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Then, with the help of a decision making "logic" included in a supervisory computer program, a

position controller is generated to move the manipulator in the unconstrained directions and a force

controller to push the manipulator against the environment with the desired contact force. Whit

ney [9] has developed a single-loop velocity control scheme with the net effect of controlling the

contact forces. The schemes developed under this approach so far have not been proven to be

stable and consequently limit the applicability of the schemes.

Yoshikawa [3] extended the work of Raibert and Craig [1] by including robot dynamics in

the hybrid control scheme. He started with a description of the constraints through hypersurfaces

and used the constraint information to generate a hybrid control law together with a servo compen

sator. It is unclear from [3] that stability could be achieved with the servo compensator. Similar

work in this area has also been done by Khatib and Burdick [10] and An [5].

This paper is an in-depth generalization of Yoshikawa [3]. First, we assume that the contact

between the end effector and the environment has been made and interaction forces in the tangent

directions to the worksurface are negligible. Then, we develop in Section 2 a procedure for sys

tematic description of the task constraints and use the developed constraints in Section 3.0 to define

the constraint space. In Section 3.1 we project the robot dynamics into the constraint space to

arrive at a joint force control law that realizes both the desired velocity/force trajectories pre

planned in Section 23. In Section 3.2, we extend the control scheme to hybrid impedance/force

control to include finite interaction forces in the tangent directions. In Section 3.3, we give several

design examples and in Section 4 we collect some suggestions for future work in this area.

2. Description of Motion Constraints on the End Effector

2.1 Mathematical Preliminaries

Consider a rigid body B in R3 as in Figure 2.1. LetX-Y-Zbe an arbitrary inertial frame and

x-y-z a body frame attached to the rigid body.

The instantaneous configuration of the rigid body can be described by the orientation and

the position of the body frame with respect to the inertial frame. We define the configuration

manifold M of the rigid body to be the space of configurations of the rigid body. Since three

parameters are needed to specify a position in R3 and three more parameters to specify an orienta

tion, the configuration manifold M is six-dimensional. We use Euler angles (<j) , 8 , y ) and the

Cartesian coordinates (x, y, z) ([12]) to parametrize M. For this we let m e M denote a nominal

configuration of the rigid body and Um a neighborhood of m in M. Assume that at m the body
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ABSTRACT

We present a new stable hybrid velocity/force control scheme for a robot manipulator under

constraint. We arrive at the joint force control law by first developing a systematic procedure for

constraint description and then projecting the robot dynamics into the constraint space. We extend

the scheme to hybrid impedance/force control to cover finite interaction forces in the tangent direc

tion.

1. Introduction

A large class of manipulator tasks (e.g., Figures 1-3 of Appendix A) requires interaction of

the manipulators with the task environment In the process of executing the task, the manipulator

trajectory is frequently modified by the contact forces occurring during the interaction. It has been

well understood that either pure position or pure force control in this case is not adequate for com

pleting the manipulation task. The necessity of more precise control of a manipulator is widely

recognized.

To control a robot manipulator under constraint, Hogan [7] and Kazerooni et al [6] have

developed the notion of mechanical impedance in the frequency domain as a parameterization of a

rational set of performance specifications to generate the compliant motion while preserving stabil

ity in the presence of bounded model uncertainties. Salisbury [8] has also done similar work by

defining a linear static function that relates interaction forces to the end-point position via a

stiffness matrix in a Cartesian coordinate frame. Monitoring this relationship by means of a com

puter program ensures that the manipulator will be able to maneuver successfully in a constrained

environment

An alternative approach to controlling a robot manipulator under constraint has been pursued

by Raibert and Craig [1], Mason [2], Paul and Shimano [14], and others. In this approach the mani

pulator motion is pardoned into position- and force-control in a global Cartesian coordinate frame.
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Figure 2.1. A Rigid Body in A3-space.

frame coincides with the inertial frame. Then, there exists a natural coordinate map

a:UmcM -> R6

given by

a(m) = (0.0.....0) and a(p) = (x,y,z,<|>,e,\|0 for all p e Um (2.1-1)

where (x, y, z) and ( $ , 0 , y ) are respectively the coordinate of the origin 6 and the Euler angles

of the body frame at configuration p. If r(t) is a Cl - curve in M representing the trajectory of the

rigid body, then the generalized velocity of the rigid body is given by £xL e TK0M, where TJi
is the tangent space to M at configuration m ([11]). In local coordinates the trajectory of r(t) can

be written as

m = o<K0) = WO, y(t\ z(0, W), 6(0, Y(fl)

Assume that r(r0) = m, the generalized velocity at (r= f0) is then given by

•^j^ =dam 4®-^=(i(0, y(0, i(/), i(0,8(r), ^(0)1^
where dcm is the tangent map of a at m.

Following the convention of [13], we attach the body frame to the robot hand so that its ori

gin is located centrally between the finger tips; the z vector lies in the direction from which the

hand would approach the constraint surface and is known as the approach vector, a; the y vector

known as the orientation vector 0, is in the direction specifying the orientation of the hand, from

finger to finger tip; the final vector x, known as the normal vector n, forms a right-handed set of

vectors and is thus specified by the vectorcross-product n = o x a. In terms of the Euler angles, the



set of orientation vectors (n, o, a) is given by

cosy cos<t> - cosG sin<{> siny -siny cos<{> - cosG sin<i> cosy sinO sin<]>

[n 0 a]= cosy sm<t>+ cos^ cos^ sin¥ -awiy sin0 + cos9 wsfy cosy -sinG cos<f>

sinO simp sinO cosy cos9

(2.1-2)

2.2 Description of Motion Constraints on the End Effector

Following the notation of Section 2.1, we now use the examples of Figures 1 - 3 to demon

strate a procedure for the systematic description of the task constraints.

