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NORMAL FORMS FOR CONSTRAINED NONLINEAR DIFFERENTIAL EQUATIONS

PARTE: BDTURCATION^

ttLeon O. Chua and Hiroe Oka

Abstract

Applying the theory developed in Part I we re-examine the classic singular perturbaton problem in terms

of unfoldings of a generalized nonlinear vector field. Our novel approach is based on a bifurcation point of

view.

1. UNFOLDINGS OF GENERALIZED VECTOR FIELDS

In Part I [1], constrained systems are formulated on a manifold and an equivalence relation is introduced

which allows us to develop a method for obtaining normal forms for constrained systems which works in the

same way as that for vector fields.

Let us return to the Van der Pol equation considered earlier in Section 1: in Part / [1]:

(1.1)

where x.yeR. This is a family of ODE's with a parameter e. If we assume e = 0, then equation (1.1)

becomes, in our formulation, a constrained system ofcorank 1on R2; namely,

(A,v) =
0 0

0 1

(1.2)
-X

Many previous works have been published on this equation. The main objective in these works is to obtain

some information on the behavior of the solutions for sufficiently small but non-zero £ via a small perturbation

from those for e = 0. Since e appears in front of x in (1.1), this problem is not an ordinary one, but belongs

rather to a class of singularperturbation problems.

In our present formulation, the Van der Polequation (1.1) is regarded as a e-family of constrained systems.

'This research is supported in part by the Office of Naval Research, Contract N00014-86-K-0351 and by
the National Science Foundation, Grant MIP-8614000.

tt
"L. O. Chua is with theUniversity of California, Berkeley, CA94720.

H. Okais with the Department of Mathematics, Kyoto University, Kyoto, 606, Japan.
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(Ag.Ve) =
e 0

0 1

x--+y (1.3)

— X

which is of corank 1 only for e = 0. Otherwise, it has a corank equal to 0. We will consider this family as an

unfolding of Eq. (1.2).

Definition 1.1: unfolding

A family (A^,v^) of constrained systems parameterized by ^l is called an unfolding of the constrained

system (A, v) if (Aq, v0) = (A, v) holds.

Hence a singular perturbation problem for ODE's, such as

fei =/(x,;y,e)
\y =g(x,y,z)

where (x,y) e Rr x Rrt~r, is, in our formulation, to be interpreted as a study of an unfolding,

e 0

[o 'l t

f(x,y,e)

£(*,;y,e)J

of the constrained system

[o 0
[o 1 »

f(x,y,0)]
g(x,y,0)\

[e 0
1° l •

1

°J.

(1.4)

(1.5)

This approach is based on the same idea from the bifurcation theory for vector fields: the system (l.S) for

£ = 0 corresponds to a degenerate singularity, and we are interested in the dynamical aspect of the system (1.4)

for e sufficiently near 0.

Since we have given several types of normal forms ofcorank 1 on R2, in Section 4, ofPart I [1], we will

make an attempt here to study their unfoldings in order to illustrate our method. Our approach will help reveal

the many rich phenomena associated with singular perturbation problems of ODE's.

Example 12: Rapidpoint

Consider a 1-parameter unfolding,

(1.6)

of a normal form of a 2-dimensional constrained system of corank 1; namely,
[o 0
[o 1 »

1

0
(See Proposi-

don 4.12 in [1]). Equation (1.6) can also be written as follows in the form of an ODE:



The phase portrait for this equation for small positive £ is shown in Fig. 1 where all trajectories flow rapidly

from left to right along parallel horizontal lines.

Example 13: regularpoint on the characteristic surface

Consider next the 1-parameter unfolding

£ 0

Jo 1 t

±x

1

or equivalently,

of the normal form (a) of Proposition 4.17 from Part I; namely,

0 0

[0 1 »

±x

1

The phase portrait of this system for small positive £ is shown in Fig. 2. Here we can see a slow motion of

order £ in a neighborhood of the characteristic surface x = 0, and a rapid motion of order £_1 flowing out of
this surface in Fig. 2(a), and into this surface in Fig. 2(b)..

In general, for a point p on a characteristic surface S ofa constrained system of corank 1 on R2, we say

that the point p is of stable type (resp.; unstable type) if the lst-order normal form around this point is of the

form:

[o 0
[0 1 *

—x

1

r r

resp.,
\. L

0 0

0 1 »

X

1
. j j j

The set of all points of stable type (resp., unstable type) is called the stable part (resp.; unstable part) of S and

is denoted by S-(resp.; S+). See Fig. 2(b) (resp.; Fig. 2(a)). The set Sr = S+ U 5_ is called the regular part
ofS.

For more details, see Fenichel [2], who treats the singular perturbation problem around a regularpoint on

a characteristic surface in a general manner.

Example 1.4: Impasse point

Consider a 1-parameter unfolding,
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£ 0 ±y +ax2
0 1 • l±x J

or equivalently,

\ex =±y +ax2

I y = l±x

of the normal form (a 2) of Proposition 4.17 from Part I; namely,

0 0

0 1

±y + ax'

1±*

(1.7)

For brevity, let us choose the "+" sign in the upper right hand side, and assume a > 0 in (1.7). This system has

a solution which moves along the stable part £_ of the characteristic surface S = [y = - ax2} until the trajec

tory arrives at the neighborhood of the origin, where it moves rapidly to the right along a horizontal line, as

shown in Fig. 3. In other words, for £ * 0, an orbit starting near the stable part 5_ of S slowly moves along

S_ with a velocity of 0(1) until it reaches a neighborhood of the origin. Then the trajectory changes into a

rapid horizontal motion with the velocity of 0(l/£). Hence, the origin is the point where the trajectory velocity

changes from a slow motion to a fast motion. In general, such a point is called an impasse point [2]. In the

limit when £ —» 0, the trajectory executes an instantaneous jump upon reaching an impasse point Such jump

phenomenon has been investigated in depth by Dcegami [4].

Example U: Equilibrium

Consider a 2-parameter unfolding

[e 0
0 1 •

ay ±x

ay J.
parametrizedby (£, a) or equivalently,

{ex = ay ± x

y =ay

of the normal form 0i) of Proposition 4.18 from Part I; namely,

[o 0
0 1 »

±x

m<*y\m
Let us choose the "-" sign in the upper right-hand sideand assume a > 0. Figure 4 shows the phase portrait of

this system for small £ > 0. This phase portrait shows the local structure near an equilibrium point which lies

on a regular part of the characteristic surface.



Example 1.6: Canard

Consider the 2-parameter unfolding

£ 0

0 1

or equivalently,

y ±x2
a±x

\ex =y ±x2

\y =a±x

represents a 2-parameter unfolding of the normal form (620 of Proposition 4.18 from Part I; namely,

,2"0 0

0 1

y ±x'

±x

(1.8)

This system is known to have a peculiar solution called a "canard," ("duck," in English) which was first intro

duced by Benoit et al. [5] using non-standard analysis. Since we do not have space to discuss the concept of

non-standard analysis, we will give only a rough definition of this peculiar solution. Roughly speaking, a

"canard" solution is a trajectory, a part of which is included in an e-neighborhood of the characteristic surface

5, which moves from the stable part S_ to the unstable part S+. For example, if we choose the "-" sign in the

right-hand sides of (1.8) and assume a = 0, then the solution of (1.8) is given by:

*<fi —i-yv«T-l (1.9)

This orbit lies along an £-neighborhood of the characteristic surface S = {y = x2} from t =- 00 to

t = + °°. as shown in Fig. 5. Of course, a "canard" solution does not have to be restricted along the entire

characteristic surface from f = —00 to r = + 00. In general, it may enter or leave the £-neighborhood as

shown in Fig. 6. Observe, however, that the solution associated with an impasse point in Fig. 3, though

superficially resembling the trajectory in Fig. 6 near the "fold" point, is not a "canard" because it does not con

tain any pointon the unstable part 5+. In terms of non-standard analysis, the "canard" solutions associated with

the system

e* =y -fix)

y = a-x{' (1.10)

has already been analyzed in detail, and their asymptotic expansions have been derived. See [5-7,9] for details.

