms for

matrices.

Our strategy for solving (4.33) can be outlined as follow: First, we choose a Jordan normal form to be the

1-jet v1 and consider the 2-jet v2 =Vj +v2 with Vj =v1. Next we seek an appropriate transformation to
change v into a simpler form. The 2nd order normal form is not unique and depends on the degree of degen

eracy of the original 2-jet v2. The most usual case involving the least degenerate 2-jet is called the non-
degenerate 2nd order normalform. Although the 2nd order normal forms corresponding to different degenerate
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2-jets are different in form, they all contain the the same 1-jet; namely, the corresponding Jordan normal form.

The next step is to choose the 2nd order normal form, non-degenerate or otherwise, as the 2-jet v and

consider the 3rd order normal form problem for 3-jets of vector-fields having the above 2-jet We then proceed

to reduce the 3rd order terms to the simplest possible form via another transformation which does not affect the

lower order terms. Such a transformation can always be found in view of the following important property:

Lemma 4.6 (key Lemma)

Let v* be ak-jet ofvector field in 9^o and let v* 1be its (k-\)th order part, i.e.

jkjc—l y« _ yk—\ (4.35)

Ifavector field Yk e 9Co satisfies

[Yk, vk]k~l = 0 (4.36)

then the flow (<j>*)' generated by Yk does not affect the previous (k—l)-jet v*""1; i.e.,

jV'1 ($k)'*vk=vk-1 (4.37)

k vkProof. Let <|>, Y, and v be representatives of ty , Y , and v , respectively. It suffices to prove

Jo 9*v=</o v=v

Recall that

-^|<|>'*v=-[r,<|>',v]

where § *v can be expanded into a Taylor series about 0 with respect to t; namely,

$'• v=v-t[Y,v] + -^-[Y, [Y,v]]

- 37 I/,[r,[r,v]]] +-£ [Y,[Y,[Y,[Y,v]]]] +•••
The above "nested*' Lie brackets resulted from the following iterative substitutions:

<{>'• v=-[y,<|)/* v i/=0] = -[*>]
dt

t=o

dt4 t=Q

A.t a [Y,$'*v]
/=o

Y,
dt

<J>'* v = [Y,[Y,v]]
<=0

-17-
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Now, (4.36) implies that

y'o"1 tr»v] = 0 (4.43)

It follows from (4.43) and property (4) of Proposition Al-3 that

jfr1 [Y,[Y, ».f [7,v]-]] = 0 (4.44)

Applying jq~1 to both sides of(4.40) and using (4.44), we obtain (4.38). •

5. NORMAL FORMS FOR VECTOR FIELDS: EXPLICIT ALGORITHM

Our recursive algorithm for deriving normal forms of vector field consists of fixing a (&-l)-jet v*"1 of
vector field v and deriving the kfh order normal form by simplifying the kth order term hk of v by an

appropriate one-parameter group of A:-jet transformations (<t>*)' e Diffo which leaves the (Jk-l)-jet v*"1

unchanged. By the key Lemma 4.6, the generator Yk of((J)*)' needs only satisfy the constraint

[Yk, v*]*-1 = 0 (5.1)

Under this condition, we study the differential equation

4- vk(t)=-[Yk, vk(t)]k

d i ,^ _ rv* „*-!^^-[r.v'-' +^m

dt - - <5'2>

where vk(t) = 0J)*)'* v*. Since the (*-l)-jet v*"1 of vk(t) is invariant, it follows that — v*"1 = 0 and
dt

(5.2) can be considered as an ODE

(5.3)

on the subspace Hk, namely, the set of all homogeneous vector fields of order k, where hk(t) is the k\h order

part of vk(t), i.e., vk(t) = v*"1 + hk(t), and [•, -]k denotes the fcth order part of [•, •]. We will henceforth
call (5.3) under the condition (5.1) the kfh order normal form problem on Hk. In the following illustrative

examples, we will show how (5.3) can be interpreted as a linear ODE which can be easily solved.

