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Abstract

This thesis describes a program called KIP (Knowledge Intensive Planner). KIP is a general,
commonsense planner that can reason about planning situations in the real world for which 1t
is provided information. KIP is the planning component of the UC (UNIX consultant) system.
KIP is used to solve the problems the user poses to the UC. KIP has knowledge about UNIX
commands, including the effects of those commands and under what conditions those commands
can and should be issued. The best plan is reported to the user after (1) determining the goals of
the user, (2) selecting and specifying a plan that fulfills the goals of the user (plan determination),
(3) testing if the plan will work in this particular problem situation without causing unacceptable
consequences, and (4) modifying this plan if necessary.

A major problem in commonsense planning is the focus of attention on relevant knowledge.
In particular, the problem of identifying potential plan failures in a plan is difficult, since there
are often many sources of plan failure, both for failures due to an unsatisfied condition of a plan
and failures due to goal conflict. This problem is further complicated because many values of
conditions in a particular planning problem may be unknown. In order to address the problem of
identfying potental plan failures, a new idea, called a concern, has been introduced. Concemns
identify which aspects of a plan are most likely to fail.
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Chapter 1

Introduction

1.1 KIP: Knowledge Intensive Planner

This thesis describes a commonsense planner called KIP (Knowledge Intensive
Planner). KIP refers to two ideas: (1) KIP - the Theory, and (2) KIP - the Program. KIP -
the Theory refers to the theory of planning presented in this thesis. The theory’s primary
motivation is the need to deal with the abundance of knowledge belonging to a common-
sense planner. KIP’s general strategy is to focus on those parts of the planning problem
which are most important in a particular planning situation. KIP - the Program is an Al
program designed to construct plans for UNIX operating system users as part of the UNIX
consultant system. User goals are passed to KIP, and KIP returns a plan that the user can
actually type to UNIX. The UNIX Consultant system is an intelligent natural language
interface that allows naive users to ask questions about the UNIX operating system.

1.1.1 Planning in the UNIX Domain

Planning in the UNIX domain is difficult due to the large amount of detailed
knowledge of a UNIX expert. In particular, a UNIX expert has much knowledge regarding
the ways in which plans may fail. However, such experts only consider knowledge that is
relevant to a particular planning situation. For example, suppose the user asks the following

questions:
(1) How do I print out a file named george?

(2) How do I print out John’s file named george?

In example, (2) a UNIX expert is likely to consider the read permission of the
file named george. Since the user has specified that the file’s owner is John, it is likely that

1



2

the user cannot read the file. However, in (1), the expert is not likely to consider the read

permission of the file.
A UNIX expert knows about additional facts in the world that relate to use of

UNIX commands. For example, suppose a professor asks the following question:
(3) How do I print out my class midterm?

In this example, a UNIX expert might realize that printing on the public printers
would cause a conflict with the professor’s goal of keeping the midterm secret. Therefore,
it would suggest printing the midterm on the office printer which is reserved for such uses.
However, the UNIX expert might also know that printing on the office printer is likely to be
problematic in two ways: (1) the paper tray on the printer is often empty and (2) the office
printer room is always locked. The UNIX expert is likely to consider these plan failures,
but is unlikely to consider other plan failures such as (3) the printer must be turned on and
(4) the computer network must be operating. The second set of plan failures are less likely
to occur than the first set. However, the second set of plan failures might be important to

consider in other planning situations.

1.1.2 UNIX Consultant

In this section, I present a short overview of the UNIX consultant system in order
10 better understand KIP’s funcdon in this system. The UNIX consultant (hereafter, UC)
as a whole is best described in [38]. UC has five components which are currently invoked

serially:
(1) Natural Language Parser  Parses the user’s natural language

(ALANA) - utterance into KODIAK knowledge
representation form

(2) Goal Analyzer (PAGAN) - Determines the user’s actual goals
by examining the user’s utterance

(3) Agent (UCEgo) - Determines UC’s own goals

(4) Planner (KIP) - Determines a plan for the user’s
goals

(5) Generator (MYGEN) - Generates an answer to the user in
English

For example, suppose the user asks the following question:

(4) How do I delete the file named junk?




ALANA [8] parses this English language sentence into a conceptual form. The
PAGAN goal analyzer [25] determines that the user wants a plan for his goal of deleting
the file named junk. UCEgo [6] determines that UC should address the user goal by con-
structing a plan for the user goal, and telling the user about the plan. KIP is given the goal
of deleting the file named junk, and constructs a plan for the user goal, i.e. rm junk. The
plan is then generated by the MYGEN natural language generator [38]:

(4) To delete the file named junk, use rm Jjunk.

In addition, UC has many capabilities other than determining direct answers to
user queries. For example, consider the following interaction from [6]. Suppose the user

asks the following question:

(5) Wwhat does 1ls -v do?

UC responds:
(5) There is no -v option for 1ls.

UC has decided to ignore the user’s direct question and shift its attention to the
user’s misconception. (For more information on such capabilities see [6].)

UC uses the KODIAK knowledge representation language [36] to represent
UNIX concepts. (KODIAK is described in detail in Chapter 3.) The current implementa-
tion of KIP uses the most recent version of KODIAK. As of this writing, ALANA parser and
UCEgo have yet to be ported to the new KODIAK. Therefore, simple versions of these pro-
grams have been written to demonstrate KIP’s abilities. A parser, written by Peter Norvig,
has been integrated into this version of the UC system. In addidon, a simple intelligent
agent program which always assumes that UC should construct a plan for the user’s ex-

pressed goal has been implemented.

1.1.3 KIP’sRolein UC

KIP determines plans for the user’s goals which KIP receives as input. Actually,
KIP does not differentiate between its own goals and the goals of the user. Thus, the fact
that KIP plans for the user’s goals does not make KIP’s planning task different from that of

the previously discussed planners.
KIP’s process of constructing a plan for the user’s goals is called plan synthesis.

Plan synthesis is an iterative process composed of three parts:

(1) goal establishment - establishment of those goals KIP needs
to address



(2) plan determination - determination of a plan for those goals
(3) plan failure detection - detection of potential plan failures

During goal establishment, KIP decides which of the user’s goals it will try to
satisfy. Many of these goals come from the PAGAN goal analyzer[25]. During plan de-
termination, KIP selects a potential plan for the selected goal and specifies the plan for the
particular planning situation. KIP tests the plan to determine whether it will really satisfy
the user goal in this particular planning situation during the plan failure detection phase.
The two ways that a plan may fail are termed condition failure and goal conflict failure.
If a certain condition needs to be satisfied in order to execute the plan, the satisfaction of
the condition becomes a new goal that needs to be satisfied. If the determined plan causes
a conflict with another user goal, the resolution of the goal conflict becomes a new goal.
Finally, KIP needs to determine if all the user goals have been satisfied. If all user goals
are not satisfied, KIP iterates through the process again. In this way, a plan is gradually
synthesized. KIP’s plan synthesis algorithm is described in detail in Chapter 4. Chapter 5
focuses on goal establishment and Chapter 6 focuses on the plan determination process.
Plan failure detection is discussed in Chapters 7-10.

1.2 Problem-Solving in Knowledge Intensive Domains

Early work in artificial intelligence planning developed in what I will call
knowledge-deficient domains (cf. weak method problem solving, [29]). Given a partc-
ular problem state, the knowledge-deficient planner has very little specific knowledge of
how to proceed. A knowledge-deficient planner, (e.g. one that uses means-end analysis
[12,29,31]) might merely select the plan that results in a state closest to the goal state using
only knowledge about a few operators.

In contrast, most human problem solving seems knowledge-intensive. People
acquire much knowledge about the many plans they encounter in everyday life. Icall a
planner whose operation is based on knowledge a commonsense planner{35]. A common-
sense planner should be able to deal with a large body of commonsense knowledge about a
particular domain. Such knowledge includes a general understanding of planning strategy,
detailed descriptions of plans, descriptions of the conditions necessary for these plans to
execute successfully, and descriptions of potential goal conflicts.

For example, suppose that a robot planner is faced with the classic Al problem
of the monkey and the bananas proposed by McCarthy[26]. In this problem, a monkey is
placed in a room containing only a box and bananas hanging from the ceiling. In order to
reach the bananas, the monkey must stand on the box.

Knowledge-deficient planners such as GPS[10] represent the planning knowl-
edge as the simple operators that can be executed. For example, the monkey can change



the location of the box by moving it and the monkey can change his own location by walk-
ing. A knowledge-deficient robot planner constructs a plan out of these simple operators.
In contrast, most humans know that standing on something near an object is an effective
means of retrieving an out of reach object. Thus, it is not surprising that the human plans
how to reach bananas more easily than does the robot planner deprived of such experience.

Commonsense planners have just the opposite problem of knowledge-deficient
planners: there is an abundance of knowledge about the domain. The central issue in com-
monsense planning is the determination of those parts of the knowledge-base relevant to
the planner’s current problem solving task. Only once the planner focuses its attention on
those relevant pieces of knowledge can it use this knowledge to plan effectively.

1.3 Plan Failure Detection

One particularly important issue is the need to focus the planner’s attention on
those parts of a potential plan most likely to cause plan failure. Since a commonsense
planner has much knowledge about how a particular plan might fail, determining such

knowledge relevance is a difficult task.
For example, let us return to the monkey and bananas problem discussed above.

GPS’s description of this problem modeled the following conditions:

e in order to grasp the bananas, the monkey must be on top of the box and under the
bananas

e in order to climb on top of the box, the monkey must be next to the box
e in order to move the box, the monkey must be next to the box

These are important conditions which the planner must know in order to construct

a plan that will allow him to get the bananas. Indeed, the problem was constructed in such
a way so that few conditions need to be satisfied in order to execute the plan successfully.
However, a commonsense planner might also know about the following conditions:

e in order to move the box, the monkey must be on the floor (i.e. not on the box)

e the height of monkey and the height of the box must be more than the height of the
bananas (or the monkey will not be able to reach the bananas)

e the box must be made of sturdy materials (or the monkey will fall through the box)
e the box must not be too heavy for the monkey to move

the monkey’s hand must be empty (so the monkey can hold the bananas)



The second set of conditions are less likely to cause plan failure than the first set
of conditions. However, it is still important for a commonsense planner to be aware of the
second set of conditions in certain planning situations when the conditions do fail. In fact,
the planner may know about many more conditions which are even less likely to cause plan

failure. For example,

e there must be oxygen in the room

o the monkey must be free to move about the room

Furthermore, there are many plans for getting the bananas might be problematic:

the monkey might hurt himself if he falls off the box

the monkey might get sick after eating all the bananas

a large bunch of bananas might fall on the monkey and kill him

, Thus, even for this relatively simple planning scenario, a COmMmONsense planner
would know about a large number of potential plan failures. Plan failure detection is a

major focus of this thesis.

1.4 Properties of a Commonsense Planner

In this section I discuss five properties of a commonsense planner. There are
many different ways a commonsense planner (hereafter, CSP) might address the planning
problem. These properties are particularly useful in demonstrating the problems a CSP
algorithm must address in plan failure detection. They are also used as criteria for assessing
a potential algorithm for CSP.

The five properties are:

(1) Knowledge Rich - use of extensive knowledge regarding
plans and goals

(2) Default Situation reliance on default situation knowledge
Knowledge - when planning scenario is not
completely defined

(3) Cognitive Validiry -  attempt to model human behavior

(4) General Knowledge use of hi gh-level knowledge in specific
Application - situations



(5) Knowledge Efficient - access of only relevant knowledge

The most important consideration for any potential algorithm of a commonsense
planner is the knowledge base that is necessary to use this algorithm. Therefore, in the
context of the following discussion of these five properties, I also make parallel assumptions
about the properties of a CSP’s knowledge base.

1.4.1 The Knowledge Rich Property

According to the knowledge rich property, CSP’s knowledge base should have
detailed knowledge regarding plans and goals. For example, a CSP should know which
plans are appropriate for which goals, all the conditions necessary for plans to execute
successfully, and many potential goals. Therefore, a CSP algorithm must have the ability
to manipulate this knowledge effectively. For example, suppose that a CSP has knowledge
that a certain plan is the best plan for a particular goal. If a CSP is asked to satisfy that goal,
then that best plan should be selected. The algorithm and knowledge base should interact
such that regardless of the size of CSP’s knowledge base, the relevant knowledge is always

considered.

1.4.2 The Default Situation Knowledge Property

In many planning situations, all the values of the parameters of a plan may not
be known. When the actual values of these parameters are not provided in the description
of a particular planning problem, a CSP needs to rely on default knowledge. The default
values for these parameters may change according to the context of the particular planning
situation. Therefore, a CSP needs a mechanism to manipulate the default knowledge so as
to determine the default values for these parameters in unique problem situations.

1.43 The Cognitive Validity Property

When discussing an algorithm for a CSP, I say that an algorithm seems cogni-
tively valid, or conversely, that an algorithm does not seem to address a problem the way
that people do. The cognitive validity property refers to the degree to which a CSP algorithm
corresponds to a human planner in its problem solving strategies. Since our understand-
ing of human planning is so limited, cognitive validity is the most difficult property of a
commonsense planning algorithm to evaluate.

1.4.4 The General Knowledge Application Property

A CSP should be able to create plans for goals in particular planning situations.
Unless a CSP has a plan for the exact situation described in the user’s plan, a CSP should



8

apply general knowledge in a specific planning situation. For example, a CSP might have
planning knowledge about grasping bananas, but it probably would not have knowledge
about grasping bananas in Evans Hall. It is impossible to store plans for every potential
planning situation. Therefore, any algorithm that addresses a CSP should have the ability t0
represent general knowledge about plans and goals and to use that knowledge in particular
situations. However, when specific knowledge about a particular situation is important,
this specific information should be included in the planner knowledge base. According to
Wilensky’s First Law of Knowledge Application [35], the planner should apply the most
specific piece of knowledge available.

1.4.5 The Knowledge Efficient Property

According to the knowledge efficient property, 2 CSP should access only pieces
of knowledge which are relevant to the particular planning situation. It is useful to discuss
the knowledge-efficient property in terms of the previous four properties. A CSP algorithm
that considers all the knowledge of a knowledge-rich planner might cause a combinatorial
explosion. A Knowledge Efficient planner mimics a human planner who generally con-
siders only those pieces of knowledge which are relevant to the particular problem under
~ consideration. A CSP should only consider default situation knowledge for unspecified
parameter values which are relevant to the current planning situation. General knowledge
should only be applied to a particular planning situation if that knowledge is relevant.

The knowledge-efficient property is the one referred to most in an evaluation
of potential algorithms for a CSP. There are two reasons for this predominance. Firstly,
the knowledge-efficient property is related to the other properties discussed. An efficiency
component is inherent in each of the other properties. More importantly, knowledge effi-
ciency is the central problem in building an algorithm that will work on a computer.

1.5 Concerns

The focus of this thesis is on plan failure detection. As discussed in the previous
section, a commonsense planner needs a means of limiting those plan failures under con-
sideration. The plan failure detection problem is discussed in detail in Chapter 7. The goal
conflict detection problem, discussed in Chapter 9, is even more complex, due to the large
numbers of goals that a user might have. In Chapter 8, a new concept, called a concern, 1s

introduced in KIP in order to address this problem.
A concern refers to those aspects of a plan which should be considered because

they are possible sources of plan failure. A concern describes which aspects of a plan are
likely to cause failure.



Stored concerns are stored in KIP’s long term knowledge-base. These include
important conditions of 2 stored plan that need to be considered when suggesting & pos-
sible plan, and descriptons of potential goal conflicts with the effects of a stored plan.
Thus, stored concerns are & way for the planner database designer to express his personal
experience regarding which aspects of a stored plan are most likely to fail.

Dynamic concerns arise during the planning process itself. They are usually in-
stances of stored concerns. When a possible plan is considered that is an instance of some
previously known stored plan, the stored concerns of that stored plan generate dynamic
concemns for the new instance of the plan. When KIP notices a potential condition or goal
conflict failure, but has not yet decided whether such a failure will occur, KIP instantiates

a dynamic concern.
There are a number of different ways in which concerns can be characterized.

Chapter 8 focuses on condition concerns, i.e. concems about conditions of a potential
plan. Goal conflict concerns, discussed in Chapter 10, refer to concerns regarding conflict

between the effects of a potential plan and a user goal.
In the rest of this section, I present a KIP example where both condition con-

cerns and goal conflict concerns are detected. Trace output is printed in normal font, my
annotations to the trace are in italics.

Figure 1.1: KIP Trace of List Directory Contents on a Sun

How do I find out the files in the directory named /usr/local on my sun?
:: KIP receives the following goal as input from the parser and the PAGAN goal
;; analyzer:
(list-directory-effect-1
(Information-About-Of—List-Dimctory-Effecl-30
(dir-2
(File-Name-26 Just/local-1)
(Owner-28 root-user-27)
(Direcwry-Conwms-lO? directory-list-69)))
:» KIP has been asked to provide the user with information about the directory
:» named lusrilocal. The parser determines that this directory is a type of
;; system file, since i1s name begins with lusr. Therefore, this directory's owner
:: is root, i.e. the UNIX system administrator. The contents of this directory is
-+ directory-list-69, which is a list of files.
(Expcriencer-Of-Unix-Infonnaxion-Effcct-64 uc-user-1)
: The Experiencer of this effect is the UC user.
(lnida]-State-Of-List-Directory-Effect-&
Omows-dimctory-comcms-sme-40
(Value-Of _Knows-Directory-Contents-122 directory-contents-state-124)
(Object-Of _Knows-Directory-Contents-51 uc-user-1 )]
(Final-Sxane-Of—List-Directory-Effect—87
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(knows-directory-contents-state-65
(Value-Of-Knows-Directory-Contents-106 directory-contents-state-67)
(Object-Of-Knows-Directory-Contents-76 uc-user- m)

:: Information effect, like other state changes that KIP knows about, are

:; represented as state changes. In this case, the final-state is that the user knows

:: the contents of the directory to be directory-contents-state-67, while in the

:: initial-state, the user knows the contents of the direciory to be

:+ directory-contents-state-124. The representation of state-changes and other

:» KODIAK objects is described in detail in Chapter 3.

Entering Goal Establishment Phase:

KIP is trying to determine a plan for the list of goals:

(list-directory-effect-1)

Selecting a goal from the List Of Goals (Qist-directory-effect-1))
selecting the remaining goal

list-directory-effect-1

;; KIP first has to select a particular goal to address. In this case, KIP only has
;; one goal from which to select. In more complex situations, where KIP has more
:; than one goal, KIP must select one of these goals. Goal selection is described in
;. Chapter 5.
Entering Plan Determination Phase:
Looking for a plan for the Current Goal (list-direc tory-effect-1)
First looking at stored plans
Selected ls-command as a potential plan
:: KIP has examined its knowledge base of stored plans for plans that satisfy the
;; goal of list-directory-effect. It has selecied the Is-command for this goal.
:: Plan selection is described in detail in Chapter 6.
Now specifying the plan for the particular planning situation:
++ KIP must now specify the plan for this particular planning situation. Plan
:: Specification refers to the specification the values of the general plan for the
;; particular problem situation. Plan Specification is described in
;- Section6.2.1.
(1s-command-on-sun-161

(Machine-Of-Ls-Command-On-Sun-159 sun-23)

;- Since KIP is told in its input that the list directory effect must be on a

:; sun, KIP specifies that the machine on which this Is-command command is

-+ executed must be a sun. This causes a concretion inference. Concretion

:; inferences[30] refer to inferences that an individual is dominated

;; by one of the subrypes of its parent. In this case, KIP concretes its

:: Is-command plan to the more specific Is-command-on-sun plan. This

:: concretion is useful because specific facts are known abowt

:: Is-command-on-sun that are not known about Is-command. Specifically,

-+ KIP knows about particular types of plan failures when the Is command is

-+ executed on a sun. Concretion inferences are described in Section 5.24.

(Ls-Directory-134 dir-2)
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:; KIP specifies that this ls-command directory argumen! isdir-2. This
;; specification is made due 0 knowledge equating the directory argument of the
:+ Is-command with the experiencer of the list-directory-effect. This is done using
:; an equate relationships. Equate relationships are KODIAK which specify that the
:: the ranges of two relations are always equal. Equates are described in detail in
;. Section 3.5. :
(Owner-Of-File-Arg-136 root-user-27)
:: the owner of the directory is a root user
(Format-Of-Unix-File-Command-140
(unix-file-command-format-139

(Command-Arg-144 Is-string-141)

(Formai-File-Arg-146 /usr/local-1)))
:: The format specifies the way in which the user could actually execute the
:; plan by typing: 1s fust/local
(Intended-Effect-Of-Ls-Command-l32 list-directory-effect-1)
:: This is the same list-directory-effect-1 that was passed to KIP as input
(Acwr-Of-Unix-kxfommﬁon-Command-lSO uc-user-1))
:: This is the same uc-user who wanted 10 know the contents of the
;s lusrllocal directory

Entering Plan Failure Detection Phase:
The Current Value (root-user-27) of Owner-Of-File-Arg-136 cannot be the Desired Value (uc-

so a violated default is detected

:: KIP has detected a default violation. Normally the owner of the directory is
;; just a uc-user. However, in this case, the direclory is owned by the root

:: user. Due to this violated default, KIP considers violated default concerns.
-+ Violated Default concerns are describe in detail in Section 85.

The Violated Default Concern (not-owner-violated-default-concem) is detected

:; This is a general violated default concern which describes the class of

:: concerns where the user is not the owner of a file or a directory. There are
-+ two violated default concerns which are instantiatiated in this particular

;. planning situation:

Therefore the Individual Violated Default Concemn
(1s-sun-must-be-in-directary-concern-220) is instantiated

:: This is a violated default condition concern regarding a condition of the

:; potential plan. The concern reflects a potential plan failure that occurs

:: when a user execules an ls command on a directory which is not in the

:: same file system as the user's current directory. (The failed Is command
:: never returns.) It is unlikely that files owned by the user are in separate

s file systems. Even expert users are not usually aware of the

;; particular directory's file system. Therefore, this concern is classified in the
:: set of concerns which are instantiated when the file argument is not owned
:: by the user. This plan failure only occurs when the ls-command is

;- executed on a sun computer. Therefore, this specific concern is related o
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;7 the Is-command-on-sun and not to Is-command.
:+ Specific concerns are described in Section 8.3.2.
Therefore the Individual Violated Default Concern
(10o-much-output-concern-167) is instantiated
:; This a goal conflict concern between the effect of the specific Is-command
:+ and a goal of the user. The ls command might cause a large amouni of
;; output to appear on the user's terminal. This effect conflicts with the user’s
;s goal of seeing the output. Actually, goal conflict concerns refer 1o conflicts
;: between plan effects and user interests. Interests are general
:+ states that KIP assumes are imporiant to the user. Interests are described in
;. Section 5.2.3.
:: The ls-command command inherits this concern from the
: unix-command-with-output category. This category refers to the class of
:: unix-commands which produce outpul.
-+ KIP next evaluates these two concerns in this particular planning situation:
Evaluating the condition concern: ls-sun-must-be-in-directory-concern-220
The condition of concern is the current-directory-state-226 of the
uc-user-1
The current value of the condition is directory-228
The desired value is dir-2
:: This concern is only applicable if KIP knows that the user's current
:: directory is not already dir-2.
Current Value (directory-228) is less specific than the Desired Value (dir-2)
:; directory is the superordinate category of dir-2, and directory-228 is
;: generated as a placeholder for direciory.
Try 1o make the current value more specific using defaults
Defauli-value is anything.
+: KIP has no default knowledge abous the user's current direciory. Therefore, KIP
++ decides o use the information it already has, i.e. the current directory is an
;- individual directory. No other information about this directory is known.
Since the Current Value (directory-228) is more specific than the Default Value (anything),
Instantiate concern that current value be changed
Creating a goal that reflects a change from the Current Value (directory-228)
to the Desired Value (dir-2)
Creating the goal:
(change-current-directory-291

(New-Directory-289

(dir-2

(Ownex-28 root-user-27)
(File-Name-148 /ust/local-1)))

:: The new-directory is dir-2 which is the lusrilocal directory

(Initial- Value-Of -Normal-State-Change-253 directory-228)

:: The old directory is directory-228
(User-Of-301 uc-user-1)



(Final-State-Of-Change-Current-Directory-303
(current-directory-state-285
(Object-Of-Current-Directory-308 uc-user-1)
(Value-Of-Current-Directory-272 dir-2)))
(Initial-State-Of-Change-Current-Directory-292
(current-directory-state-226
(Object-Of -Current-Directory-297 uc-user-1)
(Value-Of-Curreni-Directory-279 dir-288))))
:: The final state and initial state are created using equate relationships
:; defined for this siate-change. In the initial-state, the user’s
:: current-directory is dir-288. In the final-state, the user's
s curreni-directory is dir-2.

Asserting the fact that the final-state of the goal (current-directory-state-285)
starts before the start of plan interval (Is-command-on-sun-161)
So that the condition holds before the plan is executed

-+ KIP knows that the user must change his current directory before the
v Is-command is executed.

:; Before KIP determines a plan for the change-current-directory-291 goal, it
;: first evaluates the other concern KIP is considering.

Evaluating the goal conflict concern: too-much-output-concern-167

This Concern (too-much-output-concern-167) potentially conflicts

with the users Concern Interest (output-scroll-off-screen-186)

This interest is applicable depending on the Concern Condition
(directory-size-state-171) of dir-2

-+ KIP is evaluating the output-scroll-off-screen-186 interest in this particular planning
:: situation. The interest evaluation depends on the size of the

;; directory represented as a directory-size relation.

The current value of the condition is size-constant-173
The undesirable value is large
Current Value (size-constant-173) is less specific than the Undesirable Value (large)

:+ KIP has no specific knowledge about this particular directory.

Try to make the current value more specific using defaults

Default-value is large.

The Current Value (size-constant-173) is less specific than the Default Value (anything),
Therefore, the default value will be used.

:: KIP has consulted its context-dependent default mechanism and determined
:: that the default value of the size of this directory is large. This default

:+ knowledge is based on the fact that directories owned by root

:: tend to be large, while individual users generally have small directories.

Kip is now determining whether a goal should be instantiated to refiect the user
Interest (output-scroll-off-screen-186)

13

Since the degree of concern is high a goal is instantiated which reflects the threat to this interest

In this planning situation
:: KIP has instantiated a goal, based on the threat to the user's interest.
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;: The goal is to prevenl the scrolling of the owtput of the plan which KIP is
.. constructing.
Creating the goal:
(no-scroll-off-screen-245
(Expa*imw—Of—No—Scroll—Off—Scrccn- 197 output-stream-190)
;; output-stream-190 is the owtput-stream created by ls-command-on-sun-161
(Fin.a]-Valuc-Of—No—Scroll-Oﬂ' -Screen-208 true-209)
(InitjaLValue-Of-No-Scroll-Oﬁ'-Saeen-ZlS false-219)
(Fiml-State—Of—No—ScrolJ-Off—Screen—x)‘i
(on-screen-state-198
(Value-203 true-209)
(Object-202 output-stream-190)))
(Initial- State-Of-No-Scroll-Off: -Screen-216
(on-screen-state-210
(Value-215 false-219)
(Object-214 output-stream-150))))
:» The initial-state is that the output goes off the screen, while the final-state
:: is that the output does not scroll off the screen.
Asserting the fact that the final-state of the goal (on-screen-state-198)

is after the plan interval (Is-command-on-sun-161)
So that the goal conflict is avoided after the command is executed.

Entering Goal Establishment Phase:

-+ This is the beginning of KIP's second iteration of plan synthesis.

«+ In this iteration, KIP is addressing goals that were generated

:: to reflect concerns that KIP has about the 1s-command-on-sun-161 pilan.

Selecting a goal from the List Of Goals ((no-scroll-off-screen-245
change-currcm-directory-29l))

;: KIP is now selecting a goal from among those goals generated by concerns

;- about the ls-command-on-sun-161 plan.

Sorting the goals according to importance level
The List Of Goals ((no-scroll-off-screen-245 change-current-directory-291))

is already sorted in order of importance
Entering Plan Determination Phase:
Looking for a plan for the Current Goal (no-scroll-off-screen-245)
First looking at stored plans
Selected more-filter-command as a potential plan
;- the more-filter-command is a plan for preventing outpul 1o
., scroll off the screen.
Now specifying the plan for the particular planning situation:
(more-filter-command-329
(Filter-Input-332 output-stream-190)

;; output-stream-190 is the output of the ls-command-on-sun-161 plan. This is the

;; output that KIP wanis 1o prevent from scrolling off the screen.
(Machine-Of-Of-Unix-Command-339 sun-23)



(Intended-Effect-Of -More-Filter-Command-330 no-scroll-off-screen-245))
:: This command is a filter. The outpu! of the 1s-command-on-sun-161 plan is piped
: to the more command and output will not scroll off the screen.
Asserting that mare-filter-command-329 comes afier Is-command-on-sun-161
:+ Since KIP knows the no-scroll-off-screen-245 goal must be satisfied afier

:+ Is-command-on-sun-161, if knows that the plan constructed to satisfy
:: no-scroll-off-screen-245 must be executed after Is-command-on-sun-161.

Entering Plan Failure Detection Phase:
No plan failures detected for Candidate Plan (more-filter-command-329)

Entering Goal Establishment Phase:
Selecting a goal from the List Of Goals ((change-current-directory-291))
selecting the remaining goal

change-current-directory-291
:: This goal was generated in response 0 a condition concern regarding the
:; user's current directory.
Entering Plan Determination Phase:
Looking for a plan for the Current Goal (change-current-directory-291)
:: KIP now specifies this goal for the present planning situation. The
;; represeniation of change-current-directory-291 is shown on page 12.
First looking at stored plans
Selected cd-command as a potential plan
Now specifying the plan for the particular planning situation:
(cd-command-347

(Imendcd-Effect-Of-Cd-Commnd-Mi& change-curreni-directory-291)

(Cd-Directory-350 dir-2)
:: dir-2 is the lusrilocal directory

(Actor-Of-Unix-Command-369

(uc-user-1

(Current-Directory-296 directory-228)
(Current-Directory-280 dir-2)))

:: The user has two current-directory relations.

-+ Current-Directory-296 is the user’s old curreni-directory, while

;: Current-Directory-280 is the new directory.

(Fonnat-Of-Unix-Filc-Command-356

(unix-file-command-format-355

(Command-Arg-360 cd-string-357)
(Format-File-Arg-362 /usr/local-1 )]

:» The user could execute this command by typing cd lusr/local
Asserting that cd-command-347 comes before ls-command-on-sun-161
:: This is based on knowledge that the change-current-directory-291 goal needs
:: to start before the ls-command-on-sun-161 plan.

Entering Plan Failure Detection Phase:
No plan failures detecled for Candidate Plan (cd-command-347)
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:: The plan can now be suggested 10 the user:

To find out what files are in the directory named /usr/local, type ls /usr/local.
However, you should first change the current directory to the directory named
/usr/local, by typing cd /usr/local.

Since the output is likely to scroll off the screen, pipe the output of the Is command
through the more filter.

;1 KIP first generaies the main part of the plan, i.e. using the Is command. Then,

;7 KIP generales those subplans that addresses concerns about the plan that must be

:+ addressed before the Is command is executed. Finally, KIP generates concerns

-+ that must be addressed after the s command is executed.

1.6 Conclusion

In this chapter, I have characterized the planning problem for a commonsense
planner. The central issue in commonsense planning is the determination of those parts of
the knowledge-base relevant to the planner’s current problem solving task. One particu-
Jarly important task is the determination of potential plan failures in a selected plan. Since
a commonsense planner knows about many ways a potential plan may fail, the determina-
tion of concept relevancy is particularly important for plan failure detection. I have also
described a number of properties of a commonsense planner.

In inroducing KIP, I have focused on KIP’s means of detecting potential plan
failures. Concerns, a methodology for dealing with potential failures of plans, has been
described. Concerns focus the attention of KIP so that it only considers those conditions
and goals which are likely to cause plan failure. In Chapters 7-10, plan failure detection
and concerns are discussed in greater detail. '



Chapter 2

Related Research in Planning

Planning research is one of the oldest research topics in Artificial Intelligence. In
this section, I discuss two types of planners:

(1) Classic Al Planners - Planners which view planning as search

(2) Goal Based Planners - Planners which evolved from an u_nder-
standing of goals

2.1 Classic Al Planners

2.1.1 GPS

One of the earliest planners was GPS, or General Problem Solver [10,29]. GPS
introduced a planning strategy termed means-end analysis. Means-end analysis entails
selecting the plan that reduces the greatest difference between the present state and the
goal state. GPS first searches for differences between the goal state and the present state.
It then utilizes a difference table that indexed the known operators by the difference they
reduced. GPS selects the operator that reduces the greatest amount of difference. Once a
selected operator is applied, a new state is created. GPS then recursively applies its planning
algorithm to this new state.

Greatest difference is determined by using a precomputed difference table. Dif-
ferences are reduced in order of difficulty according to a predetermined ordering, termed
a DIFF-ORDERING. The DIFF-ORDERING is assigned by the GPS implementor based on the
ease of task accomplishment.

For example, let us consider an example from [10] wherein GPS determines a
plan for the monkey and bananas problem discussed in Section 1.3. The difference between
the goal state and the initial state is that the monkey has the bananas in its hand. GPS reduces

17



18

this difference by applying the GET-BANANAS plan to the initial-state. GPS must then reduce
rwo more differences, (1) the monkey must be on the box and (2) the box must be under
the bananas. GPS has no plan which will reduce both differences. Since difference ) is
stored as being more important than difference (1) in the DIFF-ORDERING, difference (2) is
reduced first by using the MOVE-BOX plan. However, in order to execute the MOVE-BOX
plan, the monkey must be next to the box by using WALK. After the monkey moves the box,
difference (1) - monkey on the box, must still be reduced. Therefore, the monkey CLIMBS
on the box. At this point, the monkey can get the bananas and a complete plan is returned
(1) WALK to box, (2) MOVE-BOX under bananas, (3) CLIMB box, and (4) GET-BANANAS.

2.1.2 STRIPS

Fikes and Nilsson [12] used means-end analysis in a robot planner called STRIPS
to create plans for a mobile robot. STRIPS substitutes logic for the operator difference table
used in GPS. Therefore, STRIPS avoids the necessity of computing a difference table.
STRIPS is presented with a well-formed formula describing the goal state and the present
state as well as a set of formal descriptions of available operations. STRIPS then attempts to
prove the truth of the goal state using a resolution theorem prover. If an individual subgoal
of the goal state cannot be proven from the present state, STRIPS selects an operator that
will allow the proof attempt to continue by reducing the greatest number of clauses. The
preconditions of the selected plan then become the new clauses that STRIPS must prove.

Unlike GPS, STRIPS lacks a method for the determination of relative plan im-
portance. For example, suppose that STRIPS is faced with the monkey and bananas task.
STRIPS might choose to first reduce difference (1) (monkey on box). Thus, STRIPS would
plan to WALK to the box, and CLIMB the box. Then STRIPS would plan to reduce difference
(2) (box under bananas). However, using MOVE-BOX requires the monkey to be on the floor.
Thus, STRIPS would plan for the monkey to DESCEND from the box, move the box under
the bananas, climb the box again, and then get the bananas. STRIPS would then return the
following suboptimal plan: (1) WALK to box, (2) CLIMB box, (3) DESCEND box, (4) MOVE-
BOX under bananas, (5) CLIMB box, and (6) GET-BANANAS. This suboptimal plan would
be created because the CLIMB box plan deletes a precondition of the MOVE-BOX plan. The
interaction between the precondition of the MOVE-BOX plan and the effect of the CLIMB
plan is termed an interacting subgoal.

Another problem with STRIPS is the size of the search space. STRIPS might
search a combinatorially large search space in order to find a plan. As the size of the STRIPS
knowledge base of plans and preconditions grows, the processing time grows exponentially.
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2.1.3 ABSTRIPS

ABSTRIPS [31] modified STRIPS in order to avoid the problems of large search
spaces and interacting subgoals. ABSTRIPS is termed a hierarchical planner because it
plans in a hierarchy of abstraction spaces. In other words, it creates a plan at a particular
level of abstraction. If that plan is successful, it then fills out the plan at the next lower
level of abstraction. ABSTRIPS utilizes GPS’s idea of reducing the important differences in
the problem first, by assigning criticality levels to differences. ABSTRIPS determines a
plan for those clauses at the highest level of criticality by first reducing those differences
with the highest criticality. Criticality levels are assigned by the program itself. The assign-
ment is based on the difficulty inherent in satisfying the preconditions for plans to reduce
a particular difference. :

For example, in the monkey and bananas problem, ABSTRIPS could assert that
difference (2) - box under bananas is of higher criticality than difference (1) - (monkey on
box). ABSTRIPS would thus avoid the problems that STRIPS encountered in this example.