Moreover, "canard" solutions of 3-dimensional ODE's are discussed in Benoit [6]. Here, we will present only

briefly the following theorem due to M. Diener (See [9]):



Theorem 1.7

Suppose the function /(*) has a fold point Xq, i.e., f'(x0) =0 but f"(X(j) * 0. Then there exists a
parameter value a = <Xq such that the above system (1.10) has a canard solution around the point x = Xq.

Although we have shown directly that there exists a canard solution in the system (1.8) when a = 0, the

results due to Benoit et al. [5] (See also Zvonkin et al. [9]) imply that this system (with a = 0) has additional

"canard" solutions which are different from (1.9). Moreover, the system (1.8) with a * 0 has canard solutions

if a is sufficiently small and negative.

Example 1.8: Bifurcation of characteristic surfaces

Consider the two-parameter unfolding

£ 0

0 1

or equivalently,

a±*2+ ay2
1±JC

ex = a ±x2+ ay2

ty = l±x

of the normal form (a/) of Proposition 4.17 from PartI, namely,

0 0

0 1

±x2 + ay2
l±x

For simplicity, let us choose the "+" sign in the right-hand side. The phase portrait of this system for small

£ > 0 is shown in Fig. 7 for the case a > 0, and in Fig. 8 for the case a < 0.

Figure 8 shows the change in the phase portraits when we decrease the value of a from a positive value to

a negative value. The solutions in Figs. 8 (b), (c) and (d), which are also "canards," are described in [7]. It is

interesting to point out that the changes in the phase portraits from (b) to (e) occur within a very small range of

parameter values.

Example 1.9: saddle-node singularity

Recall the lst-order normal form {b {) of Proposition4.18 from Part I; namely,

[o 0
Jo 1 »

±x

If the 1-jet of a constrained system is equivalent to {b \) with a = 0 (the degenerate case), its non-degenerate

2nd-order normal form is given by,
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0 0

0 1

±x

±y2

Consider a 2-parameter unfolding of this normal form

±x£ 0

0 1 a±y2

or equivalently,

\ex = ± jc

ly = a±y*

This system exhibits the saddle-node bifurcation of equilibriaalong the regular part of the characteristic surface.

If we choose the "-" sign in the first equation and the "+" sign in the second equation in the right-hand side of

(1.11), the associated phase portraits for a > 0, a = 0, and a < 0 are shown in Fig. 9.

As illustrated in the above examples, even if we simply restrict ourselves to 2-dimensional constrained

systems of corank 1, we can observe various types of dynamical behaviors in their unfoldings. These examples

have been studied in details by many authors. Since "a normal form" is originally defined for local systems

around a point in the phase space, the phenomena described above describe various local structures of con

strained systems. For instance. Fig. 10 shows the phase portrait associated with the Van der Pol equation, where

the local structure around the points A, B, C, and D correspond to the phase portraits given in Examples 12,

1.3, 1.4, and 15; respectively. These observations suggest that it is useful to study the unfoldings of normal

forms of constrained systems in order to uncover what types of phase portraits are possible for constrained sys

tems. In particular, it can reveal which types of phase portrait are more robust and hence often observed, as

well as those which are less likely to be observed. It will also show how a phase portrait changes when the sys

tem is slightly perturbed. Thus, the normal form for constrained systems plays the same role as that for vector

fields (ODE's). Therefore our point of view in this paper is to regard a singular perturbation problem for ODE's

as a bifurcation problem for constrained systems, by enlarging the space of systemsbeing investigated.

From a practical point of view, the most important unfoldings are those which are persistent; namely, a

family whose bifurcation behavior does not change in an essential way upon the introduction of small perturba

tions. We call suchan unfolding a versal unfolding for constrained system.

Since we are only concerned with the local behaviors of constrained systems near a point Xq e M deter

mined by the finite (say, up to k) order terms of the Taylor expansion at this point, it follows that we need to

introduce the concept of unfoldings in the sense of k-jets; e.g., a family (A,f, VjJ) ofk-jets ofaconstrained sys
tem parametrized by |i is called an unfolding of ak-jet of aconstrained system (A*,v*) if it satisfies

-7-
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(A0*,v0*) = (A*,v*).

Similar to the case of vector fields, it is important to obtain versal unfoldings with a minimal number of

parameters, called miniversal unfoldings. We will not give here a systematic discussion on miniversal unfold

ings for constrained systems. The reason is that a "versality <=> transversality" argument similar to that for

vector fields does not hold in its analogous form. The difficulty is as follow: in order to discuss versal unfold

ings, we need the space VJL/Sa!.{M\ which is, however, neither a vectorspace nor a manifold. In contrast,

recall the space of k-jets of vector fields forms a vector space.

Nevertheless, the "versality <=> transversality" argument works for k-jets of constrained systems of corank

< 1, if we restrict our unfoldings to those having some additional properties, such as those defined below.

Definition 1.10: regular unfolding

An unfolding (A,J, v,j), |X€ Rm of ak-jet of constrained system (A*, v*) at x0 is called a regular unfold
ing, if the following conditions hold:

[U] There exist a neighborhood U = tf! x £/2 c M x Rm of (x0,0), and a representative (AH,v^) of

(A|i. V|J) defined on U, so that A^ is ofconstant corank on Ui for each fixed \l.

_ QdetA^^^OeR'1
d\L

Since the above restriction does not exclude the family of constrained systems

e* =f(x,y)

jceRr,y eR"-r , (1.1)

y =g(x,y)

theclass of "regular unfoldings" is large enough to treat such perturbation problems.

Definition 1.11: h-versal unfolding

(i) Let (Ajf.Vjj) and (A£, vj£) be unfoldings of aconstrained system (A*,v*). We say (AJ[, \£) is induced
from (A^.Vjf) if there exists a family (P^,^+1) of (kjc+l)-jets of transformations with (Po.<t>o+l) =
identity, and a transformation of parameters X = X(jx) satisfying X(0) = 0 such that

(A*v*) =(P*,^1)* (a^vxV)]
holds for \i close to zero.

(ii) We call a regular unfolding (A,J, v,J) of (A*, v*) k-versal, ifany regular unfolding (A£, vjf) of (A*, v*) is
induced from (AjJ, VjJ).

It can be shown that the versal unfoldings in the above sense are characterized by "versality <=>



transversality" arguments, but we will not give here the detail, and only give some results of calculations of ver

sal unfoldings of normal forms obtained in the previous section. (For the detail, see Oka and Kokubu [11].)

Theorem 1.12: versal unfoldings

(1) The one-parameter family

£ 0

0 0
v. V, J

f

1

0

lex = 1
or equivalently, 1 . _

is an infinite-versal unfolding of the infinite-order normal form

(rapid point: Part /, Proposition 4.12)

f f -\ f ^

10 0

0 1

(2) The family

£ 0

0 1

0

a+(l+p)jc-fyxy
1

or

is a 2-versal unfolding of the normal form

(ex = a+(l+p)j:+yxy

y =1

f r "\ r "\

0 0

0 1

±x

v. V J \. J

regular slow point on the characteristic

surface: Part /, Proposition 4.17 (a{)

(3) The family

£ 0

0 1

a+px±y +(a+i)x+§xy

l±(l+0*
or

(ex = a+$x±y+(a+i)x+&xy

y = 1±(1+Q*

is a 2-versal unfolding of the normal form

0 0

0 1
V. V. J V

(4) The family

£ 0

0 1

±y+ax

l±x

impasse point: Part /,

Proposition 4.17 (a'2)

a+$x±y±x2-i*pcy
8±x+0t2 or

Iex = a+$x±y±x2-rpcy
y = 8±x+e*2

is a 2-versal unfolding of the normal form

0 0

0 1

±y±x:
±x . lcanard:Pflrr / ,Proposition 4.18 (b'2)\

Here £, a, ft, y, 5, £ are unfolding parameters.