Example 5.1: Simple-zero type

Consider all vector fields on the real line, R1, having a zero linear part, i.e.,

v^O (5.4)

It follows that (5.1) is satisfied for any 2-jet Y2. Since the vector space Hk of vector fields on R1 is 1-

dimensional whose basis isxk -r—, we can express v2 and Y2 as follows:
dx
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Since

2 2 d
v = a X —

dx

Y2 =(Ax +Bx2) -|-
dx

[72, v2]2 = , d 2 aAx— , ax* —
dx dx

* 2 a= i4aar—
dx

(5.5)

(5.6)

(5.7)

.2 ait follows from (5.2), (5.5) and (5.7) that the solution on H2 along the basis x — must satisfy the /wear ODE
dx

•J|a(0 =^Afl(0 (5.8)

whose solution is given by:

a(t) = a(0)e-M (5.9)

If a(0) = a * 0 (non-degenerate case), then we can choose A = log Ia (0)1 so that at t = 1, we have

a(l) = ±1, depending on the sign of a(0). In other words, in the non-degenerate case, the simplest coefficient

that we can choose for a in (5.5) is ±1.

If a (0) = 0 (degenerate case), then a(t) = 0 and a is simply chosen to be 0.

Hence, we have obtained the following two 2nd order normal forms for the vector field (5.5):

(i) v = ±x2— (non-degenerate 2nd order normal form)
dx

(ii) v = 0 (degenerate 2nd order normal form)

Let us proceed to solve the 3rd order normal form problem assuming a non-degenerate 2nd order normal

form; namely, define

v3 =(± x2+ax3) •$-
dx

Y3 = (Ax + Bx2 +Cx3) rr-
dx

To satisfy condition (5.1) for k = 3, we must have

[Y3,v3}2 =

which is possible iff A = 0. It follows that

Ax-l-,±x24-
dx dx

=±4x2^-=0
dx

-19-
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'3 ..2[Y\v* + h2(t)h = (Bx2 +Cx3)4- , (±x2 +ax3) a = 0
3x 3x

and (5.3) becomes

whose solution is cc(f) = a(0) = a. Therefore, the non-degenerate 3rd order normal form is given by:

v3 = (±x2 + ox3) ^r-
dx

To obtain the Ath order normal form, define

v4 =(±x2+ox3+/?x4)^-
dx

Y4 =(Ax +Bx2 +Cx3 +Dx4) -|-
dx

It follows from (5.1) that

[y4, y4j3 =
dx dx dx dx

=(±i4x2+2Aax3)^-=0
dx

Hence, A = 0. Since

[Y4,v4]4 =(BaTC)x44-
dx

(5.3) becomes

dx dx

-2-p(t) = -Ba ±C
dt

By choosing B = 0, C = 1 and t = T /? (0), the solution of (520) is given by

p(t) = P(0) ±t =0

Consequendy, the non-degenerate 4th order normal form is given by

v4 =(±x2+ox3)^-
dx

(5.13)

(5.14)

(5.15)

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

In fact, the following proposition proves that all terms of degree greater than 3 can be set to zero in the

higher order normal forms.
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Proposition 5.2

The non-degenerate kth order normal form of vector fields on R1 with vanishing 1-jet (i.e., no linear
-\

terms) isgiven by (±x2 + ax3)— for k ^3.
dx

Proof. We have already proved the above assertion for k = 4. Let us prove the case for k £. 5 by induction.

Suppose the above assertion holds for some k > 4, namely,

-\

v* =(±x2+ax3)-^- (5.23)
dx

If we choose

and

then

'*+1 =(±x2+ax3 +pxk+1)-$- (5.24)
ox

y*+l=At*JL • (525)

[7*+1,v'+1]*=0 (526)

and (5.1) holds. Since

[Yk+1, vk +hk+1(t)]k+l = ±2Axk+l (5.27)

the differential equation (5.3) becomes

-^p(t) =T2A (5.28)

Therefore, if we choose A = —• and t = ±p (0), then p(r) = 0, and the (k+l)th order normal form is also

given by (±x2 +ax3)— u
dx

The preceding calculation is relatively easy since our vector field is defined on R1. The computation
becomes much more complicated for vector fields on R", where n £. 2. In order to overcome this complexity,

we can reduce the linear differential equation (5.3) which is defined on the subspace Hk, to another equation

which is defined on a subspace Gk of somewhat lower dimension. This subspace is defined as follow.

Definition 53

Let Bk be the subspace of Hk consisting of the images of the linear map

L :Hk^>Hk ,Ykh> [Yk, vt] (5.29)

where Yk e Hk andvj e H\.
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The subspace Gk is defined as a complementary subspace to Bk of Hk. We denote the natural projection

of Hk along Bk by:

Kk:Hk^>Gk (5.30)

The geometrical interpretation of Bk, Hk and Kk is depicted in Fig. 1. The following fundamental theorem will

greatly reduce our normal form calculations on R".

