Efficiently Computing and Representing
Aspect Graphs of Polyhedral Objects *

Ziv Gigus, John Canny and Raimund Seidel
Computer Science Division, EECS
University of California, Berkeley, CA 94720

Abstract

The aspect graph is one of the approaches to representing of 3-D shape for
the purposes of object recognition. In this approach, the viewing space of
an object is partitioned into regions, such that in each region the topology
of the line drawing of the object does not change. The viewing data of an
object is the partition of the viewing space together with a representative
view in each region. We present an efficient algorithm for computing the
viewing data for line drawings of polyhedral objects under orthographic
projection. For an object of size O(n) whose partition of size O(m), the
algorithm runs O(n*logn + mlogm) time. Using a novel data structure,
we construct the set of all views in optimal O(m) time and space.

“This research was supported by the Semiconductor Research Corporation grant num-
ber 82-11-008.

N

Contents
1 Introduction 1
2 The Viewing Data of a Polyhedral Object 1
3 Review of Past Work 3
4 The Visual Events of Polyhedral Objects 6
5 The Potential Boundaries of The Partition 7
5.1 The Locus of Accidental Viewpoints for the EV event . . . 7
5.2 The Locus of Accidental Viewpoints for the EEE Event . . 9
6 DBoundary Pruning Using Local Information 9
6.1 The Shadow RegionofanEdge 10
6.2 Pruning EV-boundaries 10
6.3 Pruning EEE-boundaries 11
6.4 The Effect of the Pruning on Convex Parts 11
7 Computing The Active Boundaries of The Partition 11
7.1 Computing The EOE Points of an EV-boundary 13
7.2 Computing The EOE Points of a EEE-boundary 14
7.3 Computing the Active Segments of a Boundary Polygon . . 15
7.4 The Complexity of Finding the Active Segments 15
8 Computing the Partition of The Viewing Cube 16
8.1 Viewpoint Location in Log Time and in Linear Space . .. 17
9 Computing and Storing the Views 17
9.1 Representing the Views in Linear Space 18
10 Conclusions 20

A Appendix - Computing the Boundaries for the EEE Event 22
A.1 The Surfaceof the EEEEvent 22
A.2 The Boundary Curve for the Orthographic Projection
A.3 Representing the EEE-boundary Segments.

[N V]
w w

1

|

A.4 Computing the Potential Segments of the EEE-boundary . 24
A.5 Projecting Local Motions of the Line of Sight onto the View-
ingCube L e 25

111

1 Introduction

One of the approaches for representing three dimensional objects for the
purpose of object recognition is to compute a finite set of two dimensional
views of the object from different viewpoints, and match the image against
this set. To generate the set of views, the viewpoint space is partitioned
into a finite number of regions, and a representative view is selected in each
region. There are two approaches to the partitioning of the viewpoint space:
(1) a uniform, object independent partitioning, where the number of regions
and their shape is fixed in advance and (2) the aspect graph approach. A
more detailed description of these approaches, and a discussion of their
advantages and disadvantages can be found in [GM88a].

In the aspect graph approach, we define a qualitative measure of the
structure of the image - its espect, and the viewpoint space is partitioned
into maximal regions, such that the views from all viewpoints in a region
have the same aspect (the definition of the aspect is dependent upon the
particular application). At the boundary between adjacent regionms, the
aspect of the view changes and a visual event is said to occur. The partition
of the viewpoint space for a given object, together with the view in each
region is defined to be the viewing data of the object.

We present an algorithm for constructing the partition of the viewing
space of polyhedral objects under orthographic projection, where the aspect
is defined to be the topological structure of the line drawing. The algorithm
runs in O(n*logn + mlogm) time, where m is size of the partition and n
is the number of vertices of the object. We also present a method for
computing all the views of the partition in time and space that are linear
(and thus optimal) in the total number of changes that occur in the views,
at the boundaries of the partition.

2 The Viewing Data of a Polyhedral Object

We describe how to compute the viewing data of polyhedral objects under
orthographic projection. An object is assumed to have n vertices, and
therefore has O(n) edge and O(n) faces. We assume that an object has no
surface markings, and therefore every line in a line-drawing of the object is
the projection of a part of an edge.

The image structure graph (ISG) of a viewpoint is the labeled planar
graph that corresponds to the line drawing of the object as seen from that
viewpoint. For each junction in the line drawing there is a corresponding
vertex in the graph, and for each line segment there is an edge between the
vertices that correspond to the endpoints of the line segment. Each vertex
in the graph is labeled by the names of the edges of the object whose
projections meet at the vertex, and each edge is labelled by the labels of its
endpoint vertices. We define the aspect of a viewpoint to be the topological
structure of ISG of that viewpoint. That is, two different viewpoints have
the same aspect if and only if the corresponding ISGs are isomorphic.

A general viewpoint is a viewpoint for which there exists an open neigh-
borhood of viewpoints that have the same aspect. In other words, when
the viewer moves inside this neighborhood, metric properties of the line
drawing change, but its graph structure remains the same. A viewpoint
that is not general is accidental.

The viewing space of the orthographic projection is the space of viewing
direction. We represent this space by a cube that is centered around the
origin, and whose edges are parallel to the major axes and are of length two.
A point on the cube corresponds to the (non-normalized) viewing direction
with the same coordinates. We refer to this cube as the viewing cube, and
to points on the cube as the viewpoints of the orthographic projection.