2. APPENDIX

Appendix I: Fiber Bundles

In this Appendix, we will give a quick introduction to the concept of fiber bundles and some related appli

cations which are necessary to understand this paper. Roughly speaking, a fiber bundle is a generalization of a

direct-product space; it consists of four objects: a total space E> a base space M, &fiber F, and a projection ft

from E to M. Before stating the formal definition, it is instructive to study the following concrete examples

which inspire their generalization to fiber bundles.

Example 1.1: Cylinder

Let £ be a cylinder S1 x /, where Sl denotes the unit circle and / denotes the closed interval [-1,1].

We denote Sl byM and I byF and define the projection

k:E £ Slxl ->M i Sl

by neglecting the second component F = / of the direct product M x F = Sl x /. A geometrical interpre

tation of the image of the projection ft is shown in Fig. A.1.

TTie above 4 objects, (E tM,F ;ft) = (S1 x/ .S1,/;ft), constitute an example of a trivial fiber bundle.
Here, "trivial" is a technical term used to mean that the total space E has a direct-product structure. The name

fiber bundle comes from the observation that E consists of pre-images ft-1(x) for each x e M, which looks like

a collection of fibers forming the surface of a cylinder, as depicted in Fig. A2. Consequendy, we call the pre-

image ft-1(jc) the fiber ofx e M. Observe that ft_1(jc) ishomeomorphic to F.

Example 12: Mobius band

The Mobius band E is formed by first twisting the band [—ft, ft] x / and then joining the two end edges

together, as depicted in Fig. A3. Assuming M = Sl and F =/, we can define the natural projection*

k:Mobius band E -» M = Sl

by neglecting the second component F = /. Therefore, the Mobius band is another example of a fiber bundle

over Sl with fiber /. However, the Mobius band E is not a. trivial fiber bundle because E does not have a

direct-product structure. (Recall that E is not just [-ft,ft] x/; an additional twisting transformation is

involved). Moreover the Mobius band E is not orientoble. In contrast, the cylinder Sl X / from Example 1.1
is orientable in the sense that it has a well-defined inside and outside surface. Nevertheless, the Mobius band is

locally trivial in the sense that for each x e M, there exists a neighborhood Vx of x such that K~l(Vx) is

homeomorphic to the direct product Vx x /; namely, ft_1(Vx) — ^x x ^» where the symbol — denotes a
+

'Note that unlike the cylinder in Fig. A.1, where its boundary has two components (the top and bottom
boundary), the boundary of the Mobius band has only one component which is equal to the sum of the top and
bottom boundaries of the rectangle in Fig. A.3.
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In this example, the total space E also consists of a bundle of fibers; namely,

--1/E = u * (x)
xeM

where each fiber K~\x) is homeomorphic to F = /, as shown in Fig. A.5.

We will now generalize the above examples to an abstract object called a fiber bundle.

Definition 13. Fiber bundle

+

A fiber bundle is a collection (E, M, F; ft ) of smooth manifolds E,M, F, and a smooth mapping ft

satisfying the following two properties:

(i) [projection property] The mapping

ft:£->M

called the projection, is surjective.

(ii) [local triviality] For each x € My there exists an open neighborhood V in Af, and a diffeomorphism

<&y :rc~!(V) -» V x F such that the diagram shown in Fig. A.6(a) commutes; i.e.,

ftOi^xF) = ft'O'xF)

where ft* denotes the projection of the direct product V x F into V; i.e., rf(x,f) = x for all

(x,/)e V xF. In particular, the collection (E, M, F; ft) is called thejtoer Zw/u/te £ over M with

fiber F and projection ft; or simply the fiber bundle E when the identity of Af, F, and ft are obvious

from the context. The space Af is called the base space, or base manifold, F is called the standardfiber,
and if!(jc) is called the fiber ofxt which is denoted by Fx.

When the standard fiber F is a vector space V we call (£, Af, V; ft) a vector bundle.

Example 1.4.

Recall from Example 1.1 that the cylinder E = S1 x / is a trivial fiber bundle over Sl. In a similar way,
we can show that the infinite cylinder in Fig. A.7(a) is also a trivial fiber bundle over Sl with fiber F = R, and

the natural projection ft defined by neglecting the second component of 51 x R. Moreover, in this case,

E = S x R can be endowed with a vector bundle structure because the fiber F = R has a vector space struc
ture. In contrast, E =Sl x / from Example 1.1 is not avector bundle because F =/ is not avector space.

We can consider the infinite cylinder as another fiber bundle by interchanging the roles of Sl and R, as

shown in Fig. A.7(b). Although the resulting product space £' = R x Sl is also a trivial fiber bundle (with
base manifold M' = R and standard fiber F' = S\ it is not a vector bundle because F = Sl is not a vector

Rigorously speaking, this definition is actually for afiber space, while the notion of fiber bundle requires
a few additional properties. For a precise definition of the fiber bundle and some related topics, see e.g., Schutz
[12] or Kobayashi and Nomizu [8].
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space.

We will consider next the concept of a section of a fiber bundle.

Definition15. Section

A section of a fiber bundle (£, M, F; ft) is a smooth mapping

a:Af -»£

which satisfies ft o O = idw, where Ww denotes the identity map on Af. In other words, a makes the follow

ing diagram commute:

E

M *• M

In the special case where the fiber bundle is trivial; i.e., £ = M x F, a section c must have the form

<*(*)= (*,/(r)] , f'M^F (I.D
Conversely, for any smooth mapping f :M -> F, the map a defined by (I.l) is a section of the trivial bundle

Af x F. Note that in this special case, the section o can be interpreted as the graph ofa mapping /, as shown

in Fig. A.8. Since the fiber bundle is a generalization of a direct-product space, the notion of a section can be

interpreted as a generalization of the graph of a mapping.

Example 1.6.

Consider the Mobius bands as a fiber bundle over S1 with fiber / = [-1,1]. Ifwe define the map a0 by
assigning Oe/ in each fiber ft"l(;c), as the image ofx, then this point in £ projects under ft back into x.
Hence, a0 is a section of the Mobius band. This section is shown in Fig. A.9 as the lightly drawn closed loop

made up of all mid points of the band.

It is easy to verify that any section o of the Mobius band must cross 0 in the fiber / = [-1,1], an exam

ple of which is depicted in Fig. A.9 by the bold closed loop. To see this, try drawing a closed loop along a

Mobius strip without crossing the middle loop. Such a loop must necessarily make 2 "revolutions," compared to

only one in the loop which crosses the mid point, before it returns to the original point This implies that a is
multi-valuedand hence such a closed loop is not a section.

Let us consider next an important example of a fiber bundle; namely; the tangent bundle of a smooth

manifold M. For simplicity, we assume in the sequel that the manifold Af is contained in a suitable Euclidean

space Rm.

'Recall an element of £ is apoint on the Mobius strip.
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For each x e Af, let 7"xAf denote the set of all tangent vectors of M at x, called the tangent space at

x, and let TM denote the union of TXM for all x e Af; i.e.,

TM ^ U TXM
xeM

To show that 7Af is also a manifold, let us define a local coordinate system on TM as follow:

(1) Define the projection ft:TM -> M ofeach §x € 7XM by ft($x) = ;t. It follows that ft_1(;c) = TXM.