Theorem 5.4: Reduction Theorem

The fclh order normal form problem

-4-hk(t) =-[Yk,vk-l +hk(t)]k (5.31)

onHk with

[Yk~\, V*"1]*-1 = 0 (5.32)

can be reduced to the problem

-Jt 8k(0 =-*k([Yk-\ v*-1 +gk(t)]k) (5.33)

on Gk under the same condition (5.32), where g*(0 e Gk

More precisely, if we arrive at some %k by integrating (5.33) with (5.32) from the initial point g*(0), then

we can also deform hk(0), satisfying 7^(^(0)) = g*(0), to gk itself by integrating (5.31) with (5.32) for some

appropriate choice of Yk. In particular, the terms belonging to Bk can be eliminated.

A geometrical interpretation of Theorem 5.4 is shown in Fig. 2.

Remarks

(1) Note that, in (5.31), the superfix of Y is k, whereas that in (5.33) is Jk—1.

(2) The choice of Gk (and, as a result, Kk) is not unique. If we replace Gk with another complementary space

Gk , the resulting normal forms are transformed to each other up to orderk, but have different forms.

(3) The last statement of Theorem 5.4 corresponds to Takens normalform theorem (see Theorem 1.2).

(4) It is often possible to do better than just eliminating Bk, by solving (5.33). This further simplification of

Takens normal form is due to Ushiki [5] who gave a systematic procedure for achieving the simplest pos

sible normal form. Our approach in this paper is based on Ushiki's algorithm.

(5) Two systematic and general methods for computing Takens normal forms up to any desired higher order

terms have recently been developed in Cushman and Sanders [16], and in Elphick et al. [17]. Moreover,

normal forms have been computed using symbolic manipulations by Rand and Armbruster [18].
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Proof of the Reduction Theorem

Let us prove first that if 7C*(/z*(0)) = &(0), then we can deform hk(0) to g*(0). Since we can decom

pose hk(0) into

hk(0) = bk(0) + gk(0) (5.34)

where bk(0) e Bk is of the form

**(Q> = [r*.Vi] (5.35)

for some Yk e Hk in view of (5.29). Consider the differential equation

* hk(t) =-[Yk, v*"1 +hk(t)]k (5.36)
dt

where 1* satisfies the condition

[Yk, V*"1]*-1 =0 (5.37)

Since

-[Yk, v*-1 +hk(t)]k =-[7*, Vl] =-^(0) (5.38)

the differential equation (5.36) becomes

|W0*-**(R) (5.39)
whose solution is

hk(t) = hk(0)-t bk(0) (5.40)

Hence, choosing t=\ in (5.40), we obtain

hk(\) = /i*(0) - ^(0) = gk(0) (5.41)

It follows from the above argument that the bk component can be deformed into any desired form. Next,

let us project (5.31) on Gk by means of nk.

Since hk(t) = bk(t) + gk(t) and bk(t) = [Zk, vx] for some Zk e Hk, we have

[Yk, V*"1 +hk(t)]k = [Yk, vk~l + [Zk, vj +gk(t)]k

= [Yk, V*"1 +gk(t)]k + [Yk, [Zk, vii\k (5.42)

Applying Jacobi's identity (Proposition Al-3(3) in Appendix 1), we have

[Yk, [Zk, v{Hk=-[Zk, [vlf 7*]]t - [vlf [Yk, Zk]]k
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=-[ZA,[v1,r1]]-[v1,[y1,Zj].

The first term in (5.43) vanishes since [vlf Yrf = 0 from (5.1) and the second term belongs toBk.

On the other hand,

[Yk, V*"1 +gk(t)]k = [Yk~\ V*"1 +gk(t)]k + [Yk, V*"1 +gk(t)]k

= [y*-1,v*-1 +^(r)]Jk + [n,v1]

where the last term in (5.44) belongs to Bk. It follows from (5.42)-(5.44) that

ft 8k(0 =-Kk(\Yk-\ v*"1 +gk(t)]k)

Since this equation depends only on gkt and not on bk, it can be solved within Gk. The proof is, thus,

completed. •

To demonstrate the usefulness of this theorem, and to illustrate the preceding algorithm for deriving the

normal forms of vector fields, let us consider a non-trivial example in complete details.