ABSTRIPS's planning strategy is particularly important when one part of the
potential plan fails. Suppose there is no way to satisfy the preconditions of a particular plan,
ABSTRIPS often realizes this at a high level of abstraction and avoids the construction of
a complete plan. For example, suppose that ABSTRIPS knew that the box was unmovable
and not under the bananas. Since the mobility of the box has a high level of criticality for
the GET-BANANAS plan, ABSTRIPS would select another potential plan for retrieving the

bananas.

2.1.4 NOAH

NOAH [32] avoided problems of interacting subgoals by using a least commit-
ment strategy. Unlike [AB]STRIPS, NOAH does not specify the order of occurrence for
the steps in a plan until all plan steps are selected. Once NOAH has determined a com-
plete plan for each of its goals, it then makes decisions regarding the ordering of the plan
steps. NOAH plans by constructing and refining a procedural network. It initially assumes
that two subgoals can be solved by different subplans in parallel, and then later commits
to a particular ordering of plans. Plan ordering is accomplished through the use of critics.
These critics examine the various plan steps and detect negative interactions. For example,
the RESOLVE-CONFLICT critic notices when a postcondition of one subplan removes the
precondition of another subplan. ‘

NOAH is designed for problems like the monkey and bananas problem. If NOAH
were faced with such a planning task, it would construct plans for both the box under ba-
nanas and monkey on box states. The RESOLVE-CONFLICT critic would then determine
that the CLIMB box plan deletes a precondition of the MOVE-BOX plan, necessitating an

ordering of plans.
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In order to detect conflicts, NOAH computes a TOME, a table of multiple effects,
each time a new action is added to the plan. This table includes all preconditions which
are asserted or denied by more than one step in the current plan. Conflicts are recognized
when a precondition for one step is denied in another step. In order to construct this table,
NOAH must enter all the effects and preconditions for each of the steps in the plan every
time a new step is added to the plan.

NOAH’S separation of Goal Conflict Detection Phase from the rest of the plan-
ning process was an important addition to planning research. However, NOAH'S approach
is problematic. It only detects conflicts that occur as a result of deleted preconditions. Other
conflicts, such as conflicts between effects of a plan and other goals, cannot be detected us-
ing this method. If many planner goals were included in a TOME, as would be necessary
in real world planning situations, this method would be computationally inefficient.

2.1.5 Relationship of Classic AI Planners to KIP’s Approach

The means-end analysis planners discussed in this section test all the conditions
of a plan before returning a plan. This method is not problematic when the planners are
applied to knowledge-deficient problems with a limited knowledge of conditions. The plans
they consider have only a few conditions.

For example, if the STRIPS [12] robot uses a plan to open a door between two
rooms, STRIPS checks whether the robot is next to an object, the object is a door, and
the door is closed. But STRIPS does not check whether the door handle is working or
the hinges are properly attached. The last two states should also be conditions of OPEN-
DOOR plan. If they are unsatisfied, the plan will not work. However, STRIPS does not
consider these states to be conditions. If STRIPS included these conditions as conditions of
the OPEN-DOOR plan, the STRIPS combinatorial explosion would worsen greatly. If KIP
had a similar plan, these conditions would be stored as conditions of the OPEN-DOOR
plan. However, they would not usually be considered since they are not concerns of the
OPEN-DOOR plan.

GPS [10], ABSTRIPS [31], and NOAH [32] considered the conditions of a plan
in order of difficulty. They thus modified the plan accordingly in different abstraction
spaces. For example, in the OPEN-DOOR plan, ABSTRIPS assigns the object-is-a-door
condition a higher criticality level than the robot-is-next-to-the-door condition. The first
condition cannot be changed by any plan, while the second condition can be changed by
the GOTO plan. All preconditions of the highest criticality level are considered in the
highest abstraction space, and those of a lower criticality level are considered in a lower
abstraction space.

By planning in a hierarchy of abstraction spaces, ABSTRIPS reduced some of
the combinatorial explosion inherent in STRIPS. However, if more conditions were added
to their plan descriptions, the use of abstraction spaces would not address the problem of an
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even greater number of possibilities. For example, if ABSTRIPS included the door-hinge
and door-handle conditions as conditions of the OPEN-DOOR plan, both of these condi-
tions would need to be considered before the robot-is-next-to-the-door condition. They both
are more difficult to attain than the robot-is-next-to-the-door condition. As these additonal
conditions are difficult to achieve, ABSTRIPS would always need to consider them first,
thus increasing the combinatorial explosion. The problem with both ABSTRIPS and GPS
is that they use difficulty as a metric for importance. Thus, they might deal with the difficult
parts of a plan before dealing with the parts of a plan that are likely to fail. According to
KIP’s approach to plan failure, only the most likely plan failures are considered.

2.2 Goal-Based Planning

A very different approach to planning resulted from work regarding the charac-
terization of plans and goals for natural language understanding. Schank [33] suggested
that understanding the plans of an agent was an important task for story understanding.
Wilensky’s [37) PAM system understood simple stories by detecting the plans of actors.
PAM was not a planner, it was only meant 10 understand plans. Thus, PAM had knowl-
edge about how people plan in problem situations. While the classic Al planners planned
in situations that were easy to formalize, e.g. the blocks world, PAM understood plans in
real-world situations which are much more difficult to formalize, e.g. threatening, slay-
ing dragons, eating. The approach led to a number of different planners discussed in this

secton.

2.2.1 PANDORA

In [35), Wilensky describes the PANDORA planner, devised to expand on the
ideas in PAM and apply them to planning. There are four main components of PANDORA:

(1) Goal Detector - determines planner goals from planning
situation

(2) Plan Proposer - find stored plans which are relevant to detected
goals

(3) Projector - builds hypothetical world models based on
execution of proposed plans

(4) Executor - performs specified action in the world
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Wilensky’s work focuses on the identification of different goal interactons. He
introduces four goal relationships:

(1) Goal Conflict - Conflicting goals held by the same
individual

(2) Goal Overlap - Overlapping goals held by the same
individual

(3) Goal Competition - Conflicting goals held by different
individuals

(4) Goal Concord - Overlapping goals held by different indi-
viduals

Goal Conflict and Goal Competition are termed negative interactions, while Goal
Overlap and Goal Concord are termed positive interactions. These goal interactions are
important for both understanding stories about goal interactions and planning in situations
where goals interact.

Wilensky also proposed a theory of metaplanning, i.e. planning using knowledge
about the planning process itself. For example, metaplanning knowledge would dictate a
general plan strategy when faced with one of the four goal relationships discussed above.

Wilensky's work has provided a basic framework and vocabulary for the study
of commonsense planning. In KIP, I have focused on the first type of goal interaction, i.e.

goal conflict.

2.2.2 CHEF

Hammond's [13] CHEF planner creates plans (recipes) for use in Szechwan cook-
ing. CHEF is a case-based planner, i.e. planning based on memory of previous planning
cases. CHEF selects a plan by searching for a previous case, and then revising that plan
for the particular planning situation. An important focus of Hammond’s work is in on the
selection of plans based on avoided plan failures. For example, in [13] CHEF realizes that
a BEEF-AND-BROCOLLI recipe fails because the brocolli is soggy. Since CHEF is aware of
this type of failure, it uses a stored plan that avoids the soggy vegetable problem. CHEF
also includes a learning component so as to anticipate this problem in the future.

The biggest problem with CHEF’s strategy is the need to search through previ-
ously encountered cases. Unless CHEF focuses on those case which are most relevant,
CHEF's planning algorithm would be computationally intractable in a real world domain.
This situation worsens as CHEF learns about an increasing number of cases. This is also
true of CHEF’s knowledge of plan failures. As CHEF learns about more plan failures, it
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must search through these failures in order to determine if a plan will be successful in a
particular problem situation.

While CHEF focuses on using plan failures in order to select plans, KIP focuses
on the detection of these plan failures themselves. Such focusing would be very useful for
finding potential plan failures in CHEF. As CHEEF learns of more plan failures, the need to
focus the planner’s attention on the most likely plan failures becomes more acute. Concerns
would also provide a better vocabulary for discussing the anticipation of plan failures.

2.23 SCRAPS

Hendler’s [14] SCRAPS system addresses the problem of search through the use
of a technique called marker-passing. Markers are passed from each concept to neighboring
concepts in the network, and recursively on to other concepts. As markers are passed along
they lose their activation energy and the marking stops. At this point, SCRAPS determines
which concepts have the largest number of marks, i.e. collisions. In this way, SCRAPS can
detect subplans that might result in interacting subgoals before SCRAPS artempts to use
these subplans in its complete plans.

While marker-passing is an important search strategy for dealing with large bod-
ies of knowledge, it has not been used in KIP. Instead, KIP’s development has focused on
knowledge structures, such as concerns, which are important for planning. However, such
knowledge structures would be an useful addition to a planner which uses marker-passing.
Markers could be passed through such knowledge structures causing collisions at aspects
of a plan which should be considered.



Chapter 3

Representation of Planning Knowledge
in KODIAK

3.1 Introduction

In this chapter, I discuss how plans and goals are represented in the KODIAK
knowledge representation language. KODIAK is a semantic network knowledge represen-
tation language which has been developed by Robert Wilensky and other members of the
Berkeley Al Research group. KODIAK concepts are represented as nodes connected to-
gether with primitive links. Wilensky[36] describes the motivations for the representation
language and how it differs from other semantic network languages. This chapter focuses
on the new ideas and new language features in KODIAK developed for use in planning.
These ideas include a mechanism for describing equations between relation paths and a
means of representing time points and time intervals.

KODIAK has two main components: (1) the KODIAK knowledge base and (2)
the KODIAK interpreter. The knowledge base stores both long term memory regarding
abstract concepts and a representation of objects in the world. The interpreter is used to
retrieve facts from the knowledge base and to add facts about the world into the knowl-
edge base. The implementation of KODIAK described is an extension of an implementa-
tion initially designed by Peter Norvig for the FAUSTUS natural language text inferencing
system[30].

In this chapter, I first present an overview of the primitive links and concept types
in KODIAK. I then focus on a particular type of structure in KODIAK, equations between
relation paths. Equate relationships are particularly important for the specification of plans
in KIP. Throughout the chapter I use examples of UNIX concepts represented in KODIAK.
These concepts are used by the KIP planner in order to construct plans which will be sug-

gested to the user.

24
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3.2 Absolutes and Relations

There are two types of objects in KODIAK:

(1) absolutes - concepts that stand on their own, €.g. person, blue,
command

(2) relations - relations between concepts, ¢.g. color-of, value-of

Absolutes refer to concepts that can be modeled in their own right. These include
both physical objects and abstract ideas. In KIP, absolutes are used to represent concepts
such as UNIX-COMMAND, FILE, and MACHINE.

Relations refer to objects that associate two concepts together. They are direc-
tional in that every relation points from a domain concept to a range concept. Examples of
relations in KIP include File-Arg-Of-Unix-File-Command, File-Contents, and Command-Argument.
(KODIAK objects are generally printed in small letters, with absolutes in all caps and re-
lations capitalized.) Every relation also has an associated inverse relation that relates the
range concept to the domain concept. (Such relations are usually printed with a *, e.g. File-
Name*. Relations can only hold between two absolutes. Thus, a good working definition
of the difference between absolutes and relations is that relations hold between absolutes,
and absolutes are related by relations. All KODIAK relations are defined in the knowledge
base. The exceptions are a few primitive links, known to the KODIAK interpreter, which

are described in this chapter.
Both absolutes and relations can be further subdivided into two types of objects:

(1) categories - objects that refer to a class of objects
(2) individuals - objects that have extension in the world

For example, the concept FILE is an category absolute, which refers to the class of
files. The File-Name relation is a category relation berween a FILE and a FILE-NAME-STRING.
This relation is represented in Figure 3.1 by the directed arrow from FILE to File-Name and

from File-Name tO FILE-NAME-STRING.
" FILE-1 is an individual absolute which refers to a particular file in the world. (Indi-
viduals are always printed with a number on the end to indicate that they refer to a particular
object.) Individual relations relate two individual absolutes. For example, if KIP knows
that the name of the file FILE-1 is GEORGE-1, this information is stored in an individual re-
lation File-Name-1 between FILE-1 and GEORGE-1. This relation is represented in Figure 3.2.

KIP’s knowledge base includes information only about categories, but KIP’s pro-
gram uses KODIAK to construct individuals in the world about which KIP can reason. Un-
like KL-ONE [5], individual objects are represented in the same way as categories. They
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FILE @ FILE-NAME-STRING

Figure 3.1: Representation of the File-Name relation

FILE-1 GEORGE-1

Figure 3.2: Representation of the File-Name-1 relation

are also implemented using many of the same LISP primitives. In the current implementa-
tion of KODIAK, there is a strict separation between categories and individuals in terms of
relations. Category relations relate only category absolutes, and individual relations relate

only individual absolutes.

3.3 Parent Links

KODIAK represents hierarchical relationships through the use of parent links. A
parent link relates a parent concept to a child concept. The child concept inherits all of the
relationships of the parent. For example, FILE is a parent of TEXT-FILE. Therefore, TEXT-
FILE inherits all the relations of FILE. For example, the File-Name relation which is defined
in Figure 3.1 is inherited by the TEXT-FILE absolute.

Parent links are further subdivided into two types of relations:

(1) dominate relations - parent links between two categories
(2) instance relations -  parent links between a category and an in-
dividual

A dominate relation refers to a relationship in which one category is a subcategory
of another category. An instance relation refers to a to a relationship in which a particular
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object in the world is a of particular type. In KODIAK diagrams, dominate relations are
represented by the letter "D’ and instance relations by the letter 'I'. For example, Figure 3.3
represents the fact that TEXT-FILE is dominated by FILE, and TEXT-FILE-1 is an instance of
TEXT-FILE.

TEXT-FILE-1 is termed a descendant of FILE. Ancestor/descendant relations are
defined recursively in terms of one more parent links.

Figure 3.3: Parent Links

3.4 Relation Links: Domain and Range

Rélations are related to absolutes by two types of links, domain and range. For
example, in Figure 3.1, FILE is the domain of the File-Name relation and FILE-NAME-STRING
is the range. The meaning of domain and range is depends upon on whether the relation is

an individual or a category.

(1) categories relations - domain/range of relation is constrained to
be an absolute

(2) individual relations - domain/range of relation is filled with an
absolute

For example, in Figure 3.1 the range of the File-Name relation is constrained to
be a FILE-NAME-STRING. This means that for any instance of the File-Name relation, the
range must be a FILE-NAME-STRING. The domain of the File-Name relation is constrained to
be a FILE. In Figure 3.2, the range of the individual relation File-Name-1 is filled with the
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absolute GEORGE-1. Constraints are enforced by the KODIAK interpreter when the range
of a relation is filled. Thus, if a program which uses KODIAK tries to fill in the range of an
individual relation with an absolute that cannot satisfy the constraint, an error is signalled.
In Figure 3.4, additional parent links are presented which demonstrate the constraints in
representing the File-Name-1 relation. For example, GEORGE-1 must be an instance of FILE-
NAME-STRING. Actually, GEORGE-1 need not be a child of FILE-NAME-STRING, but must be

a descendant.
FILE ‘ @ FILE-NAME-STRING

FILE-1 \ File- GEORGE-1
Name-1

Figure 3.4: Parent Links of File-Name-1 Relation

3.5 Equate Links

Equate associations are KODIAK links which specify that the the ranges of two
relations are always equal. Equates can be viewed as a substitute for variables in a rep-
resentation and are an important part of the KODIAK representation language. When the
range of a relation is filled in, any relations that are equated to such a relation must have
the same range. This means that the range of both relations is the same absolute. Equations
are defined in the KODIAK knowledge base between one relation and a relation path. A

relation path is a composition of two or more relations.
For example, in Figure 3.5, there is an equation between the effected-file of the

RM-COMMAND plan, and the relation path (Planfor Deleted-File). (An equate link is drawn
between effected-file and the end of the relation path, i.e., Deleted-File. This means that the
range of the effected-file relation must be the same as the range of the composition of the
Planfor and Deleted-File relations. In other words, the effected-file of RM-COMMAND must be
the same as the deleted-file of the goal for which the RM-COMMAND is a plan. It is important
to represent these equations between a relation and a relation path rather than between two
relations, since there might be many paths between any two relations.
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command RM-COMMAND DELETE-FILE
Dame
. effected- _ deleted
m file = file

Figure 3.5: Use of Equates for RM-COMMAND Plan
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KODIAK uses knowledge about equate relationships between relation cate gories
in order to fill in the range of individual relations. The ranges of equated relations are filled
in by KODIAK's equate mechanism. This mechanism uses information from the equate
links in KODIAK’s knowledge base to specify the domain/range of old relations and to
create new relatons. When KODIAK fills in the range of a equated relation, KODIAK
ensures that the range of the relation is the same as the range of the relation at the end of the
equated relation path. For example, consider the individual relations in Figure 3.6. In this

deleted-
file-1

RM-COMMAND-1 DELETE-FILE-1 FILE-1

Figure 3.6: Existing Individual Relations of RM-COMMAND Plan

example, there exists an individual relation called Planfor-1 between RM-COMMAND-1 and
DELETE-FILE-1, and an individual relation called Deleted-File-1 between DELETE-FILE-1 and
FILE-1. Based on the equate knowledge in Figure 3.5, the equate mechanism creates an indi-
vidual relation called Effected-File-1 between RM-COMMAND-1 and FILE-1. The Effected-File-1
relation is shown in Figure 3.7. A more complex example involving the equate mechanism
is shown in Figure 3.10 on page 34.

RM-COMMAND-1 dé”""h_l - FILE-1

Figure 3.7: Individual Relation Created by Equate Mechanism

Brachman [5] describes structured associations of KL-ONE roles (which are sim-
ilar to KODIAK relations). In one form, these structured associations can describe equality
between what KL-ONE refers to as role chains. Role chains allow the knowledge base to
encode role equality in a way similar to equations of relation paths. However, as discussed

€
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in Section 3.2, individuals objects in KL-ONE are not represented in the same way as cate-
gories. Role chain knowledge must be duplicated in KL-ONE’s A-BOX (Assertional Box),
in order to be used in the instantiation of individual concepts. There is no way to coordinate
these two types of knowledge. In fact, it is possible that equality between role chains might
be contradicted in the assertional knowledge base. By using the same representation for
categories and individuals, KODIAK is able to express equate knowledge about relation
categories and-use the equate knowledge to specify individual relations in the same form.
Since KODIAK uses equate knowledge among relation categories to specify relationships
between relation individuals, no contradictions between category equauons and individual

equations are possible.
@ unix -command ‘ iniended-
effect

unix <ffect

unix -command-format

command-string

Figure 3.8: Use of Equates for UNIX-COMMAND Plan

Like other links in the KODIAK representation language, equates are hierarchi-
cal. One relation can inherit the equations of its ancestors in the hierarchy. For example,
one of the ancestors of the RM-COMMAND plan is the category of UNIX-COMMAND. As il-
lustrated in Figure 3.8, an equate link is made between the command-name relation and the
relation path (Format Command-Arg). This means that the name of the command must be
the same as the command argument of the command format. The RM-COMMAND plan in-
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herits this relation from UNIX-COMMAND. Therefore, since it has been specified that the
Command-Name of the RM-COMMAND plan is rm, rm must also be the command argument of
its format. In order to invoke the comimand, a user types the name of the command. This
is a general fact known about all UNIX commands.

A more specific category of UNIX-commands is UNIX-FILE-COMMAND. This is
the category of UNIX-commands that operate on 2 file. The RM-COMMAND plan also inher-
its from this category. The format of UNIX-FILE-COMMAND is composed of a Command-Arg,
(which was defined in Figure 3.8) and a Format-File-Arg, which is the name of the file. An
example of such a format is "rm foo”. As illustrated in Figure 3.9, there is an equate link
between the File-Arg relation of UNIX-FILE-COMMAND and the relation path (Format Format-
File-Arg File-Name*). This means that the filename of the File-Argument is the same as that of
the Format-File-Arg. RM-COMMAND inherits from UNIX-FILE-COMMAND, and the effected-file
of RM-COMMAND inherits from the File-Arg relation of UNIX-FILE-COMMAND.

During KIP’s plan determination phase, KIP specifies a plan for the particular
planning situation. Plan specification refers to specifying the values of the general plan for
a particular problem situation. (Plan specification is described in detail in Section 6.2.1.)
Once a plan has been fully specified, KIP can attempt t0 detect potential plan failures of
the specified plan. In Figure 3.10, a KIP trace is presented that shows a specification of a
RM-COMMAND plan, based on equate information represented in this section. A graphical
representation of the individual RM-COMMAND created is shown in Figure 3.11.
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unix -command

unix -file-command

-

file-name-string

Figure 3.9: Use of Equates for UNIX-FILE-COMMAND Plan
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Fig

ure 3.10: KIP Trace of RM-COMMAND Construction Based on Equate Knowledge

User: How do I delete the file named dan?

PAGAN produces:
(delete-file-cffect-1

(Effecied-File-23

(file-1
(File-Name-63 dan-3))))

-+ This is input KIP has received from the PAGAN goal analyzer. Based on the
- values of the Effected-File-23 and File-Name-63 relations, and the equale
;- knowledge expressed in this section, KIP creates an entire plan.

KIP is trying to determine a plan for the list of goals:
(delete-file-effect-1)
Selecting a goal from the List Of Goals ((delete-file-effect-1))
selecting the remaining goal

delete-file-effect-1
Looking for a plan for the Current Goal (delete-file-effect-1)
First looking at stored plans
Selected the rm-command plan
Specifying the plan:
rm-command-50
(rm-command-50

(File-Arg-Of—Unix-File—Command-53 file-1)
:: KODIAK has specified a new instance of the rm-command plan, rm-command-50.
:: Based on the equate information from rm-command in Figwre 35, KODIAK
;: has specified that the file-arg relation is file-1 which is the same as the
:+ deleted-file of the delete-file-effect-1.

(lmcnded-EffeCL-Of-Rm-Command-Sl

(delete-file-effect-1
(Deleted-File-23
(file-1

(File-Name-63 dan-3)))))

(Command—Name-Of—Rm—Command-57 rm-string-56)

(Fommt-Of-Unix-Command-SS

(unix-command-format-54

(Command-Arg-59 rm-string-56)

:» KODIAK has specified the format of this particular rm-command based on
;; equates defined for unix-command in Figure 3.8.
:+ In order to do this, KODIAK creates a new relation: Format-Of-Unix-Command-55
:+ and fills it with a new absolute: unix-command-format-54. A
:: KODIAK creates a new relation of unix-command-format-54 called Command-Arg-59.
-+ This relation specifies the command argumeni that will be ryped by the
;- user during plan execution. This relation is filled with the value
;; rm-string-56. This absolute represents the string "rm”. The creation of this
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;- individual string is an artifact of the inability of the kodiak interpreter o

:; create relations between individual absolutes and category absolutes.
(Format-File-Arg-61 dan-3))))

:: KODIAK has specified the Format-File-Arg-61 of the

:+ unix-file-command-format-54 i be dan-3 based on equate knowledge regarding

-+ unix-file-command in Figure 3.9. In this case, there was less additional

;; processing necessary because the unix-command-format-54 had already been set up

:: while processing the equates of UNIX -COMMAND. In order 1o process this

;; equate relation, KODIAK had 10 follow more relations. The equation holds

.. between the File-Arg-Of-Unix-File-Command-53 relation, and ihe relation path:

(Fonnal-Of—Unix-Filc-Command-SS Format-File-Arg-61 File-Name-63). Thus, by

;; using the equate relation stored on the file-arg relation, KODIAK Jollowed

:: these three other relations. Of the three, only Format-File-Arg-61 did not

:; exist previousty. This relation was filled with the file-name of file-1: dan-3.

:+ At this point, KODIAK can presen! a plan o the user that he can actually

s typein, i.e. rm dan.

3.6 Representation of Time

One of the most important concepts which need to be represented in KIP is state
changes. Most goals in KIP’s knowledge base are simple state changes. Since state changes
represent changes in state over time, it is necessary to represent time relationships in KO-
DIAK. Time is represented in both time intervals and time points. A particular time point
is represented in terms of the points occurring earlier and later. Therefore, the set of ume
points which are stored in the KODIAK knowledge base is a partial ordering. Time in-
tervals have a start time point and an end time point. Thus, my representation of time
combines features of both Allen [1,2,3] and McDermott[27]. Allen’s theory of ume uses
intervals (these are called periods in [3] to represent time relations while McDermott uses
time points.

Relations that change over time can be said to be true during a particular ime in-
terval. For example, suppose that KIP knows that USER-1 has current-directory DIRECTORY-
1 during a particular time-interval INTERVAL-1. During another time interval INTERVAL-2,
USER-1 has current-directory DIRECTORY-2. These changes in the current-directory of USER-
1 might be due to cd command which changes the current directory of the user. As shown in
Figure 3.12, this is represented by the two relations Current-Directory-1 and Current-Directory-2.

The KODIAK interpreter is aware of a number of time interval relationships,
including Before, After, Start-Before, Start-After. Since it is easier to represent relationships
between points, KODIAK stores these time interval relationships by making assertions
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bnix-command-format-54

ormat-file-
arg-63

rm-string-56

delete-file-effect-1

Figure 3.11: Representation of an Individual RM-COMMAND Plan
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user-1

user-1

Figure 3.12: Representation of the Change of the Current Directory of USER-1

1

directory-2

interval-2
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about their start and end points. For example, if Current-Directory-1 is before Current-Directory-
2, then KODIAK asserts that the endpoint of INTERVAL-1 is earlier than the startpoint of
INTERVAL-2.

These interval relationships can also be represented in KIP’s long-term knowl-
edge base by storing time relations between relations of the same absolute. For example,
in order to represent the category of the state-change CHANGE-CURRENT-DIRECTORY, one
must represent two Current-Directory relations. These relations are the initial state and final
state of the particular state change. Furthermore, one must represent the fact that the inital
state occurs before the final state. This fact is stored in the KODIAK knowledge base by a
Before relationship between the inital state and final state. This relationship is illustrated in
the representation of STATE-CHANGE shown in Figure 3.13.

sate-change

initial-stale before > finai-state

slale

“Figure 3.13: Representation of STATE-CHANGE

The representation of state changes is difficult for another reason. As noted in
Section 3.2, relations can only relate two absolutes. However, the initial state and final- state
relations described in the previous paragraph seem to be between a state-change absolute
and a Current-Directory relation. Therefore, it is necessary to creaie a CURRENT-DIRECTORY-
STATE absolute which is defined in terms of a Current-Directory relation. For example, as
shown in Figure 3.14, a CURRENT-DIRECTORY-STATE-1 absolute is defined in terms of the
Current-Directory-1 relation. Both CURRENT-DIRECTORY-STATE-1 and Current-Directory-1 share
the same time-interval.

Reference time intervals are important to the representation of state-changes.
They refer to the interval at which the state-change occurs. The initial state is true before the
reference interval, while the final state is true after the reference interval. For example, in
Figure 3.15, the initial CURRENT _DIRECTORY-STATE is true before the STATE-CHANGE-TIME
and the final CURRENT-DIRECTORY-STATE is true after the STATE-CHANGE-TIME. During the
reference interval, some other state(s) may be true.

Furthermore, representation of state changes include equate relationships which
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current- .
user-1 i ry-1 directory-1

Figure 3.14: Representation of an Individual Current Directory State

change-current-direciory

-chang

. before final-siate
interval

state-change-ime

current-directory-

Figure 3.15: Representation of CHANGE-CURRENT-DIRECTORY
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define new relations in terms of the initial and final states. In Figure 3.16, two equate rela-
tionships are defined. The Experiencer is equated to the relation path (Final-State Object). This
means that the experiencer of the state change is the object of the final state. The Final-Value
relation is equated to the relation path (Final-State Value). For example, when the Final-Value
of the state-change is specified as DIRECTORY-3, a state created with the Experiencer of the
state-change as the object and the DIRECTORY-3 as the value. A similar equate relation-
ship is defined for the Initial-Value which is equated to the relation path (Initial-State Value).
In addition, the Experiencer relation is also equated to the relation path (lnitial-State Object).
Experiencer’s two equate relations encode the knowledge that the Experiencer is equal to both
the object of the initial-state and the object of the final state.

Figure 3.16: Equate Relationships of STATE-CHANGE

The creation of an individual CHANGE-CURRENT-DIRECTORY plan is presented
in a KIP trace in Figure 3.17. This individual is created by specifying the Experiencer,
Initial-Value, and Final-Value relations. In Figure 3.18, the individual CHANGE-CURRENT-
DIRECTORY is represented in graphical form.

Figure 3.17: KIP-constructed Individual CHANGE-CURRENT-DIRECTORY State-Change

:+ These are the commands that KIP sends to the KODIAK interpreter
:; The put-filler function is called with the arguments domain relation range
.+ It creates an individual relation with the apropriate domain and range.



(put-filler CHANGE-CURRENT-DIRECT ORY-1 EXPERIENCER USER-1)
(put-filler CHANGE-CURRENT-DIRECT ORY-1 INITIAL-VALUE DIR-1)
(put-filler CHANGE-CURRENT-DIRECTORY-1 FINAL-VALUE DIR-2)

(change-current-directory-1
(Experiencer-26 user-1)
(Final-Value-39 dir-2)
(Initial-Value-52 dir-1)
-+ These are the values that are specified by KIP in the input to KODIAK
(Final-State-Of-Change-Current-Directory-35
(current-directory-state-27
(Value-Of-Current-Directory-41 dir-2)
(Object-Of-Current-Directory-31
(user-1
(Current-Directory-45 dir-1)
(Current-Directory-30 dir-2)))))
-+ This is the final-state of change-current-directory-1
:: The value is dir-2 as was specified above. This state was created due to equate
:: knowledge described in the previous figures
:: KODIAK prints these absolutes by printing all the relations of an absolute,
-+ and then recursively printing each of the ranges of these relations. If the
-+ absolute appears again in the same represeniation, the name of the
:: absolute is printed but not the relations. Thus, when KODIAK first prints
:: user-1, it prints all the relations of user-1. In this case, user-1 has two
-+ current-directory relations, which are true at different time intervals.

(Initial-State-Of-Change-Current-Directory-50
(current-directory-state-42
(Value-Of-Curreni-Directory-54 dir-1)
(Object-Of-Current-Directory-46 user-1)))
- This initial-state has the same object as that of the final-siate, i.e. user-1,
:: but has a different value.
(State-Change-Interval-37 state-change-time-36))
:: This is the reference time interval of the state-change. The interval-time
;; of current-directory-state-42 (the initial-state) is before the
:: state-change-time-36, and state-change-time-36 is before the interval-ume of
-+ current-directory-state-27 (the final-state). This means that the endpoint of
;- the interval-time of current-directory-siate-42 is earlier than the siari-point
. of state<change-time-36, and the endpoint of state-change-time-36 is earlier

°

:: than the startpoint of the interval-time of current-directory-state-27.
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Figure 3.18: Representation of Individual CHANGE-CURRENT-DIRECTORY




43

3.7 Implementation of KODIAK

KODIAK is implemented in Common Lisp on a Symbolics Lisp Machine. Ab-
solutes and relations are both stored as defstructs. Both share 5 slots:

(1) Name - name of the object

(2) Parent - list of the parents of the object

(3) Children - list of the children of the object

(4) Ancestors - list of all the ancestors of the object

(5) Time - time interval in which the object holds

The name slot’s primary importance is in printing and debugging. The parent and
children list include those objects directly related to the object through a parent relation. The
ancestor list could be derived from the parent list. However, for efficiency and debugging

considerations the complete ancestor list is maintained.
The time slot refers to a time interval. In the current implementation of KODIAK,

time intervals are represented as separate defstruct objects. They have a start-point and an
end-point which are both time-points. Time-points are implements are also implemented as
defstruct objects. They have a list of earlier-points and a list of later-points. The time rela-
tionships that are described in this chapter are defined in the KODIAK interpreter. In future
KODIAK implementations, these time object will be represented as KODIAK absolutes.
Time relationships will be represented as KODIAK relatons.

Absolutes have one additional slot:

(6) Relations - a list of relations of which this absolute is the do-
main

Relations have three additional slots:
(7) Range - the range of the relation

(8) Inverse- the inverse of the relation

(9) Equations- a list of relation paths which are equated to this re-
lation



Inverse relations are usually given the name relation®. For example, the inverse
of the File-Name relation is File-Name*. :

A Relation paths is stored as a list of relations. For example, as shown in Fig-
ure 3.16 on page 40, the Final-Value relation is equated to the relation path (Final-State Value).
Therefore, the Final-Value relation list stores the list (Final-State Value). Whenever, the range
of a Final-Value relation is specified, KODIAK ensures that the relation at the end of the rela-
tion path has the same range. Presently, the equate mechanism uses an always-fill-equates
strategy. When an individual equated relation is specified in, KODIAK fills in all the rela-
tion paths to which the relation is equated. If the relations in the relation path do not exist,
KODIAK creates them. I am currently investigating ways of limiting the relations that are
specified in until the range of the relation is needed.

3.8 Conclusion

In this chapter, I have described the KODIAK knowledge representation lan-
guage. Two important features of the language have been discussed: (1) equations berween
relation paths, and (2) representation of time intervals and time points. In subsequent chap-
ters, plans are described that use these KODIAK language features. For example, concerns
depend heavily on the equate mechamsm in order to evaluate a concem in a particular

planning situation.



Chapter 4
Overview of Plan Synthesis in KIP

4.1 Introduction

In this chapter, I present an overview of the process used by KIP to synthesize a
plan which will satisfy the goals of the user. When KIP is asked to provide a complete plan
for a particular problem situation, it identifies the goals that need to be addressed, formulates
a plan for these goals, and determines if the plan will work in the current planning situation.
If the plan doesn’t work, the plan is modified or an entirely new plan is constructed. The
process of constructing a plan for the user’s goals is called plan synthesis.

Plan synthesis is an iterative process. KIP decides which of the user’s goals it
will try to satisfy initially. As described in the next section, most of these goals come
from the PAGAN goal analyzer[25]. KIP then attempts to determine a plan for this goal.
KIP tests the plan to determine whether it will really satisfy the user goal in this particular
planning situation. The two ways that a plan may fail are termed condition failure and goal
conflict failure. If a certain condition needs to be satisfied in order to execute the plan, the
satisfaction of the condition becomes a new goal that needs to be satisfied. If the determined
plan causes a conflict with another user goal, the resolution of the goal conflict becomes a
new goal. Finally, KIP needs to determine if all the user goals have been satisfied. If all
user goals are not satisfied, KIP iterates through the process again. In this way, a plan is
gradually synthesized. KIP’s plan synthesis algorithm is outlined in Figure 4.1 below.

This chapter begins with a brief discussion of the three plan modules of this in-

teractive process:

(1) goal establishment - establishment of those goals KIP needs
' to address

(2) plan determination -~ determination of a plan for those goals

(3) plan failure detection - detection of potential plan failures

45
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Figure 4.1: Outline of Plan Synthesis
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In the remainder of this chapter, the entire plan synthesis process is outlined
through a description of the three plan modules’ use in plan synthesis to synthesize a plan.
Goal establishment and plan determination will be discussed more fully in Chapters S and 6.
Plan failure detection, the focus of this thesis, will be discussed in Chapters 7 through 10.

4.2 Plan Modules of KIP’s Planning Algorithm

. In this section, each of three plan modules of KIP’s planning algorithm is de-
scribed. The following section, containing a description of the entire plan synthesis algo-
rithm, describes the way in which the three plan modules interact to synthesize a complete
plan.

