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Abstract

This paper provides a rigorous mathematical foundation for geometric continuity of rational Beta-
splines of arbitrary order. A function is said to be n* order B-continuous if and only if it satisfies the
Beta-constraints for a fixed value of B =(B1,B2,---,Br). Sums, differences, products, quotients, and
scalar multiples of B-continuous scalar-valued functions are shown to also be B-continuous scalar-valued
functions (for the same value of B). Using these results, it is shown that the rational Beta-spline basis
functions are B-continuous for the same value of B as the corresponding integral basis functions. It fol-
lows that the rational Beta-spline curve and tensor product surface are geometrically continuous.
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1. Introduction

Polynomial and piecewise polynomial parametric curves and surfaces are standard in computer
graphics and computer aided geometric design (CAGD). Unfortunately, many simple shapes -- including
most conic sections and quadric surfaces -- cannot be represented exactly with polynomial or even piece-
wise polynomial parametrizations. On the other hand, rational polynomial parametrizations can exactly
represent all planar curves of zero genust, all conic sections, and all quadric surfaces. For this reason,
rational parametric representations have recently been gaining widespread acceptance in CAGD. The
growing popularity of the non-uniform rational B-spline (VURB) is largely due to this concern for the
exact representation of simple shapes.

Beta-splines were introduced into CAGD by Barsky.!:2 These splines are geometrically continuous
piecewise polynomials with scalar shape parameters which can be adjusted to alter the shape of a curve
or surface without moving its control vertices. Like any piecewise polynomial parametric representation,
Beta-splines cannot exactly represent many simple standard shapes. To attain exact representations, it is
necessary to consider rational Beta-splines.

Barsky>+4 investigated rational Beta-splines of arbitrary order. His investigation requires a rigorous
proof that rational Beta-spline curves and surfaces are geometrically continuous. The purpose of this
paper is to lay a firm mathematical foundation for the geometric continuity of rational Beta-splines.

Joe28 studied rational cubic and quartic Beta-splines. By appealing to the explicit formulas for the
Beta-constraints® 7+8:13.14 he showed that these curves and surfaces are indeed geometrically continuous.
However, for higher degrees, this procedure would be extremely tedious and difficult because the explicit
formulas for the higher order Beta-constraints are quite complicated. Here we study the general case by
returning to first principles: reparametrization and the chain rule. We shall show that when scalar-valued

(d-1)(d-2)
2

+ Loosely speaking, an implicit polynomial curve f (x,y )=0 of degree d has zero genus if it has self intersec-

tions. For a more rigorous discussion and further details see.33
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functions satisfy the Beta-constraints for the same value of B = (B1,PB2,- - -, Bn), then the sum, difference,
product, quotient, and scalar multiple of these functions again satisfy the Beta-constraints for this same
value of B. From these results, it is shown that the rational Beta-spline basis functions satisfy the Beta-
constraints for the same value of B as do the corresponding integral basis functions. We then apply these
results to prove that the rational Beta-spline curve and tensor product surface are geometrically continu-
ous.

The next section gives the formal definition of geometric continuity, states the Beta-constraints, and
introduces the notion of B-continuity. In Section 3, results about the B-continuity of various combinations
of scalar-valued functions are proved. In Section 4, these results are applied to show that the rational
Beta-spline basis functions satisfy the Beta-constraints for the same value of B as do the corresponding
integral basis functions and therefore can be used to construct geometrically continuous rational Beta-

spline curves and tensor product surfaces. Section 5 summarizes our results.

2. Geometric Continuity: Equivalent Parafnetrizations, Reparametrization, Beta-Constraints, and
B-continuity

Geometric continuity is a mea;ure of smoothness which has recently been proposed as an alternative
to parametric continuity, the conventional measure of smoothness for parametric curves and surfaces.
In,5:7-8,13,14 the notion of n* order geometric continuity for an arbitrary non-negative integer », called
G" continuity, was introduced. Geometric continuity has become an important topic of research, and
recent work has been reported in.11.15:16.17.25,26 On g historical note, n* order geometric continuity has
its roots in first and second order geometric continuity, the ideas of which first appeared in various forms

in.1.18,19,20,29,31,32

The concept of geometric continuity is based upon the notion of equivalent parametrizations. This
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section defines equivalent parametrizations and geometric continuity and then states, without proof, a

theorem on Beta-constraints; the notion of B-continuity is then introduced. Much of this material is

derived from that presented in.

