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Abstract

We generalize the notion of characteristic polynomial for a system of linear equations to
systems of multivariate polynomial equations. The generalization is natural in the sense
that it reduces to the usual definition when all the polynomials are linear. Whereas the
constant coefficient of the characteristic polynomial of a linear system is the determinant,
the constant coefficient of the general characteristic polynomial is the resultant of the
system. This construction is applied to solve a traditional problem with efficient methods
for solving systems of polynomial equations: the presence of infinitely many solutions “at
infinity”. We give a single-exponential time method for finding all the isolated solution
points of a system of polynomials, even in the presence of infinitely many solutions at
infinity or elsewhere.



1 Introduction

In this paper we attack a traditional problem of efficient methods for solving systems of
polynomial equations over the complex numbers: the presence of infinitely many solutions
“at infinity”. The methods of [Laz], [Ren] and [Can] all give single-exponential time
bounds for the problem of solving polynomial systems, in fact these are the only methods
that have better than double-exponential time performance. But these methods are
all based on the u-resultant [Wae] and are only applicable to systems of homogeneous
polynomials having finitely many solutions.

In many applications, one would like to find the solutions of a system of n non-
homogenous polynomial equations g; = 0. It is possible to homogenize the g;’s by intro-
ducing an extra variable zo, multiplying each term in g; by a power of this variable to
make the total degree of the term equal to the degree of g;. Let f; denote the homoge-
neous polynomial obtained from g; in this way. Then every solution of the system g; = 0,
t =1,...,n leads to a solution for f; = 0 having 2o = 1. However, the homogenizing
process can produce extraneous solutions for the homogeneous system which have z o = 0
and do not correspond to solutions of g; = 0. In fact there may be infinitely many of these
solutions “at infinity” even if the original system has only a finite number of solutions.
For reasons explained in section 3 of this paper, the presence of an infinite number of
solutions causes all the u-resultant based methods to fail.

Thus the methods of [Laz], [Ren] and [Can] may not work on some systems of non-
homogeneous equations, even those having a finite number of solutions. In this paper
we give a u-resultant based method with single-exponential running time which succeeds
even in the presence of an infinity of solutions. It does not matter whether these solutions
are at infinity or elsewhere, and we obtain all the isolated points in the solution set.

In fact, our main theorem holds in a much more general context. We show that for
n polynomials with a solution set in a certain (n + m — 1)-dimensional space, we can
recover all the parts of the solution set that have the “right” dimension, i.e. dimension
= m — 1. For this result, we make use of a construction called the generalized charac-
teristic polynomial or GCP of a system of polynomials f;. The characteristic polynomial
nomenclature is used because our general construction reduces to the usual definition of
characteristic polynomial when all the f; are linear.

The generalized characteristic polynomial can also be easily computed. The methods
of [Ren] and [Can] for resultant computation actually compute a GCP (or something
very close to it) as a side effect. So it comes essentially free with these methods. We give
a definition of the generalized characteristic polynomial in section 2, and briefly sketch
an algorithm for it.

In section 3 we prove that the GCP has the desired properties, using some basic
results about dimension of algebraic sets. We show that while the resultant may vanish
identically in the presence of solutions of excess dimension, the lowest degree coefficient
of the GCP still contains information about the components of the right dimension,
l.e. those whose dimension equals the dimension of the space minus the number of
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polynomials. Finally, we apply these results to the equation solving problem. Using
the u-resultant construction and the GCP we obtain a single exponential time algorithm
which recovers all isolated solutions to a system of homogeneous polynomials even if the

system has solutions of excess dimension.

2 Computation of Generalized Characteristic Poly-
nomials

In this section we give the construction of the generalized characteristic polynomial C(s)
for a system of homogeneous polynomials f;. It is a natural generalization of the char-
acteristic polynomial of a linear system and it equals the latter in the special case where
all the f; are linear. The constant coefficient of C(s) is the (multivariate) resultant of
the f;. This property is analogous to the fact that the constant coefficient of the charac-
teristic polynomial of a linear system is the determinant. Our construction is based on
Macaulay’s formula for the general resultant [Mac]. Macaulay shows that the resultant
equals the quotient of the determinant of a certain matrix A whose entries are coefficients
of the polynomials, and a subdeterminant of A.

