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NORMAL FORMS FOR NONLINEAR VECTOR FIELDS—PART II: APPLICATIONST

Leon O. Chua and Hiroshi Kokubuﬁ.

Abstract

This paper applies the normal form theory for nonlinear vector fields from Part I to several examples of
vector fields whose Jacobian matrix is a typical Jordan form which gives rise to interesting bifurcation behavior.
The normal forms derived from these examples are based on Ushiki’s method, which is a refinement of Takens’
method. A comparison of the normal forms derived by Poincaré 's method, Tgkens’ method, and Ushiki’s
method is also given.

- For vector fields imbued with some form of symmetry, we impose additional constraints in the normal

form algorithm from Part I in order that the resulting normal form will inherit the same form of symmetry.

The normal forms of a given vector field is then used to derive its versal unfoldings in the form of an n-
parameter family of vector fields. Such unfoldings are powerful tools for analyzing the bifurcation phenomena of
vector fields when the parameter changes. Moreover, since the local bifurcation structure around a highly degen-
erate singularity can include some global bifurcation phenomena observed from a less degenerate family of vec-
tor fields, it follows that the concepts of normal form and versal unfolding are useful tools for analyzing such
degenerate singularities.

1. INTRODUCTION

In Part I of this paper, we presented a detailed algorithm for deriving the normal forms of smooth vector
fields on R". In this paper, this algorithm will be used in several important applications of the normal form
theory. In Section 1, we will derive the well-known normal forms associated with several typical Jordan normal
forms. We will compare our results, which is based on Ushiki’s method, with those derived from Poincaré and
Takens’ methods. In Section 2, we will investigate some important consequences of symmetry on the normal
forms. of vector fields. In the final Section 3, we will apply our results to the versal unfoldings of vector fields
and explore its relationship to Bifurcation theory.

2. EXAMPLES OF NON-DEGENERATE NORMAL FORMS

In this section, we will derive the normal forms associated with the following 3 important Jordan normal

forms:

1-This research is supported in part by the Office of Naval Research, Contract N00014-86-K-0351 and the
by thg National Science Foundation, Grant MIP-8614000.

‘TL. O. Chua is with the University of California, Berkeley, CA.
H. Kokubu is with the Department of Mathematics, Kyoto University, Kyoto, 606, Japan.
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Example 2.1. Hopf type

Consider the class of smooth vector fields on R? which vanish at the origin where the linear part is given
by (2.1); namely, those vector fields having the 1-jet

ey SO
vy ==y ax+x 3 : 2.4)

on R% To simplify our computation for this example, it is advantageous to introduce the complex coordinates

E=x+iy 2.5)
E=x-iy (2.6)
where i = V=1. The corresponding differential operators are:
. 4
d _1|a . d
€2 (x| @7
s _1[a .. a])
—_— = |—ti = .
& 2 ﬁx l@J @3)
In tehns of the new complex coordinate system (€ ,&), the 1-jet in (2.4) assumes the form:
. d d
vy =i _—_— -0 == 2.9
1 [5 3 3E ] 2.9)
Similarly, the following Lie bracket formulas in terms of (§ ,E) are useful in the following calculations.
k kel O
= (1-k-l - 2.10
[ religl aE] A-k-1) &' (2.10)

2.



k P) ] = (1—b— k 2.11)
&E’ +T = 3 (1-k—1) BB 2 F3 .

iet 0 ¢ O al_ 3

.§"E' _aE_,’E" 3 —E_an = (1-k+) EF F (2.12)
kgt D ¢ 3 7 3 |- qea et 2

-5? aE’& 3 g X (-1-k+) EFE' % (2.13)

-

Observe that the set {E,,"E’ ek L } for all k, | where k+] = p forms a basis for the vector

space H,, of homogeneous vector fields of degrec p. It follows from (2.10)-(2.13) that the linear maps

YeH, - +E | €H, (2.14)
and
YeH, -)’,gi—E—a—--eH (2.15)
p | a§ a&‘ ] 14 .
are both represented by diagonal matrices. For example, for p = 1, the linear map,
Hy->H,Yr |Y 2.16
1 1 [ &= 3 -E= & ] (2.16)
is represented by
2 - -
% 0 0 0 0
d
ag 0 2 0 0
£ — 0 0 -2 0
E— 2.17
9 0 0 0 0
E aE - -
TR A A¥
Consider next the 2nd order normal form problem. The vector space H, in this case is spanned by
2 9 KA 2 8 a 9

In terms of this basis, the linear niap (2.15) is represented by the following non-singular diagonal matrix:

3-



(2.19)

Since the image of (2.19) is the whole space H,, dim B, = 6 where B, is defined in (5.29) of [1]. It follows
that dim G, = 0 and the 2nd order components in the normal form is completely eliminated in view of
Theorem 5.4 from [1].

By repeating the same procedure, we find the linear map (2.15) on H 5 is represented by an 8x8 diagonal

- matrix, whose diagonal entries are given below with its associated basis component in H 5:

—2 0 2 4 -4 —2 0 2
3 0 £3 0 3 0 g2 (2.20)
xErwseteloelaeleld

It follows from (2.20) that dim B4 = 6 and hence dim G3 = 2. Let us choose the complementary space G
spanned by

{az[ EE]§E[§§ a%]} | 2

and consider the following reduced 3rd order normal form problem on G 5:

4 g30) = - 1 [[P2v248500),) | @)

where

=v, =i [g 5 - -a%] (2.23)

The (reduced) infinitesimal generator Y 2 must satisfy

2 v =(r2,v,2=0 (2.24)
that is, Y2 = Y, + Y, must satisfy

(Yy,vi]=0 and [Y;,v4]=0 . (2.25)

Since the linear map Y, — [Y,,v{] is non-singular in view of (2.19), we must have Y, = O and hence ¥ 2is

of the form



= 2 ¥ 9 (2.26)
coneabgeglekiog)

It follows from (2.21) that g4(¢) in (2.22) is of the form
9
g3(t) = a(t)Eg [§ +8— aE] +i B(t)%E[ ¥ 13 ag] 2.27)

and the right hand side of (2.22) becomes, in view of (2.26),

s [2.9% + 8300k ) = = s (12,91 + 83000

] . (2.28)
[H Eaﬁ]”[g% 'af] |
0
a(t)éElé +&— E]Hﬁ(t)tﬁ[ég 'af]”
== [2,4 a(t)gg[ EaE]+2Az B(t)z[éi -53&-_]] (2:29)

=-24 Ot(t)if[ +8—= 3‘5] i24 B(e)ET [§ % " %]

Equating the corresponding components from (2.27) and (2.29), we obtain the differential equations

d 3
” a(t) = — 24 oft) (2.30)

< B(r) = - 124 p(r) @31)
whose solutions are:

o) = o(0)e (2.32)

B(t) = B(0)e 24 (2.33)

If (0)# 0, we can choose 24 = loglo0)! so that at ¢t = 1, we have o(1) = £1. If a(0) = O but
B(0) # 0, we can choose 24 = logi IB(0)! so that at ¢ = 1, we have B(1) = =*i.
If a(0) = B(0) = 0, then a(z) = f(z) = O.

