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Abstract

We give a PSPACE algorithm for determining the signs of multivariate polynomials
at the common zeros of a system of polynomial equations. One of the consequences of
this result is that the “Generalized Movers’ Problem” in robotics drops from EXPTIME
into PSPACE, and is therefore PSPACE-complete by a previous hardness result [Rei].
We also show that the existential theory of the real numbers can be decided in PSPACE.
Other geometric problems that also drop into PSPACE include the 3-d Euclidean Short-
est Path Problem, and the “2-d Asteroid Avoidance Problem” described in [RS]. Our
method combines the theorem of the primitive element from classical algebra with a
symbolic polynomial evaluation lemma from [BKR]. A decision problem involving sev-
eral algebraic numbers is reduced to a problem involving a single algebraic number or
primitive element, which rationally generates all the given algebraic numbers.



1 Introduction

Ever since Tarski’s paper [Tar] on the decidability of the theory of real closed fields, there
have been steady improvements in the time and space bounds of algebraic algorithms.
A double-exponential time algorithm for the theory was given by Collins [Col]. Collins’
method was later improved by Ben-Or, Kozen and Reif [BKR] to single-exponential
space. If only existential quantification is allowed, the theory of the reals has an EXP-
TIME solution, described in [GV]. The [BKR] method was interesting in that it was
purely symbolic, i.e. it did not require numerical root isolation, as did Collins’ method.
Instead [BKR] made use of a polylog space algorithm for finding the signs of a set of
polynomials at the roots of a given polynomial.

In this paper we generalize the [BKR] lemma, which applied to the roots of a single
univariate polynomial, to the common zeros of several polynomials in several variables.
Our generalized algorithm requires only polynomial space (the problem it solves is at least
NP-hard). Using this result, we obtain a PSPACE algorithm for the existential theory of
the reals. We also apply the lemma to obtain PSPACE upper bounds for several problems
in robotics.

The “Generalized Movers’ Problem” which is the problem of finding a collision-free
path for a robot with n degrees of freedom moving among polyhedral obstacles, was
shown to be PSPACE-hard by Reif [Reil. The problem was treated by [Loz] for the
restricted cases of motion without rotation in two and three dimensions. Later [SS] gave
a double-exponential time algorithm for the general problem based on Collins’ cellular
algebraic decomposition [Col]. The space bound was improved to single-exponential by
Kozen and Yap [KY].

Eventually, a single exponential time algorithm for the movers’ problem was described
in [C87b]. In this paper, we bring that algorithm into PSPACE, showing that the movers’
problem is PSPACE-complete.

The 3-d euclidean shortest path problem is the problem of finding the shortest path
between two given points which avoids some polyhedral obstacles. The problem has been
dealt with by Sharir and Schorr [SSc] who gave an 22°™ algorithm by reducing the
problem to an algebraic decision problem in the theory of real closed fields. This was
improved by Reif and Storer [RSt] who gave 27°”-time (n®08") )-space algorithm using
the same theory but with a more efficient reduction.

We define the 2-d asteroid avoidance problem as the problem of determining a collision-
free path for a point in the plane with bounded velocity magnitude, with convex polygonal
obstacles moving with fixed linear velocity (no rotation). The obstacles are assumed not
to collide. In [RS] the problem was shown to be solvable in time 2no®,

In [CR] both the 3-d euclidean shortest path and the 2-d asteroid avoidance problems
were shown to be NP-hard. In [C87a] improvements in the exponents of upper bounds
for both problems were given. These improvements were based on the roadmap algorithm
and on the multivariate resultant as an equation solving tool. Here we improve the upper
bounds for both problems to PSPACE.



In section 2 we give three lemmas on primitive elements. The first is a polylog-
space algorithm for computing a primitive element polynomial for a pair of univariate
polynomials. The second is a PSPACE algorithm for computing a primitive element
polynomial for a system of multivariate polynomials. Using the latter result and the
main lemma from [BKR], we give our main lemma which is a PSPACE algorithm for
computing the signs of a set of multivariate polynomials at the common zeros of a system
of polynomial equations.

In section 3 we use the main lemma to give a PSPACE decision algorithm for the
existential theory of the reals. PSPACE upper bounds for the 3-d euclidean shortest path
problem and the asteroid-avoidance problem follow as straightforward corollaries. We also
describe modifications of the roadmap algorithm of [C87b] which runs in PSPACE.