Suppose we are given n homogeneous polynomials f; in n variables z;, and that f; has
degree d;. We need some notation for monomials of f;. Let a be an n-tuple of integers,
we write z* for the monomial z7* - - - 23",

The rows and columns of the matrix A are indexed by the set of monomials in
zy,...,z, of degree d where

d=1+ 3 (di-1) (1)

and letting X? denote the set of monomials of degree d, the cardinality of X ¢ is

d+n—1)

N=lX°'|=< p

Definition A polynomial is said to be reduced in z; if its degree (the maximum degree
of its monomials) in z; is less than d;. A polynomial that is reduced in all variables but
one is said simply to be reduced.

Now consider the polynomial

F=le1+c2f2+”'+cnfn (3)
where each C; is a homogeneous polynomial of degree d — d; with symbolic coefficients,
which is reduced in z,,...,z;-;. F is a homogeneous polynomial of degree d, and so has

N coefficients. There are also, in total, exactly N coefficients in the C;. To see this,

3

'



imagine for the moment that each f; equals :c . Then every monomial in F is a multiple
of a monomial from exactly one of the C;’s. For the monomial cz?, let 7 be the smallest
index i such that z¢ is not reduced in z;. Then cz® is a multiple of a monomial from C;
and from no other C;.

Since the coefficients of F' are linear functions of the coefficients of the C; via (3), this
determines a linear map A from coefficients of the C; to coefficients of F'. Each non-zero
entry in the matrix A is a coefficient of some f;. This defines the matrix A that we
mentioned earlier.

More concretely, if we index rows and columns of A by elements of X 4 then the row
corresponding to z® represents the polynomial

za
;:;rf i (4)

where i is the smallest j such that £ has degree at least d; in z;.

The determinant of A vanishes if the f; have a common zero, and it is therefore a
multiple of the resultant R of the system [Macl. We can write det(A) = MR, where M
is an additional factor which we would like to remove. Macaulay shows that M is the
determinant of a certain submatrix of 4, in fact the submatrix of elements whose row and
column indices are not reduced. Thus he obtains the simple formula R = det(A4)/ det(M).

Having given a brief sketch of what a multivariate resultant is, we can now give the
construction of generalized characteristic polynomials:

Definition = The generalized characteristic polynomial (or GCP), C(s) of a system
of homogeneous polynomials fi,..., fs in z1,...,Z, is the resultant of fy,..., fn, where

fi=fi—sz

We do not claim this to be a novel construction. But what has not previously been
observed is that it is both inexpensive to compute, and that it can be used to recover all
the isolated zeros of a system of polynomials, as shown in the next sectxon

Inspection of the matrices A and M shows that the coefficients of % in f; always
appear on the leading diagonals. So the determinant of the matrix A for the new system f;
is actually the characteristic polynomial (in the usual sense) of A4, i.e. det(A) = det(A—
sI) = CharPoly(A)(s), where CharPoly(A)(s) denotes the characteristic polynomial of
A in the variable s. The same holds true for M, so that the generalized characteristic
polynomial of the f; is given as

_ CharPoly(A4)(s)
Cls) = CharPoly(M)(s)
Now A is an N x N matrix, while M has N — D rows and columns, where

D=3 ]I4; (6)

i g
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is the number of reduced rows (or columns). This implies than CharPoly(4)(s) has
degree N and CharPoly(M)(s) has degree N — D, so that the GCP C(s) has degree
D. To compute a characteristic polynomial using Newton'’s identity [Csal takes O(N*)
arithmetic operations. For large problems, IV is much larger than D, and so it seems that
computation of all N coefficients of CharPoly(A)(s) in (5) is wasteful. But we can use the
fact that if the quotient of two polynomials has degree D, then that quotient depends only
on the D most significant coefficients of those polynomials. So it is possible to compute
C(s) by computing only the first D coefficients of CharPoly(A)(s) and CharPoly(M)(s).
Using the Newton identity, this can be done with O(N3D) operations.

3 Main Properties

We next prove our main result, that the GCP C(s) contains all the information needed to
recover the proper components of the zeros set of the f;. This result gives as an immediate
corollary, a method for finding all the zeros of a system of 7 non-homogeneous polynomials
in n variables, even if such a system has infinitely many solutions “at infinity”. The
method is based on the u-resultant [Wae], but unlike previous methods [Laz], [Ren],
[Can] does not require that there be only finitely many solutions at infinity.