4.2.1 Goal Establishment

During goal establishment, KIP decides which goals should be considered duting
an iteration of the plan synthesis. There are two parts of this process:

(1) Goal Detection - detection of goals for the planning situation

(2) Goal Selection - selection of one goal from the many goals that
need to be satisfied

Goal Detection is further decomposed into 3 parts corresponding to three types
of goals that are detected:

(a) Expressed goal detection - goals in the user’s utterance

(b) Inferred goal detection - goals inferred from the
planning situation itself

(c) Interest-derived goal detection - goals which reflect threatened
user interests

Expressed goal detection refers to KIP’s initial detection of its goals through the
examination of the result from the PAGAN goal analyzer. Inferred goal detection refers to
the detection of goals during subsequent iterations as a result of failure of KIP’s own plans
to address these goals. KIP also determines if user interests should be detected to reflect
goals in the present planning situation. Interests are general states that KIP assumes are
important to the user. When interests tbecome active, they can give rise to one or more
goals. When an interest is threatened, it gives rise to goals that will prevent that interest
from being threatened. Interests are discussed further in Chapter 5.
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If KIP has more than one goal to address, it selects one of the goals during goal
selection. KIP tries to select the goal which is most important. The importance criteria will

be discussed more fully in Chapter 5.

4.2.2 Plan Determination

Plan determination refers to the process of determining a plan for the goal which
has been selected. There are two parts of plan determination:

(1) Plan Selection - selecting a plan for a user goal

(2) Plan Specification - specifying the values of a general plan for
a specific planning situation

During plan selection, KIP first tries to select a plan which has been previously
stored as the plan for the current goal. KIP assumes that the stored plan will be better than
any new plan it could devise. KIP finds a stored plan for a particular goal, by looking at
stored plans for a parent of the goal instance. The parent goal organizes information about
the particular goal, without specifying certain values of the goal. For example, the name
of a file which is the object of a goal instance would not be specified in the parent goal. If
there is more than one plan for this goal, KIP must choose among alternative plans. If there
is no stored plan that addresses the goals of the user, KIP must find a new plan. If no such
plan exists, KIP tries to modify another plan to work in the current planning situation.

During plan specification, KIP specifies values for the particular planning situa-
tion that have been unspecified in the general plan description. Suppose the user asks the
following question:

(1) How do I list all the files in the directory
named koala?

In (1), during plan selection, KIP selects the stored plan for the goal of listing the
contents of a particular directory, the USE-LS-COMMAND plan.

During plan specification, KIP creates an instance of this plan, called the USE-LS-
COMMANDI plan. KIP uses the plan description of the USE-LS-COMMAND plan to specify
the values of the directory name argument for use in the Is command. The value of the
directory name argument is specified in the plan description as always being equal to the
name of the directory in the LIST-ALL-FILES-IN-DIRECTORY goal. This equality is repre-
sented by using an equate link in the KODIAK network. A detailed description of equate
links and KIP’s plan determination algorithm will be presented in Chapter 6.
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4.2.3 Plan Failure Detection

Once KIP has determined a potential plan fora goal, it must determine if the plan
will work in the present planning situation. This process is termed plan failure detection .
KIP must detect two kinds of plan failures:

(1) condition failure - failure due to an unsatisfied condition nec-
essary for proper plan execution

(2) goal conflict failure - failure due to an effect of the plan conflict-
ing with another user goal

These failures are detected by using a knowledge structure termed a concern.
Concerns identify which aspects of a plan are most likely to cause plan failure. They are
added to the knowledge base by the planner knowledge base designer to reflect his experi-
ence of plan failures. There are two different types of concerns that address the two types

- of plan failures:

(1) Condirion Concerns - concerns about the condidons of a
plan which are most likely to be un-

satisfied

(2) Goal Conflict Concerns - concemns about potential conflicts be-
‘ tween effects of a plan and a user goal

In example (1), during plan failure detection, KIP examines the condition con-
cerns for the USE-LS-COMMAND . In this way, KIP determines if new conditions need to be
satisfied in order for the USE-LS-COMMANDI plan to execute successfully. In this particular
case, all of the many conditions for the USE-LS-COMMAND are likely to be met. Thus, there

are no concerns involved.
However, if the user had asked the following question:

(2) How do I 1list all the files in Jim’s
directory named koala?

KIP would have to consider a concern regarding the read permission of Jim’s
directory. The USE-LS-COMMAND plan will not work if the user does not have read permis-
sion on the directory the user wishes to list. The read permission condition is typically a
cause for concern when accessing other users’ files. The method in which such concerns
are accessed in example (2), will be explained in Chapter 8.

In example (1), since KIP has not detected any condition failures during the plan
failure detection phase, no new goals for the satisfaction of conditons are added to the



50

set of goals for which KIP is planning. In addition, no goal conflict concerns are listed
for the USE-LS-COMMAND plan. Therefore, no goal conflict failures are detected and no
goal conflict resolution goals are added to the set of KIP’s goals. Since KIP’s only goal is
satisfied, the USE-LS-COMMANDI plan can be passed to UCEGO mechanism so that the plan

can be suggested to the user.

4.3 Plan Synthesis Algorithm Description

In this section, I describe the way in which the plan synthesis modules described
in the previous section work together to form a complete plan which can be suggested to

the user.
Most plans cannot be synthesized in a single pass for one or both of the following

reasons:

(1) the potential plan does not satisfy all the goals of the user
(2) KIP has concerns about the potential plan

KIP treats both these cases symmetrically. KIP generates new goals that reflect
the need to dispose of concerns about the potential plan. KIP then adds these concern-
disposal goals to the set of unsatisfied goals. KIP then reiterates the planning algorithm
starting with this new set of goals. This process repeats itself until either KIP decides that
it has determined a satisfactory plan or KIP decides to try a new plan for the user’s goals.
The determination of a satisfactory plan occurs when no user goals or concerns about the
potential plan remain. KIP decides to try a new plan when one of the user goals cannot be
satisfied or the concerns caused by the potental plan cannot be avoided. If necessary, KIP
backtracks completely to its first plan selection. Backtracking[10],fikes is seldom a major
efficiency problem for KIP because the plans that it synthesizes are constructed from a small
number of known plans. Issues relating to KIP’s plan selection algorithm are discussed

further in Chapter 6.

4.4 Plan Synthesis Example

In this section, an example of plan synthesis is presented. Due to the interaction
between plan modules, it is necessary for KIP to iterate through each of these twice. These
plan modules will discussed in the order that KIP addresses them.

Suppose the user asks the following question:

(3) How do I print the file eric on the apple
printer? '
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4.4.1 First Iteration of Planning Synthesis

Goal Establishment KIP’s initial goal detection from the planning situation is the input
of goals from the PAGAN goal analyzer. PAGAN creates an individual goal which is dom-
inated by the PRINT-FILE-ON-APPLE-PRINTER goal. Let us call this individual goal PRINT-
FILE-ON-APPLE-PRINTER]1. PAGAN fills in the specific value of the file to be printed, as the
file named eric. Since the user has specified that he wants to print the file on the printer,
PAGAN tries to resolve the printer reference. PAGAN assumes that the apple printer referred
to by the user is the printer in his office, because PAGAN believes that users generally re-
fer to objects which are the easiest to access. PAGAN uses default knowledge in order to
resolve references in the user’s expressed goal. KIP assumes that defaults are true, unless
KIP determines that a default is violated in a particular planning situation. Defaults and
violated defaults are discussed in detail in Section 8.5.

In this phase of this example, there is no need to instantiate any goals to reflect
user interests. Goals due to interests are not usually instantiated during the first iteration of
interest-derived goal detection. Interest detection occurs only in response to a potential plan
failure, and KIP has not yet selected a potential plan. KIP is usually not considering any
other active interests. In most cases, no interests are expressed by the user in his question.
Interests expressed in previous utterances of the current conversation are usually no longer
active, since KIP tries to address these interests by suggesting plans that will not threaten

them.
At this point, KIP is considering only one active goal. Therefore, there is no need

to select among competing goals during goal selection.

Plan Determination KIP first tries to find a stored plan for the individual goal, PRINT-
FILE-ON-APPLE-PRINTER1. There is no stored plan for this very specific goal. There is only
one plan for the general goal of PRINT-FILE-ON-APPLE-PRINTER, the USE-LPR-AP-COMMAND
plan. Therefore, KIP selects USE-LPR-AP-COMMAND as 2 potential plan for the PRINT-FILE-
ON-APPLE-PRINTER! goal. KIP then creates a USE-LPR-AP-COMMAND]- plan for this partic-
ular planning situation. The individual plan is then specified during the plan specification
phase. The values which must be specified include the name of file to be printed and the
location of the particular apple printer in the user’s office.

Plan Failure Detection KIP next tries to detect any plan failures that might result from
executing the USE-LPR-AP-COMMANDI in the current planning situation. KIP first tries to
detect any likely condition failures. KIP thus examines the condition concerns of the USE-
LPR-AP-COMMANDI plan. There is one concern for this plan that KIP considers. This con-
cern encodes the possibility that the printer may run out of paper.

This concern is based on the experience of the planner knowledge base designer.
It reflects the experience that this type of printer has a small paper tray and runs out of paper
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fairly often. If the printer has no paper, the user’s goal of PRINT-FILE-ON-APPLE-PRINTERI
will not be satisfied. KIP evaluates this concem in the particular planning situation and
decides that this concern is a potential source of plan failure. (The method KIP uses to
make this decision will be described in Chapter 8.) Therefore, a new goal is added to KIP’s
list of goals that must be satisfied, namely, having paper in the printer. Let us call this goal
HAVE-FULL-PAPER-TRAY.

KIP next attempts to detect plan failures due to goal conflict. In this case, there are
no goal conflict concems for the USE-LPR-AP-COMMAND] plan. Therefore, no plan failures
due to goal conflict are detected and no goals to resolve goal conflicts are added to KIP's
list of goals that must be satisfied.

4.4.2 Second Iteration of Plan Synthesis

Goal Establishment At this point in the plan synthesis process, KIP has determined a
plan for the user’s goal. KIP has determined that the plan will most likely satisfy the goal
except for one concern. This concern has given rise to a new goal, the HAVE-FULL-PAPER-
TRAY goal.

Since there are no potential goal conflicts, no interests of the user have been
threatened. Also, since there is only one goal that needs to be satisfied, no goal selection
is necessary. Thus, the HAVE-FULL-PAPER-TRAY goal is passed on to the plan selection

process.

Plan Determination KIP thus attempts to find a plan for the goal of having a full paper
tray in the printer. There is a stored plan for this goal, the FILL-PAPER-TRAY plan. This plan
entails the user walking over to the printer, check the paper, and if necessary fill the paper
tray.

KIP creates an instance of this plan and specifies the values of the plan during
plan specification. KIP specifies that the particular printer must be filled with paper. Fur-
thermore, KIP decides that the FILL-PAPER-TRAY1 subplan is added before the USE-LPR-
AP-COMMANDI subplan. This is because the FILL-PAPER-TRAY1 subplan was designed to
satisfy conditions needed for the USE-LPR-AP-COMMAND] subplan to execute successfully.

Plan Failure Detection KIP is faced with two related decisions at this point in the plan
failure detection process. KIP must decide if the subplan chosen for the HAVE-FULL-PAPER-
TRAY1 goal will work in this particular planning situation. KIP must also decide if any of
the effects of this subplan conflict with the total plan developed through this point in the
planning situation process. Particularly, KIP must determine if the current subplan might
either delete conditions necessary for the execution of another subplan, or conflict with one

of the desired effects of another subplan.
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KIP addresses both these issues by examining the concerns of the FILL-PAPER-
TRAY1. In the normal situation, there are no concerns for this plan. This plan is relatively
easy to satisfy, and has no likely side effects. Also, since few plans will benefit from an
empty paper tray, this plan is very unlikely to give rise to interacting subgoals. Therefore,
the FILL-PAPER-TRAY 1 plan has no interacting subgoal concerns.

Since there are no more additional goals or concemns to be addressed, the plan
can be passed back to the UCEgo mechanism in order to be suggested to the user.

4.5 A KIP Trace Example

In this example, I present a KIP wrace of plan synthésisﬁ In this example, KIP
must iterate through its planning steps three umes.

Figure 4.2: KIP Trace of Plan Synthesis

How do I print the file named secret on the office printer?

:- KIP receives the following goal as input from the parser and the PAGAN goal
;; analyzer:
KIP is trying to determine a plan for the list of goals:
(prini-file-effect-1
(Destination-Of-Office-Printer-Print-File-Effect-25 office-printer-1)
-+ KIP has received the goal of printing a file on the office prinier.
(File- Arg-Of-Print-File-Effect-30
(file-1
(Contents-34
(file-contents-33
(Printing-Of-36 printing-31)))
(File-Name-29 secret-1)))
:: KIP knows that the file has some contents, and the contents has a
;:printing-of, i.e. printing-31. printing-31 is the object that appears on
:;the paper. Furthermore, the name of the file is the name secret.
(Output49
(paper-38
(Printed-On-53 blank-63)
(Printed-On-40 printing-31)))
;: The experiencer of this state-change is paper-38.
;7 It has two printed-on relations. Before the state-change, the paper is blank.
:: After the state-change, the paper has printing-31 on it.
(Output-Printed-On-32 printing-31)
(Initial- Value-Of-Print-File-Effect-60 blank-63)
(Final-State-Of-Print-File-Effect-45
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(printed-on-state-37
(Value-Of-Printed-On-65 printing-31)
(Object-Of-Printed-On-41
(paper-38
(Printed-On-53 blank-63)
(Printed-On-40 printing-31)))))
(lnitial-statc-Of-Prim-Fﬂc-Effect-SS
(printed-on-state-50
(Value-Of-Printed-On-62 blank-63)
(Object-Of _Printed-On- 54 paper-38))))
:: The final state and initial state refer io the siate of the paper before and after
:: the siate-change.
Entering Goal Establishment Phase:
Selecting a goal from the List Of Goals ((print-file-effect-1))
selecting the remaining goal
print-file-effect-1
:: Since KIP has only one goal, there is no need to select among goals
Entering Plan Determination Phase:
Looking for a plan for the Current Goal (print-file-effect-1)
First looking at stored plans
Selected 1pr-pop-command as a potential plan
Now specifying the plan for the particular planning situation:
(1pr-pop-command-66
(Dcstinaﬁon-Of—Lpr-Command-69
(office-printer-1
(Printer- Abbreviation-Of: -Office-Printer-92 op-string-94)))
(Format-Of-Lpr-Command-75
(unix-ﬁ]e-prinung-command-fonnal-74
(Command-Arg-89 lpr-string-86)
(Printer-Arg-91 op-string-94)
(Formai-File-Arg-83 secret-1)))
;- The user could execute this plan by typing lpr -Pop secret
(Intended-Effi ect-Of-Lpr-Pop-Command-67 print-file-effect-1)
:: The representation of print-file-effect-1is shown above.
(Actor-Of-Unix-Command-99 uc-user-1)
(File-Arg—Of-Unix=File-Command-77 file-1))
:: file-1 is the file which the user wants o be printed.
Entering Plan Failure Detection Phase:
:: KIP is now searching for concerns of the lpr-pop-command plan
Evaluating the condition concern: office-printer-room-door-locked-109
-+ This concern reflects a potenzial plan failure of the lpr-pop-command. Since the
;; office prinzer room is always locked, the user must have a key to the room in
:; order to pick up his output.




:+ KIP now evaluates this concern in this particular planning situation:

The condition of concern is the has-key-state-121 of the

uc-user-1
The current value of the condition is key-123
The desired value is key-111

:: KIP is evaluating whether the user has a key 1o the office printer room, i.e.
;1 key-111. Unfortunately, the user has key-123. This is actually KIP's way of
;: representing a placeholder for the concept key. In other words, the user has
;. some key, but it is not key-111.

Instantiate concern that current value be changed
Creating a goal that reflects a change from the Current Value (key-123)
to the Desired Value (key-111)
-+ KIP is now instantiating a goal to reflect the office-printer-room-door-locked-109 concern
Creating the goal:
(have-office-key-effect-201
(Final-Value-Of-Have-Office-Key-Effect-204 key-111)
(Initial- Value-Of-Normal-State-Change-176 key-123)
(Final-State-Of-Have-Office-Key-Effect-219
(has-key-state-216
(Object-Of-Has-Key-217 uc-user-1)
(Value-of-Has-Key-221 key-111)))
(Initial-State-Of-Have-Office-Key-Effect-202
(has-key-state-121
(Value-Of-Has-Key-135 key-123)
(Object-Of-Has-Key-125 uc-user-1))))
;- In the initial state, the user has key key-123.
:+ In the final state, the user has key key-111.
Asserting the fact that the final-state of the goal (has-key-state-216)
starts before the start of plan interval (lpr-pop-command-66)
So that the condition holds before the plan is executed
:; Before constructing a plan for the have-office-key-effect-201 goal, KiP first
:: evaluates one more concern in the particular planning situation.
Evaluating the condition concern: out-of-paper-concem-136
:; This s the concern that the printer is likely to run oul of paper.
:: KIP evaluates this concern by determining how much paper in is the paper tray.
The condition of concem is the paper-tray-stats-of-office-printer-state- 164 of the
office-printer-1 ‘
The current value of the condition is empty-or-full-142
The desired value is full
Current Value (empty-or-full-142) is less specific than the Desired Value (full)
:: KIP does not have information about the paper tray of this printer
;; Therefore, KIP consults it default mechanism
Try to make the current value more specific using defaults

Default-value is empty.
The Default Value (empty) is mutually exclusive with respect to the Desired Value (full)
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Since the Default Value (empty) is more specific than the Current Value (empty-or-full-142),
instantiate concern that default value be changed
Creating a goal that reflects a change from the Current Value (empty) to the Desired Value (full)

:: KIP is creating the goal of filling the paper tray with paper.

Creating the goal:

(have-full-paper-tray-cfiect-249
(Final-Value-Of-Have-Full-Paper-Tray-Effect-267 full-270)
(Initial- Value-Of-Normal-State-Change-250 empty-286)
(Final-State-Of-Have-Full-Paper-Tray-Effect-265
(paper-tray-status-of-of fice-printer-state-282

(Value-Of-Paper-Tray-Status-Of-Office-Printer-293 full-270)
(Object-Of-Paper-Tray-Status-Of -Office-Printer-278
(office-printer-1
(Printer-Room-Of-Office-Printer-114
(main-office-113
(Door-0f-116
(door-115
(Key-Of-118 key-111)))))
(Paper-Tray-Status-Of-Office-Printer-277 full-270)
(Paper-Tray-Status-Of-Office-Printer-237 empty-286)))))
(Initial-State-Of-Have-Full-Paper-Tray-Effect-247
(paper-tray-status-of-of fice-printer-state-234
(Value-Of-Paper-Tray-Status-Of-Office-Printer-254 empty-286)
(Object-Of-Paper-Tray-Status-Of -Office-Printer-238 office-printer-1)))
(Experiencer-Of-Have-Full-Paper-Tray-Effect-256 office-printer- 1)
(State-Change-Interval-244 state-change-time-243))

Asserting the fact that the final-state of the goal
(paper-tray-status-of-office-printer-state-282) starts before the

start of plan interval (Ipr-pop-command-66)

So that the condition holds before the plan is executed

Entering Goal Establishment Phase:

:» This is the beginning of KIP's second iteration of plan synthesis.

:+ In this iteration, KIP is addressing goals that were generated

:: to reflect concerns that KIP has abow! the 1pr-pop-command-66 plan.

Selecting a goal from the List Of Goals
((have-full-paper-tray-effect-249 have-office-key-effect-201))

Sorting the goals according to importance level
The List Of Goals ((have-full-paper-tray-effect-249 have-office-key-effect-201))

is already sorted in order of importance

Entering Plan Determination Phase:

Looking for a plan for the Current Goal (have-full-paper-tray-effect-249)
First looking at stored plans

Selected fill-paper-tray as a poiential plan

Now specifying the plan for the particular planning situation:

: KIP is now specifying the plan regarding filling the office printer tray.



:; During the specification process, the fill-paper-tray plan instance is concreted o
:: an instance of fill-office-printer-paper-tray.
(fill-office-printer-paper-tray-307
(Fill-Paper-Tray-Prhtex-Tray-Of—Fill-Omcc-PrinLcr-Paper-Tmy-305
(office-printer-1
(Printer-Room-Of-Office-Printer-114
(main-office-113
(Door-0O1-116
(door-115
(Key-Of-118 key-111)))))

(Paper-Tray-Status-Of-Office-Printer-277 full-270)

(Paper-Tray-Status-Of-Office-Printer-237 empty-286)

(Printer- Abbreviation-Of-Office-Printer-92 op-string-94)))
(Machine-Of-Of-Unix-Command- 318 machine-100)
(Intended-Effect-Of-Fill-Paper-Tray-302 have-full-paper-tray-effect-249 )
(Actor-Of-Unix-Command-313 uc-user-1))

Asserting that fill-office-printer-paper-tray-307 comes before Ipr-pop-command-66

Entering Plan Failure Detection Phase:

No plan failures are detected

Entering Goal Establishment Phase:

:: This is the beginning of KIP's third iteration of plan synthesis.

:: In this izeration, KIP is addressing the remaining concern-generated goal.

Selecting a goal from the List Of Goals ((have-office-key-effect-201))

selecting the remaining goal

Entering Plan Determination Phase:

Looking for a plan for the Current Goal (have-office-key-effect-201)

:: The representation of have-office-key-efTect-201 is shown above on

;. page 55.

First looking at stored plans

Selected get-key-from-office as a potential plan

Now specifying the plan for the particular planning situation:

(get-key-from-office-408

(Intended-Effect-Of-Get-Key-From-Office409 have-office-key-effect-201 )
(Actor-Of-Get-Key-From-Office-411 uc-user-1))

Asserting that get-key-from-office-408 comes before lpr-pop-command-66
Entering Plan Failure Detection Phase:
No plan failures detected for Candidate Plan (get-key-from-office-408)

To print the file named secret on the office printer, type lpr -Pop secret.
But first, get the key to the office printer room and fill the printer with paper.
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4.6 KIP Implementation

KIP is implemented in Common Lisp on a Symbolics 3670. It depends heav-
ily on the KODIAK knowledge representation language interpreter. KIP's includes over
1000 absolutes and relations which represent approximately 50 plans, 50 effects, and 25
concerns. Many concerns apply to multiple plans. Unlike previous UC implementations,
multiple inheritance is pervasive. Many concepts have 3 or more parents.

Running times range between .5 seconds for simple examples to 10 seconds for
more complex examples. As much as 80% of the processing time is spent on calls to the
KODIAK interpreter. During the construction of a typical KIP plan, 100-200 individual
KODIAK absolutes and relations are created. It takes 14 seconds to reload the knowledge
base.

The MYGEN natural language generator has been modified for this implementa-
tion. MYGEN uses KODIAK to efficiently find the most specific pattern for generating a
particular concept. A small number of relatively specific canned phrases have been added
10 MYGEN’s knowledge base in order to express KIP’s concerns to the user.

4.7 Conclusion

In this chapter, KIP’s three plan modules have been described: (1) goal establish-
ment, (2) plan determination, and (3) plan failure detection. KIP’s plan synthesis process
iterates through these three modules until a complete plan can be suggested to the user. In
the following two chapters, goal establishment and plan determination are discussed. The
remainder of this thesis focuses primarily on plan failure detection. In Chapters 7-10, I
describe how concerns are used to detect plan failures in unique planning situations.

In this chapter, I have focused on the type of question that KIP (and UC) is asked
to address: the how-to question. However, the same modules of plan synthesis can also
be used to address other user problems. For example, suppose the user asks the following

question:

(4) I typed ‘rm terry’, but I got the message:
Permission denied. What should I do?

If KIP is faced with such a problem, it uses the same plan modules in a slightdy
different order. Plan failure detection can determine the most likely cause of this failure. A
new goal can be established, which will be satisfaction of the particular problem in the plan.
Plan determination can select and specify a modified workable version of the user’s plan.
Alternatively, if the user’s plan cannot be modified an entirely new plan can be constructed.
This thesis focuses on constructing plans for how-to questions, due to their simplicity and

importance to UC.



Chapter 5

Goal Establishment

5.1 Introduction

Goal establishment refers to the process of deciding which goals should be con-
sidered in a given planning situation and which of these goals should be considered at a par-
ticular point in the planning process. KIP's general strategy in this regard is to construct and
plan for compound goals, i.e. goals which may be dominated by a number of goals in the
goal hierarchy, rather than construct a plan for a list of discrete unrelated goals. The advan-
tage of this approach is that KIP can select known plans from its planning knowledge-base
which address the compound goals, rather than have to construct a number of individual
plans. The advantage of this approach over other planning strategies will be demonstrated
in Chapter 6.

This process is divided into two parts:

(1) Goal Detection - detection of goals from the planning
situation

(2) Goal Selection -  selecting one goal from the many goals that
need to be satisfied and decomposition of

compound goals

Goal detection is similar to the notion described in [35]. Wilensky's work fo-
cuses on planning for multple goals related through some goal relationship such as goal
conflict. My work focuses on the detection of these goal relationships. I assume that goal
relationships are only determined in terms of a particular plan which satisfies one of the
goals. For example, in order to determine that two goals conflict, KIP must determine a
plan for the first goal, and detect a conflict between the effects of that plan and the second
goal. Goal selection has been added because of the need to plan in situations where mulu-
ple goals have been detected, and no goal relationships have yet been determined. The goal
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selection process has been separated from goal detection so that KIP can first determine a
plan for one goal and then determine if that plan conflicts with other detected goals.

5.2 Goal Detection

Goal detection distinguishes the three different types of goals that must be de-
tected by KIP:

(a) Expressed goals - goals in the user’s utterance
(b) Inferred goals - goals inferred during the planning
process

(c) Interest-derived goals - goals which reflect threatened user in-
terests

KIP’s method for addressing each of these problems is discussed in terms of ex-
amples from UC. In so doing, many issues in goal establishment which are related to plan
failure detection are avoided. These issues will be discussed more fully in Chapters 7-10.

5.2.1 Expressed Goal Detection

Expressed goal detection refers to the process of determining the initial goals for
which KIP must plan, from the user’s utterance. In the current implementation of KIP,
the goals expressed by the user are passed to KIP by the PAGAN goal analyzer[25,38].
PAGAN determines these goals by examining the user’s utterances. PAGAN determines
what goals the user’s utterances signify by using its knowledge of user plans and goals.
PAGAN then returns these goals as the goals of the user.

PAGAN also determines the importance level of the various goals it has detected.
This importance level information is passed to KIP by PAGAN in the representation of the
expressed goal. In the current implementation of KIP, importance level is represented by a
HAS-IMPORTANCE-LEVEL relation between the goal and an importance level between 0 and
1. KIP assumes that PAGAN has accurately detected the goals which have been expressed
in the user’s utterance, and does not evaluate them further.

For example, suppose the user asks the following question:

(1) How do I find out if the machine named dali
is down?
PAGAN infers that the user has the goal of determining if the machine named

dali is currently down; it assigns an importance level of 0.7 to this goal. PAGAN further
infers that the user wants a plan that will enable him to determine the status of dali.
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5.2.2 Inferred Goal Detection

In the present implementation of KIP, two types of goals are inferred during the
planning process:

(a) unsarisfied goal constituents -  parts of a goal not satisfied by a
determined plan for that goal

(b) plan failure avoidance goals - goals which must be satisfied in
order to avoid plan failures for a

plan

§.2.2.1 Unsatisfied Goal Constituents

When KIP determines that parts of a goal have not been satisfied by a particular
plan, KIP tries to infer constituents of that goal. If a goal can be divided into constituent
parts, the goal constituents which have not been satisfied by the plan for the entire goal are
added to the list of goals KIP must satisfy. KIP does this by considering the effects of a
plan it has chosen for a particular goal. If the effects of the plan differ from the goal, KIP
decomposes the original goal into its constituent parts and determines which of these parts
have not been satisfied by the plan. This strategy is similar to strategies used in GPS and
other knowledge-deficient planners.

In example (1), suppose that KIP had chosen to use the USE-RUPTIME-COMMAND
plan during the plan determination phase. This plan is actually designed to determine the
uptime or downtime of all the machines on the network of the current machine. Since this
is not a stored plan for the user’s goal, KIP must determine if the USE-RUPTIME-COMMAND
plan needs modification in order to properly address the user’s goal.

During a subsequent goal detection phase, KIP must determine what goals of the
user have not been satisfied by the selected plan. In example (1), KIP determines that the
user’s goal of determining the downtime of a particular machine has not been satisfied. This
determination is made by matching the effect of the individual USE-RUPTIME-COMMANDI
plan, in the particular planning situation, with the expressed goal it was meant to satisfy. In
this case, the USE-RUPTIME-COMMAND1 plan operates on the set of machines to which the
current machine is connected, while the user’s expressed goal refers to particular machine
named dali. This is a common difference in"UC, since many information-type commands
return a list of objects, while users are often only interested in information about a partic-
ular object. (This difference is outlined in Figure 5.1.) Therefore, KIP infers the goals of
filtering the information provided by the USE-RUPTIME-COMMANDI about the set of ma-
chines to which the current machine is connected. KIP does this so that only information
about the machine named dali is presented to the user. A KIP trace of goal decomposition
is presented later in this chapter in the context of goal selection.
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Figure 5.1: Effect of USE-RUPTIME-COMMANDI1 and the User’s Goal
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§.2.2.2 Plan Failure Avoidance Goals

Plan failure avoidance goals are goals which KIP must satisfy in order to avoid
plan failures for a determined plan. These goals are inferred during the plan failure detection
phase. Unlike other planners which check all the conditions of a plan in order to detect plan
failure, KIP only checks those conditions which cause a concern in a particular planning
situation. Plan failure avoidance goals reflect KIP’s concerns about the determined plan.
The two types of plan failure avoidance goals correspond to the two types of plan failure:

(1) condition failure avoidance goals - goals that refiect
condition concerns

(2) goal conflict failure avoidance goals - goals that reflect goal
conflict concemns

If KIP has a condition concern about the satisfaction of a condition of a particular
plan, KIP instantiates a condition failure avoidance goal that reflects this concern. If KIP
has a goal conflict concern about the effects of a particular plan, KIP instantiates a goal
conflict failure avoidance goal regarding the resolution of the goal conflict reflected in this
concem. Plan failure avoidance goals will be described more fully in the discussion of plan

failure detection in Chapters 7 and 8.

5.2.3 Interest-Derived Goal Detection

Interest-derived goal detection refers to the process of instantiating goals that
reflect long-term user interests. /nterests are general states that KIP assurmes are important
to the user. When interests become active, they can give rise to one or more goals when
they become active. For example, when an interest is threatened, it gives rise to goals that
will prevent that interest from being threatened. An important difference between goals and
interests is that plans are meant to satisfy goals but plans cannot satisfy interests. Ina sense,
interests are never satisfied; they are just no longer considered once the goals to which they
give rise are satisfied. For example, preserving one’s files is an important user interest in
the context of UC. Suppose that the file-preservation interest is threatened in a particular
situation by the deletion of the file filel. The threat to the file-preservation interest gives
rise 1o the goal of preserving the contents of the file named filel. Once this goal is satisfied,
there is no threat to the file-preservation interest. Therefore, the file-preservation interest 1s
no longer considered in this particular planning situation. However, it is still an interest of
the user. An interest might be considered again if it was threatened by another action. On
the other hand, once a particular goal is satisfied, it is no longer considered at all.



64

5§.2.3.1 Interests and Themes

Schank and Abelson[33] introduced the term theme which refers to background
knowledge about goals that are likely to arise in general situations. For example, the
SHERIFF-ROLE-THEME might refer to the goals of protecting citizens, arresting criminals,
and round up posses. Schank and Abelson used themes to anticipate goals of character
in simple stories. Wilensky[35] operationalizes the theme notion for planning by using
situation-goal pairs. If a planner notices thatitisina particular situation, certain goals are
immediately added to a planner’s list of goals. '

In KIP, themes have been extended so as to indicate which interests should be
considered. When KIP notices that it is in a particular situation, it activates a particular
theme. This theme then indicates which interests should be considered. If these interests
are important in the particular planning situadon, goals are instantiated which reflect these
interests. KIP is mainly concerned with detecting interests which have threatened by the
effects of a particular plan. Therefore, if KIP must decide if a particular plan threatens a
user interest, KIP must only consider those interests which are referred to in the current
active themes. , ‘

However, in the current implementation of KIP, due to its narrow UNIX domain,
all interests are referred to by the UNIX-PLANNER-THEME. Examples of interests organized
under this theme include the file-preservation, preserve-system-Tesources, and conserve-
disk-space interests. The UNIX-PLANNER-THEME is always active in UC. In Chapters 9 and
10, 1 present examples of goal conflicts where these interests are threatened.

Interests not only give rise to goals when they are threatened, but also when they
are enabled by a state of the world. For example, a planner interested in amassing wealth
might instantiate the goal of taking-the-money upon seeing an open safe. These interests
have not been implemented due to the paucity of such interests in the UNIX domain.

5§.2.3.2 Interest Selection and Evaluation

Let us consider a simple example where interest-derived goal detection is impor-
tant. Suppose the user asks the following question:

(2) How do I move the file david to the file
jim?

PAGAN would detect the single goal of moving the file david to the file named
jim. However, since KIP knows that the user has an interest in keeping the contents of all of
his files, there is a good chance that he wants to have access to the file jim. As is described
below, KIP may create the goal of preserving access to the file jim in order to reflect this
interest on the part of the user. Once this goal is created, any plan that conflicts with it will
cause a goal conflict. KIP must then resolve the conflict between these two user goals.
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There are two parts of the interest-derived goal detection process:

(1) interest selection - selection of those interests which might
be important to the user in a particular

planning situation

(2) interest evaluation - evaluation of selected interests in the par-
ticular planning situation

Interest evaluation is particularly important since the goal should be created only
if the interest is appropriate for the particular planning situation. For example, the individ-
ual goal of having access to file jim should be created only if KIP has reason to believe that
a file named jim already exists. Therefore, if KIP has selected the file preservation interest,
and KIP knows that the file jim does not exist, the goal of preserving the file jim should not
be inferred.

Interest evaluation is often a complex process. Even in the relatively simple file
preservation example, even if KIP knows the file jim exists, KIP might also need to consider
whether the user wants to preserve the file jim. Ideally, KIP should try to evaluate as few
interests as possible; KIP should select only those interests which are likely to be threatened
in the particular planning situation.

However, it is difficult to select those interests which are likely to be threatened
in a given planning situation from among the large number of potential user interests. KIP’s
knowledge-base includes many interests that KIP assumes on the part of the user. Consider-
ation of every potential interest would be computationally inefficient and contrary to KIP’s
knowledge-intensive approach. Therefore, KIP exploits a knowledge-intensive means of
limiting those interests considered.

One possible knowledge intensive method for detecting threatened interests is
to store relationships between situations and threatened interests. According to the situa-
tion/interest proposal, every time a planner was faced with a particular situation, it adds
the associated interests to the set of interests under consideration. KIP then must evaluate
which interests are potentially threatened. For example, if the user expressed a particular
goal, the planner would match that goal against interests that goal might threaten in the
current set of considered interests.

In KIP, I take an alternative position. Interests are considered only when they are
threatened by some action. Therefore, KIP only considers user interests when they have
been threatened by an effect of a user plan. These include plans that KIP has determined
for the user, and plans the user has determined himself. For example, in example (2), KIP
determines that the interest of preserving the file named jim is threatened. However, the
file-preservation interest is only considered after KIP has determined a plan for the user’s
goal, the USER-MV-COMMANDI plan. The plan/interest proposal is implemented using goal
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conflict concerns. I will discuss interest selection and interest evaluation using goal conflict
concemns in Chapter 10.

The situation/interest proposal, and KIP’s plan/interest proposal, may be different
ways of expressing the same knowledge. I have chosen the plan/interest proposal due to
KIP’s focus on plan determination. A robot planner that generates its own goals might also
need to detect interests which are threatened as a result of the goals it has generated.

5§24 Concretion in Goal Detection

In order to find the most specific plan for a particular goal, KIP must first confirm
that all of the goals for which it is trying to plan are as specific as possible. The goal should
be made a specific as possible through concretion inferences. Concretion inferences[30]
refer to inferences that an individual is dominated by one of the subtypes of its parent.
For example, if an individual building is described, and it contains three apartments, the
building can be concreted to be an instance of apartment building.

Each goal should be concreted during goal detection so that plan selection can
consider the most specific plans possible. Actually, much of the concretion processing on
goals is done before KIP actually receives the goals as input. In order to detect expressed
goals, the parser and goal analyzer perform concretion inferencing so as to best understand
the goals of the user. Inferred goals and interest-derived goals are concreted by KIP when
these goals are instantiated.