Example 55: Double-zero type

Consider all vector fields on the real plane R2 which vanish at the origin 0, and whose linear part v j at 0

is equivalent to y~r~- Hence, its Jacobian matrix at 0 is equivalent to L a with adouble zero eigenvalue. Of

course, by an appropriate linear transformation, we may assume, without loss of generality, that V\ itself is

d
defined by y-

dx'

(5.43)

(5.44)

Consider first the 2nd order normalform problem on H2, the real vector space whose elements are homo-

geneous polynomials of degree 2; i.e., linear combinations of x2, xy, and y2 along — and —. Hence, this
ax ay

vector space is spanned by

2 a d 2 a
x ax'^a? y ax"

2 a d 2 a

in the sense that any element of H2 is a linear sum of the above basis vectors. Hence,

dim H2 = 6

Since Vi = y—, the subspace B2 consists of all elements of the form
dx

-24-

v a

(5.45)

(5.46)

e H2, where Y2 is any

element in H2. To find a basis for B2, it suffices to find the image of the 6 basis vectors in (5.45). For example,



smce 2jL JL
dx,ydx

d t d d=-2xy—, x2-^- -» -2xy-^-. Similarly,
dx dx dx ^a?^

2a
-y- gives

a 2 a 2_a_ _a_
y ax,:yax

.2 a= 0 gives y2— H» 0,
dx

2_a_ _a_
* ay,:yax -*i-H gives

x2-^- (-> x2-^- - 2xy-^-, .2JL
ayay

_a.
ax

_a_
ay

a a _a_
dx=̂ 37-rir *"* ^^^^aT"^

_a.
ay

and

2_a_ _a_
y dy'ydx =y2,r- gives y2-r- »-» y2-r-. The above result can be summarized by the following matrix

dx dy ox

representation of the linear map

ff2->tf2.r2*->[r*vi]

.2 a r

xy

dx

d_
dx

y dx

0 0 0 10 0

-200010

0-10001

0 0 0 0 0 0

0 0 0-200

0 0 0 0-10

2 a d 2 a 2 a a 2 a
* dx ^lx'ylx~ Xty ^ty yty

Note that B2is spanned by

^h'T^iH

(5.47)

(5.48)

(5.49)

in the sense that the image of the above 6 basis vectors can be expressed as a linear sum of the 4 vectors in

(5.49). Hence B2 is a 4-dimensional subspace of H2. The complementary space G2 must therefore be only of

dimension 2. Indeed, we can choose, among others,

, id a
(5.50)

as a set of basis vectors for G2. Clearly, any element of H2 can be decomposed into a component in B2,

spanned by (5.49), and a component in G2, spanned by (5.50). For example,
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dx

H2

x2 JL _ 2xy-^-
dx ^dy

-J + —<
e B2 e G2

v ay

The projection map n2 : ^2 ~~* &2 therefore gives

.2 3
*2

ax
= 2xy—

ay

Every element of #2 € G2isa linear sum of the basis vectors in (5.50); namely,

g2 =cxx2|r +Pxy-|

(5.51)

(5.52)

(5.53)

for some real numbers a and p.

It follows from (5.33) of the Reduction theorem that the reduced 2nd order normal form problem becomes

ftS2(0^-n2([Yltg2(t)})

where Yx must satisfy (5.37), i.e.,

[yi,v1] = 0

(5.54)

(5.55)

a a
In general, Yx is defined by (ax + 6y)-r- + (ex + dy)—. Hence, [Ylt Vj] =

ox By
a d

(ex + (d - a)y)-r cy-r- = 0 iff c =0 and a =d. Consequentiy, to satisfy (5.55), yi must assume the
dx dy

special form

Yx = A x-^- + yr~ + 5y-£- (5.56)

Substituting (5.53) and (5.56) into (5.54), we obtain

a(t)x24r +PO*y^r-
ay ay

= —% dx ydy +B>i'«t)x2i+mxyi

= —^2 Aa(r)x2^- +A$(t)xy-$- +2B aj(t)xy^- - B<x(t)x24-
dy dx
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.2 a no,^„. a+5p(0y2-^-f*p(0xy-^

=-Aa(r)x2-^- - \A$(t) +2Ba(r)Jxy -|- +5a(0tt2
dx

=-Aa(t)x2^--AV(t)xyj- (5.57)

where the last expression results from cancellation of terms due to (5.52). Extracting the differential equation

along each basis vector in G 2* we obtain

d

dt
a(t) = -A aJ(t)

dt
p(0=-^P(0

The solutions of these two uncoupled linear differential equations are:

a(0 = 0(0)*"*

p(0 = p(0>T*

If a(0) =£ 0, we can choose A = log Ia(0) I so that at t = 1, we have

o(l) = a(0)e~A = ±1

In this case, p = p(0)e~A

If <x(0) = 0 (degenerate case 1)and p(0) =£ 0, we can similarly choose p(l) = ±1 and a = 0.