(2) Choose a local coordinate <j> around * € Af; namely,

$:V^>V,y = (yh • --ok)-*?

where V denotes an open set in R" and V denotes a local coordinate neighborhood of j: in Af. Such a

local coordinate always exists since M is a manifold, and the Jacobian matrix D<j>(y) is well-defined since

M is contained in Rm. Hence, any tangent vector £y at y near x can be expressed as

by means of the local coordinate 4>; i.e.,

%y

5v =D$(y)

. Let us denote the standard basis of the vector space formed by the tangent vectors at y by the notation

dXi
J = 1,2, ,n; i.e.,

a*
= D<Ky) i-th position

In terms of the standard basis, each tangent vector %y can be represented by

« -£-
d

ftc,
d

+t d^-

Using the projection ft and the local coordinate <|> defined above, we can now define
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.-Ii®v:VxRn -»ft_1(V)

via the mapping (y, JL1, • • • ,£") -> JL. It is easy to verify that the collection3y . ,<9y/ —r ^y<

dated with each x e Af defines a local coordinate system in TM. Hence TAf is a manifold.

Observe that the projection ft: 7M —> Af is surjective, and the local coordinate system

•j lft_1(V), Oy Jfsatisfies the condition of local triviality; namely, alocal direct product VxR". Moreover,

each fiber ft-1(x) =TXM is isomorphic to R" and is therefore an n-dimensional. Consequendy, the 4 objects
{TM ,M ,R" ;ft } constitutes a vector todfe with the standard fiber Rn, as depicted in Fig. A.10. The mani

fold TM is called the tangent bundle ofM.

Example 1.7. Tangent bundle ofn-sphere Sn

Consider the n-dimensional sphere Sn in the (n+l)-dimensional Euclidean space Rn+1; i.e., Sn c Rrt+1.

If we denote the usual Euclidean inner product by the notation (,), then for x e Sn, the tangent space TxSn at

x is identified with the set

TXS'

as shown in Fig. A.11. It follows that

=JMeRrt+1 l<x,u) =0f

TSn =\(x,u)e Sn x Rn+1 I<x,m >=0 c Rn+1 x R"+1

,-l
ft-'OO.Ov, asso-

is a tangent bundle.

To be more concrete, consider the 1-dimensional sphere Sl in R2, as shown in Fig. A.12. In this case, it

is convenient to identify R2 with the complex plane <E. Hence, the unit circle Sl can be represented com-
pactly by

=jze C z\ =lf= Ve

where i = V^T. At any point z =e'ee S\ the tangent space Tz Sl is represented by

TzSl =jX/zUeRk
Hence,

0 < 6 £ 2ft
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TSl =j(z,Aiz)llzl =1, XeR

is the tangent bundle of the unit circle Sl.

In this case, we can define the mapping

x:TSl -^xR

by

(z,X/z)f-> (z,X) .

Since Xis adiffeomorphism preserving each fiber ofTSl, it follows that the tangent bundle T Sl is glo
bally trivial, i.e.,

TSl =i Slx1Rl

Consequendy, the tangent bundle of the unit circle is diffeomorphic to the infinite cylinder inExample 1.4.

In contrast, it can be shown that the tangent bundle T S2 is not trivial.

We are now ready to define a vectorfield on a manifold M.

Definition-. 1.8: Vector Fieldon Manifold

Any section v :Af -> TM of a tangent bundle TAf of a smooth manifold M is called a vector field on
M.

It follows from the definition of a section that v is a vector field on Af if the following diagram com
mutes; namely, ft o v = idM:

TM

v/ \*
Af' ^M

Mm

Note that for any x € Af, v(x)e TXM. It follows that v assigns a tangent vector v(x) at x to each

point xeM. Therefore, the above definition coincides with our intuitive notion of a vector field. In fact, we

can even visualize avector field on Sl by using the property TSl =• Sl x R1; namely, let us cut the cylinder
Sl xR1 and identify TSl with / x R1 for / =[0,2ft], as shown in Fig. A.13. Hence, apoint $0e TSl is
identified with the point (8, X) e / x R. It follows that a vector field v on Sl is any mapping

X:I ->R!

which satisfies X(0) = X(2ft).
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For the remaining part of Appendix 1, we will consider the notion of a mapping between two vector bun

dles. Recalling that vector bundles have vector spaces as their fibers and noting that the natural homomorphism

between vector spaces is a linear mapping, it follows that a mapping between vector bundles must preserve

fibers and map each fiber linearly. This observation motivates our next definition.

Definition. 19: Bundle Map

Let (£,Af, V, ft) and (£', M', V, ft7) be smooth vector bundles. A smooth mapping

R:E -•£'

is called a bundle map if, for each x e Af, R maps each fiber £x = K~l(x) linearly into the fiber £x' for some

x' e Af'. In other words, there exists a smooth map

r: M -»Af'

that thei following diagram commutes:

R

ft

I
Af

* t

r
<

»-A

>

ft'

Le., ii o R = r o %holds, and for any x e Af,

R\Ex:Ex =V->V =£'r(x)

is a linear map between vector spaces. The map r :M -> Af' is called a base map since M and Af' are the

bases of the respective vector bundles.

In the special case where (£,Af,V,ft) = (£',Af', V'.ftO and where the base map is the identity map

idM of M, the bundlemap is calleda bundle endomorphism.

If in addition a bundle endomorphism is invertible, we call it a bundle automorphism.

It is important to note that a bundle endomorphism /?:£-»£ assigns, to each point x e Af, a ///iear

map

Rx = R \ex'-ex -* &x •

Hence, we can regard the bundleendomorphism as a map

R :x h> Rx .

Let us denote the set of all such linear maps of fibers of £ by End(E)\ i.e.,
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End(E) = {Rx :EX -> £x are linear maps for all x e M} .

It follows from the above observation that a bundle endomorphism R can be interpreted as a mapping

R:M -> End(E)

wherex i-» Rx.

In what follows we will equip a vector bundle structure with the set End(E) so that the above map

R :M -» End(E) is a section.

Let ft:EndiE) -> Af be a map defined by /?x -> * and, for the vectorspace V, let £m/(V) denote the

set of all linear maps from V into itself. Since £ is the total space of a vector bundle (£,Af, V,k) with the

standard fiber V, the inverse image ft-1(x)t for any x e Af, is

ft-1(;c) = [Rx :EX -» £x are linear maps }

which is isomorphic to End(V) because £x is isomorphic to V. Hence, we have a vector bundle End(E) over

M with the standard fiber End(V) and the projection ft, which we call the endomorphism bundle of the vector

bundle (£,Af,V,ft). A bundle endomorphism /?:£->£ can now be identified with a section of the

endomorphism bundle. Such an identification plays an important role in Section 3 of this paper, and in Appen-

dixll.

Appendix II: Tensor Bundle and Tensor Field

Let U and V be vector spaces over R. Let M(U,V) denote the vector space generated by the pairs

(k,v) where Met/ and v e V. In other words, M(V,V) consists of linear combinations of finite number of

pairs (m,v). Let N denote the vector subspace of M(U,V) which is spanned by elements of Af (t/,V) of the

form

(m1+m2,v)-(m1,v)-(m2,v)

(M,Vl+V2)-(M,V1)-(M,V2)

(rM,v)-r(M,v)

(M,rv)-r(M,v)

where m, mj, m2e t/, v, vlt v2e V, and r e R.

Definition. II.1. Tensor Product

The tensor product of U and V is defined to be the quotient vector space M(U,V)/N, and is denoted by
U ® V.

There is a natural bilinear map
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U x V -»Af(t/,V)->Af(t/,y)/iV ^ t/®V

We denote the image of (m,v)e U x V by u ® v.

Proposition 11.2. Properties of Tensor Product

(i) Let glf e2t • • • , em be a basis of t/ and let/lt/2, •••,/„ be a basis of V. Then

te ®/,:/ = 1,2, • • • ,m J = 1,2, •••,«}

is a basis of t/ ® V.