To begin, we give some definitions and basic results on dimension of algebraic sets.
We will not define the dimension of an algebraic set, but detailed definitions are given
in [Mum] chapter 1. In what follows, we assume that variable values range over the
complex numbers C'.

Definition The set of common zeros of a system of polynomials f;,..., fain Z1,...,Zm
is called an algebraic set and is denoted V(f1,...,fn) C C™. An algebraic set V(f)
defined by a single polynomial (which is not identically zero) is called a hypersurface. If
f is linear, then V() is called a hyperplane.

If all the f; are homogenous, it is more convenient to work with the projective space
Pm-1 formed by identifying points in C™ which are scalar multiples of each other. That
is, a “point” in P™~! corresponds to all points in C™ of the form A(py,...,Pm), Where
the p € C™ is a non-zero constant vector, and A ranges over all complex values. Points
in P™! are sometimes called solution “rays” for this reason. P ™! has dimension m —1
and is compact. We use the same notation, V(fi,..., fa) C P™"! for an algebraic set
defined by homogenous polynomials f;.

Definition An algebraic set is said to be reducible if it can be expressed as a finite
union of proper subsets which are algebraic. An algebraic set which is not reducible is
irreducible.

Any algebraic set can always be expressed as a finite union of irreducible algebraic subsets
called components. Many results in algebraic geometry apply only to irreducible algebraic
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sets, and in much of what follows, we work with the individual components of an algebraic

set.

Definition Let Z be the intersection of m hypersurfaces in n-dimensional affine or
projective space. A component W of Z is said to be proper if it has dimension n — m. A
component of dimension greater than n — m is said to be an ezcess component.

And in fact all components of an intersection must be either proper or excess by the
following lemma:

Lemma 3.1 If f; are m non-homogeneous polynomials in n variables, (or homogeneous
in n+1 variables), then every component of V(fi,..., fm) has dimension at least n —m.

For a proof, see for example [Mum] corollary 3.14. Our main result is that if
C(s) is arranged in powers of s, then its lowest degree coefficient vanishes on the
projection of all proper components of the intersection. We start with n polynomials
fi(u1,...,4m, 21,...,2,), which are homogenous in the z;. Then:

Theorem 3.2 Let Z = V(fy,...,fn) C C™ x P*1 and let W be a proper component
of Z, so that the dimension of W is m — 1. Let C(w,...,um)(8) be the generalized
characteristic polynomial of the f;, as polynomials in the z;. Arranging the GCP in
powers of s, let Ci(uy,...,um) be its coefficient of lowest degree. If 7, : C™ x P* — C™
denotes projection on u;-coordinates, then Ci(ny(p)) =0 for allpe W.

Proof The GCP is the resultant of the polynomials f; = f; — sz%. With the addition
of the complex variable s, the zeros set of the f,-, callit Z’, lies in C™ x P™1 x C. Since
fi and f; are identical when s = 0, the intersection of Z’ and the hypersurface s = 0 is
exactly Z x {0}. So for every component W of Z, we have W x {0} C Z'. If W is a proper
component it has dimension m — 1, but by the dimension lemma, every component of
Z' has dimension at least m. So W x {0} must be contained in some component W' of
dimension m.

Because every point of W’ has an m-dimensional neighborhood, and because the
intersection of this neighborhood with the hypersurface s = 0 is (m — 1)-dimensional, it
follows that for every point p € W x {0}, there is a sequence of points (p;) in W’'~W x {0}
which converges to p. Writing C(u1,...,um)(s) now for the GCP of the f;, or equivalently
the resultant of the #;, then C(7u(q))(7.(q)) = O for any point ¢ in Z’, where %, denotes
projection on the s-coordinate. In particular C(74(p;))(7,(p;)) = 0 for all j. Dividing this
polynomial through by =,(p;)* (which is non-zero), and letting C; denote the coefficient
of s in the GCP, we obtain

Ce(mu(Pi)) + 32 (malp;)) ™ Ci(mu(ps)) =0 (7)

t=k+1,...,.D



for all p;, where Cy is the lowest degree non-vanishing coefficient of C(s), and D is the
degree of C(s). This expression is a polynomial in the coordinates of the p;, and is
therefore a continuous function of the coordinates. Since it is zero for all p; — p, it must
be zero at p. But the point p has s-coordinate zero, so the summation over { vanishes,

and we conclude that Ci(7.(p)) must equal zero. 0O

We can restate the theorem succinctly as:

(U Wi) C V(Ci) Cmu(V(f1,. .., fn)) (8)

The second containment follows because n(V(fi,...,fn)) = V(Co), where Cy is the
resultant of the f;. If k¥ = 0 it is trivially true, whereas k¥ > 0 implies Cy = 0, so that

V(Co) = C™.