6,7,8,13,14

Intuitively, two parametrizations are equivalent if they trace out the same set of points in the same

order. We formalize this notion in the following definition:

Definition 1:

"Equivalent Parametrization." Let q(u) and §@@), where q: [#min:4max] =>R?, and
G: (B min-limax] = R?, d>1, be two regular C* parametrizations (a parametrization is
regular if its first derivative vector never vanishes).t These parametrizations are said
to be equivalent if there exists a C* function u:[min,¥mas] = [Umin,¥max] SUCh that

(i) Composition: q(i) = q(u)). Thatis, i =qou.

(ii) Onto: u ([4 nin B max]) = (8 min>Ymax)

(iii) Orientation preserving: % >0
U

We say that q has been reparametrized to obtain §, and we call u an orientation preserving change of

variables.

Definition 2:

"Geometric Continuity." Let q(u) and r(t), where q: [Uminms] >R? and
! [toinofmax] = RY, d>1, be two regular C* parametrizations that meet at a common
point J:

I(tmin) = (U max) = J.
These parametrizations meet with n* order geometric continuity, denoted G*, if and
only if there exists a parametrization § equivalent to q such that q and r meet with C”

continuity at the joint J; that is, if and only if

rO i) = §90me), =01, , .

+ Boldface is used to demonstrate that the function is vector-valued.

Ronald N. Goldman and Brian A. Barsky



and Its Application to Rational Beta-splines Page 5

The characterization of geometric continuity based on the existence of equivalent parametrizations
can be summarized as: Do not base smoothness on the parametrizations at hand; reparametrize if neces-
sary to find ones that meet with C* continuity.

Using this idea of when two parametrizations meet with n™ order geometric continuity, we can also’
define the notion of a geometﬁcally continuous curve. Intuitively, a curve is geometrically continuous at
a point if and only if after segmenting it at that point the two segments meet with geometric continuity.
We formalize this notion as follows:

Definition 3: " Geometrically Continuous Curve." Let p(x), where p: (U min,4max] = RY,d>1,bea
curve and let q = ppuu+; ANd T = Pye 4. Then p is said to be G at p(u*) if and
only if q and r meet with G* continuity at p(u*). But q and r meet with G" con-
tinuity if and only if there exists a parametrization q equivalent to q such that q and r
meet with C* continuity. Thus, p(x)isG* at p(u*) if and only if there is a
reparametrization u: [ i, ¥imax] = (M min#max] SUch that p() = p(u (4)) is C* at p(u*)
where u(i*) = u*.

Notice that like parametric continuity, geometric continuity is a local property.

The following theorem precisely characterizes when two parametrizations q(u) and r(¢) meet with
G" continuity at a point J. Intuitively, since there is a parametrization (&) equivalent to q(u) which
meets r(t) at J with C* continuity, we can calculate the i derivative of r(s) at J in terms of the first i

derivatives of q(u) at J by the chain rule.

Notation:  Let Y CR;;(B1,B2,---,Bi)q"’(),i =12, -+, n denote the expression for the chain rule
J=1

. J
applied to [q(u (#))]®’ with B; substituted for %7“ Lj =12, 0.

U

Theorem 1: "Beta-constraints.” Let q) and r(), where q [Umndmal R? and
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r: [fminlmax] = RY,d > 1,

be two regular C* parametrizations that meet at a common point J; that is,
F(tmin) = Q(Umax) = J.
Then they meet with G* continuity at J if and only if there exist real numbers

B1, B2, - -, B» with B1>0 such that

FO (tie) = SR B1, B2, Bq e, § =12, 1. (D
j=1
Moreover, if q(z) and r(¢) satisfy equation (1), then there is a reparametrization q(@) = q(u (#)) of

q(u) such that () and r(r) meet with C* continuity at J and

d’u
j = — | =12, ,n
Bs Y 7 ]
Proof: See.6:8
Equations (1) are called the Beta-constraints and B1, B2, - - -, Bn are the shape parameters which are

found in the Beta-spline.