Example 2.1: First, we consider the planar manipulator of Figure 1, where the end effector is con

strained to move horizontally. With the chosen inertial frame, a body frame is attached to the end

effector. The configuration manifold M here is three dimensional and can be parametrized by the

coordinates (x, y, 6 ). The constraint on the end effector can be described as the zero set of the

function

C: M -> R, Of) = C((jc, y, 0)) = y - 1 (2.2-1)

Furthermore, the Jacobian dCr * 0, for all r e Af; consequently the end effector is constrained to

move within the submanifold N = C~\0) of M ([11]).

Example 22: Consider the manipulator task shown in Figure 2, where the manipulator turns the

crank. The constraints on the end effector are such that (1) it can move move only in the circle of

radius 1 and height b and (2) the approach vector a is directed towards the Z-axis. The first con

straint can be described as the zero set of the function

C.M -> R\ C(r) =
ci(r)

c2(r)

x2 + y2-l
z-b

(2.2-2)

and the second constraint can be described in terms of the approach vector a defined in (2.1-2)

by

VCl x a = 0 (2.2-3)

where "x" stands for the cross product and V is the gradientoperator. Expanding (2.2-3) we have

y cos6 = 0
x cos8 = 0

-x cos<{> sinO- y sin<j> sinO = 0

(2.2-4)

It is easy to verify that only two of the above equations are independent and the entire set of



constraints on the end effector can be described as the zero set of the following function,

j^+ y2-!

z-b

cosG

x cos4> + ysinfy

CM -> J?4, C(r) = (22-5)

The Jacobian dCr here is of full rank for all r € M and the manipulator is constrained to the sub-

manifold Ne (r\0)ofM.

Example 23: Finally, consider the manipulator task in Figure 3, where the end effector is con

strained to the sphere and the approach vector is directed towards the center of the sphere. The

constraint is given by,

{
ci(r) =x2+y2 + z2-l =0
Vci(r) x a = 0

(22-6)

where a is the approach vector defined in (2.1-2). Rewriting the second equationwe obtain

y cos<t> - z cos<t> sinO = 0

z sin(J) sin0 - x cos9 = 0 (22-7)

x cos<|> sin9 + y sin<J> sinG = 0

Since only two of the above equations are independent the total constraints on the manipulator are

given by the zero set of the function

C. M -> R\ C(r) =

x2 +y2 +z2-l

y cos0 + z cos({> sinO

z sin<t> sin9 - x cos9

(2.2-8)

The Jacobian dCr here is again of full rank for all r € M, and the end effector is constrained to the

submanifold N = Cl(o) of M.

Generalizing from these examples, we conclude that the task constraints can be described as

the zero set of a twice differentiable function

C.M -» Rm (2.2-9)

for some integer0 £ m£ 6, and the Jacobian dCr is of full rank for all r e M.

The submanifold N = Cl(0) c M, of dimension (6-m), is called the constraint submanifold

of M. It consists of the set of configurations of the end effector where the end effector is in contact

with the environment We say that a configuration re M is a constrained configuration if r e MA



twist motion of the endeffector at a point reNt denoted by r, must satisfy

dCrr = 0 (22-10)

It is easy to see that the kernel of dCr is just the tangent space to N at r, which we denote by 7yv.

Since N is a (6-m) dimensional submanifold of M, T,N is a (6-m) dimensional subspace of T,M.

We call TjN is the velocity controlled subspace, or the constrained twist space of the end effector at

configuration r. Any motion of the end effector at configuration r that conforms with the constraint

must lie in the velocity controlled subspace. We define for the entire set N of constrained

configurations the global set of constrained motions of the end effector by

TN = {(r,v),r6JV,v6 TyV) (2.2-11)

Here TN is just the union of all constrained twist spaces over the set of constrained configurations.

Hie set of forces that can be exerted on the end effector at configuration re M, is denoted

by by TrM. T^Af, often called the wrench space of the end effector, is also identified as the dual

space to T,M, or the cotangent space to M at r. A wrench /e TTM acting on a twist v e TM gives

the work done per unit time on the end effector. For a manipulator under constraint we define the

set of wrenches that yield no work on all twist motion v e Tfl by

TtNe={fe7>, such thattfv) =0, for all v e T,N) (2.2-12)

T/f is a m-dimensional subspace of the wrench space T,M and is often called the force controlled

subspace. A force/in T,NC is also called a normal force to the constrained manipulator, or simply

a constrained wrench. It is clear from (2.2-10) that TJF in local coordinates is given by the span of

the rows of dCr Similarly, we define for the constrained submanifold N the global set of normal

forces on the constrained manipulator by

77v* = {(r,f)t reN.feTJf] (22-13)

TN° characterizes the set of all normal forces that can be exerted on the end effector without doing

work on the global set of constrained motion TN.