The concretion of potential goals is not merely an artifact of KIP’s or UC’s archi-
tecture but is an important principle for the design of the algorithm for any commonsense
planner. Concreting unsatisfied goals is an operationalization of Wilensky’s First Law of
Knowledge Application[35]): Always apply the most specific pieces of knowledge avail-
able. In order for a planner to apply the most specific pieces of knowledge in a particular
situation, the algorithm must first make the situation understood in the most specific way
- possible. In order for a planner to select the most specific plan for a particular goal, it must
first make that goal as concrete as possible.

In the current implementation of KIP, KIP uses a concretion mechanism which I
implemented as part of a new implementation of the KODIAK knowledge representation
interpreter. The concreton mechanism looks at all the relations of a particular concept (i.e.
the relations for which the concept is the domain). Foreach relation, the mechanism decides
if the relation can be an instance of a more specific relation according to the domain of the
relation. If the concretion mechanism decides to make a relation an instance of a more
specific relation, then the mechanism asserts that range of the relation is also more specific.
For example, suppose that OBJECT-1 has a Name-1 relation whose range is NAME-STRING-
1. If KIP learns that OBJECT-1 is a FILE, then the concretion mechanism decides that the
Name-1 relation can be an instance of the File-Name relation. Furthermore, the concretion
mechanism asserts that NAME-STRING-1 is an instance of FILE-NAME-STRING.
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5.3 Goal Selection

Goal Selection is the process of determining which of the goals considered by
KIP should be addressed by the plan determination component at a particular phase of the
planning process. For example, if KIP has been passed 5 goals by the goal analyzer, and
there is no plan to solve all these goals simultaneously, KIP must select one or more of
these goals for which to plan. Later, once a plan has been determined for the particular

goal, satisfaction of other goals can be added to the plan.
In addition, goal selection is sometimes necessary when KIP has detected one

compound goal. If KIP cannot find a plan for the entire goal, KIP must divide the compound
goal into its component goals. KIP must decide which of these component goals should be

addressed before the others.
There are two main criteria for goal selection:

(1) importance level - how important the goal is to the user

(2) ease of satisfaction - how easily the goal can be satisfied

5.3.1 Importance Level asa Criteria for Goal Selection

The determination of importance level differs according to three classes of goals
which are candidates for goal selection:

5.3.1.1 Expressed Goal Selection

For goals that are passed to KIP by t'.e goal analyzer, importance level is deter-
mined by the goal analyzer and declared in the representation of the goal. This information
is either inferred from the user’s utterance or from the goal analyzer’s knowledge of plans

and goals.
For example, suppose the user asks the following question:

(3) How do I send a formatted version of the file
letter.ms named letter.out to the printer?

Suppose that PAGAN determines that the user wants first to send the formatted
version of the file to the printer, and then to delete the formatted version. PAGAN might
pass the PRINT-FILE and DELETE-FILE goals as separate goals. PAGAN determines that the
PRINT-FILE goal is more important by examining the user’s utterance. This importance level
information is passed to KIP by PAGAN in the representation of the two goals. KIP selects
a single goal by referring to their importance level in the particular planning situation.
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Therefore, KIP selects the PRINT-FILE goal. During a subsequent iteration, the DELETE-
FILE goal is addressed. This process is demonstrated in a KIP race which highlights goal

establishment in Figure 5.2 below.

Figure 5.2: KIP Trace of Goal Selection with Multiple Goals

User: How do I send a formatted version of the file letter.ms
named letter.out to the printer?
PAGAN produces:
(print-file-effect-1
(File-Arg-Of-Print-File-Effect-25
(file-1 (File-Name-100 letter.out-1)))
(More-Important-Than-80 delete-file-effect-1))
:+ This is the first of the two goals that PAGAN has detected.
:- PAGAN has specified that the file to be printed is file-1.
:: fle-1's name is letter.owt-1.
:- Furthermore, PAGAN has specified that the print-file-effeci-1 is more importani
:: than delete-file-effect-1.
:+ The more-importani-than relation is defined in terms of the relanive
«+ HAS-IMPORTANCE-LEVEL of its domain and range.
(delete-file-effect-1
(Effected-File-55 file-1))
;- file-1 is also the file that is to be deleted.
-+ In this case, this is called the effected-file, because unlike
:; the print-file-effect, which does not affect the file printed, the delete-file-effect
;; effects the file by deleting it.
(kip (delete-file-effect-1 print-file-effect-1))
;- KIP is being called with the input of the two goals
Entering Goal Establishment Phase:
KIP is trying 10 determine a plan for the list of goals:
(delete-file-effect-1 print-file-effect-1)
Selecting a goal from the List Of Goals ((delete-file-effect-1 print-file-effect-1))
:: The List Of Goals is the current set of goals, Jfor which KIP
;; is determining a plan
Sorting the goals according to importance level
The New List Of Goals is now (print-file-effect-1 delete-file-effect-1)
:: Because KIP knows that the print-file-effect-1 is more important than
:: delete-file-effect-1, KIP reorders the list of goals 1o reflect
;s this knowledge
The Most Important Goal is now print-file-effect-1
;- It now becomes the current goal
Entering Plan Determination Phase:
Looking for a plan for the Current Goal (print-file-effect-1)



First looking at stored plans

Selected (Ipr-command) as a potential plan

Now specifying the plan for the particular planning situation:

(tpr-command-85
(Desﬁnaﬁon—Of-Lpr-Command-BS printer-87)
(Format-Of-Lpr-Command-94

(unix-ﬁlc-priming-command-fonnal-%
(Command-Arg-104 lpr-string-101)
(Format-File-Arg-98 letter.out-1 »)

:; The user could execute this plan by typing lpr letter.out
(File-Arg-Of. .Unix-File-Command-96 file-1)

:: the file 1o be manipulated by the Ipr-command is the same
:: as the file of the print-file-effect goal
(Imcndcd-Eﬂ'ect-Of—Lpr-Command-%

(print-file-effect-1
(Destination-Of: _Print-File-Effect-108 printer-87)
(File-Arg-Of-Pﬁm-File-Effect-ZS
(file-1
(Contents-29
(file-contents-28
(Printing-Of-31 printing-26)))
:: The contents of file-1 have some associated printing-26 which is the
:» KODIAK represeniation of the object which is printed
(File-Name-100 leter.out- 1)
(Final-State-Of—Prim-File—Eﬁ'ect-39
(printed-on-state-32
(Paper-Of-Printed-On-36 paper-33)
(Printing-Of-Printed-On-38 printing-26)))
:: The final siate of this effect is that the printing is now on paper-33
(IniLial-Slatc-Of-PrimoFile-Effcct-51
(printed-on-state-44
(Paper-Of-Printed-On-48 paper-33)
(Printing-Of-Printed-On-50 blank-46)))
:+ The initial state of print-file-effect-1 is that the paper is blank
(More-Important-Than-80 delete-file-effect-1))))

Entering Plan Failure Detection Phase:

No plan failures detected.

Entering Goal Establishment Phase:

Selecting a goal from the List Of Goals ((delete-file-effect-1))

selecting the remaining goal:

delete-file-effect-1

;- KIP has selected the second of the two detecied goals, the

;; goal of delete the prinied file

Entering Plan Determination Phase:
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Looking for a plan for the Current Goal delete-file-effect-1
First looking at stored plans
Selected (rm-command) as a potential plan
Now specifying the plan for the particular planning situation:
(rm-command-113
(Fonnat-Of-Unix-Fﬂe-Command- 118
(unix-file-command-format- 117
(Format-File-Arg-124 letter.out-1)
(Command-Arg-122 rm-string-1 19))
« The user could execute this plan by typing rm leuer.out
(Filc-Arg-Of—Unix-Filc-Command-1 16 file-1)
(Intended-Effect-Of -.Rm-Command-114
(delete-file-effect-1
(Effected-File-55 file-1)
(Final-State-Of-Delete-File-Effect-63
(file-exist-state-56
(File-Of-File-Exist-60 file-1)
(Exist-Of-File-Exist-62 false-68)))
:: The final state of delete-file-effect-1 is that the file-1 does not exist
(Initial-statc-Of-DeleLc-File-Effect—?é
(file-exist-state-69
(Exist-Of-File-Exist-75 true-79)
(File-Of-File-Exist-73 file-1))))))
:» The initial state is that the file does exist
Entering Plan Failure Detection Phase:
No plan failures have been detected

To print and delete letter.out, first type lpr letter.out,
then type rm letter.out.

5.3.1.2 Inferred Goal Selection

A goal constituent’s importance is determined according to its importance to the
compound goal. This importance is represented in the description of the decomposition of
the compound goal. For example, suppose that in example (3), PAGAN does not return
two separate goals. Instead suppose that one goal is returned: the PRINT-AND-DELETE-FILE
goal. In many operating systems, the PRINT-AND-DELETE-FILE goal is the default effect of
the command which send files to the printer. However, in UNIX there is no stored plan for
the PRINT-AND-DELETE-FILE goal. Therefore, during goal selection, KIP decomposes the
PRINT-AND-DELETE-FILE goal into the two component goals: the PRINT-FILE and DELETE-
FILE goals. (The decomposition of the PRINT-AND-DELETE-FILE goal is described in Figure
5.3.) The PRINT-FILE is stored as more important to the decomposition of the PRINT-AND-
DELETE-FILE goal than the DELETE-FILE goal. This is done by storing a more-important-than
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print-and RINT-AND-DELETE-FILE

file-of file-of
print- delete-
file file

Figure 5.3: Decomposition of PRINT-AND-DELETE-FILE

relation between the PRINT-FILE component and the DELETE-FILE component. (The more-
important-than relation is defined in terms of the relative HAS-IMPORTANCE-LEVEL of its do-
main and range.) Therefore, the PRINT-FILE goal is selected first during goal selection. This
process is demonstrated in a KIP trace which highlights goal decomposition in Figure 5.4.

Figure 5.4: KIP Trace of Goal Decomposition

User: How do1 send a formatted version of the file letter.ams

pnamed letter.out to the printer?
PAGAN produces:
(print-and-delete-file-1

(File-Of-Print-And-Delete-File-25
(file-1

(File-Name-132 letter.out-1))))
:: PAGAN has produced one complex goal, the print-and-delete-1 goal.
- PAGAN has also specified that the file of this effect is file-1.
:; Unlike Figure 5.2 on page 68, KIP has only been passed one goal.
-+ This trace highlights what KIP does differently because it must decompose this
:; complex goal. Therefore, the representation of goals that have been described in
;; the Figure 5.2 will be abbreviated.
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Entering Goal Establishment Phase:

KIP is trying to determine a plan for the list of goals:

(print-and-delete-file-1)

:- Notice that KIP is only passed one goal, it decomposes this goal later
Selecting a goal from the List Of Goals ((print-and-deiete-file- 1))

selecting the remaining goal

print-and-delete-file-1

Entering Plan Determination Phase:

Looking for a plan for the Current Goal print-and-delete-file-1

First looking at stored plans

;- KIP has not found a stored plan for the complex goal. Since KIP knows that
:; this goal can be decomposed into simpler goals, KIP next decomposes the

;+ goal into two goals. KIP also fully specifies each of the two goals.

Entering Goal Establishment Phase:

Decomposing the Current Goal (print-and-delete-file-1) into
delete-file-effect-26 and print-file-effect-58

:: The representations of these goals are the same as in the previous example
;: where these goals were passed as separate goals.

Selecting a goal from the List Of Goals ((delete-file-effect-26 print-file-effect-34))

Sorting the goals according to importance level
The New List Of Goals is now (print-file-effect-34 delete-file-effect-26)

The Most Important Goal is now print-file-effect-34

Entering Plan Determination Phase:

Looking for a plan for the Current Goal (print-file-effect-34)
First looking at stored plans

Selecied (lpr-command) as a potential plan

Now specifying the plan for the particular planning situation:
Ipr-command-99

Entering Plan Failure Detection Phase:

No plan failures have been detected

Entering Goal Establishment Phase:

Selecting a goal from the List Of Goals (delete-file-effect-26)
selecting the remaining goal

delete-file-effect-26

Entering Plan Determination Phase:

Looking for a plan for the Current Goal delete-file-effect-26
First looking at stored plans

Selected (rm-command) as a potential plan

Now specifying the plan for the particular planning situation:
rm-command-127

Asserting that Ipr-command-99 comes before rm-command-127
:+ Part of the description of the decomposition of print-and-delete-file is that
;. the printing comes before the deleting. If KIP was not provided ordering
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:; information in the goal decompostion, KIP would have 1o determine the plan
:; step ordering by examining preconditions.

Entering Plan Failure Detection Phase:

No plan failures have been detected

To print and delete letter.out, first type lpr letter.out,

then type rm letter.out.

:; KIP has returned the same plan as in the previous trace, even

;; though it was given two goals in that example, and one

:; complex goal in this example.

A plan failure avoidance goal’s importance is determined by the degree of con-
cern regarding the determined plan reflected by the goal reflects and the importance level
of the goal that the plan was designed to satisfy. Thus, if KIP has a high degree of con-
cern about a particular plan, and this plan was designed for a goal with a high importance
level, the plan failure avoidance goal will also have a high importance level. The determi-
nation of degree of concern in a particular planning situation will be described more fully

in Chapter 8.

53.1.3 Interest-Derived Goal Selection

The importance level of a goal inferred to reflect a user interest is determined by
the importance level of the interest and its evaluation in the particular problem situation.
(The representation of the importance level of interests is the same as the representation
of the importance level of goals described earlier.) The importance level of an interest-
related goal is compared to the importance level of other goals being considered. KIP's
approach to the determination of the importance level of interest-related goals is described

in Chapter 10.

5.3.2 Ease of Satisfaction as a Criteria for Goal Selection

If all the goals under consideration are of the same importance level, the ease
of goal satisfaction is used to determine which goal should be selected first for planning.
This strategy corresponds to the commonsense notion of trying to first solve the easiest
parts of a problem. In order to determine the ease of satisfaction, a planner should have
knowledge that certain goals can be satisfied more easily than other goals. For example, if
a planner works in a number of different domains, the planner might know that goals from
one domain are generally easier to satisfy than goals from other domains. In the current
implementation of KIP, the only ease of satisfaction criteria is whether there is a stored plan
for a particular goal. This corresponds to the commonsense notion of trying to solve those
parts of a problem which one already has a good idea of how to solve. Accordingly, if one
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of the possible goals has a stored plan, and all the goals have the same importance level,
that goal is selected before other goals.

In the current implementation of KIP, a simple ease of satisfaction criterion for
goal selection is used. If one of the individuals goals has a direct parent for which there
is a stored plan, this goal is selected. Direct parent is defined as a parent which is directly
above the individual goal in the KODIAK hierarchy.

54 Conclusion

In this chapter, the two parts of goal establishment have been discussed: (1) goal
detection, and (2) goal selection. The advantage of this approach will be demonstrated in
the following chapter on plan determination. Due to KIP’s ability to detect and instanti-
ate complex goals, KIP can both use stored plans for these complex goals, or use other
previously-known plans which were designed for similar goals. If this strategy is unsuc-
cessful, KIP can decompose the complex goal into its component subgoals during goal
selecton. KIP can then attempt to determine plans for these subgoals. "



Chapter 6

Plan Determination

6.1 Introduction

Plan determination refers to the process of determining a plan for the goal of
the user. During each iteration of the planning process, a new plan is determined for the
selected goal. There are two steps to plan determination:

(1) plan selection - selecting a general plan among the plans
KIP knows for a selected goal

(2) plan specification - spécifying the values of the general plan for
. the particular problem situation

During plan selection, KIP must select a plan for the selected goal from among
the many plans of which KIP is aware. Unlike earlier planners which built plans from a
number of simple actions, KIP tries to modify a small number of complex plans in order to
satisfy the current goal of the user. Since many plans are stored in KIP’s database, finding
the best previously-known plan that will satisfy the current goals of the user s a non-trivial
problem.

Unlike earlier planners, KIP’s strategy for plan selection is not to search among
the known plans. Instead, KIP exploits the hierarchy of goals to find a stored plan associated
with a goal. Since a plan is a proposed action in service of a goal, KIP stores all known
plans as plans for particular goals. Therefore, instead of evaluating many plans, KIP looks
for plans associated with its detected goals.

In this chapter, I first describe KIP's strategy for plan selection when KIP has a
stored plan for the current goals. I then describe KIP’s plan selection strategy when it is
faced with a unique situation for which no stored plan is available. KIP’s plan specification
strategy is the same in both these situations. Therefore, I describe plan specification in the

following section regarding stored plans.
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6.2 Using Stored Plans to Satisfy User Goals

In order to select a plan for a selected goal, KIP first examines the goal itself and
determines if there is a known plan for that goal. In order to find a known plan for the
selected goal, KIP must first find the parent of the individual goal. In most cases, KIP has a
stored plan for a parent of the selected goal instance. This parent goal organizes information
about the particular goal, without specifying certain values of the goal. Examples of such
specifics include the name of the person who has the goal, and the time of day that the
person has the goal. In UC, such specifics as filenames and times are generally not included
in the parent goal. However, for certain goals, some of these specifics may be specified.
For example, KIP has particular information about editing the /usr/lib/aliases file, a file
on most UNIX machines which contains forwarding addresses for UNIX computer mail.
Therefore, KIP stores this specific filename in the representation of the goal of changing
the forwarding address database.

Thus, stored plans are used in order to focus immediately on a known plan which
has been designed for a particular goal. KIP’s knowledge-base includes stored plans for
many complex goals. Plans for these goals could be constructed by determining plans for
the individual components of the complex goals. However, by storing detailed complex
plans for these complex goals, KIP avoids a complicated plan synthesis. More importantly,
KIP can use the specific knowledge of the planner knowled ge-base designer - namely, that a
particular set of actions is the best plan fora complex goal. In this way, KIP can capture the
expert’s expertise regarding the most efficient and rouble-free plan for a particular complex
goal. KIP can do this without encoding and evaluating all the knowledge that resulted in
the UNIX expert’s choice of the particular complex plan.

For example, suppose the user asks the following question:

(1) How do I find out which processes are using
the most CPU time on my machine?

A reasonable response might be:

Type ps uaxg | fgrep -v ‘0. . This will
produce a list of all processes using more
than 1% of the CPU.

In example (1), KIP is asked to find a plan for arelatively complex goal, the FIND-
BIG-PROCESSES1 goal. In this case, KIP’s knowledge base includes a plan for the parent of
such a goal, FIND-BIG-PROCESSES goal. Even though the FIND-BIG-PROCESSES] goalis a
relatively complex goal, KIP’s planning work is minimal since it already knows a debugged
complex plan that will work for this goal.
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Stored plans are found by looking at the PLANFOR relation between plans and
goals in the KODIAK hicrarchy. A PLANFOR relates a goal to the plan for that goal. Thus,
if KIP is passed an individual goal far down in the hierarchy, this goal’s parents may in-
dicate a specific plan through a PLANFOR relationship. I show examples of such PLANFOR
relationships in the following section.

6.2.1 Plan Specification of Stored Plans

Once KIP has selected a potential plan, it must specify the values of certain parts
of the plan. KIP has selected a plan based on its function as the stored plan for some goal.
As described earlier, in every non-individual goal, many of the values are not specified.
Therefore, a plan stored for a non-individual goal will also have many unspecified values.
During plan specification, KIP uses information about the specific values of a particular
goal to fill in the specific values for the plan it has selected. This information is stored in
equate associatons between the unspecified values in the plan and the unspecified values
in the goal. Equate links are described in Section 3.5. In Figure 6.1, I give an example of
a plan specification of the MV-COMMAND plan. The MV-COMMAND is designed to move
the source file to the destination file using the format mv source-file destination-file. This
representation of the MV-COMMAND is complex due to the fact that the command arguments,
ie. that names of the files that are moved, change during the execution of the plan. File-
names used in the format of the MV-COMMAND refer to File-Name relations before the plan
is executed. Figure 6.2 shows part of the representation of the MV-COMMAND stored in the
KODIAK knowledge base. Figure 6.3 shows a graphical representation of the individaul
MV-COMMAND created in Figure 6.1.

Figure 6.1: KIP Trace of Stored Plan Specification

How do I rename the file named lewis to be called bernstein?
-+ KIP receives the following rename-file-effect goal as input
(rename-file-effect-1
(New-Name-37 bernstein-1)
(Previous-Name-63 lewis-1)
(Dcsxination-Fi]c-Of-Rename-File-Effecl—48 file-2)
:: The destination file is the file which has the new-name before the
., state-change occurs
(Destination-File-File-Name-46
(file-name-state-38
(Value-Of-File-Name-50 bernstein- 1)
(Object-Of-File-Name-42
(file-2
(File-Name-41 bernstein-1)
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++ file-name-state-38 refers 1o the the fact that the destination file has the
;- name bernstein-1. This state is true before the state-change interval
(File-Exist-70 false-69)))
:: KIP has been told that the destination file does not exist. Therefore there
-+ will be not concerns about deletion of the desiination file
(Source-File-Of-Rename-File-Effect-24
(file-1
(File-Name-56 lewis-1)
(File-Name-28 bernstein-1))
-+ The source file is the file that is effected in this state change. lis file-name
:+ is first lewis and later bernstein
(Initial-State-Of-Rename-File-Effect-61
(file-name-state-53
(Value-Of-File-Name-65 lewis-1)
(Object-Of-File-Name-57 file-1)))
(F'mal-State—Of-chame-Filc-Effect—33
(file-name-state-25
(Value-Of-File-Name-52 bernstein-1)
(Object-Of-File-Name-29 file-1)))
:: The initial state and final state's objects are both file-1. The values are
::the values of Previous-Name-63 and New-Name-37 respectively.
(Stam-Change-Imerva]-Of-Rename-Filc-Effect-35 state-change-time-34))
:: The state-change-interval is particularly important in this example,
:; because the names used by in the command format, must be the names of
:; the files before the state-change-inierval
(KIP (LIST RENAME-FILE-EFFECT-1))
Entering Goal Establishment Phase:
KIP is trying to determine a plan for the list of goals:
(rename-file-effect-1)
Selecting a goal from the List Of Goals ((rename-file-effect-1))
selecting the remaining goal
rename-file-effect-1

Entering Plan Determination Phase:
Looking for a plan for the Current Goal (rename-file-effect-1)
First looking at stored plans
Selected mv-command as a potential plan
Now specifying the plan for the particular planning situation:
(mv-command-71
(First-File-Arg-File-Name-100
(file-name-state-92
(Value-Of-File-Name-98 lewis-1)
(Object-Of-File-Name-96 file-1)))
(Second-File- Arg-File-Name-83
(file-name-state-75
(Value-Of-File-Name-81 bemstein-1)
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(Object-Of-File-Name-79 file-2)))
-+ These two stales represent the file-name of the command arguments.
:: These states must be true before the execution of the plan
(First-File- Arg-Of-Mv-Command-91 file-1)
(Second-File-Arg-Of-Mv-Command-74 file-2)
(Format-Of—Unix-Two-Filc-Command-SQ
(unix-two-ﬁle-command-fonnat-BS
(Command-Arg-108 mv-string-105)
(Format-First-File-Arg-102 lewis-1)
(Format-Second-File-Arg-110 bemstein-1)))
:+ The user could execute this command by typing mv lewis bernstein
(Command-Name-Of-Mv-Command- 106 mv-string-105)
(Imcndcd-Effect-Of—Mv-Canmand-72 rename-file-effect-1)
:» rename-file-effect-1 is represented above
(Command-Interval-Of-Mv-Command-85 plan-time-84)
(Intended-Effect-Interval-87 state-change-time-34)
:» The command-interval starts before the intended-effeci-interval
Entering Plan Failure Detection Phase: )
No plan failures are detected
To move the file named lewis to the file named bernstein,
use mv lewis bernstein.

6.2.2 Comparison with Previous Approaches which use Complex Plans

KIP’s strategy of using complex plans for complex goals is similar to strategies
used by earlier planners such as HACKER[34] and MACROPS [11]. These planners cre-
ated subroutines or macro-operators for complex goals which they had encountered pre-
viously. Recently, many researchers have focused on methods for creating such complex
plans. Explanation-based learning methods (EBL) [9] focus on creating complex plans
in planning by generalizing over example problems which are presented to the system.
Explanation-based generalization (EBG) research [28] has focused on generalizing over a
set of axioms in a particular domain.

One problem that been not been addressed by any of these systems is how these
complex plans are actually used once they have been created. Adding many new plans
to the knowledge base in all of these systems would cause an increase in the processing
necessary for plan selection. Instead of trying every plan and seeing which has best result,
some means of indexing the plans would be necessary. In KIP, indexing of plans is not
important for the selection of stored plans, since plans are chosen by their relationship to

the selected goal.
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6.2.3 Storing Multiple Plans for a Goal

Sometimes, KIP stores more than one plan fora particular goal. This may occur
when the planner knowledge-base designer knows of more than one plan that will satisfy a
particular goal. Multiple plans are often stored for general goals, since most specific goals
tend to have one specific plan associated with them.

In additon, KIP can also store the knowledge that, in general, one plan is better
to use than another plan. The ordering of stored plans for a particular goal encodes the
knowledge that one plan is, in general, preferable over other stored plans. In the current
implementation of KIP, the ordering of muldple plans is implemented by storing multiple
planfor relations in a list. The best plan is stored at the beginning of the list. As mentioned
in Chapter 3, there is currently no way to specify a list of values as the range of a rela-
tion. Ordering of multiple plans is implemented using the current KODIAK interpreter,
and defining the PLANFOR relations in such a way that the first PLANFOR relation returned
is the most important one.

This ordering knowledge enables KIP to attempt to use these plans in an order
prescribed by the planner knowledge-base designer. The knowledge base designer does not
need to encode the reasons that one plan is better than another.

For example, suppose the user asks the following question:

(2) How do I edit a file named mayfield?

KIP knows of a number of different plans for the goal of editing a file. KIP stores
these plans in the following order: the VI-COMMAND plan, the EMACS-COMMAND plan,
and the ED-COMMAND plan. Thus, KIP first chooses the VI-COMMAND plan. This plan is
chosen because KIP’s knowledge base stores it as the best plan for this particular goal. The
knowledge base designer has stored VI-COMMAND plan as the best plan because it both
requires a small amount of startup time and the editor is familiar to most UNIX users. (In
this case, these reasons are not stored in the KIP knowledge base.) However, if KIP detects
problems with this plan during plan failure detection, another stored plan is considered. A
KIP trace of Example (2) is presented in Figure 6.4.

Figure 6.4: KIP Trace of Plan Determination with Multiple Plans for a Single Goal

User: How doI edit the file named mayfield?
KIP is trying to determine a plan for the list of goals:
(edit-file-effect-1
(Effected-File-23
(file-1
(File-Name-47 mayfield-3)))
(Final-State-Of-Edit-File-Effect-31



(contents-state-24
(File-Of-Contents-28 file-1)
(Contents-Of-Contents-30 file-contents-26)))
(IniLia]-Stau:-Of-Edil-File-EffecMS
(contents-state-36
(File-Of-Contents-40 file-1)
(Contents-Of-Contents-42 file-contents-38))))
;- The initial state is that file-1 has some conients, and the final-state is that file-1
:: has some other contents. These contents are not necessarily different.

Selecting a goal from the List Of Goals ((edit-file-effect-1))
selecting the remaining goal
edit-file-effect-1
Looking for a plan for the Current Goal (edit-file-effect-1)
First looking at stored plans
There are three potential plans for the current goal
The plans are:
(vi-command emacs-command ed-command)
Will try these plans in order
Trying vi-command first
-+ KIP has used the knowledge that the vi-command is generally the
:; preferable plan. If KIP finds that this plan fails during plan failure detection, it
- will attempt to use one of the other plans.
Now specifying the plan for the particular planning situation:
(vi-command-60
(lmcnded-EffeCL-Of-Unix-Edning-Command-62
(edit-file-effect-1
(Effected-File-27
(file-1
(File-Name-76 mayfield-3)))
(Final-State-Of-Edit-File-Effect-37
(contents-state-30
(File-Of-Contents-34 file-1)
(Contents-Of-Contents-36 file-contents-32)))
(IniLial-Sxatc—Of—Edit~File-Effect-53
(contents-state-44
(File-Of-Contents-50 file-1)
(Contents-Of-Contents-52 file-contents-46)))))
(File-Arg-Of-Unix-Fi]e-Command-64 file-1)
:: The file-arg is the same as the effected-file of edit-file-effect-1
(Fomxal-Of-Unix-File-Command-66
(unix-ﬁle-comnwnd-fomat-és
(Command-Arg-72 vi-string-67)
(Format-File-Arg-74 mayfield-3))))
:: The format is vi followed by mayfield. This information is inherited from the
:; unix-file-command seen earlier.
Plan (vi-command-60) has been selected as a plan for the Current Goal (edit-file-effect-1)

83
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No plan failures have been detected.
To edit the file named mayfield, type vi mayfield.

If KIP has more complete information about the particular planning situation,
KIP concretes the user’s goal to a more specific goal and is able to choose a more specific
plan. For example, in (2) if KIP is provided information from the KNOME user model
[6,7] that the user is familiar with the emacs editor, the EMACS-COMMAND plan would be
considered first. In this case, KIP knows that the user is in the category of EMACS-USERS.
Therefore, KIP concretes the user’s EDIT-FILE-EFFECT goal to an instance of the EDIT-FILE-
WITH-EMACS-EFFECT goal. The plan for the more specific EDIT-FILE-WITH-EMACS-EFFECT
goal is the EMACS-COMMAND plan. A KIP trace where of Example (2) with this additional
user model knowledge is presented in Figure 6.5.

Figure 6.5: KIP Trace of Plan Determination Using Concretion

User: How do 1 edit the file named mayfield?
:: In this case, KIP also has information that the user is an emacs user. This
:; information comes from the KNOME user model.

KIP is trying to determine a plan for the list of goals:
(edit-file-effect-1
(Effected-File-27
(file-1
(File-Name-101 mayfield-3)))
(Final-State-Of-Edit-File-Effect-37
(contents-state-30
(File-Of-Contents-34 file-1)
(Contents-Of-Contents-36 file-contents-32}))
(Initial-State-Of-Edit-File-Effect-53
(contents-state-44
(File-Of-Contents-50 file-1)
(Contents-Of-Contents-52 file-contents-46)))
(Desired-By-62 uc-user-60))
:: This representation of edit-file-effect-1 is the same as in the previous trace,
:: except for the additional information that the edit-file-effect-1 goal is desired
:; by an emacs-user. This information allows the KIP concretion mechanism to
:: make the following inference:
Concreting edit-file-effect-1 to an instance of edit-file-with-emacs-effect
:: The concretion mechanism has concreted edit-file-effect-1 because it knows that
;- emacs-users are generally referring to using emacs when they express an
;; edit-file goal.
Selecting a goal from the List Of Goals ((edit-file-effect-1))
:- The edit-file-effect-1 goal maintains its name in this trace, even though itis
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-+ now an instance of edii-file-with-emacs-¢ffect. Concreted objects maintain
:: their original names, if these names are part of KIP's input. This decision

:; was made in the KIP kodiak implementation in order to make trace outpul

:: more readable, and for ease in debugging.

selecting the remaining goal
edit-file-effect-1
Looking for a plan for the Current Goal (edit-file-effect-1)
First looking at stored plans A
Selected emacs-command as a potential plan
- Notice that only emacs-command is selected as a potential plan,
:+ because KIP is planning for a more specific goal.
Now specifying the plan for the particular planning situation:
(emacs-command-64
(File-Arg-Of-Unix-File-Command-67 file-1)
(Intended-Effect-Of-Emacs-Command-65
(edit-file-effect-1
(Effected-File-27
(file-1
(File-Name-101 mayfield-3)))
(Final-State-Of-Edit-File-Effect-37
(contents-state-30
(File-Of-Contents-34 file-1)
(Contents-Of-Contents-36 file-contents-32)))
(Lnitial- State-Of-Edit-File-Effect-53
(contents-state-44
(File-Of-Contents-50 file-1)
(Contents-Of-Contents-52 file-contents46)))
(Desired-By-Of-Edi(-File-With-Emacs-Effect-& uc-user-60)))
(Format-Of-Unix-File-Command-71
(unix-file-command-format-70
(Format-File-Arg-77 mayfield-3)
(Command-Arg-75 emacs-string-72))))
No plan failures detected for Candidate Plan (emacs-command-64)
To edit the file named mayfield, type emacs mayfield.

6.3 New Plans

There are many situations when KIP does not know of a stored plan for a selected
goal. KIP may not have been faced with the situation before. Even in a domain like UNIX,
it is impossible to anticipate every potential user goal. Instead of computing a plan from
scratch, KIP tries to apply its knowledge of stored plans in orderto determine a plan that will
be useful in the unique planning situation. KIP does so by attempting to use a stored plan
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that addresses a different but related goal. This plan will then be modified in subsequent
loops of plan synthesis. ,

In such a situation, KIP examines its goal hierarchy in order to find the goal
which is most similar to KIP’s current goal. KIP’s plan selection algorithm for new plans
is thus called the Goal Similarity Matching Algorithm, or GSMA. This section describes
the GSMA algorithm and provides a simple example of its use.

KIP first searches for a goal which is most similar to the current goal by exploiting
the hierarchy of goals in the KODIAK network. In order to find the goal in the hierarchy
which is most similar to the current goal, KIP looks for the goal which shares more common
parents with the current goal than any other goal in the hierarchy. If two or more goals have
the same number of common parents, the goal which is the least distant from these parents
is chosen as the most similar goal. KIP then examines these plans stored for the similar
goal and determines which one of the plans will work in this planning situation. If none
of the plans for the similar goal will work for the current goal, KIP tries plans for the next

most similar goal.
For example, suppose the user asks the following question:

(3) How do I move the file george from the
machine named renoir to the machine named

kim?

KIP detects the goal of moving the file from the machine renoir to the machine
kim. Suppose this is called the MOVE-FILE-TO-DIFFERENT-MACHINE! goal. This goal is cre-
ated and placed correctly in the hierarchy by the UC parser and the PAGAN goal analyzer.
There is no plan for this individual goal in the KIP knowledge base. KIP then tries unsuc-
cessfully to determine a stored plan for its parent, the MOVE-FILE-TO-DIFFERENT-MACHINE
- goal. Therefore, KIP uses the GSMA algorithm to search for a plan belonging to the goal
most similar to the MOVE-FILE-TO-DIFFERENT-MACHINE goal. KIP does this by finding a
goal that shares more common parents with moving a file to another machine than any other
goal. Moving a file to another machine is dominated by ethernet (machine-machine links)
goals and file-transfer goals. Therefore, KIP first searches for other goals in the hierarchy
that are dominated by these two goals. In this case, as shown in Figure 6.6, there is one
goal that has both of these parents, the COPY-FILE-TO-DIFFERENT-MACHINE goal. There is
one stored plan associated with this goal, the RCP-COMMAND plan. -

Therefore, KIP selects the RCP-COMMAND plan as a potential plan to move a fil
to another machine. This plan is then tested during the remainder of the planning process.
If the plan does not satisfy all the goals of the user, the plan is modified by determining
which simple goals of the user’s complex goal are left unsatisfied. Plans for these simple
goals will be selected by the same algorithm, i.e., using a stored plan or examining plans of
goals similar to these goal parts. In this way, KIP progressively refines the potential plan
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Figure 6.6: Example of Goal Similarity

until as many goals as possible are satisfied. In this case, the RCP-COMMAND plan does
not satisfy all the goals of the user. An effect of the RCP-COMMAND plan is that the source
file still exists. The user’s goal specifies that this file should no longer exist. Therefore,
during a subsequent goal detection phase, KIP detects the goal that the source file should
be deleted. This goal is passed on to a subsequent plan selection phase.

The GSMA strategy seems cognitively plausible. A human consultant, faced with
a problem he has not previously encountered, tries to use solutions which have worked in
cases which are similar to the current one. In the next section, in order to more fully under-
stand this algorithm, the GSMA algorithm is contrasted with previous planners’ algorithms
for plan selecdon.

6.4 Comparison of GSMA with Previous Approaches

6.4.1 GPS, STRIPS, and ABSTRIPS

It is informative to contrast GSMA with the more traditional way of selecting a
potential plan, namely means-end analysis [29). Means-end analysis was used by planners
like GPS [10] and STRIPS [12]. It entails examining all the plans in the database and selecting
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the plan that reduces the greatest difference between the present state and the goal state.
STRIPS is presented with a well-formed formula describing the goal state and the present
state as well as a set of formal descriptions of available operations. STRIPS ther attempts
to prove the truth of the goal state. If an individual subgoal of the goal state cannot be
proven from the present state, STRIPS selects an operator that will allow the proof attempt
to continue.

