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ABSTRACT

This paper presents an extension to the standard trace-driven simulation procedure
that allows for the examination of parallel programs on parallel architectures. To demon-
strate the procedure, an example simulation is performed to investigate the changes
resulting from modifying the architecture of the Sequent multiprocessor. The trace-
driven simulation process is shown to be a very lengthy task, and other methods of
predicting performance are explored.
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1. Introduction

Trace-driven simulation is an important technique in the evaluation of many aspects of computer sg;s-
tems, especially in the analysis of memory systems. Trace-driven simulation bases its results on actual
workloads, and allows for easy design prototyping [Smit85]. In the design of shared memory multiproces-
sors, with their multiple levels of storage and dependencies on program behavior, trace-driven simulation is
very attractive. However, previous address tracers suffered from the inability to trace multiple tasks, so
parallel programs could not be traced. This paper describes a multiprocess address tracer which forms the

basis for extending the trace-driven simulation method to multiprocessors.

The Sequent Balance 12000 is a shared memory multiprocessor with a global 14-Mbyte memory and
12 NS$32032 processors, each with a dedicated 8-Kbyte cache plus floating-point and memory management
units [Mayb84]. For maximum processing power, programs on the Sequent may consist of multiple
processes, with each process executing on a separate processor. Using this technique, up to a twelve-fold
increase in execution speed over comparable uniprocessor performance can be realized. Of the several
parallel programs developed for the Sequent from research into parallel CAD tools, three were selected as

subjects for tracing.

Simulations of the Sequent architecture are run to examine the changes in performance that result

from varying the ratio of processing speed to memory speed, and to compare the simulation results to per-
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formance estimates obtained from multiprocessor models. These models require orders of magnitude less
time and effort than trace-driven simulation, but have not been tested against real parallel programs, only

against uniprocessor programs replicated multiple times to approximate true parallel programs.

2. Software

The trace-driven simulation process occurs in two phases, generation of the address trace and then
simulation of the proposed architecture(s). Four programs are involved, starting with the trace generator
and ending with the multiprocessor simulator. In between are the postprocessor and cache filter. A
diagram of the multiprocess trace-driven simulation procedure for three processes is shown in Figure 1.

This entire process must be conducted for each target program to be traced.

.trace generator postprocessor simulator

target program

Figure 1 - Flow of data in the Multiprocess Trace-Driven Simulation procedure.

The first step, trace generation, is performed on the Sequent multiprocessor. An instruction tracer
employing the Trace-bit technique of address trace generation [Agar86] is executed once for each target
program. The target program to be traced (subject) is controlled and monitored by the tracing program
(tracer) through the Ptrace system call. Ptrace provides the capability to start, stop, and single-step pro-
cess execution and examine and modify process state. In order to support multiprogramming, the Ptrace
facility has been extended to allow control over a complete multiple-process program, including the initial

process and all of its descendants.

Traces are generated by fracer single-stepping the execution of subject. The instruction stream of

subject is processed one instruction at a time. For each instruction, subject single-steps the execution of the
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instruction and then tracer interprets the instruction. The output of tracer is a stream of records, one record
for each instruction traced. An example output record is shown in Figure 2. Each record consists of three
parts: the process id, a copy of the instruction that was executed, and a series of memory accesses. Each
memory access consists of an access type (data read, data write, or instruction read), a length (1,2,0r4

bytes), and an address.

(previous record)
21722 Process identifier
70 03 Machine code for addd 0(r6),r0
5 1 2eedc 5 => read of first byte of instruction
6 1 2eedd 6 => read of next byte of instruction
1 4 364ala 1 => read for doubleword at 0(r6)
(next record)

Figure 2 - Sample output record from trace generator.

Tracer monitors fork and exit calls in subject, so that subject may dynamically vary its number of
processes. When subject consists of more than one process, tracer cycles through the processes of subject,
each process executing one instruction per cycle. By setting breakpoints in subject, tracer can skip over
sections of the application code, thereby limiting the trace to only those portions of subject deemed

interesting.