Conjecture We conjecture that if Z; is any component of V(fy,..., fn), then its
projection intersects V(Cy):

V(C) N7u(Z:) # 6 (9)

The prove the conjecture, one needs to show that if Z is an excess component, for small
enough ¢, V(fi,..., fa) N V(s = ¢€) has a proper component “near” to Z. The intuition
behind this is that if just one of the coefficients of z% in f; is changed slightly, it causes
each component of the intersection to either “move” slightly, or to be cut into components
of lower dimension, which are all contained within that component. In either case, every
point of the new intersection is close to some point of the old intersection. Applying
this inductively to each f;, we eventually obtain a new intersection with only proper
components, such that each of its components is near to one of the original components.

It is also reasonable to conjecture that the degree of vanishing of C(uy,...,um)(s),
at some point u; = p; is a measure of the intersection multiplicity (in some appropriate
sense) of the surfaces defined by the f;. For example, we could consider the intersection
multiplicity of the surfaces fi(py,...,Pm,21,...,2,) =vin C" x C.

3.1 Application to Equation Solving

The main theorem of this section can be applied to the following problem: Given n non-
homogeneous polynomials g; in n variables, z1,...,z, find all the isolated solution points
of the system g; = 0. By isolated solution points, we mean those points that are not
contained in some higher-dimensional component of the solution set. The system has an
equal number of equations and variables, and so the proper components of V(g4,...,gn)
are zero-dimensional, i.e. points.

Since the methods we will use apply to homogeneous polynomials, we must produce
a homogenous system from the g; by introducing an additional variable z,. For each
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polynomial g; of degree d; we produce a homogeneous polynomial f; of degree d; by
multiplying terms of g; of degree §; by xf,d"s‘). Then if (p1,...,pn) € C™ is a solution of
the original system, A(1,p1,...,pn) € P"isa solution ray of the homogeneous system.

In fact there is a one-to-one correspondence between solution points of the original
system and solution rays of the homogeneous system which have z ¢ # 0. However, there
may be solutions of the homogeneous system which have z, = 0, called “solutions at
infinity” which have no counterpart in the original system. There may in fact be excess
components of the intersection at infinity, even if the original system has only proper
solutions. _

The presence of excess components at infinity causes the methods of [Laz], [Ren] and
[Can] to fail, and there is no easy way to ensure that the given system has only proper
solutions at infinity. The methods just mentioned are the only polynomial equation-
solving methods that have single exponential bounds. They are based on the u-resultant
which we now describe. Using the GCP, we can give a u-resultant style method with
single-exponential time bounds which succeeds even in the presence of excess solutions
at infinity or elsewhere.

To a system of n homogeneous polynomials f; in n + 1 variables, we add the linear
polynomial

UgZo + UL Ty + + *+ + UpTy (10)

where the coefficients uo,...,un are indeterminates. We call this last polynomial the
u-form. We now have a system of n 4+ 1 polynomials in n + 1 variables, and the resultant
of such a system is a polynomial R(ug,...,u,) called the u-resultant.

Suppose now that A(po,...,p,) is a solution ray of the system f;. Then it will also
satisfy the u-form if and only if

Pouo+ -+ + prtia = 0 (11)

So the system as a whole has a solution, and therefore the resultant R(uo, ..., u,) will
vanish, whenever pouo + - -+ + pau, = 0. This implies that (potuo + - - + pau,) divides
R(uo,...,un). Similarly, every other solution ray of the f; leads to a corresponding linear
factor of the u-resultant. By computing the u-resultant and factoring it over the complex
numbers, we can obtain the coordinates of all the solution rays. This is the essence of
the methods in [Laz], [Ren], and [Can] although they differ in how the factorization
1s computed.