2 Computing with Primitive Elements

Let py(z) and py(z) be polynomials of degree d; and d; respectively, each having only
simple roots. We denote the roots of p;(z) as

a1y ...,04 (1)

and the roots of py(z) as

ﬂla-“’ﬂdz (2)

then we have the following constructive version of the theorem of the primitive element

[Wae]:

Lemma 2.1 Let pi(z) and p;(z) be square-free polynomials of degree di and d; respec-
tively. Then there is a polynomial q(z) of degree did; and rational functions ri(z) and
r2z), such that every pair (as, B;) of roots of p, p2 equals (r1(6i;),2(6i;)) for some root
8;; of g(z). The computation requires polylog space.

In other words there is a one-to-one correspondence between the did; pairs (a;, 3;)
and the dyd; roots 6; ; of g. Furthermore each pair is rational in the corresponding root

0,',]'.
Proof The proof closely follows [Wae]. We choose a constant ¢ and set

0i; = ai+ cB; (3)

Clearly if we want to recover a; and 3; from 6; ;, we must ensure that 6; ; takes on distinct
values for distinct pairs («;, 8;). So we must have

a; +cBi # ak+ cB (4)



for i # k and j # I. Assume for the moment that c satisfies (4), we compute the greatest
common divisor of p;(8 —cz) and py(z) as polynomials in z. If § = a; + ¢f;, then z = j;
is a common root, and by the inequalities (4) there are no other common roots, so the

GCD is linear.
From the theory of subresultants [BT] we have the following facts:

o The resultant of two polynomials vanishes if and only if they have a common root.

e If the GCD of two polynomials is linear, then it is similar to (in this case a constant
multiple of) the first subresultant of the polynomials.

We denote the resultant (with respect to z) of polynomials a(z) and b(z) as
RES.(a(z),b(z)). Then from the first property above, the polynomial g(6) = RES,(p:(6—
cz), p2(z)) vanishes only at 8 = 6, j, so g(z) is the primitive element polynomial we were
looking for. The rational functions are found from the first subresultant which is of the
form

d(8)x + n(6) (5)
and which vanishes at the common root z = 3;. The rational function r; is just
__n(6)
and since a; = (8;; — ¢Bj), 1 is given by
n(d
r(8) = 9“?1(% (7)

Both the resultant and the first subresultant can be computed in polylog space
from the Sylvester matrix using the determinant algorithm of [Csal. Inspection of the
Sylvester matrix for p;(6 — cz) and p;(z) shows that the degree of ¢(z) is did;. The
degrees of r; and r, are less than dd;, where we define the degree of a rational function
as the maximum of the degrees of its numerator and denominator.

It remains to show that we can compute a suitable constant ¢. There are only finitely
many bad values of ¢, each one failing to satisfy one of the inequalities (4). Given p; and
p2 we choose ¢ as follows:

First, we construct for both p, and p, “difference” polynomials A,(y) and Ax(y).
Each A, is the resultant with respect to z of the polynomials p;(z) and pi(z + y). This
resultant vanishes if and only if the two polynomials have a common root, that is if there
is some a such that both £ = a and = = a +y are roots. Every root of A;(y) is therefore
of the form (a; — a;) for some pair of roots of p;, and similarly for As(y).

We denote the non-zero roots of A;(y) as 67 and the non-zero roots of A(y) as 55 I
then (4) can be expressed as



83k # by (8)

for all i # k, j # l. Since we are only interested in non-zero roots of A(y), we divide
each A;(y) by its lowest power of y, giving polynomials Aj(y) having only non-zero roots.

Now we compute the resultant with respect to y of the polynomials Aj(zy) and Al(y).
This gives us a resultant polynomial R(z) which is zero for each value z = ¢ which violates
some inequality in (8). The resultant R(z) has polynomial degree and coefficient length
in the degree and coefficient lengths of p; and p;, and knowing only these bounds we can
readily obtain upper bounds on the size of any root of R(z), [Migl. These bounds are
again polynomial, and choosing a value of ¢ slightly larger than the bound guarantees
that it is not a root of R(z) and that the inequalities (4) are satisfied. The computations
for ¢ can be performed in polylog space. [

The following lemma shows that the solution rays of a system of polynomials can
be represented as the values of a series of rational functions evaluated at the roots of
a univariate polynomial. A similar result is proved in [Ren], although the rational
functions defined there are different. The computations in [Ren] were not shown to be
in PSPACE, but it is easily shown that they are by Csanky’s result [Csa]. The result
proved here is more general, and does not require that there be only finitely many solution
rays at infinity.