Address tracing using the Trace-bit technique allows trace generation without the need for hardware
or microcode modification. There is no limit to the number of instructions that can be traced, and, as men-

tioned before, the target program may consist of multiple, independent tasks. However, this method suffers
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from several drawbacks. It does not trace operating system kemel code or I/O activity, causing omission
distortion, and it does not take interrupts or context switching into consideration. The tracing program also
causes a large time distortion. Target programs experience a slowdown of over 100,000x compared to nor-

mal operation.

The second step of the trace procedure is trace postprocessing, where a number of small tasks take
place. The binary instruction trace is converted into text, formatted with one memory reference per line,
using an extended Dinero format [Hill83]. An example section of postprocessed output is shown in Figure
3. Each line includes a code specifying instruction or data reference, address of the reference, and a flag
indicating shared or private reference. Additionally, for instruction references, a copy of the basic instruc-
tion (opcode and addressing modes) and the number of cycles needed to execute the instruction are
included. The postprocessor also expands the one trace with interleaved references for N processes into N
separate traces, one for each process. The postprocessor keeps statistics for several activities, including
counts of instructions, counts of instruction references, and counts of data references, noting read or write,

shared or private, and user or system.

2 2eedc 4 08 7003 linstruction fetch at address 2eedc;
shared, user; 8 cycles to execute;
instruction is addd 0(r6),r0.

0364ala40 loperand read at address 364ala;
shared, user.

18dlce 00 loperand write at address 8dlce;
private, user.

1100c44 4 1 loperand write at address 100c44;

shared, system.

Figure 3 - Sample output taken from a postprocessed file (comments added).

The postprocessor performs several functions with regard to locks, the fundamental unit of synchron-
ization in the Sequent. All locking and unlocking activity called for by the target program is monitored.
Every lock and unlock request is recorded in a special file. Counts are kept for the number of locks,
number of unlocks, number of instructions executed while busywaiting for a lock, and the number of
instructions executed and memory locations referenced between locks and unlocks (see Table A.5 in

Appendix A). The postprocessor watches for certain illegal locking conditions, such as attempting to lock
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a lock that is already locked, unlocking a lock that is already unlocked, or unlocking a lock that was not
previously locked. Also, the postprocessor identifies the beginning and ending points of lock and unlock

sequences in the output traces.

The third step of the trace-driven simulation process is cache filtering. Cache filtering reduces the
amount of trace data involved in the simulation {Puza85]. The cache filter program performs a cache simu-
lation, separating the input records into cache hits and cache misses. The filter eliminates records from the
input that could not cause bus operations, passing the other records unchanged to the output. For the
write-through with invalidation coherency protocol of the Sequent, the filter passes all write references, all
shared references, and all read miss references; read accesses that are cache hits are encoded in a more
compact notation, where one runlength is output for each series of consecutive hits. Recorded in each run-
length are the number of references compacted into the runlength, the number of cycles associated with
any instructions references in the runlength, and the number of consecutive reads in the runlength, broken
down into instruction references and data references. The cache filter is run once for each process recorded
in the trace. The filter parameters, cache size and line size, are set according to the architecture under con-
sideration. For a system using a cache with line size L and at least N sets, the reduced trace contains only

those references that produce misses on a direct-mapped cache with N sets and line size L [Ston87].

Extending the trace-driven simulation procedure to parallel programming requires both a multipro-
cess address tracer and a multiprocessor simulator. Fortunately, the simulator used in this project had been
previously developed by Susan Eggers for a study of data sharing in parallel programs [Egge88]. Itis a
complete multiprocessor simulator, modeling the processing elements, the caches and cache controllers,
and the system bus. It is based on a deterministic event-driven simulator. The input to the simulator is the
complete set of postprocessed/filtered traces for a target program, and the output is a file of statistics for the
simulation. A file of runtime parameters determines the configuration of the architecture under considera-

tion, setting the cache configuration, coherency protocol, memory speeds, and simulation length.