2) rfim(/®V = (d/m t/)(Ji/n V)

3) Let Hom(JJ tV) denote the set of all linear maps from U into V. Then Hom(JJ,V) is isomorphic to

V® t/ , where t/ is the dual vector space of U.

Froo/.

(1) Since any element of Af (U ,V) can be written in the form

p

where (mp ,vp)e Af(U,V), F = 1.2, • • • , Po, for somep0 >t follows that the elements of U ® V has

the form

Zrp("p®vp)
p

Since Mp and vp can beexpressed in terms of their respective basis; namely,

"p = Z <Vi and vp = £ p /;

where 0^,., Pp. e R, it follows that

Z("P®vp)= £ rp aPi ppj (fi&fj)
P P,U

Hence, every element of U ® V is spanned by e,- ®/,-. The //near independence of {e,®/y} follows

from the linear independence of {e,-} and [fj }• For a more precise proof, see [8].

(2) This property follows directly from property (1).

(3) From property (1), the tensor product V ®U* is spanned by [fj ® e*}, where {c*} is the <&<*/ basis
of {£,-}, i.e., e-t is the linear functional

e*: t/ -> R , k -» a,- .

m

for any u = £ ai *i G U»
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To each fj®et, let us assign a linear map from U to V via the matrix representation

*u- row;

column i

in terms of the bases {c,-} of U and [fj} of V. We can define a map h by this assignment and extend it
linearly to the entire vector space V® U*. Since

h :/y® e* i-» Aij

gives a one-to-one correspondence between the bases of V® U* and those ofHom(U,V)% it follows that h is
an isomorphism.

•

Observe that in the special case where U = V, the above property (3) reduces to the following isomor

phism:

V ® V* ^ £mf(V)

where ^ denotes an isomorphism. We call V® V* the tensor space oftype (1,1).

Recall now the endomorphism bundle [End(£), Af ,End(Y) Iof a vector bundle (£,M,V) defined ear
lier in Appendix I. Kwe identify the vector space End(V) with V* ® V, whose isomorphism has just been
established, then we can also identify the vector bundle End(E) with a vector bundle over Af whose standard

fiber is the tensor space V® V*. We denote this vector bundle by (£®£*,M,V®V*) and call it the tensor
bundle of (£, Af, V) of type (1,1).

In the remaining part of this appendix, we will consider the special case of the tensor bundle of a tangent

bundle TAf; i.e., TM ®T*M, where T*M denotes the cotangent bundle ofAf.

Recall from Appendix I that a bundle endomorphism R of TM can be considered as a section of the

endomorphism bundle End(TM). Since End(TM) can be identified with the tensor bundle TM ® 7*Af, it

follows that the bundle endomorphism R ofTM isa section of the tensor bundle TM ® T*M; i.e., a mapping

R :x i-> R(x)e TXM ® !rxAf .

Since the vector space TXM ® 7xAf is spanned by

dx

where <(dx.

® (<ki)x ,xeM

i)x f^d "j T— >> denote a basis of TxAf and 7xAf, respectively, in terms of a local coordinate
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system around x e Af, it follows that the map R can be expressed as

ij dXJ

We call the map R a tensorfield on Af of type (1,1).

Appendix III. Transformation Group of Constrained Systems (or Generalized VectorFields)

Our purpose of this appendix is to discuss the structure of the set G = AUT(TM)p4Diff(M) of all

transformations of constrained systems or generalized vector fields. Here, a transformation consists of a pair

(P ,<j)), where P denotes a bundle automorphism f TM and (J) is a diffeomorphism of M. Our first task is to

prove that the set G forms a group.

Proposition III.l.

The set G forms a group under the multiplication operation

(P,® ' G2.V) = (P °T$oQ oTQTlf$oy) (IH.l)

where (P,§) and (<2,y) are transformations of a constrained system, or generalized vector field, and 70

denotes the tangent map of <j>.

Proof.

We will show the group axioms are satisfied,

(i) Associativity

For any (P, $), (£»,V), and(/?, Q e G, we will prove that

(op,<I>) •(G,v)j •(*,Q =CP.t) • ((G.v) •(*,q] . (in.2)
First observe that composition among diffeomorphisms is associative; namely, (<t>°\}0 ° £ = <(>0(Y0Q. Next,

observe that the chain rule operation is functorial; namely, 7(<|> o\p) = 7(j> o7y. Applying these two proper

ties repeatedly to the left-hand side (l.h.s.) and the right-hand side (r.h.s.) of (m.2), respectively, we obtain:

l.h.s. =[(/>,<!>) •(fi,V)] •(R,0 =(/> °T$oQ o7(|)-1,<|)o¥) •(/?,Q
= \(PoT$oQ oTQT1) o7(<J>oy)ofl o7(<J)oy)-1 ,(<j>o\j/)oM ^3)

= lpor<|>o£2 o7\|fo/? o7v"1o7<J>"1,(<j)oY)oM

r.h.s. =(/>,$) • [(C2.V) •(*,o] =(/\fl •(Q °T\yoR o7V-1,VoO
r ^ (in.4)

= \P oTtyo(Q o7\|fo/? o7\J/_1) o7<J)_1,<()o(yoQj

Since (m.3) and (m.4) are identical, (m.2) holds.
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(ii) Existence of unit element

We claim that (IdjM t*4m ) is the unit element of G, where IdjM denotes the identity map (bundle auto

morphism) of 7Af and id^ denotes the identity map of Af. Indeed, for any (/*,(j)) e G, we have

(IdmJdM)'(P^)= \IdTM °T(idM)oP oT{idMT\idM o<j)j =(/>,((>)
and

(P>$) ' <Jdm MM) = (P <>T$oldTM oT$-l,$oidM) = (/>,<t>) .

(iii) Existence of inverse element

We claim that the inverse of any element (?,$)eG is given by (7<jf*o/>_1 oTty,^1), where P"1
(resp., (JT1) is the inverse ofP (resp., <|>). Indeed,

(P,40 •(7<|)-1op-1o7<|),<|)-1) =\p o7<|)o(7<j)-1o/>-lo7(t)) or^-1, ^ocj)"1]

= (J^tm Mm)

(7<t>"1op-1o7<|),<t)-1) •(/>,$) =[(7<|)-1op-1o7<i))o7(|)-1oF o^cj)-1)-1,^-^^]

Since the set <(P,idM)e G IP is any bundle automorphism >• forms a normal subgroup of G, the

group G is said to be a semi-direct product group of the "group of bundle automorphisms" and the "group of
diffeomorphisms," in view of the structure induced by the above multiplication operation, tn order to indicate it,
we use the symbol instead of x.

Proposition 111.2

The group G acts on the set of all constrained systems, (or generalized vector fields); that is, the follow
ing formulae hold:

(i) (/d™.tfw)#(A,v) = (A,v)

(ii) (Q,V)# [(/>,4>)#(A,v)j =[(Q,vKP,$)]n(A,v) for any (/>,<J>), G2,\|/)eG, and for any
(A,v)eC9(W [or Q9((Af)].

Proof. Recall from definition (2.10) of Section 2 that
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(i\<|>)#(A,v) _ (7>o7(|)o'Ao7(j)-1,/>o7<|)ovo(j)-1).

Applying this definition, we obtain

(0 (/d™."fo)#(A,v) = (IdTM oT(idM)°AoT(idMr\ldTM o7(WM)oVo^1) = (A,v) .

