A tree transformation facility using typed rewrite
systems

Charles Farnum™

July 1, 1988

Abstract

Tree rewrite systems with typed variables can be used to repre-
sent many tree transformations in a more compact form than systems
with untyped variables. By building on the work of Eduardo Pelegri-
Llopart, it is possible to generate linear-time optimal solutions to
SET-REACHABILITY — a generalization of REACHABILITY with
a possibly infinite goal set — for a useful class of typed rewrite sys-
tems. The algorithms developed can also handle some untyped sys-
tems that are not in BURS, such as systems with rules of the form
X — a(X).

An experiment involving a rewrite system for instruction selection
for the Motorola 68000 produced table sizes an order of magnitude
larger than those produced by an untyped rewrite system for the same
task. It is not clear whether this table size can be limited, or i itis an
inherent cost of the power given by types. Although discouraging for
the instruction selection application, the table sizes are small enough
(under 100k bytes) that the techniques may be useful for smaller ap-
plications, or in cases where the added expressibility of typed variables
outweighs the size explosion of the tables.

Sponsored by the Defense Advanced Research Projects Agency {DoD), Arpa Order
No. 4871 (monitored by Space and Naval Warfare Systems Command under Contract
No. N00039-84-C-0089), and an NSF Graduate Fellowship.



1 Introduction

A tree transformation system is a relation between trees in an input lan-
guage and an output language. Many problems in compiler writing are
naturally modeledusing tree transformation systems: e.g., the input and
outputlanguages may be two different intermediate representations, with
thetree transformation system defining the possible implementations of
theinput language in terms of the output language. Usually the tree trans-
formation svstem is described in some compact form, and the problem is
to find some (possibly optimal) output tree that is related to a given input
tree.

Eduardo Pelegri-Llopart’s PhD dissertation [2] focuses on tree rewrite
systems. A rewrite system is a collection of functions, called rules, from
trees to trees. An individual rule contains an input pattern used to specify
a set of input trees — those trees which the pattern matches — to which
the rule applies, and an output pattern which constructs an output tree,
possibly using pieces of the input tree. A treet; can be rewritten into a tree
t, if there is a sequence of trees t;,...,tn where t,,, is obtained from %, by
replacing some subtree with its image under a rule in the rewrnte system.
A tree transformation system can be obtained from a rewrite system by
defining two trees to be related if one can be rewritten into the other.

Given a rewrite system R, a goal tree g, and an input tree t, the
REACHABILITY problem is to-find a sequence of rewrites from t to g,
or show that there is no such sequence. Pelegri showed how to solve the
REACHABILITY problem efficiently in the case that R and g are fixed and
only t varies, for rewrite systems in the class BURS. His solution yields
optimal rewrite sequences, given a linear cost function on the rewrite se-
quences.

In 2 REACHABILITY problem, the main item of interest is the rewrite
sequence from the tree to the goal; some meaning outside of the rewrite
system is attached to individual rules, and is used to solve the particular
problem (e.g., code generation) at hand. Often the original problem calls
for a tree to be generated. If this is the case, the SET-REACHABILITY
problem may be more useful: given a rewrite system R, a set of goal trees
G, and an input tree ¢, find a sequence of rewrites from ¢ to any tree in G,
or show that there is no such sequence.

]



This report describes CRSTNA!, a system that produces an efficient
solver of SET-REACHABILITY given an R and G satisfying certain restric-
tions. CRSTNA extends Pelegri’s work by

e solving SET-REACHABILITY, a generalization of REACHABILITY,

o extending the power of rewrite rules by allowing a more powerful type
of input pattern, and

e accepting a wider variety of rewrite systems.

Familiarity with Pelegri’s dissertation is not required to use CRSTNA
or to verify the theory in this report, but it covers the uses and motivation
behind rewrite systems in much greater detail. This report assumes that
readers are familiar with his work, or with other recent work in rewrite
systems. In particular, this report stops short of providing a complete
description of the theory and implementation, since the final parts of the
solution are identical to Pelegn’s.

2 A User’s View

In this section, we informally describe the kinds of rewrite systems CRSTNA
is intended to process, and consider the limitations imposed by the algo-

rithms used in CRSTNA.

2.1 Specifying trees, patterns, and rewrite rules

Trees in CRSTNA are rooted, ordered acyclic graphs labeled with operators.
Each operator has an associated integer called its arity; a node labeled
with the operator a must have as many children as the arity of a. We
use the notation ales, ... ,cn] to denote the tree with the root labeled by a
with children ¢, through c,. For example, the tree -[reg,[], reg,[]] might
represent a machine add instruction.

A patternis a tree in which some of the operators are variables. CRSTNA
only allows patterns in which all of the variables have zero arity, and each
variable occurs at most once.? A variable has associated with it a set of
trees called its type. A pattern p matches a tree t if

1Compositional Rewrite System Tool with Natural Automata.
2linear n-patterns, in Pelegri’s terminology.

3



e p and t have the same label at the root, and each child of p’s root
matches the corresponding child of t, or

e p is labeled by a variable at the root, and t is a member of the type
of the variable.

Variables are denoted with upper-case letters; their type may be specified
by following the variable name with a colon and the name of the type.
Variables with no specified type have the universal type (the set of all trees).
Thus, the pattern X matches all trees; +[X, reg,[]] matches +[reg, ], reg.l]]
and +[+[reg, [}, reg, ]}, reg,], among others. If ¢ is the type {reg,,reg,}, then
add?[X : t[]] matches addl{reg,[] but not add! [regs[]]-

A rewrite rule is specified with an input pattern and an output pattern,
and is written a— 3, where o is the input pattern and 3 the output pattern.
Each variable in the output pattern must occur exactly once in the input
pattern. @ — S specifies the function r defined as follows:

o If o does not match ¢, r(t) is undefined.

e If o matches t, 7(¢) is 8 with variables in 3 replaced by sub-trees in
¢ that are matched by the corresponding variables in .

