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Abstract

This paper describes an implementation of the multiprocessing features of SPUR
Lisp. The implementation consists of a set of C runtime routines that is being inte-
rated into the Lisp system. It was developed on Sun workstations under the Sprite
operating system, and will be ported to the SPUR multiprocessor workstations when
the hardware becomes available. In this report, we describe the internal structure of
the system, design tradeoffs, and present preliminary performance figures. We hope
this paper will be useful to other implementors of these multiprocessing features.
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1 Introduction

This paper describes an implementation of the multiprocessing features of SPUR
Lisp [6]. Each multiprocessing extension is implemented as a set of C runtime
routines that can be called from the SPUR Lisp system [5] .

The implementation consists of a large, machine-independent part written in
C and a small, machine-dependent part written in assembly language. It runs on
Sun-2 and Sun-3 workstations under the Sprite operating system [4]. Eventually
the system will be ported to multiprocessor SPUR workstations [2].

This paper describes the implementation in great detail. It highlights the prob-
lems encountered in the design, the solutions selected, and various design tradeoffs.
Preliminary performance numbers and potential improvements are also presented.
We hope this paper will be useful to other implementors of these multiprocessing
features.

This paper begins with an overview of the different modules of the implemen-
tation. It then presents detailed descriptions of the various modules, including the
Lightweight Process scheduler, the Synchronization module, the Mailbox module,
the Future module, and the Asynchronous module. The operating system support
required by the implementation is also discussed briefly. The discussion concludes
by explaining the design philosophy behind various high-level design decisions.

The appendices contain the C interface of the implementation, a list of all the
files, the size of the implementation, the parameters of the implementation, and
some preliminary performance numbers. A list of potential performance improve-

ments is also discussed.
This paper does not address the issue of interfacing the C and Lisp subsystems,

since the garbage collection problems in this mixed-language system have not been
solved completely. As the SPUR port is still in progress, machine-dependent code
is shown only for the Sun (MCG8000) implementation.



2 System Overview
The system ! is implemented as 9 modules:

Lightweight Process Scheduler Implements lightweight processes.

Synchronization Synchronization primitives include Sprite locks, Mesa-style mon-
itors [3], and semaphores [1]. These primitives are used by the Lightweight
Process Scheduler, the Mailbox module, and the Asynchronous module.

Mailbox Implements the mailbox operations, including Send, Receive, and Send-
after-delay. The mailbox routines are also used by the Future module and the
Asynchronous module.

Future Implements futures and delays using mailbox routines.

Asynchronous Interactions Implements asynchronous interprocess communica-
tion primitives using mailbox routines and Sprite signals.

Clock Timer routines used by Send-after-delay.

Machine Dependencies Machine-dependent routines used to create lightweight
processes and perform context switching. These are written in assembly lan-
guage. :

Main Top-level initialization routines and debugging support. A fast (but simple-
minded) version of the C memory allocation routine M em_Alloc is also in-
cluded.

11n this paper the terms this implementation and this system are used interchangeably.
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3 Lightweight Processes (Lwp)

Multiprocessing SPUR Lisp processes are designed to be lightweight to encourage
fine-grain parallelism. Each SPUR Lisp process is implemented as a lightweight
process (lwp). A SPUR Lisp process is not implemented as an operating system
process (Sprite process) because a lwp is cheaper to create than a Sprite process.
In addition, the overhead of performing synchronization operations (including long-
term waits for a resource or condition) between lwps is lower. This factor is critical
because synchronization operations may occur very frequently in a system of mul-
tiprocessing SPUR Lisp processes.

For the Sun (MC68000) implementation, the saved context or hardware state of
a lwp consists of the runtime stack, the saved registers d0-d7, a0-a7, and a saved
Sprite signal mask. The program counter and condition code register are saved on
the stack.

3.1 Implementation of Lwp

Lwps are implemented with a lwp scheduler and a pool of Sprite server processes.
Each lwp may be in one of the following states: 2

Ready-State (:blocked) A new lwp enters the system in this state. It remains
in this state until it is scheduled for execution by one of the server processes.
A lwp also goes into this state when it wakes up after being blocked by a
semaphore. A lwp in this state is enqueued in the runnable queue (ReadyL-

wpQ).

Run-State (:executing) A lwpin this state is executing in the context of a server
process. The lwp runs until it terminates completely, is blocked by a mailbox
operation, is blocked when it touches an undetermined future, or is suspended
or killed by another lwp. A server process is not time-sliced between executing
Iwps. A lwp in this state is enqueuned in the run queue (RunLwpQ).