For example, suppose that STRIPS were asked to find a plan for the goal of moving
a file from one machine to another. STRIPS would search for a plan that reduces the greatest
difference between the present state of file] existing on machinel and not on machine2, and
the goal state of file] existing on machine2 and not on machinel. The differences between

the goal state and the present state are:

(1) filel exists on machine2 in the goal state and filel does not
exist on machine2 in the present state

(2) filel does not exist on machinel in the goal state and filel does
exist on machinel in the present state

STRIPS would search through all its plans and find two pertinent plans: RCP-
COMMAND - to copy the file and reduce difference (1), and RM-COMMAND - to delete filel
and reduce difference (2). Since these two plans reduce the same amount of difference,
according to the formal criteria of STRIPS, it might arbitrarily choose to first use the RM-
COMMAND plan and then look for another plan to reduce the remaining difference. How-
ever, since file deletion negates the possibility of using the RCP-COMMAND plan, this plan
would fail.

ABSTRIPS [31], which modified STRIPS in order to avoid the consideration of plans
that are difficult to achieve, might actually do worse than STRIPS in this particular exam-
ple. ABSTRIPS used GPS’s idea of reducing the important differences in the problem first,
by assigning criticality levels to differences. ABSTRIPS reduces those differences with the
highest criticality first. Criticality levels are assigned by the program itself. These levels
are assigned according to the difficulty inherent in satisfying the preconditions for plans to
reduce a particular difference. In the cross-machine move example, however, removing a
file on machinel might have a higher criticality level than copying a file from machinel.
Copying a file only requires read permission, whereas deleting a file requires write per-
mission on the parent directory. Write permission on a UNIX directory is more difficult to
satisfy than read permission on a UNIX file since most UNIX files have read permission.

In GPS, operators are selected according to which operator reduces the great-
est difference by using a precomputed difference table. Differences are reduced in order
of difficulty according to a predetermined ordering, termed a DIFF-ORDERING. The DIFF-
ORDERING is assigned by the GPS implementor based on the ease of task accomplishment.
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For example, a human expert might determine that deleting a file is more difficult than
creating a file, and assign a DIFF-ORDERING accordingly.

Both ABSTRIPS and GPS could conceivably first choose to reduce difference (2).
ABSTRIPS might make this choice because the difference is at a higher criticaliry level. GPS
might make the same decision because the difference is higher up in the DIFF-ORDERING.
If these programs solve difference (2) first, they have to deal with the interacting subgoal
of the file being deleted before it is copied.

Each of the three planners described above uses means-end analysis, but tech-
nical problems prevent them from efficiently determining the proper difference to reduce.
STRIPS’s formal criteria prohibit it from being able to choose which subgoals to reduce.
Both GPS and ABSTRIPS reduce differences according to their order of importance. How-
ever, since both use difficulty as a metric for importance, they sometimes erroneously deal
with the difficult parts of problem before the important parts of a problem. When using
these planners for knowledge-intensive problems, their greatest limitation is their inability
to deal with goal-related knowledge on a sufficiently complex level. Rather than select a
plan based on the complex goal of a cross-machine move, these planners are forced to deal
individually with the simple goals that comprise this complex goal.

KIP addresses this problem by using the GSMA algorithm to apply knowledge re-
garding the higher-level complex goals during plan selection. Rather than use only knowl-
edge about the lower-level simple goals, KIP uses the conceptual hierarchy of the complex
goals 1o find plans for similar goals. Since these goals are close in the conceptual hierarchy,
they are in fact similar. Thus, a plan for one goal will probably satisfy the other goals to a
great degree. Thus, GSMA is viewed as a means of finding the plan that reduces the dif-
ference between the user’s goal and present state by the greatest amount, where similarity
determines which important difference should be reduced. For example, in the cross ma-
chine move example, KIP chooses RCP-COMMAND over RM-COMMAND, even though this
may not reduce the most difficult difference between the present state and the goal state.

Our limited experience with this Goal Similarity Matching Algorithm suggests
that problems of interacting subgoals do not often occur when using the algorithm on
knowledge-intensive problems. In addition, using GSMA reduces search time. KIP needs
only to consider plans for the few goals that are similar to the user’s goals, rather than
considering all the possible plans in the database as was necessary in STRIPS and AB-
STRIPS. Both these programs use a resolution theorem prover to find the plan that reduces
the greatest difference. This theorem prover considers every potential plan in the database.

6.42 NOAH

NOAH [32] avoided problems of interacting subgoals by using a least commut-
ment strategy. Unlike STRIPS, NOAH did not specify which order the steps in a plan
occurred, untl all the plan steps had been selected. NOAH's plan selection strategy 1s very
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similar to the means-end analysis planners described above. NOAH decides on a plan by
looking at all the plans in its knowledge base. Like ABSTRIPS, NOAH uses a hierarchi-
cal planning approach. Interacting subgoals are usually only discovered when they are in
the same hierarchy in the planning structure. If NOAH selects a plan for a subgoal in one
hierarchy, this plan may delete preconditions of a plan for another subgoal in a different
hierarchy. According to Sacerdod, due t0 NOAH’s procedural net architecture, it is diffi-
cult to detect such problems. If such problems are detected, it is too late to select another
plan for either of the subgoals or reorder the plan steps. Instead, the deleted precondition
is merely asserted again.

Since KIP uses a declarative representation of plans and goals, such problems are
avoided. By using the GSMA algorithm, KIP first determines a plan for the most important
part of the complex goal. While constructing plans for less important parts of the complex
goal, KIP has access to the preconditions necessary for the important parts of the plan
already constructed. Thus, KIP can immediately determine if any new parts of the plan
delete preconditions necessary for successful execution of previously specified plan steps.
KIP can then make decisions regarding the ordering of plan steps with reference to the
important parts of the plan. If a new plan step deletes preconditions necessary for important
parts of the plan, KIP can choose to order the new plan step accordingly. For example,
KIP might choose to order a new plan step before the plan step which enabled the deleted
preconditon.

I do not claim that the GSMA algorithm will solve all the interacting subgoals
problems NOAH or the other means-ends analysis planners were unable to address, or
prevent them from occurring. Instead, I suggest that many of the problems with interacting
subgoals occur when plan selection is not done in a knowledge intensive fashion. However,
it would be difficult to apply the GSMA algorithm to these planners since they work in
the knowledge-deficient domain of the blocks world. The GSMA algorithm is primarily
designed for knowled ge-intensive domains where the knowledge base will contain similar
goals to the planner’s current goals. Nonetheless, it is important to compare the GSMA
algorithm approach to the plan selection algorithm used by knowledge-deficient planners
since these methods are often applied to knowledge-intensive domains.

6.4.3 PLEXUS

In contrast to the means-end analysis planners discussed above, PLEXUS [4]
uses an adaptive planning strategy. PLEXUS tries to adapt a pre-existing plan to solve a
goal for which no plan is known. PLEXUS differs from KIP in that it focuses on adapting
specific complex plans from the same domain or from other planning domains. PLEXUS
accomplishes this by attempting to use the steps from an old plan in a new situation. When
one of these steps fail, PLEXUS attempts to plan steps in the same hierarchy that will work
in the new situaton. For example, PLEXUS tries to figure out how to act in the New
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York subway system by using a plan which has been developed for the BART (Bay Area
Rapid Transit) in San Francisco. PLEXUS realizes that it cannot buy a ticket from a ticket
machine, because no machines are present in the subway station. Thus, PLEXUS decides
to buy a token from the token seller instead.

Unlike PLEXUS, KIP does not attempt to substitute the actual plan steps of a
particular plan which it has selected. If KIP determines that a selected plan will fail in a
particular situation, it tries to add to the plan to avoid failure instead of substituting plan
steps.

If KIP tried to use plans from other operating system domains, PLEXUS's strate-
gies in plan adaptation could be very useful. However, PLEXUS is limited by the lack of
research on the selection of the plan to be adapted. I suggest that the GSMA algorithm
could be modified to find such a plan from another domain. Suppose that no successful
plan was found for a goal which was in the same domain as the user’s goal. The GSMA
algorithm could search for a goals which are similar to the user’s goal in other plan/goal
domains. PLEXUS could then try to adapt a plan for one of these goals. If that plan was
not adaptable in the particular planning situation, a plan for a goal in another domain could
be adapted instead. Currently, GSMA’s simple definition of similarity is based on physical
closeness in the hierarchy. In order for GSMA to find similar goals in different plan/goal
domains, GSMA’s similarity metric would have to be improved so as to detect more com-

plex similarities.

6.5 Conclusion

In this chapter, the two steps of plan determination, plan selection and plan spec-
ification, have been discussed. KIP first tries to select a stored plan for the user’s goal. If
no stored plan is known, KIP selects a plan using its Goal Similarity Matching Algorithm
or GSMA. Once KIP has selected a plan, it must be specified for the particular planning
situation KIP is considering.

The plan that KIP has selected and specified may not actually work in particular
planning situation. A condition of the plan may not be satisfied or the plan may cause a goal
conflict with another goal or plan of the user. In the following chapter, KIP’s algorithm for
the detection of these plan failures is described.



Chapter 7

Plan Failure Detection

7.1 Introduction

Once KIP has determined a potential plan to satisfy the goals of the user, it must
decide if the plan will really work in the current planning situation. If the plan will fail in
the present state of the world, KIP should either try to modify the plan or determine a new

plan for the user.
There are two possible sources of failure that KIP must consider:

(1) condition failure - plan failure due to failure of a condition
necessary for successful execution of a

plan

(2) goal conflict failure - plan failure due to a conflict between an
effect of a plan and a user goal

In plan failure due to condition failure, a plan fails because a condition necessary
for successful plan execution is unsatisfied in the present state of the world. When a con-
dition is easy to satisfy, the satisfaction of that condition becomes a new goal for KIP. If
a condition is difficult or impossible to satisfy, a new plan must be determined, since the

current plan will not work.
Plan failures due to goal conflict occur when the effect of a plan conflicts with a

user goal. Before suggesting the plan to the user, KIP must resolve the conflict. KIP may
decide to:

(1) modify the plan so that the goal conflict does not occur
(2) determine a new plan that will not cause such a conflict

(3) abandon the goal with which the effect of the plan conflicts

92
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In this chapter, I demonstrate the difficulty of detecting potential plan failures
and the characteristics of this problem. In the following chapter the solution used by KIP,
involving the notion of concerns, is discussed.

7.2 The Problem: Focusing Attention

The main problem for both condition failure detection and goal conflict detection
is the large number of potential failures inherent for any particular plan. Every plan may
have many conditions which must be satisfied in order for the plan to execute successfully.
Furthermore, the effects of a plan potentially conflict with many goals of the user. These
include both user-specified goals and long-term user interests which may be threatened by
the plan’s effects. It is undesirable for the planner to consider every possible plan failure
cach time a potential plan is considered. Therefore, a major issue for plan failure detection
is focusing the attention of the planner on those conditions and effects which will cause
plan failure.

Research in knowledge-deficient planning has not considered the attention-focus
problem. The focus of attention on certain conditions in particular has not been an important
issue for knowledge-deficient planners. Such planners generally consider only those plans
which consist of one or a few simple low-level operations. Since each one of these low-level
operations has few conditions, each plan has few conditions which need to be considered.
In addition, such planners are only provided with limited knowledge about particular plans.
For example, a STRIPS planner might know that a door can only be opened if it is unlocked.
However, if the door was nailed shut, STRIPS would not realize that a condition failure had
occurred.

For example, let us return to the cross-machine move example discussed in Chap-
ter 6. Once again, suppose that the user asks the following question:

(1) How do I move the file george from the
machine named renoir to the machine named

kim?

As was shown earlier, KIP would select the USE-RCP-COMMAND plan in order
to address the goals of the user. KIP must decide if this plan will work in the present
planning situation. I now demonstrate the potential plan failures even in the one step USE-
RCP-COMMAND plan. These include both condition failures and goal conflict failures.

In order to detect potential failures that might occur if the plan was executed,

KIP must consider the conditions necessary for the USE-RCP-COMMAND plan to execute
successfully. These include the following conditions:

e the user must have read permission on the source file
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e the user must have write permission on the destination file

o the user must have read permission on the directory of the source file

o the user must have write permission on the directory of the destination file
° the; user must have an account on the destination machine

e the destination machine must be up

e the user’s source machine must be in the destination’s machine .rhost file

¢ the account names on the source and destination machine must be identical

While many of these conditions are unlikely to fail, , KIP must still know about
all of the conditions. Such knowledge is needed for those unlikely situations wherein the
conditions are not satisfied. The listed conditions are only a fraction of the conditons
which KIP stores as necessary for the USE-RCP-COMMAND 10 execute successfully. KIP’s
knowledge-base includes many other conditions equally important for successful execution
of this plan. Since the USE-RCP-COMMAND plan is described in a plan hierarchy, it inherits
other conditions from more general descriptions of UNIX plans in the plan hierarchy. These
conditions are even less likely to cause condition failure. They include:

e the user’s machine must be up
e the user must have an account on his machine
e the user’s terminal must be working

In addition, there are a number of effects of the USE-RCP-COMMAND plan that
might conflict with explicit goals or long-term user interests. The problem of detecting
goal conflict failures is even more complex than detecting condition failures. Every effect
of a plan might potentially conflict with every goal and long-term interest of the user. For
example, for the USE-RCP-COMMAND plan, the following are among those effects about
which KIP is aware: ’

e The source file and the destination have the same protection.

e If the user does not have an account on the destination machine, the message is
printed: Login incorrect.

¢ If the destination file exists, it will be deleted.

e The contents of the source file and the destination file are identical.
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o If the path is not specified the destination file will be in the user’s home directory

These effects might conflict with any explicit user goals about which KIP is
aware. The number of explicit user goals depends on the particular interaction with the
user. For example, in a long conversation with the user, many explicit user goals might
be expressed. The effects of the USE-RCP-COMMAND plan might conflict with any one or
more of these explicit goals. Furthermore, any of these effects might conflict with any of
the many user interests. These include:

e Keep your password secret.
o Preserve access to your files.
¢ Don’t change other people’s files.

¢ Don’t make your directory tree too deep.

Any of these interests might conflict with any of the effects of the USE-RCP-
COMMAND plan. Detecting these goal conflicts might therefore entail the comparison of
every effect with every goal and interest. Thus, whenever the USE-RCP-COMMAND plan is
a potential plan, there are many potential condition failures and goal conflict failures that
need to be considered.

Thus, when KIP considers even the relatively simple rcp command in a potential
plan, there are many conditions and goal conflicts that need to be examined. Few of these
conditions and goal conflicts are likely to cause plan failure. Therefore, KIP should not
consider every potential plan failure. In fact, any commonsense planner’s algorithm should
only consider those plan failures which are most likely.

7.3 Properties of a Plan Failure Detection Algorithm

Three of the properties of a commonsense planner (CSP), discussed in Chap-
ter 1, are particularly important for any CSP algorithm for detecting plan failures. These
properties, along with their applicability to plan failure detection are:

(1) Knowledge Efficiency - consider only those potential plan
failures which are most likely to occur

(2) Cognirive Validiry - attempt to model the method used by
human consultants use to detect plan

failures
(3) Uncertainty - ability to detect plan failures effectively

when the planning situation is not fully
specified
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Knowledge Efficiency is particularly important for plan failure detection. Com-
monsense planners generally store many conditions and effects for a particular plan. From
a computational perspective, it would be extremely inefficient to check for every potential
plan failure, since most of the these potential plan failures are unlikely.

Since commonsense planners attempt to model a human planner, the cognitive
validity property entails a further limiting of those conditions which are considered. The
failure of a potential plan is usually obvious to a human planner. Rather than considering
every possible plan failure, a human planner considers only those conditions which will
often cause conditon failure. The human planner also considers those effects, goals, and
interests which are likely to cause goal conflict.

Finally, a commonsense planner must be able to detect plan failures even when it
is uncertain of values in the planning situation. Most previous planning research assumed
that the values for all the conditions is known. However, in UC, when a user describes a
planning problem later passed to KIP, the values for many conditions are usually left out. It
would be undesirable to prompt the user for this information, particularly for those values
which are not important for the specific planning situation. Instead, a CSP algorithm for
plan failure detection should be able to detect plan failures by relying on default situation
knowledge. The use of default situation knowledge may entail further processing for all
the plan failures considered by a CSP. Therefore, it becomes even more important to limit
the conditions, effects, goals, and interests a CSP considers.

The use of default situation knowledge complicates the process of deciding which
plan failures should be considered. Since default values depend on the particular planning
situation, different plan failures should be considered in different situatons. For example,
suppose the user asks the following questions:

(2) User: How do I copy a file named filel?

(3) User: How do I copy John’s file named filel?

In (2), a CSP should assume based on its default situation knowledge, that the
file belongs to the user. Therefore, there is no reason to check the condition that the file
is readable by the user, even though this is one of the many conditions of the UNIX cp
command. However, in (3) additional conditions should be checked. Because the file to be
copied belongs to someone else, the read permission of the file should be checked.

Therefore, any CSP algorithm for plan failure detection must be able to assess
plans wherein only partial knowledge is available. As situations deviate from default sit-
uations, different potential plan failures should be considered. In the following chapter, I
describe an algorithm for plan failure detection using concerns. One of the important parts
of that algorithm is the ability to focus on different potential plan failures when defaults are

violated.
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7.4 Conclusion

A method of limiting the plan failures which need to be considered is needed. A
CSP algorithm that addresses the plan failure detection problem should be able todeal witha
Jarge knowledge base that includes the description of the many conditions that are necessary
for plans and the many potential sources of goal conflict. A commonsense planner should
also have the ability to use default knowledge in the many planning situations wherein
complete knowledge is impossible. A CSP should consider only those conditions which are
most likely to fail and those goal conflicts which are most likely to occur. The consideration
of unlikely plan failures would be inefficient from a processing perspective and would not
model human behavior. _

One of the major focuses of this chapter has been CSP’s dependence on default
knowledge for plan failure detection. Any CSP algorithm for plan failure detection must be
able to assess plans wherein only partial knowledge is available In the following chapter,
we describe an algorithm for plan failure detection using concerms. One of the important
parts of that algorithm is the ability to focus on different plan failures when defaults are
violated.

This chapter has discussed both types of plan failures detection: condition failure
detection, and goal conflict failure detection. Goal conflict failure detection is actually more
complex that condition failure detection. A commonsense planner must consider the effects
of a plan, the goals and interests of the user, and the goal conflict itself. In Chapter 9, the
goal conflict detection problem will be discussed in more detail.



Chapter 8

Concerns

8.1 Introduction

In the previous chapter, the problem of detecting plan failures was discussed. This
discussion demonstrated the need for some way to limit the plan failures that are considered
during the plan failure detection process. In the present chapter, an algorithm for detecting
potential plan failures is described.

In order to address the plan failure detection problem, I introduce a new knowl-
edge structure, termed a concern. Concerns identify which aspects of a plan are most likely
to cause plan failure. They are part of the knowledge base of the planner reflecting his ex-
perience of plan failures. There are two types of concerns that address the two types of plan

failures:

(1) Condition Concerns - concerns about the conditions of a
plan which are most likely to be

unsatisfied

(2) Goal Conflict Concerns - concerns about potential conflicts be-
tween effects of a plan and a user goal

Condition concerns refer to those aspects of a plan that are likely to cause plan
failure due to a condition of the plan that is needed for successful execution.

Goal conflict concerns refer to those aspects of a plan which are likely to cause
plan failure due to a potential goal conflict between an effect of a plan and a goal of the
user. Goal conflict concems relate plans to user goals and to other pieces of knowledge
which might be considered extraneous to the plan. Examples of this knowledge include
user interests which may be threatened by the plan. Since interests are not usually inferred
until such a threat is perceived, goal conflict concerns often refer to conflicts between a

potential plan and a long-term interest of the user.

98
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In the current implementation of KIP, there are two kinds of concems that KIP
manipulates:

(1) stored concerns - are those concerns stored in KIP’s long
term knowledge-base

(2) dynamic concerns - CONCEINS which arise during the planning
process itself

Stored concemns include the important conditions of a stored plan that need to
be considered when suggesting a possible plan, and descriptions of potential goal conflicts
with the effects of a stored plan. Stored concerns are, therefore, a means for the planner
database designer to express his personal experience regarding which aspects of a stored
plan are most likely to fail.

Dynamic concerns are usually instances of stored concerns. When a possible plan
that is an instance of some previously known stored plan is considered, the stored concerns
of the stored plan generate dynamic concerns for the new instance of the plan. Dynamic
concerns are introduced by KIP when it notices a potential condition or goal conflict failure,

but has not yet decided whether such a failure will occur.
In this chapter, KIP’s use of concerns for plan failure detection is described. A

simple example of the use of condition concerns is presented, followed by a discussion of
the properdes of concerns. Then, violated default concerns, which allow KIP to consider
potential plan failures in non-default situations, are introduced. Finally, KIP’s plan failure
detection algorithm using concerns is discussed.

The remainder of this chapter discusses condition concerns, since they are simpler
than goal conflict concerns. As noted, at the end of the previous chapter, the goal conflict
detection problem is more complex than the condition failure detection problem. Therefore,
goal conflict concerns present many more problems than condition concems. The goal
conflict detection problem will be discussed in Chapter 9, and goal conflict concerns will
be discussed in Chapter 10. However, most of the discussion of conditions concerns in this
chapter also applies to goal conflict concerns. The differences between condition concerns
and goal conflict concerns will be discussed in Chapter 10.

8.2 An Example of the Use of Concerns

The simplest use of condition concerns occurs in the case where the user has
expressed a goal for which KIP has a stored plan. Let us examine such an example in
order to demonstrate how KIP’s plan failure detection algorithm uses concerns in order
to determine those conditions of a particular plan which should be considered. In this
example, experience of the planner knowledge base designer regarding the rcp command
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is represented as a concern. His experience is that the rcp command often fails due to a
problem with the .rhost file. For example, suppose the user asks the following question:

(1) User: How do I copy the file foo from the
machine eucalyptus to the machine renoir?

KIP is passed the goal of copying the file foo from the machines named eucalyptus

to the machine named renoir. In this case, KIP's knowledge-base contains a stored plan for
the goal of copying a file from one machine to another, namely, the USE-RCP-COMMAND
plan. '
KIP creates an instance of this plan, which it calls USE-RCP-COMMANDI. KIP
must then evaluate the USE-RCP-COMMANDI plan in order to determine if the plan is appro-
priate for this particular planning situation. This process entails the examination of those
conditions likely to cause plan failure.

In order to examine these conditions, KIP looks at the stored concerns of the
stored plan, USE-RCP-COMMAND. For each of the stored concerns associated with the stored
plan, it creates a dynamic concern in this individual plan, USE-RCP-COMMAND1. The only
stored concern for this individual plan is that the user have the machine named eucalyptus
in his .rhost file on renoir. KIP therefore creates a dynamic concern regarding this rhost

file.

KIP then must evaluate the dynamic concern. In this case, there is no explicit
information about the .rhost file. Therefore, KIP assumes that rhost file does not include
the source machine. This assumption is based on knowledge about defaults in UNIX. The
concemn is therefore instantiated as a potential source of plan failure. In a second iteration
of plan synthesis, KIP adds to the plan, the step of including eucalyptus in the .rhost file.

Since there are no other stored concerns for this particular plan, KIP assumes that

the plan will execute successfully. The plan is then suggested to the user:

UC: To copy a file foo to renoir, type rcCp foo renoir:. But
first, add eucalyptus to your .rhost file on renoir.

There were many other conditions of the USE-RCP-COMMAND plan that KIP might
have considered. Some of these conditions are described in the previous chapter. For exam-
ple, the condition the file exists is an important condition for the rcp command. However,
KIP need not be concerned about this condition in most planning situations, since it is un-
likely that this condition will cause plan failure. Hence, such conditions are not stored in
KIP’s long term memory as stored concerns.
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8.3 Properties of Concerns

Concerns allow KIP's CFD algorithm to adhere to the properties for a CFD algo-
rithm described in the previous chapter. Concerns are primarily directed at the knowledge-
efficient property of CFD algorithms. Instead of exhaustively searching every potential
condition failure, concerns allow KIP to consider only those conditions which are most
likely to cause plan failure. Since most plans only have a small number of concerns, the
use of concerns limits the amount of processing needed for condition failure detection. KIP
is knowledge-efficient both when plan failures are detected and when no failure is detected.
KIP detects condition failures quickly by considering only those conditions which are likely
to fail. Knowledge-deficient planners would have to proceed through each of the conditions
until the detecting failure. Those plans for which KIP does not detect a failure provide an
even greater limitation of the processing needed. Since no failure is detected, a knowledge-
deficient planner would need to consider every possible condition of such a plan. However,
KIP only needs to consider those conditions for which it has stored concerns.

Concemns also attempt to adhere to the cognitive validity property. Plan failures
are not as obvious to KIP as they might be to a human consultant. However, the use of
concemns adds more to KIP’s cognitively validity than the mere limitation of the number of
conditions considered. Concerns allow KIP to represent and use a consultant’s knowledge
that certain conditions in a plan are more likely to cause plan failure than other conditions of
a plan. This knowledge could be explained by examining the frequency with which certain
conditions are satisfied. However, concerns about a particular plan are at times the result
of the consultant’s experience in a particular domain. ‘

In the remainder of this section, I describe two different properties of conditon

concerns:

(1) degree of concern - likelihood that a concern will cause
plan failure

(2) specificity of concern - level of generality at which a concem is
defined

Degree of concern refers to the likelihood that a particular concern will cause
plan failure with respect to a particular plan. This property captures the commonsense
notion that some plan failures are more likely to occur than other plan failures. Specificiry
of concern refers to the level of generality in the plan hierarchy which a concern is defined.
Some concerns are defined as general concerns of abstract plans that are inherited by more
specific plans. Specific concerns can be defined for very specific plans. In this section,
I describe these properties of concerns. I also describe how these properties effect KIP’s
concern algorithm for condition failure detection.
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8.3.1 Degree of Concern

Some concerns are more likely to cause plan failure than others. This fact is
~ represented by assigning various degrees of concern to those concerns in the KIP KODIAK
knowledge base. In the present implementation of KIP, the decision regarding the degree
of the concern is made by knowledge-base designer. The knowledge-base designer must
consider two factors (1) the likelihood that a particular condition will not be satisfied, and
(2) the likelihood, given a condition is unsatisfied, that plan failure will occur. In KIP,
the second factor is generally not considered for condition failure detection. Most of the
conditions which have been implemented cause certain failure to the plans for which they

are defined.
For example, consider the following three concerns of the USE-LPR-COMMAND

plan:
(1) the printer has paper - high degree
(2) the printer is online - moderate degree
(3) the printer is out of toner - low degree

The most likely cause of plan failure involves Concern (1), since the paper runs
out quite often, Concern (2) is less likely, and Concern (3) is least likely of all. However,
Concern (3) is a more likely source of plan failure than any of the other conditons of the

USE-LPR-COMMAND plan that are not cause for concern.
The degree of concern affects KIP’s condition concern algorithm in three ways:

(1) concern consideration order - the order in which concern are

considered

(2) concern indifference - deciding which concemns
should be ignored

(3) concern disposal - concern treatment in the plan-
ning process

Degree of concem affects plan failure detection by prescribing an order in which
concems should be considered. Concerns with a high degree of concemn are evaluated and
considered before concerns with a low degree of concern. This corresponds to a human
consultant considering likely problems before considering less likely problems.

For example, suppose the user asks the following question:

(2) How do I print out a file?
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KIP might chose the USE-LPR-COMMAND plan. During plan failure detection,
KIP notces the three of USE-LPR-COMMAND’s many conditions are cause for concern.
Since KIP considers the most likely concerns first, KIP considers concern (1) before con-
sidering concem (2).

Concern indifference refers to the decision to ignore certain concerns altogether.
KIP ignores all concerns below 2 threshold level. The threshold can change, depending
on the planning situation. For example, when KIP is using a plan not intended for the
goal used, a lower threshold value is used. Since KIP is less sure about planning in a new
situation, the lower threshold is used. For example, in (2), since the USE-LPR-COMMAND
is being used to satisfy the goal for which it was intended, a higher threshold value can be
used. In this case, all concerns below a moderate degree of concern are ignored. Therefore,
KIP ignores concern (3) altogether.

Concern disposal refers to the process of dealing with all the concerns which KIP
has identified. Concerns are evaluated in order to determine the degree of concern in the
particular planning situation for which KIP is planning. During the evaluation process, a
new dynamic concern is created that reflects the stored concern. The dynamic concern is
assigned a degree of concern. The degree of the dynamic concern is determined by the
degree of the stored concern and the particular planning situation. These concerns are then
dealt with according to the degree of the concern. A concemn can be elevated to a source of
plan failure, disregarded, or overlooked until later in planning process. Concern disposal

will be discussed more fully in section 8.8.6.
Degree of concern adds to KIP’s knowledge-fficiency and cognitive validity.

The evaluation of concerns in a particular order is knowledge-efficient. KIP will generally
find plan failures more quickly because it considers the most likely plan failures first. This
knowledge-efficient behavior corresponds to a human consultant. Humans, in addition to
considering a small number of potential failures, tend to prioritize the order of conditions
in accordance with the consultant’s expectation of plan failure.

The use of threshold values also adds to KIP’s cognitive validity. Thresholds
allow KIP to plan more carefully in situations which warrant more caution. The use of
higher thresholds in some situations also adds to KIP’s knowledge-efficiency. In situations
which warrant the use of a high threshold value, KIP might not need to evaluate any of the

conditions of a plan.

8.3.2 Specificity of Concern

Concerns are hierarchical in that stored concerns are inherited by a stored plan
from the stored plan’s parents. KIP can thus have general concerns about a class of plans.
These general concerns are defined by descriptions at a high level in the plan hierarchy.
These concerns are then inherited by the specific plans in the knowledge base. Such inheri-
tance is automatic in the KODIAK knowledge representation language. Alternatively, very
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specific concerns can be defined by the attachment to plans designed specifically for a par-
ticular task. Indeed, the specific plan can inherit its entire structure from its parents, except
for the concern that is applicable to a particular situation. The ability to access such partc-
ular concerns in particular situations corresponds to the human consultant’s ability to use
general plans for most situations and specific knowledge about plan failures in particular
planning situations.

For example, suppose the user asks the following question:

(3) How do I print a file on the lineprinter in
room 5087

KIP might select the USE-LPR-COMMAND-FOR-508 plan. Since this plan is domi-
nated by USE-LPR-COMMAND, itinherits all of the stored concerns of USE-LPR-COMMAND.
These stored concerns include concerns (1), (2), and (3) on page 102. USE-LPR-COMMAND-
FOR-508 has the same structure as USE-LPR-COMMAND plan except that the location of the
printer is specified as being in room 508. In addition, USE-LPR-COMMAND-FOR-508 has

thespecified concern:
(4) The door of the printer must be securely shut

This concern is specified in the USE-LPR-COMMAND-FOR-508 plan. This specific
concern encodes knowledge that the particular condition is a likely source of plan failure in
the particular plan. This is termed a specified concern because concern (4) is knowledge-
specific to printing a file on the particular lineprinter in room 508.

Specificity of concern allows KIP 1o adhere to the general-knowled ge-application
property of commonsense planners. KIP can use knowledge about the concerns of plans
which are inherited from a general plan. KIP can also encode specific knowledge applicable
to a specific plan about a general concern. For example, suppose that a specific plan inherits
concerns from a more general plan. The degree of concern regarding a particular condition
in a specific plan might be higher than the degree of concern regarding this condition in a
general plan. KIP represents this knowledge by associating a higher degree of concern for
this condition in the specific plan.

The fact that conditions of a specific plan can be inherited from a more general
plan demonstrates another need for concerns. Due to the hierarchical nature of the database,
many conditions far up in the hierarchy would need to be checked if no concern mechanism
was included in KIP. In previous implementations of KIP, much time was spent checking
many relatively unimportant conditions. For example, every UNIX command has a condi-
tion that the machine be up. However, it would be undesirable to check this condition for

every possible plan.
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8.4 Condition Concern Traces

In this section, a number of KIP traces which focus on condition concerns are
presented. In each of these traces, KIP is faced with the same problem:

(4) How do I print a file on the apple printer?

The only concern which is above the concern threshold for all three examples
is the concern regarding a full paper tray. In Figure 8.1, KIP knows that the paper tray
is empty. In Figure 8.2, KIP knows that the paper tray is full. And in Figure 8.3, no
information regarding the paper tray has been provided to KIP in the plan description.
Therefore, KIP must use default knowledge. The goals and plan are fully described in
Figure 8.1, but are abbreviated in Figures 8.2 and 8.3.

Figure 8.1: KIP Trace of Apple Printer Printing with an Empty Paper Tray

User: How do print a file on the apple printer?
:+ In this example, KIP also has the input that the paper-rray of this
;. particular printer is empty.
(ap-4
(Paper-Tray-Status-Of-Apple-Printer-154 empty-32))
Entering Goal Establishment Phase:
PAGAN produces:

(pfe-1
(Destination-Of- Apple-Print-File-Effect-30 ap-4)
(File-Arg-Of-Print-File-Effect-51
(file-46
(Contents-55
(file-contents-54
(Printing-Of-57 printing-52)))
(File-Name-112 file-name-string-107)))
(Output-Printed-On-53 printing-52)
(Initial-Value-Of-Print-File-Effect-105 blank-106)
(Final-State-Of-Print-File-Effect-67
(printed-on-state-60
(Value-of-Printed-On-66 printing-52)
(Object-Of-Printed-On-64 paper-61)))
(Initial-State-Of-Print-File-Effect-103
(printed-on-state-74
(Value-of-Printed-On-102 blank-106)
(Object-Of-Printed-On-100 paper-61)))
(Output-73 paper-61)



(State-Change-Interval-71 state-change-time-70))
;- KIP has received the user’s goal (pfe-1) of printing on the apple printer
:; from the PAGAN goal analyzer. Also, KIP has knowledge abou the
:; particular printer that the user wanis 10 print on, i.e. ap-4
:+ The final state is that some printing appear on the paper
:+ The initial state is that the paper is blank
:: The printing: printing-52 is the printing of the contenis of the file
KIP is trying to determine a plan for the list of goals:
(pfe-1)
Selecting a goal from the List Of Goals ((pfe-1))
selecting the remaining goal
pfe-1
Looking for a plan for the Current Goal (pfe-1)
Entering Plan Determination Phase:

First looking at stored plans
Selected lpr-pap-command as a potential plan
Now specifying the plan for the particular planning situation:
(lpr-pap-command-34
(Printer-Name- Argument-41 ap-string-123)
(Destination-Of-Lpr-Command-37
(ap-4
(Paper-Tray-Status-Of -Apple-Printer-33 empty-32)
(Printer- Abbreviation-Of- Apple-Printer-121 ap-string-123)))
:: The destination of the printing is a particular apple printer called ap-4
:; Its paper tray is empty, and its printer-abbreviation is ap
(Format-Of-Lpr-Command-45
(unix-file-printing-command-format 44
(Command-Arg-116 Ipr-string-113)
(Printer-Arg-120 ap-string-123)
(Format-File-Arg-110 file-name-string-1 07))
:+ The user could type this format as lpr -Pap filename
(Intended-Effect-Of-Lpr-Pap-Command-35 pfe-1)
;o pfe-1is expanded above
(File-Arg-Of-Unix-File-Command-47 file-46)
(Intended-Effect-Interval-125 state-change-time-70)
(Command-Interval-127 interval-time-126})
Entering Plan Failure Detection Phase:
Evaluating the condition concemn: out-of-paper-concem-130
The condition of concern is the paper-tray-status-of -apple-printer-state-160 of the
ap4
The current value of the condition is empty-32
The desired value is full
The current value cannot be the desired value, so a high level of concern is returned
;- KIP chooses a high value of concern, because the out-of-paper-concern has a

;; high degree of concern, and according to KIP's inpul the desired value is
-» mutually-exclusive with respect ot the current value.
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Entering Goal Establishment Phase:
Creating a goal that reflects a change from the Current Value (empty-32)
to the Desired Value (full)
Creating the goal:
(have-full-paper-tray-effect-226
(Experiencer-Of-State-Change-174 ap-4)
(Final-Va]uc—Of-Have-Full-Papm’-Tray-Eﬂ'ect-%é full-252)
(Initial- Value-172 empty-32)
(Final-S tate-Of-Have-Full-Paper-Tray-Effect-224
(papcr-uay-stalus-of—apple-primcr-slatc-ZZO
(Printer-Of-Paper-Tray-Status-214 ap-4)
(Apple-Printer-Paper-Tray-Status-221 full-252)))
(Init.ial-State-Of-Havc-Full-Paper-Tray-Effect-227
(papcr-tray-staxus—of-apple-primcr-state-160
(Printer-Of-Paper-Tray-Status-155 ap-4)
(Apple-Printer-Paper-Tray-Status-161 empty-32))))
-+ KIP has created the goal regarding the ap-4 apple printer
:; The final-state is that the paper-tray is full
:: The initial-state is that the paper-tray is empty
Asserting the fact that the final-state of the goal (paper-tray-status-of -apple-printer-state-220)
starts before the start of plan interval (lpr-pap-command-34)
So that the condition holds before the plan is executed
:: KIP knows that conditions of a plan must be satisfied before the plan is executed

Selecting a goal from the List Of Goals ((have-full-paper-tray-effect-226))

selecting the remaining goal

have-full-paper-tray-effect-226

=: KIP is reiterating on its plan synthesis algorithm on the goals generated by concerns

Looking for a plan for the Current Goal (have-full-paper-tray-effect-226)
First looking at stored plans
Selected fill-paper-tray as a potential plan
Now specifying the plan for the particular planning situation:
(fill-paper-tray-264

(Intended-Effect-Of-Fill-Paper-Tray-265 have-full-paper-tray-effect-226))
Asserting that fill-paper-tray-264 comes before lpr-pap-command- 34
-+ KIP makes this assertion because it knows that the intended-effect of the
;; fill-paper-tray-264 plan is a condition of the Ipr-pap-command-34 plan.
No plan failures detected for Candidate Plan (fill-paper-tray-264)
To print the file named foo on the apple printer, type lpr -Pap foo.
But first, fill the printer with paper.
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Figure 8.2: KIP Trace of Apple Printer Printing with a Full Paper Tray

User: How do print a file on the apple printer?

