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NORMAL FORMS FOR CONSTRAINED NONLINEAR DIFFERENTIAL EQUATIONS
PART II: BIFURCATION'

Leon O. Chua and Hiroe Oka' T

Abstract

Applying the theory developed in Part I we re-examine the classic singular perturbaton problem in terms
of unfoldings of a generalized nonlinear vector field. Our novel approach is based on a bifurcation point of
view.

1. UNFOLDINGS OF GENERALIZED VECTOR FIELDS

In Part I [1], constrained systems are formulated on a manifold and an equivalence relation is introduced
which allows us to develop a method for obtaining normal forms for constrained systems which works in the

same way as that for vector fields.

Let us return to the Van der Pol equation considered earlier in Section I: in Part I [1]:

(L.1)

€x =x—=x3+y
y=-x

where x,y € R. This is a family of ODE’s with a parameter €. If we assume € = 0, then equation (1.1)
becomes, in our formulation, a constrained system of corank 1 on R namely,

x3

oo] -3 (12)
A,v)= 0 , —x .

Many previous works have been published on this equation. The main objective in these works is to obtain
some information on the behavior of the solutions for sufficiently small but non-zero € via a small perturbation
from those for € = 0. Since € appears in front of x in (1.1), this problem is not an ordinary one, but belongs
rather to a class of singular perturbation problems.

In our present formulation, the Van der Pol equation (1.1) is regarded as a €-family of constrained systems.
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the National Science Foundation, Grant MIP-8614000. .
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which is of corank 1 only for € = 0. Otherwise, it has a corank equal to 0. We will consider this family as an
unfolding of Eq. (1.2).

Definition 1.1: unfolding

A family (Ay,V,) of constrained systems parameterized by W is called an unfolding of the constrained
system (A, v) if (Ag,Vvg) = (A, V) holds.
]
Hence a singular perturbation problem for ODE's, such as

{ai = f(x,y,€)
y =g(x,y,e)

where (x,y)e R” X R*™, is, in our formulation, to be interpreted as a study of an unfolding,

fe o] [faa.9]] 0
10 1]’ [g&xy.8)]] '

of the constrained system

o o] [feym]] s
bl Ll

This approach is based on the same idea from the bifurcation theory for vector fields: the system (1.5) for

€ = 0 corresponds to a degenerate singularity, and we are interested in the dynamical aspect of the system (1.4)
for € sufficiently near 0.

Since we have given several types of normal forms of corank 1 on R?2, in Section 4, of Part I [1], we will
make an attempt here to study their unfoldings in order to illustrate our method. Our approach will help reveal
the many rich phenomena associated with singular perturbation problems of ODE’s.

Example 1.2: Rapid point
Consider a l-pérameter unfolding,

(3

00 1
of a normal form of a 2-dimensional constrained system of corank 1; namely, HO 1] R [0] ] (See Proposi-

tion 4.12 in [1]). Equation (1.6) can also be written as follows in the form of an ODE:

2.



ex =1
y=0"

The phase portrait for this equation for small positive € is shown in Fig. 1 where all trajectories flow rapidly
from left to right along parallel horizontal lines.

Example 1.3: regular point on the characteristic surface

Consider next the 1-parameter unfolding

b))

or equivalently,

ex =%x
y'=1 ’

of the normal form (a) of Proposition 4.17 from Part I; namely,

[Hillal]

The phase portrait of this system for small positive € is shown in Fig. 2. Here we can see a slow motion of
order €° in a neighborhood of the characteristic surface x = 0, and a rapid motion of order g! flowing out of
this surface in Fig. 2(a), and into this surface in Fig. 2(b)..

In general, for a point p on a characteristic surface S of a constrained system of corank 1 on R?, we say
that the point p is of stable type (resp.; unstable type) if the 1st-order normal form around this point is of the

o) FlJbee- 651 £

The set of all points of stable type (tesp., unstable type) is called the stable part (resp.; unstable part ) of S and
is denoted by S-(resp.; S,). See Fig. 2(b) (resp.; Fig. 2(a)). The set S, = S, U S_ is called the regular part
of S.

form:

For more details, see Fenichel (2], who treats the singular perturbation problem around a regular point on
a characteristic surface in a general manner.

Example 1.4: Impasse point

Consider a 1-parameter unfolding,



e 0| |ty +ax?
01}’ 1+x !

or equivalently,

s - 2
{ex-—:ty+ax an

y=1%xx

of the normal form (aé) of Proposition 4.17 from Part I; namely,

00f{ [ty +ax?
01] 1+x

For brevity, let us choose the "+" sign in the upper right hand side, and assume @ > 0 in (1.7). This system has
a solution which moves along the stable part S_ of the characteristic surface S = {y = — ax?} until the trajec-
tory arrives at the neighborhood of the origin, where it moves rapidly to the right along a horizontal line, as
shown in Fig. 3. In other words, for € # 0, an orbit starting near the stable part S_ of S slowly moves along
S_ with a velocity of 0(1) until it reaches a neighborhood of the origin. Then the trajectory changes into a
rapid horizontal motion with the velocity of 0(1/€). Hence, the origin is the point where the 'uajectory velocity
changes from a slow motion to a fast motion. In general, such a point is called an impasse point [2]. In the
limit when € — O, the trajectory executes an instantaneous jump upon reaching an impasse point. Such jump
phenomenon has been investigated in depth by Ikegami [4].

Example 15: Equilibrium

Consider a 2-parameter unfolding

[HiRl!

parametrized by (€, &) or equivalently,
{e:’c =y tx
y =ay '
of the normal form (b ;) of Proposition 4.18 from Part I; namely,

Bl Bl

Let us choose the "—" sign in the upper right-hand side and assume a > 0. Figure 4 shows the phase portrait of
this system for small € > 0. This phase portrait shows the local structure near an equilibrium point which lies
on a regular part of the characteristic surface.



Example 1.6: Canard
Consider the 2-parameter unfolding

Lo b

or equivalently,

{ei =y +x?

. (1.8)
y=oxx :

represents a 2-parameter unfolding of the normal form (b5") of Proposition 4.18 from PartI; namely,

b b2

This system is known to have a peculiar solution called a "canard,” ("duck,” in English) which was first intro-
duced by Benoit et al. [S] using non-standard analysis. Since we do not have space to discuss the concept of
non-standard analysis, we will give only a rough definition of this peculiar solution. Roughly speaking, a
"canard” solution is a trajectory, a part of which is included in an &-neighborhood of the characteristic surface
S, which moves from the stable part S_ to the unstable part S,. For example, if we choose the "—" sign in the
right-hand sides of (1.8) and assume & = 0, then the solution of (1.8) is given by:

% yyg) = — - — (1.9

This orbit lies along an e-neighborhood of the characteristic surface S = {y = x?} from ¢ = — o0 to
t = + oo, as shown in Fig. 5. Of course, a "canard" solution does not have to be restricted along the entire
characteristic surface from ¢ = — oo to ¢ = + oo. In general, it may enter or leave the €-neighborhood as
shown in Fig. 6. Observe, however, that the solution associated with an impasse point in Fig. 3, though
superficially resembling the trajectory in Fig. 6 near the "fold" point, is not a "canard” because it does not con-
tain any point on the unstable part S,. In terms of non-standard analysis, the "canard" solutions associated with
the system

{ei =y -f(x)

] (1.10)
y=0o-x

has already been analyzed in detail, and their asymptotic expansions have been derived. See [5-7,9] for details.
Moreover, "canard” solutions of 3-dimensional ODE’s are discussed in Benoit [6). Here, we will present only
briefly the following theorem due to M. Diener (See [9]):



Theorem 1.7

Suppose the function f (x) has a fold point xg, ie., f'(xg) =0 but f "(xo) # 0. Then there exists a
parameter value 0. = iy such that the above system (1.10) has a canard solution around the point X = Xg.