23 Manipulator Velocity/Force Trajectory Planning

In this section, we study the problem of velocity/force trajectory planning. Our emphasis

here is on velocity trajectories rather than on position trajectories because velocity and force form

natural duals of each other. Moreover, if we can control the velocity of a manipulator, then we can

control the position of the manipulator by appropriate choice of the desired velocity trajectory (see

also Remark [3]). Thus, it suffices to study the velocity/force control of a robot manipulator.



Prior to performing the task, a set of desired velocity/ force trajectories must be specified.

Only when the manipulator achieves these desired trajectories can the task be efficiently executed.

For example, considering the manipulation task of Figure 1, where in order to the wipe the glass

window, one must specify at each contact configuration the desired velocity and the desired con

tact force. In order to conform with the constraint the desired velocity must be in velocity con

trolled subspace, and the desired contact force must be in the force controlled subspace. Otherwise,

the manipulator may lose contact with the environment To complete the manipulator task, the pre

planned velocity/force at each contact point should match the task requirement as closely as possi

ble. For example, in the instance when the robot hand is to grind a piece of metal, if the pre

planned velocity is too large the grinding tool may stall, or break, and if the preplanned force is too

small, the metal surface may not be effectively smoothed.

We now pursue the mathematical details of velocity/force trajectories planning for a manipu

lator. Let r e N denote a constrained configuration of the manipulator, the constrained motion is a

vector in T,N. To plan a velocity trajectory, we need to specify at each r € N, a desired velocity

vector v„f € TJJ. Namely, we need to define a function

YdiN-*TNt such that YJj) = v*e Tfl (23-1)

The function Yd assigns to each constrained configuration r a desired velocity vector in the velocity

controlled subspace, and is called the desired velocity vector field on N. We assume that the assign

ment of Yd is continuous in N. When following the desired velocity trajectory Yd, the position tra

jectory xjit) traced out by the end effector in the constrained space N, starting from an initial

configuration r0e N at time f=0, is the solution of the following differential equation

x/t) = YJx/.t)\ xM = r0 (2.3-2)

The assumption of Y£) being continuous ensures the existence of an unique solution to the above

differential equation. We say that the manipulator achieves the desired velocity trajectory if and

only if the actual velocity of the end effector converges to the desired velocity. Thus, if we denote

the actual position trajectory of the end effectorby a curve r. [0, ~) -» Nt this simply means that

»*') - YMt))W -> 0, as t -> oo (2.3-3)

where r(t) is the true velocity and Y/r(t)) the desired velocity at configuration r(t). We say that we

can control the velocity of a manipulator if for every given desired velocity trajectory there exists

a choice of joint torque input such that the true velocity converges to the desired velocity.

At each contact point the manipulator needs to exert forces on the workpiece. From

Newton's third law, when the manipulator exerts a force/^ on the workpiece, an equal but opposite

force -frd is also exerted on the manipulator. Since the workpiece is the only object in contact with



the manipulator, the study of exerted forces on the workpiece is the same as the study of exerted

forces on the manipulator. But the sets of forces on the manipulator can be characterized by the

wrench space TrM and its subspaces. We will call the work done by the forces in TrM on the

twists in TM the work exchanged between the manipulator and the environment To maintain a

propercontact with the environment the desired contact force at a constrained configuration r must

be in the constrained wrench space TjN6. A force/ 6 TJF on the constrained twist space T,N will

yield no work exchange between the manipulator and the environment The problem offorce tra

jectory planning is to specify at each constrained configuration reN,a desired contact force fa in

theforce controlled subspace TfF, namely to define a function

F&N -> W, such that FJr) =frd e TfF (23-4)

We say that the manipulator achieves the desired force trajectory if the actual interaction force

converges to the desired contact force given by Fd.

3. The Hybrid Velocity/Force Control Scheme

Given the desired velocity/force trajectories (2.3-1) and (2.3-4), we propose a stable hybrid

control law that realizes both the trajectories simultaneously.

Consider the constraint map C:M ->Rm in local coordinates (rlf r2, **- r& given by

C(r) = (yi(r), - , yn(r)) and its tangent map

dC{ TM -» Rm (3.0-1)

given in the same coordinates by

Byi
dr, .

dyi

.. dr6

E,= •

•

3y« •

3ri dr6

(3.0-2)

The matrix Ef € R1**6, of rank m, is called the local representation of the tangent map and the con

strained velocity r(t) satisfies

Efr(t) = 0 (3.0-3)

Thus, the kernel of Ef is the constrained velocity subspace T,N. The subspace in TrM spanned by
the rows of Efis just the force controlled subspace TJF. Related to Eft we choose a set of (6-m)



linearly independent vectors {e,}£r such that

Ef• ei= 0 for i=l, - •' 6-m

and construct from telS" anew matrix ^ e T^6-"1)*6 by

e\

*p = and £,-££ = 0

'6-m

(3.0-4)

(3.0-5)

where e\ denotes the transpose of eh etc. Ep, of rank (6-m), is used to project the end effector

velocity into the velocity controlled subspace and is called the velocity projection matrix. We

denote the projected velocity by rp e /J6""* and have that

fp = Epr (3.0-6)

The ith component of rp is the projection of the total velocity in the et direction.

Remark (1): Since the kernel of Ef is just the velocity controlled subspace 7yv, aside from some

physical considerations (see Section 3.3), we may choose for et the set of basis vectors that

span T,N.