Therefore, the 3rd order normal forms associated with the 1-jet (2.9) are as follows:

() non-degenerate 3rd order normal form



: d
55[5 +&— E]+I[I+B§E][§ % " G_E] 2.34)

(ii) degenerate 3rd order normal form (case 1)
3 .
1+ <
i(1x£&%) [§ % °FE ] (2.35)

(iii) degenerate 3rd order normal form (case 2)

[E, 3 " %] (2.36)

In terms of the polar coordinate (7 ,©), where

x=rcos® , y=rsin0 237

the vector fields & —

& 3 or = 98
respectively. Hence, the normal forms (2.34)-(2.36) simplify further to the following expressions in terms of
(r,0):

+& — J and i [ ag -t = ag] can be identified with the vector fields 7 9 and 9

(i) non-degenerate 3rd order normal form: + » 33- + (1+ Brz) Y (2.38)
(ii) degenerate 3rd order normal form (case 1): (I:I:rz) a—ae (2.39)
(iii) degenerate 3rd order normal form (case 2): -8% (2.40)

Using the same procedure, we can of course obtain higher order normal forms. It turns out that for the

non-degenerate case (i), ail terms in the normal form beyond the Sth order can be eliminated:

Proposition 2.2

The non-degenerate kth order normal form of vector fields on R? with the 1-jet — is given by

d9

2, 4y, O 2y 0
@& ri+arr =+ (1+Br?) = (241)

foranyk =5

This proposition can be proved by induction, similar to that of Proposition 5.2 from Part I [1]. The proof is
given in the Appendix.




Example 2.3: Hopf and Zero-interaction type

Consider the class of smooth vector fields on R® which vanish at the origin where the linear part is given

by (2.2); namely, those vector fields having the 1-jet

v1=-yi+x—a- (242)

ox dy
on R3, The eigenvalues associated with the Jacobian matrix are i and 0.

Just as Example 2.1, our calculations are greatly simplified by introducing the complex coordinate
(€,E,2) in place of (x ,y ,z). The simplification is due in part to the following simple formulas

et 2 ¢ 2 v |l gunee 2 ’ ~
ErE 55 3% +& %" (k+)EFE = (2.43)
gt 3 ¢ 3 3 |_ e 2 |
-éﬁ” 55 % | YT = (244)
in addition to (2.10)-(2.13). In terms of the coordinate (€ ,E,z), the 1-jet v is represented by
=ile 2 g9
vi=i [§ 3 aE] (2.45)
The linear map
YeH,» [Y,v]e H, (2.46)
of the vector space Hp of homogeneous vector fields of degree p has a diagonal matrix representation with
respect to the basis
k m i kgl _m i kgl _m _a_ -
{gE'z ag,r;E’z aE,gE’z az},k+l+m-p , (247)

For p = 2, the diagonal entries are given by:

-



-1 1 0 3 2 1)
%% R
-3 —1 -2 1 0 -1
& *’E 3 x a% 1% ag 7 E ;E’ @48)
-2 0 -1 2 1 0
S A R R e

Consequently, the complementary space G 5 can be chosen with the basis

{[ +E2 x| [ a%—E ag] &E az} 249)

The reduced 2nd order normal form problem is given by

% gt) =—-m, [ :Yl WV + gz(t)]z] (2.50)

where Y satisfies

Yy,v1=0 (2.51)

That is, Y, belongs to the kernel of the linear map ¥ +> [Y,v,] on H,. Since this linear map is represented
by a diagonal matrix whose diagonal entries are

0 2 l -2 0 -1 -1 1 0

3 pd , 2 ;3 ¢d 2 .52
gav;‘grar; S tETEE Cw
it follows that Y, is of the form
_ale 2 _g9 9
YI—A[§ +& — E] [g ag]a-Cz > (2.53)

On the other hand, we can write

9 d
gz(t) = o)z [& +§ — aE] +iB(@t)z [& % " SE:]

+ Y(t)EE ;T 8&t)z® =

(2.54)

Substituting (2.53) and (2.54) into the right hand side of (2.50), we obtain



—ﬂz[[Y-vl+gz(t)] ]-—Ca(t)z[§—+E E] iC B(t )z[g % - a%‘]
(2.55)

- A0 YEE L ot L

where we have made use of the following calculations of the Lie bracket [Y,v]:

N [ Eaz] [& & - a%] e |22
g % +E a% 0 0 2%E 35’; 0
a—% - 3% 0 0 1 o | o
2 [pgesg]pa-ra |2
Equating the comresponding coefficients in (2.54) and (2.55), we obtain the following 4 linear differential
equations:
a=-Co (2.56)
=—CpB @.57)
Y=—QA-C)Y 2.58)
§=-C3 (2.59)

This implies that, generically, the coefficient 'y and one of the coefficients o, B, and 8 can be normalized to % 1.
Consequently, in terms of the cylindrical coordinate (r ,0,z), the non-degenerate 2nd order normal form can

be chosen to be any one of the following 3 forms:

(@ arz % + (1+B2) 3"’9- + (51 r%5,2%) ai (2.60)

®) sorz % + (14Pz) — 36 +(s1r2+822) az (2.61)
9 9 2,522 9

€ oarz 3 + (14s5,2) % + (5,7°4+0z%) 3% (2.62)

wheresl,sz ==1.

We can repeat the same algorithm to derive higher order normal forms. Here, we will present only the

result of the non-degenerate 3rd order normal form for case (a) of the preceding 2-jets:

9.



0 d d
(oz+azd) r =+ (1+Bz+bz?) 5+ (s r s 92%4c23) o (2.63)

where 51,5 = £ 1.
Example 2.4: Triple-zero type

Consider the class of smooth vector fields on R3 which vanish at the origin where the linear part is given
by (2.3); namely, those vector fields having the 1-jet

ey D 4,9
vVi=Yy 8x+z % (2.64)

on R3. The eigenvalues associated with the Jacobian matrix consist of 3 zeros. Unlike the preceding two

examples, the linear map
L,:YeH, » [Y,v]leH, (2.65)

for this example does not have a diagonal matrix representation. We should expeét therefore much more tedious
calculations in this example.

Let us examine first the kernel of the linear map

L]:Hl—)Hl ’ YI—)[Y,Vl] (2.66)
In terms of the basis
d d d d 0 d d 0 0
{" AR "Rl PR MR wE L T R T } 2.67)
the map L is represented by the matrix
0 0 o I 1 0 01 0 0 0
-1 0 o I 0 1 o! 0 0 0
0 -1 o 1 0 11 0 0 0
.. [ o
0 0 O | 0 0 o1 1 0 0
0 0 o I -1 0 o1l O 1
0 0 o 1+ 0 -1 ol O 1
0 0 o 1| 0 0 o1l O 0 0
0 0 o 1 0 0 ol -1 0 0
0 0 o 1| 0 0 o1 0 -1 0

Hence, the kemel of L, is spanned by

-10-



d d

0 d
ax ') ox

{z +z—a;-.x-$

Next, let us choose a basis for H, as follows:

d

+y-a—;+z 9

0z

COO0OO0OOO =
OO0 OoO—
OO0 O0OO—~O
COoOO0O—-0O0
OO —-0O00O0
O—~OO0OO0O0O
—OOO0OO0OO

OOoOOOMNO
O—OO0O0O0O
OO0 O0OO0O0OOoO

Analyzing the linear map L,, we obtain the following basis for

B, = images of L,

9 ,,9 20 _ 9
VYT uw? P w

2 290 9 290
Xz Y ay,yz ay,z ay,x

dy
9 208 3 22

__a__ 9 _ .20 9 )
4 x Y %2 % oz

2

9
ox
29 _
% 2xy
, 22

oy 0z

29 _
't 22y

(2.68)

(2.69)

-

e above basis. has the following matrix representation:

i_

OO0O0OO—

(2.70)

|_._.___

— — — — — o—

[eYeoX=Y=1 ‘Yo

]
OO0 ——00

o—ococoo
orvoooOo
Loocooco
'loooooo

-

2
ay 9,
p) .71

—a_z'v

g

o

Hence; we can choose the complementary space G, to B, in H; to be the subspace spanned by

-11-



29 3 3 22
{" ' ® 2 a? az}

Here we must remember that the projection &, : H, — G, gives the following:

Aleply 22 22, 2,22
nz[xyay] “2[xyay 2 az”z 8z+y az]
cxz O 420
= 8z+y oz’
29 | _p |28 gy S 9 9
"2["ay] ””'[ay azz"ya]z"yaz’
and
20 | _p |28 _opy 2 9 |- 2
[ a]”’[ 2 z”ay”"ya] 2"’["” ay]
- 0 23
= 2xz — 3 + 2y 8
It follows from (2.67) that a vector field Y| € H satisfying,
[Yl,V1]=0
is of the form
Az S 9 ,,9 D ,y9 ., 9
Y& = Az E *-EREV ax + 2z ay } +'C:{t +y ay az

Our 2nd order normal form problem is therefore given by

Loy =-m, [[Y" et 82(')]2]

2]

where

0 =002 L+ pon L +10m L0y L,

To compute the right hand side of (2.78), it is convenient to derive the following table:

-12-

(2.72)

(2.73)

(2.74)

(2.75)

(2.76)

2.77)

(2.78)

(2.79)



(2.80)

v 29 9 9 29
! ¥ % ? 3 “ 3% |V % |
2 2 29|, 2 __ 3|28 _ 3] 20
? e v 8 71 i T v ™
D,y 9 ., 9 29 9 9 29
* xR T > %% |7 %
Remark 2.5
Since y i+z 2 = v;, we observe that |y --a-+z i.vl € B, does not affect (2.78). Conse-
ox ~ dy dy
quently, there is no need to evaluate any Lie bracket involving y —aa;- +z % .
Using the above table, we evaluate
= 9 _n29 9 52
[Y"gﬂ“‘“[z"’ % " 8x]+AB[ %
S Y RN I R RS |
+A'y[z 5% "X ax] A dy ax+Cowc %
9 9 2 d
+ C Bxy aZ+Cy;vcz az+Cé5y %

Therefore, the right hand side of (2.78) becomes

— -_ 20 _ 9 _
nz[[Yl,gzl]- Cox % CBxy 3% Ao+ Cy)xz
_ 20 .. 2 0

C dy % +Aom2[x ax]’

From (2.75), we obtain

29 | _ 9 2.9
Aanz[x ]-ZAaxz az+2Aocy 3

ox

Hence,

d

-7, [[Y,,gz]] =—Cax2§— J

CBxy %—nyzg

+ (24 o.—C 8)y? 9 ,
0z

oz

(2.81)

(2.82)

(2.83)

Equating the corresponding coefficients of (2.79) and (2.83), we obtain the following 4 linear differential equa-

tions:

13-



.
a=-Ca
B=-Cp (2.84)
= - C 'Y
0=2A0a-C3d
This equation generically gives,
a=%x1 and §=0,
Hence, the non-degenerate 2nd order normal form is given by:
) 0 2 d :
—_— 7 — 4+ (sx%+ +Yxz) — , . . 2.85
i zay( Bxy +vyxz) — (2.85)
where s = 1.
The differential operator (2.85) can be identified with the differential equation:
X=y
y =z (2.86)
z=sx?+Bxy +yxz,
which is equivalent to the following 3rd order differential equation:
X =024 B +yxi . (2.87)

Consider next the 3rd order normal form problem. The basis for the vector space H 3 can be chosen as

follows:

{x"y’z"‘ % , xkylzm -a%- , xkylzm -g—z}. k+l+m=3 (2.88)

In terms of this basis, the linear map (lexicographic order)
L3:H3—)H3;Y3—)[Y3,V1] (2.89)

is represented by the 30 X 30 matrix,

A 1 19
0o = A I (2.90)
L0 0o i 4

where I denotes a 10 X 10 unit matrix, and



0 000 00 0 O 00O
30 0 0 00 0 0 00O
0-10 0 00 0 O0 OO
020 0 00 0 0 00O
0 0220000 00 (2.91)
A4=10 0 0 0-10 0 0 0 Of
0 0 0-1000 0 00O
0O 0 0 0 -10-30 00
0 0 00 0-10-200
0 0 0 0 00 0 0 -10]
It is not difficult to obtain the image B of the linear map L4 : B3 is spanned by
(P N e S N DR M IV 2 R - 1 )
P PR P O "R TR TR T
20 29 .2 9 39 2,8 30
® ay”’ ay”’ ay” ay’y’ " B’
39 32,98 .20 , 0 20 9
< oy Y T TR Y 5 092
Q.39 39 32 0 420 '
3xyz 2z ) %" = 3%z oz 6xy oz’
D 2,9 5,29 20 5,2 0 20 5 0
R A il i A Rl mi kel Rl A mib e o
9,2 9 390 .29 20 2, 0
\xyzay+yza,ya 3yza ,xza+2yzaz )
Hence, we can choose the following basis for the complementary space G 3:
39 9 2,9 ,29 9 .2 0
{" Rl L Rl L mEE i » @9
In order to solve the 3rd order normal form problem
d
PN 83(t) = -7 [[Yz, v+ g3(t)]3] (2.94)
we must choose the infinitesimal generator Y 2 such that
¥2,v? =0 (2.95)

-15-



that is, we must satisfy

[Y1,v1]1=0 (2.96)
and

[Y{,v2l +[Y2,v4] =0 297)

As is discussed on the 2nd order normal form problem, Y, is of the form,

- Az S 2 ,,9,,9
YI—AZ ax+Bv1+Cx i +y ay+z 3 (2.98)

Hence, If A # 0 or C # 0, then [Y,v,] does not belong to B, = Image of L,; in view of (2.81), whereas
- {Y3,v1]) € B,. Therefore (2.96) and (2.97) implies

Y, =constant - v{ = K - v, (2.99)
Hence, (2.97) becomes

[¥1,va] + [¥2,v1] = [Kvy,va] + [Y2, 1]

(2.100)
=[Y2—KV2,V1]=0
It follows from (2.100) that
Y, = Kvy + (kemel of L) . (2.101)
Here, the kernel of L, is spanned by
29 8,28 5 3 22
R P ay’z"’ ax Y o’
(2.102)
xS +yz 9,209
ox dy 0z
Thus we can choose
2 _ 20 i 2 0
Y =K +vy + Az az+B[yz 8x+z ay]
(2.103)
D _p22 DD 22
*C[z"’ % ax]"D[” ax TV gy T az]

On the other hand, from (2.93), g3(t) is of the form

-16-



= 3.9 9 2, O
g3(t) = a()x” =~ +b(t)x%y S Fe®x’

9 (2.104)
1@ L +emr S+ F 0y 2.
Observe that
[r22 4 8500], = [r1.850) ] + 1202
= :Kvl,g3(t)] + [Kv2 + (kemel),vz] (2.105)
= :Kvl,g3(t)] + [Kvy,vy] + [(kemel),vz] .