Although we have shown directly that there exists a canard solution in the system (1.8) when . = O, the
results due to Benoit et al. [5] (See also Zvonkin et al. [9]) imply that this system (with a = 0) has additional
“canard” solutions which are different from (1.9). Moreover, the system (1.8) with o # O has canard solutions
if o is sufficiently small and negative.

Example 1.8: Bifurcation of characteristic surfaces

Consider the two-parameter unfolding

e 0| |ootx?+ay?
01} 1+x
or equivalently,
{e:’c:a:i:x2+ay2

y=1%xx

of the normal form (@4") of Proposition 4.17 from Part I, namely,

00 t x2 + ay?

o1} 1xx
For simplicity, let us choose the "+" sign in the right-hand side. The phase portrait of this system for small
€ > 0 is shown in Fig. 7 for the case @ > 0, and in Fig. 8 for the case @ < 0.

Figure 8 shows the change in the phase portraits when we decrease the value of o from a positive value to
a negative value. The solutions in Figs. 8 (b), (c) and (d), which are also "canards,” are described in [7]. It is
interesting to point out that the changes in the phase portraits from (b) to () occur within a very small range of
parameter values.
Example 1.9: saddle-node singularity

Recall the 1st-order normal form (b) of Proposition 4.18 from Part I; namely,

[HAA]

If the 1-jet of a constrained system is equivalent to (b;) with a = O (the degenerate case), its non-degenerate
2nd-order normal form is given by,




HEw|

Consider a 2-parameter unfolding of this normal form

o] L)

or equivalently,
{8.x =o;:::,: .. (1.11)
y= y

This system exhibits the saddle-node bifurcation of equilibria along the regular part of the characteristic surface.
If we choose the "—" sign in the first equation and the "+" sign in the second equation in the right-hand side of
(1.11), the associated phase portraits for & > 0, & = 0, and & < 0 are shown in Fig. 9.

As illustrated in the above examples, even if we simply restrict ourselves to 2-dimensional constrained
systems of corank 1, we can observe various types of dynamical behaviors in their unfoldings. These examples
have been studied in details by many authors. Since "a normal form" is originally defined for local systems
around a point in the phase space, the phenomena described above describe various local structures of con-
strained systems. For instance, Fig. 10 shows the phase portrait associated with the Van der Pol equation, where
the local structure around the points A, B, C, and D correspond to the phase portraits given in Examples 1.2,
13, 14, and 1.5; respectively. These observations suggest that it is useful to study the unfoldings of normal
forms of constrained systems in order to uncover what types of phase portraits are possible for constrained sys-
tems. In particular, it can reveal which types of phase portrait are more robust and hence often observed, as
well as those which are less likely to be observed. It will also show how a phase portrait changes when the sys-
tem is slightly perturbed. Thus, the normal form for constrained systems plays the same role as that for vector
fields (ODE’s). Therefore our point of view in this paper is to regard a singular perturbation problem for ODE’s
as a bifurcation problem for constrained systems, by enlarging the space of systems being investigated.

From a practical point of view, the most important unfoldings are those which are persistent; namely, a
family whose bifurcation behavior does not change in an essential way upon the introduction of small perturba-
tions. We call such an unfolding a versal unfolding for constrained system.

Since we are only concerned with the local behaviors of constrained systems near a point xge M deter-
mined by the finite (say, up to k) order terms of the Taylor expansion at this point, it follows that we need to
introduce the concept of unfoldings in the sense of k-jets; e.g., a family (A,f, v,_'f) of k-jets of a constrained sys-
tem parametrized by W is called an unfolding of a k-jet of a constrained system (A, v*) if it satisfies



(A, v = (Ak,vF) .

Similar to the case of vector fields, it is important to obtain versal unfoldings with a minimal number of
parameters, called miniversal unfoldings. We will not give here a systematic discussion on miniversal unfold-
ings for constrained systems. The reason is that a "versality <=> transversality” argument similar to that for

vector fields does not hold in its analogous form. The difficulty is as follow: in order to discuss versal unfold-

n .
ings, we need the space UC%’ )(M ), which is, however, neither a vectorspace nor a manifold. In contrast,
r=0

recall the space of k-jets of vector fields forms a vector space.
Nevertheless, the "versality <=> transversality" argument works for k-jets of constrained systems of corank
< 1, if we restrict our unfoldings to those having some additional properties, such as those defined below.
Definition 1.10: regular unfolding
An unfolding (A,f, v,f), pe R™ of a k-jet of constrained system (A" ) v") at xg is called a regular unfold-
ing, if the following conditions hold:

[U] There exist a neighborhood U = U X Uy <« M X R™ of (x(,0), and a representative (Ap, vy of
(A,’f, vb defined on U, so that A,, is of constant corank on U, for each fixed j.

d
R] an

Since the above restriction does not exclude the family of constrained systems

=0 det Ay(xg) # 0e R™.

&x = f(x.y)
xeR,yeR"™", 1n

y =g(y)
the class of "regular unfoldings" is large enough to treat such perturbation problems.
Definition 1.11: k-versal unfolding

@ Let (Al’,f, vb and (K{,‘\'r;'f) be unfoldings of a constrained system (A",v"). We say (A k v'f) is induced
from (X{,Tr;'f) if there exists a family (P% ,¢f+') of (kk+1)-jets of transformations with (Pﬁ,(bé‘“) =
identity, and a transformation of parameters A = A(W) satisfying A(0) = O such that

A5V = (PE O, [K’iao’ %}]

holds for 1 close to zero.

() We call a regular unfolding (A, v)) of (A¥, v¥) k-versal, if any regular unfolding (A%, V) of (A¥, v*) is
induced from (A",f, v,',‘).

It can be shown that the versal unfoldings in the above sense are characterized by "versality <=>

8-



transversality” arguments, but we will not give here the detail, and only give some results of calculations of ver-
sal unfoldings of normal forms obtained in the previous section. (For the detail, see Oka and Kokubu [11).)

Theorem 1.12: versal unfoldings

(1) The one-parameter family

e 0] |1 . & =1
ool lo or equivalently, j =0

is an infinite-versal unfolding of the infinite-order normal form

00 1
[[0 1] , [0]] . (rapid point: Part I, Proposition 4.12)
(2) The family

e 0] Pa—l—(l+B)x+fyxy ex = oH(1+R)x+yxy
o1]" 1 o 1y =1

7 -

is a 2-versal unfolding of the normal form

[ b ‘0‘ P:tx]] [regular slow point on the characteristic ]
01 ’

( 1 surface: Part I, Proposition 4.17 (a,)

(3) The family
e 0 [a+[5xiy +Ha+y)x+dxy & = o+Pxty Ha+y)x+axy
01]° 1£(1+0)x o 1y = 120+0x

is a 2-versal unfolding of the normal form

00 ty+ax impasse point: Part I,
0 1) [ I " | Proposition 4.17 (a,)

(4) The family
[ € 0| |o+Bxtytx+yxy &x = a+Pxty tx2yxy
0 1)’ &tx +{x? 15 = sta+la?

is a 2-versal unfolding of the normal form

00 ty+x? ,
01l 4y . [canard:Part I , Proposition 4.18 (bz)]

Here g, o, B, v, §, { are unfolding parameters.