The viewing cube is partitioned into open regions of general viewpoints,
such that all viewpoints in a region have the same aspect, but the aspects
of viewpoints in adjacent regions are different (the corresponding ISGs are
not isomorphic). We use the term view to refer to the representative ISG
for a given regions. The boundaries between these regions are curves of
accidental viewpoints. All viewpoints on a curve segment between adjacent
regions have the same aspect. Where several regions share a boundary
point, two or more curves meet resulting in a vertex. The aspect at the
vertex is different from that of any of the viewpoints in its neighborhood.
In other words, this partition has the structure of a planar graph that is
embedded on the viewing cube, where the vertices, arcs and faces of the
graph are the vertices, curve segments and regions, respectively.

As the viewpoint moves from a region to its boundary, or from a bound-
ary curve to an endpoint vertex, the view changes—a wvisual event occurs.

The partition of the viewing cube together with a view in each region is
defined to be the viewing data of the object (this definition follows a similar

2

definition by Callahan and Weiss [CW85]).

3 Review of Past Work

The aspect graph approach was introduce by Koenderink and van Doorn
[KvD79]. For smooth objects, some of the local visual events and the lo-
cation of the corresponding accidental viewpoints were first described by
Koenderink and van Doorn [KvD76]. A complete catalog of the local visual
events and the location of the corresponding viewpoints is provided in re-
lated papers [Arn79,Amn83,Ker81]. Recently, Rieger [Rie87] has published
a catalog of the visual events for piecewise smooth objects that contain no
planar edges. Callahan and Weiss [CW85] suggested the viewing data rep-
resentation and gave examples of the viewing data of a few simple smooth
objects. There is no published algorithm for computing the viewing data
for smooth or piecewise smooth objects.

Chakravarty and Freeman [CF82] used the aspect graph approach in
the characteristic views representation of objects. They used heuristic con-
straints on the orientation of the object with respect to the camera, to select
a subset of the set of views as the representation for the object. The views
and the corresponding regions of the partition were computed manually.

Object recognition systems that were build by Ikeuchi [Ike87] and by
Kanade and Hebert [HK85] used the aspect graph approach as the basis
of the object representation. In the first system the aspect is defined by
to the set of faces that are detectable by photometric stereo, and in the
second system the aspect is defined by the set of occluding edges in the
image. In both system, the partition of the viewing space was approximated
by computing a set of views in a uniform partition, and then merging
neighboring regions that have the same aspect.

Werman, Baugher and Gualtieri [WBG86] present an algorithm for con-
structing the aspect graph of a convex polygon as viewed from viewpoints
in the plane of the polygon, using perspective projection.

Stewman and Boyer [SB87] describe an algorithm for constructing the
viewing data of convex polyhedra under perspective projection.

In 1986 Plantinga and Dyer [PD86] presented an algorithm for comput-
ing the viewing data of polyhedral objects under orthographic projection,
where an aspect is defined by the set of visible faces of the object. Be-

3

cause, under this definition, line drawings that are topologically different
may correspond to viewpoints that share a common region in the partition
(see Figure 1), this definition of the aspect is not appropriate for object
recognition in line drawings, although it may be appropriate when range
images are used.

o —

Figure 1: Two line drawings that are qualitatively different, but the same
faces are visible in both views.

In [PD87] Plantinga and Dyer published a modified version of the same
algorithm, and also described an extension of the algorithm for computing
the viewing data of polyhedral objects under perspective projection. In this
report the aspect is defined by the set of regions in the image. Visual events
occur when the set of regions changes. The set changes when: (1) a current
region disappears, (2) a new region appears, (3) a current region splits into
two regions, or (4) two current regions merge into a single region. A change
in the viewpoint that does not change the set of regions in the image but
does change the boundary of some regions and the adjacency relation be-
tween regions is not considered a visual event. An example of such a change
1s illustrated in Figure 2. Under this definition the two images in Figure 1
do not have the same aspect. However, as this definition is not based on
the topological structure of the line drawing, it still allows for viewpoints
with different corresponding ISGs to be part of the same region. Thus, it
is still inappropriate for object recognition in line drawings. Figure 3 is an
example of line drawings of an object that are topologically different, and
for which, under this definition of the aspect, the corresponding viewpoints
belong to the same region in the partition.

4

Figure 2: An example of a change in the image that is not considered
a visual event under Plantinga and Dyer’s definition of an aspect. This
example is reproduced from [PD87].

In more recent versions of the same algorithm [Pla88], Plantinga and
Dyer redefined the aspect according to graph isomorphism of the ISGs.

Plantinga and Dyer’s algorithm computes the partition of the viewing
space by computing a four dimensional “visibility volume” (5-D for the per-
spective case) for each face of the object, and intersecting these volumes to
produce the visibility volume of the object. The boundanes of the partition
are computed by projecting the boundaries of this visibility volume onto
the viewing sphere and finding their intersection points. The algorithm
computes the partition in O(mlogm + T') time, where m is the number of
vertices in the partition, and T, which is bounded by O(n?®), is the time
to compute the visibility volume of the object. The views are computed in
O(n?m) time and space.

Gigus and Malik [GMS88b] presented an algorithm for computing the
viewing data for of polyhedral objects under orthographic projection, where
the aspect is defined by the topological structure of the line drawing. They
provided a full catalog of the changes that occur in the line drawing for
each type of event. They also described how to generate the line drawing
in a region, given the line drawing in an adjacent region and the event that
occurs at the boundary between the regions. The algorithm performs all
the computations in IR3 however its running time is not sensitive to the
size of the partition.