Since the first term [Kv1 ,g3(t)] belongs to Bj, it vanishes under the projection ®t3: H3 — G3. The second

term vanishes by itself. Therefore only the third term [(kernel), v,] is essential: The Lie bracket [(kernel), v,] .

for various kernels and v, are summarized as follow:

V2 2 0 i d
(kernel) * 0z "yaz 2 37
2 0 20 _,2 0 29 _ 0 3.0 9
% 2z oz 2”ax > 2"”’ax %2 25
9 . .20 9 _2 0 ,2 0| 2 0 29 20 9|l ,d d )
¥ ? ay Zxyz 0z xy ox 2z dy i e a2 7 2xyz a_y ¥ % T ﬁ-zsza—y
9 _29 2, 9 929 539 9_539 _ 9 20 _2 0 F)
) 'z o T2y 2 oo | 2y g Yy o PR A i
29 .9 200 390 2 0 xS _ 29 2, 0
Tyt u T oy el > IR T Sy
In this table, the following terms belong to Bj:
29 2 38 23 23 23
{” el il i R R i (2.106)
Moreover,
d 2. 0 2 0 2. 0 2. 0 2. 0
2x22 2 — 2= 2 2 |- < 2|,
zaz szax Z[xz az+2yzaz 2xzax+2yzaz

D 0% D morr D a2 ok O o, O
2xyzaz szay nyzaz 4xyzaz Z[xzay 2xyz az]

== 2ayz 2 —2lx% O _2pyy O
- ny’az 2[“ay 2z az]’

-17-




2z
n g e o dafr g § e
o d o g oafpd s doer )

D _ 32y D 2 _|s2 2
2xyz 0z Y oz 2xyz az+3"yz 0z [y az+3xyz az]

= Sayz 2 — |y3 2 9
= 5xyz [y + 3xyz az]

0z oz
wg g
= -4y’ %+2[x:42%+2y22 %]—y’z %+4y2z %—2[::22 %+2yzz -‘%]
=—y% -a%-+2[xz2§z-+2y2z %]_2[,& %_,_2},22 %]

.18-



-x% %-2’0’23 Jy F)
——4x22.%—8x)’2§ [xs% 3x2z ;? 6xyzaa] [xzy%_xzz g —?.xyz_aﬁz_]
—xyz%=xyz§%--[xy2§y+xyz'g_z]’ .

oy 9 x2 9 002 9O | |y 24y O
3yzaz [xzax+2yzaz] [xyzay-l-yzaz].

In all of the above expressions, the terms enclosed by parentheses belong to B3. Hence

—T; [[Yz’v2+ g3(t)]3] = — Bs [-nyz -aa—z-] - Cs ’-szz % - 14xy? -éa;]

-

_ R P
CB[Sxyz az] Cy yzaz]

20 |_ 9| 2, 9
] DB[xyz az] D'y[3yz az] (2.107)

- —4x2 9 _

Ds[ X<z 3 8xy %

= (2Cs +4Ds)x %z O + (14Cs + 8Ds)xy? 2
0z 0z

) [ ] 2
+(2Bs -5CpB-D —+ |Cy-3D z
( B-DPBxyz — Y Y)Yz 5
Finally, equating the corresponding coefficients of (2.104) and (2.107), we obtain the following system of

differential equations,
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a=0,b=0

¢ = 2Cs + 4Ds

d = 14Cs + 8Ds > (2.108)
e=2Bs-5CB-DP

f=Cy-3Dy

for solving the 3rd order normal form problem. By an appropriate choice of B, C, and D, we can choose
d=e=f=0
att = 1 and obtain the following non-degenerate 3rd order normal form:

vy + (ax3 + bx%y + cx*2) % . (2.109)

Equation (2.109) can be identified with the differential equation

Y
z (2.110)
SX

X
y
z 24 Bxy +yxz +ax® + bx%y + cx*z

or, equivalently,

X =sx2+ Bxx + Yk + ax® + bx*x + ox%
@.111)
= (sx2+ax3) + Bx+bx)x + (yx+cx)x .

We will conclude this section by giving a comparison of the normal forms derived via Poincarée s
method, Takens’ method and Ushiki's method. Since the goal for obtaining normal forms of vector fields is to
eliminate as many monomials from each order as possible, we will list in the following tables the number of
monomials of each degree that is still present in the normal form. For example, a number "2" under the column
for degree 3 for Takens method means that there are 2 monomials of degree 3 in the Takens normal form.
Similarly, the number "0" under the same column would mean that the resulting normal form has no 3rd degree

terms. Hence "0" corresponds to the ideal situation where all terms of a given degree are eliminated.

It turns out that even for the remaining monomials, some coefficients can be set to +1, rather than
remaining arbitrary in the general case. This further refinement, due to Ushiki [2,3], is indicated by a
parentheses. For example, the number 2 + (1) in the table under degree 2 means that there are 3 monomials of
degree 2 present in the normal form, one of which has a coefficient equal to 1.

The following tables are based on the 5 examples derived in Part I [1] as well as in this section.? They

?A similar comparison is given in Ushiki [3]. Our tables include, however, corrections to some errors in
(3.



correspond to non-degenerate normal forms from each example.

Case 1: Simple-zero type in R! (Example 5.1, Part I)

The Jacobian matrix in this case is a scalar: (0)

degree 2nd 3rd 4th Sth 6th 7th

Poincaré 1 1 1 1 1 1

Takens 1 1

Ushiki (1) 1 0 0 0 0
Case 2: Hopf type in R? (Example 2.1)

0 -1
The Jacobian matrix in this case is: 10

degree 2nd 3rd 4th 5th 6th 7th

Poincaré 0 2 0 2 0

Takens 0 2 0

Ushiki 0 1+1) 0 1

Case 3: Hopf and Zero-interaction type in R3 (Example 2.3) in cylindrical coordinate

-1 0
0 0
The Jacobian matrix in this case is: .

0 0

degree 2nd 3rd 4th Sth

Poincaré 4 6 7

Takens 4 6 7

Ushiki 2+(2) 3 9

Case 4: Double-zero type in R? (Example 5.5, Part I)
01
The Jacobian matrix in this case is: 00

Since the linear part in this example is not diagonalizable, Poincaré’s method is not applicable.

degree 2nd 3rd 4th
Takens 2 2 2
Ushiki 1+() 1 1
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Case 5: Triple-zero type in R® (Example 2.4)

010
The Jacobian matrix in thiscase is: [0 O 1
000
Again, Poincaré’s method is not applicable because the linear part is not diagonalizable.
degree 2nd 3rd
Takens 4 6
Ushiki 2+(1) 3 .

Remarks

1.  Both Poincaré and Takens’ methods give the same result for vector fields having a diagonalizable linear
part.

Poincaré’s method does not apply, in its original form, to non-diagonalizable vector fields.
Takens’ method is applicable to all cases.
Ushiki’s method may be considered as a refinement of Takens’ method.

LA o A

Takens’ is aware that further refinements are possible and have in fact derived them for cases 1 and 2
[5.6].

6. This paper follows Ushiki’s approach since his method gives an explicit algoritim for general vector
fields.
|

3. NORMAL FORM WITH SYMMETRIES

Many vector fields of practical interest are imbued with some form of symmetry; e.g., reflection symmetry,
point symmetry, rotation symmetry, etc. In such cases, it is natural that their normal forms should exhibit the
same symmetries. Our goal in this section is to show how such additional constraints can be imposed upon the
algorithm and in the- preceding section.

. Definition 3.1: Vector fields with symmetry

A symmetry, for a vector field v on R” is a diffeomorphism y: R" — R" satisfying

Yv=v 3.1
where

v,v(x) & Dv[v“(x)] : v[v“(x)] Ny (3.2)
Example 32:



Let v be a vector field on R? defined by
v(x,y) = (4%, x%) . (3.3)
Then v exhibits a symmetry via the diffeomorphism
Y&x,y) =x,-y), - G4

To see this, we calculate

10
Dy@x.y) = [0 _1] YY) = (-y) @.5)
and .
1 0||1+y? '
TYE = o || w2y |[TVEY) (3.6)

It is easy to see that the set of all symmetries for a vector field v forms a group under composition. This
group is called the symmetry group of v. For the above example, the symmetry group contains at least four ele-
ments {id,¥, 8,y o 8}, where 8:(x,y) = (~x,y),sincey o y=08 00 =idandyo =08 o ¥.