For example,
+( X0, Y0 - +Y{, X1
maps the tree +[1]], reg,[]] into +([reg,[], 1[]], and
+[X [, 1) = eddz [X]]

maps +[reg, (], 1{]] into add1 [reg,]]-
The types used in a rewrite system are specified with a set of type
instances. A type instance is a statement of the form

o is-a t,

where o is a pattern and t 1s a type name; it states that any tree matching
0 is an element of the type named by t. This 1s a recursive definition; o
is allowed to have variables with t as their type, or with types specified in
terms of t. For example, given the set of type instances
true[] is-a ¢
not[X : tf]] is-a f
not[X : fl]] is-a

4



f is the set of trees with an odd number of nodes labeled not and with one
leaf, labeled true.

CRSTNA requires a set of type instances, a set of rewrite rules, and a
goal type; it then produces an efficient algorithm that, given an input tree,
finds a sequence of rewrites from the input tree to a goal tree. If costs are
associated with rewrite rules, CRSTNA will find a rewrite sequence with
minimum cost (where the cost of a sequence is the sum of the costs of the
individual rules). As a final example, the following specification might be
used to remove additions of zero, and replace additions of one by increment
operators, in simple expression trees: '

g is the goal type
ident[] is-a g

+[X g, Y g[]] isa g

add1[X :g[}]] isa g

+x0,¥70 -+ X
+X[,10] = eddt[X]]]
+{X{),0f]] X1

!

2.2 Restrictions on types

Sets of type instances are equivalent in power to labeled bottom-up finite
state automata. The types that can be specified are precisely the recogniz-
able tree languages.® In order for CRSTNA to solve SET-REACHABILITY,
the types must be closed under the rewrite system, i.e., if T is a type used
in the system, then for all ¢ in T, if ¢ can be rewritten into some tree t,
must be in 7.

This might seem to be a severe restriction on the power of CRSTNA, but
it is perfectly acceptable for applications in which the types of a tree (i.e.,
those types of which it is a member) say something about the semantics of
a tree. In this case, enforcing the closure of the type system corresponds
to insisting that a rewrite rule can only enrich, not destroy, the semantic
information corresponding to a tree.

3Bottom-up finite state automata, or BFSAs, are a natural generalization of string
automata to trees; the class of tree languages that can be recognized by BFSAs are called
recognizable, as are the string languages that can be recognized by string automata.

5



2.3 Restrictions on rewrite rules

CRSTNA generates linear time solvers; they compute all of the information
needed to solve SET-REACHABILITY in a single bottom-up pass over the
input tree. This strongly limits the rewrite systems which CRSTNA can
handle. There is no simple characterization of rules which are or are not
acceptable; the interaction between different rules is of major importance.
In practice, we have found two general problems that can occur:

1. There exists a sequence of rules which can pass information arbitrarily
far down the tree. For example, the rule a[b[X[]]] = a[a[X[]]}, applied
successively to a tree of the form a[b[b[...]]] passes the information
that there is an a at the root arbitrarily far downward.

This will always be a problem in any system which attempts to track
all interesting rewrites in a single bottom-up pass over the tree, since
it is impossible to know if a particular rewrite is possible without
information arbitrarily high in the tree.

2

There exists a sequence of rewrites which can be reapplied at the root
(but not at subtrees) an unbounded number of times, depending on
the size of the tree. This requires keeping track of an unbounded
amount of information while traversing the tree, and thus will also
always be a problem for any solution which does its computation in
a single bottom-up traversal.

These two problems can be formalized, and I believe they form an ex-
haustive list; a future goal is to prove CRSTNA can handle any system
that has neither of these problems.

3 Implementation

We here describe the theory behind CRSTNA, and a few of the details of
the implementation.

3.1 Typed rewrite systems

We make use of the following notations. The domain of a function fis
written D(f). A sequence with elements ¢ through e, is written €; -+ €n;

6



a singleton sequence is often denoted by its single element when it is clear
by context that a sequence 1s required. The concatenation of two sequences
s; and s is written either as s;s2 or as 81//s2. The length of a sequence s 1s
denoted length(s). 81 --- 8- 8, denotes the sequence 81 -+ - Si—1//8i41 """ $n-
The head of a sequence is the first element; the tail is the sequence with the
first element removed. Tuples (sequences with fixed numbers of elements)
are enclosed in angle brackets, with elements separated by commas. Func-

. : . . .. B :
tions are often described with “defining equations”: = reads “is defined to

be”, and z = y means that if y is defined, then z 1s defined to be y.

The trees used in CRSTNA are rooted, ordered, and labeled, where the
label at a node determines the arity of that node. Formally, we will define
a tree to be a mapping from positions in the tree to operators; positions
will be described by sequences of integers, with the empty sequence corre-
sponding to the root of the tree and the sequence p//t corresponding to the
’th child of the node at position p. tep is the subtree of ¢ at position p,

and t 22 # is the tree formed by replacing the subtree of t at p with t’.

Definition 1 An operator set O is a pair (O, N) where O is any set and
N is a mapping from O to the non-negative integers. The members of O are
called operators. The arity of an operator o is N(o). An operator with
arity n is called an n-ary operator; an operator with arity zero is called a
nullary operator.

A position is a sequence of positive integers. P denotes the set of all
positions.

A tree shape is a set P of positions where, for all positions p and gq,
p//q € P implies p € P, and for all positions p and integersi > 1, pf/li € P
implies p//(i — 1) € P.