We describe how to compute the partition of the viewing space, using
visibility tests that are performed directly in IR® without going into any
higher dimensional spaces. The resulting algorithm is sensitive to the size

)

[

W\

Figure 3: Line drawings of an L-shaped object that are qualitatively dif-
ferent but belong to the same region of the partition, when the aspect is
defined by the set of regions in the image.

of the output, computing the partition in O(n*logn + mlogm) time. We
compute all the views in optimal O(m) time and space.

4 The Visual Events of Polyhedral Objects

In this section we describe the visual events of a polyhedral object. This is
a review of a more detailed exposition that presented by Gigus and Malik

in [GM88a].

For polyhedral objects there are two fundamental visual events: (1) the
projections of an edge and a vertex coincide (an EV event), and (2) the
projections of three non-adjacent edges intersect at one point in the image
(a EEE event). The EV event can be considered as a special case of the
EEE event, where we allow two of the edges to be adjacent, and thus think
of the projection of the vertex as the intersection of the projections of these
two edges. As the geometry of the locus of the accidental viewpoints for
the EV event is much simpler than that of the EEE event, we prefer to
consider them as different events and treat them separately.

6

5 The Potential Boundaries of The Parti-
| tion

When a visual event occurs, a line of sight intersects all the features that
participate in the event. We refer to this line as the critical line of sight.
For the perspective projection, the accidental viewpoints of a given visual
event lie on the family of critical lines the event. This family of lines defines
parts of a ruled surface. Therefore, the accidental viewpoints also lie on this
ruled surface. For the orthographic projection, the accidental viewpoints
are the direction vectors of this family of lines.

A viewpoint v that is on a critical line L is potentially an accidental
viewpoint of the visual event where the features that are intersected by L
interact. v is an actual accidental viewpoints only when all the features are
visible from v along L. If any of the features is occluded then v is not an
accidental viewpoint of this event.

Given an edge and a vertex, or three edges, the locus of the corre-
sponding potential accidental viewpoints defines a potential boundary of
the partition. Some segments of the potential boundary (or all of it) may
not participate in the partition of the viewing space. The segments that
do not participate in the partition are those that contain viewpoints from
which some of the features that participate in the corresponding visual
event are occluded.

Below, we describe the locus of the potential boundaries that correspond
to the two fundamental events. In subsequent sections we describe how to
compute which parts of a potential boundary actually participate in the
partition.

5.1 The Locus of Accidental Viewpoints for the EV
event

Let the vertex and the edge be v and e = (a,b), respectively. The viewing

directions from which the projections of v and e coincide are either a convex

——y _— —_— e
combination of a — v and b — v or of v — a and v — b. On the viewing cube,
these are two diametrically opposite polygonal curves that are part of the
polygon that is defined by the intersection of the cube with a plane that

[d
{

goes through the origin a — v and b —v. We refer to the polygonal curve

—_— ——
from which e is in front of v (a —v — v — b) as the front polygonal curve
and to the opposite polygonal curve as the back polygonal curve. We use
the term EV-boundary to refer to either the front or the back polygonal
curve. See Figure 4.

Figure 4: The polygonal curves of accidental viewpoints of an EV event.
The dashed lines indicate the front faces of the viewing cube.

In the perspective case, the viewpoints from which the projections of e
and v coincide, are on the plane that contains v and e. We refer to this
plane as the plane of the EV event. Not all viewpoints on this plane are
accidental viewpoints of this events, only the viewpoints that lie on the
critical lines, and are not between v and e, are accidental viewpoints for
this event.

For a face f, the collection of EV-boundaries for events between the
vertices and the edges of f forms a closed planar polygon on the viewing
cube. The viewing directions that lie on this polygon are parallel to the
plane of f. The polygon divides the viewing cube into two regions: the
southern region of viewing directions that are below the plane of f and
therefore f is invisible to viewpoints in this region , and the northern region,
where f is visible (provided that it is not occluded by other parts of the
object). We refer to this polygon as a boundary polygon.

8

5.2 The Locus of Accidental Viewpoints for the EEE
Event

The family of lines that go through three skew lines in IR® defines a ruled
quadric surface. Therefore, for the perspective projection, the accidental
viewpoints of a EEE event lie on a ruled quadric surface. As the edges are
of finite extent, only parts of this surface actually contain points that are
accidental with respect to this event.

For the orthographic projection, we are interested in the family of di-
rection vectors of the corresponding family of critical lines. We can think of
this family of vectors as defining a ruled surface of lines that go through the
origin and have the same direction vectors. It turns out that this surface
is either an elliptic cone or two intersecting planes. The locus of accidental
viewpoints of the orthographic projection are the conic curves that result
from intersecting the surface with the planes of the faces of the viewing
cube. Similar to the perspective case, as the edges are of finite extent, only
parts of these conic curves actually contain viewpoints that are accidental
with respect to the EEE event. The details of how to compute the quadric
surface and the conic curves are described in the appendix.

We use the term EEE-boundary to refer to the curves that are the
locus of accidental viewpoints of a EEE event. The terms boundary or
boundary segment will be used as general term that refers any boundary of
the partition.

6 Boundary Pruning Using Local Informa-
tion

In this section we describe simple tests for deciding whether a potential
boundary is not part of the partition because the corresponding event is
occluded by faces that are adjacent to the features that participate in the
event. We use these tests to prune the set of boundaries and reduce the
number of boundaries that have to be considered by the more time con-
suming global occlusion tests.

6.1 The Shadow Region of an Edge

For an oriented plane p we define the negative and positive halfspaces of p
to be the halfspaces of IR® that are on the negative and positive sides of
p, respectively. A viewpoint of the orthographic projection is said to be in
the positive (negative) halfspace of p when the dot product of the viewing
direction with the normal to p is positive (negative).