A group made of two elements is frequently denoted by Z,. In this section, we shall restrict our con-
sideration to vector fields whose symmetry group contains Z, = {id, Y} as a subgroup. To derive a normal
form with symmetry Y, we must find appropriate transformations which preséwe the same symmetry 7, after sub-
jecting the vector field to these transformations, as in the preceding section. In other words, the resulting normal
form must also exhibit the symmetry Y. Using our notation from [1], our abstract objects in this section consists
of a subspace 79(0 of smooth vector fields 9(0 which vanish at 0 and exhibit the symmetry ¥y.

Our next proposition characterizes the class of transformations that preserves symmetry.
Proposition 3.3

Suppose a vector field v exhibits a symmetry y. Then a transformed vector field ¢, v also exhibits the
same symmetry Y if ¢ commutes with v, ie., Yo = ¢ o¥, or equivalently,

Todoy' = ¢ 3.7)
Proof.
Since Y, v = v and g oy = Yoo,
Y,0,v) = (o), v =@, v =0,0,v)=9¢yv (3.8)

Proposition 3.4



If a local one-parameter group {¢'} of transformations is generated by a vector field Y, i.e.,
o' = exptyY (3.9)
then the local one-parameter group
' = yodf oy » (3.10)
is generated by Y, Y.
Proof.
Since ¢’ is the flow of the vector field Y,
a . t .
P o' (x) = Y[¢ (x)] | @3.11
holds. Thus,

L0 =2 (oot o) = Dy ovien)] - < ¢ brien)

=D 'y[q)‘ ° ‘l(x)] Y [¢'(Y‘l(x)]

(3.12)
=Dy [7'1(6‘ (x»] Y [v"@' (x»]
=@,Y) [c”b‘(x)] :
This completes the proof.
|
It follows from the above propositions that the set
yDiffy = {$:R" — R”, diffeomorphism, ¢(0) = 0, Yo = $p oY) (3.13)

can be chosen as our transformation group and 79(0 can be chosen as its infinitesimal generators. Once we fix
this transformation group and space, the remaining steps for obtaining the normal form are identical to the
preceding algorithm, as illustrated by the following example.

Example 3.4

Consider vector fields on R! with a vanishing 1-jet; i.e.,
vi=0, v(0)=v'(0)=0. (3.14)
Let us impose the symmetry
Y(x)=-x. (3.15)
The space 79(0 can be decomposed into the homogeneous parts
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qu=ﬂleyH2®ﬂ3eﬂ4e"'. (3-16)

where each part .,H,‘ consists of homogeneous vector fields v, of order k satisfying the symmetry constraint
Y Yk = Vi » 3.17)

Hernice, for even k, we have

Hr = ‘ (3.18)
and for odd k, we have

e = H . _ (3.19)
In other words, ]

y 0=H ®H;®Hs® --- . (3.20)

Since we have v2 = 0, our next step is to obtain the simplest 3rd order part; i.e., consider the 3rd order
normal form problem with v2 = Q under the symmetry y(x) = —x.

The 1-jet v{ = O implies that the linear map
Ly:Hy = H, Y, o[V ,vy) (3.21)

is the zero map for every k. Hence, the complementary space ﬁk to the image of L, is simply (i, and the
normal form problem is already reduced:

% g(e) = - [Y"" e &(t)]k (3:22)

with
k-1

[Yk—l ’vk—l] =0, Y, Yk-l = Yk—l . (3.23)
Fork = 3,

d 2

x g3(t) = - [Y ,830)]3 =— [Yl.gs(t)] (3.24)
where

Y222 = 0 (3.25)

automatically holds for v2 = 0. Thus, Y2 need only satisfy ¥ Y 2 = Y% hence Y, = 0. Defining

= Ay 9
Y, =Ax o - | (3.26)

and



- 3 0
g3(t) = au(t)x il (327

we obtain
- [Yl ,gg(t)] = —24 a)x? (3.28)

Equating the coefficients of (3.27) and (3.28), we obtain the differential equation
a=-24a. (3.29)

It follows that we can always choose the value of A so that the non-degenerate 3rd order normal form with

symmetry v is given by .
yi=x3 9 (3.30)
ox

Similar to Prop. 5.2 from Part I [1], we can prove that the Y-symmetric kth order normal form of vector
fields on R! with a vanishing 1-jet is given by

& x3+ax’) -a% aeR. (3.31)

fork > 5.

Following the same procedure, we have derived the following non-degenerate normal forms with Z ,-

symmetries for several typical examples:
2-dimensional case

(i) non-degenerate 3rd order normal form with the symmetry (x ,y) — (—x ,—y), whose linear part has
double- zero eigenvalues:

3_, .0 3 9 . _
vi=y ax+(sx+ax2y)ay,s—:tl (3.32)

(i) non-degenerate 3rd order normal form with the symmetry (x,y) — (—x,y), whose linear part has
double- zero eigenvalues:
3 d 2, 2,2 3 0 _
VI =Sy = + (SaxHay+by’) — , 5, =11,5,=%1 (3.33)
ox dy
3-dimensional case

(iii) non-degenerate 3rd order normal form with the symmetry (x ,y ,z) — (=x ,—y ,—z), whose linear part

has triple-zero eigenvalues:
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v3=y—a-+z-§-

ox  dy (334)
+ (sx3+ax?y +bx%z +cxyz +dxz?) % ,§ =%1

(iv) non-degenerate 3rd order normal form with the symmetry (x ,y ,z) — (—x ,—y ,z), whose linear part
has triple-zero eigenvalues:

3_, .0 3 2y 0
vi=y m + (s xz +ayz+bx>+cx?y +dyz?) %

(3.35)
+ (sx2+ez%fz3) % ,Sy=%1,5,=%1

(v) non-degenerate 3rd order normal form with the symmetry (x ,y ,z) — (x,y ,—2), whose linear part has
triple-zero eigenvalues:

2
dy

=y aix + (s 1x2+axy+bx3+cxzz+dyzz)
(3.36)

+(exz+s223)% » 51 =+1 ,S2=:l:l

4. VERSAL UNFOLDINGS

Our preceding normal form theory consists basically of methods for simplifying ordinary differential equa-
tions (ODE) in a neighborhood of their singular points. We have presented various examples of normal forms
having several eigenvalues with a zero real part; namely, multiple zero eigenvalues, or pure imaginary eigen-
values, etc. All such eigenvalues which lie on the imaginary axis in the complex plane are called central eigen-
values. A singular point of a vector field is said to be hyperbolic if it does not contain any central eigenvalues.
From the Hartman-Grobman theorem, we knon that the local phase portraits of vector fields around hyperbolic
singular points are determined by their associated 1-jets, and the center manifold theorem reduces a vector field
with both central and non-central eigenvalues to that with only central eigenvalues. Hence, we will only con-

sider vector fields around a singular point where all of its eigenvalues are central.

The above conclusion appears, at first sight, to be rather academic especially from an engineering context
because almost all Jacobian matrices associated with physical systems are hyperbolic; i.e., all eigenvalues have a
non-zero real part. This observation is true only for fixed vector fields. For families of vector fields, however,
central eigenvalues will always be encountered. In particular, we will show that simple central eigenvalues (i.e.,
multiplicity one) are inevitable in one-parameter families of vector fields, while multiple central eigenvalues are

inevitable in multi-parameter families of vector fields.

Example 4.1
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Consider a vector field x2 -8% on R!. The origin is a singular point whose linear part vanishes. Hence,

we have a zero central eigenvalue at the origin.

If we perturb this vector field into
2, O
+x) =— , 020 4.1
(n+x%) I K @.1)

then we have a simple singular point at x = % ‘/—_].l., i < 0 whose eigenvalues are given by * ‘/—_].l In this
example, we have succeeded in avoiding central eigenvalues by perturbing the vector field slightly. This exam-
ple shows that it is possible to avoid singular points with a simple zero eigenvalue in the space of vector fields
having a non-degenerate 2nd order term; namely, all vector fields whose 2-jet is given by (4.1).