If a(0) = p(0) = 0 (degenerate case 2), the2-jet vanishes and the normal form degenerates into a 1-jeL

Hence, depending on the degree of degeneracy, the 2nd order normal form problem for the vector field

v = y— has the following solutions:
dx

(i) non-degenerate 2nd order normal form:

'2 =y^- +
dx ' *""'' ay

(ii) degenerate 2nd order normal form (case 1)

2 a . d
V my*±3»*

(±x2 + pxyh2-

-27-
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(iii) degenerate 2nd order normal form (case 2)

2 a
v =yTx

Remark.

If we choose another complementary space G{ to be the one spanned by the basis vectors

instead of (5.50), the corresponding 2nd order normal forms are:

(5.65)

(5.66)

(i) non-degenerate 2nd order normal form:

v2 =(y ±x>yL +pjl*-L
dx dy

(5.67)

(ii) degenerate 2nd order normal form (case 1)

v2 =y-2- ±x2-^-ydx dy (5.68)

(iii) degenerate 2nd order normal form (case 2)

2 a
v -*&

(5.69)

Let us proceed next to solve the 3rd order normal form problem in if3 using the non-degenerate 2nd order
•>

normal form (5.63). Recall H3 consists of all degree-3 homogeneous polynomials; namely, linear sums of x ,
-\ -\

X7, xy , y3 along — and —. Hence, H3 is an 8-dimensional space spanned by the following 8 basis vec-
dx oy

tors:

3 a 2.. a 2 a 3_a
* ax' "°V ^ ax' y ax

3 a 7 a 2 a 3_a
dy' ~ J dy' 3y' 3y ,

(5.70)

Following the same procedure in the construction of the matrix representation in (5.47), we obtain the following

matrix representation for the linear map

H3-^H3,Y3^[Y3,vl] (5.71)

with respect to the basis (5.70):
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3*
0 0 0 0 1 0 0 0

ydx -3 0 0 0 0 1 0 0

2d
0 -2 0 0 0 0 1 0

y dx
0 0 -1 0 0 0 0 1

x>±
3y

0 0 0 0 m0 0 0 0

73y 0 0 0 0 -3 0 0 0

2 8
0 0 0 0 0 -2 0 0

dy
0 0 0 0 0 0 -1 0

ji d 2. d 2a 5 o 3a ?a 2a 3a

xTx *Tx » Tx yTx ** *% *H y*
It follows from (5.72) that the image subspace B3 is spanned by 6 basis vectors; namely

<xh— xv2— v3— x3—-3x^-2- xv2— v3—^ydxtXy dx'y dx,X dx 5xydy,Xy dy'y dy

(5.72)

(5.73)

Hence dim B3 = 6 and the complementary space G3 has dimension 2. Let us choose G3 to be the subspace of

H3 spanned by the following 2 basis vectors:

H-H
.3 aIt follows from (5.73) and (5.74) that the projection n3 : H3 -» G3 maps x — as follow:

dx

%
dx

= 7*3 4 _3x^4 +3x^4
ax ay dy

In order to satisfy the constraint (5.32), i.e„

[Y2, v2]2 = 0

it suffices to verify that

[^v1] + [r1,v2] = 0

-29-
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3y

(5.74)

(5.75)

(5.76)

(5.77)

(5.78)



check this, let

Y2 = Yi + Y2 = A a _, a
^+y-a7 +B4

+ 1[C!X2 + C2xy +<**!

+(D!X2 +D2xy +£>3y2)-T-
ay

Using the non-degenerate 2nd order normal form (5.63); i.e.,

V2=y±+(±x2+fixy)±

we calculate

Fi, v2] = 4+4 +By-^,(±x2+Pxy)-|^

=T5x2^- -5pxy^- ±At2-|-+(Ap ±2fi)xy^-+fiPy2-|-
ax dy ay

and

[Y2, vj ={£>!X2 +(-2d +Da)*? +(-C2 +̂ 3)y2}T" +(r-2Dxxy -Dtf2)^-
dx dy

Substituting (5.81) and (5.82) into (5.78) andequating the corresponding coefficients to zero, we obtain

=F5+D! = 0, -5p + (-2C1+£)2) = 0

-C2 + Z>3 = 0, ±A=0

A§ ±25 -2D1 = 0, Bp-D2 =0

Hence, we must set

A =0, Ci = 0, C2 = D3, Dx= ±B,D2 = B$

in (5.79); i.e.,

y2 =5yA +c2xy-|- +C3y2^-
dx dx

±Bx2-2-+BVxy^- +C2y24-dy
a.
ay

dx

dy

-30-
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(5.80)