DifferentiatingEquation (3.0-3) with respect to time / we get

Efr + Efr = 0

where the second term may be expressed as

' as as
><*v" dr&x ... drxdr6

Efr =
•

and £yi-
• •

.****. a2* •
3ri3r6

• ^
dr6dr6

for i = 1,

(3.0-7)

m (3.0-8)

namely, each component of Eff is the stiffness matrix in that direction operating on the velocity

vectors [4].

Now, with respect to the chosen coordinate system that describes the constraint function, we

identify the force controlled subspace with Rm and the velocity controlled subspace with fl6-"1.

Equations (3.0-3) and (3.0-7) can alsobe thought as the projection of the end effector velocity and

acceleration to the force controlled subspace respectively. It is clear from (3.0-7) that the
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acceleration projected to the force controlled subspace depends on the velocity terms only.

Also, differentiating (3.0-6) with respect to time t yields the projected acceleration in the

velocity controlled subspace.

r'p^E^'+Epr (3.0-9)

We define the constraint space ( Mason [2] & Yoshikawa [4] ) of the end effector at

configuration r to be the direct sum of the velocity controlled subspace and the force controlled

subspace, and denote it by R6 =I?6-" OR". From Ep and Ef we define a map E: TJA -» R6 by

E = , that takes a velocity in T,M into the constraint space. If r denotes the velocity of the

end effector, we have from (3.0-3) and (3.0-6) that

Er =
Epr
Efr

Epr
(3.0-10)

The map E projects the manipulator velocity r from the configuration space to the constraint

space. It is easy to see that in the constraint space the velocity controlled subspace is orthogonal to

the force controlled subspace.

Also, from Equation (3.0-7) and (3.0-9) we can project the end effector acceleration into the

constraint space by

Er =

. •

V
.V.

=

rP-Epr
-Efr =

0
-

.V.
(3.0-11)

3.1 Robot Dynamics in the Constraint Space and the Joint Force Control Law

In Section 3.0, we have used the constraint information to project the velocity and the

acceleration of the end effector into the constraint space. We now want to incorporate the manipu

lator Jacobian information to project the robot dynamics from the joint space into the configuration

space and then into the constraint space. The motivation for studying the robot dynamics in the

constraint space stems from the met that the velocity controlled subspace and the force controlled

subspace in the constraint space are mutually orthogonal.

We consider here manipulators with six degrees of freedom only. The results are easily gen-

eralizable to manipulators of higherdegrees of freedom. Denote the joint space of the manipulator

by 9 , and a joint variable 9 = (9i, 9* • • • 9$) 6 9 representing the joint angles of the manipula

tor joint actuators. The dynamic equation of the constrained manipulator in the Lagrangian form is

given by
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M(9) 9 + *(9, 9) + vg(d) = x +x (3.1-1)

where M(9) is the non-singular inertia matrix of the system, A(9, 9) the centrifugal and Coriolis

forces, and vg(Q) the gravitational force; x is the force at the joint resulting from the forces at the

interaction between the end effector and the environment x is the joint driving force and is there

fore the control input The goal is to derive a set of inputs for x so that the control objective may

be achieved.

In order to project the robot dynamics into the constraint space, we first consider the forward

kinematic equation of the manipulator

/:9->Af, f(Q) = r (3.1-2)

and assume that the manipulator is operating in a region where the Jacobian of (3.1-2), given in

(3.1-3), is nonsingular.

/: Te9 -> TrpyU, J 9 = r (3.1-3)

The Jacobian J transforms a joint velocity into the configuration space. We differentiate the Jaco

bian equation with respect to time t to obtain

/ 9 + 79 = r (3.1-4)

which relates r(t) to the joint acceleration.

Furthermore, we can use (3.1-4) and (3.0-11) to transform the acceleration of the manipulator

from the joint space into the constraint space. Denoting -r(EJ) by (£/)' we have that
dt

EJQ = £(r-/9) = -Er-EJQ = - (EJ)' 9 (3.1-5)

When the velocities are transformed forward from the joint space into the constraint space by (£/),

the interaction forces are transformed back from the constraint space into the joint space by / £'.

We consider here only the case where there is no work exchange between the manipulator and the

environment and leave the other case to Section 3.2. The interaction force, denoted by F, when

yielding no work exchange with the environment is a normal force and belongs to the force con

trolled subspace Rm. F is transformed back into the joint space by

fEfr /T -> 7^9, t^fE'fF (3.1-6)

Rearranging the manipulatorequation using (3.1-6) we have
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a — ajt-i9 = ATx(9)(x - A(9,9) - vg(&) + J*E}F) (3.1-7)

We also assume that measurement of the joint angles 9, the joint velocity 9, and exact knowledge

about the parameter values of the manipulator are available. Consequently, we can cancel the cen

trifugal, Coriolis and gravitational forces by choosing our first level control to be

x = h(Q, 9 ) + v„(9) + Xi (3.1-8)

where Xi is to be determined. Using this control in (3.1-7) and multiplying the results by EJ, we

obtain from (3.1-5) and (3.1-7) that

- (EJ)' Q= EJATl(G)xl+EJAr1(Q)J'E}F (3.1-9)

Since the time derivative term (E J)' in the above equation depends on the velocity and the mani

pulator parameters only we can choose our second level control %\ to be

X! = -M(Q) rl ETl (ETf 9 + x2 (3.1-10)

where x2 is to be determined. Use this control in (3.1-9) we progressively project the manipulator

equation into the constraint space by

EpJATl(Q)x2] \EpJbT\Q)JtE}F
+

EfJAr\Q) x2 J [EfJATl(&) J*E}F

The structures of the manipulator equation in the constraint space are now clean the top equation

describes the dynamics in the velocity controlled subspace and the bottom equation describes the

dynamics in the force controlled subspace; the force controlled loop is a pure algebraic loop and

the interaction forces from the force controlled subspace is coupled to the velocity loop via

EpJMTWfE}.