As an example of the form of the Beta-constraints, the constraints for G* continuity are

O i) =814 (U 1) 2.1

r Pt i) = BEqP (U man) + B2q Uimar) 2.2

r®(min) = B1°4P Uimax) + 3B1B24P W man) + BIGV (U mex) (2.3)

P (¢ in) = BI*QD (W mar) +6P12B24P U ra) + (4B1B3 + 3B2DGP (U rax) + 4G ra)- (2.4)

where B2, B3, and B4 are arbitrary, but B1 is constrained to be positive.
The following definition formalizes the concept of B-continuity.
Definition 4: "B-continuity.” Let p (u), Where p: [Ummnimed =R?, d 21, be a function. Then p is
said to be n* order B-conﬁnuous at »* if and only if p(u) satisfies the Beta-

constraints for a fixed value of B = (B1, B2, - - - , Br) at p(u*).
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By Theorem 1, a curve in R%, d >1, is B-continuous if and only if it is G* continuous. However,

unlike curves in R?,d >1, regular scalar-valued functions in R' always satisfy the Beta-constraints for

some unique value of B. Therefore, all regular scalar-valued functions are B-continuous for some value of

B. In the following section, we will study various combinations of scalar-valued B-continuous functions

for fixed values of B.

3. Sums, Differences, Products, Quotients, and Scalar Multiples of B-continuous Scalar-valued

Functions Are B-continuous

Lemma 1:

Proof:

Let £ (u) and g(u), where f: [Umnlimex] =R and g (Umin,dme] = R!, be real-valued
functions that are B—continuous (for the same value of B) at u* € [ min,lmaxl-
Then there exists a reparametrization u (i), where u: [Fyninmax] = [Uminslmar), fOT

which f (1 (&)) and g (1« (1)) are both C" continuous at u*.

Let p(u)=(f(u),g(u)). Since, by assumption, f(u) and g(u) satisfy the Beta-
constraints for the same value of B at u*, the curve p(z) satisfies the Beta-constraints
for this value as well. Therefore, by applying Theorem 1 to the curve p(u), there is a
reparametrization w (i), where 8 [ insBmax) = [UminsBmax)» such that
plu(@)) = (f (w(ik)),g (u(u))) is C* continuous at p(u*). Hence, f(u(4)) and g (u(4)) are

C" continuous at z*.8

We now use Lemma 1 to show that sums, differences, products, quotients, and scalar multiples of

B-continuous functions are themselves B-cohtinuous functions (for the same value of B).

Lemma 2:
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Proof:

B-Continuity

Then the sum f(u) + g(u), difference f(u)- g(u), product f(u)g(u), quotient

Lg EZ; , for g (u) #0, and scalar multiple ¢ f (u) are each functions that are E-continuous

(for the same value of B as for f (u) and g(u)) at u*.

By Lemma 1, since f (x) and g (u) satisfy the Beta-constraints for the same value of Bat
u*, there exists a reparametrization (i) for which f (x (w)) and g (x (1)) will both be

C* continuous at u*. Thus, the sum f(u (#)) + g(u (&)), difference f(u (1)) -

g(u (u)), product f (u (1)) g (u (u)), quotient Eu ?)) , and scalar multiple ¢ f(u (u))
g

uu))

are all C* continuous since they are the sum, difference, product, quotient, and scalar

multiple, respectively, of functions that are C* continuous. Moreover, each function

f@) + g), fu)-gw), fu)g), *g%; for g(u) =0, and ¢ f (u) satisfies the Beta-

constraints for the same value of B as do f () and g (u) since it is the same reparametri-
zation that converts them to C* functions. Thus, we conclude that these various combi-

nations of functions are each B-continuous (for the same value of B as for f () and

gw)atu*. B

4. Application of B-continuous Functions: The Rational Beta-spline

4.1. Background on the Rational Beta-spline

In ,3-4 Barsky developed the rational Beta-spline. Similar work, restricted to the cubic and quartic

cases was reported by Joe in23 and by Boehm in,? respectively. The rational Beta-spline combines the

features of the rational form, in general, with those of the Beta-spline representation, specifically. It is

important to be able to show that the rational Beta-spline basis functions satisfy the Beta-constraints for

the same value of B as do the corresponding integral basis functions and consequently that the rational
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Beta-spline curve and tensor product surface are geometrically continuous and have the same shape
parameters as their integral counterparts. This we now proceed to do.
Given an ordered sequence of m + 1 control vertices V; and weights w;, for i = 0,---,m, a