2. APPENDIX

Appendix I: Fiber Bundles

In this Appendix, we will give a quick introduction to the concept of fiber bundles and some related appli-
cations which are necessary to understand this paper. Roughly speaking, a fiber bundle is a generalization of a
direct-product space; it consists of four objects: a total space E, a base space M, a fiber F, and a projection &
from E to M. Before stating the formal definition, it is instructive to study the following concrete examples
which inspire their generalization to fiber bundles.

Example 1.1: Cylinder

Let E be a cylinder S! x I, where S! denotes the unit circle and / denotes the closed interval [—1, 1).
We denote S! by M and I by F and define the projection

n:E & S'x71-M 4 §!

by neglecting the second component F = I of the direct product M X F A slxy, A geometrical interpre-
tation of the image of the projection 7t is shown in Fig. A.l. '

The above 4 objects, ( ,M,F ;%) = (S'x/,S',1; %), constitute an example of a trivial fiber bundi.
Here, “trivial” is a technical term used to mean that the fotal spa}:e E has a direct-product structure. The name
fiber bundle comes from the observation that E consists of pre-images 7t }(x) for each x € M, which looks like
a collecuon of fibers forming the surface of a cylinder, as depicted in Fig. A2. Consequently, we call the pre-
xmage 7"}(x) the fiber of x € M. Observe that Tt '(x) is homeomorphic to F.

Example 1.2: MOobius band

The MObius band E is formed by first twisting the band [—7t, %] X / and then joining the two end edges
together, as depicted in Fig. A.3. Assuming M = S'and F =1, we can define the natural projection"L

7t :Mobius band E > M = S!

by neglecting the second component F = /. Therefore, the Mobius band is another example of a fiber bundle
over S! with fiber /. However, the Mobius band E is not a trivial fiber bundle because E does not have a
direct-product structure. (Recall that £ is not just [—®,m] X /; an additional twisting transformation is
involved). Moreover the MObius band E is not orientable. In contrast, the cylinder S Vs I from Example 1.1
is orientable in the sense that it has a well-defined inside and outside surface. Nevertheless, the Mobius band is
locally trivial in the sense that for each x € M, there exists a neighborhood V, of x such that 1:"1(V,,) is
homeomorphic to the direct product V, X I; namely, & l(Vx) = V, x I, where the symbol = denotes a

TNO!B that unlike the cylinder in Fig. A.1, where its boundary has two components (the top and bottom
boundary), the boundary of the Mobius band has only one component which is equal to the sum of the top and
bottom boundaries of the rectangle in Fig. A.3.



In this example, the total space E also consists of a bundle of fibers; namely,

E=y k)
xeM

where each fiber T"!(x) is homeomorphic to F = I, as shown in Fig. A.S.
We will now generalize the above examples to an abstract object called a fiber bundle.
Definition 1.3. Fiber bundle .
A fiber bundlef is a collection (E, M, F; &t ) of smooth manifolds E, M, F, and a smooth mapping T
satisfying the following two properties:
(®  [projection property] The mapping
T:E->M
called the projection, is sur;“ective.
(i) [local triviality] For each x € M, there exists an open neighborhood V in M, and a diffeomorphism
Dy :n"(V) — V X F such that the diagram shown in Fig. A.6(a) commutes; i.e.,
TOyI(VXF) = T (VXF) ’

where @ denotes the brojéction of the direct product V X F into V; ie., w(x,f) =x for all
(x,f)e V X F. In particular, the collection (E, M, F; x) is called the fiber bundle E over M with
fiber F and projection w; or simply the fiber bundle E when the identity of M, F, and T are obvious
from the context. The space M is called the base space, or base manifold, F is called the standard fiber,
and 7t"!(x) is called the fiber of x, which is denoted by E, .

When the standard fiber F is a vector spa.ce V we call (E, M, V; x) a vector bundle.

Example 4.

Recall from Example 1.1 that the cylinder E = S! x I is a trivial fiber bundle over S'. In a similar way,
we can show that the infinite cylinder in Fig. A.7(a) is also a trivial fiber bundle over S! with fiber F = R, and
the natural projection 7t defined by neglecting the second component of S! x R. Moreover, in this case,
E = S! x R can be endowed with a vector bundle structure because the fiber F = R has a vector space struc-
ture. In contrast, E = S! x / from Example 1.1 is not a vector bundle because F = [ is not a vector space.

We can consider the infinite cylinder as another fiber bundle by interchanging the roles of S! and R, as
shown in Fig. A.7(b). Although the resulting product space E’ = R x S! is also a trivial fiber bundle (with
base manifold M” = R and standard fiber F’ = S), it is not a vector bundle because F = S is not a vector

T Rigorously speaking, this definition is actually for a fiber space, while the notion of fiber bundle requires
a few additional properties. For a precise definition of the fiber bundle and some related topics, see e.g., Schutz
[12] or Kobayashi and Nomizu [8].

.11-



space.
We will consider next the concept of a section of a fiber bundle.
Definition 1.5. Section
A section of a fiber bundle (E, M, F; %) is a smooth mapping
o:M - E

which satisfies © o O = idy,, where idy, denotes the identity map on M. In other words, ¢ makes the follow-
ing diagram commute:

E
o /N
idy

In the special case where the fiber bundle is trivial; i.e., E = M X F, a section G must have the form
o) = [x.f(x)] M >F .1

Conversely, for any smooth mapping f :M — F, the map o defined by (I.1) is a section of the trivial bundle
M X F. Note that in this special case, the section G can be interpreted as the graph of a mapping f , as shown
in Fig. A.8. Since the fiber bundle is a generalization of a direct-product space, the notion of a section can be
interpreted as a generalization of the graph of a mapping.

Example I.6.

Consider the MGbius bands as a fiber bundle over S! with fiber / = (~1,1]. If we define the map Gp by
assigningT Oe / in each fiber ©!(x), as the image of x, then this point in E projects under T back into x.
Hence, Oy is a section of the MoObius band. This section is shown in Fig. A9 as the lightly drawn closed loop
made up of all mid points of the band.

It is easy to verify that any sect.io,n G of the MObius band must cross O in the fiber / = [—1,1], an exam-
ple of which is depicted in Fig. A.9 by the bold closed loop. To see this, try drawing a closed loop along a
Mobius strip without crossing the middle loop. Such a loop must necessarily make 2 "revolutions,” compared to
only one in the loop which crosses the mid point, before it returns to the original point. This implies that G is

multi-valued and hence such a closed loop is nor a section.

Let us consider next an important example of a fiber bundle; namely; the tangent bundle of a smooth
manifold M. For simplicity, we assume in the sequel that the manifold M is contained in a suitable Euclidean
space R™. .

TRecall an element of E is a point on the MObius strip.

