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Abstract

This paper compares the implementation of direct function calls in SPUR Lisp with
the more traditional indirect call implementations found in Maclisp, Franz Lisp, Spice
Lisp, Zetalisp, etc. We examine the performance of direct and indirect function calls
on the VAX, MC68020, and SPUR architectures. For the SPUR architecture, single
indirection slows applications by 3-4%, and double indirection slows applications by
6-8%. The performance benefits of direct function calls are smaller for the VAX and
MC68020 architectures. Implementing direct function calls requires maintaining back-
pointers from each function to all the functions that call it. The additional memory
allocated for backpointers ranges from 10-50% of the memory allocated for functions.
Maintaining backpointers increases the time to load functions by 10-15%. Redefining
a function in a direct call implementation adds up to 50% to the time needed in an
implementation with indirect function calls.

Introduction

This paper discusses different ways of implementing function calls in Lisp. Lisp function
calls are interesting because Lisp supports dynamic function definition; any time during the
execution of a Lisp program a new function can be defined or an existing function can be
redefined. Dynamic function definition contributes to the suitability of Lisp for exploratory
programming,

Lisp systems have traditionally facilitated dynamic function definition at the expense
of program execution time. When a function is redefined, all functions that call the old
definition must be updated to call the new definition. In many Lisp implementations, calls
to a function are directed through a location associated with the function’s name. When the
function is redefined, only a single location needs to be updated. We refer to such function
calls as indirect calls. Indirection adds overhead to every function call. Zetalisp [Moo85],
Interlisp [Xer83], Spice Lisp [WFG85], Maclisp [MAC74], Franz Lisp [FSL*85], and Franz
Allegro Common Lisp [Fod87] all implement function calls indirectly.

Direct function calls, in which the destination address of the call is already present
in the instruction stream, are the fastest alternative to indirect function calls. Because
Lisp functions can be dynamically redefined, direct function calls require modifications to
call instructions as functions are redefined. SPUR Lisp is the first Lisp implementation to
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implement function calls directly. Some Lisp implementations provide a halfway measure,
where functions can be declared local to a particular file and calls within the file are made
directly. Such an implementation suffers because once the “local” function calls have been
compiled, dynamic redefinitions of the functions are ignored. Our intention was to provide
all the capabilities available with indirect calls without the added cost of indirection.

SPUR Lisp is a Common Lisp supersef that will run on SPUR, a multiprocessor worksta-
tion being designed and implemented at U. C. Berkeley [HLE*85]. SPUR is being designed
as a multiprocessor and SPUR Lisp will contain features for multiprocessing, but only the
uniprocessor aspects of SPUR Lisp are discussed here. Details about the design and im-
plementation of SPUR Lisp are presented in [ZHHLS87]. SPUR Lisp implements function
calls directly. Each call instruction contains the address of the actual code of the function
being called. Steenkiste estimates that function call indirection in MIPS-X PSL would slow
execution by 6% [Ste87]. We have measured the cost of indirection in SPUR Lisp and found
it degrades performance from 6-8%.

To facilitate dynamic function definition, SPUR Lisp maintains backpointers from each
function to all the functions that call it. We call this set of backpointers the caller set for the
function. We measured the overhead associated with creating and maintaining caller sets
in SPUR Lisp. The size of caller sets varies widely and can reach 50% of the total memory
allocated to functions. In addition, building the caller set adds 10-15% to the time needed
to load a function. When a function is redefined in SPUR Lisp, all the function’s callers
must be modified. In the worst case, updating callers can add 50% to the time needed to
redefine a function.

Indirect Function Calls

The most common form of function call indirection is double indirection. In double indirect
implementations, the address of the callee! is stored in the function cell of the symbol that
names the callee. The caller typically stores the symbol naming the callee in the function
constants vector. Most Lisp implementations including Zetalisp [Moo85], Maclisp [MACT74],
Spice Lisp [WFG85], and SPUR Lisp [ZHHL87] have constants vectors associated with
compiled functions.