rational Beta-spline curve, denoted by Q(u), is defined by

> wi ViB;i(u)
i=0

Qw) = —(—— 3)
Y w, B, (u)
r=0
where we assume that the denominator does not vanish over the parametric domain and where B; () are
Beta-spline basis functions. In this approach, each basis function is defined over the entire curve,
although it has local support. Each basis function is piecewise, comprising a sequence of basis segments.
Such a basis segment is given by a single polynomial whose order is at most the order of the spline curve.
For example, the standard cubic Beta-spline curve is of order four, and is a linear combination of cubic
basis functions of order four. Details of the various types of Beta-spline basis functions can be found
in.1:2.5,9,10,22,23,24, 27
The rational Beta-spline curve defined in equation (3) can be re§vritten in a more familiar form as an
affine combination of basis functions which are now rational basis functions. Rearranging equation (3)

yields

m ; B;
Qu) = S, | 2EW | @

= 3w, B, (u)
r=0

Denoting the term in brackets by R; (z),

Riwy = 2 BW )

5w, B, (w)
r=0

and replacing this in equation (4) results in
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Qu) = 3 ViR). ©6)
=0

Rewriting the rational Beta-spline curve in the form given by equation (6) reveals a curve formula-
tion that is indistinguishable from the non-rational or integral form except that the basis functions are
themselves rational.

In the following sections, it will be shown that the rational Beta-spline basis functions satisfy the
Beta-constraints for the same value of B as do the cormresponding integral basis functions and that the
rational Beta-spline curve and tensor product surface are geometrically continuous. These facts will be

established as applications of the results for B-continuous functions which were derived in Section 3.

4.2. Rational Beta-spline Basis Functions and Corresponding Integral Basis Functions Are B-
continuous for the Same Value of f

As an application of the results on various combinations of functions that are B-continuous (for the
same value of B), it will now be demonstrated that the rational Beta-spline basis functions are B-
continuous for the same value of B as the corresponding integral basis functions.

Consider the rational Beta-spline basis functions, R; (x), i = 0,1,---,m, given in Equation (5).
First, consider the numerator. The integral basis functions, B; (¢), { = 0,1,---,m, all satisfy the Beta-
constraints for the same value of B, by definition. The numerator must therefore satisfy the Beta-
constraints for this same value of B by Lemma 2 since it is simply a constant times an integral basis func-
tion. Second, consider the denominator. This is just a sum of terms of the form in the numerator. By
application of Lemma 2, the sum of functions that satisfy the Beta-constraints for the same value of B,
also satisfies the Beta-consiraints for the same value of 8. Hence, both the numerator and denominator
satisfy the Beta-constraints for the same value of B as do the original integral basis functions. Finally,

since the rational Beta-spline basis functions are simply the quotients of functions that satisfy the Beta-

Ronald N. Goldman and Brian A. Barsky
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constraints for the same value of B, then by Lemma 2, they too must satisfy the Beta-constraints for the
same value of B. Thus, the rational Beta-spline basis functions are B-continuous for the same value of B

as the integral basis functions.

4.3. The Rational Beta-spline Curve and Tensor Product Surface Are Geometrically Continuous
Regarding the rational Beta-spline curve as an affine combination of rational basis functions as
given by equation (6) facilitates establishing that the curve is geometrically continuous. Consider each
component of the curve. First, all the terms in the sum are constant multiples of functions that satisfy the
Beta-constraints for the same value of B as do the original integral basis functions and thus they satisfy
the Beta-constraints for the same value of . Consequently, by Lemma 2, the sum of these terms satisfies
the Beta-constraints for this same value of B. Thus, each component of the rational Beta-spline curve
satisfies the Beta-constraints for this same value of E and hence, the curve itself must be geometrically
continuous. A similar argument establishes that the tensor product rational Beta-spline surface is

geometrically continuous.

5. Conclusion

A function is said to be n* order B-continuous if and only if it satisfies the Beta-constraints for é
fixed value of B. Sums, differences, products, quotients, and scalar multiples of B-continuous scalar-
valued functions are shown to also be p-continuous scalar-valued functions for this same value of B. In
other words, it is demonstrated that B-continuity is preserved by addition, subtraction, multiplication,
division, and scalar multiplication. The proofs appeal only to the chain rule and the definition of
geometric continuity in terms of reparametrization. In the case of multiplication or division, recent

work21:30 has shown that B-continuity is the most general definition of continuity for which this holds.
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These results on various combinations of B-continuous scalar-valued functions were applied to show
that the rational Beta-spline basis functions are B-continuous for the same value of B as the corresponding
integral basis functions, thus providing a rigorous mathematical foundation for the geometric continuity

of the rational Beta-spline curve and tensor product surface of arbitrary order.
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