Blocked-State (:blocked) A lwp enters this state to perform a long-term wait
on a resource or condition. This happens when a lwp attempts to aquire the
mutex semaphore of a locked mailbox, tries to receive mail from an empty
mailbox, touches an undetermined future, or waits for the Kill or Suspend
operation it invoked to complete. When the lwp wakes up it goes to Ready-
State. These long-term waits are implemented as the semaphore operation P.
A lwp in this state is enqueued in the lwp queue associated with the semaphore
on which it is blocked.

2The value returned by the SPUR Lisp function Process-state for a lwp in that state is given in
parentheses.




Suspended-State (:suspended) A lwp enters this state when it is suspended by
another process (or itself). When it is resumed it goes to Ready-State. A lwp
in this state is enqueued in both SuspendLwpQ and the lwp queue associated
with one of its special semaphores (SelfSuspend SemaPtr). (See Section 3.6.)

Dead-State (:terminated) A lwp enters this state when it has terminated. This
may happen because the code the lwp is executing returns completely, or
because it is killed by another lwp. A lwp in this state is enqueued in both
DeadLwpQ and the lwp queue associated with one of its special semaphores
(SelfKill SemaPtr). (See Section 3.6.)

The state transitions of lwps is shown in Figure 1.

The queues maintained by the lwp scheduler (ReadyLwpQ, RunLwpQ, Sus-
pendLwpQ, DeadLwpQ and a lwp queue associated with each semaphore) are im-
plemented as FIFOs because the issue of priority between lwps is still being inves-
tigated. Also see Section 7.3 for a discussion of scheduling lwps for futures.

The server processes are created at system initialization time. Currently, the
number of server processes does not change dynamically with the number of lwps
in Ready-State, or the number of processors available on the workstation. It would
be simple to vary the size of the server pool dynamically, however. There is no fixed
assignment of Iwps to server processes.

The server processes share the same kernel, code and heap segments, and have
their own stack segments. All server-specific data is kept in the stack segment,
despite the lack of support from the Sun C compiler. The way server-specific data
is stored and accessed is described in detail in Section 3.2.

As all lwps are presumably cooperating in performing a computation, server
processes are not time-sliced between executing lwps.

A server process only blocks when the lwp it is executing invokes an operating
system call that blocks, such as an I/O or a (low-level) locking operation.

3.2 Sprite Segments of the Address Space

All the server processes execute in the same address space, sharing the kernel, code
and heap segments. The stack segment of a server process is private. All the data
of a lwp (including its stacks) must be kept in the shared heap segment.

There are two types of global data in the system:

Shared Data shared (read/write) by all the server processes. These include system
data structures such as Sprite monitor locks, lwp queues of the lwp scheduler,
data structures of the allocators for stacks and signal stacks (Sections 3.5 and
8.10), and the FIFO of undelivered messages maintained by the Send-after-
delay module.
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Figure 1: State Transitions Of Lwps
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Private Data specific to a given server process. These include the Sprite process-id
of a server process and a pointer to the lwp it is currently executing.

Global data are treated differently by the Sun C compiler and the SPUR C
compiler. This section describes the differences and ways to write code for allocating
and accessing global data (shared and private) that is identical for the Sun port and

SPUR port.
For the Sun C compiler and linker, all the global or external data of a process

are allocated in shared storage (heap segment). Server-specific data are kept on the
private stack of the process.

For the SPUR C compiler and linker, all the global or external data of a process
are allocated in private storage (stack segment). Shared data must be allocated
dynamically in the shared heap using Mem_Alloc.

PerServerType *PerServerPtr; /* Private */
Shared0bjType *SharedObjPtr; /* Shared */

void
main()

{

PerServerType PerServerInfo;

PerServerPtr &PerServerlnfo;

Shared0bjPtr = (SharedObjType *)

Mem_Alloc(sizeof (Shared0bjType));

/* fork Sprite processes here */

Figure 2: Allocating and Accessing Global Data



Figure 2 illustrates how shared and private global data are allocated and ac-
cessed. This method may be used for both the Sun port and the SPUR port.

Figures 3 and 4 illustrate how shared and private global data are allocated at
the implementation level for the Sun port and the SPUR port.

3.2.1 Shared Global Data

A shared global object is allocated dynamically in the shared heap before the server
processes are forked. It is accessed througha global variable such as Shared0bjPtr.

For the Sun C compiler, the shared global variable Shared0bjPtr of all the
server processes points to the shared global object. For the SPUR C compiler, the
private global variable Shared0bjPtr of each server process points to the shared
global object.