As an example, consider function main which calls function £. In a double indirect
implementation, the symbol £ will be stored in the constants vector of function main. To
call function £, the symbol would first be loaded into a register from the constants vector.
With the symbol £ in a register, the function cell of the symbol can be loaded. This cell
points to the code that implements the function £. Figure 1 illustrates the linkage. Spice
Lisp [WFG85], Interlisp [Xer83], Zetalisp [M0o85), and Franz Allegro Common Lisp [Fod87]
use double indirect function calls.

A more efficient form of indirection, single indirection, only requires one additional
load per function call. In single indirection, the transfer table is a global table of all
compiled function addresses; each function’s address is stored at a fixed offset in the transfer
table determined at load-time. To call a function, the correct element in the transfer

1To avoid confusion, when we discuss function calls, we will refer to the function being called as the callee
and the function making the call as the caller.
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Figure 1: Linkage for Double Indirection. Register names begin with “r”. Register rCV initially
points to the constants vector for the function main. CVoff is the offset of the symbol £ in the
constants vector for main. FCoff is the offset of the function cell in a symbol.

table is loaded into a register and the call goes to that address. Figure 2 illustrates this
implementation. Due to the possibility of separate compilation, where a function’s callees
may not be defined in the same file, calls do not initially go through the transfer table. When
a function is compiled, the table offset of its callees may not be known. Maclisp handles
this problem by making all calls initially go to a linking function. This linking function
“unsnaps” the call, making all subsequent calls transfer through the transfer table [MAC74]
to the correct address. Maclisp and Franz Lisp [FSL*85] use single indirection.
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Figure 2: Linkage for Single Indirection. rTT is a global register that points to the transfer table.
TToff is the transfer table offset of the address for £.



Direct Function Calls in SPUR. Lisp

SPUR Lisp requires two data structures to correctly implement direct function calls: caller
sets, which identify for each function every function that calls it; and the unresolved refer-
ence list, a global data structure that records the locations of calls to undefined functions.

Caller sets are implemented in SPUR Lisp as vectors of function addresses (backpoint-
ers). The caller set for each function is pointed to from the function’s constants vector.
Each backpointer in a caller set points to a caller of the function. Backpointers do not
point to individual call instructions, but to the functions that contain the calls. If a callee
has been redefined, the instructions in the caller function must be scanned to find the cor-
responding call instructions. By only recording the addresses of the caller functions and
not individual calling sites, we trade off space used by the caller set for speed of function
redefinition.

The unresolved reference list contains locations of calls to undefined functions. When
an undefined function is later defined, the loader goes back and fills in the correct value
at the appropriate unresolved call instructions. Unresolved references are recorded in a
association list. The key in each association is the name of an undefined function and the
datum contains information about the locations of unresolved calls. When a function is
defined, a check is made to see if there are unresolved references to it.

Execution Overhead of Indirect Function Calls

In this section we estimate the performance degradation associated with indirect function
calls. We first identify two parameters we use to estimate the overhead associated with
single and double indirection in a generic architecture. We then provide estimates of these
parameters for specific Lisp implementations and machine architectures.

Definitions

Function call indirection associates overhead with each function call that could be performed
directly. Some calls, such as those performed in a funcall or apply, require indirection.
Measuring SPUR Lisp applications, we found that the fraction of calls requiring indirection
is small (< 10%). Based on these measurements, throughout this paper we assume that
90% of the total calls made by a program could be made directly.

In measuring the overhead of indirection, we will examine two quantities. The direct call
fraction is the fraction of total time an application would spend executing direct function
calls if direct function calls were implemented. The direct call fraction only includes the
time executing the call instruction (i.e., save a return address and perform a jump), and not
time spent passing arguments, setting up frame pointers, etc. In a system with indirection,
each call instruction will take longer because of indirection. The indirection ratio is the
relative cost of an indirect call compared to a direct call, and computed as Tindirect/ Tdirects
where Tindirect ald Tgirect are the unit times for indirect and direct calls, respectively. By
computing the direct call fraction and the indirection ratio, we can determine the total
execution overhead caused by indirect function calls.
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The Indirection Ratio