A tree t over an operator set O = (O, N) is a mapping from a tree
shape P to O where, for all p € P and integers i, pfi € Piff0 <1 <
N(#(p)). To denotes the set of trees over O.

For any function f with D(f) C P, fep is the function

(fep)(q) £ f(p/l9)-

f & g is the function

(£ 22 0)(g) 2 { g(s) if 3s 3:9 = p//s,

f(q) otherwise.

-3



We sometimes use the notation a[ty,...,t.) to denote the tree t with He) =
a and tei = {,.

In Pelegri’s thesis, and in earlier sections, patterns may have variables as
operators. A variable can be formally defined as a pair of a name and a type.
In linear patterns (where any given variable appears at most once), only the
type of the variable is important in determining which trees are matched
by the pattern; thus, it is possible to have several different patterns, all of
which are equivalent in terms of matching trees. This causes many theorems
to be more difficult to state and prove than is inherently necessary.

We therefore use wildcards instead of variables in our formal work. A
wildeard is like an anonymous variable; it consists of simply a type:

Definition 2 A pattern over an operator set O = (O,N) is a tree
over the operator set (O U 270, N'), where

A N&) ifzeo,
N(z)z{o ifz € 2%e.

A member of 27¢ is called a wildcard.

W(o) = {gq | o(q) € 2T} is the set of wildcard positions of the pattern
0.

A pattern o matches a tree t if, for all p € D(o), o(p) € O implies
#(p) = o(p) and o(p) € 27 implies tap € o(p)-

For a pattern g, L(o) is the set {t | ¢ matchest}.

Twc patterns o, and p, are equivalent, denoted oy = 02, if L(p1) =

L(Qz)-

Our definition allows the wildcards to be arbitrary sets of trees. This
general definition creates problems for practical implementations, not the
least of which is specification of the wildcards. We will constrain wild-
cards by associating them with individual states of a bottom-up finite state

automata (BFSA):

Definition 3 Given an operator set (O, N), a deterministic bottom-up
finite state automata, or BESA, is a pair (S,6) where S1sa finite set of
states and §, the transition function, is a function §:0 x S* — S where
§(a, s) is undefined for all s with length(s) # N(a).

Given an operator set (O, N), a tree t and a BFSA A = (5,6), the state
assigned to t by A, denoted by A(t), is §(1(e), A(tel) - A(teN(#(¢))))-

8



For a state s, L(s) is the set {t | A(t) =s}.

A state s is useful if L(s) is non-empty. We henceforward assume that
every state of A is useful.

Given a BFSA A, a wildcard W is single-state recognizable (SSR) if
there exists a state s in S4 with W = L(s). RECOG is the set of wildcards
that are SSR by some BFSA.

Given a BFSA A, a pattern g is wildcard-SSR if, for each wildcard
position w of p, o(w) is SSR.

If p is wildcard-SSR by A, the state assigned to o by A is A(p) where

a [ 8(ole), Algal) - A(eeN(o(<)))) if o(e) € O,
Ale) = { s if o(e) = L(s).

Patterns that are wildcard-SSR by a BFSA have two main advantages.
First of all, whether or not a tree is matched by such a pattern can be com-
puted in a single bottom-up traversal of the tree; Pelegri showed that this
is true for any pattern where the wildcards are members of RECOG. Sec-
ondly, such patterns can easily be placed in a normal form. The use of wild-
cards instead of variables is motivated by the desire that equivalent patterns
be equal. This is not the case for arbitrary wildcard-SSR patterns; for ex-
ample, if o1 = a[L(s1)[]] and 02 = a[b[L(s2)[]}] where L(sy) = L(b[L{s2)[]]),
then o; and o, are equivalent but not equal. L(s1) = L (b[L(s2)[]]) implies
(b, s2) is the only pair with §(b,s2) = $1, i.e., there is only one transition in
the automaton leading to the state s;. This suggests the following definition
of a normal form for patterns:

Definition 4 Given a BFSA A with transition function é, a transition is
a pattern alL(s1)[},-..,L(sn)[]] where é(a,s: - - 8,) is defined. The transi-
tion o leads to the state A(a).

A pattern g is in A-normal form if it is wildcard-SSR by A and, for
all wildcard positions p of g, there are two different transitions a, and o
leading to A(oep).

Proposition 1 If p; and o7 are in A-normal form, then o1 = 02 iff 01 = 02.
Proof If the patterns are equal, they are equivalent.

If they are equivalent, we will prove they are equal by induction on the
height of the patterns. Suppose that the children of p; and g, are equal

9



(this is vacuously true for the base case). If p1(c) € O and p(€) € O, then
clearly the operators must be the same for the patterns to be equivalent,
so the patterns are equal. If p1(¢) and o3(¢) are both wildcards, they must
correspond to the same state in A in order to match the same trees, and so
the patterns are equal. Otherwise, suppose WLOG that p;(¢) is a wildcard
and po(c) € O.

Since p; is in .A-normal form, there must be two different transitions o
and o’ leading to A(g1). It can be shown that L{o) U L(¢') € L(¢1) and
that L(o) U L(¢") € L(p2); but this implies o, # p,, a contradiction. O

Proposition 2 If g is wildcard-SSR by A, there exists a o' = p in A-normal
form.

Proof Suppose g(e) is a wildcard. We will proceed by induction on the
height of a minimal height tree in L(g). If there are at least two transitions
leading to o, then p is in .A-normal form by definition. Otherwise, ¢ =
a[L(s1)[], ..., L(sx)[]] for some operator a and wildcards L(s;), each of which
have equivalent A-normal forms by the induction hypothesis; therefore, o
has an equivalent .A-normal form.