3. Theoretical Background

As an alternative to the lengthy trace-driven simulation process, Gibson has established two models

for predicting shared memory multiprocessor performance, a 4-point bound (4PB) and a simple queueing
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model (SQM) [Gibs87]. Both models characterize a N processor machine with two parameters, fzompuse
and lygnsger. the average computation time between successive main memory requests and the average
memory service time, respectively. They are determined by cache reference rate, cache request ratio, and
memory transfer times. The 4PB and SQM estimate three metrics of multiprocessor operation, effective
uniprocessors: bus utilization, and average wait on memory. Effective uniprocessors (EU), the potential
speedup of the system, indicates the maximum possible improvement in execution speed of the N processor
machine over that of a uniprocessor. EU ranges from 1, no speedup, to N, linear speedup. Bus utilization
(BU) is the fraction of the time that the system bus is active, with 1 representing a saturated bus. Average
wait on memory (AW) is the average time between a request for memory service and the corresponding

response from the memory, including the memory access time and the bus contention time.

The 4-point bound gives a region of operation bounded by an optimistic estimate and a pessimistic
estimate. In the optimistic estimate there is no contention for the bus, as processors schedule their memory
requests to minimize bus waiting. In the pessimistic estimate all processors issue memory requests in
groups, resulting in memory contention. On average, a processor waits for half of the other processors
before receiving memory service in the pessimistic estimate. For simplicity, the 4PB uses a two section
piecewise-linear approximation of the pessimistic estimate. Additionally, a paranoid bound was esta-
blished as a true lower bound on multiprocessor performance. In the paranoid bound, for each reference a
processor must wait for all of the other N—1 processors to access memory before receiving memory ser-

vice. The general shape of the 4PB for the EU metric is shown in Figure 4.
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Figure 4.
The region of operation formed by the 4-point bound.
Taken directly from [Gibs87].

Computation time and memory service time determine two important points of operation of the 4PB.
The system saturation point, N*, is the saturation point of the optimistic model, and is also the maximum
number of effective uniprocessors. N’, the saturation point of the pessimistic model, is the number of pro-
cessors necessary o insure system saturation. They are given by:
N* = tcompute hiransfer
ttran.\fer

N’ = 2tcomput¢ +t!ramf¢r
lmm.fcr

Also, N’=2N"~1. These points divide multiprocessor performance into three regions of operation,
1<N SN°,N° <N <N’,and N 2N’. The equations for the optimistic and pessimistic estimates of the
4PB for EU, BU, and AW are shown in Table 1. One additional parameter is introduced, p, the ratio of
tiansfer 10 Lompue - The 4PB predicts that when N <N, the bus is not saturated, and linear speedup is
theoretically possible. The bus reaches 100% utilization using between N " and N’ processors. When
N > N’, the 4PB predicts that the bus is fully saturated, and no speedup is possible. The equations for the

paranoid bound and the nonlinear (unsimplified) pessimistic estimate are given in Table 2.



Table 1 - 4PB estimates
optimistic pessimistic
1SN <N’ N =2N" 1<N<N° N2>N"

. 1 1
EU| N N FLEPNHI] | LN +—p)
BU NIN* 1 %p[(2—3/N')N+1] %—[pN+(1—p)]

N+1 N+1

AW tirans N, tirans —tcomp T‘ trans ——2—t trans

Table 2 - Additional 4PB estimates
nonlinear pessimistic || paranoid bound
N (comp+tivans) N (Leomp Hirans)
EU
N+1 tcomp+Nlirans
4 comp + "—2—"t trans
BU Ntyyons Nigans
N +1 tcomp +N trrwu
Leomp+ > Loans

The simple queueing model utilizes a basic queue structure with exponential distributions for
memory request and service times, and provides a single estimate of performance for each of the three
metrics. Two additional parameters are introduced, Ly, the average number of processors waiting on
memory, and p,, the proportion of time that there are n processors waiting on memory, with pg giving the

bus idle time. The estimates of performance are given in Table 3.