The indirection ratio is related to the relative costs of calls and loads from memory. A
simplistic estimate would be that for single indirection, the indirection ratio can be roughly
computed as IR,ingle = (Tioad + Teatt)/Tecatt, Where Tioqq is the unit time of a load from
memory. Likewise, the double indirection ratio is IR goubte = (2 X Tioad + Teall)/Tcanr- Such
simplistic measures are sufficient for load/store architectures that lack indirect addressing
modes, such as SPUR and the Am29000 [Joh87]. For architectures with indirect address-
ing modes, such as the MC68020 [Mot85] and the VAX [DECS81], we have measured the
indirection ratio empirically by timing assembly code sequences.

Table 1 presents the indirection ratios for SPUR. In this case, the ratios are computed
directly from the instruction sequence. In SPUR, load instructions require two cycles to
complete. The instruction after the load cannot use the destination register of the load as
an operand. The call instruction also takes two cycles, but in SPUR Lisp the extra cycle is
always used to pass the number of arguments. Double indirection requires two loads and a
call, and hence 5 cycles. Without code reorganization, the jinstructions after loads are set
to no-ops. With code reorganization [HG83], some of the no-ops can be filled with useful
instructions. Hennessy finds that typically 50-60% of the no-ops can be eliminated. The
SPUR ratios are computed assuming that 60% of the no-op instructions after the loads can
be filled with code reorganizing techniques. The indirection ratio on the Am29000 would
be similar to SPUR because both machines have two-cycle load instructions.

cycles per call cygles per call | indirection ratio
SPUR function call | (with no-ops) | (no-ops filled) | (no-ops filled)

direct 1 1 —
single indirect 3 2.4 2.4
double indirect 5 3.8 3.8

Table 1: Indirection ratio for SPUR function calls. Cycles per call indicates the number of
machine cycles necessary to perform only the function call (2 cycles per load plus 1 cycle per call).
Cycles per call (with no-ops filled) and indirection ratio are computed assuming that 60% of the
no-ops after the loads can be eliminated through code reorganization.

Table 2 presents the indirection ratios for the VAX 8650. The jsb VAX instruction was
used to perform the call. In measuring the indirection ratio, we inserted jsb instructions
into a large C program. We then timed the program with no jsb’s, direct jsb’s, load+jsb,
etc.

Table 3 presents the indirection ratios for the Motorola MC68020. As for the VAX, the
empirical values were computed by timing calls interspersed in a large C program.

The Direct Call -Fraction

The direct call fraction depends strongly on the application and the architecture. We
present the exact direct call fraction for several SPUR Lisp applications and a probabilistic



nanoseconds | indirection
VAX function call per call ratio
direct call 880 —
single indirect 1140 1.3
double indirect 1410 1.6

Table 2: Indirection ratio for VAX function calls. Nanoseconds per call indicates the time per
call computed from averaging 4 data sets of 12,000,000 repetitions on a VAX 8650. Call/return
pairs were timed. We determined empirically that for a call/return pair, 50% of the time is spent
executing the call and 50% of the time is spent executing the return.

nanoseconds | indirection
MC68020 function call per call ratio
direct call 520 —
single indirect 750 1.4
double indirect 960 1.8

Table 3: Indirection ratio for MC68020 function calls. Times were computed from averaging
10 data sets of 12,000,000 repetitions on a diskless Sun 3/75 with 8 megabytes of real memory.
Call/return pairs were timed. We also determined empirically that for a call/return pair, 41% of
the time is spent executing the call and 59% of the time is spent executing the return.



measure of the direct call fraction for the same applications in other Lisp systems on other
architectures.

The Applications

We have measured the direct call fraction in a group of applications that have been ported
to SPUR Lisp. Later in this paper we refer to these same applications when we measure
the overhead of supporting direct function calls. The applications are:

RPG A composite of the larger Gabriel benchmark programs described in [Gab85].
RPG consists of puzzle, traverse, frpoly, browse, boyer, and £ft. The
numbers for each benchmark are averaged evenly.