(5.81)

(5.82)

(5.83)

(5.84)



.2 a=Bv2 + C2 +C3yTx

The reduced 3rd order normal form problem is therefore given by

•jo—nsar2. »* +*&>

where

$3 =(ax3 +bx^)-^-
dy

in view of (5.74), and Y is given by (5.85). Since

[Bv2,v2 + g3]3 = [Bvl,g3] e B3

we need only consider

2 a „2d 2 a

+C3y-a7-v

^c^-cjhVi

±c>. 2xy2— - 2x2y—^ dy ^ax

dy

+ c3p •3^- - 2xy2-^
dy dx

Substituting (5.87) and (5.89) into corresponding terms in (5.86), we obtain

TCjX3^- +(-CjP TTC^yf " 2C3Pxy2-|- ±2C3*y2-|- +C3Py3^-
dx dx dx dy dy

= —TC3

=±3C^

(5.85)

(5.86)

(5.87)

(5.88)

(5.89)

(5.90)

where the last expression results from (5.74) and (5.75). Equating the coefficients of corresponding terms, we

obtain the following 2 uncoupled linear differential equations:

d

dt
a(t) = 0

-^*(0=±3C2
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The solutions are given trivially by

a(t) = a(0)

b(t) = b(0) ±3C2t

(5.93)

(5.94)

1
Hence, if we choose C2 = T — b(0), then at r=l, we have b(l) = 0; i.e., we can set 6=0 in (5.87). It follows

that the 3rd order normal form for the non-degenerate vector field v2 =y— +(±x2 + pxy)-^- is as follow:

non-degenerate 3rd order normal form:

V3 =y-f- +(±x2+Pxy +ax3)4-
dx dy

dx

d_
dy

(5.95)

Following the same procedure, we can derive also various degenerate 3rd order normal forms, as well as

higher order normal forms. In Part II of this paper, we will apply this procedure to derive the normal forms of

several typical examples.
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Appendix 1. Lie bracket for vector fields

Let X and Y be smooth vector fields on R". We can identify them with smooth mappings from Rn to

itself:

X, Y : R" -> Rn (A.1)

In termsof the standard coordinates x = (xlf X2, ••*, xn) of Rn, we obtain the following coordinate representa

tion ofX and Y:

X(x) = QC1(x)tX2(x),',Xn(x))

Y(x) = (Y1(x),Y2(x),',Yn(x))

It is often convenient to identify vector fields with first order differential operators; namely,

x=x&>£- +x&y£- +.»+ xn(x)-^

(A.2)

(A.3)

Depending on the context, we will use one of these 3 vector field representations throughout this paper. For the

subject of this Appendix; namely, Lie brackets, we will adopt the differential operator representation almost

exclusively.

Proposition A1.1

Let X and Y be vector fields denoted by the first order differential operators (A.3). Then the differential

operator XY —YX is also of first order, and hence is itself a vector field.

Proof.

Since* =£ Xi;-£- and Y=£ Yj -^-,
i=i ox,- y=1 dXj

a n 3
XY =* £ *r y y •—

»=i a** l/oi ax,-

n

= s
iy=i

Xi
ar, a a2
dxi dXj l J dxi dXj

Similarly,

YX= £
»y=i

a*,- a a2
7 dx; 3x,- 7 ' dX; dX;
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Therefore

XY - YX = £

n

x. OIl _L _y.Bl J.
1 dxi dXj J dXj dxi

dY: dX:
L x- - Y-

u=llaxy- J dxj J (A.6)

/=1 OXi
•A

Since XY - YX is also a first order differential operator, it is a vector field on R" •

Definition All. Lie bracket [X, Y]

The vector field XY -YX is called the Lie bracket of vector fields X and 7 and will henceforth be

denoted by [X,Y].

The following properties of Lie brackets are needed in this paper

Proposition A13

LetX, Y, Z denote vector fields and let a, b denote real numbers. Then:

(1) If we identify the vector fields with mappings of R* as in (A.1), then the lie bracket [X, Y] is itself a

mapping defined by

[X, Y] : RB -» R*

x i-» DY(x) • X(x) - DX(x) • Y(x)

whereDX(x) and DY(x) denote the Jacobian matrix of X and Y at x, respectively.