Table 3 - Simple Queueing Model estimates
EU ( N - LN ) [compuu + transfer
compule
BU 1-pg
AW LN tcampuu
N-Ly

4. Traces

Traces were generated for several CAD programs developed for the Sequent in the EECS department
at Berkeley. For this report, three traces are examined. The first is PVERIFY [Ma87], a logic verification
program written by Tony Ma. PVERIFY compares two logic circuits, determining if they perform

equivalent functions. The second trace is CELL [Caso86], a cell placement program by Andrea Cassotto
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that performs simulated annealing for IC design. The final trace is PDSPLICE [Jaco87], a circuit simulator

designed by George Jacobs.

All of the target programs examined used the same method of parallelism. Programs consist of a
group of identical processes, with each process repeatedly removing a segment of work from a global job
queue and then processing on the segment. The traces were limited to only those sections of code with
parallel processing, and for each trace the trace generator was run until six million references per process
were collected. The number of child processes used by the target is fixed at time of tracing. The traces

used in this paper all have the full twelve processes.

One change to all of the target programs was necessary. In order to track sharing, the postprocessor
must know the addresses of all shared variables. The addresses of static and global variables can be deter-
mined from symbol tables taken from the object files, but this does not cover dynamically allocated shared
variables. For these, each program to be traced was modified to record at runtime the address and size of

each shared variable at time of allocation. This information was dumped into an allocation history file.

The trace generator is a very slow program. The average tracing rate is about four million instruc-
tions per day, amounting to only 300,000 instructions per process per day for a full twelve process trace.
The number of instructions traced is determined by the number of processes in the trace and the number of
memory references needed per process. For six million references per process, a total trace of 42 million
instructions is needed, and requires from ten days to two weeks to collect. The tracer’s slowness stems
from its reliance on Ptrace. Each instruction that is interpreted requires multiple calls to Ptrace, and each
Ptrace system call generates substantial overhead from the necessary context switching between the tracer

and the operating system and between the operating system and the subject.

5. Simulations and Results

As an example of the complete trace-driven simulation process, simulations were run to determine
the performance improvement that could be obtained from the substitution of faster processing elements
into the Sequent. Simulations were performed over a range of computation speeds, with the cycles needed

to execute the complete trace giving the performance indication. For each target program, six simulations
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were run, starting with a simulation of the Sequent architecture as it presently exists. Further simulations
were conducted for faster processing speeds, with compute speed increases ranging from x2 to x32, dou-

bling at each step.

The multiprocess trace-driven simulation process requires a large amount of both CPU time and disk
space. Because of the length of time necessary to run the programs and the large sizes of the inputs and
outputs, each section of the process is run separately, with the intermediate data stored on disk and tape.
The sizes of the various files for the three traces are shown in Table 4, and the times for execution of the
programs are given in Table 5. Trace generation is performed on the Sequent, postprocessing and filtering

on a Sun 3, and simulations are run on a VAX 8800.

Table 4 - Sizes of Trace Files (in megabytes)

compressed  postprocessed filtered filtered/
trace compressed
PVERIFY 306.8 981.4 325.5 55.7
CELL 334.5 1039.3 4755 83.6
PDSPLICE 185.4 1209.9 4359 50.8
Table 5 - Program Execution Time (in CPU hours)
Sequent Sun 3 VAX 8800
trace generator | postprocessor 12 filters | 7 simulations
PVERIFY 122.9 33.3 6.1 52.5
CELL 140.8 36.0 8.8 55.1
PDSPLICE 150.2 41.7 94 64.6

The parameters of the simulator were set to match the Sequent, 12 processors, each cache 8-Kbyte, 8
byte block, 2-way set associative, write-through with invalidation. The Sequent bus delivers a sustained
data transfer rate of 8 bytes every 300 nSec [Fiel84], s0 ty,u5, Was set to 3 cycles (100 nSec cycles time).
The simulation results are based on 100,000 references per process. To overcome cold start effects, the
simulator was run until steady state cache performance was obtained, then statistics were collected over the

next 100K references. Also, simulations at 300K references per process were run for the x1 configuration.