-12-



For each x € M, let T, M denote the set of all tangent vectors of M at x, called the tangent space at

x, and let TM denote the union of T, M forall x € M; ie.,

™ & U TM
xeM

To show that TM is also a manifold, let us define a local coordinate system on TM as follow:

¢y
@

Define the projection :TM —> M of each &, € T,M by (E,) = x. It follows that = ~'(x) = T, M.
Choose a local coordinate ¢ around x € M ; namely, ’
O:VoV,y=0n- - Ja) >y

where V denotes an open set in R" and V denotes a local coordinate neighborhood of x in M. Such a
local coordinate always exists since M is a manifold, and the Jacobian matrix Dcp(;) is well-defined since
M is contained in R™. Hence, any tangent vector §, aty near x can be expressed as

(§yl,§3’ &) e R
by means of the local coordinate ¢; i.e.,

&
& =D |:
&
. Let us denote the standard basis of the vector space formed by the tangent vectors at y by the notation
[i] vi = lv20 MR ( 34 i.e.,
ax,' y

['a?,' ], = D¢ [1| « i-th position

0

- J

In terms of the standard basis, each tangent vector §y can be represented by

0 d 2l 0
s e v

Using the projection 7 and the local coordinate ¢ defined above, we can now define

13-



@y :Vx R* = (V)

via the mapping (§ F,yl » o »E)) = &), Itis easy to verify that the collection {[n"(V) , Oy ] }asso-

ciated with each x € M defines a local coordinate system in TM . Hence TM is a manifold.

Observe that the projection ®:TM — M is surjective, and the local coordinate system
{[x‘l(V) , Dy ] } satisfies the condition of local triviality; namely, a local direct product V x R*. Moreover,

each fiber n‘l(x) = T, M is isomorphic to R" and is therefore an n-dimensional. Consequently, the 4 objects
{TM ,M ,R" ;) constitutes a vector bundle with the standard fiber R”, as depicted in Fig. A.10. The mani-
fold TM is called the tangent bundle of M .

Example 1.7. Tangent bundle of n-sphere S"

Consider the n-dimensional sphere S” in the (n+1)-dimensional Euclidean space R**!; ie., S < R**.
If we denote the usual Euclidean inner product by the notation {, ), then for x € S", the tangent space T, S" at
x is identified with the set

T,S" = {ueR"+1|(x,u)=o}
as shown in Fig. A.11. It follows that
Ts" = {(x,u)e S" xR* | (x,u) = 0} c R x R

is a tangent bundle.

To be more concrete, consider the 1-dimensional sphere S Vin R?, as shown in Fig. A.12, In this case, it
is convenient to identify R? with the complex plane €. Hence, the unit circle S! can be represented com-

pactly by
s'={ze C izl =1}={e‘°

where i & V=1, A any point z = e¢'®e S, the tangent space T, Stlis represented by

T,S! = {lexe R}.

056521:}

Hence,



TS! = {(z,uz)l Izl =1, Ae R}

is the tangent bundle of the unit circle S
In this case, we can define the mapping
T:TS' 5 S!xR
by
(z,Aiz) P (z,A) .
Since T is a diffeomorphism preserving each fiber of T S, it follows that the tangent bundle T S is glo-
bally trivial, i.e., '
Ts' = sIxR!
Consequently, the tangent bundle of the unit circle is diffeomorphic to the infinite cylinder in Example 1.4.
In contrast, it can be shown that the tangent bundle T S2 is not trivial.
We are now ready to define a vector field on a manifold M .
Definition. 1.8: Vector Field on Manifold

Any section v :M — TM of a tangent bundle TM of a smooth manifold M is called a vector field on
M.

It follows from the definition of a section that v is a vector field on M if the following diagram com-
mutes; namely, ® o v = idy,:

Note that for any x € M, v(x)e T, M. It follows that v assigns a tangent vector v(x) at x to each
point x € M. Therefore, the above definition coincides with our intuitive notion of a vector field. In fact, we
can even visualize a vector field on S! by using the property TS! = S!x R; namely, let us cut the cylinder
' x R! and identify T S" with 7 x R! for I = [0,21], as shown in Fig. A.13. Hence, a point Eoe TS'is
identified with the point (8,A)e 7/ X R. It follows that a vector field v on S! is any mapping

A:l - R!

which satisfies A(0) = A(2 %).



For the remaining part of Appendix I, we will consider the notion of a mapping between two vector bun-
dles. Recalling that vector bundles have vector spaces as their fibers and noting that the natural homomorphism
between vector spaces is a linear mapping, it follows that a mapping between vector bundles must preserve

fibers and map each fiber linearly. This observation motivates our next definition.
Definition. 1.9: Bundle Map
Let (E,M,V,n) and (E’,M’,V’, ) be smooth vector bundles. A smooth mapping

R:E 5 E’
is called a bundle map if, for each x € M, R maps each fiber E, = 7"'(x) linearly into the fiber E," for some
x" e M’. In other words, there exists a smooth map

rmM-m
such that the following diagram commutes:

R

E———FE’
T .4
M ————M
ie,™ o R =r o mholds, and forany x e M,
RlE::Ex =VoaV = ',.(x)
is a linear map between vector spaces. The map r :M — M’ is called a base map since M and M’ are the
bases of the respective vector bundles.

In the special case where (E,M,V,n) = (E’,M’,V’,7") and where the base map is the identity map
idy of M, the bundle map is called a bundle endomorphism.

If in addition a bundle endomorphism is invertible, we call it a bundle automorphism.

It is important to note that a bundle endomorphism R :E — E assigns, to each point x € M, a linear
map

Rx =RIE,:EZ —E, .
Hence, we can regard the bundle endomorphism as a map
R:x »R, .

Let us denote the set of all such linear maps of fibers of E by End(E); i.e.,



End(E) = (R, :E, — E, are linearmaps forallxe M} .

It follows from the above observation that a bundle endomorphism R can be interpreted as a mapping
R:M — End(E)

where x - R,.

In what follows we will equip a vector bundle structure with the set End(E) so that the above map
R:M — End(E) is a section.

Let t: End(E) — M be a map defined by R, — x and, for the vector space V, let End (V) denote the
set of all linear maps from V into itself. Since E is the total space of a vector bundle (E, M,V ,x) with the
standard fiber V, the inverse image Tc'l(x ), foranyxeM,is

l(x) = {R; :E, — E, are linear maps }
which is isomorphic to End (V') because E, is isomorphic to V. Hence, we have a vector bundle End(E) over
M with the standard fiber End (V') and the projection %, which we call the endomorphism bundle of the vector
bundle (E,M,V,n). A bundle endomorphism R :E — E can now be identified with a section of the
endomorphism bundle. Such an identification plays an important role in Section 3 of this paper, and in Appen-
dix II.
Appendix II: Tensor Bundle and Tensor Field

Let U and V be vector spaces over R. Let M (U,V) denote the vector space generated by the pairs
(u,v) where u € U and v € V. In other words, M (V,V) consists of linear combinations of finite number of
-pairs (u,v). Let N denote the vector subspace of M (U,V) which is spanned by elements of M (U,V) of the

form
(g tuz,v) = (uy,v) - (ua,v)

U,y i+vy) — (u,vy) = (u,v)
(ruyv)—-r,v)
u,rv)-r@u,v)

where u, Uy, upe U,v,v,vgeV,andre R.

Definition. II.1. Tensor Product

The tensor product of U and V is defined to be the quotient vector space M (U ,V)IN, and is denoted by
Uev.

There is a natural bilinear map
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UxXV >MUV)->MUVIN 2 vV

We denote the image of (u,v)e U XV byu @ v.