RSIM An electronic circuit simulator. The RSIM benchmark involves having
RSIM simulate a 10-bit counter for 200 cycles. The RSIM application
contains about 2500 lines of Common Lisp.

0PSS A routing program implemented in OPS5. The OPS5 benchmark involves
having OPS5 partially route a circuit for 200 firings of OPS5 rules. An
OPS5 interpreter is implemented in 3500 lines of Common Lisp. OPS5
contains more than 1000 OPS5 rules.

SLC The SPUR Lisp Compiler. The SPUR Lisp compiler is implemented in
23,000 lines of Common Lisp.

UASM The Perq microcode assembler for Spice Lisp. We measure the microassem-
bler assembling several Perq microcode files. The Perq microcode assembler
contains about 5000 lines of Commeon Lisp.

PCOM A Prolog compiler. PCOM translates Warren Abstract Machine (WAM)
code to optimized SPUR assembly instructions. PCOM is implemented in
4500 lines of Common Lisp.

RL RL is a microcode compiler for signal processing applications. RL is imple-
mented in approximately 5000 lines of Common Lisp.

Unfortunately, due to lack of resources, we have not had time to port all of these
applications to SPUR Lisp. In particular, we do not have data for the execution of UASM,
PCOM, and RL on SPUR Lisp. Likewise, because the SPUR Lisp compiler is specific to
the SPUR Lisp system, we have not spent the time to port the SPUR Lisp compiler to
other Common Lisp dialects.

Direct Call Fraction Measurements

Because actual SPUR hardware is still being tested, SPUR Lisp is implemented on an in-
struction level hardware simulator. The simulator is capable of simulating 60,000 SPUR
instructions per VAX CPU second, and simulations of more than 200 million SPUR in-
structions are routine. With this simulator, we have been able to gather detailed statistics
about instruction usage and the exact number of cycles executed in particular functions.



Taylor has compared the overall performance of SPUR with other Lisp machines using this
simulator [THL*86].

Because we do not have simulators for the VAX and MC68020 instruction sets, we
cannot measure the direct call fraction directly. Instead, we have determined the direct call
fraction for various Lisp implementations on these architectures probabilistically. Berkeley
Unix (4.3 BSD) provides a system signal that allows processes to be stopped every 10
milliseconds. By sampling the program counter every 10 milliseconds, we measured what
fraction of the time various Lisp implementations spend executing call instructions. Table
4 contains measurements of the direct call fraction for VAX LISP, Kyoto Common Lisp,
and Franz Allegro Common Lisp, as implemented on the VAX and Sun computers. In
every case, we measure Lisp programs compiled for maximum speed and minimum safety.
Maximum speed insures that the most frequently called routines (like cons) are open-coded,
and minimum safety prevents extraneous calls to argument and type-checking procedures.

Steenkiste measures that in MIPS-X PSL, saving the return address and performing
the call accounts for 5-6% of the total execution time [Ste87]. Our average of 2.75% is
somewhat lower than Steenkiste’s measurements, probably because we measure programs
in which most common operations like cons have been open-coded.

Lisp Implementation Direct Call Fraction (%)

PCOM [ RL | RPG | RSIM | UASM | OPS5 | avg.
SPUR Lisp (SPUR) — =131 | 22 | — | 28 | 27
VAX Lisp (VAX 8800) | 1.8 |23 | 2.4 | 5.2 24 | 48 | 32
ExCL (VAX 8800) 1.7 |18]| 20 | 21 | 17 | 17 | 18
KCL (VAX 8800) 2.8 26| 3.0 3.7 — 2.8 3.0
ExCL (Sun 3/280) 23 |28 29 | 29 | 29 | 26 | 27
KCL (Sun 3/280) 42 |25 30 | 35 — 24 | 31
average 2.6 24 2.7 3.3 2.3 2.8 2.75

Table 4: Direct call fraction for various Lisp applications running on several Lisp implementations
for SPUR, VAX and MC68020 architectures. Measurements for SPUR were made using an instruc-
tion level simulator. Measurements for the VAX and MC68020 were made using the interval timer
signal provided in Berkeley Unix (4.3 BSD). We assume 90% of calls are implementable as direct
calls. Unfilled spaces indicate the application was not ported to the particular implementation.