The results of the simulations are shown in Figures 5 through 10, with the raw data given in Appen-
dix A. There are eight graphs per subject. The x axis in each graph is the increase in computation speed.

For each subject, the first two graphs show fs,msue and p. The next two graphs show the cycles needed to
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execute the trace and the speedup, the ratio of the cycles for the base machine (x1) to the cycles for the fas-
ter processor. The next three graphs show the values of EU, BU, and AW, along with the various predicted

values. The final graph shows the value of N* and N”, the saturation points.
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6. Discussion

Overall, the results show that a substantial increase in performance is possible. PVERIFY and CELL
show very similar results. In the x1 configuration, the values of f;,mpuq. are large in COmMPparison to fyanger
and the values of p are a very low 0.01. The bus is underutilized - approximately 10% BU, and the EU
figures are close to 12. Execution time is dominated by compute cycles, leaving much room for improve-
ment. In both programs, execution speed nearly doubles between the x1 and x2, between the x2 and the
x4, and again between the x4 and x8 simulations. The x16 simulations are the first to have p>0.1, and the
first to have N* < 12. In the x16 and x32 simulations, the bus utilization approaches 1.0, and the effective
uniprocessors drop off significantly. The x32 simulations are definitely in the knee of the curves showing
the ratio of cycles, and little additional speedup would be available from further increases in computation
speed. The PDSPLICE simulation shows an even larger value for f,ompue , four times that of PVERIFY and
CELL. This extremely high value allows for nearly linear speedup up to x32. Even at the fastest speed,
the bus is still underutilized (N >12 for all of the PDSPLICE simulations). PDSPLICE would require at

least another doubling of processor speed before the bus would reach saturation.

Results from the longer 300K simulations agree fairly closely with the shorter runs: the values of
teompue and N * are within 5%, and the values of AW and EU are within 8%. The bus utilization metric
shows the greatest difference, with the BU from the longer simulations being 10% lower than the short

simulations; this difference occurs for ali three target programs.

Comparisons with the theoretical models show that the performance of the 4PB is similar to that
reported in Gibson’s work, with the 4PB bounding the performance metrics, except near N ’, where the EU
and BU curves cross under the pessimistic estimates. Performance is consistently lower than that predicted
by the SQM, and the error of the SQM relative to the simulations can be as high as 25%. This is quite dif-
fercnt from the earlier work using uniprocessor traces, in which the predictions of the SQM were within
3% of the simulation results. In general, the simulation curves lie approximately halfway between the
optimistic estimates and paranoid bounds. For N <N’, the nonlinear pessimistic estimate is very close to
the simulated results for both the EU and BU curves. In all but one case, the difference between the simu-

lation and the nonlinear pessimistic estimate is less than 8% for both the EU and BU.
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In Figure 11, the optimistic and pessimistic estimates of the 4PB form the more traditional graphs of
the metrics versus the number of processors. Two simulations are shown, PVERIFY x1 and PVERIFY x8.
The x1 graphs indicate that the base architecture could theoretically be expanded to include up to 100 pro-
cessors, with speedup ranging form 75 to 100. The x8 graphs show more typical behavior. Bus saturation

occurs with ten to twenty processors.
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One surprising result is the tendency for the AW to decrease as the processing speed is increased.
This is quite visible in the AW curves, especially the AW curve for PVERIFY. Intuitively, AW should
increase with decreasing fcompue - AW is determined by two quantities, Ly, from the SQM, and A, the aver-
age rate of arrival of bus requests; the relationship is given by Ly = A AW. To investigate this AW
behavior, the simulator was modified to provide times for the start and completion of each bus request.
From the start/completion times, p, (from the SQM) can be determined. Ly is related to p, by:

N
LN = ann

n=1

The quantity A is simply the total number of bus operations divided by the number of cycles for the trace.