Proposition I1.2. Properties of Tensor Product

@

2
3

Letey, ez - -,e, beabasisof U and let f{, f5, - - -, f, be abasis of V. Then

{e; ®fjti=12-+,m,j=12, - ,n)
isabasisof U ® V.
dim U ® V = (dim U)(dim V)

Let Hom (U ,V') denote the set of all linear maps from U into V. Then Hom (U,V) is isomorphic to
V® U, where U" is the dual vector space of U

Proof.

0))

@
€)

Since any element of M (U,V) can be written in the form

Xr,,,v,) , ,eR
P

where (4, ,v,)e M(U,V),p =12, - - -, py, for some p it follows that the elements of U ® V has

the form
Y rp(u, ®v,)
4

Since u, and v, can be expressed in terms of their respective basis; namely,

i=1

m n

up = 3, @pe; and v, = 21 Bp,f
Jj=
where o, BP; € R, it follows that

2 u,®v,) = ¥ 1, 0p, By, (€:®F)
P PiJ
Hence, every element of U ® V is spanned by ¢; ® f;. The linear independence of {¢;®f ;1 follows
from the linear independence of {¢;} and {f;}. For a more precise proof, see [8].
This property follows directly from property (1).
From property (1), the tensor product V ® U" is spanned by {f ;i ® e}, where {¢;’} is the dual basis
of {¢;},ie., e;' is the linear functional
&:U->R,u >0 .

m
foranyu = ), o; ;€ U.

i=1
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To each f; ®e;‘, let us assign a linear map from U to V via the matrix representation

column i

in terms of the bases {e;} of U and (f j} of V. We can define a map h by this assignment and extend it
linearly to the entire vector space V® U . Since

h :fj® e,-' g Aij

gives a one-to-one correspondence between the bases of V® U™ and those of Hom (U ,V), it follows that A is
an isomorphism.
|

Observe that in the special case where U =V, the above property (3) reduces to the following isomor-
phism:
V®V" S End(V)
where 53 denotes an isomorphism. We call V® V" the tensor space of type (1,1).

Recall now the endomorphism bundle [End (E),M,End(V )] of a vector bundle (E, M, V) defined ear-
lier in Appendix I. If we identify the vector space End(V) with V* ® V, whose isomorphism has just been
established, then we can also identify the vector bundle End (E) with.a vector bundle over M whose standard
fiber is the tensor space V® V*. We denote this vector bundle by (E®E" ,M,VO®V") and call it the tensor
bundle of (E ,M,V') of type (1,1). '

In the remaining part of this appendix, we will consider the special case of the tensor bundle of a tangent
bundle TM ; ie., TM ® T* M, where T* M denotes the cotangent bundle of M .

Recall from Appendix I that a bundle endomorphism R of TM can be considered as a section of the
endomorphism bundle End(TM). Since End(TM) can be identified with the tensor bundle TM ® T* M, it
follows that the bundle endomorphism R of TM is a section of the tensor bundle TM ® T' M ie., a mapping

R:x PRx)eT,M ® T M .
Since the vector space T,M ® T;M is spanned by

[i] ® (dr), ,xe M
axj x

where {(dx,-), }and {[%] }denote a basis of T;M and T, M, respectively, in terms of a local coordinate
J
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system around x € M, it follows that the map R can be expressed as
0
R = ZR,J(X) a— ® dx;
ij Xj
We call the map R a tensor field on M of type (1,1).
Appendix Ill. Transformation Group of Constrained Systems (or Generalized Vector Fields)

Our purpose of this appendix is to discuss the structure of the set G = AUT (TM ) ]} Diff (M) of all
transformations of constrained systems or generalized vector fields. Here, a transformation consists of a pair
(P.$), where P denotes a bundle automorphism f TM and ¢ is a diffeomorphism of M. Our first task is to
prove that the set G forms a group.

Proposition II1.1.

The set G forms a group under the multiplication operation
P.9) - (Q.¥) = (PoThoQ oT¢™,¢oy) (1)

where (P,¢) and (Q,Vy) are transformations of a constrained system, or generalized vector field, and T¢
denotes the tangent map of ¢.

Proof.
We will show the group axioms are satisfied.
(@) Associativity
For any (P, 9), (Q,V), and (R,{) e G, we will prove that
r.0-@w] ®o=c.0 (0w &b). (m.2)

First observe that composition among djffeomorphisms is associative; namely, (¢poy) o § = po(yo{). Next,
observe that the chain rule operation is functorial; namely, T(¢ oy) = T¢ oTy. Applying these two proper-
ties repeatedly to the left-hand side (Lh.s.) and the right-hand side (r.h.s.) of (II1.2), respectively, we obtain:

Lh.s. [(P,cp) . (Q,\p)] "R, =(PoTooQ T, p0y) - (R,0)

[(P oThoQ oT¢-l) oT(doy)oR oT(¢o\y)'l,(q> o\y)oC] (IL.3)

[P oT¢oQ oTyoR orw"om“,@ww)ot;]
rhs. =(P,¢) - [<Q.\v) : (R.C)] =(P.9) - (Q eTyoR o TY™ ,yol)

(I1.4)
= [p oT$o(Q oTyoR oTy ™) oT¢-l,¢o(\lJOC)]

Since (II1.3) and (I11.4) are identical, (II1.2) holds.
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(ii) Existence of unit element

We claim that (Idqy ,id)y) is the unit element of G, where Idp, denotes the identity map (bundle auto-
morphism) of TM and idy, denotes the identity map of M. Indeed, for any (P, ¢) e G, we have

Udny ,idy) - (P,9) = [Idm oT (idy ) oP oT(idyg)™" , idy o¢] = (P,9)
and
(P,9) - (dpy ,idy) = (P oT§oldpy oT¢™ ,9oidy) = (P,9) .

(iii) Existence of inverse element

We claim that the inverse of any element (P,$)e G is given by (T(i)‘1 op~! oTo, ¢") where P!
(resp., ¢~ 1) is the inverse of P (resp., 9). Indeed,

P.0)- (T¢ oPoTg,¢7) = [P oTHo (T P oT) o TH, ¢ o¢"]

= (ldry ,idy)

T¢loPoTh,07Y) - (P.9) = [(W‘ oP~loT¢)oT¢™ oP o(T¢),¢7! °¢]

= (ldgy ,idy)
]

Remark

Since the set {(P,idM)e G | P is any bundle automorphism }forms a normal subgroup of G, the

group G is said to be a semi-direct product group of the "group of bundle automorphisms” and the "group of
diffeomorphisms,” in view of the structure induced by the above multiplication operation. In order to indicate it,
we use the symbol instead of X.

Proposition 1112

The group G acts on the set of all constrained systems, (or generalized vector fields); that is, the follow-
ing formulae hold:

(@)  Udry . idy)s(A,v) = (A,V)
@ @ [P0 = [QvE.olay o my @0, @ Wes. m for oy
A,v)eCXm) [or QC)((M)].

Proof. Recall from definition (2.10) of Section 2 that
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P.0):(A,v) & (P oTHoAoT¢™ P oThoved™)).
Applying this definition, we obtain

(i) (dpy.idy)s(A,v) = (dpy o T (idy) o A o T (idyy ), Idpyy o T (idyy) o v oidys’) = (A, V) .
@ @.vs [®.0(A.)