(ii) (G,V)# ((P,«#(A,v)]
= (G,V)#(i>07<|)oAo7<j)~1,Po7<j)ovo<J)-1)

= \Q °7\|fo(/> o7<|)oAo7(|)"1)o7v"1,Q o7\jfo(P o7<j)oyo(j)-1)o\j/-1

= (Q °7\|fo/> o7(j>oAo7(|>~1o7\^"1,Q °r\|fo/> o7(|)ovo<j>-1o\j/-1)

= (Q °7\|foP o7y_1o7\|fo7<()oAo7<|)"1o7\j/"1,Q <>7yoP o7\|/~1o7\jfo7(|)ovo<|>~1o\(/~1)

= |G2 °Tyop o7\j/"1)o7(\j/o(j))oAo7(\|/o(j))-1>(j2 <>7yo/> o7\|T1)o7,(V°<I))ovo(V0<1>~1) I
= (Q °7yo/> o7v~1,\jfo<j,)#(A,v)

=((fi,V)'(i>,<l>)]#(A>v).
•

Appendix IV. Proof of: "Ym andR* are well-defined"

In order to prove that the mappings Ym and Rm defined in Section 3 from 7Af to 7(7Af) are well-

defined, let us first review the actions of the coordinate transformations of TAf and 7(7Af). From the

definition of the tangent bundle in Appendix I, we can induce a coordinate transformation of 7Af from that of

M. In particular, let (x,cj) and (y,0 represent the local coordinates of a point on 7Af, where x and y are

related by a coordinate transformation y = §(x) on M. Denoting thecorresponding transformation of (jc, £) on

7Af by 7<t>(x,£), we obtain

Cy,Q =7<K*,5)= (<K*),Z><K*KJ
In other words, a coordinate change <j> of x in Af "induces" a coordinate change 7<J> of (*,£) in 7Af. We can

iterate this transformation rule recursively to induce a similar transformation on T(TM) since 7Af itself can be

considered as a manifold. Denoting this transformation by 72<|>, we obtain

(y,£,w,v) =7<t>2(x,^,v ,ti) =[7<|>Cc,$),D ^(x^)] •(v ,ti)j
=[<K*),D <K*) •̂ D <K*) •v,D <J>(x) •Ti +£>2<!>(jc) •v•5]

Since both Y*„ and Rm are mappings from 7Af into 7(7Af), for them to be well defined, we must prove the

following two relationships hold for any coordinate transformation <|> of M:
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T2$oYm =7, o7<|>

T2$oR^ =Rm o7<|>

The mapping Y is a well-defined vector field on Af; i.e.,

M>
i

— 7Af

W or Y :M -> 7M, with n°Y - id±M

7C

Af'

(IV.l)

(IV.2)

Observe that in terms of the local coordinate system (*,£) on 7Af, the image Y(x) of x on Af mustbe written

with 2 components; namely,

reo- [*,?(*)]
We will call the second component Y(x) of Y(x) as the principal part of the vector field K. To avoid clutter,

however, we will often abuse our notation and simply denote a vector field by its principal part and ignore writ
ing the first component Since Y is well defined, it must satisfy

7<|>oy = ro<})

or

[♦OO,D <K*) •?(*)] =(tCx), ?(<K*)]]
It follows that

z?<K*)-r(jc) =r[<|>Ct)]
Similarly, since a bundle endomorphism

R:TM -+TM

is also well defined, it must satisfy

TtyoR = R o7<{>

or

]$(x),D <K*) '*(*) •{\ =[<K*).* (<K*)] •D<|>(;c) •4]
It follows that

D$(*) /?(x) =/? [<J>(x)] 'D<Kx)
We are now ready to prove (IV.l) by writing
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and

T^oY.ix,® =72(|> \x,^Y(x)tDY(x) •gj.
=[<K*),D <|>00 •?,D <K*) •y(;t),Z> <K*) •DY{x) •5+D2$(x) •yfr) •§]

=[<Kx),d «x) •5,r (^)),Dy [#*)] •d<j>(;c) •5]
Differentiating (IV.3) with respect to x, we obtain

£>2<j>(x) •I'd) +DWO •Dy(jc) =Dy [<K*)j •/> ♦(*) (IV.7)
Substituting 0V.3) and (IV.7) into (IV.5), we obtain (IV.6). Hence (IV.l) holds for any coordinate system.

Similarly, we can prove (IV.2) by writing

rV* .<X.5) =72<J>Cx,?,0,tf (Jt) •©=[<K*),£> <K*) '4.0.D tfjc) •R(x) •gj (IV.8)
and

(IV.5)

(IV.6)

R. oTW.Q =*, [<K*),D <K*) •g] =(<K*).D <K*) •tO,/? [<K*)j •D<|>CO •5] (IV.9)
Substituting (IV.4) into (TV.8), we obtain (IV.9). Hence (IV.2) also holds for any coordinate system. This com
pletes our proof.

Appendix V. Proof of: "exp t(Rk,Yk+l) are well-defined"

Let (R,Y) and (/?',y) be representatives of the (&,*+l)-jet (Rk,Yk+l) at x0eM of an infinitesimal
generator.

Proposition V.l

The local one-parameter groups exp. t(/?, Y) and exp f(/?', y') in G are (*, it+l)-jet equivalent at xQ for
any t. Furthermore, the (Jfc,£+l)-jct

exp.r(tf*,y*+1> k jk*+l s&t&.Y)

forms a local one-parameter group in /***+1G.

Proof. Recall that exr2/(#, Y) is defined by

ej_p.f(/?,y) = a"1oexp*(/?,+yj

where a is the group isomorphism on its image

c:AUT(TM) X Diff(M) -» Diff(TM)
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(/>,<|))i-»/>o7<t)

and/?, +y„ is a vector field on 7Af defined by (R.+Y J (x,Q = k^.y(*),[/?(*) +£>y(*)]U for a
local coordinate (x, 5) of 7Af (see Chapter 3).

Since (#,y) and (R',Y') are (*,* +l)-jet equivalent at x0t the vector fields (R ++Y+) and (/?„ +y/)

on 7Af are (fc+l)-jet equivalent at (x0,0). Moreover, these vector fields vanish at (x0,0), for y(xo) = 0.

Hence, the flows exp t(R „+Y„ ) and expf(# , '+Y ,') are also (*+l)-jet equivalent at (x0,0). (See Appendix 3
of [13]). These flows can be written in the form

expf(/?.+yj(x,5)= [<|>'(;t),F'Cc)5]

exp r(/?,'+y/)(*,©= [<t>''0c),F''(jO5J
where (J)' and §' are diffeomorphisms ofAf, and Fr and Fl are bundle isomorphisms of TM covering <J>* and
$'', respectively. The (fc+l)-jet equivalence of expt(R0+Y.) and expr(fl/+y/) at (jc0,0) implies the
(k, fc+l)-jet equivalence of(F',(|>') and (F#/, 0') at x0. It follows that o"1(F',(J>f) and a"1(F'r, <|>'') are also
(fc ,&+l)-jet equivalent. This completes the proof of the first part of Proposition V.l.

It remains to prove

exp.(t+s)(/?*,y*+1) =gxp.f(fl*,y*+1) •expert*,y*+1).

This follows upon taking the {k Jk+l)-jet of both sides of

exp(r+s)(R,Y) = expf(#,y) • expert,y)

where (/?, y) isarepresentative of (Rk, y*+1), and observing that

^+1|expK/?,n-exp5(/?,y)U [y#+W(*.r)]- [/^Wtf.n]
•

Appendix VI. Proof of the Reduction Theorem for Constrained System Normal Forms

The basic outline of the proof of this theorem is similar to that in [13] for the Reduction Theorem 5.4.

There is a significant difference, however, between the bracket product { , } for generalized vector fields, which

does not satisfy the Jacobi identity, and the Lie bracket for vector fields, which does. It is necessary therefore

for us to devise another approach in place of theJacobi identity.