Finally, we are now ready to complete the control input design. First from the desired velo

city trajectory Yd JV -» TN and the desired force trajectory XdiN -» TNT we define
velocity error:

eP(t) =rp(0 - Y/rP(0) = rp(0 - r^t)

and force error:

(3.1-11)

if^F-Fd(rp(t))^F-Fd
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Theorem 3.1: Following the previous notation, the joint force control law given by (3.1-12) sta

bilizes simultaneously the force controlled loop and the velocity controlled loop. Furthermore,

the convergence rates are determined by the velocity proportional gain (Kv e ^W6"")), the

force proportional gain (Kfp e /?mxm) andthe force integral gain (Kfi e tfmxm) respectively.

x = /t(9, 9) +v,(9) -M(9)rl ETl (EJ)' 9
(3.1-12)

+M(Q)rlEp(EpEpT\rpd-Kvep) +fE}(-Fd +Kfi^

Remark (2): (i) The first term (A(9, 9) + vg(Q)) in (3.1-12) is used to cancel the nonlinearities in

the robot dynamics caused by centrifugal and Coriolis forces, (ii) the second term

(-M(G)-1 J"1 E"1 (EJ)'9) is used to cancel the nonlinearities introduced by coordinate

transformations, (iii) the term M(&)Tl E*p ( EpEp )~\rpd - Kvep) is the compensation in the

velocity loop, and (iv) / E) (-Fd +KfifSf+Kjp ej) is the compensation in the force loop.
t

(3): If we let e^t) = fep dt be the position error, and replace the velocity loop compensator

by M(Q) ^E^EpEp)'1 (r]^- KJp-- Kpep)t where Kp is the position feedback gain, we
obtain as in [1] a hybrid position/force control.

(4): The control law reduces to that of the computed torque method in the absence of con

straintsand to that of pure force control in the presenceof complete constraints.

Proof, (of Theorem 3.1) Applying the first two terms of the control input to the manipulator equa

tion (3.1-1) and projecting the resulting equation into the constraint space we obtain the reduced

manipulator equation (3.1-11). With the remaining control in (3.1-11) we have that

ep +Kyep^EpJM-\Q)JtE}(ef+Kfi\ef+Kjpef)
, - , r (3.1-13)0=EfJ ATl(Q) f E} (ef+ Kfijef+ Kfp ef)

Since Ef, J and M(&) are all of full rank, the product EfJ M~l(&) f E} is nonsingular. In particular,
the force loop equation implies that

Sf+Kfijef+KfiSf^ 0 (3.1-14)

and using this in the velocity loop we have that

ep+ Kvep = 0 (32-6)

We can choose the gain.matrices (Kv,Kfi,KfP) appropriately so that the two uncoupled equations

will be exponentially stable. Furthermore, the convergence rate in each loop is determined by Kv
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and (Kfi, Kfp) respectively.

3.2 An Extension to Hybrid Impedance/Force Control

When deriving the control law in Section 3.1, we have assumed that there is no exchange of

work between the manipulatorand the environment Consequently, the interaction forces are in the

directions normal to the constraint surface. For manipulator tasks such as polishing a glass window,

pushing a chip along the surface of a smooth worktable, or inserting a peg into a hole, this

assumption is reasonable. The small interaction force in the normal directions as compared to the

large interaction force in the tangent directions is a common feature to this class of constrained

manipulator tasks.

However, for manipulator tasks such as grinding, metal cutting, drilling, or polishing a

bumpy surface, this assumption no longer holds; the influence of the interaction forces from the

tangent directions are significant to the robot dynamics. Under these conditions, pure velocity con

trol in the tangent directions may produce excessive interaction forces and subsequently stall the

grinding tools ( if not break them) or destroy the drills. To cope with this problem the interaction

forces from the tangent directions should be "properly " accommodated rather than resisted ([6] &

[7]). Previous researchers ([6]" [8]) have proposed a so called impedance control methodology for

the robot system so that the interaction forces can be stabilized while commanding the position

inputs. Here we generalize the results of [6] & [7] to impose impedance control in the tangent

directions so that the manipulator task can be executed.

To accommodate the interaction forces in the tangent directions, the design objective of

impedance control must provide a stabilizing dynamic compensator for the system so that (1) the

ratio of the position of the closed-loop system to the interaction force is constant within a given

operating frequency range, (2) the closed-loop system is stable, and (3) the closed-loop system is

robust under model uncertainties. The above statement can be mathematically represented by

(j2/ +KyS +Kp)ep(s) - Fv(s), s=M for all 0 <co< ©o
with (rl + KyS + Kp) representing the impedance

Here Fv(s) e C6-"1 is the vector of deviation of the tangent direction interaction forces from an

equilibrium value in the constraint space; ep(s) € C6""1 is the vector of deviation of the tangent
direction position from an equilibrium point in the constraint space; Kp e Ri6-mM&-m) jg me desired
stiffness matrix; Kv and I € j^6-*)**6-"*) are respectively the damping and the identity matrices; and

(Do is the bandwidth of operation.