The Total Overhead of Function Call Indirection

We have measured the indirection ratio and direct call fraction for several architectures. The
total overhead of indirection is the additional time spent executing indirect function calls
(i.e. (DCF x IR)— DCF, where DCF is the direct call fraction, and IR is the indirection
ratio. Table 5 summarizes the predicted total overhead of single and double indirection in
for the SPUR, VAX, and MC68020 architectures. While the direct call fraction is similar
for the 3 architectures, the indirection ratio is much larger in SPUR. These measurements
indicate that direct function calls do not significantly improve performance of Lisp on the



VAX and MC68020 architectures. However, on SPUR and other RISC architectures, where
the cost of a load is the same or larger than the cost of a call, direct function calls provide
a 6-8% performance improvement.

direct call single double total single | total double
architecture | fraction | indirection | indirection | indirection | indirection
(%) ratio ratio overhead overhead
SPUR 2.7 2.4 3.8 3.8% 7.6%
VAX 2.6 1.3 1.6 0.8% 1.5%
MC68020 2.9 1.4 1.8 1.1% 2.3%
Table 5: Predicted overhead of single and double indirection for various architectures.

TheACosts of Direct Function Calls

There are three costs associated with the SPUR Lisp implementation of direct function
calls.

e Increased implementation complexity.
e Increased memory utilization.
o Decreased performance of loading and reloading functions.

The increase in implementation complexity is the hardest cost to quantify. We simply
measure this cost by counting the lines of Lisp code necessary to implement direct calls. In
SPUR Lisp, direct calls are implemented in 3 source files that contain 1261 lines of Common
Lisp. By comparison, SPUR Lisp as a whole (not including the compiler) occupies 54 files
and contains 31966 lines of Common Lisp. We see that the complexity of direct calls is only
a small fraction {< 4%) of a complete Common Lisp implementation.

We will look at the other costs of direct function calls more closely in the following
sections. We have measured these costs carefully in SPUR Lisp using the applications
described in the previous section. Table 6 presents SPUR’s performance for loading and
reloading these applications.

Memory Usage of Direct Function Calls

Direct function calls require additional memory for two data structures: the unresolved
reference list and the caller sets. Memory allocated to the unresolved reference list is
reclaimed quickly. As an application is loaded unresolved references are created. By the
time the entire application has been loaded, however, all unresolved references associated
with the application should have been resolved. Measurements of our benchmarks show
that memory allocated to the unresolved reference list is a small part of the total memory
allocated (< 6%) during loading.



total functions | load | reload
application | functions with time | time
loaded callers |-(sec.) | (sec.)
SLC 1362 529 8.9 16.2
RPG 79 55 0.5 0.5
RSIM 153 67 2.1 2.1
UASM 294 89 1.4 1.9
OPS5 379 262 6.5 6.4

Table 6: Summary of load and reload statistics for 5 SPUR Lisp applications. Measurements
are made using a hardware simulator for SPUR. Times are computed assuming SPUR executes
five million instructions per second. Calls to user functions are not included in the load times
reported—only the actual load operations are measured.

Memory allocated to the caller sets remains throughout the lifetime of a function, and
hence is of greater interest than the memory allocated to the unresolved reference list. Mem-
ory allocated to a function is divided into 3 data structures: the code vector (instructions),
the constants vector, and the caller set. Table 7 shows the amount of space allocated to
each of these data structures in our five applications and for the SPUR Lisp system by
itself. While the amount of memory allocated to the caller sets varies greatly, typically it
remains a small fraction of the total memory allocated to functions.

total code | constants | caller | caller set
application functions | vector vector set overhead
loaded | (bytes) | (bytes) | (bytes) (%)
SPUR Lisp system 2083 381 86 29 6.2
SLC 1362 436 92 56 10.6
RPG 79 272 86 430 120.1
RSIM 153 - 433 86 23 4.4
UASM 294 456 113 197 34.6
OPS5 379 190 85 29 10.5

Table 7: Memory allocated to functions in 5 SPUR Lisp applications. Average sizes of the code
vector, constants vector, and caller set are provided.