=(Q,V)i(P oTHoATH™ P oThovod™)

[Q oTYo(P oTHoAoTo NoTy ™} ,Q oTyo(P qu)oon-l)o\l[—l]

(0] oT\yoP oT¢voT¢-1oT\|;'1'Q °T\|!°P °T¢°V°¢°l o\l]_l)
= (Q oT\yoP oT\l{-l oT\I[oT¢voT¢_loT\|f'l,Q OT\IIOP oT\If'loT\l[oT(povo(p"l o\v—])

= [(Q oTyoP oTy )oT(yod)oAoT(yo)™,(Q oTyoP oTw")oT(w°¢)ovo(wo¢“)]
= (Q oTyoP oTY ™, yod)s(A,V)
= [(Q"I’) ) (P!¢)]#(Alv) .

Appendix IV. Proof of: "Y, and R, are well-defined”

In order to prove that the mappings Y, and R, defined in Section 3 from TM to T(TM) are well-
defined, let us first review the actions of the coordinate transformations of TM and T(TM). From the
definition of the tangent bundle in Appendix I, we can induce a coordinate transformation of TM from that of
M. In particular, let (x,&) and (y,{) represent the local coordinates of a point on TM, where x and y are
related by a coordinate transformation y = ¢(x) on M. Denoting the corresponding transformation of (x,£) on
TM by T ¢(x, &), we obtain

0.0 =Toa.5 = [4).D 06012

In other words, a coordinate change ¢ of x in M "induces” a coordinate change T¢ of (x,&) in TM. We can
iterate this transformation rule recursively to induce a similar transformation on 7 (TM ) since TM itself can be
considered as a manifold. Denoting this transformation by T2¢, we obtain

C0Lw =TEEE = [100.0.D [T6w.d] - v.m)
= [0 00 £.00) - v.D 6wy -+ D20 v -8

Since both Y, and R, are mappings from TM into T(TM), for them to be well defined, we must prove the
following two relationships hold for any coordinate transformation ¢ of M :
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T2poY, =Y, T av.1)
T%oR, =R, T} av2)

The mapping Y is a well-defined vector field on M ; i.e.,

Y
M—TM

id I orY:M — TM, with koY = idy,
T
M

Observe that in terms of the local coordinate system (x,&) on TM, the image Y (x) of x on M must be written

with 2 components; namely,
Y(x) = [x,x"'(x)]

We will call the second component ;(x) of Y(x) as the principal part of the vector field Y. To avoid clutter,
however, we will often abuse our notation and simply denote a vector field by its principal part and ignore writ-
ing the first component. Since Y is well defined, it must satisfy

T¢oY =Y od
or
b0 4 7)) = a0 F o))
It follows that

Dox) - Y(x)=Y [¢(x>] : av.)
Similarly, since a bundle endomorphism
R:TM - TM

is also well defined, it must satisfy

TQoR =R oTd
o

[b2.0 0> - 8] = fotr o) - D 0 - 8]
It follows that

D¢x) R(x)=R [¢(x)] D o(x) : av.4)

We are now ready to prove (IV.1) by writing



T’poY.(x,8) = T% [x,a.Y(xxDY(x) ¢)

. av.s)
= [060.0 600 - £.0 6 - (0.0 ) - DY (0) - £+ Doty - Y - 3
and
Y, oTox,8) = 7, (420, 6x) - £
v.6)
= [perp 0 -& ¥ o). ox foer ] - D oy - 2]
Differentiating (IV.3) with respect to x, we obtain
D%p(x) - Y(x)+ D ¢(x) - DY (x) = DY [(b(x)] - D ¢(x) av.n

Substituting (IV.3) and (IV.7) into (IV.5), we obtain (IV.6). Hence (IV.1) holds for any coordinatc systcm.

Similarly, we can prove (IV.2) by writing
T?%oR,(x,8) = T2(x,E,0,R(x) - &) = [¢(x),D o(x) - £,0,D ¢(x) - R(x) - §] (Iv.8)

and

R.oTow.® =R, (060,060 8] = [pr).D o) - £0.R [40)] - Do E] v
Substituting (IV.4) into (IV.8), we obtain (IV.9). Hence {IV.2) also holds for any coordinate system. This com-
pletes our proof.

]
Appendix V. Proof of: "expt(R*,Y**!) are well-defined”
Let (R,Y) and (R ',.Y') be representatives of the (k, k+1)-jet (R*,Y**!) at xye M of an infinitcsimal

generator.

Proposition V.1

The local one-parameter groups exp¢(R,Y) and exp¢(R’,Y”) in G are (k, k+1)-jet equivalent at xg for
any ¢. Furthermore, the (k, k+1)-jet

expt(R*, Y4 & jEA+ exp (R, Y)

forms a local one-parameter group in Jfo"‘“G .

Proof. Recall that exp¢(R,Y) is defined by
expt(R,Y) = o loexpt(R,+Y,)
where O is the group isomorphism on its image

0 :AUT(TM) X Diff (M) — Diff (TM)




(P,¢) > P oTo

and R, +Y, is a vector field on TM defined by (R,+Y,) (x,£) = [x,&,Y(x),[R x) + DY(x)]&].for a
local coordinate (x,&) of TM (see Chapter 3).

Since (R,Y) and (R’,Y’) are (k k+1)-jet equivalent at xq, the vector fields (R, +Y,) and (R, +Y,)
on TM are (k+1)-jet equivalent at (xo,0). Moreover, these vector fields vanish at (xq,0), for Y (xq) = 0.
Hence, the flows expt(R,+Y, ) and expt(R, +Y . ') are also (k+1)-jet equivalent at (io, 0). (See Appendix 3

of [13]). These flows can be written in the form

expt(R ,+Y ,)(x,&) = [¢‘(X).F‘(x)§]

| expIRHY )8 = [¢"(x),F"(x)é]

where ¢ and ¢ are diffeomorphisms of M, and F* and F"! are bundle isomorphisms of TM covering ¢’ and
¢", respectively. The (k+1)-jet equivalence of expt(R,+Y,) and expt(R"+Y _') at (xg,0) implies the
(k, k+1)-jet equivalence of (F*,¢') and (F*,¢") at xo. It follows that 6~(F",¢’) and 6~ }(F”, ®*) are also
(k Jk+1)-jet equivalent. This completes the proof of the first part of Proposition V.1.

It remains to prove
exp (t+5 )(R*, YE*) = expt(RE, Y**) - exps (R, Y*HY) .
This follows upon taking the (k ,k+1)-jet of both sides of
exp(t+s)R,Y) = expt(R,Y) - expsR,Y)

where (R, Y) is a representative of (R¥, Y**!), and observing that

jfo**‘{mt(R,Y) : ms(R,Y)} = [ e - [t exps 1))

Appendix VI. Proof of the Reduction Theorem for Constrained System Normal Forms

The basic outline of the proof of this theorem is similar to that in [13] for the Reduction Theorem 5.4.
There is a significant difference, however, between the bracket product { , } for generalized vector fields, which
does not satisfy the Jacobi identity, and the Lie bracket for vector fields, which does. It is necessary therefore

for us to devise another approach in place of the Jacobi identity.

Consider the kth-order normal form problem

—;’; () = - {é".a"“ + hk(:)} (VL)
k
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with
k-1
{ k-l’ak-l} =0 (V1.2)

.:’k = (Rk. Yk+1)E Jfo.k-rl gq'
-] = (Ak—l’vk—l)e Jxko-l Cq}‘ ,

where

and

he = A vide H GO .
Choose the subspace

oo

and let §k denote the complementary space of By, in H, 09(’ .
We will prove first that for any two elements /4, and hk' satisfying 7, (hkj = (h,;), we can deform A,
to h, by integrating (VL.1) with (VI.2). Indeed, since iy — h; € By, Ay is of the form
he = (Ee,ao) + hg
for some &, . Consider the differential equation .