If o(¢) is not a wildcard, then replacing each of its wildcards with an
equivalent pattern in .A-normal form yields an equivalent pattern in A-
normal form. O

Given patterns, we can now define rewrite rules. A rewrite rule is a
partial function mapping trees to trees. The domain of the rule is specified
by an input pattern, and the range by an output pattern; the function itself
is specified by relating wildcard positions in the output pattern to wildcard
positions in the input pattern:

Definition 5 A rewrite rule r is of the form a 2 B where a and B
are patterns called the input pattern and output pattern, respectively,
and w is a 1-1 function w: W(8) — W(a) where a(w(p)) = B(p) for all
p € W(B).

A rewrite system is a collection of rewrite rules.

A rewrite rule is in A-normal form if both the input pattern and the
output pattern are in A-normal form. A rewrite system is in A-normal
form if every rewrite rule is in A-normal form.

10



The rewrite rule r = a -5 f is applicable to t if a matches t. Ifr 1s
applicable to t, r(t), the application of r to t, is the tree

8% (tew(pr)) - & (tew(pa))

where W(8) = {p1,...,Pn}

Two rules r, and r, are equivalent, written r, = 2, if, for all trees t,
ri(t) =t iff rp(t) =t

Proposition 3 Ifry and r; are both rules in A-normal form, thenr, = r;
lﬂ ry = Tra.

Proof If the rules are equal, they are equivalent.

If the rules are equivalent, then they have equal domains; this implies
that their input patterns are equivalent, and since they are in .A-normal
form, they must be equal. Likewise, they have equal ranges, and therefore
their output patterns are equal. Suppose w) # w,; then there is some
p € W(B) with wi(p) # wa(p). Since by is in A-normal form, there are two
different transitions o and o’ leading to A(S;@p); this implies that there are
two different trees ¢, and t, matching Siep. Let t be a tree matching o,
with tew,(p) = t; and tewy(p) = t2. It is easy to verify that such a tree
exists and that r,(t) # r2(t), a contradiction. O

Due in part to this nice property, we will from now on assume that all
rewrite systems are in A-normal form. In section 3.2, we will show that
these systems are equivalent in power to systems in which wildcards are
allowed to be any member of RECOG.

We are now ready to define SET-REACHABILITY:

Definition 6 A rewrite application is a pair (r,p) of a rule r and a
position p. (r,p) is applicable to t if r is applicable to tep. If (r,p) is
applicable to t, then (r,p)(t), the application of (r,p) to t, is the tree
t €2 r(tap).

A rewrite sequence is a sequence of rewrite applications; a rewrite
sequence {r1,p1) - (Tn,Pn) 15 applicable to t if (ry,p1) is applicable to
t and (ry,p2) - (Tn, pn) is applicable to (ri,p1)(t). A rewrite sequence is
valid if it is applicable to some tree 1.

11



If every rewrite application in a sequence T is of the form (r;,p//q:) for
some position p, then Tep denotes the rewrite sequence (ri.q1) - {Tnsqn)-

Let © and ¢ be valid rewrite sequences. If (1) = t' implies ¢(1) = ',
then ¢ covers v, denoted ¢ D 7.

Let 7 be a valid rewrite sequence. If there exists a rewrite rule r such
that, for all trees t, (r,e)(t) = t' iff 7(t) = t', thenr is the composition of
T.

Let R be a rewrite system over O, and G be a subset of Tp. The
SET-REACHABILITY problem is, given R, G, and a tree t over O, to find
a rewrite sequence 7 such that 7(t) € G, or to show that there is no such
sequence.

In order to solve SET-REACHABILITY efficiently, we constrain the num-
ber of rewrite sequences that must be considered. If we can show that some
sequence 7 is covered by a different sequence ¢, then there is no need to con-
sider 7; ¢ will provide an adequate solution for SET-REACHABILITY when-
ever 7 would. Our first “pruning” of the set of all rewrite sequences will be
to consider only those sequences in compositional normal form (CNF):

Definition 7 Let 7 be a valid rewrite sequence. T is in compositional
normal form at ¢ if it is in the form 7y - - - To7. such that

(1) for1 <1 < n, all rewrite applications in 7; have positions whose head
is 1, and
(2) 7. = (r1, 1) (r2,P2) -+~ (Tm, Dm) Where (r1.p1) = (0q = By, ¢) and, for
1<i<m,(ri,m) - (ri,pi) has a composition a; — f; with Bi_1(p;)
in O.
r is in compositional normal form (CNF) if it is in CNF at e,
(ry,p2) -+ (Fm, Pm) is in CNF, and, for all i, 7,0 is in CNF.

Our solution to SET-REACHABILITY will involve a single bottom-up traver-
sal of the tree computing all of the “interesting” rewrite sequences (those
that we cannot show are covered by others) to be applied at each position.
Given this approach, the bottom-up nature of the CNF (i.e., all rewrites at
subtrees are done before rewrites at the root) is necessary. It also places a
strong constraint on the rewrite systems which can be handled: it cannot
be possible for the absence of one rewrite to enable a second rewrite arbi-
trarily far down in the tree. We enforce this constraint by insisting that
the rewrite sequence be type-closed:

12



Definition 8 Two patterns p; and p; are similar, wntten o1 ~ @2, if
D(o1) = D(e2), W(e1) = W(en), and 01(p) # 02(p) implies p € W(er).
Two rewrite rules 71 = a3 A B3, and rp = az 22 3, are similar, written
Py ~ T, if Wy = W2, 1 ~ a2, and By ~ Ba.
A rewrite system R is type-closed if, for all rulesr = « = B and trees
t with r applicable to t, for all positions p € W(a), for all rewrite sequences
r in R applicable to tap, there exists a ruler’ ~r such that r' is applicable
to t € r(tep).
Section 3.2 gives the reason behind the name “type-closed”. Given a type-
closed system, we need only consider the CNF rewrite sequences in order
to solve SET-REACHABILITY:

Proposition 4 Let R be a type-closed rewrite system, and let ¢ be a valid
rewrite sequence in R. There exists a rewrite sequence 7 in CNF that covers

@.
In order to prove this proposition, we need some lemmas.