(2) The Lie bracket operation is bilinear, ie.,

[aX + bY, Z] = a[X, Z] + b[Y, Z]

[X, aY + bZ] = a[X, Y] + b[X, Z]

and is skew-symmetric; i.e.,

[X,Y] = -[Y,X].

(3) Jacobi identity:

[[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] =0

(A.7)

(A.8)

(A.9)

(A.10)

(4) If X and 7 are homogeneous polynomial vector fields of degree k and /, respectively, i.e., each com

ponent Xi of X, and Yj of 7 is a homogeneous polynomial of degree k and /, respectively, then [X, Y]
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is a homogeneous vector field of order k+l—l.

Proof. (1) is obvious from the coordinate representation (A.6). Also, (2) and (3) are easily checked by using this

representation. To avoid redundancy, we will prove only (3). Let

x-M^-.r-Eii^.z:-?%JL

If we define

2
j

dYi dXt
L X- - Y-

dX; J dX; J f dX;
J J J J

then

dYi ax,
X; - -rr1- Y:[X,Y]i=X

j[*J ' *5f J\

[[A\n,Z] = S/£
dZi d[X,Y]i

it-V'^—ST*

dZj

dxk

dYk dXk-±X, - —1 Yj
dX: J dX: J

K * J J

a

a** dXj ' dXj j 2k
J «

dxi

« 'dYi dXj dXt dYj
YJ

•

dXj dxk dXj dxk
dZj

dxk

d%

<*Yk Y _ d%k
[dxj X' - dxj •'

X, -
dxk dxj J

d%
— Y

dxk dxj J
J_
dxi

By a cyclic permutation of X, Y, and Z, we obtain similarly:

ax[[Y,Z],X]= E^^-1
iJ,k[°Xk

drZi

dZv oYy

dXj j dXj j

d2Y{
Y:-

dXk dxj J dxk dxj J

-35-

dZi dYj
dxj dxk

dYi dZj
dXj dxk

a

3x,.

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)



[[z,x],y]= £<
dxk

dXv dZu—*. Z *. Xj
dXj J dXj Jij,k

d% a2z,-
dx* dxj J dxk dxj J

ax^ aZj__ az^ ax,
dXj dXk dXj dXk

dxi

Adding (A. 14), (A. 15), and (A.16), we obtain the Jacobi identity (A. 10).

(4) Since

„ dYi ax..

[X>Y]i=^x;-ixjY>\

(A.16)

(A.17)

the degree of the z'th component of [X, Y\ is equal to k+l-1. •

Appendix 2. Jet

In this Appendix, the basic notion of jets and its properties will be presented. Only a restrictive treatment

will be given for simplicity. Readers are referred to [15] for a more general treatment

Let / and g denote smooth maps from a neighborhood of the origin O in Rm to Rn.

DefinitionA2.1: k-jet equivalence

We say / and g are k-jet equivalent at O iff every partial derivatives up to order koff and g at 0 coin

cide, that is,

a

a*i ax„
(f-g)(0) = 0 (A.18)

for all £j, k2>..., ^ withO < kx + k2 + . . . + #„ ^ k.

Example A2.2

Let/ and g be functions on R1 defined by

/(x) =2x-x2 and g(x) =2x+3x2

Then /'(0) = g'(0) = 2 but /"(0) =h g"(0). Hence, / and g are 1-jet equivalent, but not 2-jet

equivalent.

Let C°°(U, R") denote the set of all smooth maps from U to Rn. Then the k-jet equivalence at 0

defines an equivalence relation on C°°(U, R").
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Definition A23. k-jet

The k-jet equivalence class of / e C°°(U, Rn) is called the k-jet off at 0 and is denoted by j^f. We

denote the set of all k-jets at 0 by JoC°°(U, Rrt).

Proposition A2.4

(1) Jq C°°(U, R") forms a vector space over R.

(2) Let jk denote the map defined by

jk :C°°(U,K)-+Jk) C~(tf,R) (A.19)

f->Jkof

Then j is a surjective vector space homomorphism.

(3) Uk £.1, the map

jkJ : JkQ C°°(Ut R) ->Jl0 C°°(U, R) (A20)

J& ->;!/

is well defined and is also a surjective vector space homomorphism.

(4) Every element in Ker(jk,k~l) isrepresented by ahomogeneous polynomial of degree k.

Proof.

(1) Let us define the addition and scalar multiplication by

jif+Jog=Jo(f+g) (A^D

and

r jkof = jko(r -f) , r e R (A.22)

These operations are well defined and hence Jq C°°(U, Rn) has a vector space structure.