But suppose now that V(fy,..., f.) has a component of dimension 1 (or higher). It is
a standard result [Mum] corollary 3.30, that two projective varieties in the same space
always intersect if the sum of their dimensions is at least the dimension of the space. For
any fixed set of values of the u;, the equation uozg + - -+ + u,z, = 0 defines a variety of
dimension at least n — 1 in P", and this must always intersect an excess solution of the
fi, irrespective of the value of the u;. So the polynomial R(uo,...,u,) must be zero for



all values of the u;, i.e. it is identically zero. This is why the u-resultant methods fail if
there are excess components in the solution set.

To get around this problem, we compute the GCP of the f; and the u-form. We
consider the f; as defining an algebraic set in C™*! x P", where a point’s coordinates are
the u;’s followed by the z;'s. Now for each isolated solution ray Ap € P" there must be
an n-dimensional hyperplane in V(f1,..., fa,u-form) C C™*! x P" given by equation
(11), and the equations z; = p;. Furthermore, each such hyperplane is irreducible, being
defined by linear equations, and is of proper dimension.

By the main theorem of the last section, if Ci(uo,...,un) is the lowest degree non-
vanishing coefficient of the GCP, then it must vanish on the projection of every proper
component of the solution set of the f;. Here the proper components each correspond
to one of the solution rays. For each solution ray Ap, Ci(uo,...,un,) must vanish for
all u; satisfying equation (11). This implies that (pouo + - -+ + paun) is a linear factor of
Ci(uo,...,un). So once again we can find the solution rays of f; by factoring a polynomial
in ug,...,un, but instead of the u-resultant R(ug,...,un) which would be zero in such
cases, we factor Ci(uo, ..., u,) which is always non-vanishing.

‘We observe next that C; factors completely into linear factors. This is because for all
sufficiently small s = ¢, there are D = deg(C}) solution rays of fi =0, and for each there
is a corresponding hyperplane in V(C(¢)) C C™*1. As € — 0 these hyperplanes approach
limits (by compactness of the Grassmanian of hyperplanes in C"*!) which must all lie
in V(C(s)/s*) and therefore lie in V(C}) within the slice s = 0. Since there are D such
limiting hyperplanes, counting multiplicities, C factors into D linear factors.

The equation solving methods of [Ren] and [C88] avoid explicit computation of
R(uog,...,un), since it has so many coefficients (O(d™*) if all polynomials have degree d).
Instead, they compute certain specializations of it. For example in [C88] the solutions
not at infinity can be found with the following specializations: Ro(v,t) = R(v,t,1?,...,1")
and Rf(v,t) = R(v,t,...,t* +1,...,t") and R;(v,t) = R(v,t,...,t' — 1,...,t"), for
i = 1,...,n. Making these specializations before the resultant is computed means that
all arithmetic is done on polynomials in two variables v and ¢, and so the number of
coefficients is at most O(d?").

We can make the same specializations of the u,;’s before computing the GCP. The
arguments in [C88] which show that the resultant is non-vanishing for the above spe-
cializations, also apply to the lowest degree coefficient of the GCP. So it is impossible for
example, that the lowest degree coefficient of the specialization of C(s) could be some
other coefficient than Ci. Since Ci factors completely into linear factors, the methods
of [Ren] and [C88] for factorizing the u-resultant from its specializations still apply to
Ci and its specializations. So, to summarize, the isolated solution points of a system of
polynomials can be found using [Ren] or [C88] by replacing each resultant with the
lowest degree coefficient of the corresponding GCP.
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4 Conclusions

We described a new construction called the generalized characteristic polynomial, which
is a useful adjunct to the multivariate resultant. The GCP can be used in situations where
resultant-based methods fail because of the presence of components of excess dimension
in the solution set of a system of polynomials. It provides a means for systematically
perturbing a polynomial system away from a “bad” or excess intersection, and for recov-
ering the proper components of the intersection, which are robust with respect to this
perturbation.

The GCP can be obtained naturally from certain resultant algorithms. We showed
that it can be computed as a quotient of the characteristic polynomials of two square
matrices. By judicious use of Newton’s identity for characteristic polynomials, the quo-
tient can be found by computing only some of the coeflicients of the matrix characteristic
polynomials. This provides an significant reduction in the cost of computing the GCP.
But there is still much that can be done to improve the running time of both resultant
and GCP algorithms. Our algorithm required O(N %) operations as a function of the
matrix size, whereas in the special case of two homogeneous polynomials, the (Sylvester)
resultant can be computed with O(N log? N) operations. It should be possible to improve
the GCP bounds to quadratic or pseudo-linear.
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