Lemma 2.2 Let p1(Zo,...,%n)s- s Pa(Tos ..., Tn) be homogeneous polynomials with D <
[1d; isolated solution rays (ao;,---,@nj), J = 1,...,D. Let N < D be the number of
solution rays not “at infinity” i.e. those which have, say ao; # 0. Then there 13 a
polynomial q(z) of degree N, and rational functions n(z),...,ra(z), such that every
solution ray not at infinity is of the form (1,71(8),...,7a(8)) for some root 6 of g(z).
The polynomials q(z) and ri(z) can be computed in polynomial space.

Proof We add the linear polynomial u¢zo + -+ + #nZn to the system of polynomials,
giving a system of n + 1 polynomials in n + 1 variables. The resultant polynomial

R(uog,...,uy) is called the u-resultant [Wael. It factors into linear factors, the coefficients
of which are the solution rays. That is, the linear factors of R(uo,...,u,) are of the form
(o juo + ayjur + - -+ + Qn jlln) (9)

Note that this method does not work if there are infinitely many solution rays at infinity.
However, as shown in [C88b], this case can be dealt with by using the lowest degree
term of the generalized characteristic polynomial instead of the resultant, which takes
essentially the same time to compute, and is no larger than the resultant.

We are looking for a single polynomial whose roots generate the coordinates of the so-
lution rays. We construct it by defining a polynomial whose roots are linear combinations
of the coordinates. We choose n constants ¢,,...,c, and set



Q(z) = R(—Z‘,CI,..-,C") (10)

In this case and later cases, R denotes the resultant if it is non-vanishing, or else the
lowest degree coefficient of the generalized characteristic polynomial [C88a]. With this
substitution, the factors of R corresponding to roots at infinity become constants, while
the linear factors are of the form

(aojz— 25 cioij) (11)
i=1,...,n ’
So g(z) has degree N. We assume without loss of generality that o ; = 1 for rays not at
infinity. Then the roots of ¢(z) are 8; where

9,~ = z C,‘O!,',J' (12)
i=1,...,n
To construct each rational function ri, we make two other substitutions in the u-
resultant. We set

@ (z) = R(—=z,c1,...,(ck +1),...,¢q)
(13)
gi (z) = R(—=z,c1,...,(ck —1),...,¢n)

This may lead to polynomials with multiple roots, so we extract the square-free parts of
gi and ¢y and denote them §{ and §; respectively. If 8 = 6, then i (z) and G} (26 — =)
have a common root if and only if

S o citim—km = 2 D cioij— D Ciotg— Qg (14)
i=1,..,n =1,..,n i=1,...,n
There will certainly be a common root if I = m = j, but there can also be spurious roots
if the c; satisfy (14) for some a; , # «; ;. Assuming for the moment that they do not, then
the common root must be r = 6; — a, and it will be a root of the first subresultant. We
now compute the first subresultant of §; (z) and §{ (20 — z), and let it be di(6)x + ni(6).
The rational function ri(8) is given by

_ n(0)
0= 4@

In [Ren] a rather different method is given for finding the rational functions. That
method gives rational functions of much lower degree, although in the present case, it is
possible to keep the degree under control by repeatedly reducing polynomials mod ¢(z)
during GCD computations.

The computation of ¢(z), g; (z) and g} (z) from the input polynomials requires poly-
nomial space using the multivariate resultant algorithm described in [C87b]. These
polynomials have degree D and coeflicient length O(bD). The subresultant and GCD

+6 (15)

6



computations for di(z) and ny(z) can be performed in space polynomial in log(bD) using
[Csa]. Thus overall the space required is polynomial in the input size.

We have postponed until now the question of how to find a suitable tuple C =
(¢1,...,cn) of constants. The bad choices of C' are of two types, and both can be detected
during execution. The first type are those that cause g(z) or g7 (z) or gi (z) to vanish
identically. g(z) will vanish identically if inner product of the tuple of ¢;’s and a solution
ray at infinity is zero, i.e. if

Y aijei = 0 and a@; =0 (16)

for some j. Similar conditions apply to g (z) where ¢ is replaced by cx+ 1 and to g5 (z)
with ci replaced by cx — 1.

Other bad choices of ¢; are those that satisfy (14) for distinct j, I, m. All these
equations are linear in the c;. For any bad choice of the c;, there will be a spurious root
at § = 8;. So gz (z) and §{ (20 — z) will have a common factor of degree two or greater,
and their first subresultant will vanish identically. Thus ¢(6), di(#) and n(6) would all
vanish at § = ;. i.e. Their GCD would be non-trivial. A necessary and sufficient test for
the absence of spurious roots is to compute the GCD of these polynomials and determine
if it is a constant.