Assume that the plane normals of the faces of the object point to the
outside of the object. Let the planes of the faces that share a given edge be
p1 and p;. A convex edge can be visible only from points in IR® that are not
in the intersection of the negative halfspaces of p; and p;. A concave edge
can be visible only from points that are in the intersection of the positive
halfspaces of p; and p;. We define the shadow volume of the edge to be
the halfspace from which edge can not be visible. On the viewing cube we
define the shadow region of edge in a similar manner. See figure 5.

Figure 5: The shadow volume of an edge. The edge is perpendicular to the
plane of the figure. The shadow volume is indicated by the shaded region
and the plane normals of the faces are indicated by the arrows. a. a convex
edge b. a concave edge.

6.2 Pruning EV-boundaries

Before we compute the boundary for an EV event, we check if v is in the
shadow volume of e. When this is the case, the event is never visible and
we do not need to compute the boundary. When v is not in the shadow
volume of e, the event is potentially visible from the front polygonal curve

10

(of viewpoints from which e is in front of v) only if the polygonal curve is
not in the shadow region of e. A front polygonal curve for which this test
fails, does not participate in the partition.

6.3 Pruning EEE-boundaries

The projections of two edges e; and e; will never intersect if either edge is
fully contained in the shadow volume of the other. We create a table in
which for each pair of edges we record whether the projections that pair
may potentially intersect. We compute EEE-boundaries only for triplets of
edges, e;,e; and ek, for which there is a potential intersection for each of
the pairs (8,’, ej), (83', ek) and (ek, 6,').

6.4 The Effect of the Pruning on Convex Parts

In a convex part of the object, the shadow volume of an edge e contains all
edges and vertices that are not part of the two faces that meet at e. Thus,
these tests prune away any event between features of convex parts of the
object that are not part of the same face. Furthermore, for a convex object
the EEE test takes O(n?) time, as the pairwise test is negative for all pairs
of edges. Thus, in O(n?) time we prune away all boundaries except for the
O(n) boundary polygons of the faces of the object.

7 Computing The Active Boundaries of The
Partition

After the initial pruning we are left with a set of potential boundaries.
These boundaries are still only potential as we have not yet considered
global occlusions, where some of the features that participate in the event
are occluded by a face that is not adjacent to any of the features of the
event. To compute the segments of the boundary that are part of the
partition (active boundaries), we have to remove all the segments of the
boundary from which the corresponding event is invisible.

When an event is occluded by a face f, a critical line of sight intersects
f, such that the latter intersection point is closer to the viewpoint than at
least one of the intersection points with the participating features. Suppose

11

that the viewpoint is moving along a boundary and the corresponding event
is visible. At the point where the event becomes invisible the critical line of
sight starts intersecting an occluding face. Therefore, when we consider the
occlusion of an event by a single face, the viewpoints where the visibility of
the event changes (event occlusion endpoints — EOE points), are viewpoints
for which an edge of the face intersects the a critical line of sight.

This suggests the following algorithm for computing the active parts of
a potential boundary whose endpoints are b; and b,:

e Compute the EOE points of the boundary with respect to every face
f that is not adjacent to the features that participate in the event.
The points are computed by finding the intersection points of each
edge e; of f with the ruled surface of the event (the surface on which
the critical lines lie). For each intersection point p, check if the cor-
responding viewing direction is on the potential boundary (that is
there is a critical line of sight that goes through p). If the answer is
negative then e; does not contribute EOE points that are due to p!.
Else, let "d be a direction on the critical line of sight [that intersects
es at p. At least one of d and —d is an EOE point (each lies on
one of two diametrically opposite boundary segment of to the given
event).

If, along I, p is between two of the features of the event, then both

and — d are EOE points. Else, when viewed from one of the
diametrically opposite boundary segments, ey is in front of all the
features of the event and contributes an EOE point due to p on that
boundary segment. From the other boundary segment, f does not
occlude the event at es, and therefore p does not contribute an EOE
point on that boundary segment.

¢ Classify each point as an entry or an ezit point depending on whether
the event becomes occluded or unoccluded by f, when the boundary
is traversed in the direction from b, to b,. See Figure 6.

e Sort the EOE points into a list that is ordered by their position along
the boundary curve going from b; to b,.

le; may contribute another EOE point due to another intersection with the surface.

12

Figure 6: Entry and ezit points of a face f with respect to an EV-boundary

e For each face f, determine whether the event is occluded by f at
b;. The event is occluded by f at b; if the first EOE point of f was
determined to be an exit point. Compute the number of faces F', that
occlude the event at b;.

e The sorted list of EOE points and the endpoints of the boundary,
defines a subdivision of the boundary into a set of segments. Scan
the list of EOE points in the sorted order, incrementing F, by 1 at
an entry point and decrementing it by 1 at an ezit point. Using this
procedure, F, keeps track of the total number of faces that occlude
the event, from viewpoints that are on the boundary segment follow
the point that has just been scanned. The active boundary segments
are those for which F, is 0.

In the next two subsections, we describe how to compute and classify

the EOE points.

7.1 Computing The EOE Points of an EV-boundary

To find the EOE points of an EV-boundary (for the event where the edge
e and the vertex v interact) with respect to a face f, we compute the
intersection points of the edges of f with the plane of the EV event. Let ey

be an edge of f that intersects the plane at p. d =v— p is a direction on
the line [that intersects both v and ey and lies in the plane of the EV event.