The stiffness matrix Kp is the designer's choice and, depending on the application, contains
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different values for each of the tangent directions. By specifying Kp, the designer governs the

behavior of the system in constrained maneuvers. Large entries in the Kp matrix imply large

interaction forces. Small entries in Kp allow for a considerable amount of motion in the system in

response to interaction forces. The choice of the damping matrix Kv assures the achievement of ©o

and the stability of the system. A complete discussion on the choice of Kv to achieve a certain per

formance specification and a certain stability robustness specification is given by Kazerooni et al in

[61. We will assume that the desired closed-loop behavior in the tangent direction is given by the

specification of (3.2-1). Our second step design objective is to develop a joint force control law so

that (3.2-1) is realized in the tangent direction.

On the other hand, it is adequate for most constrained manipulator tasks to impose pure force

control in normal directions. Only the interaction forces in the normal directions need to be regu

lated. Since the inertia forces in the normal directions are considerably less than the tangent direc

tion counterpart the manipulator equation in the force controlled subspace remains an algebraic

equation ( see Section 3.1).

In summary, our strategy to control a constrained manipulator task with finite interaction

forces in the tangent directions is to impose impedance control in the tangent directions and force

control in the normal directions. Such a control is called a hybrid impedance/force control.

The tangent direction interaction force Fv e R6-" is transformed back into the joint space by

fEpi R6"* -» Tie, xv = fEpFv

Adding this term to the manipulatorequation, we obtain

M(9)9 + A(9,9) + v,(9)= x +t +1„

The manipulator Equation (3.1-11) now reads

EpJATl(&)x2

EfJArl(Q)x2

EpJATl(Q)Jt(E}F +EpFv)

EfJM-\<S) f(E}F + Ep Fv)

(3.2-2)

(3.2-3)

02-4)

The vector of deviation of the tangent direction position ep is given by Remark (3) of Section 3.1

as,

ep(t) = \e(x)dx (3.2-5)

We claim that the control inputs of (3.2-6) will achieve the desired control objective, if the constant

matrix K0 e RG-nWfi-*) is chosen appropriately.
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X= h(Qfi) + vg(&) - M(Q) r1 ET\E J)' 9

+M(Q)r1Ep(EpEpTl {rpd-Kvep-Kpep + KQFv} (3.2-6)

+JtE}{-Fd +KfiJ£f+Kjpif)

To show our claim, we see that the first three components of (3.2-6) are used to reduce the robot

dynamics to the form (3.2-4). Applying the remaining control to (3.2-4), we have

'ep +Kvep +Kpep =K0Fv +EpJArlf[Etf((I +Kjp)£f +Kfijef) +EpFv)
(32-1)

0=EfJM-lJt{Etf((I +Kjp)ef+KfijSf) +EpFv)

To simplify the above equation, we define

Mf= EfJATlfE} eRQ-*)*™

MJp = EfJArlJtEp e/?*6-"0*"1 (32-8)

Mp = EpJM~lJtEp e/?"00"

Here Mf and Mp are nonsingular matrices because Ef and Ep are of full rank. We obtain from the

second equation of (3.2-7) that

(I +Kfp)ef+Kfijif^-MflMfpFv (32-9)

Using this in the first equation of (32-7), we have

ep + Kv ep + Kpep = (K0-M}pMjl Mfp +Mp) Fv (3.2-10)

If we choose K0 to be(/ +Mjp MJ1 Mfp - Mp) the closed loop equation becomes

ep + Kve„ + Kp ep = Fv
P P P' , (3^-11)

(/ +Kjp) ef+ Kfi Ji,= -Mf1 M^ Fv

While the top quation achieves the desired impedance specification in the tangent directions, the

bottom equation is bounded inputandbounded output stable when the gain matrices Kfi andKfp are

properly chosen. This completes the proof.

Remark (5): It is easy to see that the hybrid impedance/force control recovers the hybrid

velocity/force control in the absence of interaction forces from the tangent directions. When

the interaction forces are small the hybrid velocity/force control is a good approximation to

the hybrid impedance/force control scheme.
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(6): In deriving the joint force control input (32-6), we did not assume slow operation of

the manipulator as did in Kazerooni et al [6], consequently the scheme developed here is

applicable to a larger class of manipulator tasks. On the other hand, the need to measure

the interaction forces in both the tangent and the normal directions may be a source of trou

ble in the implementation of the scheme.

33 Several Design Examples

In the previous sections we have relied on the existence of a velocity projection matrix Ep to

derive the control inputs. Here we want to study the selection of the velocity projection matrix for

task examples shown in Figures 1-3. Since it is easy to find a basis set for the velocity controlled

subspace and Ep is also orthogonal to Ef, we can choose for the rows of Ep the basis vectors of T,N.

In general, because the basis vectors have different physical units from that of the velocity projec

tion matrix Ep (it should be unitless), we need to make some corrections to justify for the physical

units. This is also demonstrated on the following examples.

Example 3-1: Consider the planar manipulatorof Figure 1, where the constraint function is given

by (22-1), and the associated force projection matrix is £/= [0 1 0]. Qearly, we can choose the

following velocity projection matrix,

100

LOO 1 J

and rp = £pT = Ca) defines the constrained velocity. Notice that the basis vectors for the velocity

controlled subspace are constant over the entire submanifold N.