Unfortunately, it can be proved that in the space of one-parameter families of vector fields, it is impossible

to avoid central eigenvalues. In particular, if a one-parameter family f (x,p) -a—ax- is sufficiently close to the
one-parameter family (p.+x2) %, as well as to its derivatives, then there exists a parameter value Y close to

zero such that f(x , o) % has a singular point xy whose 1-jet vanishes but whose 2-jet does not vanish.! In

other words, there exist a nearby one-parameter vector field which has a central eigenvalues at some parameter
value pg # 0.

In general, if a singular point with a central eigenvalue is avoidable in a (k-1)-parameter families of vec-
tor ficlds, but is inevitable in k-parameter families, then we say the singularity has a codimension k. Hence, it
follows from the above example that a singularity with a vanishing 1-jet but non-vanishing 2-jet has a codimen-
sion 1.

A singularity of codimension & should therefore be studied in the space of k-parameter families of vector
fields. We are therefore concerned with the following two problems:

(1) Find the codimension of singularities.
(2) Swdy the process by which singularities are formed in a typical family of vector fields, called a versal
family of the singularity, whose precise definition will be given later.

Let us begin with the versal families for matrices which was first studied by Amold [8-9]. Let A (1)
denote a family of nxXn matrices which depend smoothly on b = (i4, 1y, - - =, Hy).

It is important to note that the one-parameter family of vector fields (u+x2) -aa—x is only one point in the

space of one-parameter families (plural!) of vector fields. There are infinitely many other families of vector
fields, parametrized by |, which are different but "close” to (u+x2) 3;



Definition 4.2

(i) A family A (W) is an unfolding of a matrix A if A(0) = Ay.

(i) L& A(p) and A (R) be unfoldings of a matrix A o, where L and L need not have the same dimension. We
say A (W) is induced from A (JL) if there exist an unfolding C (1) of the identity matrix and a transforma-

tion L = G(W) satisfying ¢(0) = O such that

CAW=Cw -4 [¢(u)] C@™

holds for any | close to zero.

- (i) An unfolding A (1) of A is versal if every unfoldings of A is induced from A ().

Example 4.3

(1) For any 2X2 matrix A, the family

A(n)=Ao+[

is a versal family because any unfolding of A o can be written as

(2) Let Ag denote the 2X2 matrix [0 0]. Then the family

H1 H2
K3 K4

010) 6,0
A0t o) 640

where ¢;(0) = 0.

01

BN

is versal because any unfolding

0 1]
0 0,

is conjugate to

0 1)
0 0]

-+

+

0,10 60
0:0) 64

the matrix

0 0

93(1+02) — 0104 ¢1 + 04

under the transformation

|

-29.

4.2)

4.3)

4.4)
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1 A) 0
o [rre® @)

-0 1

A Remark 4.4
01
The above example shows that the matrix Ay = 00 has at least 2 kinds of versal unfoldings; namely,
01 K1 H2 01 0 0

4.9
[00]+[!~l3 114] and 00]+[Ll1 lla" @2

Therefore, it is important to obtain versal unfoldings with the minimum number of parameters. Such versal

unfoldings are said to be miniversal.

01 00
We will show later that the versal unfolding [0 0} + [lll l—lz] is miniversal.

In order to characterize versal and miniversal unfoldings, we need the following concepts from differential
topology:
Definition 4.5

(1) Let L be a finite dimensional vector space over R and let X, Y be its subspaces: X,Y < L. We say
X and Y are transversal (in L) and denote this property by the symbol

XNnY (inL) 4.10)
if the sum X+Y is the whole space L (see Fig. 1). This implies that

dmL < dmX +dimY . (@.11)
If the equality holds, then X and Y are said to be minitransversal.

(2 Let M and N be smooth manifolds and let P be a submanifold of N. We say a smooth mapping
f :M — N is transversal to P at a point x € M if one of the following conditions holds:

O FOx)EP
(@i fGx)=peP and
Df (x) - TM N T,P inT,N (4.12)
where Df (x) is the tangent map (see Fig. 2)

IfDf (x) - ToM and T, P are minitransversal, then we say f is minitransversal to PaxeM.
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In considering an unfolding A (Jt) of A4, we may regard it as a smoolh mapping
A:n > AQ 4.14)
from the parameter space Il to M (n ,R).
Our next theorem is fundamental in versal unfoldings.
Theorem 4.6

An unfolding A([t) of Age M(n ,R) is (mini-)versal if and only if A (W) is (mini-)transversal to
@ (Ap) at u = 0, where ©(A0) is a submanifold of M (n , R) defined by

Ow@y = {CAOC’I IC e GL(n ,R)}. ‘ ‘ (4.15)

Remark 4.7

(1) This theorem is an example of the "versality <=> transversality" principle which originated from the
singularity theory of smooth functions [10]. This principle works for various objects.

) If an unfolding A (1t) of Ag is transversal to () (A¢) at Ay, then this type of singularity is inevitable in
A(); that is, if we slightly perturb A (i) to A’()’), as depicted in Fig. 3, then the family A ‘(W) still has
a matrix A(; which is conjugate to Ag. If A () is mini-versal, then A () is an unfolding with the least
number of parameters which contains A in an inevitable manner. This shows that the number of parame-

ters of a miniversal unfolding is equal to the codimension of A in the space M (n , R) of matrices.

(3) This theorem can be easily proved using the inverse function theorem. See [8,9] for the proof.

Corollary 4.7

(1) A miniversal unfolding of the n X n matrix

Y

Ao = n (4.16)

is given by

Ao 4+ [ e (4.17)

(2) A miniversal unfolding of the matrix
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0 -w
Ap= [ 0] ‘ (4.18)
is given by
H1 =9 | @.19)
@  Hy '
where @ is close to ®.
(3) A miniversal unfolding of Ay = 0 is given by
Lt VAR P .
o (4.20)
Hei " Han
Proof

Each statement can be proved by checking the minitransversality of A (i) to @(Ao). See [8,9] for the

proof.,
n

We are now ready to consider vector fields.
Definition 4.8

(1) Let v be a vector field on R” vanishing at the origin 0. We say a family v (1) of vector fields on R” is
an unfolding of v if v(0) = v holds. We do not assume v () vanishes at O for p # O.

(2) Let v(u) and w(A) be unfoldings of vo. We say w(A) is induced from v (W) if there exist a family ¢(A)
of diffeomorphisms with

¢(0) = identity @4.21)

and a transformation of parameters |l = {(A) with

p@0) =0 4.22)
such that
wd) = o), v uh) ) @23)

for A close to zero.

(3) We say an unfolding v ()L) of v is k-versal if any unfolding of v coincides with an induced unfolding up
to order k.

Remark 4.9
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Instead of coordinate transformations, we may consider the case where v [u(?u)] is locally topologically
equivalent to w(A). (See [8,9] for the definition.) Under this equivalence, v (L) is said to be topologically ver-

sal.
Example 4.10

An unfolding (i+x?) % of the vector field x2 gax- is 2-versal. To prove this, let ¢(x,A) 38; be any
unfolding of x> i Since §(x ,0) = x2, $.,(0,0) = 2 # 0. Therefore, by the implicit function theorem, the

ox
equation ¢ (x ,A) = O can be solved for x as a function of A; namely,

x =n@), with n0)=0. - @29
By a family of coordinate transformations,
X = ¢”‘_.(T12(M . {x _n(X)}, 4.25)

the vector fields ¢(x ,A) % can be transformed into the form

2 31 9
{w(h) +X“+0X )} X 4.26)

Hence, upon choosing . = W(A), (4.26) coincides with (ji+x2) -;; up to order two.