If d is neither on the front or the back polygonal curve of the event, then

13

[does not intersect e, and therefore e; does not contribute any EOE point.
Else, if p is between v and e along !, then both and d and —d are EOE
points. Else, if d is on the front polygonal curve, then v and e are in front
of f when viewed from the front polygonal curve, and therefore only — d

is an EOE point (on the back polygonal curve). Else, only "d is an EOE
point. See figure 7.

Figure 7: Occlusion of an EV event by a single face. a. The event i1s
occluded from parts of both polygonal curves. b. The event is occluded
only from part of the back polygonal curve.

To determine whether the EOE point of an edge e is an entry or an
ezit point, we compute a vector ? that points from e; into f, along
the intersection line of f with the plane of the event. For an EOE point
that is the front (back) polygonal curve, if the sign of the dot product
< _é ,ba — by > is positive, then the point is an entry (ezit) point, else it
is an ezit (entry) point.

7.2 Computing The EOE Points of a EEE-boundary

To find the EOE of a EEE-boundary (where €1,e; and e3 interact) that are
generated by an edge es of a face f, we compute the intersection points of
the infinite line on which ey lies with the quadric surface See of the EEE
event. For each intersection point p that is contained in es, we compute

14

the a direction d, along the line I, that goes through p (and hence ¢ s) and
the infinite lines on which ey, e; and es lie (the details of this computation
are given in the appendix). If d, is inside a segment of the EEE-boundary
from which a line of sight actually goes through e1, e; and e3 then at least
one of d, and —d,, is an EOE point. If p is between the intersection points
of I, 'Wlth e1, €2 and es then both d, and —d,, are EOE points. Else, if from
d,, p is in front of the intersection points ofl with ey, e; and e3 then only
d, is an EOE point. Else only —d, is an EOE point.

The classification of the points as entry or exit points is determined as
follows:

o Let ? be a vector that points into f along the intersection line of f
with the tangent plane to Se.. at p. This is the direction in [, moves
locally when the event becomes occluded by the inside of f.

e Using the map that is described in the appendix, we compute the
direction 2:; in which the viewpoint moves on the face of the cube
when [, moves in the direction

o Let 7 bea vector that is tangent to the EEE-boundary at d, and is

in the direction that goes from by to by. If (7; is in the same direction
as { then d, is an entry point. Else it is an ez point. When both
d, and —d, are found to be EOE points, then when d, is an eniry
point then —d, is an ezit point and vice versa.

7.3 Computing the Active Segments of a Boundary
Polygon

To compute the active segments of a boundary polygon of a face f, we

compute the active segments of each of the EV-boundaries that are defined

by the edges and vertices of f. We then merge overlapping active segments

to get the active segments of the boundary polygon. These active segments
are marked as being part of the boundary polygon of f.

7.4 The Complexity of Finding the Active Segments

For each potential boundary we spent constant time in computing the EOE
points for each edge of the object. We also sort the EOE points along each

15

boundary. As the total number of boundaries is bounded by O(n?), and
there are O(n) edges, the number of EOE points is bounded by O(n*). As
we sort these points along each boundary, the time complexity of finding
the active boundary segments is O(n*logn). We may end up with O(n*)
active segments. However, these segments will not intersect in more than
O(n®) points, as the total number of intersections of the original potential
boundaries is bounded by O(n°®).

Note, that EOE points are the viewpoints from which lines of sight
intersect four edges of the object and therefore we get O(n*) as a bound on
the number of EOE points.

8 Computing the Partition of The Viewing
Cube

After the global occlusion tests, we have the set of active boundary segments
of the partition. To construct the partition of the faces of viewing cube,
we need to find intersection points between the segments and create a data
structure that represents the vertices, edges and regions of the partition.
We construct the partition using a plane sweep algorithm [PS85] on each
of the faces of the cube separately. In the discussion below we assume that
we are sweeping a face of the cube that is parallel to the zy plane and that
the sweep line is parallel to the y axis.

The plane sweep algorithm uses an event queue where the events are
points where segments of the partition start or stop intersecting the sweep
line, or intersection points between segments that are currently intersecting
the sweep line. As a EEE-boundary segment is part of a conic curve, the
points where the sweep line starts or stops intersecting the segment may
either be the endpoints of the segment or points of maximal and minimal
extent of the segment. Therefore, for each EEE-boundary segment we find
the points that have the minimum and maximum x coordinates. If these
points are not the endpoints of the segment, we divide the segment at these
points into subsegments that are monotone in the x direction. Each of the
subsegment will intersect any vertical sweep line at only one point. For the
plane sweep we consider each subsegment separately. See Figure 8.

Once we have preprocessed the EEE-boundaries, we can execute a reg-

16

CO-

a2
v
b. _/
Figure 8: Preprocessing conic segments for the plane sweep. Segment a is
divided into subsegments at the extremal points in the horizontal direction.

Segment b is not divided as its endpoints are the extremal points in the
horizontal direction.

ular plane sweep to construct the partition of the face of the cube. The
algorithm runs in O(mlogm) time, where m is the number of vertices in
the partition.

8.1 Viewpoint Location in Log Time and in Linear
Space

For some applications we may need to be able to answer the query “Given
a viewpoint vp, find the region of the partition that contains vp”. This
query can be answered in O(logm) time, if we save all the sweep lines at
the events of the plane sweep algorithm (these are the sweep lines that go
through the vertices of the partition). Using the persistent search tree data
structure that was invented by Sarnak and Tarjan [ST86], we store all the
sweep lines using only O(m) space. The persistent search tree is build and
updated during the plane sweep without increasing the time complexity of
the algorithm.