3.2.2 Private Global Data

All private global data are kept on the private stack of a server process. The global
variable PerServerPtr points to the same stack address of each server process. This
address corresponds to the structure PerServerInfo in the main function of the
server process dereferencing PerServerPtr. All pnivate data of a server process are
stored in its copy of PerServerInfo.

For the Sun C compiler, the shared global variable PerServerPtr of all the
server processes points to the private copy of PerServerInfo of the server process
dereferencing PerServerPtr. For the SPUR C compiler, the private global variable
PerServerPtr points to the private copy of PerServerInfo of the server process
dereferencing its copy of PerServerPtr.

3.3 Lwp Context Switching

The saved context or hardware state of a lightweight process consists of the runtime

stack, the saved registers, and the Sprite signal mask. The program counter and

condition code register are saved on the stack of the lwp. This is shown in Figure 5.
During a context switch,

1. The condition code register is pushed onto the stack of the lwp.
2. A magic number is pushed onto the stack of the lwp.

3. All the registers (d0-d7, a0-a7) of the lwp to be switched out are saved 1n its
process control block (Pcb) in the shared heap.

4. All the registers (d0-d7, a0-aT) of the lwp to be switched in are restored from
its process control block. This implictly changes the stack pointer (aT).
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5. The magic number is popped from the lwp stack and checked to ensure the
integrity of contents of the stack.

6. The condition code register is popped from the lwp stack.

7. The new lwp returns to user code.

Synchronization during a context switch is described in Section 4.3.

When a lwp is switched out (because it is blocked or has terminated), the thread
of control associated with the server process is resumed. This thread executes on
the stack provided by the operating system when the server process was forked.
This thread contains an infinite loop that executes any lwp in ReadyLwpQ, and
sleeps if there is none. The lwp scheduler always switches from a lwp to the server
thread, and never switches from one lwp to another directly. This organization
simplifies the lwp scheduler considerably, at the cost of extra context switches.

3.4 Lwp Creation

When a lwp is created, certain things are placed on its stack so that it looks like
a descheduled lwp, as shown in Figure 6. In this way, executing a lwp for the first
time is very similar to resuming a lwp that has been switched out. When a lwp is
restored for the first time, it calls Sch_Start Lwp (for initialization), then the user
code, and finally the exit routine of the lwp scheduler (Sch_Exit). See Section 4.4
for an explanation of Sch Start_Lwp.

3.5 Allocation of Lwp Stacks

Each lwp executes on a runtime stack that is a section of a dynamically allocated C
object. This object is allocated from the shared heap segment, and is readable and
writable by all server processes. The lwp stack 1s not allocated from a Sprite stack
segment, which is non-sharable and is owned by the server process that created the
lwp.

A lwp stack contains an integral number of operating system pages, and is
aligned on page boundaries. To detect stack overflows and underflows, the Sprite
system call Vm_DestroyVA is used to put an invalid page between every two lwp
stacks. An address fault (Sprite signal) will be generated if a lwp stack overflows
or underflows. This is illustrated in Figure 7.

Stacks of dead lwps are reused by the lwp stack allocator. This is described in
Section 3.8.

3.6 Special Semaphores

Each lwp has the following special semaplores, which are used by the lwp scheduler
to context switch, suspend or kill a lwp. P and V operations on these semaphores

11
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are handled differently by the semaphore module.

SelfSwitch_SemaPtr Initialized to 0. Used by a lwp to do a voluntary context
- switch. Caller lwp is blocked on ReadyLwpQ (Ready-State). No need to call
V to make lwp ready again.

SelfSuspend _SemaPtr Initialized to 0. Used by a lwp to suspend itself. Caller
lwp is blocked (suspended) on SuspendLwpQ (Suspended-State). Calling V

on this semaphore will resume the suspended lwp.

SelfKill_SemaPtr Initialized to 0. Used by a lwp to kill itself. Caller lwp is

blocked (killed) on DeadLwpQ (Dead-State) forever. No V call on this semaphore

is allowed.

Using these semaphores for context switching, killing or suspending lwps merges
all the code for blocking a lwp, and reduces the complexity of the lwp scheduler
significantly.

3.7 Lwp Object

This section summarizes all the fields of a lwp object. See the sections shown in
parentheses for details.

PrcsName String name of lwp.

PcbPtr Saved hardware state of lwp. (Section 3.)