Any tuple of ¢;’s which does not satisfy equation (14) for distinct j, I, m or equation
(16) will work. Since all the bad choices satisfy certain equations, the set of bad values
has measure zero. If a random integer tuple C is chosen it should work with probability
one. Since we gave tests for both types of failure, we can construct a Las Vegas type
probabilistic algorithm by repeatedly trying random C’s until one succeeds.

A less efficient but purely deterministic approach is to introduce an indeterminate 3
and set ¢; = B for i = 1,...,n. Then all the equations for bad choices of ¢,’s become
non-vanishing polynomials in 3. Thus there are some values of 3 (in fact all sufficiently
small values of 3) which do not satisfy any of the equations. This guarantees that when
GCD’s are computed, spurious roots will not occur.

The result of the algorithm for this choice of ¢,’s will be a polynomial ¢(z) and rational
functions rx(z) whose coefficients are polynomials in 3. Manipulation of polynomial
coefficients rather than integers causes the running time of the algorithm to increase by
a polynomial factor. The space bound is still polynomial by the earlier argument for
integer ¢;’s. [

The following lemma is due to Ben-Or, Kozen and Reif [BKR]:

Lemma 2.3 Given a polynomial p(z) and polynomials ¢g(z), i = 1,...,m the sign se-
quences (sign(q,(a;)), - - - ,sign(gm(a;))) at real roots a; of p(z) can be computed in polylog
space.

We can now state the main lemma on the computation of sign sequences of multivari-
ate polynomial systems.



Lemma 2.4 Let py(z1,...,2,) = 0,...,pa(21,...,2,) = 0 be a system of inte-
ger coefficient polynomial equations having a finite number of solution points. De-
note the N real solution points not at infinity as a; € R", j = 1,...,N. Let
@1(Z1,. -, Zn)s oo 1 qm(Z1, ..., Zn) be a set of polynomials. Then the set of sign sequences
(sign(qi(a;)),- . ,sign(gm(a;))), 3=1,...,N can be computed in polynomial space.

Proof We first introduce a homogenizing variable z 4, and for each pi(zy,...,2z,), we
multiply every term by a power of zo so that the degree of the term equals the degree of
pi. This gives a set of polynomials p} which is homogeneous, and satisfies the conditions
for lemma 2.2. We use that lemma to compute a polynomial g(z) whose roots generate all
the solution points not at infinity via rational functions ri(z). We use the deterministic
version of that lemma, where the ¢;’s are powers of an indeterminate 3.

Now we show that a root 8; of ¢(z) is real if and only if all the coordinates of the
corresponding solution point (ay,j,...,an,;) are real. If the coordinates a;; are all real,
so is ; since it is just the linear combination 3 i, . . ciai; with real weights ¢;. The
converse is true if the rational functions r; have all real coefficients. They will because
they are computed from the coefficients of the p; by rational operations only (resultant
and subresultant computations).

We next substitute z; = r4(6) in each polynomial g;. This produces a rational function
R(6) whose denominator is a product of powers of the denominators of the r(6). If the
denominator of R;(8) is an odd power of the denominator di(f) of r(6), we multiply
numerator and denominator of Ri(8) by di(6). This does not change the sign of Ri(f),
but ensures that its denominator is positive. Let the numerator of R((6) after the above
multiplications be Q(#). Then Q;(6) is a polynomial with the same sign as the rational
function Ry(f), (so long as the denominator of Ry() is non-zero, which it will be at any
root § = 8; of ¢(8))

We now have a system of polynomials Qi(f) such that the sign sequence
(sign(Q1(6;)), - - - ,sign(@m(F;))) at some real root §; of ¢(6) is the same as the sign se-
quence (sign(q;(a;)),..-,sign(gm(a;))) at the real solution point a; € R" corresponding
to 6;.

So our original problem reduces to the problem of enumerating the sign sequences
of the @i(#) at the real roots of the single polynomial ¢(6). For this we can make use
of the last lemma from [BKR]. The only caveat is that [BKR] requires determination
of the signs of certain polynomials in the coefficients of ¢ and the @/’s. Because we
introduced the indeterminate 3, these latter polynomials will be polynomials in 3. To
determine their signs, we take the sign of the coefficient of the lowest degree term in .
This term correctly gives the sign of the polynomial for arbitrarily small 3. Recall that
we interpreted 4 as an arbitrarily small quantity so that the ¢;’s not satisfy (14) or (16).