9 Computing and Storing the Views
Once we have computed the partition, we compute the view of the object

in one region of the partition, using a any suitable hidden line removal
algorithm. We then traverse the partition in order of adjacent regions,

17

and compute the view in each region by updating the view of the adjacent
region, according to the visual event that occurs at the boundary between
the regions. The exact details of how to update the view according to the
visual event that occurs at the boundary between regions are described by
Gigus and Malik in [GM88a).

Using 2 naive approach to storing the views of the partition, we would
explicitly represent the complete graph of the view in each region of the
partition. As a single view may be of size O(n?) and the size of the partition
may be as large as O(n®), the naive approach will use O(n®) space. As
writing out a single view takes O(n?) time, the total time to generate all
the views is also O(n®). Even if the average size of a view is s and the size
of the partition is m, the naive approach will use O(sm) time and space.

When we generate a new view, we copy most of the old view with
only a few modifications. If, instead of representing each view explicitly,
we could use a persistent data structure that keeps track of the changes
between adjacent views, we should be able to generate all the views in time
and space that are close to being linear in the number of updates, which
is bounded by O(m) [GM88a]. Below, we describe a data structure for
representing the views implicitly by keeping track of the changes between
one view to the next. This data structure is constructed in O(m) time and
space, and requires O(logm + S) for retrieving a single view, where S is
the size of the view.

9.1 Representing the Views in Linear Space

The traversal of the partition can be abstracted as follows. The adjacency
relation between the regions of the partition is represented by.the dual of
the graph of the partition, where we have a vertex for each region and
an edge between any two vertices for which the corresponding regions are
adjacent in the partition. This dual graph is the aspect graph of the object,
as defined by Koenderink and van Doorn. With each edge of the aspect
graph we keep a the list of visual events the occurs at the corresponding
boundary. To generate the views, we compute the view at one vertex of
the aspect graph, and then traverse the graph using a depth-first search
algorithm. Whenever we visit a new vertex, we compute the view at that
vertex according to the events that occur at the boundary that corresponds
to the edge leading to the new vertex. The edges that are traversed in this

18

|

process form a spanning tree of the aspect graph.

In the naive approach, we store a view at each vertex of the graph.
Whenever we reach a leaf | of the spanning tree (a region for which all
the neighbors have already been visited), we go back to a vertex v that
is the lowest ancestor of ! that has neighbors which have not been visited
vet, retrieve the view at v, and continue the traversal process. Instead
of retrieving the view at v from storage, we could generate this view by
walking back up the tree along the vertices on the path from ! to v, and
maintaining the current view along the path by updating it according to
the events that occur at boundaries that correspond to each edge on the
path up the tree. As we never traverse any edge more than twice (once
on the way down and once on the way up), the total number of updates
that we perform in this process is bounded by twice the number of updates
of the traversal method that uses view retrieval. Figure 9 illustrates the
traversal of the partition in both methods.

A
B
C
G
E
D
F

Figure 9: The traversal of the partition as a graph traversal process. a. A
partition and the aspect graph (in bold lines). b. The spanning tree and
the modified method of traversal. In the regular method the vertices are
visited in the sequence ABCDEFG. In the modified method the sequence
is ABCDCEFECBG.

If we consider a visit to a vertex of the aspect graph as a step in time,
the modified version of the traversal generates a time sequence of ISGs,
SG = (Go,Gi,...,Gr), where G, (the ISG at time t) is generated from
G,_, by deleting some of the its edges (and maybe some of its vertices) and
adding some new edges and vertices. Some of the ISGs in this sequence are
identical to each other. Assume that at time 0, each vertex in Gg 1s given a

19

unique name, and whenever we create a new vertex, we give it a new unique
name that has not been used previously. Under this naming scheme, we
can associate with each vertex v, of the ISG, the interval I(v) = [ti,, td,]
which indicates when v existed in the graph (it was inserted at time ti, and
deleted at time td,). Similarly with each edge (vi, vi) we can also associate
its existence interval. Instead of representing the sequence SG explicitly, we
store the sets Ve and Ee of the existence intervals of the vertices and edges
in the sequence. Also, at each region of the partition we keep a record of
the first time ¢ that we visited this region. Given the time label { of a region
we can retrieve the corresponding view G, by answering the query: “Find
all the vertices and edges that existed at time t”. This query is equivalent
to the query: “Find all the existence intervals in Ve and in Ee that contain
#”, which is an tnverse range query. For m intervals that are sorted by their
left endpoint (as our time intervals are), in O(m) time we can comstruct
a priority search tree of size O(m), for answering inverse range queries in
O(log m + K), where K is the number of intervals that contain ¢ (For more
details of this data structure see [MelAR, pages 199-201,211]).

As each update can only contribute one interval, the size of Ve and the
size of Ee is bounded by O(V +m), where V is the size of the ISG at time 0.
As, in the worst case, the ISG is of size O(n?) and there are O(n®) updates,
the size of Ve and Ee is bounded by O(n®). In the worst case, the retrieval
time is bounded by O(n? + logn) = O(n?), which is optimal in the size of
the view.

10 Conclusions

We have presented an algorithm that computes the viewing data of an ob-
ject in near optimal time and in optimal space. The algorithm is based on
understanding how the three dimensional geometry of the object is reflected
in the visual interaction between the features of the object. We used two
key ideas to reduce the complexity of the computation. The first idea is to
prune boundaries that correspond to invisible events on the basis of local
information at the edges and vertices of the object. The effectiveness of
the initial pruning is demonstrated by the fact that, for convex objects, it
eliminates all the potential boundaries that correspond to occluded events,
and results in optimal computation time. The second idea is based on the

20

observation that the most time consuming part of the algorithm is comput-
ing the intersections between the boundaries that correspond to individual
events. By computing the active boundaries of the partition, before we ac-
tually construct the partition, we are able to reduce the computation time
to O(mlogm + n*logn) where m is the actual size of the partition. All
the computations of the algorithm are done in IR? or IR®. These spaces are
well behaved and we have a complete understanding of the geometry of the
lines and surfaces that are involved in the computation.