Lemma 4.1 Let 7 = (a; 3 B1,€){az =3 B2, p) be a valid rewrite sequence.
If B.(p) € O, 7 has a composition.

Proof It is straightforward (but tedious) to confirm that the composition
of 7is a 5 B where

o o [eag)s) if3g,s3:0 = w(p/a)]]s
o(p) = { a1(p’) otherwise
( B2(q) if 3¢ 3:p' = p//q and B:2(q) € O,
Bi(p/lwa(q))/s) il 3q€ W(B)and s € P 3:p' = p//q//s and
B2(q) if 3g € W(5,) 3:p' = p//q and
p/lw2(q) € D(B),
L B:(P') otherwise
( wi(pfwaq))/s) i 3g€W(B)ands€ P 3:p =p/qffsand
N p//wa(q)//s € D(B),
w(p) = { wilp/a)]e if 3¢ € W(B;) and ¢1,¢2 3: 9" = p//q;
wa(q) = ¢1//q2, and p//g1 € W(B1),
| wi(p) otherwise

O

13



The definition of a type-closed rewrite system is all that is needed to
vield the following lemma:

Lemma 4.2. If r, = a > B is a rewrite rule in a tvpe-closed system R and
p € W(B), then for all rules r; € R and positions ¢, there exists a rule

P~y such that: (r3,w(p)//a)(rs,€) D (r1,€){r2, P//q)-

Rewrites in non-intersecting subtrees can be exchanged, since their re-
quirements and effects are completely independent:

Lemma 4.3 Let (r,p1)(r2,p2) be a valid rewrite sequence. If p; 1s not a
prefix of p; and p; 1s not a prefix of p, (T‘g,pz)(rhpl) = (Tl,P1)<7‘2,P2>-

We can now prove proposition 4:

Proof We construct a series of rewrite sequences 0%, 0%, ..., ¢k, each cov-
ering @, such that

() ¢ is of the form @i - ¢l oL where @' only has rewrites at positions
with j as their head.

Define ¢° = 6. ¢° D ¢, and it satisfies (%) with ¢2 = ¢, o = ¢.

Suppose ¢ is not in CNF at €. Let {ri,p) - (Tm, pm) be the applica-
tions in ¢'. Let j be the smallest integer such that (ri,p1) - (rj, p;) fails to
satisfy condition (2) of definition 7. Let & = (r1,p1) - (rﬁj) AP Pm)-
Due to lemma 4.1, either j is 1 or p; contains some wildcard position of
the composition of (ri,p1)--- (rj-1,pj-1) as a prefix; therefore, according

to lemma 4.2, there exists some r}; ~ 1; and position p such that (r;,p)dﬁ
covers ¢'; thus @5 - - - ¢4 (r%, p)@: covers ¢'.

If p = e, let ¢§7! = ¢} and pitl = (rg,p)a;'_ Otherwise. p = 1//q
for some integer I. According to lemma 4.3, 6L - By(r;ip) - Pttt =
G- 6i(rs, P)OI. Let ¢ = 6 for k #£1, 61! = 6i(r;, p), and 611 = oL,

Let ¢l = ¢it! ... ¢itlgitl; ¢1 D ¢ and satisfies ().

On each step of this construction, one rewrite application in @. either
moves from a non-empty position to the empty position or is moved 1nto
some &;t!. Therefore, the construction must terminate at some point with
¢* in CNF at e. Recursively applying the construction to the ¢* and the

tail of ¢* produces the desired 7. a

14



Recall that our solution for SET-REACHABILITY involves a bottom-up
traversal of the tree that computes all of the interesting rewrnte sequences
applicable at a given position. In a CNF rewrite sequence, these sequences
are called compositional local rewrite sequences:

Definition 9 Let 7 be a valid CNF rewrite sequence. Ifr =7 TaTe
satisfying the conditions in Definition 7, then the compositional Ioca]
rewrite sequence (LRS) assigned by 7 to a position p is defined by C(7,p),
where

(1) C(7,¢) £ 7., and
(2) C(r,i/lp) & C(rsi,p).

Pelegri has devised an algorithm for computing all of the possible local
rewrite sequences, and this algorithm is easily adapted for typed rewrite sys-
tems and compositional local rewrite sequences. Unfortunately, sometimes
there are an infinite number of sequences, even when many of them are
unnecessary for solving REACHABILITY. We therefore further constrain
the sequences we consider by insisting that they be efficient: 4

Definition 10 Let G be a set of trees and let 7 be a rewrite sequence in
CNF of the form 7, - - - Ta7. satisfying the conditions in Definition 7. 7 1s
efficient with respect to G if

(1) there is no CNF rewrite sequence 7, shorter than 7. such that, for all
trees t with 7.(t) € G, 7/(t) € G, and

(2) each 7; is efficient with respect to {t@i | 7.(t) € G}.

Proposition 5 Let R be a rewrite system in A- normal form and let S be
a subset of S4. Let G = U,esL(s), and let t be a tree. If there is a rewrite
sequence ¢ € R with ¢(t) € G, there is a rewrnte sequence T € R efficient
with respect to G with 7(t) € G.