The general "versality <=> transversality" principle also works for this case. In particular, by changing
M@n,R)to

Xé-H,0H,® --- DH,
and O4ag) 10
O o = (9%v,1 6% € Difff} , voe X§¢,
we can prove the following theorem by using the same reasoning as that of Theorem 4.6:

Theorem 4.11

An unfolding v(it) of voe X& is (mini-Ykversal if and only if v is (mini-)transversal 1o
Owo c Xéap=o.

Remark 4.12

Note that we restrict the whole space to 9(5‘,‘,:0: 9(". This means that any unfolding v (W) of
Vo€ 9({,‘ should vanish at the origin; i.e., v(i)(0) = 0. Therefore Theorem 4.11 does not imply Example 4.10

because in that case, the unfolding (u+x2) aix does not vanish at O. If we apply this theorem to
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Vo = x2 9. we would obtain a 2-versal unfolding

ox
5 2
() = | @27

under the condition that the origin is alway the singular point.

Nevertheless, we presented the above theorem because we can easily obtain an unfolding without the
trivial singularity O from the k-versal unfolding in 9({,‘, and because the following general corollary holds. -

Corollary 4.13
Suppose vge 9(5 is a non-degenerate kth order normal form with a specified 1-jet Ax —aa; Then a k-
versal unfolding of v in OX & is obtained upon adding a linear unfolding
d
i) —_— 4.28
(= (4.28)

where A + ®() is a versal unfolding of the matrix A. In other words, a versal unfolding of a non-degenerate
normal form can be obtained by adding a linear vgrsal unfolding.

From this corollary, we can obtain the following versal unfoldings automatically:

0 -0 .
A= [w 0 ] , (@#0) 4.29)
In polar coordinate:
d d
mErr+ortyr < + (@+pr?d) =
or 00 4.30)

(k-versal for any £ > 5)

- e 0 1 -
@) A = ,:O 0] 4.31)
y D 4 (yx+HLy 2x 24+Bxy +ax>) 9 (4.32)
ox ! dy .
(3-versal)
0 -0 - 0
® 0 0
@) A=1|... ... ... . .| w=0
0 0 : 0



2, 9 2, 0 200 2000 O (o =
M+oz+azd) r 3 + (o+Pz+bz°) % + (Woz+8 | r+8927+c27) > (s; = %1)

(3-versal)

Giv) A =

o O O
OO -
o = O

y % +z % + (X HLyY Hlyz +sx 24+Bxy +yxz +ax>+bx 2y +cx?z) % (s = 1)

P

(3-versal)

' 01
V) A= [0 0] with the symmetry (x ,y) — (=x,-y)

2 3 9 5=
y % + (L x+HLy+sx +ax7*y) p (s =11)
(3-versal)
0 1 0
. o
V) A= .. ... ... .. . |withthe symmetry (x,y,z) = (-x,~y,z)

o o0 0

y -58; + (X HLY +s Xz +ayz +bx >+exy +dyz?) %

+ (Uaz+s x Hez 21 23) % (s; = 1)

(3-versal).

(4.33)

4.34)

4.35)

(4.36)

The proof of Corollary 4.13 consists of showing the addition of a linear versal unfoldirig gives a transver-

sal family to @(vo). This is assured by the non-degeneracy assumption since k-jets equivalent to non-

degenerate normal form of order £ forms an open set in

H2®H3® @Hk.

Due to versal unfoldings, we can study the change in the phase portraits of vector fields near a vector field

with central eigenvalues in a systematic manner. This study constitutes a part of bifurcation theory. Unfor-

tunately, since we have only k-versal unfoldings for finite k, our considerations must be restricted to truncated
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vector fields of finite order. Such truncation sometimes gives rise to very complicated and subtle problems which
are beyond the scope of this paper. Therefore our descriptions in what follows are incomplete. The reader is
referred to [7,9,11] and the references therein for more details.

Let us begin with the simplest case
2, 0 1
+x°) — on R 43
(u+x) 3% (4.37)

which is proved to be 2-versal in Example 4.10. Equation (4.37) is equivalent to the following differential equa-
tion:

x=p+x2. (4.38)

When the parameter { changes from a positive to a negative value, the bifurcation behavior of this ODE is
given in the x-space in Fig. 4, or in the ()L, x)-space in Fig. 5. Such a bifurcation gives birth to a pair of stable
and unstable singular points, and is called a saddle-node bifurcation.

Our next example is given by (4.1). In polar coordinate, (4.1) can be identified with the ODE

{i‘ = (utr+oryr

. 4.39)
0 = o+pr? , @0 (

Since ® # 0, say ® > 0, we have 6 > 0 for sufficiently small . Hence, the local phase portrait near the origin
changes as shown in the (x ,y)-space in Fig. 6, and in the (U, x ,y)-space in Fig. 7, when we vary the parame-
ter )L from a positive to a negative value. Observe that a limit cycle is born from a singular point. This oscilla-
tion mechanism is called the Hopf Bifurcation.

Remark 4.14

The above arguments are all based on truncated equations. But fortunately, the result is true for any ODE
with a non-degenerate lower order jet. More precisely,

(i) For a one-parameter family v (i) of vector fields on R}, if v(1g) can be transformed into the non-

degenerate 2nd order normal form +x? aix for some g, and if a_i v () # 0, then v () exhibits
B =Ho

the saddle-node bifurcation in a neighborhood of Lg.

(i) Similarly, for a one-parameter family v (i) on R?, if v (o) can be transformed into the non-degenerate

3rd order normal form

s 23 D
tr e + (0+pro) % ,0#0 (4.40)
in polar coordinate and if -58'1- v(n) = 0, then v () exhibits the Hopf bifurcation in a neighborhood
K=o
of 1.
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More complicated bifurcation phenomena can be observed from the family (4.2). Although this family
assumes the origin is a singular point, we can eliminate this assumption by making the transformation
X — x — xo. The resulting family, truncated up to 2nd order, is of the form

d 2 d
— + (W Hx x4+ - 441
y 3+ Wty ley)ay (4.41)
Hence, this is 2-versal. It follows from the result of Bogdanov [12-13] (see also Amold [9]) that this family
exhibits the 2-parameter bifurcation phenomena shown in Fig. 8. All of the phase portraits in Fig. 8 are shown
near the origin and the parameters L, Jlp are also chosen close to zero. This is an example of a local 2-
parameter bifurcation. It is remarkable to observe that, in this bifurcation, both the saddle-node bifurcation and

the Hopf bifurcation are present, in addition to a third bifurcation phenomenon which yields a homoclinic orbit.

Now we can appreciéte a fundamental observation from the above local bifurcation theory; namely, a glo-
bal bifurcation can be observed from. a local bifurcation of a more degenerate singularity. For example,
although a limit cycle can be observed from a vector field with a hyperbolic singular point, which requires a
global analysis, the Hopf bifurcation predicts a limit cycle in an arbitrarily small neighborhood of a central
singular point, which requires only a local analysis. Similarly, although the bifurcation phenomena in Fig. 9 can
be observed from a 1-parameter family of vector fields, which requires a global analysis, we can observe them
in an arbitrarily small neighborhood of the origin in the above 2-parameter family (4.41), which requires only a
local analysis.