The naive way of representing the set of views would take time and
space that is the product of the size of a single view and the size of the
partition. However, using a novel method of representing the views, we
are able to generate all the views in time and space that are linear in the
number of updates, and therefore optimal.

The current algorithm handles the class of polyhedral objects. As all
the visibility computations of the algorithm are performed directly in R3,
it might be possible to extend the algorithm to other classes of objects. We
are currently investigating methods of extending the algorithm to the class
of piecewise quadric objects.

A Appendix - Computing the Boundaries
for the EEE Event

A.1 The Surface of the EEE Event

Let the three edges that participate in the event be e;, e; and e3, where
e;=(a;,b;). Let 7 b — a; be the direction vector of e; and let [; be
the infinite line on which e; lies. Let p be a viewpoint of a perspective

- . - —)
projection. The normal to the plane P; through p and e; is (p — a;) x d: .
The map

— > —_—
Pus(p) = ((p—a) x &) x ((p—a;) x dj) (1)
computes a direction along the intersection line of P; and P; which is the
line that goes through p and intersects both /; and I;. In particular, if from

p there is a line of sight /. that actually intersects both edges, then P; ;j(p)
computes a direction along this line. If [, intersects all three edges then
it is the common intersection line of all three planes (see Figure 10), and
therefore:

< 'Plyg(ps,(p - a3§ X .2 3 >=0. (2)

This is a quadric equation in the coordinates of p, which defines a quadric
ruled surface on which the accidental viewpoints of this EEE event must
lie.

Figure 10: The line of sight that goes through the three edges as the com-
mon intersection of three planes.

Not all points on the surface are accidental viewpoints of the event
where e, e; and ez interact. As the edges are of finite extent, some parts

&
o

of the surface do not contain points from which a straight line actually
intersects all three edges and therefore the viewpoints that are contained
in these parts of the surface are not accidental viewpoints of this event. In
addition, the viewpoints that are contained in parts of the surface that are
between the edges are not accidental viewpoints for this event, as not all
three edges can be viewed simultaneously from these viewpoints.

A.2 The Boundary Curve for the Orthographic Pro-
jection

For an orthographic projection with viewing direction [z,y, z], the view-
point is of the form a[z,y,z], with « going to infinity. Substituting the
viewpoint into Equation 2 we get:

ali_'nolo(a?(clxz + coy? + c32? + cuTy + cszz + ceyz) +
afcrz + csy + coz) + €10) = 0, (3)

and therefore:
a1z + coy? + ¢32® + cazy + 522 +ceyz = 0, (4)

is the condition on the viewing direction of the EEE event in the ortho-
graphic projection. To get the curve of viewing directions on the viewing
cube we intersect the surface described by Equation 4 with the planes of
the faces of the cube: z = +1,y = +1 and z = £1.

Similar to the perspective case not all points on the intersection curve
of the surface with the cube are accidental viewpoints for the event. Only
the segments of the curve from which a line of sight actually goes through
e1, e2 and e; contain accidental viewpoints for this event, and are potential
boundaries of the partition.

A.3 Representing the EEE-boundary Segments

For the purposes of the algorithm, we need to assign a direction to the
EEE-curve, represent continuous segments of curve, locate a segment of the
curve that contains given point is on, and sort points along a given segment.
We assign a direction to the curve by computing the normal to curve and

23

chosing the clockwise orthogonal vector as the tangent vector to the curve.
This vector is unique at any point of a conic curve and it is continuous
on a continuous segment of the curve. We partition the curve at points
of maxima in the horizontal direction resulting in continuous segments for
which each point has a unique z coordinate. A segment is represent by an
ordered pair of endpoints such that a traversal of the segment from the first
endpoint to the second one follows the direction of the curve. When sorting
points along the curve we also use the order that is implied by the direction
of the curve. Given a point on the curve, we can locate the segment that
contains it by comparing the tangent vector at the point to the tangent
vectors at the endpoints of each segment of the curve.

A.4 Computing the Potential Segments of the EEE-
boundary

Let I, be the line the intersects [;, I; and I3. A motion of the viewpoint
along the EEE-boundary correspond to a motion of /. in JR® which main-
tains its contact with Iy, I; and I3, while its direction vector is changing
to agree with the viewing direction (the viewpoint). At the endpoints of
the potential segments of a EEE boundary, [, starts or stops intersecting
one of the edges. In other words, the endpoints of the potential segments
are viewpoints from which /. goes through one of the endpoint vertices of
the edges. The endpoints of the segment s; from which I, intersects e; are
P;r(a;) and P;i(b;). As at an accidental viewpoint [. intersect e;, e; and
es, the potential segments are the parts of the boundary where s, s, and
s3 overlap.

To fully determine s; we need to determine whether when traversing the
boundary in the direction of the tangent vector, [, enters or exits e; when
we reach P;i(a;) (the second endpoint of s; has the opposite classification).
Making this determination is equivalent to answering the following ques-

tion: “Suppose that [, is at a; and it is moving into e;, is the direction c_i;;
in which the direction vector of I, moves along the face of the cube the
same as, or opposite to the tangent vector to the boundary at P;x(a;) 7.
In the next section we describe the map that computes the projection of

_}
local motions of /. onto the cube, dy is computed by applying this map to
b
s — ay.