Loading Performance with Direct Function Calls

Direct function calls require additional overhead as functions are being loaded. This over-
head can be divided into two parts. First, when a function is loaded, its instructions must
be scanned so that all calls it makes can be recorded in the caller sets of the functions it
calls. If the function being called does not yet exist, the unresolved call must be noted in the
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unresolved reference list. Second, when a function is defined, all the unresolved references
to it must be resolved. Table 8 summarizes the overhead of these two operations for our five
applications. Interestingly, the SPUR Lisp Compiler, in which caller sets contributed only
moderately to the total memory allocated to functions (10.6%), showed the most overhead
at load time (13.7%). The overhead at load time for direct function calls appears to be
acceptably small (< 15%).

total overhead overhead total
application | functions resolving recording | overhead
loaded | references (%) | callers (%) (%)
SLC 1362 3.5 10.2 13.7
RPG 79 1.7 3.5 5.1
RSIM 153 0.5 2.1 2.7
UASM 294 2.1 7.2 9.4
OPS5 379 0.8 1.8 2.7

Table 8: Overhead of direct function calls during initial loading for 5 SPUR Lisp applications.
Fraction of total load time not including calls to user functions is given. All measurements reflect
loading applications that were not previously defined.

A more significant source of overhead at load time with direct function calls occurs
when functions are redefined. When a function is redefined in SPUR Lisp, all functions
that call that function must be scanned and the calling instructions must be updated. Note
that redefining an application does not always take longer than initially defining it (e.g.,
look at OPS5 in table 6). This can occur because a redefining function does not incur
the same overhead from unresolved references as originally defining a function does. We
have measured the overhead of updating callers for our five applications, and the results
are provided in table 9.

overhead

application | functions redefining
redefined | functions (%)

SLC 1277 4.4
RPG 81 13.0
RSIM 154 9.5
UASM 170 57.7
OPS5 330 7.9

Table 9: Overhead of direct function calls during reloading for 5 SPUR Lisp applications. Fraction
of total reload time not including calls to user functions is given.

The results of table 9 are hard to interpret. For the largest application (the SPUR
Lisp compiler), the overhead of redefining functions was quite small. However, in UASM
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function redefinition added more that 50% to the total reload time. More applications are
required to determine what the typical redefinition overhead will be.

Conclusions

We have examined the performance overhead of function call indirection and provided
detailed measurements of the costs of direct function calls in SPUR Lisp. Here are our
conclusions. V

e The cost of indirection depends on the architecture, and ranges from 1% for the
VAX using single indirection, to almost 8% for double indirection with the SPUR
architecture. Measurements show that direct function calls are probably unnecessary
on the VAX and MC68020 architectures because call instructions are quite expensive
relative to the loads required for indirection. On SPUR and other RISC architectures
direct function calls improve performance significantly

e The implementation complexity of direct function calls in SPUR Lisp is small com-
pared to the overall complexity of a Common Lisp implementation.

¢ The memory required for the unresolved reference list is a small part of the total
memory requirement of an application (< 6%), and is only used when the application
is initially loaded. The memory allocated to caller sets is a sizable fraction of the
total memory allocated to functions (10-50%) and a much smaller fraction of the total
memory allocated by an application. Moreover, caller set memory is only referenced
when functions are defined and redefined, so may not greatly degrade application
performance.

e With a direct function call implementation, initially loading a function takes up to
15% longer than an indirect call implementation. Redefining an application already
loaded may take up to 50% longer, but our data is too sparse to generalize.

¢ Because the implementation is straightforward and the performance benefits are com-
parable to an effective compiler optimization, we believe that direct function calls are
certainly worthwhile to implement for SPUR and other RISC architectures. Because
the performance benefits of direct function calls are considerably smaller on the VAX
and MC68020 architectures, direct function calls may not be worthwhile implement
on these architectures.
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