Proof Let 7 = 7,---7na7. be a minimal length rewrite sequence in CNF
satisfying the condmons in Definition 7, with T(t) € G. Such a sequence
must exist, since ¢ is covered by some C’\F sequence.

Suppose T is not efficient with respect to G. Then either

4This is stricter than Pelegri’s definition of “efficient”.

15



(1) there is a 7! shorter than 7. such that, for all trees t with 7.(t) € G.
7l(t) € G, or
(2) there is some 7; that is not efficient with respect to {tei | 7.(t") € G }.

(1) is impossible, since it implies that 7, --- 7.7.(t) € G, contradicting the
choice of 7. If (2) is true, then there is some shorter sequence 7! that can
replace 7; and still result in a valid rewrite sequence 7’ applicable to .
A(7'(1)) is independent of ¢ and 7/ it only depends on the output pattern
of 7., and therefore 7/(t) € G, again contradicting the choice of 7. 0

Therefore, in solving SET-REACHABILITY, if the goal set corresponds
to a set of states of A, we can restrict our search to rewrite sequences
efficient with respect to the goal set and still be assured of finding a solution

sequence if there 1s one.

Given a set of local rewrite sequences, Pelegri showed how to modify
David Chase’s algorithm for pattern matching [1] to compute all possible
rewrite sequences composed from the local rewrite sequences. We end this
section by showing how to compute all possible rewrite sequences that occur
in efficient rewrite sequences; Pelegri’s algorithms are then used to construct
the SET-REACHABILITY solver.

Definition 11 Given a rewrite system R in A-normal form and a set G of
goal states in Sa, construct the following sets:

0o = {L(s)]|s€G},

IO = 07
LTQ = {6},
OH—I = O,U{Q@]IQEI,,]ED(Q)},
Ly = Lu{el3rel,p €0 and positions p1,...,Pn 3t

7 has composition a = 3,

{P1,-..,pa} = W(B) N D(B),
o= g(py)- - “ L) B(p,), and
L(B)NL(B) #0)

U{~ | v is a transition leading to s,

where L(s)[] € 0:},

16



Uipn = Uiu{r=(r,e)7" |7’ isin CNF, every LRS assigned by 7'
is in U;, and 7 is efficient with respect to
L(o) for some p € O; },

0o = U0,
I = Ul
U = yl,.

The useful local rewrite sequences are the members of the set U, and
the extended pattern set of (R,G) is the union of I and O.

Proposition 6 Let R be a rewrnite system in A-normal form, and G a set
of goal states in Sa. If 7 is an efficient rewrite sequence with respect to
L(w) for some w in G, the local rewrite sequences assigned by T are useful
local rewrite sequences with respect to R and G.

Proof The detailed proof is quite long; we sketch the main ideas here. We
will show that, for any pattern g in O, any rewrite sequence efficient with
respect to L(g) is composed of local rewrites sequences in U.

We proceed by induction on the length of 7. Let 7, be the local
rewrite sequence assigned at p by 7, and define the sets G, = L(w), Gy =
{tei | 7p(t) € Gp}. Since 7 is efficient with respect to G., 7p is efficient
with respect to G,. It can be shown by induction that G, is equivalent
to L{p) for some output pattern ¢ € O; combining this with the fact that
local rewrite sequence T, is composed of efficient local rewrite sequences
which are in U by the induction hypothesis, the construction of U4y from
U; ensures that 7, is also in U. O

Note that the construction of U may be infinite. CRSTNA has no test
for this possibility, and therefore may fail to terminate. I believe that such
a test can be constructed based on the ideas discussed in Section 2.3. The
extended pattern set constructed simultaneously with U is an adequate
replacement for the extended pattern set defined by Pelegr; it is used in
the table construction process.

Optimality of the rewrite sequence found by CRSTNA has been lightly
treated in this section, since most of the complication arises in the work
done by Pelegri. If each rule has an associated non-negative cost, and the
cost of a rewrite sequence is the sum of the costs of the rules in the sequence,

17



then the definition of efficient can be modified to require a sequence with
lowest cost, rather than a shortest sequence; combined with Pelegri’s work,
CRSTNA then finds a least cost sequence leading to a tree in the goal set.

3.2 Internalizing the specification

According to the theory in the previous section, the wildcards used by a
rewrite system are severely restricted: they must all correspond to individ-
ual states in a single BFSA. But CRSTNA’s specification language allows
wildcards to be arbitrary members of RECOG. In this section we show how
the rewrite systems defined previously are equivalent in power to those writ-
ten in CRSTNA's specification language, and show the motivation for the
definition of a type-closed rewnite system.

Proposition 7 Let R be the set of all rewrite systems R such that R isin
A-normal form for some BFSA A. Let R~ be the set of rewrite systems in
which every wildcard is in RECOG.

R is as powerful as R, i.e., for every R* € R" thereis a corresponding
R € R such that, for every tree t and rewrite sequence 7 € R”, there is a
rewrite sequence T € R with 7(t) = 77(%).

Proof Let R* € R*, and A be a BFSA that simultaneously recognizes
every wildcard in R", i.e., a wildcard in R" is equal to U;L(s;) for some
subset {s,...8,} of S4. That some appropriate A exists is a basic result
of BFSA theory.

Let r = o~ 2% 8" be a rewrite rule in R*. We will construct a set of
rules R,. such that, if 7=(¢) = t', there exists a rule r € R,. with r(t) =1}
the union of the sets R,. for all rewrite rules in R* forms the desired R.

Let {p1,...,pn} = W(a"), and S; be the set of states corresponding to
a(p;). Then

Re={a%p |a=a" @ L(s)]- & L(s,)]
for some (83,...,8n) € S1 X +-- X Sa}-

c

The definition of a type-closed rewrite system arises from the notion of
a rewrite system with recognizable wildcards in which every type is closed
under the system.