:: In this case, KIP has the same goal as in the previous example, except KIP also
-+ has the additional informatation regarding the ap-4 apple printer:

(ap-4

(Paper-Tray-Status-Of- Apple-Printer-154 full-32))

:: KIP now goes through the plan sieps as in the previous example

:: This trace has been abbreviated so as to highlight the differences berween this
:; example and the example in Figure 8.1 on page 105.

KIP is trying to determine a plan for the list of goals:

(pfe-1)

Selecting a goal from the List Of Goals ((pfe-1))

selecting the remaining goal

pfe-1
Looking for a plan for the Current Goal (pfe-1)

First looking at stored plans

Selected Ipr-pap-command as a potential plan

Now specifying the plan for the particular planning situation:
(ipr-pap-command-34)

Evaluating the condition concern: out-of-paper-concern-130

The condition of concern is the paper-tray-sxams-of—apple-primcr-staw-160 of the
ap4

The current value of the condition is full-32

The desired value is full

Since the desired value dominates the current value, there is no need for concem
To print the file named foo on the apple printer, type lpr -Pap foo.

:» KIP has suggested the same initial plan 10 the user, bwt has not told the user

:: that he needs to fill the paper tray.

Figure 8.3: KIP Trace of Apple Printer Printing with an Unknown Paper Tray

User: How do print a file on the apple printer?

;- KIP has detected the same goal as in the previous two traces. However, KIP has
:; no information regarding the paper tray.

: This trace has been abbreviated so as 10 highlight the differences berween this

;; example and the examples in Figure 8.1 and Figure 8.2.

KIP is trying to determine a plan4for the list of goals:

(pfe-1)

Selecting a goal from the List Of Goals ((pfe-1))

selecting the remaining goal
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ple-1
Looking for a plan for the Current Goal (pfe-1)
First looking at stored plans
Selected lpr-pap-command as a potential plan
Now specifying the plan for the particular planning situation:
(lpr-pap-command-26)
Evaluating the condition concern: out-of-paper-concem-86
The condition of concern is the»paper-uay-sxams-of-apple-prinwr-staxc-1 10 of the
apple-printer-22
The current value of the condition is empty-or-full-92
:; empty-or-full is the superordinate category of empty and full, and is generated
:; as a filler that can be filled by either empty or full.
The desired value is full
Current Value (empty-or-full-92) is less specific than the Desired Value (full)
Try to make the current value more specific using defaults
:; Since KIP does not have a specific value it must use default knowledge to
:+ determine the most likely value for the condition

Default-value is empty.
The Default Value (empty) is mutually exclusive with respect to the Desired Value (full)

Since the Default Value (empty) is more specific than the Current Value (empty-or-full-92),
instantiate concern that default value be changed
:; If the default value was not more informative than the current value, the current
:: value could be used. In this way, KIP does not need to consider the uncertainty
:: of the default knowledge. In this case, the default value has a moderate degree
;; of certainty.
Creating a goal that reflects a change from the Current Value (empty) 1o the Desired Value (full)
Creating the goal:
(have-full-paper-tray-effect-155)
Asserting the fact that the final-state of the goal (paper-tray-status-of-apple-printer-state-149)
starts before the stant of plan interval (Ipr-pap-command-26)
So that the condition holds before the plan is executed
Selecting a goal from the List Of Goals ((have-full-paper-tray-effect-155))
selecting the remaining goal
have-full-paper-tray-effect-155
Looking for a plan for the Current Goal (have-full-paper-tray-effect-155)
First looking at stored plans
Selected fill-paper-tray as a potential plan
Now specifying the plan for the particular planning situation:
(fill-paper-tray-187
(Intended-Effect-Of-Fill-Paper-Tray-188 have-full-paper-tray-effect-155))
Asserting that fill-paper-tray-187 comes before lpr-pap-command-26
No plan failures detected for Candidate Plan (fill-paper-tray-187)
To print the file named foo on the apple printer, type lpr -Pap foo.
But first, fill the printer with paper.
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:» KIP has generated the same plan as in the first trace, but in this case used
;7 default knowledge.

8.5 Default Concerns vs. Violated Default Concerns

In the description of the plan failure detection problem, the importance of plan
failure detection in non-default situations was discussed. I demonstrated that any algorithm
for plan failure detection must be able to detect plan failures in such situations. I now
introduce a new type of concern to address the condition failure detection problem, termed
violated default concerns. This new type of concern allows KIP to identify potential plan
failures in non-default situations. Moreover, violated default concerns drive the plan failure
detection process. In this section, I describe violated default concerns and their impact
on the plan failure detection process. In the following section, I describe KIP’s complete
algorithm for detecting plan failures due to condition failure. Violated default concemns are
a very important part of this detection process.

The previous examples of concerns have all been default condition concerns,
applicable given a certain set of default assumptions about the world. When KIP is asked
1o determine a plan in a unique situation where such defaults are violated, violated default
concemns are also considered. These new concerns allow KIP to consider potential plan
failures that would be ignored when defaults are not violated.

Violated default concerns are implemented in KIP by attaching concerns to cat-
egories of plans in non-default situations. When a default is violated, KIP looks at the
category of plans that addresses the particular violated default. KIP then matches the con-
cerns of that plan category against the conditions of the plan under consideration.

For example, suppose the user asks the following questions:

(5) How do I print out a file?

(6) How do I priﬁt out John’s file named testl?

In (5), KIP chooses the USE-LPR-COMMAND. The stored default concerns for this
plan are that the printer is up, and the printer has enough paper. They are default concerns
since they are KIP’s concerns in default situations. Another conditon of the USE-LPR-
COMMAND is that the user has read permission on the file he is trying to print. However,
since the default is that the user has read permission on most files in the system, it is unlikely
that this condition will cause plan failure. The designer of the planner knowledge-base has
experience that this plan seldom fails due to the failure of this condition. Therefore, the
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stored plan does not include a stored default concern for this condition. Since no defaults
have been violated, no violated default concerns are considered.

However, when KIP relies solely upon these default concerns, if KIP chooses
the USE-LPR-COMMAND plan for (6), KIP would have exactly the same concerns as (5).
However, KIP should have additional concerns because of new information in the planning
situation. In (6), KIP should become concerned about read permission. The problem spec-
ifies that the file is John's file. Although it is likely that the user has read permission on
most files in the system, it is less likely that he will have read permission on another user’s -
personal files. This concemn should be considered by KIP, even though read permission is
not mentioned as one of the stored default concerns for this particular plan.

In (6), KIP realizes that John's ownership of the file violates the default of the file
belonging to the user. As the file belongs to someone else, a few concerns arise, €.g. the
file being readable and the file being writable. These violated default concerns are stored
in the category of plans that manipulate other user’s files. These concerns are generally
applicable whenever the user is manipulating others’ files. Such violated default concerns
are then matched with the conditions of the UNIX-printng plan, the lpr command. In (6),
only the concern that the file be readable is applicable, since the other concerns are not
conditions of the lpr command. A computer trace of Example (6) is presented in Figure 8.4
on page 112.

A CSP algorithm for condition failure detection must be able to distinguish be-
tween those aspects of a particular planning situation which require the consideraton of
additional conditions and those aspects of a plan which should not lead to further consid-
eration of additional conditions. KIP makes these distinctions by deciding which parts of a
planning problem violate defaults that are usually assumed by KIP. When such a default is
violated, a new violated default concemn is considered, which may result in consideration
of additional conditions. Other aspects of a plan do not require such addidonal processing.

For example, in (6), the user has specified the goal of printing someone else’s file.
This goal violates KIP’s default assumption that the user generally manipulates his own
files. Therzore, a violated default concern regarding read permission should be introduced
in (6). However, the user has also specified that the name of the file to be printed is testl.
However, the fact that the file’s name is test] does not violate any defaults, since KIP has
no information about the default names of files. Therefore, no violated default concern is
created and no other conditions need to be considered as a result of this information.

Violated default concerns have the same properties as those of default concerns
discussed in the previous section. Violated default concerns are often defined on a abstract
level, e.g. the manipulation of other’s files. These concerns are related directly to the
definition of the particular default. However, there can also be more specific violated default
concems attached to more specific plans. KIP always considers the most specific violated

default concerns in the plan hierarchy.
In addition, violated default concerns can have varying degrees of concern. This
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is particularly important in regard to violated default concerns defined at a general level. As
was discussed in reference to default concerns, concerns with a higher degree of concern
are evaluated first. Concerns with a degree of concern below a threshold level may not be
considered at all.

A powerful tool for defining violated default concerns is to mix both the degree
and specificity properties. Specific violated default concerns can be attached to more spe-
cific descriptions of plans with a degree of concern that is different from the degree defined
at a higher level of abstraction. For example, a specific violated default concern could be
defined for a particular plan with a high degree of concern. The low degree of concern
associated with the abstract plan will be ignored and the specific violated default concern
will be evaluated.

The use of violated default and default concerns is primarily desi gned to address
the uncertainty property of CSP algorithms. KIP may not be aware of the values of many
plan conditons. Instead, as shown in the previous chapter, KIP must rely on 2 large body of
default knowledge. Unless given information to the contrary, KIP relies on defaults being
true and only considers default concerns. When KIP has information that a default has been
violated, it considers violated default concems. Therefore, KIP does not have to prompt
the user for information about the particular planning situation, but relies on its default
knowledge. ‘
Thus, default/violated-default concerns allow KIP to deal with a large body of
default knowledge. Concerns circumvent the need to refer to default knowledge regarding
the value of those conditions about which KIP is unconcerned. Thus, concerns provide a
way of dealing with a large body of default knowledge by allowing the planner to compute
only the default values of conditions of concern to KIP. The use of violated defaultconcerns
also conforms to the cognitive validity property of commonsense planners. Violated default
concerns allow KIP to deal with planning situations in which user-specified properties do
not conform with the default assumed by the system. This approach seems cognitively
correct. A human consultant, when given a problem, immediately notices those aspects ofa
problem that differ from the norm. Furthermore, a human consultant is able to differentiate
those aspects of a problem that merely differ from the norm from those aspects which could
cause plan failure. Violated default concerns allow KIP to both store (stored concerns) and
process (dynamic concerns) those potential plan failures that might occur when a planning
situation does not conform to default knowledge.

A computer trace of Example (6) is presented in Figure 8.4 below.

Figure 8.4: KIP Trace of a Violated Default Concern

User: How do I print out John’s file named test1?
Entering Goal Establishment Phase:
(print-file-effect-1



(File-Arg-Of-Print-File-Effect-28
(file-2
(Owner-26 john-3)
::: The owner of the file is specified as being john. PAGAN knows that john is
2 different from the uc-user. PAGAN believes that the user would not specify the
::s fact that the file belongs to someone unless the file belongs to someone else. The
o1 Jact that the owner of the file is not the uc-user causes a violated default later in
;oo this trace.
(Contents-32
(file~contents-31
(Printing-Of-34 printing-29)))
(File-Name-24 testl-1)))
(Output-Printed-On-30 printing-29)
(IniLial-Va]ue-Of-Prim-File-Eﬂcct-SB blank-61)
(Final-Stazc-Of-Prim-Filc-Effea-43
(printed-on-state-35
(Value-Of-Printed-On-63 printing-29)
(Object-Of-Printed-On-39 paper-36))
(IniLia]-State-Of-Prim-Filc-Effect-Sé
(printed-on-state-48
(Value-Of-Printed-On-60 blank-61)
(Object-Of -Printed-On-52 paper-36)))
(Output-47 paper-36)))
Selecting a goal from the List Of Goals ((print-file-effect-1))
selecting the remaining goal
print-file-effect-1
Entering Plan Determination Phase:
Looking for a plan for the Current Goal (print-fileeffect-1) -

First looking at stored plans
Selected Ipr-command as a potential plan
Now specifying the plan for the particular planning situation:
(lpr-command-64
(Printer-Name-Argument-69 printer-abbreviation-string-68)
(Destination-Of-Lpr-Command-67
(printer-66
(Printer-Abbreviation-71 printer-abbreviation-string-68)))
;- The user has not specified which printer, he wants lo print on, 50 the
:; printer-abbreviation is unknown. The user could use a number of different
;; printers that are at his disposal. If the user had referred 1o a particular printer,
;7 e.g. the apple printer, as in the example on page 51, PAGAN
:: would resolve the reference as 10 which printer the user is
;o referring. .
(Owner-Of-File-Arg-77 john-3)
«+ This is the relation whose default is actually violated. This
-+ relation is equated to the relation path (fle-arg owner).
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(‘Fonnat-Of—Lpr-Comrmnd-?B
(unix-ﬁlc-prinung-command-fonnax-n
(Command-Arg-87 lpr-string-84)
(Printer-Arg-89 primcr-abbreviation-smng-68)
(Format-File-Arg-81 test1-1)))
(Comnmnd-Namc-Of—LprCommand-BS lpr-string-84)
(ImendcduEffecl-Of-Lpr-COmmand-GS print-file-effect-1)
«+ This is the print-file-effect-1 as is specified above.
(Actor-Of _Unix-Command-96 uc-user-1)
(File-Arg-Of-Unix-File-Command—75 file-2))
Entering Plan Failure Detection Phase:
The Current Value (john-3) cannot be the Desired Value (uc-user),
so a violated default is detected

:: KIP knows that the owner-of-file-arg relation is usually a uc-user. In most
:; problems the owner-of-file-arg is not specified, and KIP assumes that it has the
;; default value. In this case, the owner-of-file-arg is john-3, which KIP knows is not
:: the uc-user. Therefore, a violated default is detected.
This default is reprensented by:
(owner-of -file-arg-state
(Object-Of-Owner-Of-File-Arg unix-file-command)
(Value-Of-Owner-Of-File-Arg user)
(Defauh-Value-Of-Owna'-Of -File- Arg-State uc-user)
«: In order 10 store the default, a owner-of-file-arg-siate absolute is siored in
-+ the knowledge base. Its objectis the unix-file-command, and its value isa
:: user. The default-value is the uc-user.
(Default-\fxolan'on-Conccm-Of-Owner-Of -File-Arg-Staie
not-owner-violawd—defauh-concem))
The Violated Concern (nox-owner-violated-defaulL-concem) is detected
;» The representation of owner-of-file-arg-siate stores the fact if this default is
:: violated, KIP should insiantiate the not-owner-violated-defauli-concern. Thisisa
:» general violated default concern that applies to many commands. However,
;; a particular unix-file-command may have one or more specific concerns that are
o inherited from this concern.
Therefore the Individual Violated Default Concern (no-read-permission-of-file-arg-concern- 106)
is instantiated
;- In this case, one particular violated default concern is detected. This is the
:: concern that the user have read-permission on the file. This concern is actually
-+ stored for all unix-file-command, since they all need read-permission on the file
:: file-arg. Write permission is only a violated-default concern for those command
.- which actually effect the file.
Evaluating the condition concem: no-read-permission-of -file-arg-concern-106
The condition of concemn is the read-permission-state-110 of the file-2
The current value of the condition is truth-value-1 12
The desired value is true



:+ KIP is evaluating the concern in this particular planning situation
Current Value (truth-value-112) is less specific than the Desired Value (true)
Try to make the current value more specific using defaults

Default-value is anything.
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Since the Current Value (truth-value-112) is more specific than the Default Value (anything),

Instantiate concern that current value be changed
Creating a goal that refiects a change from the Current Value (truth-value-112)
to the Desired Value (true)

:: This goal is generated due to the violaled defawlt concern

Creating the goal:

(add-read-permission-of-file-effect-145
(Final-Value-Of-Add-Read-Permission-Of; -File-Effect-166 true-168)
(Initial- Value-Of-Normal-State-Change- 146 truth-value-112)
(Final-S tate-Of-Add-Read-Permission-Of-File-Effect-150
(read-permission-state-160

(Value-Of-Read-Permission-175 true-168)
(Object-Of-Read-Permission-161
(file-2
(Owner-26 john-3)
(Contents-32
(file-contents-31
(Printing-Of-34 printing-29)))
(File-Name-83 testl-1)))))
(IniLial-Staze-Of-Add-Read-Permission-Of—File-Eﬁ'ect-143
(read-permission-state-110
(Value-Of-Read-Permission-124 truth-value-112)
(Object-Of-Read-Permission-114 file-2)))
(Effected-File-148 file-2))

Asserting the fact that the final-state of the goal (read-permission-state-160)

starts before the start of plan interval (lpr-command-64)

So that the condition holds before the plan is executed

Entering Goal Establishment Phase:
Selecting a goal from the List Of Goals ((add-read-permission-of-file-effect-145))

selecting the remaining goal :
add-read-permission-of-file-effect-145

Entering Plan Determination Phase:

Looking for a plan for the Current Goal (add-read-permission-of-file-effect-145)
First looking at stored plans

No stored plans found

Trying to determine a new plan

Looking for a plan for the Current Goal (add-read-permission-of-file-effect-145)
among goals which are similar to the current goal

-+ KIP is unsuccessful at finding a plan for this goal, because there is no way of
;; changing the read permission of a file which is owned by someone else

Trying to decompose the Current Goal (add-read-permission-of-file-effect-145)



116

No decomposition found

There is no plan for the current goal

Adding the concern generated goal to the list of unaddressed concems
Kip has not been able to address these goals in the

List Of Unaddressed Concerns (add-read-permission-of-file-effect-145)
These concerns will be expressed to the user.

To print the file named test1, type lpr testl.
However, this plan will not work if the file is read protected.

8.6 KIP’s Algorithm for Dealing with Condition Concerns
There are three main parts of KIP’s goal conflict concern algorithm:

(1) Concern Retrieval -  retrieve the concerns from KIP’s
planning knowledge base

(2) Concern Evaluaton - evaluate the concerns in the particular
planning situation

(3) Concern Treatment - decide how the planning process should
proceed based on the concern informa-

ton

First, the three parts of this process are described. I then describe some of the
implementation and representation details.

In the Figure 8.5, I have expanded on those parts of the KIP’s planning algorithm
in which condition concems play an important role.

8.6.1 Concern Retrieval

After KIP detects the goals of the user, it selects a potental plan and creates an
instance of that plan. KIP then checks for any violated defaults in the partdcular planning
situation by comparing the values of properties in the planning situation, that have been
specified by the user, against the default values for those properties. For each violated
default, KIP determines the most specific stored violated default concerns. Since some
violated defaults may generate concerns which are not conditions of the present planning
situation, KIP matches all the violated default concerns against the conditions of the plan.
KIP discards all concerns which are not conditions of the plan.

KIP then gathers all the default stored concerns for the plan. Once both the default
concemns and violated default concerns are gathered, it sorts them based on the degree of
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concern. KIP then decides on a threshold level for concern, based on the planning situation.
For example, if the plan is the normal plan for these goals, a high threshold will be chosen.
A lower threshold is chosen when the plan has not been used before. Concerns below the

threshold level are discarded.

8.6.2 Concern Evaluation

KIP then creates dynamic concerns for each of the stored concerns. It evaluates
these dynamic concemns in the order of the degree of stored concern. KIP evaluates the
condition concerns by determining whether conditions are true in KIP’s model of the world.
During this evaluation, KIP assigns a new degree of concern to the dynamic concern based
on the particular planning situaton. Conditions which are known to be true are assigned a
low degree of concern, and conditions that are known to be false are assigned a high degree
of concern.

However, many of the values will not be known and must be provided from un-
certain default knowledge. Therefore, the computed degree of concern of the dynamic
concern is calculated by evaluating both the degree of concern of the stored concern and
the degree of certainty in the default knowledge. If the degree of certainty of the default
knowledge is high, then the computed degree of concern is the same as it would be if the
default value was supplied in the input. If the degree of certainty is moderate or low, the
computed degree of concemn is correspondingly lower. For example, suppose KIP evalu-
ates a dynamic concern whose stored concern has a high degree of concern. The default
knowledge claims that the condition is unlikely but stll possible. In this case, KIP would
decide that the degree of concern of the dynamic concern is moderate.

8.6.3 Concern Treatment in the Planning Process

Once KIP has evaluated a concern it can proceed in one of three ways, depending
on the degree of the particular concern. If the degree of concern is low, KIP can choose to
disregard the concern. If the concern is disregarded it is no longer considered at all. KIP
can try to modify other parts of the plan, or suggest the plan to the user with no reservations.

If the degree of concern is high, KIP can choose to elevate the concern to a source
of plan failure. In this case, KIP determines that it is very likely that the plan will fail. KIP
tries to modify the plan in order to change the value of this condition. Alternatively, KIP
tries to find another plan.

The most complex case is when the degree of concern is moderate. In this case,
KIP can choose to disregard the concern, or elevate it to a source of plan failure. KIP can
also choose to overlook the concern. Once KIP has developed a complete plan for this
problem, it is once again faced with the need to deal with the overlooked concemn.. If the
plan will work, except for the overlooked concern, KIP can again choose to disregard the
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concemn, or elevate it to a source of plan failure. At this point, KIP can also choose to
suggest an answer to the user. Depending on the degree of the overlooked concern, KIP
may choose to express the concern to the user in the answer.

8.6.4 Implementation and Representation

Stored condition concerns are presently implemented by creating a different CON-
CERN concept for each concern. Also, 2 Concemn-Of relation is added between each concern
and the plan for which there is cause for concern. Degrees of concern are represented by
creating a Concem-Level relation between the particular concern and a degree. Degrees are
presently implemented as numbers from one to ten. Dynamic condition concerns are im-
plemented as instances of stored concemns. Condition concerns have a Desired-Value relation
which refers to the value that the Concem-Condition should have. If the Desired-Value does not
hold, a goal is instantiated to reflect the condition concern.

For example, in Figure 8.6, the OUT-OF-PAPER-CONCERN is represented. This
concern is a Concern-Of the LPR-PAP-COMMAND. The Concemn-Object is a printer, which must
also be the Destination of the LPR-PAP-COMMAND about which there is concern. The Concern-
Condition is 2 PAPER-TRAY-STATE, where the object must be the Destination of the LPR-PAP-
COMMAND. The degree of concern is high, represented by the number 9.

Defaults are implemented in the current version of KIP by attaching the default
values of a relation of a plan to a state which reflects the relation. Forexample, in Figure 8.7,
UNIX-FILE-COMMAND has a Owner-Of-File-Arg relation. The OWNER-OF-FILE-ARG-STATE ab-
solute is created to reflect the Owner-Of-File-Arg relation. The Default-Value of OWNER-OF-
FILE-ARG-STATE is UC-USER, i.c. the user of the UC system. When KIP notices that this
default is violated, a violated default concern is instantiated. Context dependent defaults
are implemented by exploiting the concretion mechanism of UC, which tries to find the
most specific concept in the hierarchy. Since KIP retrieves the most specific plan in the
knowledge-base, it automatically retrieves the most specific defaults.

Violated default concerns are implemented by creating a different VIOLATED-
DEFAULT-CONCERN concept for each violated default concern. A Defauli-Violation-Concern
relation is added between the class of violated default concerns and the stored default which
is violated. Therefore, when KIP has found the default that has been violated, it looks for
members of the class of violated default concerns referenced by this default that are rele-
vant to the potential plan. For example, Figure 8.8 shows a Default-Violation-Concern relation
between the OWNER-OF-FILE-ARG-STATE and NOT-OWNER-VIOLATED-DEFAULT-CONCERN.

When the default of OWNER-OF-FILE-ARG-STATE is violated, KIP determines if
its potential plan is among the class of plans that have a NOT-OWNER-VIOLATED-DEFAULT-
CONCERN concern. Suppose that KIP is considering the LS-COMMAND-ON-SUN plan dis-
cussed in Figure 1.1 on page 9. The LS-COMMAND-ON-SUN plan has a violated default
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concern called LS-SUN-MUST-BE-IN-DIRECTORY-CONCERN which is a child of NOT-OWNER-
VIOLATED-DEFAULT-CONCERN. The representation of the violated default concern itself is
similar to a default concern. Figure 8.9 represents that the LS-SUN-MUST-BE-IN-DIRECTORY-
CONCERN as a concern of the LS-COMMAND-ON-SUN plan. The object of concem is the
user who is the actor of the LS-COMMAND-ON-SUN plan. The condition of concern is
the CURRENT-DIRECTORY-STATE of the same user. The desired value is that the current-
directory be the same as the directory argument of the LS-COMMAND-ON-SUN plan.

1s-command-on-sun

1s-sun-must-be-in-
directory-concem

direqory value

Figure 8.9: Representation of LS-SUN-MUST-BE-IN-DIRECTORY-CONCERN

Particular concerns have been entered into the database of UNIX plans through a
KODIAK knowledge representation acquisition language called DEFABS. These concerns
are all based on our experience using UNIX as well as discussions with other UNIX users
in our research group. I am currently investigating a way to enter this concern information
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using the UCTeacher program [22,24,23,38] a natural language knowledge acquisition sys-
tem. Eventually, KIP may incorporate a learning component that will enable it to detect the
frequency of certain plan failures and to store these as concerns.

8.7 Conclusion

Concerns allows a commonsense planner to detect plan failures among the many
potential plan failures that might occur. Thus, KIP is able to determine whether its initial
plans will be effective in particular planning situations.

This chapter has focused on condition concerns. KIP’s use of condition concerns
focuses KIP's attention on those conditions which are most likely to fail. KIP does not
consider the many other conditions of a plan unless it has some information that a default has
been violated. Therefore, concerns have addressed the major problem of CFD - focusing
the attention of the planner on only those conditions which are relevant to plan failure.

I have discussed concerns in terms of the properties of algorithms that address
the plan failure detection problem. Concerns address knowledge efficiency while allowing
KIP to use default knowledge effectively. Concerns also seem cognitively valid. They are a
way of representing and using knowledge that a consultant might have about the likelihood
of particular condition failures. Specific/general concerns address the general knowledge
application property by allowing KIP to deal with knowledge about condition failure at
various levels of abstraction.

Much of this chapter has been about violated default concerns, designed to ad-
dress the uncertainty property of commonsense planners. Violated default concerns are
caused by default violations in unique planning situatons. Violated-default/default con-
cerns allow KIP to deal effectively with a large body of default knowledge. These type of
concerns have proved to be the most interesting condition concerns, since they allow KIP
to have different concerns in different situations.

The knowledge rich property of the commonsense planners is not discussed in this
chapter. In order to adhere to this property, KIP must have a large amount of knowledge
about the conditions which are necessary to execute plans successfully. In other words,
if a plan failure due to condidon failure will occur, KIP should have the knowledge to
detect this condition failure. As discussed in the Chapter 1, there is an inherent tension be-
tween the knowledge-rich property and the knowledge-efficient property. As an algorithm
is more knowledge-efficient, it is less knowledge rich. Rather than viewing concerns as a
way of circumventing knowledge, concerns are viewed as a way of representing and using
new knowledge that has not been previously represented. The knowledge regarding the
likelihood that conditions will fail is just as important as knowledge about the conditions

themselves.
In the following chapters, the usefulness of the concern idea is elaborated further.
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Goal conflict concerns, which allow KIP to detect plan failures due to goal conflict, are
discussed in Chapter 10. Goal conflict concerns are viewed as an even more powerful
tool than condition concerns for focusing KIP’s attention on potential plan failures. For
a potential plan, there are many more potential plan failures due to potential goal conflict
than due to condition failure.



Chapter 9

Detecting Plan Failures Due to Goal
Conflict

9.1 Introduction

In Chapters 7 and 8, the means by which potential plan failures are detected is
discussed. The detection process provides a planner with the means to determine if a po-
tental plan is appropriate for a particular problem situation. There are two parts of plan
failure detection: (1) condition failure detection and (2) goal conflict detection. The focus
of the previous two chapters has been on condition failure detection. In the present chapter,
I focus on how potential failures due to goal conflicts between an effect of a potential plan
and a goal of the user are detected.

: Detecting failures due to goal conflict is more complex than detecting failures
due to condition failure. A potential plan might fail due to a limited number of conditions.
In contrast, any of the effects of the same plan could potentially conflict with one of the
many explicit or inferred goals of an agent. Since a commonsense planner is faced with a
combinatorial explosion of potential goal conflicts, it cannot consider each potential goal
conflict as a source of plan failure. Therefore, an algorithmis needed to limit those potential
goal conflicts which should be considered.

In this chapter, I first give an example of a plan from UC in which KIP detects
a goal conflict. This example reflects the difficulty inherent in the goal conflict detection
problem. I then examine the properties of an algorithm that addresses this problem. Finally,
I describe those issues that must be addressed by any commonsense planner (CSP) that
detects goal conflicts. In the next chapter, an algorithm for detecting potential goal conflicts

is described.
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There are two ways in which a goal conflict can arise: -

(1) a planner is given or infers two goals which conflict
(2) a planner selects a plan which conflicts with one of its goals

Thus, when given a set of goals, a CSP should detect the existence of any conflicts
among any two of its goals. These include both goals the CSP is given and any goals it
infers from the planning situation. Additionally, once a planner creates a potential plan for
its goals, it should detect goal conflicts between the effects of the potential plan and any
of its goals. Effects can conflict with other goals by causing states which are incompatible
with these goals, or by making plans to achieve these goals impossible.

In this chapter, goal conflicts are discussed in the context of plan failure. There-
fore, I focus on goal conflicts caused by conflicts between effects of selected plan and a
planner’s goals. However, many of the issues described in this chapter also apply to the
detection of conflicts between goals without reference to a selected plan to achieve one of

its goals.

9.2 An Example of Goal Conflict Detection

Suppose the user asks the following question:

(1) How do I move a file named junk to a file
named filel?

KIP selects the USE-MV-COMMAND plan. KIP creates an individual instance of
this plan for the particular problem situation of moving the file named junk, say the USE-
MV-COMMANDI plan. This plan is to execute the command mv junk filel. KIP needs to
examine the USE-MV-COMMANDI plan in order to detect any goal conflicts between an effect
of the USE-MV-COMMAND! plan and one or more of the goals of the user, both explicit and
inferred.

One effect of this plan is that if file] exists, it will be overwrirten. Let us call this
result the destination file deletion effect. This effect conflicts with the user’s interest in hav-
ing access to his file named filel, because once the USE-MV-COMMANDI plan is executed,
the user will no longer be able to access the file.

Detecting the goal conflict is difficult since KIP knows about a large number
of potential effects of USE-MV-COMMANDI. For example, KIP might also consider the
following effects of the USE-MV-COMMANDI plan:

e If the file named junk does not exist, the following message is printed: mv: junk:
Cannot access: No such file and directory
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e The protection of the file named junk is the same as that of the file named filel.

e If the user does not have permission on the current directory, the following message
is printed: mv: junk: rename: Permission denied.

o If the file named filel is write protected, the user is asked: override protection 444
for filel?

In addition, KIP might consider the following effects that the USE-MV-
COMMANDI plan inherits from its parents in the hierarchy of plans:

e The directory inode will be updated.
e The disk arm will move due to a directory update.

KIP also needs to know about many interests of the user that could conflict with these
effects. For example, KIP might also consider these user interests:
e Try to limit disk space usage

o Execute commands in a way that maintains a low load average
e Have a small number of files in each directory
¢ Keep your password secret

None of these user interests conflict with the effects of the USE-MV-COMMANDI plan.

9.3 Properties of a Goal Conflict Detection Algorithm for a
Commonsense Planner

The goal conflict detection problem (GCD) refers to the problem of detecting those
goal conflicts that require goal conflict resolution. This problem occurs when a common-
sense planner has created a potential plan for a goal of the user. A CSP should determine
if any effect of the plan might cause a conflict with a goal of the user.

In Chapter 1, the properties of a CSP algorithm were introduced. In Chapter 7, I
discussed three of these properties as they relate to the plan failure detection problem, with
focus on the conflict failure detection problem. In this section, I discuss how these same
properties relate to the GCD problem. Since goal conflict detection is more complex than
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condition failure detection, additional constraints on each of these properties are necessary.
The three properties discussed earlier are:

(1) Knowledge Efficiency - consider only those potential plan
failures which are most likely to occur

(2) Cognirive Validity - attemnpt to model the method used by
human consultants use to detect plan

failures

(3) Uncertainty - ability to detect plan failures effectively
when the planning situation is not fully

specified

In addition, a fourth property is needed due to a CSP’s dependence on interests
during GCD:

(4) General Knowledge Application - ability to apply knowledge
about general interests to

specific situations

The properties of an algorithm that addresses GCD influence the criteria used to
evaluate any algorithm for GCD. These criteria will be discussed in the following section.

Knowledge efficiency is even more important for goal conflict detection than
condition failure detection due to the fact that both plans effects and user goals need to be
considered. A weak method for solving the goal conflict detection problem would be to
compare every potential effect of a particular plan with every explicit and inferred goal of
the user. According to this method, if CSP knew about 5 effects of a plan and knew about
50 explicit and inferred goals of the user, CSP would need to make 250 tests for conflict.
However, exhaustive search for potential goal conflicts violates the knowledge efficient

property of commonsense planners. In order to avoid checking for conflicts between every
effect of a plan and every potential goal of a user, we require some method of identifying
which potential conflicts should be considered.

A human planner usually know right away that a certain plan will fail. According
to the cognitive validity property, any algorithm from GCD should consider a small number
of goal conflicts which a human planner might consider when trying to detect goal conflicts.
This property reinforces the knowledge efficient property, i.e. consideration of a small
number of potential goal conflicts.

The uncertainty propertyof CSP algorithms specifies that CSP should be able to
rely on default situation knowledge in order to detect potential goal conflicts when only
incomplete information is available. For example, CSP might have knowledge that unless
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there is information to the contrary, it is likely that a file has read and write permission.
If exhaustive search is used as an algorithm for GCD, a comparison of every effect with
every goal might be difficult due to the CSP’s dependence on default knowledge. Context-
dependent defaults may entail a considerable amount of processing. Therefore, since much
of the knowledge about a particular situation may be unknown, each individual comparison
for conflict might entail much effort. :

Default situation knowledge is not exact. CSP can only assume, based on the
current planning situation, that various states are likely. Since CSP knows about the likeli-
hood of various states, CSP can only determine the likelihood that a particular goal conflict
will occur. Therefore, we assume that an algorithm for GCD will use this default situation
knowledge to return a small number of the most likely potential goal conflicts in a particular
planning situation.

, The general knowledge application property is particularly important for GCD
since many goals of the user are inferred by CSP, rather than being described by the user in
a particular problem situation. These goal inferences are based on CSP’s long-term knowl-
edge about the user’s long term interests in the general state of the world. An individual
goal is often only inferred by CSP when there is some action that might threaten an inter-
est of the user. This is another example of CSP applying its knowledge regarding general
situations to particular planning problems. If CSP were to compare every effect of a plan
with all the goals of the user, it would first need to examine each interest of the user. It
would also need to determine if an individual goal should be inferred in the situation due
to the particular interest. This process would viotate the knowledge efficient property of
commonsense planners. Very few of these interests will give rise to goals in a particular
situation, and even fewer will become causes of goal conflict.