Now ¢(6) and the Q;(8) will have degree O(D?) and coefficient size O(bD*), and the
[BKR] algorithm requires space polylogarithmic in the degree and coefficient size of the
polynomials passed to it. In our case these polynomials have exponential size in the
input, but polylog of their size is polynomial in the input size. Thus the computation of



the sign sequences can be accomplished in polynomial space. O

3 Applications

The lack of an efficient method for computation with algebraic numbers defined by sys-
tems of polynomials has been a barrier to efficient parallel solutions to a number of
algebraic and geometric problems. The main lemma of the last section removes this
obstacle and leads to PSPACE algorithms for these problems.

3.1 The Existential Theory of the Reals

An existentially-quantified formula in the first order theory of the reals is a formula of
the form:

Jz,3z,...3z, P(z1,22,.-.,2Zn)

where each z; € R, and where P(zy,z2,...,Z,) is a predicate which is a monotone boolean
function of atomic predicates of the form

fi(z1,22,...,20) 20 or giz1,22,...,20) >0

There is no loss of generality in this form for P over forms with arbitrary boolean func-
tions and arbitrary inequalities. Deciding the existential theory is equivalent to deciding
whether sets of the form

Sp = {(z1,22,...,2a) € R" | P(z1,22,...,%4)} (17)

are non-empty. Such a set is called a semi-algebraic set. The basic method is to test
the predicate at a collection of sample points in R" one of which is guaranteed to be in
the set if it is non-empty. The sample points are extremal points in some direction of
the closures of sign-invariant sets. A sign-invariant set is the set of points where all the
polynomials defining Sp have particular signs. There are two obstacles to applying this
method directly: (i) The set Sp may not be compact, so that extremal points may not
exist, and (ii) intersections between surfaces given by the defining polynomials may be
singular, in which case it may be difficult to compute the extremal points.

Step 1: Compactness
To get compactness, we first need to bound the quantifiers, which we do by substituting

T for i=1,...,n (18)

T 1y
in all the polynomials in the predicate P. We clear denominators, and adjoin the in-
equalities —1 < y; < 1 for ¢ = 1,2,...,n with conjunctions, and call the new predicate



Q(¥1,Y2,- - -, Yn) This predicate defines a semi-algebraic set in the cube (—-1,1)". Adding
emstentlal quantification over the y;’s we get a new formula which has size polynomial in
the original, and is true if and only if the original was true.

Next we replace all strict inequalities gi(y1,¥2,...,¥n) > 0 with inequalities
gi(€1,%2,...,2n) > €. Write this new predicate as Q*(y1,¥2, .- -yYn). We write Sg for
the set of points where Q is true and similarly for Sq., and we claim that

Lemma 3.1 Sp is non-empty if and only if there ezists an € > 0 such that S« 1s non-
empty. Furthermore, if Sqe i3 non-empty, then so is Sgo for any positive € <e

Proof

We have already seen that Sp is non-empty if and only if Sq is. If Sq is non-empty,
there must exist some positive € such that Sg. is non-empty. To see this, choose any
point y € Sg, and let ¢ be the minimum over ¢ of the gi(y)’s which are positive. Then for
each i, gi(y) > e if and only if g(y) > 0. Conversely, if Sq. contains some point y for any
€ > 0, then that point also lies in Sq.

Since the predicate is a monotone boolean function, and since e always appears on
the right of a >, if the predicate is true of a point p for some value of ¢, it will be true of
that point for all € less than that value. [

Taking € to be some fixed positive value, we notice that Sq. is constructed by finite
union and intersection of sets of the form fi(y) > 0 or gi(y) > € which are closed, so Sq-
is closed. Since it also lies in the bounded cube (—1,1)", it is compact.

Step 2: Reduction to the non-singular case

We assume that the compact set Sq. is defined by a predicate which is a monotone
boolean function of inequalities fi(y) > 0, all >’s having been converted to >’s. Suppose
there are m polynomials f; : R — R. Then they define a map f : R* — R™. We first
partition R™ into regions of fixed sign for each coordinate, and then look at the preimages
of these regions in R”. The latter are the sign-invariant sets.