18



Definition 12 A set of trees T is closed under a rewrite system R if,
for all trees t € T, for all rewrite sequences 7 in R applicable to t, T(t)eT.

Proposition 8 Let R* be a rewrite system in which every wildcard is a
recognizable set closed under R”. Let R be the rewrite system correspond-
ing to R according to Proposition 7. R is type-closed.

Thus, given a rewrite system R~ whose types are recognizable sets closed
under R~, Proposition 7 shows how to construct a type-closed rewrite sys-
tem equivalent to R*, allowing us to use the theory in the previous section
to solve SET-REACHABILITY.

Unfortunately, the type system R specified by the user in terms of type-
instances may not be closed under the rewrite system. CRSTNA obtains
a closed type system by solving SET-REACHABILITY for a related rewrite
system R’ defined by the following specification:

e Type names in R are treated as nullary operators in R'.

e For each type instance z is-a y, R’ hasa rulez’ — y[] where variables
in z are replaced with the names of their types to vield z’.

o For each rule z — y in R, R’ has a rule y' — z' where variables in =
and y are replaced with the names of their types to vield z’ and y'.

e R’ has a single type g, distinct from all types in R.
e For each type name z in R, R’ has a type instance z[] is-a g.
For example, given the specification
ident[] 1is-a ezpr
1[] is-a ezpr
+[X : ezpr[],Y :ezpr{]] is-a ezpr
+[X :ezpr[],1[]] — eddl[X : ezpr]

we would create the system

ident[] — ezpr]]

1] — ezpr]]

+[ezpr(], ezpr(]] — ezpr]]
add1[ezpr(]] — +[ezpr(],1]]]

19



Now if t is a type name in R, let the type named by t be the set of all
trees that can be rewritten into ¢ by R’; in our example, trees with addl at
the root and ezpr's as children can be rewritten into ezpr, in addition to
those originally specified with type-instances.

The resulting type system is the minimal system that contains the origi-
nal type-instances and is closed under R. Determining these types is simply
the SET-REACHABILITY problem for the rewrite system R’ with goal type
g; the algorithms in this report can solve SET-REACHABILITY f{for any
rewrite system without variables, and therefore can solve this problem for

R

3.3 Programming details

The system is written in about 2000 lines of Common Lisp. It is a relatively
straightforward implementation of the theory presented in this paper; very
little optimization was done. The following basic design choices were made:

e Sets of patterns are used heavily in Chase’s algorithm; the most com-
mon operations on them are intersection, union, and equality testing.
For these reasons, an ordered set representation is used, with patterns
hashed to ensure that equal patterns are represented by the same data
object. Profiling suggests that this was a good choice.

¢ The implementation of Definition 11 is both important and difficult;
CRSTN A spends most of its time in this construction. Since composi-
tions are expensive to compute, CRSTNA keeps a list of compositions
that may eventually satisfy the condition required to add a compo-
sition to U. It is not clear whether or not this was a good choice;
CRSTNA has severe problems with space, but the alternative of re-
peatedly composing rules, discovering that they are not yet valid,
garbage collecting the composition, and composing the rules again
does not sound too promising. At the very least, the compositions
that are formed should be carefully screened. The current implemen-
tation forms any composition that is in bottom-up normal form using
useful rewrite sequences that have already been discovered; this 1s ex-
cessive, since in many cases the “useful” rewrite sequences are useless
in the particular context.



e The automaton produced by solving SET-REACHABILITY for the
rewrite system R’ described in the previous section is more powerful
than is necessary to determine types; it contains information needed
to construct a rewrite sequence from a given tree to its type name,
while all that is needed for the type automaton is to know if such
a sequence exists. Thus, the automaton has more states than are
strictly required.

This is disastrous; the primary reason CRSTNA has space problems
is that, given a rule with the pattern +[X : ¢[],Y t[]}, CRSTNA has
to make s? copies where s is the number of states corresponding to 1.
For rewrite systems the size of machine descriptions, it is imperative
to minimize the type automaton. CRSTNA has this capability, and it
was used in the experiments described below. A representation which
optimized the amount of space occupied by a rule at the expense of
time manipulating rules might also be a win. ‘

4 Table sizes for a code generator

Types make possible the specification of SET-REACHABILITY, eliminating
the need for semantic actions in many applications. They also give the
rewrite system designer greater control over when rewrites will be applied.
The cost of this greater control is larger tables that must simultaneously
track input patterns and tree types.

In order to see if the table sizes were likely to be practical, CRSTNA was
used to generate tables for a code generator for the Motorola 68000. The
machine description was written from scratch, assuming a low-level inter-
mediate representation (e.g., using machine types and explicit addressing
calculations) as input. Costs were not used. The description was wntten
in about a day, and has 149 rewrite rules and 178 type instances; a com-
parable machine description written for BURS uses 520 rewrite rules. The
ability to use types and variables is therefore significant in the ease of writ-
ing the machine description. Unfortunately, CRSTNA requires more than
25 megabytes to process this description, which is beyond the capability of
our current hardware configuration.