This modified simulator was used to rerun the PVERIFY x1 and the PVERIFY x4 simulations.
Although the computation speed increases by a factor of four between these two simulations, the AW of
the faster processor is approximately one-half that of the slower processor. The graphs of p, are shown in
Figure 12, and the values of Ly, A, and AW are given in Table 6. This method of calculating AW agrees
very closely with the AW taken from the simulator output. The value of Ly for PVERIFY x4 is about
twice that of PVERIFY x1, while the value of A for PVERIFY x4 is about four times that of PVERIFY x1,

resulting in a decrease in AW from PVERIFY x1 to PVERIFY x4.

p, for PVERIFY
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Figure 12 - Graph of p, - the fraction of time that there are n processors waiting on memory.
The horizontal axis shows n, the number of processors.
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Table 6 - Calculation of AW

AW

trace Ly A Ly/A  simulator
PVERIFY x1 || 0.7231 | 0.0375 | 19.29 19.30
PVERIFY x4 || 1.5391 | 0.1466 | 10.50 10.49

The results of PVERIFY x1, very high f.,mpu. and very low BU, yet high AW, lead to the supposi-
tion that bus requests from the processors occur at roughly the same time, intermixed with long periods of
idle bus. In each of the target programs examined, all of the processes making up the program execute the
same code, starting at the same place in the program at the same time. The paths of the various processes
can diverge due to branches and locks, but the processes will reconverge at any synchronization barriers in
the code. The contention for the bus during the periods of references drives the AW up, while the long idle

periods keep the BU low.

This behavior is shown in Figure 13. The first example (a) shows perfectly matched f,mpwe values,
resulting in no memory contention. Any variation of f.,mx. between processors disturbs the staggered
lock-step pattern. In (b), one value for f,omu. does not match the others. The third processor issues its
second memory request two cycles early, resulting in two cycles of waiting, thereby increasing the average
wait. In (C), the l,muu Vvalue is divided by two (x2 faster processor). The third processor’s second refer-
ence still causes memory contention, but now the wait has been increased by only one cycle, instead of
two. Thus, the AW metric is lower for the faster processor, since the AW depends only on the number of
cycles spent accessing memory, not on the percentage of time spent accessing memory. In both (b) and (c),
after the second group of requests, the processors are lined up again in perfect staggered order for the next
group of requests. An actual example taken from the PVERIFY x1 simulation is shown in (d). In (), this
example from PVERIFY has been modified with a x4 speedup, and the result is fewer cycles for waiting,
decreasing from 20 to 8, while the number of cycles on the bus has remained constant at 30. This decrease
in AW can continue until the start of the next series of requests occurs before the end of the present series,
in which case the overlap will cause a sharp increase in AW. Each series of requests can last up to
Ntyansfer » 50 the AW can decrease only while t,mpue > Nlpangfer- In the PVERIFY simulations, tyanser is

less than M.,y starting with the x8 simulation. The x8 simulation is also the first to have an increasing



AW. Thus, in this model, the decrease in AW is a result of the decrease in the inter-process variance of
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Figure 13 - Examples of AW:
(a)-no contention at x1 (b)-contention at x1, 2 wait cycles
(c)-contention at x2, 1 wait cycle (d) example from PVERIFY x1, with 20 wait cycles
(e)-PVERIFY example with x4 speedup, showing 8 wait cycles
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7. Summary