ServerPid Sprite process-id of the server process. (Section 3.1.)
PrcsState Process state of lwp. (Section 3.1.)

SigMask The set of disabled Sprite signals for the server process. A saved lwp has
the saved signal mask of the server process at the time the lwp was switched
out. When the lwp is scheduled to run again, the new server process will
begin executing the lwp with this signal mask. (Sections 4.5 and 8.3.)

LinkElt Link field used by PrcsFifo implementation.
Blocked_SemaPtr Semaphore the lwp is blocked on. (Section 4.6.)

SelfSwitch_SemaPtr Semaphore the lwp uses to context switch voluntarily. (Sec-
tion 3.6.)

SelfSuspend_SemaPtr Semaphore the lwp uses to suspend itself. (Section 3.6.)

SelfKill_ SemaPtr Semaphore the lwp uses to kill itself. (Section 3.6.)

14



NolInterrupt TRUE iff lwp is in a critical section. (Section 8.15.)

SchmonFlag TRUE iff lwp is holding the Schmon lock (outside a critical section).
(Section 4.3.)

JmpEnv Eachlwp has a C structure that contains all the information saved during
a call to the C library routine _setymp. This information is used by longymp
to re-execute a blocked Receive that has been canceled by an asynchronous
operation (Kill, Suspend or Signal).

To ensure that this implementation is recursive (a canceled receive inside a
canceled receive inside ...), this structure is copied onto the lwp stack before
a Receive, and restored when the Receive returns. (Section 8.17.)

MboxSeqPtr Sequence of mailboxes the receiver is receiving mail from. (Section
5.5.)

Mail_drop Message delivered by sender lwp. (Section 5.5.)

From_MboxPtr Mailbox from which the message in Mail drop came. (Section
5.5.)

Mail_SemaPtr Semaphore receiver lwp blocks on to wait for mail. (Section 5.4.)

Sender_SemaPtr Semaphore to synchronize a receiver lwp and potential sender
lwps. (Section 5.4.)

KillFlag TRUE iff lwp is being killed. (Section 8.1.)
SuspendFlag TRUE iff lwp is being suspended. (Section 8.1.)
SignalFlag TRUE iff lwp has pending signals. (Section 8.1.)

Async_MboxPtr Mailbox for sending special messages indicating Kill, Suspend
or Signal to a lwp. (Section 8.1.)

Killed_SemaPtr A lwp calling Kill is blocked on this semaphore of its target lwp
until the target lwp is killed. (Section 8.7.)

Suspend _SemaPtr A lwp calling Suspend is blocked on this semaphore of its
target lwp until the target lwp is suspended. (Section 8.7.)

SigStackPtr Signal stack contains the signal handlers and enabled signals of each
dynamic environment of the lwp. (Section 8.10.)

SigObj_MboxPtr Mailbox for signal objects sent to a lwp. (Section 8.1.)

¥ |



3.8 Deallocating Storage for Dead Lwp

All the dead lwps are enqueued in DeadLwpQ. When a server process becomes idle
(i.e. ReadyLwpQ becomes empty), it checks DeadLwpQ for lwps with undeallocated
storage. It frees most of the objects associated with the lwp, including the saved
hardware state, the lwp stack, the signal stack, and most of the semaphores. The
unreclaimed fields are maintained by the lwp scheduler to prevent races.

When the objects associated with a lwp are deallocated, they are returned to the
memory allocator using Mem_Free. More measurements are necessary to determine
if the system should maintain 1ts own storage explicitly to reduce the overhead of
allocating and deallocating objects.

16
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4 Synchronization

Multiprocessing SPUR Lisp is designed for implementation on a shared memory
multiprocessor. At the operating system level, the implementation consists of a
number of user-level Sprite processes executing in the same address space, sharing
(read/write) the same heap segment. These processes include the server processes
used to execute lwps (Section 3), as well as the processes used to implement Send-
after-delay (see Section 6.) These processes are all time-sliced by the operating

system.
At the next level, the system consists of lwps. These lwps access shared objects

such as mailboxes, futures and processes, as well as system data structures including
the lwp queues of the lwp scheduler, the stack array of the lwp stack allocator, the
signal stack allocator, and the FIFO of undelivered messages maintained by the
Send-after-delay module.

The Sprite processes are synchronized using Sprite monitors and condition vari-
ables. The system data structures are protected by Sprite monitors. Lwps are
synchronized using semaphores.

4.1 TUses of Synchronization Primitives

Test-And-Set This operation is used by the Sprite lock routines to avoid the
overhead of a system call when a lock is acquired or released, if possible. It is
implemented using the atomic test-and-set hardware instruction.