Consider the kth-order normal form problem

-|Ai(/) =-4*,a*-1 +At(')[ (VI.1)
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with

l*-l

k-\ „k-\\tr\a = 0 (VI.2)

where

and

Aft=(A*,y*)€^C9f •
Choose the subspace

and let Bk denote the complementary space ofBk in //^ C9C •

We will prove first that for any two elements A* and hk satisfying Kk(hk) = n*(A*), we can deform hk

to hk by integrating (VI.1) with (VI.2). Indeed, since hk - hk eBk,hkisol the form

for some cjt . Consider thedifferential equation

-^hk(t) =-[^ak-l +hk(t))k
under the initial condition At(0) = A*. Note that the condition (VI.2) is satisfied for yk. Since

(5*»fl ~ + A*}* = (5*»ao)» ^ follows that the solution of this differential equation is given by

hk«) = hk(0)-t[Z>kta0) .

Hence, by choosing t = 1, we obtain

Ajkd) =hk(0) - fo,«0} = A* - fo.flo} =A*'

which proves our preceding assertion.

It suffices therefore to prove that the normal form problem (VI.1)-(VI.2) reduces to the one on Bk;

namely,

-y bk{t) =-nk ZT-\ak-l + bk(t)
J* J

(VI.3)

with (VI.2), as in the reduction theorem for vector field normal forms. Putting hk(t) = bk(t) + bk(t), and
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h(t) ="|C*(0.«o Kor some £*(')<= HkMlQ§(, we obtain

kk,ak-1 +hk(t)\ =t^.a*-1 +bk(f)\ +k.a*-1 +*>)} +fe AG)}
=js*-1,**-1 +£*(') I+kk,a0\+ k.|c*(0.flo||.

Since the second term belongs to Bk, we must prove that the third term also belongs to Bk. If it can be proved,

then the projection of the equation (VI.1) by Kk becomes (VI.3), which completes the proof, since (VI.3)

depends onlyon bk, not on bk, and therefore, is solved within Bk.

For^o = (K(hlri). a0 = (A0,v0), ^ = (Z*f k+1),

j§o.Kk.«o) [= Wlri).|(^.'*+i).(Ao.v0)[[

=J(rt0.lri). pAAo-^t+lAo,Ztv0-[^+1,Vo] I

=\R0(ZkA0 -rf^Ao) - ^(Z^Ao- *,4+1A0) ,J?0 [z*v0 - fo+1,v0] j- |Vi,Z4Vo - fo+i,v0]]]
Note that condition (VI.2) implies {£0, a0) = 0; i.e.,

WwAfrVo) [= [^oAo-^Ao^oVo- [^i,v0]l =0.
Hence, we have

/?0A0 =^y1A0 (Vi.4)

and

^oV = [yi,v0] (VI.5)

Before proceeding further, we pause here to give a Lemma, whose proof is given in Chapter 1, Section 3

of [8]:

Lemma VI.1

*u(TS) = tfuT)S +T#US) (VI.6)

[u,Tw] = &uT)w + T[u,w] (VI.7)
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^[u,w}T = *u*wT -*w*uT (VI.8)

holds for (jets of) bundleendomorphism 7,5, and (jets of) vector fields u, v.

Using the above Lemma, we can deform the first component of -j^O' {C*>ao} fas follows:

R0(Zk Aq - <t+1A(j) - rf y^Zjfe Aq-JtMA0)

=/?oZ^A0 - i?0(A+1Ao) " *rxGk*d +^Csf^Ao)

=/JqZ^Ao - /?0 (^r4+1Ao) - (*flZ*) Ao - Z,(/y A0) +rfyl(<wA0)

in view of (VI.6)

=tfqZ* Aq -^t+1(/?0Aa) +«4+1/?a)A0 - (s^Z*)A0 - Z^^Aq)

+*Dr4+i]Ao+A+i(*iriAo)

in view of (VI.6) and (VI.8)

=tf^Ao - ^(sf^Ao) +«t+1/?o) A0 - (^y^) A0

- Z^qAo +*irtlkHJ A<, +*,A+1tfy^o)

in view of (VI.4)

- (^oZ*-ZA:/?0+//t+i/?0-iy Z*) A0 - *-[i\f4+1]Ao .

Similarly, for the second component, we have

*0 (Z* •crfok+i.Vn] J- |rlfZ4 v0 - fo+i.Va]]
=R<£k v0 - *0[fc+i. v0] - [YhZk v0] +[Vj, [tM, v0] j
=/?oZAv0 - [tk+l,R0v0] +UtMRo>y0 - t*rfr)vo -^[yltv0] +[y1§ [rft+lf v0]]
=tf <£* v0 - \tk+idYhv0]] +Ge,4+1tfo)v0
-Ur^vo-Z^ovo- [wv0,y1]]- [v,,, [IV4+1] ]

in view of the Jacobi identity and (VI.5)

={R&k-ZkR0+£tMRQ-iYZk)yQ- [- [IWrf.Vo] •

It follows that j$o,{£*,flo} f is of the form ^(^jk,«jk+i),(A0,v0) I for
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Xk -R^Zk -ZkR0 +£tk+iR0-*YiZk, uk+l =—C^!,rA+1]. Hence -j^o.CCjfc.«o) f* Bk. This completes
our proof of the reduction theorem for constrained system normal forms.

•

Appendix VII. Normal Formsfor Regular SlowPoint

Let (A,v) denote an m-dimensional constrained system of corank 1 whose leading part (A0,v0) is

equivalent to

0 0

?7—1.
»

0

fm-l

where7m_j denotes the unit matrix of order (m-1) and

em-i 2[10 0?

m-1 components

Proposition VII.1

The non-degenerate infinite ordernormal form of (A,v) is given by

bo' ±x

L p im-i »

fm-\ J

Proof. To avoid clutter, we will use the following notations:

(x,y,z)e RxRx Rm~2 ,

z = (zi,z2. ' ** .*m_2) = (z.) , 1 -W < m-2

k = (kltk2, • • • ,^_2) = (*,) , 1 <; i < m-2

Z - ZiZ2 ' • • Zm_t

m—2.

Ikl = £ ki .la = (0,0, ••• 1,0 ••• 0)

t
ccrA position

3z £ 3z,-
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To consider the nth-order normal form problem, let us define

aQ = 4-®dy +-$-<8>dz,4-dy dz By

and compute [Z,n,a0}, where £,n e ffn^+iQQC- For any homogeneous polynomial f(x,y,z) of order n of
x,y, andz, we have

{
| f(x,yx) -L®dzit0 taA = f-2-

f(x,yj)-^®dx,0

f(x,yj)-^®dy,0

/(*,y,z)-|^®dzt-,0

/(*,y,z)^-®<&,0
dy

f (*#*)-*-9 <fy,0
dy

/(jt,y,z)^- ®dtc,0
dz,-

/(*,3>,z)^-®dy,o
dz,-

, a0V = 0

«o

«or =

» «

. a0 r = o

4^-4
® dzit 0

,a0^ = 0

dz,- dz,-

/(*,^z)-^®dzy,0 1 f

Forall i,j, k with i + j + Ikl = n+1, we have
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{[o,,yz'JL],aoj
.ivy-l-k d/x-y-V f- ®rfy +£ A:axVzk *° -|- ®dz^, jfe'y-V 4~

ox „ dx dx

j[a*y*i].«0}

dy dy

0, jc'Vzk tt- *o

dz/ dz/

The preceding computation shows that thecomplementary space Bn to the image Bn of the linear map

can be identified as the subspace spanned by

0, x'Vz* -2-
dx By

o, xyz" ^«
dz/

for i +;' + Ikl = i' + j + Ik I = n + 1, i' * 0, 1 < / <; /n-2. It suffices to consider the reduced

normal form problem on this complementary space. The preceding computation also shows that the space

9fl.! -! k-i e Hn_u Q9CI &.-1, *o}«-i =0}
is spanned by

/(*,;y,z)-^-®<fc,0
dx

f(x,y,z)-£-®dx,0
0Z[

f(x,y,z)-2-®dx,0
dy

By
O.z"^-

ozl
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-jxlyJ-xz*-±-®dy- J *«*y* a>f®dzk,xlyJzk-f
dx „ -1 dx dx

for 1 <^ / < m-2, i+/+lkl = n, In I = n, and/ is any homogeneous polynomial of order n-1.