Example 3-2. Considering the manipulator task of Figure 2, the constraint equation is given by

(2.2-5) which yields the following force projection matrix

EP =

We let
4

E,m

y 0

0 1

0 0

. cos<t> sin<t> 0 -x sin<|> + y cos<j>

0 0' Y
0 0 4

-sin(J)0 e's

0 0. e'6

(3.3-1)

(3.3-2)

= Ep be the basis vectors that span the two dimensional velocity controlled subspace.

e\ =(0 0 0 0 0 l)r clearly satisfies the requirement Ef ex =0. To furnish a design for e2 we assume
that it is of the form
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«2=(ai,a2,0,p1,p2,0)'

where (au a2, 0) e Tr S1 is a vector tangent to the circle at configuration r. Since a tangent vector
in S1 is perpendicular to the normal vector, we have that

Vci (x, y, z) • (ai, Ci2, 0)' = (x, y, 0)-(alf Cfc, 0)' = 0

ci(x,y, z)= je2 +y2-l
(3.3-3)

A solution to the above equation is (ctlt ct2,0) = (-y,x,0). We complete the choice of e2by requir

ing that

<?2 = 0

Expanding the above equation, we have

{
-P2 sin(J> = 0

-y cos<|) + x sin<|> + (y cos<|> - x sin$)Pi = 0

(3.3-4)

(3.3-5)

Solving the equation incorporating the constraint yields (Pi = 1, P2 = 0) and the corresponding

velocity projection matrix Ep is

0 00001

,-y x 0 1 0 0.

The set of basis for the velocity controlled subspace are now dependent on the configuration of the

manipulator. Expressing the manipulator velocity in terms of the chosen basis we have

Ep =

fP = Epr =
V

-y x + x y + <>

(3.3-6)

(3.3-7)

One can now discover a pitfall in the second component ofrp, where the angular velocity <j>
in units of radian!sec is added to the linear velocity -yx + xy in units of meter2!sec. This has no

physical significances. <j> is introduced because we need anonzero Pi to render e2 orthogonal to Ef.
But recall from Figure 2 that the actual velocity really should be the component that is tangent to

the circle, i.e., the term (-yx + xy), and the rotational velocity \jr. When we plan the desired velo

city trajectory, we assign to each configuration r a desired velocity vector that in the local basis is

given by (xjfj, -yxd + xyj)' s ?pd. We call ip* the true desired velocity and the values of \p* xd, yd at

r are predetermined by the task requirement. In the control, we use the measured <j> to construct a
desired pseudo-velocity vectorr^ by
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r^,-

-yxd + xyd

(3.3-8)

It is easy to verify that the true velocity converges if and only if the pseudo velocity rp( = Epr)

converges to the desired pseudo-velocity r^. Namely,

eP3rp-rpd =

-yx + xy

A

4.
r —

-yxd + xyd
+

0

-

-yxd + xyd H

(33-9)

where £p is the true velocity error and ep the pseudo-velocity error.

Example 3-3. Finally, we consider the manipulator task of Figure 3. This example is similar to

Example 3.2 except for the additional degree of freedom for the motion of the end effector. The

force projection matrix associated with the constraint (22-8) is given by

E,=

x y z 0 0 0

0 cosO cos<t> sin9 -z sincj> sin9 -y sin9 + z cos$ sinO 0

,-cosQ 0 sin<> sinO z cosfy sin9 z sin<}) cos9 + x sin9 0.

(3.3-10)

To find a set offyorthogonal basis for the velocity controlled subspace, welet/i = x2 + y2 + z2 - 1

denote the equation of the sphere S2, the gradient Vfi is normal to the sphere; we choose at each

configuration two tangent vectors tu t2 e T^yP* where they satisfy tt • Vfx = 0, for i = 12 and
t2 - fixV/i, and write fi = (ai, <%, 0:3), t2 = (or*lt a'2, a'3). Assuming that the velocity projection
matrix is of the form

Ep =

Pi

P2

0 0 0 0 0 1

<*i 02 CC3 pi P2 0

a'la^a'gP'iP^O

where (pi, P2) and (p'i, p'2) are chosen to satisfy

Ef• e2= 0 and Ef• €3 = 0

Expanding (3.3-12) and solving for (Pi, P2) we have

= A-!
-a2 cos9 - 03 coaj) sin9

oti cos9 + 03 sin4> sin9

(3.3-11)

(3.3-12)

(3.4-13a)



where

A =
-z sin<{> sin9 -y sin9 + z cos<J) cos9

. z cos<j> sin9 z sin<{> cos9 + x sin9
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(3.4-13b)

is generically nonsingular. Similarly, replacing tx by t2 in the above equation we can solve for

(P'i, P'2). We have thus completed the selection of Ep when A is nonsingular. The case when A is

singular is treated separately in Appendix B.