Let R~ denote the set (—0o,0) and R* denote (0,00). The real line R can be parti-
tioned into ® = {®~, {0}, R*} whichis a Whitney regular stratification [GWD], [C87b].
A Whitney regular stratlﬁcatlon is a partition of a set into manifolds (strata) which sat-
isfies certain tangency conditions where two strata meet. Similarly we partition ™ a
R™. This is a regular stratification of R™. Its elements are of the form o = 01X 02 -0
where each o; is either R, R~ or {0}. ¢ may be thought of as a sign sequence for the
f’s. The preimage f~!(o) of a sign sequence 0 € R™ is called a sign-invariant set. We
write f~}(R™) for the collection of all sign- -invariant sets. If the map f is transversal
to R™ (meaning it is transversal to all the strata in ™, [GWD]), then the preimage

F~Y(R™) is a regular stratification of R™.

The map f that defines Sg- will not in general be transversal to £™. The sign-
invariant sets may not be manifolds, and in these cases it is difficult to compute sample
points. However, if we introduce m extra variables a1,...,a, and set
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ey Un @1y y@m) = filyrse-,¥n) T (19)
then the map f@ : R("+™ — R™ is transversal to all the strata. Thus the preimage
f~1(R™) is a Whitney regular stratification of Rntm),

If we define a real positive quantity é as

a2 +ai+---+a =8 (20)
then the manifold of non-zero vectors (ai,...,am) is diffeomorphic to the product of
the m — 1 sphere ™1 giving the directions of the vectors, and R+ giving their §
values (euclidean norms). By abuse of notation, we write f* again for the function f¢
(restricted to the set of non-zero a vectors) composed with this diffeomorphism, and write
fa: R x Tm-1 x Rt — R™. f4 is still a submersion, and therefore transversal to all the
strata of ®™.

We can also think of f* as a family of maps f2, parameterized by §, so that f§ :
Rn x Tm-1 _, RM. Now we can make use of the generic map lemma [GG] lemma 4.6,
which states that if a parametrized family of maps is transversal to a manifold, then the
individual maps are transversal to that manifold for a dense subset of the parameters. In
our case this means that for a dense subset of ®*, choosing a fixed § still gives us a map
transversal to some stratum of R™. The set of § values which give us a map transversal to
all of the strata in ™ is the intersection of finitely many dense subsets, and is therefore
dense. Finally, the set of “bad” values of § is semi-algebraic, and since its complement is
dense, it must be finite. Thus f2 is transversal to ®™ for all sufficiently small § > 0.

Now consider the predicate Tg(¥1,..-,Yn,a1,-..,am) formed from the predicate
Q“(11,---,Yn) by replacing each polynomial f; with f* = fi + a; and adding the con-
straint (20). We let Sre C " x R™ denote the set of points for which T§ is true. Now
Stg is a closed set, since all the inequalities defining it are >’s or =. Furthermore, the
y values are all in the range (—1 — §,1 + §), while all a values are in the range (—6,6).
Thus Sy is bounded and therefore compact.

Lemma 3.2 Sq. is non-empty if and only if there exists a d(€) > 0 such that for all
positive § < d(e), Stg 18 non-empty.

Proof

We replace the equality (20) in the predicate T§ with - a? < d?, giving a new predicate
Téd. Now STéd is a compact set, and contains all the sets ST; for all positive § < d.

To show St¢ non-empty for small enough § implies S ¢ non-empty, we pick a sequence
(6;) — 0, with all 0 < é; < d. For each é; there is a point p; in St,.. The sequence p;,
since it lies in the compact set St¢ , has a convergent subsequence with some limit point
p also in Ste,. In fact p lies in S_Téo which equals Sge X {0}™, which shows that Sq. is
non-empty.

Sketch of proof of the converse: we start from any point in Sqe X {0}™ and move in
some direction that changes the values of some of the f;, while adjusting the values of
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the a; so that the f*’s are unchanged. This gives points in St , for all sufficiently small
8.

In detail we define a path ¢ : [0,1] = R™ x R™ in terms of a path p: [0,1] — R" as
follows: let p(0) be any point in Sg.. Choose any f; which is not identically zero, and
let n € R" be any vector not in the tangent cone of the zeros set of f; at p. We define
p(s) = p(0)+sm, and g(s) = p(s) X (F(p(0)) — F(s(s))). Then for any s, f2(q(s)) = £(p(0))
so clearly all the points ¢(s) lie in St¢, for large enough d.