L () = = (Bea* + O

under the initial condition A.(0) = h,. Note that the condition (VL2) is satisfied for 7,. Since
{Ek.a* ™' + )y = (&, ag), it follows that the solution of this differential equation is given by

he(2) = 1 (0) — £ (&, a0}
Hence, by choosing t = 1, we obtain

he(1) = 1 ) = (&, a0} = hy = (&, a0l = hy
which proves our preceding assertion.

It suffices therefore to prove that the normal form problem (VI.1)-(VI.2) reduces to the one on §k;
namely,

'd%' be(t) = - m, [{ék_l,ak-l.*‘ 5&(‘)} ] (VL3)
k ,

with (V1.2), as in the reduction theorem for vector field normal forms. Putting A (1) = b, (¢) + I;k(t), and
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b(t) = {Ck(t),ao}for some {;(t) e Hk.k.,.lgq, we obtain

{g",a"-‘ + h,,(:)} = {gk-l,a"" + b‘k(:)} + {E,.k,a"-l + 13k(r)} + {g",bk(:)}
k k k k
= {ﬁk_lsak-l + 5/:(0} + {&k,ao}+ {E..o, {Qk(’),ao}}
k

Since the second term belongs to B, we must prove that the third term also belongs to B,. If it can be proved,
then the projection of the equation (VI.I) by m; becomes (VL3), which completes the proof, since (VI.3)

depends only on 5k, not on by, and therefore, is solved within 15,‘.

For&y = (Rp, Y1), ag = (Ag. Vo), Lk = Zis tesr)s

{50: {Ce» a0} } = {(R oY1) {(Zk’ te+1)» (Ao, Vo) }}

{(R oY1), [Zk A&y A0 ZiVo — [tars Vo]] }

[R oZeAo - &, A0 — L, (ZeAg— %, A0, Rg [Zlc Vo — [te1, Vo]] - [Y 10 Z Vo — [teers Vo]]]

Note that condition (V1.2) implies {Ea ap) = 0;ie.,
{(RO' Y, (AO'Vo)} = [Rvo —Zy,ApRovo - [Yl,vO]] =0.

Hence, we have
RoAg =Ly A ‘ (V14)
and

Rgv = [Y, vl (V15)

Before proceeding further, we pause here to give a Lemma, whose proof is given in Chapter 1, Section 3
of [8]:

Lemma VI.1
L,(TS) = @€, T)S +TH,S) (VL6)
(u,Tw] = L, T)w + T[u,w] (VLD
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;C[u.WIT = iu;fwT -£,Z,T , (V1Y)

holds for (jets of) bundle endomorphism T, S, and (jets of) vector fields u,v.

Using the above Lemma, we can deform the first component of {&0, {&.ap) }as follows:

RoZiAo - &, A0 — Ly, (ZeAg-d,, Ag)

= RoZ Ao - Ro,, Ag) — Ly (Z,Ap) + £y (L, A0

fen

= RoZeAg — Ro &4, A0) — (Xy,Ze) Ao — Zey Ag) +€y (&), Ao)
in view of (VL6)

= RoZx Ao -, (RoAd) + (£, Ro) Ao — (Ly Z) Ag — Z, &Ly Ag)
+dy,, 140 + L, Ly Ag)

in view of (VI.6) and (VL8)
= RoZyAg — &, Xy, Ag) + (L, ,Ro) Ag — (Ly Zy) Ag
- ZyRoAg + %y, oy Ao + Ly, €y, Ag)
in view of (V1.4)
= RZi—ZiRo+4y, Ro-Ly Zi) Ao~ L iy, Ao -

Similarly, for the second component, we have
Ry [Zk Vo {41, Vo]] - [Y 12k Vo — [tk+1"’o]]
= RoZy Vo — Rolte41, Vol = [Y1,Z; vol + [er (k41 Vo]]
= RoZxVo = [te41, Ro Vol + (£,,, Ro) Vo — Ly, Z¢) Yo — Z[Y 1, v0] + [Yl' (k410 Vo]]
= RoZ;, Vo — [tM, (Y, vo]] + (£, ,Ro) Vo
= @rZOYo=ZeRovo~ [t Y1l = [von (Y 1oteu]
in view of the Jacobi identity and (VL.5)

= RoZx=Z Ry, Ro—Ly Zx) Vo — [‘ Y1 te] ,Vo] :

It follows that {io, {Ck» ao}} is of the form {(X & Urs1) » (Ags vo)} for
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Xy = RoZy —ZyR +itk“Ro - ;(yle, Upey == [Yyte41]. Hence {go,{ck,ao} }E By. This completes
our proof of the reduction theorem for constrained system normal forms.

|
Appendix VII. Normal Forms for Regular Slow Point

Let (A,v) denote an m-dimensional constrained system of corank 1 whose leading part (Ag,Vq) is
equivalent to

b o]

where I,,,_; denotes the unit matrix of order (m-1) and
bmy 2010 --- 0
m—1 components

Proposition VII.1

The non-degenerate infinite order normal form of (A, v) is given by

bl ]

Proof. To avoid clutter, we will use the following notations:

x,y, e RXxRXx R"2

z2=(2,23 " " ,Zp3) 4 (z),1 i

IA
3
b

kK=(kpka - kmp) & k),1 Si € m=2

k

k k
Zk =le222 e

m-1

Zm—1

m-2

Ikl = 3 &k ,14=(0,0, --- 1,0 - - - 0)
i=1

T

o.th position
) m2 3
—Q®dz= _— ;
32 84r= X 5 04
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"To consider the nth-order normal form problem, let us define

dp = [%@dy+%®dz,§;]

and compute {€,,ao}, where §, € H, ., gq For any homogeneous polynomial f (x,y,z) of order n of
X, Y, and z, we have

{f(x,yx)%@dx,oJ,ao} =0
' 2 1 1. [.2 2
{:f(x,)’,z)g®dy,0‘,ao}— [f—a—x-®dy, a]
f(x)’z)i®dz- 0l,apt = fi®dz' 0
L e ax B » 0 ox L
B"(x ,Z)i®dx Oﬁa}—o
T
. [ a 9 _ i i
{:f(x,)’,z)'g@dy,OJ,ao}- [fay®dy, ay]
( 3 )
{Lf(x,)’,z)3;®dz;,0],ao} = [f'a';®dzis0]
([ : P 3
{f(x.yz)szeadx,o ,ao}.—. 0
. 3 . ) ) ,
{f(x,y,z)a—zi®dy.0J,ao}- Pa—l®dy,fal]
}'(xyz)i-®dz. 0l,app = f—a—®dz- 0
MARF’? pEp o 3z; o

Foralli, j,kwithi + j + |kl = n+l1, we have
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i-1,k 0 i j k-lg 0 . ioj-1.k O
= [jx yl-1zk = ® dy +§kax‘y’z o ® dzpg, jx'y/12¢ E]

]
|
Q—
|
<
<
N“_
®
&
?-‘.
N
T
N
|
—

—tx"ly’z" _ ® dx, jx yj-'l k a
az,

The preceding computation shows that the complementary space 13,, to the image B, of the linear map

gn € Hn,n+l Qq_) {&,u aO}l € H, qu

can be identified as the subspace spanned by

[o,xfyfzk aix] [o,xf'yfzk aay] [o X ’zk-aTI']

for i +j+ 1kl = i’+j+1kl = n+1,i"#0,1 <! < m=2. It suffices to consider the reduced
normal form problem on this complementary space. The preceding computation also shows that the space

Qn—l é {&u-l € Hn—-l,ngql [gn—b aola-1 = 0}

is spanned by

f(x ¥, z) ®dx 0] {f(x,y,z) d

E?dx,OJ ,

n_0 9
f(x,y z)—®dx 0] [Oz ay] [Oz“az’]

.
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[-jx y/- lz"—®dy— Z koxiyid<e aiébdzk ,xiylz¥ %
=1

forl <! < m-2,i+j+1kl =n, Inl = n,and f is any homogeneous polynomial of order n—1.