Sprite locks These are used to implement semaphores (Section 4.6) and Sprite
monitors. They are provided by the Sprite operating system.

Sprite monitors These are used by the lwp scheduler, the lwp stack allocator, the
signal stack allocator, the Send-after-delay module, and the Debug module.
They are provided by the Sprite operating system.

Condition variables These are used for the long-term blocking of Sprite pro-
cesses. This includes the blocking of idle server processes and the daemon
process for the Send-after-delay module. They are provided by the Sprite
operating system.

Semaphores These are used by lwps for synchronization and mutual exclusion in
the Mailbox module, the Future module, and parts of the Asynchronous mod-
ule. They are implemented by lwp scheduler using Sprite locks and monitors.

4.2 Sprite Locks and Monitors

This section provides a simple description of the synchronization primitives provided
by the Sprite operating system.

17
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Sprite locks A Sprite lock is conceptually a binary semaphore [1] for Sprite pro-
cesses. In the best case a lock is acquired or released by setting or clearing
flags. In the worst case a blocking system call has to be invoked to acquire
the lock, or to awaken all the blocked processes waiting for the lock.

Sprite monitors A Sprite monitorisa Mesa-style monitor with broadcast seman-
tics [3].

4.3 Monitor for the Lwp Scheduler (Schmon)

The global data structures of the lwp scheduler (ReadyLwpQ, RunLwpQ, Suspend-
edLwpQ, DeadLwpQ) are protected by the Sprite monitor Schmon. As a side effect,
locking Schmon also prevents any lwp from changing its process state. To avoid
contention at Schmon, Schmon is only locked for very short durations.

Schmon is not locked and unlocked using the Mesa-style entry procedures. In-
stead, it is locked and unlocked explicitly. Thislocking style allows the lwp scheduler
to be coded conveniently and efficiently, but it also introduces the potential of errors
and deadlocks.

4.4 Schmon and Context Switching

The following scenario demonstrates a race condition that may occur if Schmon
is unlocked before calling the assembly language routine that performs the actual
context switch, Mach_ContextSwitch:

1. Lwpl running under server process Sa is about to be switched out.

2. Lwpl locks Schmon, and enqueues itself into a global queue of the lwp sched-
uler (say ReadyLwpQ).

3. Lwpl unlocks Schmon.
4. Lwpl calls Mach_ContextSwitch.

5. Before Mach_ContextSwitch completes, another (idle) server process Sb locks

Schmon, dequeues Lwpl from ReadyLwpQ, and attempts to call Mach_ContextSwitch

to switch in Lwpl.

6. When this happens, two threads of control (servers Sa and Sb) are attempting
to execute Lwpl simultaneously.

To avoid race conditions, the lwp scheduler is coded so that Schmon is un-
locked after a context switch, i.e. the lwp (or server) that returns from a call to
Mach_ContextSwitch is holding Schmon, and has to unlock it before returning to
user code. For a newly created lwp, the initial stack frame is set up so that Schmon
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is unlocked (by procedure Sch_Start_Lwp) before any user code is executed (Figure
6).

4.5 Schmon and Sprite Signals

Sprite signals are used to implement the asynchronous interprocess actions including
Kill, Suspend and Signal. As Sprite system calls to disable and enable Sprite signals
are relatively inexpensive, all Sprite signals are disabled around any section of code
that locks Schmon. This leads to a much cleaner implementation, at a small cost
to efficiency. See Section 8.5 for details.

4.6 Semaphores

Semaphores are used by lwps for long-term waits for a resource or condition. When
a lwp blocks on a semaphore, the server process becomes idle, and 1t checks ReadyL-

wpQ for a ready lwp to execute.
The following operations are provided by the semaphore module:

Sema_P Counting semapliore operation P.
Sema_V Counting semaphore operation V.

Sema_P_In_Schmon, Sema_V_In_Schmon In certain parts of the Asynchronous
module, Schmon is acquired explicitly. If the lwp holding Schmon performs
a semaphore operation that requires locking Schmon, the system will dead-
lock. This problem is solved by providing special variants of the semaphore
operations P and V that do not acquire Schmon again.

Sema_P_Non_Blocking A non-blocking form of the semaphore operation P is
provided. This form returns FALSE in the case when the operation P would
have blocked. It is used by the Mailbox module to avoid a potential deadlock.

(See Section 5.)

4.7 Semaphore Object

MutexPtr The Sprite lock that serializes accesses to the semaphore (Section 4.1).