9.4 Criteria for Evaluating a GCD Algorithm

An algorithm that addresses the GCD problem should consider only a limited num-
ber of potential goal conflicts and ignore other potential goal conflicts completely. Such an
algorithm should be judged according to its ability to detect the goal conflicts that will oc-
cur if a particular plan is used. It also should be judged according to how many potential
goal conflicts the algorithm has to consider in order to detect these goal conflicts. One cri-
teria for evaluating an algorithm is termed the knowledge efficient criteria. According to
this knowledge efficient criteria, the size of the set of potential goal conflicts considered
by an algorithm is compared with the size of the set of potential goal conflicts returned by
an algorithm. The goal conflicts that an algorithm returns are those requiring goal conflict
resolution. ‘

A CSP algorithm which depends on default situation knowledge should return a
small number of the most likely potential goal conflicts in a particular planning situation.
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Thus, any part of a GCD algorithm can be evaluated according to the likelihood of a par-
ticular goal conflict that it returns. Let us call this criteria for evaluating a GCD algorithm
the likelihood criteria. According to likelihood criteria, if an algorithm for GCD returns a
potential goal conflict which is very unlikely, the algorithm should be modified accordingly.

The likelihood criteria is easier to evaluate than the knowledge efficient criteria.
Itis easier to assess the likelihood of specific potential goal conflict than the set of potential
goal conflicts that a GCD algorithm might return. However, determining the likelihood of
a potential goal conflict is a difficult process. For the purposes of this discussion, I assume
that the likelihood criteria could be evaluated for a particular algorithm by a human expert
with a great deal of UNIX experience. In principle, however, the information might be
supplied by an analysis of data of actual UNIX interactions.

In this discussion, likelihood refers to two related but distinct concepts. Default
situation knowledge describes the likelihood of a particular state in a particular planning
situation. Knowledge about a particular state influences the likelihood of a conflict between
an effect of a plan and a goal of the user. Detecting the most likely goal conflicts is the main
task of any GCD algorithm.

Likelihood is also an important issue in selecting those interests which are appli-
cable to a particular planning situation. Some general interests are more likely than others
to give rise to corresponding goals in a particular planning situation. This likelihood can
be determined by the importance of the interest to the user. For example, suppose that the
user’s interest in preserving the contents of his files is considered a more important inter-
est than the user’s interest in maintaining a low load average. Therefore, when both these
interests might be threatened, it is more likely that goal inference will refiect the user’s
preserve-file interest than the user’s maintain-low-load interest.

9.5 Taxonomy of Goal Conflicts

There are three types of goal conflict that should be detected by a CSP. These
types of goal conflicts are defined by the effect of a selected plan resulting in:

(1) Incompatible State - plan effectis incompatible with a user
goal

(2) Deleted Precondition - plan effect deletes a precondition
necessary to satisfy a user goal

(3) Consume Resource -  plan effect consumes resource neces-
sary to satisfy a user goal
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This division, similar to Wilensky’s three classes of negative goal relationships
[35), differs from his formulation in two ways. First, his Mutually Exclusive Siates is di-
vided into incompatible state and deleted precondition goal conflicts. This division dis-
tinguishes what Wilensky terms plan conflicts, conflicts that are due to the plans that are
selected to satisfy user goals, from proper goal conflicis, conflicts between incompatible
states. In my classification, the first category of goal conflicts refers to proper goal con-
flicts, while the second and third categories refer to plan conflicts. The distinction berween
deleted precondition goal conflicts andconsume resource goal conflicts is less important
than the distinction between proper goal conflicts and plan conflicts. However, as 1 describe
in Chapter 10, the deleted-precondition/consume-resource distinctdon is useful during the
goal conflict resolution process.

In addition, Wilensky’s Causing a Preservation Goal category is deleted. Ac-
cording to my view, the detection of preservation or other background goals is pervasive in
all three categories of goal conflict.

In the following section, the GCD problem is divided into three subproblems.
I then discuss how a CSP should address each of these subproblems during goal conflict

detection.

9.6 Dividing up the Goal Conflict Detection Problem

There are several issues that must be addressed by any algorithm that detects goal
conflicts. 1 divide the GCD problem into the following three subproblems, based on the
three types of objects that are considered during goal confiict detection: effects, interests,
and potential goal conflicts. basic objects of goal conflict detection. (The objects that are
considered in each of these subproblems are highlighted below.)

(1) conflicting effect selection - find the effect of a plan that might
effects conflict with a user goal

(2) threatened goal selection - select the goal of the user that
interests might conflict with an effect of a
potential plan

(3) goal conflict evaluation -  evaluate the importance and seri-
potential goal conflicts ousness of a potential goal conflict
in the particular planning situation
Let us briefly examine these subproblems in the context of the example discussed
earlier on page 127.

(1) How do I move a file named junk to a file
named filel?
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In this example, conflicting effect selection refers to the selection of the destina-
tion file deletion effect as an effect that is likely to conflict with a user goal. Threatened
goal selection refers to the selection of the user’s preserve-access interest as an interest that
is likely to conflict with an effect of the potential plan. Goal conflict evaluation refers to
the decision made regarding the importance of the file-deletion/preserve-access conflict in
this particular situation. In this case, since CSP has no otlier information regarding the im-
portance of the file named filel, KIP must rely on default knowledge regarding the user’s
interest in preserving his files. If it is unlikely that the user has a file named filel and if
CSP’s default knowledge indicates that the user is only moderately interested in preserving
his files, no goal conflict should be detected.

This division is not meant to reflect different parts of an algorithm that CSP might
use. These subproblems are not necessarily ordered. CSP could, for example, select the
goals which are likely to cause goal conflict before selecting the effects that are likely to
cause goal conflict. However, goals are often only inferred as a result of being threatened
by the effect of a particular plan. Therefore, it is convenient to consider these three sub-
problems in the order in which they are presented.

Likelihood of a goal conflict is the main criteria used by a GCD algorithm in decid-
ing to view a potential goal conflict as one that needs to be resolved. Therefore, the factors
that CSP considers in any GCD algorithm should determine the likelihood of a potential
goal conflict. In addressing both conflicting effect selection and threatened goal selection,
a particular effect or goal is selected for consideration due to its likelihood/unlikelihood as a
participant in a potential goal conflict. In addressing goal conflict evaluation, a goal or goal
conflict is evaluated according to its likelihood in a particular problem situation. Thus, each
of the three subproblems of GCD involve factors that suggest the likelihood/unlikelihood of
a potential goal conflict being considered in a particular problem situation.

9.6.1 Conflicting Effect Selection

The conflicting effect selection problem refers to the selection of those effects
of a plan that are most likely to be considered as causes of goal conflict. Thus, the algo-
rithm’s task is to determine those effects of a particular plan which are most likely to create
states which will cause a conflict with some other goal. This section thus focuses on the
issues addressed by CSP in order to select the conflict-causing effects in different planning
situations.

Conflicting effect selection differs from other aspects of the GCD problem in that
the algorithm does not have difficulty determining concept relevancy. In any implementa-
tion of a planner, most of the effects of a particular plan should be both easily accessible
to the planner and computable by the planner. These effects may be described as effects
in the definition of a particular plan. Alternatively, these effects are inherited from plans
which dominate the plan in the hierarchy. Rather than determining concept relevancy, the
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major issue is to determine the likelihood that a particular effect will become a cause of
goal conflict.

9.6.1.1 Incompatible States

Selecting a conflicting effect in an incompatible state goal conflict involves se-
lecting the effects of 2 plan that are most likely to cause states incompatible with a user
goal. In order to properly select such effects, a GCD algorithm must use likelihood knowl-
edge. Such an algorithm should use knowledge regarding the likelihood that an effectof a
particular plan is incompatible with a user goal, expressed or inferred. Those effects which
have been a participant in many goal conflicts are considered likely causes of goal conflict.

For example, in (1), CSP should consider the destination deleuon file effect of
the USE-MV-COMMANDI plan as a possible cause of goal conflict. However, the fact that
flel will have the same permission as temp, another effect of USE-MV-COMMANDI, should
not be considered. This is true since our human expert claims that the effect most likely
to cause goal conflict is the destination file deletion effect. The expert bases his likelihood
assessment on his experience of goal conflicts which have occurred when executing this

plan.

9.6.1.2 Deleted Preconditions

The deleted precondition effect selection refers to the selection of those effects of
a plan likely to cause a state which will result in an unsatisfiable user goal. This unsatisfiable
goal results when a precondition, necessary for a plan to satisfy the goal, is deleted by the
selected plan. For example, suppose the user asks the following question,

(2) How do I compact the file large, and then
print it out?

Suppose that CSP first selected the USE-COMPACT-COMMAND. CSP should con-
sider the effects of this plan. After executing the plan, the contents of the file is stored in
a special compacted form, which cannot be manipulated by some UNIX commands. In
this example, the compaction effect results in the impossibility of file printout. There is no
inherent conflict between printing a file named large, and the file being compacted. How-
ever, normal ascii format is a condition for any plan which could print out the file. Thus
the effect of the USE-COMPACT1-COMMAND should be selected as a potential cause for goal
conflict. Resolution of such goal conflicts may be accomplished by reordering plan steps.
Deleted precondition goal conflicts is the type of goal conflict that NOAH [32] addressed
by using a least commitment srategy.

In order to address the deleted precondition effect selection problem, knowledge
is needed regarding the likelihood that an effect of a potential plan deletes preconditions
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necessary for other user plans. This likelihood information is dependent on the particular
planning situation. A GCD algorithm should consider only those user plans which are
likely to be needed in order to satisfy user goals in the current planning situation. A GCD
algorithm should select only those effects which are likely to delete preconditions of these

other user plans.

9.6.1.3 Consume Resource Effect

The consume resource effect selection problem refers to the selection of those
effects of a plan most likely to consume resources necessary 10 satisfy a user goal. For
example, suppose the user asks the following question:

(3) How do I run a lisp process in one window
and a prolog process in another window on

my Sun?

" Suppose that CSP creates the MOUSE-ON-LISP-MENUI plan.When the user selects
the lisp menu item with his mouse button, a lisp process is started. CSP should consider
the consume resource effect i.c. this plan consumes a large amount of the memory re-
source. Therefore, it will likely become difficult to satisfy other user goals whose plans
require memory as a resource. Once the memory resource is used up by a lisp process, it is
impossible to run a prolog process simultaneously.

Therefore, in order to address the consume resource effect selection problem, a
GCD algorithm must consider the likelihood that a plan will use resources that are required
by other user plans in the particular problem situation. Like deleted precondition effect
selection, a GCD algorithm should consider only those user plans which are likely to be
needed in order to satisfy user goals in the current planning situation. A GCD algorithm
should select only those effects which consume resources also needed by these other user

plans.

9.6.2 Threatened Goal Selection

Threatened goal selection refers to the selection of the goals of the user that might
conflict with an effect of a potential plan in a particular planning situation.

Threatened goal selection is more complex than conflicting effect selection for
two reasons. Firstly, the threatened goal is not necessarily part of the description of a po-
tential plan. Any of the many goals of the user are potential sources of goal conflict with
the effect of a particular plan. Secondly, as described above, many of the goals that CSP
needs to consider are not specified goals of the user. Instead, these goals are inferred in
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response to an interest of the user being threatened by some state, ¢. g. the effect of a se-
lected plan. Therefore, the problem of threatened goal selection is further subdivided into

two problems:

(1) threatened expressed goal selection

(2) threatened interest selection

9.6.2.1 Threatened Expressed Goal Selection

The threatened expressed goal selection problem of GCD refers to selecting goals
expressed by the user that may conflict with the effects of a potental plan. These expressed
goals may be goals which the user has specified in his query. Alternatively, these expressed
goals may be user goals which UC has inferred, but are not threatened interests. For exam-
ple, suppose the user asks the following question:

(4) I want to delete the file named boo, but
I’d like to save the first 5 lines.

CSP might first create the USE-RM-COMMAND?2 plan. One effect of this plan is
that the entire contents of the file named jim would be deleted, including the first 5 lines.
CSP should select the user’s expressed goal of keeping the contents of the first five lines of
the file named boo as a potential source of goal conflict. This should be done even though
CSP might not assume that users generally want to preserve a small part of their files.

Therefore, a GCD algorithm must have knowledge regarding the likelihood that
an expressed goal will take part in a goal conflict. The user may have chosen specific
goals that conflict with specific effects. These effects may have been determined by the
knowledge-base designer as unlikely sources of goal conflict. A GCD algorithm must select
the expressed goals that are most likely to conflict with an effect of a potential plan.

9.6.2.2 Threatened Interest Selection

The threatened interest selection problem of GCD refers to the selection of the
potential interest with which a particular effect of a plan may conflict. Since there are
many interests that CSP assumes on the part of the user, CSP should choose the particular
interest(s) with which a particular effect might conflict.

For example, suppose the user asks the following question:

(5) How do I copy a file named paul to the file
named lisa?
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CSP might select the USE-CP-COMMAND plan and create the USE-CP-COMMANDI
plan for this particular situation. One of the effects of USE-CP-COMMANDI is that if the file
named lisa exists, it will be deleted. In order to address the threatened interest selection
problem in this situation, CSP should select the user’s general interest of preserving access
to his files as a potential candidate for conflict with an effect of the USE-CP-COMMANDI
plan. The preserving access interest should be selected. Itis likely that this general interest
will be threatened if the USE-CP-COMMANDI1 plan is executed. In contrast, CSP should not
select the user’s general interest in having a low load average. It is unlikely that executing
the USE-CP-COMMAND] plan will threaten this goal or interest. CSP needs some means of-
selecting the preserving access interest among the many interests of the user.

Unlike threatened expressed goal selection, the interest which is selected must be
evaluated in the particular planning situation. This aspect of threatened interest selection is
termed threatened interest evaluation. Although CSP knows that the user’s certain general
interest might be threatened by a potential plan, CSP does not know if the general interest is
applicable in this particular situation. If the interest of the user is not really threatened in this
particular problem situation, then the interest should not be considered further. However,
if the interest is threatened, an individual goal should be inferred that refiects the interest in
this particular situation. The interest is evaluated by examining relevant knowledge about
this particular planning situation in the knowledge base.

For example, in (5), although CSP might assume that the user has a general in-
terest in preserving the contents of his files, usually CSP will not have more specific infor-
mation. For example, CSP will generally not know that the user has an individual goal of
preserving a particular file named lisa that belongs to him. If CSP knows that a file named
lisa already exists, then CSP might create a goal of preserving lisa. Therefore, a goal con-
flict might be created between the individual goal of preserving the file named lisa and the
deletion effect of the USE-CP-COMMANDI plan. If it is unlikely that lisa exists, then it is un-
likely that the user has such a goal of preserving a file named lisa. In that case, an individual
goal of preserving lisa may or may not be inferred. If CSP has particular information that
no file named lisa exists, no individual goal of preserving such a file should be inferred.

Therefore, depending of the information a CSP has about the particular interest,
a CSP make decisions about the likelihood that such a goal exists. If a CSP decides that
such a goal is unlikely, no goal should be instantiated. Otherwise, a goal should be created
that reflects the interest and also has contains information about the importance of that goal
in the current planning situation.

Threatened Interest Evaluation with respect to the Query Goal

A special case of threatened interest evaluation is the evaluation of the threat-
ened interest with respect to the goal expressed by the user in his query. The threatened
interest has been selected as an interest likely to be threatened by the effects of a potential
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plan. CSP must determine if the threatened interest actually conflicts with the effect of the
potential plan, considering the goal expressed in the user’s query. In order to address this
problem, CSP should examine the relationship between the user-expressed goal contained
in the query for which CSP is trying to find a plan and the selected threatened interest of
the user. For example, suppose the user asks the following question:

(6) How do I delete the file file3?

CSP might select the USE-RM-COMMAND plan and create the USE-RM-
COMMANDI plan for this particular situation. Suppose that CSP had selected the conflicting
effect of the USE-RM-COMMANDI plan that file3 is deleted. CSP might also infer a threat-
ened goal of preserving the file file3. CSP might infer the goal in response to the threat
against the long term interest of the user in preserving his files. However, the user has
specified in his query that his goal is to delete the file named file3. The apparent conflict
between deleting file3 and preserving the contents of file3 is an artificial conflict. CSP
should assume that when the user specifies a goal not generally in his best interest, he is
aware that the goal is not in his best interest. However, the user desires the goal regardless.
CSP should assume that since the user has specified the goal of deleting the file named
file3 in his query, he really does have the goal of deleting this file. Therefore, the goal of
preserving file3 should not be inferred.

However, if the user asks the following question:

(7) I want to free up disk space and filed 1is
using up a lot of disk space. What should

I do?

CSP might also choose to select the USE-RM-COMMAND plan as a potential plan
in this query, since the USE-RM-COMMAND is stored as a plan for freeing up disk space.
Since the user has mentioned that file4 uses up a lot of disk space, file4 would seem like 2
good choice for removal, using the individual plan USE-RM-COMMAND2. The user has not
expressed his desire to delete file4. Therefore, it is reasonable to assert a real goal conflict
between the conflicting effect of the USE-RM-COMMAND? plan of deleting the file file4, and
the individual goal, inferred by CSP, of preserving the contents of file4. The assertion of
a real goal conflict appears reasonable because deleting the file is only a side effect of the
USE-RM-COMMAND2 plan. This effect was not part of the user’s intention as expressed in his
query. It is a side effect of a plan selected to satisfy the goals of the user. Since file deletion
is not the intended effect of the user, the goal of preserving file3 should be inferred. In (6),
however, since deleting the file is the intended effect of the USE-RM-COMMAND! plan, the
file preservation goal should not be inferred.

In (5), the relationship between the effect of the USE-CP-COMMANDI plan of delet-
ing the file lisa, and the user-expressed goal of moving the file paul is more complex. Since
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the user has expressed that he wants to move the file paul to the file lisa, it might seem that
he really doesn’t want the file lisa to remain in its original form. On the other hand, the
effect of deleting the file lisa might be interpreted as a side effect which is not a goal of the
user. Thus, this file deletion effect might not be a user goal. Evaluation of the threatened
interest with respect to the query goal during the goal conflict detection phase is essential.
This evaluation enables an algorithm for CSP to resolve only real goal conflicts and to
disregard arrificial goal conflicts before goal conflict resolution.

An algorithm for CSP could evaluate the threatened interest with respect to the
query goal in a number of different ways. The algorithm could first infer a threatened goal
that reflects the interest and later realize that this goal should be disregarded. Alternatively,
an algorithm could choose not to select the threatened interest at all. However, as shown
in this section, the threatened interest must be evaluated with respect to the query goal at
some point in any algorithm for CSP.

The evaluation of threatened interests with respect to the query goal might have
been categorized as a kind of goal conflict evaluation instead of a kind of threatened interest
evaluation. However, the present classification was chosen to reflect the fact that evalua-
tions of threatened interests with respect to the query goal are possible without referring to
the conflicting effect. Such evaluations are therefore possible in other planning situations
where no potential plan has been selected, but an interest has been selected and must be
evaluated. In the following section, I discuss goal conflict evaluation. Goal conflict evalu-
ation assumes that both the conflicting effect and the threatened interest have already been

selected and evaluated.

9.6.3 Goal Conflict Evaluation

Goal conflict evaluation refers to the decisions made regarding the importance
of a potential goal conflict in a particular planning situation. The GCD algorithm’s task is
to assert goal conflicts which must be resolved. This section describes the way in which
CSP should decide whether a goal conflict is important enough for goal conflict resolution.
If CSP determines that a goal conflict meets its criteria for importance, the goal conflict
should be asserted and passed to the goal conflict resolution mechanism.

In order to determine the importance of a potential goal conflict, CSP should
evaluate both the likelihood of the goal conflict and the seriousness of the goal conflict. This
evaluation is done by analyzing the likelihood and importance to the user of the conflicting
effect of the plan and the threatened goal which is threatened by this effect. Therefore, any
algorithm that addresses the goal conflict evaluation problem of GCD should have some
mechanism for weighing the following four factors:

1. the importance of the user goal for which the potential plan has been created
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2 the likelihood of the conflicting effect’s occurrence when the plan is executed in this
particular problem situation

3. the importance of the goal which might be threatened by the conflicting effect

4. the seriousness of the threat to the threatened goal, i.e. if the conflicting effect occurs,
the likelihood that the goal will be threatened

For example, suppose the user asks the following question:

(8 I 1like Michael’s .login file better than
mine. How do I use his file instead of my

file when I log in?

CSP might create the USE-CP-COMMAND2 plan to Copy Michael’s .login file to
the user’s home directory, by typing cp ~michael/.login ~/.Jogin. CSP should know that
the destination file of USE-CP-COMMAND?2, the user’s own .Jogin file, exists. Therefore, if
the user executes the USE-CP-COMMAND? plan, the contents of the user’s file named .login
will almost certainly be lost. Thus, the likelihood that the conflicting effect will occur is
very great. CSP should assume that the user’s goal of using Michael’s .login at login time
is important, since he has stated this goal in his query. However, the usual intended goal
of the USE-CP-COMMAND2 plan, i.e. having a copy of Michael’s .login in the user’s home

directory, is not a goal of the user.
CSP should detect the user’s threatened goal of preserving access to his own

Jogin because users generally have an interest in preserving their files. Since the inter-
est should be stored as an important interest of the user, the goal should be considered an
important one as well. Since the likelihood of the conflicting effect is high, and the seri-
ousness of violating the threatened goal is also high, CSP should consider this an important
goal conflict. Therefore, CSP should assert a real goal conflict might occur in this partic-
ular problem situation. CSP should pass this goal conflict to the goal conflict resolution
mechanism.

At times, although the conflicting effect may be very unlikely, a goal conflict
should still be detected. For example, suppose the user asks the following question:

(9) How do I print out my midterm on the imagen
printer?

Use the office printer, using ditroff -Poff, so that others don’t read it.

In (9), CSP should use its knowledge about midterms to detect a serious, though
unlikely, goal conflict. CSP might create the USE-DITROFF-COMMANDI plan to print out
the midterm on the imagen. Suppose that CSP selects the conflicting effect of this plan that
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others might read the midterm output of the midterm in the printer room. (The imagen is
in a public place). This conflicting effect might be unlikely. Few people are in the printer
room at any one time, and most people do not read the output of other user jobs coming
out of the printer. However, suppose that CSP would select the threatened goal of the user
keeping the midterm secret. CSP should assume that this is a very serious threat to an
imponant user goal. Although the conflicting effect is relatively unlikely, a goal conflict
should be instantiated due to the seriousness of the threat to the user’s goal.

Example (5) is more difficult due to the lack of information about the particular
planning situation. 1f no other information is given, CSP might decide that it is only some-
what likely that the destination file named lisa exists. Therefore, the conflicting effect of
the file named lisa being deleted is not very likely. But even if the file named lisa did exist,
the importance of the goal of deleting this file is questionable, since it is unclear if the user
wants the contents of the destination file or not. Therefore, a goal conflict may or may not
be instantiated.

The rules for goal conflict evaluation in the extreme cases are simple. For ex-
ample, if the user goal is important, and conflicting effect is likely, the threatened goal is
important, and the threat is serious, an algorithm for CSP should instantiate a goal con-
fiict. However, in cases where one or more of these factors is mediocre in importance or
likelihood, it is less clear whether a goal conflict should be instantiated.

The goal conflict evaluation problem interacts with the other problems of GCD
discussed above. Due to this interaction, any algorithm for GCD cannot address each of
the problems separately. For example, in (9), suppose that CSP created the USE-DITROFF-
COMMAND! for the goal of printing out the midterm. If CSP were to consider the problems
in the order in which they were described, CSP would first search for the most likely con-
flicting effects of the USE-DITROFF-COMMANDIL. CSP might discover the very unlikely
conflicting effect of others reading the output during the conflicting effect selection stage.
Since the conflicting effect is unlikely, this effect might be disregarded. Thus, CSP would
not detect the goal conflict between this effect and the serious threat it poses to the user’s
goal of keeping the midterm secret. Therefore, a knowledge efficient algorithm that ad-
dresses GCD should be able to deal with these problems in a unified manner. Otherwise,
a knowledge-efficient algorithm might be forced to consider each potential goal conflict
between every effect of a plan and every goal or interest of the user. Such an algorithm is

presented in the following chapter.

9.7 Summary of Goal Conflict Detection

Detecting plan failures due to goal conflict is a difficult problem for a common-
sense planner. The difficulty is mainly due to the large number of goals with which a plan
could potentially conflict. An algorithm for goal conflict detection might need to exam-
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ine a combinatorially large number of potential goal conflicts. Therefore, a commonsense
algorithm for GCD, which uses its knowledge effectively, must be devised.

In this chapter I have described some of the issues that a GCD algorithm must
address. I have described these issues in terms of three subproblems of GCD: (1) conflict-
ing effect selection, (2) threatened goal selection, and (3) goal conflict evaluation. In the
following chapter, I describe a potential commonsense algorithm for GCD, based on the
concept of concerns described in Chapter 8. Two aspects of the algorithm must be evalu-
ated. First, I must assess the algorithm’s ability to address the GCD subproblems described
in this chapter. Secondly, I must assess the degree to which the GCD algorithm adheres to
the GCD algorithm properties described above.



Chapter 10

Goal Conflict Concerns

10.1 Introduction

In the previous chapter, I described the difficulty and importance of the Goal
Conflict Detection problem. This problem was described in terms of CSP, our generic
commonsense planner. In the present chapter, I describe an algorithm that addresses the
GCD problem. I describe this algorithm in terms of KIP, since this is an algorithm used by
our commonsense planner for the UNIX operating system. The al gorithm described is used
by KIP to detect goal conflicts between an effect of a potential plan proposed by KIP and
some background or expressed goal of the user.

Chapter 8 introduced the idea of a concern, used to detect potential plan failures.
Chapter 8 focuses primarily on condition concerns, while this chapter, focuses on goal
conflict concerns. In this section, I compare concems about goal conflicts with concerns
about condition failure. Condition concems, discussed earlier, refer to those aspects of a
plan that are likely to cause plan failure due to a condition of the plan that is needed for
successful execution. Goal conflict concerns refer to those aspects of a plan which are
likely to cause plan failure due to a potential goal conflict between an effectof a plan and a
goal of the user. Goal conflict concerns are represented as three way relations between the
selected plan, the conflicting effect, and the threatened goal.

The conditions about which KIP is concerned are always conditions of a partic-
ular plan. Goal conflict concerns, however, relate plans to user goals and to other pieces
of knowledge that are not part of the plan. Examples of this knowledge include user inter-
ests which may or may not be threatened by the plan. Since these interests are usually not
considered untl such a threat is perceived, goal conflict concerns often refer to conflicts
between a potential plan and an interest of the user. Stored goal conflict concerns refer to
concerns about conflicts of interest. These are concerns about the selected plan conflicting
with an interest of the user. If KIP detects a conflict-of-interest concern, then KIP must de-
termine if it should infer an individual goal on the part of the user that reflects this interest.

143
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If KIP decides to infer this individual goal, then a dynamic concern between the selected

plan and the individual goal is also instantiated.
KIP’s basic algorithm for dealing with goal conflict concerns is similar to the

three-stage process described for condition concemns. First, KIP gathers the concerns by
looking at the potential plan and other information from the planning environment. Sec-
ond, KIP evaluates these concerns in the present planning situation. Thirdly, KIP decides
how these concerns will influence the rest of the planning process. However, an algorithm
for dealing with goal conflict concerns is more complex due to the need to evaluate both
the effects of the plan and user interests and goals in the particular planning situation. In
addition, due to the greater complexity of the GCD problem, more types of concerns need
to be introduced. These other types of concerns are introduced in section 10.4 on page 147.

10.2 An Example of the Use of Goal Conflict Concerns

Before describing the other types of goal conflict concerns, and KIP’'s complete
algorithm for dealing with these concerns, we consider a simple example of the use of goal
conflict concerns. Suppose the user asks the following question:

(1) Bow do I change my password?

KIP is passed the goal of changing the password of the user. KIP’s knowledge
base contains a stored plan for the goal of changing a password, namely, the USE-PASSWD-
COMMAND plan. As the effect of the USE-PASSWD-COMMAND plan, the user’s password
is changed on his current machine. This effect conflicts with the user’s interest of having
the same password on all machines on which he has an account. Let us call this interest
the identical password interest. This user interest is a subgoal of the user being able to
remember his password. The stored goal conflict concern which KIP has identified is a
three-way relation between the USE-PASSWD-COMMAND, the effect that the password 18
changed on this machine, and the identical password interest. :

Thus, in the concern identification step, KIP has addressed both the conflicting
effect selection and threatened interest selection problems of GCD. KIP addresses these
problems by storing a concern berween the effect that is likely to cause goal conflict and
the interest with which it is likely to cause goal conflict.

KIP next evaluates the identical password interest in this particular planning sit-
uation. KIP uses knowledge about the particular user to determine if an individual goal
should be inferred in this situation which reflects the identical password interest. For ex-
ample, if KIP knows specifically that the user has an account only on the current machine,
then KIP does not assert an identical password goal for the user. Consideration of this goal
conflict concern stops. KIP may have information that the user has accounts on many ma-
chines, or may make this assumpton based on default knowledge from the user model. In
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either of these cases, KIP then asserts an individual identical password goal on the part of
the user. This step addresses the threatened interest evaluation problem of GCD.

KIP next evaluates whether the goal of the user is the intended effect of the se-
lected plan. According to KIP's input, the user has specified that his goal is to change his
password. KIP’s knowledge base stores the fact that the USE-PASSWD-COMMAND plan is the
best plan to accomplish this password-change goal. Thus, KIP determines that the goal of
the user is the intended effect of the plan. KIP assumes that the concerns indexed under the
USE-PASSWD-COMMAND plan are not concerns about the intended goal of the plan. There-
fore, KIP assumes that the conflict between the password-changing on the current machine
and the identical password interest is a real goal conflict, not an artificial goal conflict. The

step addresses query goal evaluation problem of GCD. ,
KIP next evaluates this potential goal conflict. In this case, the concern about

multiple passwords is marked as having a high degree of concem, and therefore a goal
conflict is inferred. This potential goal conflict is then passed to the goal conflict resolution
mechanism. This step addresses the goal conflict evaluation problem of GCD.

10.3 Properties of Concerns

Goal conflict concemns allow KIP to adhere to properties of a GCD algorithm
described in the previous chapter. Like condition concerms, goal conflict concerns are pri-
marily directed at the knowledge efficient property of GCD algorithms. Satisfaction of this
property is even more important for detecting goal conflicts due to the large number of
potential goal conflicts that algorithm might need to consider. KIP need not consider the
many effects of a particular plan for potential goal conflicts. Also, KIP need not evaluate
many user interests not known to be threatened a particular plan.

In the remainder of this section, I describe how two properties of concerns relate

to goal conflict concerns:

(1) - degree of concern
(2) - specificity of concemn

I describe how these properties of goal conflict concerns differ from the properties
of condition concerns. I also present complex KIP examples which use these properties of

goal conflict concems.

10.3.1 Degree of Concern

Some goal conflicts are more likely to occur than other goal conflicts, and some
goal conflicts are more important than others if they do occur. The representation of goal
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conflict concerns reflects this difference by assigning a varying degree of concern to the
stored concemns in the knowledge base. There are many factors that determine the degree
of concern about a conflict-of-interest. The planning knowledge base designer needs to
determine how likely a conflicting effect is to occur, how likely it is that the user holds
the threatened goal, and how important this goal is to the user. The likelihood and impor-
tance information is needed by KIP to address the goal conflict evaluation problem of GCD.
Instead of determining all this information every time a particular plan is selected, KIP en-
codes all this information as a degree of concern. For example, suppose the user asks the

following question:

(2) How do I print out a file on my terminal?

Suppose KIP has chosen the USE-CAT-COMMAND plan. KIP has two stored con-
cerns about this plan. KIP’s first concern is a concern regarding the effect of the USE-CAT-
COMMAND plan that a long file will continue to scroll on the terminal until the end of the
file is reached. KIP’s concern is that this scrolling effect conflicts with the user’s interest of
examining the contents of the file. KIP has not been given any other information about the
file or the user’s goals. Thus, KIP should assume that it is somewhat likely that the file is
longer than the number of lines on the terminal. Itis very likely that the user has the goal of
wanting to see the contents of the file. If the user has this goal, then the goal is important to
him. All this information can be encoded by KIP as a moderately high degree of concern.

KIP's second concern about the USE-CAT-COMMAND is the concern that if the file
contains control characters, the terminal will be put in an unusable state. These control
characters may be interpreted by the terminal as cursor commands and cause the terminal
to lock up, erase information on the screen, or print nonsense on the screen. This screen
locking effect conflicts with the user’s interest in having a usable terminal. Since KIP has
not been given additional information, it should assume that this screen locking effect is
very unlikely. It is unlikely that the user’s file contains control characters. Even if the
file has control characters, the screen may not lock up. However, the threatened goal of
having a usable terminal is assumed to be an important goal of the user. It is sometimes
very difficult for the user to return the terminal to a usable state. A naive user might not
know how to reset his terminal at all and would not be able to continue to work at all. In this
case, by weighing the likelihood of the effect and the importance of the goal, this concern
is assigned a low level of concern. Therefore, a goal conflict is not instantiated.

The degree of a concern is not an absolute, but a relative value. For example, sup-
pose that the user has informed KIP that he is worried about a bad side effect of a particular
plan. KIP should consider all possible concerns that it knows about. Even concerns marked
as having a low degree are considered fully. KIP must therefore decide on a threshold value
for the degree of concern in a particular planning situation. Concerns which have a degree
of concern higher than that threshold are considered. Concerns which have a degree of

concern lower than that threshold are ignored.
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10.3.2 Specificity of Concern

Goal conflict concerns are hierarchical like the other objects in KIP’s knowledge
base. Stored concerns about conflicts of interest are therefore inherited from plans fur-
ther up in the hierarchy. KIP exploits this property by assigning general concerns about
goal conflict regarding a class of plans at a high level in the hierarchy. In this way, these
concerns do not need to be defined for each of the children of these general plans. In ad-
dition, very specific concerns about goal conflicts can be associated with plans for specific
planning situations. Since the degree of a goal conflict concern depends on many factors,
KIP's knowledge base often includes specific goal conflict concerns which differ from their
parents only in the degree of concern. For example, suppose the user asks the following

question:

(3) How do I print out an executable file on my
terminal?

KIP has specific information about printing such files on a terminal. KIP con-
cretes the user’s goal of printing files to the specific goal of printing executable files on a
terminal. As in example (2), the USE-CAT-COMMAND is a plan for this goal. The structure
of this plan is exactly the same as in example (2), except that the goal conflict concern re-
~ garding the screen locking of the user’s terminal is of a very high degree. This concern has
a high degree because of the high likelihood of the conflicting effect of putting the termi-
nal in an unusable state. (The seriousness of the threat to the user’s interest is the same.)
KIP has no additional information in this particular planning situation. Therefore, during
the evaluation of the screen locking concern, KIP asserts that the USE-CAT-COMMAND has a
high degree of concern about locking the user’s screen. KIP will therefore try select another
plan that does not have this potential plan failure.

10.4 A Taxonomy of Goal Conflict Concerns

In order to address the GCD problem, a number of different dimensions of goal
conflict concerns are necessary. These concerns do not address one of the three problems of
GCD: conflicting effect selection, threatened goal selection, and goal conflict evaluation.
Instead, KIP uses a unified approach and tries to address all of these problems simultane-
ously. These different dimensions of concerns are meant to address goal conflict detection
in unique situations. Goal conflicts are most difficult to detect when planning in unique
situations. However, in our experience plan failures due to goal conflict are most likely to
occur precisely in unique situations. In the following section, I describe KIP’s goal conflict
concern algorithm. I describe how these dimensions of concerns are used together in the

context of the algorithm.
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The eight dimensions of concern discussed in this section are briefly described
below, with reference to the type of conflict to which each concemn refers. These concerns
are grouped in pairs according to the criteria which distinguishes them from other concerns.
(The criteria are highlighted in boldface.) Since these criteria are orthogonal, there may be
some overlap between these goal conflict concern dimensions. The concerns are discussed
in pairs, according to these criteria in the remainder of this secton.