Now consider the reduced 1st order normal form problem

—b(t)—-ﬂ?l [§0oao+51(t)]1]»51€§1,§06 go-

dt
Since
» 3 2 2 fox2] for
B, = [O,x ax] [Oya ] [Oz,ax],[o,xay] [Oxaz,
) d : d
[g@dx,o], a—y-@dx,o ,[Zt&dx,o]
d 0 d
QO - [0 Z ay]' [O'Zp azq ]v 0’ ax] ’ >
9 0 _ 9 d
[— 8x®dy’y 31]’ ax®d"”z"a ]
we can write
d
by(t) = agr) [Ox ]+l3(t)[ 'a';]
m=2 0. 8( ) m-2 0 P
+ y - ) -
E Y () |0,z = | + &(t) [0,x % +1_}_:,l ez(t)[ x az,]
and

§0=A[—a-®dx,o]+3[i®dx,o]
ox

= c ®dx.0l+ % D, |0z 2

+ 2 ®da,0l+ Y D loz 2

pIR z, p§1 P zpay

_d_ d
+ Oz +F|0,x —
lSp.?Sm-Z [ P oz ] [ ax]

p=1
2 d m2 a d
ax®dy'y ax]+Pz=:1HP[ > 2 ax}

+G

Using these bases, we calculated the bracket expressions summarized in Table VII.1. From these expressions, we
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obtain the following system of differential equations:

a=Aa
B=AB+FB-Go

Y =AY, -DB-Y EpY, +Fy, — Hio
P

. m~=2
8=BG+ZD1£I—F8
1=1

é[ =Cla+zEplep —FGI
p

If a(0) # 0, we can choose suitable A, B, Cp, D,,E,,F,G,and H, so that
o) =£1,pM) =M =81) =¢(1)=0.
Hence, the nondegenerate 1st-order normal form is

b))

To obtain the higher order normal forms, consider

45 ay=- 145
” b,(t) =—m, [{g,,_l.a +b,;(t)}..]

where

(En18' + 8,0}y = (Epeyar) = {@,,_1- [o’ix %]}

We can eliminate all n-jets for n° > 2 with the help of Table VII.2, which lists the bracket multiplications of

d
€r-1€  pandx —.

ox
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FIGURE CAPTIONS

Fig. 1. Phase portrait of constrained system defined by &x = 1 and y = 0. The double arrowheads

denote rapid motions.
Fig. 2. (a) Phase portraits associated with & = x,y = 1. (b) Phase portraits associated with €&x = —x,

Y = L. As usual, the double arrowhead denote a rapid motion of the trajectories.

Fig. 3. Phase portrait associated with ex = y+axz,)3 = 1+ x,wherea > 0.

Fig. 4. Phase portrait associated with &x = oy —x,y = ay,wherea > 0.



Fig. 5. Phase portrait associated with & = y —x2,y = & — x. The trajectory stradling along the para-

bola is called a ‘‘canard.”

Fig. 6. A typical ‘‘canard’’ trajectory associated with the phase portrait of Fig. 11 may approach the &-
neighborhood of S_ at some time to ¢, and leaves &-neighborhood of S, at sometime 7.

Fig. 7. Phase portraits associated with &x = &+ x2 + ay?,y 1+ x, where a > 0.

Fig. 8. Phase portraits associated with ex = o + x2 + ay?,y 1+ x, wherea < 0.

Fig. 9. Phase portraits associated withex = x,y = o+ y2

Fig. 10. Phase portrait associated with the Van der Pol equation.

FIGURE CAPTIONS FOR APPENDIX

Fig. A.l1. In this example of a trivial fiber bundle, the total space E is a cylinder, the base space M is the
unit circle, the fiber F is the unit interval, and the projection 7t is the obvious map of the cylinder

into the unit circle.

Fig. A.2. The surface of the cylinder can be thought of as a sheet made of vertical fibers, one of which is
’ shown in bold. Observe that each fiber projects naturally into a point x on the circumference of

the unit circle.

Fig. A.3. A Mobius band is made by first twisting one end of a ribbon and then pasting the two end edges
together.

Fig. A4. Geometrical interpretation of a locally-trivial fiber bundle: in any neighborhood V, of x, n"l(V,)
has the same structure as that of Fig. A.2; namely, a narrow band made of parallel fibers.

Fig. A.S. Each fiber t™!(x) of the Mbius band is homeomorphic to unit interval I. Moreover, because of
the twisting operation, the top and bottom boundaries of the ribbon (prior to the twist) now form a
contiguous loop; namely, starting from any point on either boundary and traversing consistently
on the boundary along any direction, one eventually returns to the original point after having
traversed all points on both the top and the bottom boundaries exactly once. In other words, the
boundary is homeomorphic to a circle S.

Fig. A.6. (a) This diagram commutes namely 1’ e®y, = . (b) Geometrical interpretation of the commuta-
tive diagram of a fiber bundle. Note that shaded region 7~ 1(V) is diffeomorphic to that of the
local direct-product V X F,

Fig. A.7. (a) By choosing E = S! x R, this infinite cylinder is not only a trivial fiber bundle but also a
vector bundle because in this case, F 2 R is a vector space. (b) By choosing E/ = R x S,
this infinite cylinder is a trivial fiber bundle but not a vector bundle because in this case,
F 8 S1isnota vector space.
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Fig. A8.

Fig. A9,

Fig. A.10.

Fig. A.11.

Fig. A.12.

Fig. A.13.

For a trivial fiber bundle, a section G can be interpreted as the graph of a single-valued function
f.
Two examples of a section of a Mdbius band: The first section Gy is formed by the union of the

middle points of all fibers. The second section, shown by the bold closed curve, is any closed loop
drawn on the surface of the M&bius band which crosses the first section.

For each point x on a manifold M, the plane tangent to M at x is denoted by T, M. The picture
on the left shows 2 tangent planes T, M and TyM. The collection of all such tangent planes over
all points of M is the tangent bundle TM . The picture on the right shows each fiber T, M at x is
diffeomorphic to R".

An n -dimensional tangent plane on an n-dimensional sphere S” in R™*!. The collection of all
such tangent planes overall points of $” is the tangent bundle of S”.

Special case of Fig. A.11 drawn for n = 1. Here, the collection of all tangent lines to the unit
circle S is the tangent bundle of S .

A vector field on S! can be identified with a mapping A/ — R!, with A(0) = A(2m).
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Table VIL.1. Bracket expressions for {g,, B]}, where £ ego and B] € §].

W o o o) o o [bnd)  [eod) |03
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Table VII.2. Bracket expressions for {§ _,, a;}

o)

IR IR

2
ox

i+ ] i
(0, x™ yd & 2 (0,(1-1) x'yIz"
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