We choose d = max(||f(p(s)) — f(p(0))|]) for s € [0,1], where || - || denotes euclidean
norm. We know d > 0 since the tangent (77) to p(s) at p(0) is not in the tangent cone
of the zeros set of f;, so f;(p(s)) must differ from f;(p(0)) for some small s. d gives the
euclidean distance of the furthest point (in a coordinates) on the path ¢(s) from ¢(0).
Let gmax be any point on the path g(s) where this maximum is attained. Then some
segment of the path g(s) joins ¢(0) to the point gmax. The euclidean magnitude of the
a-coordinates of points (which equals their é-values from (20)) on this segment varies
continuously from 0 to d, and so the segment contains points in St¢ forall 0 < ¢ < d. ad

Theorem 3.3 The ezistential theory of the reals is decidable in PSPACE.

Proof

Given a predicate P(z;,...,Z,), using the last two lemmas we can define a new
predicate T§(y1,- - -, Yn, @1, - - -, @m) such that Sp is non-empty if and only if there exists
some € > 0 and a d(e) > 0 such that for all 0 < § < d, the set St¢ is non-empty. Under
reasonable measures of formula size, T§ has size polynomial in the size of P.

Now T§ defines a compact set Ste C R* x ®™, which has a regular stratification into
sign-invariant sets. Once we have a compact, non-singular set, it is easy to compute
sample points. We pick a non-zero vector v € R" x R™ and define a projection map
7, : R* X R™ — R as m,(z) = z - v. Now, since St is compact, 7, attains a maximum
value when restricted to it. Let p be the point where this maximum is attained. p lies in
some smooth sign-invariant stratum of Sre.

We would like to find a finite set of points which is guaranteed to contain the point
p. The tangent space of the stratum which contains p is determined by the polynomials
that are zero at p, those that are non-zero are irrelevant. Let o be the set of common
zeros of the f2 that are zero at p. If p is an extremal point in direction v, then it will be
a critical point of the map 7,|,, see [GG] or [C87b]. By enumerating the critical points
of 7|, for every o i.e. for every subset of the polynomials, we are guaranteed to get one
sample point that lies in the set St if it is non-empty.

To find the critical points, we can make use of the tube construction of [C87b] and
[C88b]. Specifically, to find the critical points of the manifold ¢ defined by polynomials
firs- -+, fir, we define the polynomial



and observe that for all sufficiently small a, g© = 0 defines a smooth hypersurface. The
vector v € R" x R™ gives the direction in which extremals are computed, and it can
be shown that the set of directions for which all the critical points are isolated is dense
[C87b]. We can therefore assume without loss of generality that v; = 1, and then critical
points of 7, restricted to the hypersurface g* = 0 are defined by the following conditions:

g =0

(22)
2

ox;
as demonstrated in [C88b], as a — 0 there is a sequence of critical points of 7,|(ga=0)
converging to each non-degenerate critical point of 7/,

Using the main lemma in this paper, we can find the signs of all the other polynomials
at each critical point of 7,|(gazq), if €, § and « are fixed. We are interested though, in the
signs of the polynomials at “vanishingly small” positive values of these variables. The
main lemma reduces computation of the signs of the other f¢ to determination of the
signs of certain polynomials in the coefficients of g* and the f¢. These will be polynomials
in @, § and e. Now § must be less than d(e), and o must be sufficiently small that it
defines a smooth tube around ¢. Since ¢ may depend on both € and §, we need to choose
a smaller than some function of € and 4.

We get correct results by assuming that 0 < a € § € € € 1 where < indicates that
the quantity on the left of the inequality is much smaller than that on the right, and that
they are not related by any polynomial, i.e. they are independent transcendentals. In
concrete terms, the sign of a polynomial in «, § and e for this specialization equals the
sign of the term of lowest degree under the lexicographic order of variables a > § > e.
This means we collect together all terms of lowest degree in a, and from these select the
ones with lowest degree in §, and finally pick the term of lowest degree in e. It should be
clear that if 0 < @ < § < € < 1, all the other terms are vanishingly small compared to
this term.

Once a set of signs is enumerated at a sample point, we can readily determine if the
predicate T§ is true at that point (for 0 < § € € < 1). By enumerating critical points of
all o, we are guaranteed to find one for which T is true if St¢ is non-empty. If T is not
true at any sample point, then S7: must be empty.

From the last two lemmas, we know that St¢ is non-empty for0 < § <K ex1lif
and only if Sp is non-empty. Thus we have a decision method for the existential theory
of the reals. Conversion from P to the predicate T§ can be done in polynomial time.
Enumeration of subsets of the polynomials defining T§ for sample point computation
requires polynomial space. The determination of sign sequences for sample points for
one of these subsets makes use of our main lemma. Although we are applying the main
lemma to polynomials whose coefficients contain a, § and € rather than integers, this only
increases the running time of the algorithm by a polynomial factor, and it still requires
polynomial space. Since each of the three steps requires at most polynomial space, the
existential theory of the reals is decidable in polynomial space. [

g"—vjéi—lg“' =0 for j=2,....,n4+m
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3.2 Robot Motion Planning Problems

We obtain the following result as a corollary to the theorem just proved:

Corollary 3.4 The 3-d euclidean shortest path problem and the 2-d asteroid avoidance
problem are solvable in PSPACE.