Bifurcations of the other 2-parameter families (4.33) and (4.35) have also been studied in [5], [7], [9],
[14], etc. It remains to consider the bifurcation phenomena in 3-parameter families, such as (4.34), (4.36), etc.
For such families, even strange attractors can be expected to bifurcate locally. Some analytical results, as well
as results based on numerical simulations [4,15], have been reported recently. However, we are very far from a
complete understanding of these extremely complex phenomena. Part 3 of this paper will therefore be devoted
to this subject.
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" APPENDIX. PROOF OF PROPOSITION 2.2
Let us begin with the 3-jet

- - 2 =
sr3 > +(1+|3r)ae , 8 =1 (A1)

of a vector field v on R2, expressed in polar coordinate (r ,0), corresponding to the non-degenerate 3rd order
normal form (2.38). Recall the following useful formulas from (2.12) and (2.13):

k 0 = (1— k d

&E’ ag E ek ¥ % A2)
et 2 2 w2 |l paneE 2 '

f? € 5%t 3 1k +)ET % (A3)

Observation (a)

If n = k+l is even, then —k+l is also even and hence £ 1—k+l # 0 in (A.2) and (A.3). This implies
that the mapping

L,:H, > H, ; Y =>[Y,v]
is surjective for all even k; i.c.,
B, =Image L, = H, , for all even k (A5)
Observation (b)
= k+l is odd, then the map L, has a non-empty kernel only for k- = 1.

It follows from Observation (a) that all even order terms in the higher order normal forms are eliminated.
It suffices therefore for us to examine only the odd order terms n = 2m+1, m > 1, inductively. For simpli-

city, we denote the non-degenerate (2m+1)th order normal form by V(m) Hence, v(1y denotes the 3-jet v3 ie.,

V(l) é V3.

Form 2 2, we can choose the complementary space G, to be the subspace spanned by

m m d
feorfp 2 v2] ez v2]

Hence, to determine the non-degenerate 5th order normal form V(). the complementary space G5 is

spanned by

{(&E)Z[ —= +E— E‘] (&E)z[ F -t E] (AT

The corresponding 5th order normal form problem is given by:
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-3; gs(t) = —ms [[Y 4.V3+85(f)]5] (A8)

where Y* satisfies the constraint

(révit=0 | (A9)
This implies:

Yy,v11=0 (A.10)

[Y2,v1]1=0 (A.11)

[Y3,vi]1+[Y,,v5]1 =0 - (A.12)
and

(Yq,v1]1 +[Y2,v3]1 =0 (A.13)

1t follows from (2.19), (A.10) and (A.11) that

0
[§ +8— 35] [§ 3% " 35] , (A.14)
and
Y,=0 (A.15)
Now, (2.34) and (A.14) give
d
Y, Y, _— _—
Y1,v3l = [1S§E[§ +§— E]+ M,E[ F3 EGE”
(A.16)
0
=2A +2iA ot
It follows from (A.12) and (A.16) that A = O and Y3 € kemnel of L;. Hence, we can choose
0
=C +D S A.17
éE[& +8— E] éE[ 3 Ea‘g‘] (A.17)
By a similar analysis, (A.13) implies Y4 = 0. Consequently, the normal form problem (A.8) reduces to:
2 g5(0) = w5 1Y, 8500 + [¥3,v3] A19

where
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gs(t) = a(t)EE)? [é ai +& i] +b()EE? [z; 2 _ —‘3-] (A.19)

'3 & "o

Since

Y1=B[§%— -5%]=—i8v1 (A20)
we have

[Y,.,851 =iB[gs,vi] =0 (A21)

On the other hand, .
[Y3,v3] = 2(C 6—bs WET)? [§ 9 _ i] (A.22)
& &

Equating the corresponding coefficients of (A.19) and (A.22), we obtain the differential equations:

a=0 . (A23)

b =2Ds—CB) , s =1 (A24)

It follows from (A.23) and (A.24) that a(t) = a(0), and b(t) = b(0) + 2(Ds—C B)¢. By choosing C = 0,
and an appropriate D, we can always make b(t) = 0 at ¢ = 1. Hence, the resulting 5th order normal form

becomes
Yy = v+ ars S (A25)
3] ¢} or )
= (sr2+ar® r - 29
= (sr-+ar )rar + (1+Br°) % s =%1 (A.26)

Let us consider now the general (2m+1)th order normal form problem on G g, .1:

d
i 82m4+1(t) = = Tppmyy [[Yz"’ vy + 82m+1(t)]2m+1] (A27)
We claim that
82ms1 =0, m 23 (A.28)

To prove (A.28), consider.the following observations:

®
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Yom-1 = PED™ [@ aag +8— E] +QEH™! [& F3 -tL ag‘] (A.29)
satisfies

[¥ 2m1, V)™ =0 (A30)
Since Y,,,_; € kernel of L, _;,

(¥ 2m-1: V)™ = [Yomq,v1] = O (A31)

(ii) The calculation for the Lie bracket [Y,,_;, V3] for various combinations of Y,,,_; and v5 is summarized

below:
v, 0 0
Yom3i &% Eﬁ +§— BE] (33 [§ —ag 'E—az]
m— VEE mle 3 _¢.d
(33 ‘[ —+E—E] @-2m)ED) [ = +§& E] 133, [& 3 Eag]
m-—1 - m —
(33) [ E, -& E] @-2m)EE) [ 3 Eas] 0

It follows from observation (i) that we can always choose Y,,,_; as the infinitesimal generator; namely,
Y = Yoy (A32)

Hence, the normal form problem (A.27) becomes
~T2m+1 [[Yzm-l Vo)t 82m+ ]2m+l]

= = Tom+l [[YZm—l :Vsl]

mlg 0 g 0 (A33)
= 2m—4)Ps EE) [ F +§ aE]
+ {(2m—-2)Qs + 2P B}i EE)™ [&—g 53%]

Equating the corresponding coefficients of (A.33) and

Zamn(®) = 0OED™ [£ [ R N E] +iyEED [&a% - Ea%] (A34)

we obtain:
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6 = 2m—4)Ps (A35)

v = 2P B + 2m-2)Qs (A36)
Since s # 0 and m > 3, we can always choose an appropriate P and Q att=1 so that
o) =wy1)=0 (A37)

It follows that the (2m+1)th order contribution to the normal form is eliminated for all m > 3. This com-
pletes our proof of Proposition 2.2
’ ||

42



Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.
Fig. 5.
Fig. 6.

Fig. 7.

Fig. 8.

Fig. 9.

FIGURE CAPTIONS

Subspaces X and Y in this picture are transversal because any point in L can be decomposed into a
point in X and a point in Y. Note that X and Y would not be transversal if they are collinear in this
picture.

Geometrical interpretation of the transversality of a smooth mapping f between two manifolds M
and N. Here, the manifold M on the left maps into the bold manifold f (M ). In particular, x € M
maps top € f(M). Here, f is transversal because the tangent to f (M) at p intersects the tangent
to the submanifold P at p with a finite angle.

Geometrical interpretation showing the perturbation of an unfolding A (L) into A ‘(L") preserves the
transversality property.

Phase portraits illustrating the saddle-node bifurcation in the x -space, parametrized by |L.

Phase portraits illustrating the saddle-node bifurcation in the (1, x)-space.

Phase portraits illustrating the Hopf Bifurcation on the radial coordinate (on the left) and on the
(x,y)-plane, parametrized by 1. For p>0 and =0, the trajectory is an expanding spiral (#>0 and
é>0). For u<0, a circular limit cycle with radius 7 is born. All nearby trajectories inside or outside
are repelled from the limit cycle.

Phase portrait illustrating the Hopf Bifurcation in the (JL,x,y)-space. Note that each cross section
parallel to the (x,y)-plane on the right (4>0) or on the (x,y)-plane (u=0) itself consists of an

expanding spiral as in Fig. 6. On the other hand, each cross section with the parabola on the left
(1<0) is a circle, which corresponds to a limit cycle.

Phase portraits illustrating the 2-parameter bifurcation phenomena associated with the vector field
4.41).

Phase portraits exhibiting a global bifurcation producing a homoclinic orbit associated with a 1-
parameter family of vector fields.
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