Multiprocessor trace-driven simulation is seen to be a very useful but very arduous procedure. The
simulation results verify the accuracy of the 4-point bound, but the predictions of the simple queueing
model are always too optimistic. The nonlinear pessimistic estimate forms the best single estimate of per-
formance, predicting within 10% of the simulations. As in the previous work, the quantity p, the ratio of
langer 1O lcompute » 1S found to be the most important factor in predicting performance. For the three CAD
programs examined, the base Sequent architecture shows a very low value for p, allowing for a significant
increase in performance by exploiting faster processors. For future studies, more work needs to be done in
examining the average wait metric versus processor speed. The pattern of references made by the proces-
sors should be studied to measure the correlation between the processors and to measure the distribution of
the teompuwe Vvalues. Also, it would be interesting to perform the simulations with copy-back caches, rather

than write-through.
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10. Appendix A: Raw Data

This appendix presents the actual figures from the simulations and the various performance esti-
mates. The first table gives the data output by the simulator, and the following three tables show the pred-
ictions for the three traces. The pessimistic estimate is defined only for N<N’. The column labeled non-
linear is the nonlinear pessimistic estimate, and only the EU and BU estimates differ from the pessimistic.
The last table gives statistics taken from the postprocessor. The statistics are for the entire trace. Shown
are the number of lock variables declared in the target, number of calls to the lock library routine, number
of instructions and number of memory references in the trace, and the number of instructions executed

while busywaiting for a lock.

Table A.1 - Results From Simulations
trace/speedup lomp p N° N’ Kcycles  EU BU AW
PVERIFY x1 32536 | 0.0092 | 109.45 ; 217.90 3361 11.71 | 0.107 | 19.30
PVERIFY x2 160.59 | 0.0187 54.53 | 108.06 1688 10.72 | 0.197 | 12.56
PVERIFY x4 77.55 | 0.0387 26.85 52.70 856 994 | 0.370 | 10.49
PVERIFY x8 34.89 | 0.0860 12.63 24.26 467 828 | 0.656 | 14.01
PVERFIY x16 15.27 | 0.1965 6.09 11.18 330 5.09 | 0.836 | 24.68
PVERIFY x32 6.22 | 0.4826 3.07 5.14 277 278 | 0.906 | 29.94
CELL x1 366.61 | 0.0082 | 123.20 | 245.41 2263 11.15 | 0.091 8.69
CELL x2 181.62 | 0.0165 61.54 | 122.08 1139 10.93 | 0.178 7.05
CELL x4 90.92 | 0.0330 31.31 61.61 577 10.86 | 0.347 7.40
CELL x8 43.91 | 0.0683 15.64 30.27 317 963 | 0.616 | 11.54
CELL x16 21.22 | 0.1292 8.74 16.48 223 727 | 0.832 | 16.35
CELL x32 12.78 | 0.2347 5.26 9.52 193 495 | 0.941 | 21.60
PDSPLICE x1 1132.37 | 0.0026 | 378.46 | 75591 15046 12.00 | 0.032 8.52
PDSPLICE x2 566.64 | 0.0053 | 189.88 | 378.76 7567 11.38 | 0.060 6.15
PDSPLICE x4 283.96 | 0.0106 95.65 | 190.30 3828 11.02 | 0.115 4.96
PDSPLICE x8 14445 | 0.0208 49.15 97.30 1975 10.83 | 0.220 4,58
PDSPLICE x16 77.18 | 0.0389 26.73 52.45 1090 10.65 | 0.398 491
PDSPLICE x32 46.99 | 0.0638 16.66 32.33 696 10.34 | 0.620 5.39
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Table A.2 - PVERIFY Performance Estimates

trace/speedup optimistic  pessimistic  nonlinear _ paranoid  -SQM- || simulation

EU 12.00 8.30 1143 10.90 11.99 11.71

PVERIFY x1 BU 0.110 0.076 0.104 0.100 0.110 0.107
AW 3.00 19.50 36.00 3.33 19.30
EU 12.00 8.26 10.90 9.99 11.95 10.72
PVERIFY x2 BU 0.220 0.152 0.200 0.183 0.219 0.197
AW 3.00 19.50 36.00 373 12.56