Proof Both these problems can be reduced to decision problems in the existential
theory of the reals. For the euclidean shortest path problem, we define a predicate PL(I)
which is true if and only if there is a path of length < [ in a given polyhedral environment.
We can obtain bits of the shortest path by binary search with repeated calls to PL(I).
Given a polyhedral environment, it is not difficult to define a predicate F(p1,p2,h),
where p1,p; € R and I; € R, which is true if and only if the path segment from p; to
p2 is clear of obstacles and has length I;. The shortest path in an environment with n
obstacles edges consists of straight line segments with at most n bending or “via” points

[SSc]. So the predicate PL(l) can be defined as

n

3107p1a11)'-‘7pn’ln ﬂ F(pi’pi+1,li) n (l 2 Zl‘) (23)
i=0,...,n =0

where po and p,;1 are the start and end-point of the path respectively. The formula PL(I)

has size polynomial in the environment description, and for fixed [, it can be decided

in PSPACE. Thus we can find polynomially many bits of the shortest path length in

PSPACE.

The 2-d asteroid avoidance problem is an existence problem, and can be solved by
defining a similar predicate. See e.g. [RS] or [C87a]. The only difference is that each
path segment is in 2-d space plus time instead of 3-d, and that path segments must
satisfy a velocity constraint, which amounts to a constraint in the slope of the segment in
space-time. Once again the predicate has polynomial size in the size of the environment
description, and we conclude that 2-d asteroid avoidance is decidable in PSPACE. [

Theorem 3.5 The roadmap algorithm described in [C8Tb] can be programmed to run in
PSPACE. It follows that the generalized movers’ problem is PSPACE-complete.

Proof The input to the roadmap algorithm is a semi-algebraic set specified by n
polynomials p;(z1,...,z,) of degree d in r variables. The roadmap algorithm as described
in [C87b] uses finite length binary approximations to real algebraic numbers, which are
solutions of some set of polynomial equations g; = 0 derived from the p;. All the algebraic
computations in the algorithm reduce to substitution of these approximations into other
polynomials and testing their signs. For our PSPACE result, we compute the signs of
the latter polynomials directly using lemma 2.4.

Specifically, we replace the calls to algorithm 1 of [C87b] and subsequent evaluation
of polynomials at the solution points, with a call to lemma 2.4. From the description of
algorithm 3,4 and 5, we find that the calls to algorithm 1 involve at most r polynomials.
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These polynomials have degree at most (d9"), the highest degree polynomials being
those that define the slices z; = a; on which the algorithm is being called recursively.
The algorithm described in lemma 2.4 runs in space polylogarithmic in the product of
the degrees of the polynomial equations, that is polylogarithmic in (d 0(**)} in the present
context. This amount of space is still polynomial in the input size.

The other steps in the roadmap algorithm, such as enumeration of silhouette curves,
and ordering of points along those curves, and search of the (exponential size) adja-
cency graph of the roadmap can also be done in polynomial space. Thus the general-
ized movers’ problem is solvable in PSPACE. PSPACE-completeness follows from the

PSPACE-hardness result of [Rei]l. [

4 Conclusions

We gave a method for reducing computations involving several algebraic numbers to
computation with only a single algebraic number or primitive element. This gave us a
symbolic method for evaluating the signs of a collection of polynomials at the common
zeros of some polynomial equations. We saw that this lead to a space-efficient, and
therefore parallelizable algorithm.

Using this lemma, we were able to give a PSPACE decision algorithm for the exis-
tential theory of the real numbers. Our result required two preparation steps to reduce
the non-emptiness test for an arbitrary semi-algebraic set to a test of non-emptiness for
a compact non-singular semi-algebraic set. We were then able to test for non-emptiness
by enumerating certain extremal points.

This result gave us PSPACE decision algorithms for the 3-d euclidean shortest path
problem, and for the 2-d asteroid-avoidance problem. We also showed that the roadmap
algorithm of [C87b] can be modified to run in PSPACE, and so the generalized movers’
problem can be decided in PSPACE.
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