In general, when a manipulator is constrained to a two dimensional surface, the first three

components of e2 and e3 are two independent vectors tangent to the constraint surface. We append

to the last three entries of the basis vectors terms that render Ep orthogonal to Ef. Consequently,

we run into the same pitfalls as in Example 3.2. For instance, looking at the second component of

rp given by (3.3-11), where the angular velocity pi$ +P26 in unit radian /sec is added to the linear
velocity otii + a^xy + a& in units of meter2!sec. On the other hand, the actual velocity of the end

effector (recall from Figure 3) should be a vector tangent to the sphere and the rotational velocity

\p. Since a tangent vector to the sphere can be expressed as a linear combination of the basis vec

tors t\ and t2, the actual velocity may be expressed as

v= o.\x + a^y + a3z

a'ii + a.'iy + a'3i

andthe true desired velocity fpd as

?»* = a.\xd+ azyd + a^d

a\xd + a'iyd + a'jzd

In the control we construct from measured <j> and 9 the pseudo desired velocity r^ by

0

?Pd=?Pd + p!<j> + p29

p'ii +p'29

(3.3-14)

(3.3-15)

(33-16)

and use r^ in the control scheme. It is easy to verify that the true velocity converges if and only if

the pseudo velocity converges.

This procedure of developing the velocity projection matrix Ep can be generalized to manipu

lator tasks with arbitrary constraints. As long as the constraint surface haswell defined normals, we

can always choose the tangent vectors to construct theEp matrix as described in these examples.
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4. Suggestions for Future Work

Since the hybrid velocity/force control theory is developed with respect to a chosen coordi

nate system and there is no natural way to specify a coordinate system, it is important to further

investigate the consequences of changing the coordinates on the performance of the control

schemes ([4]). The robustness of the control scheme with respect to modeling uncertainties in the

constraints and in the parameter values needs to be formulated and carefully studied. It is also

important to realize that implementation of the scheme requires measurement of the interaction

forces and the inversion of the Jacobian matrix. Part of the future work should be to modify the

scheme so that its implementation will be less computationaly intensive.
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Figure 1. A Robot Manipulator Washing a Glass Window

Figure 2. A Robot Manipulator Turning a Crank

Z

Figure 3. A Robot Manipulator Polishing a Sphere Surface
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Appendix B

We show in this appendix the selection of a ^/-orthogonal basis for the velocity controlled

subspace when the matrix A of (3.3-13b) is singular. From (3.3-13b)

-z sin<j) sin9, -y sin9 + z cos9 cos(J>

. z cos4> sin9, z sin<|> cosG + x sin9 .
A = (B-l)

we obtain

- det(A) = z sin9 (z cos9 + x sin9 sin(J) - y cos<j> sin9 ) (B-2)

and det(A) = 0 if either (i) sin 9 = 0, (ii) z = 0 or (iii) z cos 9 + x sin 9 sin <J> - y cos <J> sin 9 = 0.

We treat the design for each case separately.

Case (i): If sin 9 = 0, then (2.2-7) implies that x = 0 and

0 y z 0 0 0

Ef= 0 10 0 y 0

. -1 0 0 0 z sin<(> 0 .

Let e2= (ai -z y pi p2 0) and (3.3-12) requires that

-z + p2y = 0

-cti + z sin<j> p2= 0
(B-3)

Thus, P2 = z!y, ai = z2 sincj) ly and pi =0 is a satisfactory design for e2. Consequendy, we can

choose e3 =( cti', z, -y, pi', p2\ 0), where P2' =-zly, a/ = z2 sin<yy and pi' is any value that

renders e3 independent from e2.

Case (ii): 2 = 0 is treated similarly as in case (i).

Case (iii): We may assume without loss of generality that z * 0 , sin 9 * 0 , and cos <j> * 0, and

rewrite Efhere for convenience,

E,=

x y z 0 0 0

0 cos9 cos<J>sin9 -z sin<J) sin9 -ysin9 + z cos<)) sin9 0

.-cos8 0 sin<j> sinG z cos|> sin9 z sin<|> cos9 + x sin9 0.

4

«&

Multiplying e| by cos <>, e'6 by sin 4> and adding the results we have

cos«|) €5 + sin<|) 4 = (-cos9 sin«J) cos9 cos<|> sin9 0 zcos<|> +«in9 sin(|) - ysin9 cos<{) 0)

Consequendy, the constraint equation and the requirement ( cos <j> e* + sin <J> e'6 ) • e2 = 0 together



implies that

-ai cos9 sin<|> + 012 cos9 cos<|> + 03 sin9 = 0

ai* + o^y + 013Z = 0

which immediately yields

25

(B^)

(a 1 a 2 a 3) = (ai a2 a3) -(x y z) x (-cosO sin<J> cos9 cos<J> sin9) (B-5)

On the other hand, the requirement e'6 • e2= 0 ( or 4 • e3) = 0 implies that

Pi z cos<J> sinG + p2(z sintj) cosG + xsin9) = at cosG - a* siruj> sinG (B-6)

By assumption, there exist two linearly independent solutions (Pi, P2) to the above equation, and

this completes the construction of Ep.



implies that

-a! cos9 sin<|) + 02 cos9 cos<t> + a3 sin9 = 0

axx + o^y + a3z = 0

which immediately yields

25

(B-4)

(cl\ ct'2 a'3) =(a! a2 a3) = (x y z)x (-cosO sin(t) cos9 cos(|> sin9) (B-5)

On theother hand, the requirement e'6 • e2 =0 ( or e*6 • c3) =0 implies that

Pi z cos<|) sinO + p2(z sin<J> cos9 +*sin9) =a! cos9 - a3 sin<J) sin9 (B-6)

By assumption, there exist two linearly independent solutions (Pi, P2) to the above equation, and
this completes the construction of Ep.
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