In order to generate at least some tables, the rewrite rules describ-
ing register-to-register moves and the register-indexed-indirect addressing

21



modes were removed from the machine description. The register-to-register
move instructions greatly increase the number of states in the type automa-
ton corresponding to a single type, making the number of local rewrite
sequences explode; the register-indexed-indirect addressing modes involve
large patterns with three operands, all of which may be rewritten into regis-
ters. Since CRSTNA generates all compositions of local rewrii« sequences,
this is a deadly combination; it might be possible for a better implementa-
tion (which only generated and saved compositions that might eventually
become useful) to handle the full description without undue amounts of
space. :

Even so, the results are not promising for machine descriptions. The
smaller description, without the register moves and register-indexed-indirect
addressing modes, yields a table with 2,964 states; this compares with 362
states for the untyped version. A simple uncompacted representation of the
transition tables occupies about 7,000 bytes; Pelegri does not give uncom-
pacted transition table sizes, but his compacted transition tables occupy
around 4,000 bytes.

Most of the table size is taken up by the state descriptions in Pelegri’s
tables, and so the factor of ten increase in the number of states (for a ma-
chine description that is less powerful) seems likely to make typed rewrite
systems unsatisfactory for code generation. In addition, the increased ta-
ble generation time makes it very difficult to experiment with descriptions.
CRSTNA must solve an untyped system just to get the type automaton, be-
fore moving on to the (slower) typed system, so this gap in table-generation
speeds is an inherent part of the process.

Thus, the experiments suggest that CRSTNA 1s unsuitable for code
generation. The extra power provided by types makes writing the machine
description more convenient, but at the expense of a large increase in table
size and in table generation time. Both of these problems may be solvable:
the former may either evaporate as memories get larger, or might be solved
by noting similarities among the states and storing their representations in
a compact form, while the latter could be made manageable by a carefully
optimized implementation. But in the meantime, untyped systems seem to.
provide a better combination of table size and generation speed, with an
acceptable amount of difficulty in the description writing.



5 Future work

The main principlein CRSTNA’s design has been to accept as many rewrnte
systems as possible while yielding an automaton that can find an optimal
rewrite sequence in a bottom-up traversal of the tree. The following prob-
lems still need to be solved before leaving this general area of design.

o Information regarding the possible input trees should be taken into
consideration, so that unbounded local rewrite sequences that only
occur for impossible input trees can be ignored.

e A humanly understandable characterization of the rewrite systems
that can be accepted should be produced. At the very least, a decid-
ability test should be found.

e SET-REACHABILITY currently states that a rewrite sequence must be
found. Although this is useful for applications that still need to attach
semantic actions to specific rewrites, one of our goals is to eliminate
the need for such actions. A different casting of SET-REACHABILITY
that only requires an output tree, and not the rewrite sequence pro-
ducing it, may allow a cleaner theory and /or easier solutions to some
of the other problems in this section.

o Different design choices in the Common Lisp implementation need to
be explored, to discover if the problems in handling machine descrip-
tions are inherent in the method or simply an artifact of the imple-
mentation. In particular, a careful implementation of Definition 11
could vastly increase the size of the description that CRSTNA could
process (although it would have no effect on the resulting table sizes).

6 Conclusion

It is possible, in principle, to solve SET-REACHABILITY very efficiently,
given a fixed rewrite system and set of goal trees. Unfortunately, table
sizes and table generation times make these results impractical for rewrite
systems the size of machine descriptions, given our current technology. It
is unclear whether further research could significantly improve either table
size or generation time.



Our n~w algorithm for determining the efficient local rewrite sequences
greatly increases the number of rewrite systems that can be handled, with
or without types; rewrites that increase the size of the tree may be ac-
ceptable in some cases, and any rewrite system without variables can be
handled. This result may wind up being the most important contribution

of CRSTNA.

References

(1] David R. Chase. An improvement to bottom-up tree pattern matching.
In Fourteenth Annual ACM Symposium on Principles of Programming
Languages, pages 168-177, 1987.

(2] Eduardo Pelegri-Llopart. Rewrite systems, pattern matching, and code
generation. Ph.D. Dissertation UCB/CSD 88/423, U. C. Berkeley, 1988.






After printing of the technical report, an error was discovered in the proof of
Proposition 5; in fact, the proposition is false. The false portion of the result
is not used in the report; this insert should be read in place of the bound
pages 15 and 16, up to Definition 11 which remains unchanged.

Recall that our solution for SET-REACHABILITY involves a bottom-up traver-
sal of the tree that computes all of the interesting rewrite sequences applicable
at a given position. The interesting sequences are a subset of the local rewrite
sequences:

Definition 9 Let 7 be a valid CNF rewrite sequence. If 1 = 71+ TqT.u
satisfying the conditions in Definition 7, then the local rewrite sequence
(LRS) assigned by T to a position p is defined by C(r, p), where

(1) C(r,e) & 7., and

(2) C(r,i/p) £ C(rioi, p).

Given a set U of local rewrite sequences, Pelegri has shown how to modify
David Chase’s algorithm for pattern matching [1] to compute all possible
rewrite sequences that assign only local rewrite sequences in U. Our goal is to
find a set U such that the set of rewrite sequences assigning LRS’s in U covers
the set of rewrite sequences that rewrite trees into the goal set. U should
be as small as possible; in particular, it should be finite. Pelegri’s algorithm
finds all local rewrite sequences that do not loop and that produce a subtree
which might eventually be written into the goal tree; unfortunately, this
can still involve infinite sets of local rewrite sequences (e.g., sequences that
expand and then contract a tree). We obtain a finite set by only considering
the set of sequences that are efficient:!

Definition 10 Let G be a set of trees and let 7 be a local rewrite sequence.
T is eficient with respect to G if there is no local rewrite sequence 7’
shorter than T such that, for all trees t with 7(t) € G, 7'(t) € G.

If an LRS is interesting only because it rewrites some trees into a partic-
ular goal set G, we can ignore it if it is not efficient with respect to G; some
other efficient LRS can always take its place. CRSTNA uses the following

construction of U:

1This is stricter than Pelegri’s definition of “efficient”.

15