Source of Concern

Conflict-of-interest Concerns - KIP-detected concern
regarding a conflict between

an effect of a plan and a user
interest

Expressed Goal Conflict Concerns - concermns expressed by the
user between an effect of a

plan and a goal of the user

Intended Effect of Potential Plan

Intended Effects Concerns - concerns regarding a plan which
has been used for its intended

effect

Unintended Effects Concerns - concerns regarding a plan which
has been used for an effect for

which it was not intended

Default Situation Knowledge

Default Concerns - concerns in normal planning
situations

Violated-Default Concerns - concerns in situations where some de-
faults have been violated

Plan/Effect Distinction

Plan Goal Conflict Concerns - concems about conflicts caused
by execution of a particular plan

Effect Goal Conflict Concerns - concerns about a particular effect
without reference to a particular

plan
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10.4.1 Conflict-of-interest Concerns vs. Expressed Goal Conflict Con-
cerns

As I described earlier, stored goal conflict concerns are concems about conflicts-
of-interest. This is because KIP’s long term knowledge about plan failure due to goal
conflict describes general problems that are to be avoided. Dynamic concerns are those
concerns that KIP creates during the planning process. Dynamic concerns are created in
response to effects of a selected plan which threaten an interest of the user. However, there
are some dynamic concerns that KIP does not create. These dynamic concems are passed
to KIP as part of its inputs. For example, suppose the user asks the following question:

(4) How do I copy the file named init.lisp to the
file aux.lisp without losing the contents

of aux.lisp?

In this case, the user has expressed an explicit concern regarding the effects of
a potential plan that the user has in mind - probably the USE-CP-COMMAND. Namely, a
particular goal, preserving the contents of file name aux.lisp, might be threatened by a
potential plan for copying the contents of init.lisp to aux.lisp. In (4), the user has stated
a expressed goal conflict concern. KIP knows about this goal conflict concern and it is
viewed as an important potential goal conflict. ‘

Of course, the user could have expressed a concern that was unwarranted. For

example, suppose the user asks the following question:

(5) How do I copy the file named init.lisp to the
file aux.lisp without losing the contents

of init.lisp?

KIP knows of no way in which the contents of the file init.lisp might be lost while
trying to copy this file. However, this is still an expressed goal conflict concern with which
KIP must deal.

Since the expressed goal conflict concern in (4) is warranted, and the expressed
goal conflict concern in (5) is unwarranted, KIP treats these concerns differently. In (4),
KIP selects the USE-CP-COMMAND and determines the concerns for this selected plan. It
evaluates each of these concerns, as shown above. Due to the user’s expressed goal con-
fiict concern, KIP adds some additional steps. Thus, KIP first identifies the potential goal
conflict between the conflicting effect of the file aux.lisp being deleted and the interest of
preserving the contents of the file aux.lisp. KIP then compares that potential goal conflict
against the user’s expressed goal conflict concern. Since the user has expressed a concern
about a known potential goal conflict, KIP tries to resolve the conflict.
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Example (5) differs from (4) in that KIP is unable to match any of its identified
potential goal conflicts against the expressed goal conflict concerns expressed by the user.
None of these potential goal conflicts threaten the goal of preserving the contents of the
file init.lisp. Therefore, KIP examines all of the effects of the selected plan to determine
if any of the effects of USE-CP-COMMAND conflict with the goal of preserving the contents
of the file init.lisp. Since none of these effects conflict with the goal, no goal conflict is
instantiated. The fact that the user’s expressed goal conflict concern was unwarranted is
reported in UC’s answer to the user.

Conflict-of-interest concerns are checked before checking the explicit concerns
of the user. When a user mentions an explicit goal, he is usually referring to a concern
regarding potential plans that might conflict with this goal. Expressed goal conflict con-
cerns are usually instances of conflict-of-interest concerns about which KIP is aware. KIP
evaluates all of the potential concerns about conflicts-of-interest of a selected plan before
looking at the expressed concerns of the user. By doing this, KIP can benefit from its stored
information regarding these concerns in long term memory. The process is analogous to a
consultant, hearing about a problem with a plan, who first compares that problem to prob-
lems that he has previously encountered.

10.4.2 Intended Effects Concerns vs Unintended Effects Concerns

When KIP is unable to find a stored plan that solves the goals of the user, it uses
another plan that is used for some other similar goal. For example, suppose the user asks

the following question:
(6) How can I free up disk space?

If KIP has no stored plan for this goal, it might select the USE-RM-COMMAND plan
to accomplish the goal of the user. As an effect of that plan, disk space of the file that is re-
moved is marked as free. One of the problems with using this plan is that it conflicts with the
user’s interest in preserving his files. The conflicting effect of using the USE-RM-COMMAND
plan on a particular file is that the file is removed. This effect conflicts with user’s goal of
preserving the individual file. Let us call this conflict the preservation/removal conflict
In order to detect this goal conflict, a concern should be accessed between the removal of
the file and the preservation of the file. The preservation/removal goal conflict should be
passed to the goal conflict resoluton mechanism.

However, suppose the user asks the following question:

(7) How can I remove a file?

In example (7), KIP would also select the USE-RM-COMMAND plan in order to
satisfy the user goal. The USE-RM-COMMAND plan is defined as a plan in service of the
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goal of removing a file. In this example, however, the user actually intends to remove a
file. Therefore, the goal of preserving this file should not be threatened and the preserva-
ton/removal conflict should not be detected. Therefore, in example (7), KIP should not
access a concern about the conflict-of-interest between removing a file and preserving a
file.

As discussed in Chapter 9, this type of goal conflict between an intended effect
and a general interest is termed an artificial goal conflict. Artificial goal conflicts should
not be passed to the goal conflict resolution mechanism. This problem often occurs when
a planner does not properly evaluate the threatened interest with respect to the query goal.

In order to avoid detection of artificial goal conflicts, KIP differentates between
intended effect concerns and unintended effect concerns. Intended effect concerns refer
to conflicts-of-interest in which the selected plan is being used for its usually intended
effect. Unintended effect concerns refer to conflicts-of-interest in which the selected plan
is being used for some other effect of the plan. KIP always accesses a plan’s intended effect
concemns. A plan’s unintended effect concerns are only accessed when the user goal is not
the intended effect of the plan.

In example (7), since the USE-RM-COMMAND is being used for its intended effect,
the concern about file deletion is not even considered. In example (6), however the USE-
RM-COMMAND plan is being used for an effect other than deleting a file. Therefore, all
unintended effect concerns are considered, including the concern that using the USE-RM-
COMMAND plan will conflict with the user’s goal of preserving his files.

In KIP, if a particular action is used as a plan for more than one goal, two different
plans are created. For example, once KIP knows that a plan for freeing up disk space is
to use the rm command, it creates a USE-RM-COMMAND-FOR-DISK-SPACE plan. This plan
has a different intended effect than the USE-RM-COMMAND-FOR-DELETING plan. Therefore,.
this plan will have different intended effect concerns and unintended effect concerns than
the USE-RM-COMMAND-FOR-DELETING plan.

Therefore, when KIP has selected a plan for the goal which it has been intended,
KIP must check all the intended effect concerns for that particular plan. If KIP has selected
a plan in order to satisfy a goal for which the plan has not been intended, then both the
intended effect concerns and the unintended effect concerns must be checked.

10.4.3 Default Concerns vs. Violated-Default Concerns

The previous concerns have all been default goal conflict concerns. Default goal
conflict concems are those concerns with which the planner is usually occupied, given a set
of defaults used to make assumptions about the world. When these defaults are violated,
new concerns arise which I call violated-default goal confiict concerns. For example, sup-
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pose the user asks the following questions:

(8) How do I print out a file on the lineprinter?

(9) How do I print out a very long file on the
lineprinter?

In example (8), KIP selects the USE-LPR-COMMAND plan. Since no defaults have
been violated, only default concerns are accessed. KIP finds no goal conflict concerns for
this plan, and it is returned as a plan for accomplishing the user’s goal.

In example (9), KIP also selects the USE-LPR-COMMAND plan. However, in this
example, KIP should also access the violated-default concerns of the plan. Since the size
of the default file is usually assumed to be short, the fact that the user has specified that
the file is a long one violates a default. Because this default is violated, KIP accesses
the violated-default concerns for the plan that refiect this violated default. KIP accesses a
conflict between the effect of printing out a long file and the interest of being considerate
to other users of system resources.

KIP always accesses the default goal conflict concerns of a particular plan. A
plan’s violated-default concerns are only accessed when a default is violated. However,
only those violated-default concerns that reflect the violated default are accessed.

Accessing only the concerns that reflect the violated default makes the imple-
mentation of violated-default concerns difficult. In example (9), for instance, the violated-
default concern is detected by accessing a category of plans that manipulate long files.
Let us call this category the long-file-plans category. Since the default of the file being
short is violated, a USE-LPR-COMMANDI! plan is created. The USE-LPR-COMMANDI1 plan
is dominated by both the USE-LPR-COMMAND plan and the category of long-file-plans.
The individual plan inherits all the concerns of both parents. USE-LPR-COMMAND1 thus
inherits conflict-of-interest concerns from both the USE-LPR-COMMAND plan and the long-
file-plans category. KIP knows that concerns arising from the long-file-plans category are
violated-default concerns. The relationship between lon g-file-plans category and USE-LPR-
COMMANDI is created in order to reflect the violated default.

One advantage of this implementation is that general concerns about non-default
situations can be stored in one general category. For example, The long-file-plans category
and its concerns are also used by KIP to detect other similar conflicts. KIP can use this
category to detect conflicts regarding the use of system resources when compiling a very
large program, typesetting a long paper, or sending a very large file over the network.

There can also be more exacting descriptions of violated-default concerns in a
more specific category. For example, sending a 10 page file to the lineprinter might not
be considered excessive and therefore would not generate a Concerm. However, sending
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the same size file to the laser printer, which takes much longer to print, would generate a
concern. Therefore, a specific concern category of plans which print large files on a laser
printer is necessary to represent this information. For example, suppose the user asks the

following question:

(10) How do I print out a 10 page file on the
laser printer?

Since the user wants to print a file that KIP knows is 10 pages long on the laser
printer, KIP concretes this printing to be an instance of the category PRINTING-LARGE-FILE-
ON-LASER-PRINTER. This category has a concern about use of system resources. Thus,
printing the file on the laser printer would generate a concern in this particular planning
situation. Sending the same file 1o the lineprinter, however, would not cause a concern
since the plan would not be an instance of that category.

10.4.4 Plan Goal Conflict Concerns vs. Effect Goal Conflict Concerns

The previous goal conflict concerns have all been plan goal conflict concerns,
concerns that a selected plan will conflict with an interest of the user because of a con-
flicting goal of that plan. These concerns are represented as relations between the plan,
the conflicting effect, and the threatened interest. However, there are also concern rela-
tons between effects and interests of the user, called effect goal conflict concerns. Since
sometimes one has concerns about certain effects that are independent of a particular plan,
this is an important distinction. For example, deleting a file is an effect that will cause a
conflict-of-interest with preserving files of the user, regardless of the plan with which it is
associated.

Effect goal conflict concemns also refer to potential conflicts-of-interest among
goals of the user. For example, if the user asks:

(11) I want to delete the file junk, but I want
to preserve its contents. What should I

do?

KIP detects a goal conflict between the explicit goal of deleting the file junk,
and the explicit goal of preserving the contents of the file junk. The deletion goal is not
expressed as the effect of a particular plan. Nonetheless, KIP uses its information about the
effect goal conflict concern for the deletion goal. KIP detects the goal conflict because file
deletion has a stored conflict-of-interest concern with the goal of file preservation. KIP is
able to use all the information it has about this concern outside the context of a particular
plan. KIP can use all this information because it considers an effect goal conflict concern

in addidon to a plan goal conflict concern.
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KIP sometimes uses different degrees of concerns for plan goal conflict concerns

‘and effect goal conflict concerns. This technique is useful in situations KIP has information

that the conflicting effect is likely. For example, consider again these examples which were
discussed earlier in this chapter on page 146:

(2) How do I print out a file on my terminal?

(3) How do I print out an executable file on my
terminal?

In both these examples, the USE-CAT-COMMAND plan might be chosen as a plan
for the goal of printing the file on the user’s terminal. One potential effect of this plan is
that a file with control characters will lock up the user’s screen. This effect conflicts with
the user’s interest in being able to use his terminal effectively. The difference between
these examples is the degree of concern regarding this potential goal conflict. In (2), the
degree of concern regarding for the screen-locking concern is low. The degree of concem
is low because it is very unlikely that the user’s file contains control characters. In (3), the
degree of concern is high due 1 the high likelihood that an executable file contains control
characters. In both these case, the serious of the threat to the threatened interest is high. The
difference in the examples is in the likelihood of the occurrence of the conflicting effect.

In the section on specifity of concern, 1 described how KIP might create a spe-
cific goal/plan relationship that reflects this heightened degree of concern in printing an
executable file. However, another way 10 encode this knowledge is to have different de-
grees of concern for the plan goal conflict concemn and the effect goal conflict concern.
According to this technique, KIP stores a low degree of concern for the plan goal conflict
concern. This degree is low because in most cases, the conflicting effect is an unlikely
occurrence. However, the degree of the effect goal conflict concern is high. The degree of
effect goal conflict concern is only influenced by the seriousness of the threat to the user’s
goal. Since the threat to the user’s interest in the usability of the user’s terminal is serious,
the degree of the effect goal conflict concem is high.

Therefore, if KIP has information that the conflicting effect s likely, it would use
the degree of concern information from the potential conflicting effect rather than from the
plan itself. For example, in (3), KIP has knowledge that the conflicting effect is likely.
Therefore, KIP infers a high degree of concern due to the high degree of the effect goal

conflict concern.
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10.5 KIP’s Algorithm for Dealing with
Goal Conflict Concerns

There are three main parts of KIP’s goal conflict concern algorithm:

(1) Concern Retrieval - retrieve the concerns from KIP’s
planning knowledge base

(2) Concern Evaluation - evaluate the concerns in the particular
planning situation

(3) Concern Treatment - decide how the planning process should
proceed based on the concern information

First, the three parts of this process are described. I then describe some of the
implementation and representation details. In the last part of this section, a short com-
puter trace is presented. In the following chapter, a number of extended examples of both
condition concerns and goal conflict concerns will be presented.

In the Figure 10.1, T have expanded on those parts of the KIP’s planning algorithm

in which goal conflict concerns play an important role.

10.5.1 Concern Retrieval

After KIP detects the goals of the user, it selects a potential plan and creates an
instance of that plan. KIP then checks for any violated defaults in the particular planning
situation by comparing the values of properties in the planning situation, that have been
specified by the user, against the default values for those properties. For each violated
default, KIP determines the most specific stored violated default concerns for that violated
default. Some violated defaults may generate concerns regarding conflicts due to an effect
that is not part of the potential plan. Therefore, the conflicting effects of goal conflict
concemns are matched against the effects of the potential plan. KIP discards all concerns
whose effects are not effects of the potential plan.

KIP next evaluates whether the user goal is the intended effect of the selected
plan. If the goal is not the intended effect of the plan, then both the intended and unintended
goal conflict concems are gathered. If the user goal is the goal for which the plan was
intended, then only the intended effect concerns are gathered.

Once intended, unintended and violated default concerns are gathered, it sorts
them based on the degree of concern. KIP then decides on a threshold level for concern.
This level is based on the planning situation. For example, if the plan is the normal plan
for these goals, a high threshold will be chosen. A lower threshold is chosen when the plan
has not been used before. The concerns which are below the threshold level are discarded.
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10.5.2 Concern Evaluation

KIP then creates dynamic concerns for each of the stored concerns. It evaluates
the concemns according to the degree of stored concern. KIP first evaluates the conflicting
effect by determining if the conditions necessary for the effect are true in KIP’s model of
the world. Secondly, KIP evaluates the threatened interest to determine if the interest is
important in this particular problem situation. Interest evaluation is done by examining
the goal that such an interest would generate in the particular planning situation. If the
user already has a goal that is mutually exclusive to the interest goal, the interest goal is
not generated. If KIP determines that the interest is important, then the interest is inferred
as a goal. If not, then the concern is disregarded. In either case the interest evaluation is
remembered so that other concemns which are related to this interest are not reevaluated.

During this evaluation, KIP assigns a new degree of concern to the dynamic con-
cern based on the particular planning situation. However, many of the values necessary for
this evaluation will not be known and must be provided from uncertain default knowledge.
Therefore, the degree of concern of the dynamic concern is calculated by using both the de-
gree of concern of the stored concern and the degree of certainty in the default knowledge.
For example, consider a case where KIP evaluates a dynamic concern which has a high
degree of concern, and the default knowledge claims that the interest is an unlikely goal.
In this case, KIP decides that the degree of concern of the dynamic concern is moderate.

10.5.3 Concern Treatment in the Planning Process

Once KIP has evaluated a concern it can proceed in one of three ways, depending
on the degree of that particular concern. If the degree of concern is low, KIP can choose to
disregard the concern. Disregard means that the concern is no longer considered at all. KIP
can try to revise other parts of the plan, and suggest the plan to the user with no reservations.

If the degree of concern is high, KIP can choose to elevate the concern 1o a source
of plan failure. In this case, KIP determines that it is very likely that the plan will fail. KIP
tries to fix this plan in order to change the value of this condition, or tries to find another
plan.

The most complex case is when the degree of concem is moderate. In this case,
KIP can choose to disregard the concern, or elevate it to a source of plan failure. KIP can
also choose to overlook the concern. Once KIP has developed a complete plan for this
problem, it is once again faced with the need to deal with the overlooked concemn. If the
plan will work, except for the overlooked concern, KIP can again choose to disregard the
concern, or elevate it 1o a source of plan failure. At this point, KIP can also choose to
suggest an answer to the user. Depending on the degree of this overlooked concern, KIP
may choose to express the concern to the user in the answer.
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10.5.4 Implementation and Representation

Stored goal conflict concerns are represented in a way very similar to condition
concerns as is described in Section 8.6.4. by creating a different GOAL-CONFLICT-CONCERN
concept for each concern. Degrees of concerns are presently implemented as numbers from
one to ten. Dynamic goal conflict concerns are implemented as instances of these stored
concems.

There are two major differences between the representation/evaluation of condi-
tion concerns and goal conflict concerns. Condition concerns have a Desired-Value relation
which refers to the value that the Concern-Condition should have. If the Desired-Value does not
hold, a goal is instantiated to reflect the condition concern. Goal conflict concerns, how-
ever, have an Undesirable-Value relation which refers to the value that the Concern-Condition
should not have. Goals are only created to reflect goal conflict concerns when some partic-
ular state of the world holds, i.e. the Concern-Condition has the Undesirable-Value. For example,
consider the LS-TOO-MUCH-OUTPUT-CONCERN represented in Figure 10.2. If the directory-
size is large, then the goal conflict will be considered further. Otherwise the goal conflict
will not occur.

The second difference between the representation/evaluation of conditdon con-
cerns and goal conflict concerns is the reference of goal conflict concerns to interests. While
goals are instantated directly to reflect conditdon concerns, goal conflict concerns neces-
sitate the evaluation of an interest before a goal is instantiated. Thus, each goal conflict
concern also represents & Concern-Interest relation which refers to the interest that will be
evaluated when the goal conflict concern is considered.

If the interest is important to the user, a goal is instantiated to reflect the inter-
est. The goal instantiated is defined by the Interest-Derived-Goal relation. In Figure 10.2, the
Interest-Derived-Goal is the NO-SCROLL-OFF-SCREEN goal.

10.5.5 Trace of Goal Conflict Concerns

In this section, I present some examples of KIP’s use of a goal conflict concern.
I first present a long trace of goal conflict concerns. In order to keep the example simple,
the only concemn is a default concern. However, this same concern is considered at two
different points in the planning process, for two different plans with different results.
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Figure 10.3: KIP Trace of a Goal Conflict Concern

User: How I do move the file junklisp to the file test1?
-+ KIP has received the following goal as input from the goal analyzer:

(rename-file-effect-1
(Destination-File-File-Name-46
(file-name-state-38
(Value-Of-File-Name-50 test1-1)
(Object-Of-File-Name-42
(file-2
(File-Name-41 test1-1)))))
:: The Destination-File-File-Name-46 relation is necessary because the
;; rename-file-effect manipulates the name
:: of the file. Afier the effect the file referred to by the
;- destination-file-file-name is the source file and not the destination file. The
-+ destination-file-file-name refers to a file-name-state before the effect occurs.
(Desxination-File-Of-Renamc-Filc-Effect-48 file-2)
(New-Name-37 testl-1)
(Previous-Name-63 junk.lisp-1)
(F'mal-State-Of-chame-File-Effect-33
(file-name-state-25
(Value-Of-File-Name-52 testl-1)
(Object-Of-File-Name-29 file-1)))
(Inix.i.al-Stalc-Of—chame-File-Effecx-él
(file-name-state-53
(Value-Of-File-Name-65 junk.lisp-1)
(Object-Of-File-Name-57 file-1)))
(Souroe-Fi]e-Of-Renamc-File-Effect-?A file-1))
:: the source-file-of-rename-file-effect is the file that is affected in this
;; represeniation of the rename-file-effect. Its name is changed form junk lisp to
;. testl.

KIP is trying to determine a plan for the list of goals:
(rename-file-effect-1)

Goal establishment

Selecting a goal from the List Of Goals ((rename-file-effect-1))
selecting the remaining goal

rename-file-effect-1
Plan determination
Looking for a plan for the Current Goal (rename-file-effect-1)
First looking at stored plans
Selected mv-command as a potential plan
Now specifying the plan for the particular planning situation:
{mv-command-69

(First-File-Arg-File-Name-98
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(file-name-state-90
(Value-Of-File-Name-96 junk. lisp-1)
(Object-Of -File-Name-94 file-1)))
(Second-File-Arg-File-Namc-Sl
(file-name-state-73
(Value-Of-File-Name-79 test] -1)
(Object-Of-File-Name-77 file-2)))
: These are the file-names before the command is executed. The mv-command is
;; difficult to represent because the argument of the command, i.e. the names of
;: the files, are changed during the course of the plan. Therefore, it is
:: necessary to specify the file-names of the operated files before the command is
:+ actually executed
(First~Filc-Arg-Of—Mv-Command-89 file-1)
(Second-File-Arg-Of -Mv-Command-72 file-2)
('Format-Of-Unix-Two—Filc-Command-S?
(unix-two—ﬁlc-command-formal-Sé
(Command-Arg-106 mv-string-103)
(Format-First-File-Arg-1 00 junk lisp-1)
(Fonnal-Sccond-File-Axg-lOS test1-1)))
- The user could execute this plan by typing mv junk lisp testl
(Imcnded-Effect-Of-Mv-Command-?O rename-file-effect-1))
:: The representation of rename-file-effect-1 is shown above

Plan failure detection
:: KIP is now looking ai the concerns of this plan.

No violated default concerns
Evaluating the goal conflict concern: delete-destination-file-concern-119
:: This concern is a general concern about a class of UNIX commands that delete
:: the destination file.
This Concern (delete-destination-file-concem-1 19) potentially conflicts
with the users Concern Interest (ﬁle-prescrvatjon-imeresl-due-tooname-overwrite-140)
: This concern causes KIP to consider this threatened interest. The
:: fle-preservation-interest is the interest in preserving the user’s files. The
;< current interes! is a more specific category of that interest which refers to
-: interests that were threatened due 1o name overwrile.
(ﬁle-preservazion-imeresx-due-lo-narnc-,ovemrite-140
(Interest-Object-197 file-2)
(Concern-Concern-Of-143 mv-command-69))
:- However, this interest is only applicable if certains conditions hold
This interest is applicable depending on the Concern Condition (file-exist-state-125) of file-2
The current value of the condition is truth-value-127

The undesirable value is true
Current Value (truth-value-127) is less specific than the Undesirable Value (true)

Try to make the current value more specific using defaults
Default-value is anything.



The Current Value (truth-value-127) is more specific than the Default Value (anything),
Therefore it is somewhat likely that the concern is important .

Kip is now determining whether a goal should be instantiated to refiect
the user Interest (ﬁlc-prescrvalion-inwrcst-duc-to-name-overwriw-140)
Since the degree of concern is medium, a goal is instantiated which reflects the threat
10 this interest in this planning sitation
-+ Since KIP knows the nature of the threat to the user’s goal, KIP also instantiates
:: a goal which reflects this threat. In this case, KIP has stored that in order 10
-+ address this threat to the user’s interest, a goal is instantiated of renaming the
: threatened file 1o a file with a .old extension.
Creating the goal:
(concern-generated-goal-198
:» This is actually a rename-file-effect goal but the fact that is generaled by
.+ a concern is also stored
(Destinaxion-File-File-Name-lSS
(file-name-state-177
(Value-Of-File-Name-189
(old-file-name-192
(O1d-Name-Part-163 test1-1)))

:: An old-file-name is the the old-name-part followed by .old. In this case, the

:; name is testl.old

(Object-Of-File-Name-181

(file-178
(File-Name-180 old-file-name-192)))))
(Dcsn'naxion-File-Of—Rename-FiJe-Effecl-187 file-178)
(New-Name-Of-Renam e-Old-File-Effect-159 old-file-name-192)
('Previous-Name-Of—Rmame-Old-File-Effect-161 testl-1)
(Final-State-Of-Rename-File-Effect-155
(file-name-state-147

(Value-Of-File-Name-191 old-file-name-192)

(Object-Of-File-Name-151 :

(file-2

(File-Exist-128 truth-value-127)

(File-Name-167 test1-1)

(File-Name-150 old-file-name-192)))))
(Initial-State-Of-Rename-File-Effect-172
(file-name-state- 164

(Value-Of-File-Name-176 test1-1)

(Object-Of-File-Name-168 file-2)))
(Source-File-Of-Rename-File-Effect-174 file-2)
(State-Change-Interval-Of-Rename-File-Effect-157 state-change-time-156))

Asserting the fact that the final-state of the goal (file-name-state-147)
starts before the start of plan interval (mv-command-69)
So that the condition holds before the plan is executed

Goal establishment
Selecting a goal from the List Of Goals ((concern-generated-goal-198))
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:+ KIP has added the concern-generated goal 10 ils list of goals and is now
;. planning for that goal
selecting the remaining goal
concern-generated-goal-198
Plan Determination
Looking for a plan for the Current Goal (concemn-generated-goal-198)
First looking at stored plans
Selected mv-command as a potential plan
Now specifying the plan for the particular planning situation:
(mv-command-199
(First-File-Arg-File-Name-228
(file-name-state-220
(Value-Of-File-Name-226 test1-1)
(Object-Of-File-Name-224 file-2)))
(Second-File-Arg-File-Name-211
(file-name-state-203
(Value-Of-File-Name-210
(old-file-name-192
(Old-Name-Part-163 test1-1)))
(Value-Of-File-Name-209 old-file-name-192)
(Object-Of-File-Name-207 file-178)))
(First-File-Arg-Of-Mv-Command-219 file-2)
(Second-File-Arg-Of-Mv-Command-202 file-178)
(Format-Of-Unix-Two-File-Command-Zl7
(unix-two-file-command-format-216
(Command-Arg-236 mv-string-233)
(Format-First-File-Arg-230 test1-1)
(Format-Second-File-Arg-238 old-file-name-192)))
: The user could execwute this plan by typing mv test] test] .old
(Intended-Effect-Of-Mv-Command-200 concern- generated-goal-198))
Asserting that mv-command-199 comes before mv-command-69

:: This rype of threat o the user's plan must be addressed before the plan is
;. executed.

Plan failure detection
Evaluating the goal conflict concern: delete-destination-file-concern-251

;- KIP has detected the same concern regarding this new plan
This Concem (delete-destination-file-concern-251) potentially conflicts
with the users Concern Interest (ﬁle-pneservation-imerest-due-to-name-ovem'rile-272)
This interest is applicable depending on the Concern Condition (file-exist-state-257) of file-178
The current value of the condition is truth-value-259
The undesirable value is true
Current Value (truth-value-259) is less specific than the Undesirable Value (true)
Try to make the current value more specific using defaults
Default-value is anything.
The Current Value (truth-value-259) is more specific than the Default Value (anything),
Therefore it is somewhat likely that the concern is important
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-+ KIP has determined that the file testl.old might already exist and would thus be deleted

Kip is now determining whether a goal should be instantiated o

reflect the user Interest (ﬁle-preservau'on-imerestodue-to-namc-overwriLc-272)

Since the degree of concern is medium a goal is instantiated which reflects the threat to this interest
In this planning situation

Kip has determined tha: the Interest (old-ﬁlc-prescrvaljon-inwrcst-due-to—name—overwrite-332)
is not important in this particular planning situation

:: KIP has realized that this is actually another type of file-preservation-interest,

;- the old-file-preservation-interest. This category refers 1o the interest in

;; preserving old-files. KIP knows that the user’s level of interest in preserving

:: old-files is relatively low. User's tend 0 keep one .0ld version around and no

;. more.

The following goal will not be instantiated:

(rename-old-file-effect-278)

To move the file named junk.lisp to the file named test1, use mv junk.lisp testl.

However, the file test] will be deleted if the file testl exists.

First move the file named test1 to the file named test1l.old, by typing mv testl testl.old.

In the following trace, KIP determines a 4-step plan from concerns presented in
the previous trace.

Figure 10.4: KIP Trace of File Swapping

User: How do I move the file foo to the file named bar,
and move the file pamed bar to the file pamed foo?

To move the file named foo to the file named foo.old, use mv foo foo.old.
To move the file named bar to the file named bar.old, use mv bar bar.old.
To move the file named bar.old to the file named foo, use mv bar.old foa.
To move the file named foo.old to the file named bar, use mv foo.old bar.

-+ The user has asked how 10 swap two files. However, KIP has no knowledge about
:; swapping. KIP arrives at this solution by using the same concerns presented in

;: the previous example. KIP first decides 1o move foo 10 bar, but realizes that bar
:- will be deleted. Therefore, KIP decides to move bar 1o bar.old. KIP plans

:: similarly for the move from bar 10 foo. KIP then determines what the order of the
;; plans should be and returns a plan to the user. KIP's plan is suboptimal, it could
-+ have determined a plan with three steps rather than four. However, KIP has not
;; been given strategies for reducing the number of plan sieps.
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In the following trace, an unintended effect concemn trace is presented.

Figure 10.5: KIP Trace for Freeing up Disk Space

User: How can I free up disk space?

To free up disk space, use rm.
However, any file that is removed cannot be recovered.

-+ KIP has not been given a plan for the goal of freeing up disk space. However,

;: freeing up disk space is one of the effecis of the rm command. KIP selects the

-+ rm-command as a plan for the goal of the user. However, KIP expresses concern
:: that the user cannot recover his files once they have been deleted. This is an

; example of an unintended effect concern. Unintended effect concerns are only

:: considered when the user's goal is not the intended effect of the selected plan.

10.6

Conclusion

This chapter has focused on goal conflict concerns. KIP’s use of goal conflict

concemns allows KIP to detect complex goal conflicts between-an effect of a potential plan
and a goal or interest of the user. Eight different dimensions of concern have been described

that allow KIP to detect goal conflicts in unique planning situations.



Chapter 11

Conclusion

11.1 Importance of Concerns

The earlier planners described in Chapter 1, planned without representing the
concemns of a plan. In the course of this thesis, I have demonstrated the use of concerns in
planning for goals in many different planning situations. This section addresses the relative
advantages of concern representation and processing. In particular, the gains in efficiency
resulting from concerns are evaluated in light of the processing demands such concern

representation entails.

11.1.1 Efficiency

Concems allow a planner to plan efficiently in planning situations where the plan-
ner has much knowledge about potential plan failures. As the planner gains more knowl-
edge regarding potential plan failures in a particular domain, planning becomes compu-
tationally intractable using other methods. Thus, concerns allow the planner to plan in
domains where planning might become impossible for traditional methods.

Knowledge-deficient planners actually implemented de facto concerns. Many of
the conditions represented in knowledge-deficient planners are those that are most likely
to fzil in a particular planning situation. Since knowledge-deficient planners do not use
the concern vocabulary, they fail to distinguish between conditions more likely to fail and

conditions less likely to fail.

11.1.2 Planning with Uncertainty

A commonsense planner must be able to detect plan failures even when it is un-
certain of values in the planning situation. Most previous planning research assumed that
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the values for all the conditions is known. However, in UC, when a user describes a plan-
ning problem later passed to KIP, the values for many conditions are usually omitted. It
would be undesirable to prompt the user for this information, particularly for those val-
ues which are not important for the specific planning situation. Instead, an algorithm for
plan failure detection should be able to detect plan failures by relying on default situation
knowledge. The use of default situation knowledge may entail further processing for all
the plan failures considered by a planner. Therefore, it becomes even more important to
limit the conditions, effects, goals, and interests a planner considers. Since much of the
knowledge about a particular situation may be unknown, each individual comparison for
conflict might entail much effort. '

Concerns allow a planner to plan in uncertain planning situations. A planner
only considers violated default concerns when specified parameters violate defaults. Thus,
default/violated-default concerns allow KIP to deal with a large body of default knowledge.
Concerns circumvent the need to refer to default knowledge regarding the value of those

conditions about which KIP is unconcerned.

11.1.3 Knowledge Intensive

The third reason for using concerns in a knowledge intensive planner is based on
the principles which underlie knowledge intensive planning. Knowledge intensive plan-
ning implies the representation and efficient utilization of as much knowledge as possible.
Concemns are a type of knowledge, like any other knowledge that a planner might have.
Human experts know about plans, goals, interests, €tc. Similarly, they also know about
concemrns. Therefore, concerns should be modeled by a knowledge intensive planner. The
fact that a knowledge intensive planner has a large knowledge base is problematic due to
the potential problems of focusing on relevant knowledge. While other types of knowl-
edge tend to diffuse the planner’s attention by introducing more possibilities in a planner’s
search space, concerns focus the planner’s attention. Therefore, concerns should not only

be modeled, they should be utilized.

11.2 Future Research

Hammond’s (CHEF) [13] method of indexing plans on the failures that such plans
avoid might be a useful addition to the theory of concerns. In KIP, goals are instantiated
that reflect concerns, and KIP selects plans for these goals. Research should further address
the relationship between concerns about particular plan failures and plans that avoid such
failures. Also, KIP’s concerns are currently defined by explicitly representing concerns in
a long term knowledge base based on a human consultant’s UNIX experience. Hammond’s
method of learning plan failures might be useful in investigating the learning of concerns
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through the examination of plan failures in previous cases.
KIP - the Theory and KIP - the Program might be modified so as to reflect Wilen-

sky’s [35] theory of metaplanning. This modification would provide a specification of
planning strategies. In particular, KIP’s concern algorithm might benefit from meta-level
knowledge regarding the detection of plan failures. Such knowledge might be particularly
useful where specific concern knowledge regarding a planning situation is not available.

11.3 Final Comments -
Building Knowledge-Based Systems

KIP - the Program is actually a relatively simple program. Eighty percent of
my work in implementing KIP was in the development of KIP’s knowledge base. This is
particularly appropriate for a knowledge based program such as KIP, but has been the cause
of much frustration. Unlike a computer program, where one can use a compiler as a first
pass debugger, there are no readily available tools for debugging a knowledge base.

There are a number of simple strategies that I have found useful in developing
such a knowledge base. The simplest strategy is to maintain a list of test cases that have
worked in the past. As new knowledge is added, these examples should be retried. Unfor-
tunately, one can also depend too heavily on such strategy. Occasionally, new information
added to the knowledge base showed that one or more test cases were not represented €or-
rectly due to incorrect assumptions.

Another strategy for proper knowledge base construction is the checking of con-
straints in the knowledge base when the knowledge base is loaded. In addition to enforce-
ment of constraint checking on the part of the knowledge base interpreter, relations must
be carefully constrained by the knowledge base designer.

One of the best strategies I found for discovering knowledge base inconsistencies
was the application of the knowledge base for other tasks. Many errors were detected by
using the same knowledge base for planning as for parsing questions to UC.

The real test for any knowledge based program is applying the program to a great
deal of knowledge. However, as knowledge bases grow larger new strategies for knowl-
edge base construction are necessary. Tools should be developed that help an expert add
. information to a knowledge base such as KODIAK. These tools should immediately point
out inconsistencies in the knowledge base. For example, one of the most difficult tasks in

constructing KIP’s knowledge base was the construction of classification hierarchies. Tools

are needed to display the network in such a way as to aid the knowledge base designer in
the construction of these hierarchies.
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