(2) It is a direct consequence of the definition of the above vector space operations that jk isa vector space

homomorphism. Surjectivity of jk isobvious.

(3) If / and /' are Jfc-jet equivalent at 0, then / and /' are /-jet equivalent at 0 for / < k. Thus, the map

jkJ is well defined. Hence, property (3) follows the same arguments as (2).

(4) Let r\ be an arbitrary element ofKer(jktk~l). In other words, T| e /J C°°(U, Rrt) and /^Ol) =0.
Therefore, if we take a representative / of T|, then Jq~1 / =0, that is, all derivatives vanish at 0 up to

orderk-l. Thus, / is Jk-jet equivalent at 0 to its Ath-order part. This completes the proof.
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Appendix 3 Flow in Diffo generated by a k-jet vector field

Let Yk € 9(o and let Y and Y' be representatives ofYk; i.e.,;J Y =;J 7' =Yk. The purpose ofthis
appendix is to prove the following basic result

Proposition A3.1

Let <j)r and <|>" denote flows generated by Y and Y', respectively. Then <J>' and <J>" are fc -jet equivalent at

0 for every t.

Proof. Recall the flow $' generated by Y is characterized by the following conditions:

-^tf(x) =Y(tf(x)) (A.23)

$°(x) = x (A.24)

Since 7 vanishes at 0, the flow <J>' fixes 0, that is,

$'(0) = 0 (A.25)

<{>" also satisfies the same conditions as Y':

-£V'(x) =Y'®"(x)) (A.26)

<J>'°(x) =x (A.27)

<|>"(0) = 0 (A.28)

It follows from (A.25) and (A.28) that the 0-jet of tf and <J>" coincide.

Suppose next that the first orderderivative of Y is equal to that of Y', that is,

Dx Y(0) = Dx Y'(0) (A.29)

Differentiating (A.23) and (A.26) with respect to x, we obtain

-|- Dx (|>'(x) =Dx -| <fr'(x) =Dz 7(<|>'(x)) •Dx tf(x) (A.30)
and

-|- £>z <j>"(x) =Dx ± $"(x) =Dx Y'W(x)) •Dx <j)'(x) (A.31)
Substituting x = 0 and subtracting (A.30) from (A.31), we obtain
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-|(DX <|>"(0) - Dx $'(0)) =Dx Y(0) •(Dx <|>"(0) - Dx <J>'(0)) (A-32)
where we have made use of (A.25), (A.28), and (A39). This differential equation is linear with respect to

Dx $"(0) ~ Dx ¥(0)- By differentiating (A.24) and (A.27) with respect to x at x = 0, we obtain the initial

condition

Dx ^(0) - Dx <J>°(0) = 0 (A.33)

It follows from (A.32) and (A.33) that

Dx <|>" (0) - Dx tf (0) = 0 (A.34)

for every t and <j>' is therefore 1-jet equivalent to <j>" at0.

Let us differentiate next (A.30) and (A.31) with respect to x to obtain

4 D2 tf(x) =D2 Y(tf(x)) •(Dx tf(x))2 +Dx Y(tf(x)) •D2 tf(x) (A.35)
at

4 D2 <|>"(x) =D2 Y'(V'(x)) •(Dx <|>"(x))2 +Dx Y(V'(x)) •D2 <J>'(x) (A.36)
at

Substituting x = 0 in (A35) and (A.36), we obtain

4 D2 tf(0) =D2 Y(0) •(Dx $'(0)f +Dx Y(0) •Dx ^(0) (A.37)
at

4 A? *"(Q> =A? r'(0)(Z>x <|>"(0))2 +Dx r'(0) •Dx2 <|>'(0) (A.38)

If 7 and Y* are2-jet equivalent at 0, then

D2 Y(0) = Dx2 7'(0) andDxY(0) =Dxr'(0) (A.39)

Moreover, (A.34) implies

Dx <|>'(0) = DX $"(0) (A.40)

Hence, we obtain

Mp2 $'(0) - D2 f'(0)) =DY(0)(D2 (j)r(0) - A2 fr(0)) (A.41)
a/

Using a similar argument as above, we obtain

D2 tf (0) - D2 f (0) = 0 (A.42)

Repeating the above arguments, we obtain
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jko¥=jko¥' (A>43)
if y is &-jet equivalent to Yf at 0. •
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FIGURE CAPTIONS

Fig. 1. Geometrical interpretation of Bk,Gk, and Kk.

Fig. 2. Deformation of hk(0) to a point gk lying on Gk.
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