Once we have fully determined s,, s; and s3, we sort their endpoints
along the boundary curve and determine the potential segments by com-
puting the segments of the boundary where s;, 3, and s3 overlap.

A.5 Projecting Local Motions of the Line of Sight
onto the Viewing Cube

In computing the potential and actual active segments of a EEE-boundary
we need to be able to perform the following computation:

s Given:

1. a point p on the line /. that intersects I, l; and I3
and

2. a direction ¥}, in which I moves at p,

o find the direction E:I in which the direction vector of [, moves on the
face of the cube.

Assume that the point p is not on either I; or I;. Then the map P;.i(p)
computes a direction vector "d, along . when it goes through p. In general,
“d; is not normalized. Assume that the point ¢; that is the representation
of d, on the viewing cube is on the face that is contained in the plane
z = 1. Then ¢; is the perspective projection of d; onto the plane z = 1.
That is, ¢; = Q(d;) = Q(Pi;(p)), where Q(z,y,z) = (z/z,y/z,1). U L is
moving in the direction —f at p, then, as I, is always on the EEE quadric
surface of the EEE event, —2 is on the tangent plane to the surface at p.
The direction dy in which ¢; moves is on the tangent plane to the face of
the cube at ¢; (which happens to be the plane of the face itself). To project
a vector in the tangent plane at p to the tangent plane at ¢; we need to
apply the differential to the map that carries p into c;, and therefore:

—_— - — .
du = d(Q(Pi;))lp Tp = dQl7, ;(»dPisls Tp (5)

where dF denotes the Jacobian matrix of the map F.

[(v]
@43

References

[ArnT79]

[Arn83]

[CF82]

[CW83]

[GM88a]

[GMS88b]

[HKS5]

[Ike87]

V. I Arnol'd. Indices of singular points of 1-forms on a manifold
with boundary, convolutions of invariants of reflection groups,
and singular projections of smooth surfaces. Russian Mathemat-
ical Surveys, 34(2):1-42, 1979.

V. I. Arnol’d. Singularities of systems of rays. Russian Mathe-
matical Surveys, 38(2):87-176, 1983.

I. Chakravarty and H. Freeman. Characteristic views as a ba-
sis for three-dimensional object recognition. In Proceedings of
The Society for Photo-Optical Instrumentation Engineers Con-
ference on Robot Vision, pages 37-45, Veol. 336, SPIE, Belling-
ham, Wash., 1982.

J. Callahan and R. Weiss. A model for describing surface shape.
In Proceeding of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 240-245, IEEE,
N.Y., 1985.

Z. Gigus and J. Malik. Computing the viewing data for poly-
hedral objects. In Proc. IEEE Comp. Soc. Conf. on Computer
Vision and Pattern Recognition, IEEE, N.Y, June 1988. To ap-

pear.

Z. Gigus and J. Malik. Computing the viewing data for poly-
hedral objects. In Proc. 1988 IEEE Int. Conf. on Robotics and
Automation, IEEE, N.Y, April 1988.

M. Hebert and T. Kanade. The 3d-profile method for object
recognition. In Proceedings of IEEE Computer Society Confer-

ence on Computer Vision and Pattern Recognition, pages 458—
463, IEEE, N.Y., June 1983.

K. Ikeuchi. Precompiling a geometrical model into an interpreta-
tion tree for object recognition in bin-picking tasks. In Proceed-
ings of DARPA Image Understanding Workshop, pages 321-339,
February 1987.

[Ker81]

[KvD76]

[KvD79]

[MelAR]

[PDs6)

[PD8T7]

[Plass]
[PS85]

[Rie87]

[SB8T]

[ST86]

Y. L. Kergosien. La famille des projections orthogonales d'une
surface et ses singularitiés. C. R. Acad Sc. Paris, 292:929-932,
1981.

J.J. Koenderink and A. J. van Doorn. The singularities of visual
mapping. Biol. Cybern., 24:51-59, 1976.

J. J. Koenderink and A. J. van Doorn. The internal representa-
tion of solid shape with respect to vision. Biol. Cybern., 32:211-
216, 1979.

K. Melhorn. Data Structures and Algorithms. Volume 3: Multi-
dimensional Searching and Computational Geometry, Springer-
Verlag, YEAR.

W. H. Plantinga and C. R. Dyer. An algorithm for construct-
ing the aspect graph. In Proceedings of the 27th. Symp. on the
Foundation of Computer Science, pages 123-131, IEEE, N.Y,
1986.

W. H. Plantinga and C. R. Dyer. Visibility, Occlusion and The
Aspect Graph. Tech. Report 736, University of Wisconsin, Madi-
son, December 1987.

W. H. Plantinga. Personal communication, June 1988.

F. P. Preparata and M. I. Shamos. Computational Geometry,
An Introduction. Springer-Verlag, 1985.

J. H. Rieger. On the classification of views of piecewise smooth
objects. Image and Vision Computing, 5(2):91-97, May 1987.

J. Stewman and K. Bowyer. Aspect graphs for convex planar-
faces objects. In Proc. IEEE Comput. Soc. Workshop on Com-
puter Vision, pages 123-130, IEEE, N.Y, December 1987.

N. Sarnak and R. E. Tarjan. Planar point location using persis-
tent search trees. Communications of the ACM, 29(7):669-679,
July 1986.

[ov)
=1

[WBG86] M. Werman, S. Baugher, and J. A. Gualtieri. The Visual Poten-
tial: One Conver Polygon. Tech. Report CAR-TR-212, Center

for Automation Research, University of Maryland, College Park,
MD, August 1986.