EU 12.00 8.19 9.96 8.51 11.73 9.94
PVERIFY x4 BU 0.447 0.305 0.371 0.317 0.437 0.370
AW 3.00 19.50 36.00 485 10.49

EU 12.00 8.02 8.36 6.41 10.31 8.28
PVERFIY x8 BU 0.950 0.635 0.662 0.508 0.816 0.656
AW 3.00 19.50 36.00 9.22 14,01

EU 6.09 4.28 6.06 5.09
PVERIFY x16 | BU 1.000 0.702 0.996 0.836
AW 20.73 36.00 20.88 24.68

EU 3.07 2.62 3.07 2.78
PVERIFY x32 | BU 1.000 0.853 1.000 0.906
AW 29.78 36.00 29,78 29.94
Table A.3 - CELL Performance Estimates
trace/speedup optimistic  pessimistic _nonlinear  paranoid  -SQM- || simulation

EU 12.00 8.30 11.49 11.02 11.99 11.15

CELL x1 BU 0.097 0.067 0.093 0.089 0.097 0.091
AW 3.00 19.50 36.00 3.29 8.69

EU 12.00 8.27 11.02 10.18 11.96 10.93

CELL x2 BU 0.195 0.134 0.179 0.165 0.194 0.178
AW 3.00 19.50 36.00 3.64 7.05

EU 12.00 8.21 10.21 8.88 11.81 10.86

CELL x4 BU 0.383 0.262 0.326 0.284 0.377 0.347
AW 3.00 19.50 36.00 4.49 7.40

EU 12.00 8.08 8.88 7.04 10.99 9.63

CELL x8 BU 0.768 0.517 0.568 0451 0.703 0.616
AW 3.00 19.50 36.00 7.31 11.54

EU 8.74 7.05 7.36 5.31 8.35 7.27

CELL x16 BU 1.000 0.807 0.843 0.608 0.956 0.832
AW 14.78 19.50 36.00 4.60 16.35

EU 5.26 3.88 5.25 4.95

CELL x32 BU 1.000 0.738 0.999 0.941
AW 23.22 36.00 7.74 21.60
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Table A.4 - PDSPLICE Performance Estimates

trace/speedup optimistic  pessimistic _nonlinear _ paranoid  -SQM- || simulation
EU 12.00 8.32 11.83 11.66 12.00 12.00
PDSPLICE x1 BU 0.032 0.022 0.031 0.031 0.032 0.032
AW 3.00 19.50 36.00 3.09 8.52
EU 12.00 8.31 11.66 11.34 12.00 11.38
PDSPLICE x2 BU 0.063 0.044 0.061 0.060 0.063 0.060
AW 3.00 19.50 36.00 3.18 6.15
EU 12.00 8.29 11.35 10.76 11.98 11.02
PDSPLICE x4 BU 0.126 0.087 0.119 0.113 0.125 0.115
AW 3.00 19.50 36.00 3.38 4.96
EU 12.00 8.26 10.79 9.81 11.93 10.83
PDSPLICE x8 BU 0.244 0.168 0.220 0.200 0.243 0.220
AW 3.00 19.50 36.00 3.83 4.58
EU 12.00 8.19 9.95 8.50 11.73 10.65
PDSPLICE x16 | BU 0.449 0.307 0.372 0.318 0439 0.398
AW 3.00 19.50 36.00 4.86 491
EU 12.00 8.10 9.02 7.23 11.14 10.34
PDSPLICE x32 | EU 0.720 0.486 0.541 0.434 0.668 0.620
AW 3.00 19.50 36.00 6.87 5.39

Table A.5 - Statistics from Postprocessor

number of number of number of number of instructions
trace instructions | references | lock variables | lock calls | in busywaiting
PVERIFY | 37,084,169 | 63,147,075 16 25,572 483,232
CELL 32,996,913 | 71,218,150 31 23,908 1,028,616
PDSPLICE || 42,120,631 | 79,348,924 151 114,706 1,302,756