Now consider the reduced 1st order normal form problem

Since

-jt *i(0 =-*i [feflo +*i(Oh] ,b\ eBy, £oe Q0

B, =

9o =

0,x —
Bx

k .

»

k .

•

n 3
0-z'aT
k .

1 [ 3yJ » 0,X-r—
dz/

k .

•^- ® dx,0
dx

n 3
0,Z" Ty

1 /•

•^- ® dx,0
By

0,zB
3z^

dz.
® dx.O

£**•>£
_a_
ax

® *fz„ ,z„ —

we can write

and

*>i(0 = ct(0

m-2

Z

0,x
3

Bx
+ KO 0,y -

d

dx
L j ^ j

y/(0 0,z/
k

d

Bx
+ 8(0 0,x

d

dy

m-2

+ E e/(r)
OZ{

Co = A

-

a

a*

«

® dxtO + £
a

® dx.O

m-2

k- J

m-2

+ Z *>, n 3
°,Z" ^

' ^ '

+ Z £«
1 IS p.? 2 m-2

n d

I ' J

+ F

+ G

*

d

dx
k

• ® <*y*y
a'
ax

m-2

/ *,

r

dx
k

Zp,Zp Bx

Using these bases, we calculated the bracket expressions summarized in Table VII.1. From these expressions, we
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obtain the following system of differential equations:

d = A a

p=AP+Fp-Ga

y, =Ayl-Dl$-ZElpyp+Fy[-Hla

m—2.

5 = Ba+ £ D, e, - F 5

£/ =Qo + j;^ -Fe,
p

If a(0) * 0, we can choose suitable A, B, Cp, Dp> Epq, F, G, and Hp so that

a(l) = ± 1, p(l) = Y/(l) = 5(1) = E/(l) = 0 .

Hence, the nondegenerate lst-order normal form is

0 0
»

±x

fm-\

To obtain the higher order normal forms, consider

&-i.al +£m(f))m ={§»_!, a,} =k_j,

where

a±xf-
dx

We can eliminate all n-jets for n > 2 with the help of Table VII.2, which lists the bracket multiplications of

5„_i€ „_1andx-r-.
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FIGURE CAPTIONS

Fig. 1. Phase portrait of constrained system defined by ex = 1 and y - 0. The double arrowheads
denote rapid motions.

Fig. 2. (a) Phase portraits associated with ex = x,y = 1. (b) Phase portraits associated with ex = -x,

y = 1. As usual, the double arrowhead denote a rapid motion of the trajectories.

Fig. 3. Phase portrait associated with ex = y + ax2,y = 1 + x, where a > 0.

Fig. 4. Phase portrait associated with ex = ay-x,y = ay, where a > 0.
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Fig. 5. Phase portrait associated with ex = y - x2,y = a-x. The trajectory stradling along the para
bola is called a "canard."

Fig. 6. A typical "canard" trajectory associated with the phase portrait of Fig. 11 may approach the e-

neighborhood of 5_ at some time to t\ and leaves e-neighborhood of S+ at sometime f2-

Fig. 7. Phase portraits associated with ex = a + x2 + ay2, y = 1+ x, where a > 0.

Fig. 8. Phase portraits associated with ex = a + x2+ ay2,y = 1+x, where a < 0.

Fig. 9. Phase portraits associated with ex = x,y = a + y2.

Fig. 10. Phase portrait associated with the Van der Pol equation.

FIGURE CAPTIONS FOR APPENDIX

Fig. A.1. In this example of a trivial fiber bundle, the total space £ is a cylinder, the base space M is the

unit circle, the fiber F is the unit interval, and the projection k is the obvious map of the cylinder

into the unit circle.

Fig. A.2. The surface of the cylinder can be thought of as a sheet made of vertical fibers, one of which is

shown in bold. Observe that each fiber projects naturally into a point x on the circumference of

the unit circle.

Fig. A.3. A Mobius band is made by first twisting one end of a ribbon and then pasting the two end edges

together.

Fig. A.4. Geometrical interpretation ofa locally-trivial fiber bundle: in any neighborhood Vx ofx, n~l(Vx)
has the same structure as that of Fig. A.2; namely, a narrow band made of parallel fibers.

Fig. A.5. Each fiber n~ (x) of the Mobius band is homeomorphic to unit interval I. Moreover, because of

the twisting operation, the top and bottom boundaries of the ribbon (prior to the twist) now form a

contiguous loop; namely, starting from any point on either boundary and traversing consistendy

on the boundary along any direction, one eventually returns to the original point after having

traversed all points on both the top and the bottom boundaries exactly once. In other words, the

boundary is homeomorphic to a circle S1.

Fig. A.6. (a) This diagram commutes namely jt/ o<Iy = jc. (b) Geometrical interpretation of the commuta

tive diagram of a fiber bundle. Note that shaded region 7C_1(V) is diffeomorphic to that of the
local direct-product V x F.

Fig. A.7. (a) By choosing E = Sl x R, this infinite cylinder is not only a trivial fiber bundle but also a
vector bundle because in this case, F = R is a vector space, (b) By choosing E' = RxS1,

this infinite cylinder is a trivial fiber bundle but not a vector bundle because in this case,

F = S is not a vector space.
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Fig. A.8. For a trivial fiber bundle, a section G can be interpreted as the graph of a single-valued function

/•

Fig. A.9. Two examples of a section of a Mobius band: Thefirst section Go is formed by the union of the

middle points of all fibers. The second section, shownby the bold closed curve, is any closed loop

drawn on the surface of the Mobius band which crosses the first section.

Fig. A.10. For each pointx on a manifold M, the plane tangent to M at x is denoted by TXM. The picture

on the left shows 2 tangent planes TXM and TyM. The collection of all such tangent planes over

all points of Af is the tangent bundle TM. The picture on the right shows each fiber TXM at x is

diffeomorphic to R".

Fig. A.11. An n-dimensional tangent plane on an n-dimensional sphere Sn in Rn+1. The collection of all

such tangent planes overall points of Sn is the tangent bundle of Sn.

Fig. A. 12. Special case of Fig. A.11 drawn for n = 1. Here, the collection of all tangent lines to the unit

circle Sl is the tangent bundle ofS1.

Fig. A.13. Avector field on Sl can be identified with a mapping X:I -» R1, with A.(0) = A.(2rc)-
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Table VII. 1. Bracket expressions for {£Q, b-j}, where £Q eQQ and b-j t B-,.

A(£ • dx- °) 0 0 i^ zl 3x) (°. y&) (0, x ax)

B(^ ft. dx, o) 0 0 (o. z -M (°» Vjy) (0, a \

x ay/

Cp(^ • dx' °) 0 0 t 2 -Mza 32p; P'
(o. x-MxaZp;

Dp(°'Zp£) (o, yx $) 0 0 •(»• -ZP i) 0

sq(H»y (o, Vx s) 0 (o. "Si ZP h) 0 0

F(°.x -t) (o, -*> (o. -x£) (o. z -2-)zJt 3x/ (o. y &) 0

G(-£ «j"e) (o, 9 \ (o. •y al) 0 0 (0, •y^)

HP(-i ®dV ZP h) (o, -ZP3^) (o. -z -m
p ay/

0 0 (o, ~zp ax")

(»•
3 \ (0, x ay)

6

(o. Z -?-)
1 3x/

3

(0. x ax)

a



Table VII.2. Bracket expressions for (Sn i» ai)

£n-V al}

4-i

'n vi+1 J k -L\i0, x y * ax/

(f & • dx' °)

(o, xi+1yj*k £

(f^ ® dx ,o)

(O, x™ yJ * X) (0,(l-i)xVzk£)

(f £: • dx- °) (o. *" &) (»•*n at:) (*• xV*k &)
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