Count The integer value of the counting semaphore.

PrcsQPtr The FIFO of lwps blocked on the semaphore.
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4.8 Implementation of Semaphores

The Sprite lock of a semaphore is acquired for any semaphore operation (P or V).
In the best case only a test-and-set operation is required. If there is contention for
this lock a blocking Sprite system call is invoked to acquire it.

If no lwp is blocked or unblocked by a semaphore operation (P or V), only
the integer value of the semaphore is incremented (for V) or decremented (for P);
Schmon is not locked, and no Sprite system call is required. If a lwp is blocked or
unblocked by the operation, Schmon, which protects the global queues of the lwp
scheduler, has to be acquired. The semaphore operations P and V are implemented
as follows:

Semaphore operation P

SelfLwpPtr is a pointer to the current lwp
P(SemaPtr)

if (Test-and-Set(SemaPtr->MutexPtr))
{

Sprite wait system call on SemaPtr->MutexPtr

}

SemaPtr->Count--
if (SemaPtr->Count < 0)

{
Lock Schmon Sprite monitor
Move SelfLwpPtr from RunLwpQ to SemaPtr->PrcsQPtr
Unlock(SemaPtr->MutexPtr)
Context switch out SelfLwpPtr
/* wakeup: V(SemaPtr) called by another lwp */
Unlock Schmon Sprite monitor
return
}
else
{
Unlock{SemaPtr->MutexPtr)
return
}



Semaphore operation V

SelfLwpPtr is a pointer to the current lwp
V(SemaPtr)
BlockedLwpPtr is a local variable

if (Test-and-Set(SemaPtr->MutexPtr))
{

Sprite wait system call on SemaPtr->MutexPtr

SemaPtr->Count++
if (PrcsFifo_Delete(SemaPtr->PrcsQPtr, ZBlockedLwpPtr)
{
Unlock(SemaPtr->MutexPtr)
Lock Schmon Sprite monitor
Enqueue BlockedLwpPtr into ReadyLwpQ
Sprite broadcast system call to wake up idle server processes
Unlock Schmon Sprite monitor

return

}

else

{
Unlock(SemaPtr->MutexPtr)
return

}



5 Mailboxes

5.1 Message Object

Conceptually, a mail item, or message, is any Lisp object reference. It is imple-
mented as an object with the following fields:

Data The actual message, a Lisp pointer.

MesgClass The kind of message (Normal, Kill, Suspend, Signal, Signal object)
(See Section 8).

Sender Sender lwp (for debugging).
Receiver Receiver lwp (for debugging).
Mbox Mailbox the message is sent to (for debugging).

SerialNumber Serial number of message (for debugging).

5.2 Mailbox Object

A mailbox is an unbounded FIFO of message objects. It is implemented as an
object with the following fields:

Mbox_SemaPtr Semaphore to serialize concurrent accesses to the mailbox.

MesgQPtr The FIFO of message objects that have not been received from the
mailbox.

PrcsQPtr The queue of receiver lwps that are waiting for mail from this (empty)
mailbox. Note that lwps may be dequeued from this out of order when a
receiver receives mail from another mailbox, or when a receive operation is
canceled because of an asynchronous operation.

MboxName The string name of the mailbox.

5.3 Algorithm for Send and Receive

The algorithm for Send and Receive (multiple receive) are described at a high level
without reference to synchronization here. See Section 8.17 fora detailed description
of the implementation, including the interactions with asynchronous operations.

S
[



Send

if there is no waiting receiver lwp in the mailbox

enqueue message
return
else if there is a waiting receiver lwp

deliver message to receiver
dequeue receiver from all other mailboxes it is enqueued in
wakeup receiver
return

Receive

for each mailbox in the sequence

{
if there is no message in the mailbox
{
enqueue itself in the mailbox
)
else
{
dequeue message from the mailbox
dequeue itself from all mailboxes it is enqueued in
return
}
b

block self
retrieve mail delivered by sender
return

5.4 Data Structures

In this section the data structures used by the mailbox routines are described.

Mbox_SemaPtr Mutex semaphore initialized to 1. One per mailbox. Used to
serialize concurrent accesses to a mailbox.



Mail_SemaPtr Semaphore initialized to 0. One per lwp. Used by a receiver lwp
to wait for receipt of a message. Receiver has been dequeued from all other
mailboxes when it proceeds from this semaphore.

Sender_SemaPtr Semaphore initialized to 1. One per lwp. Used to synchronize
sender and receiver lwps. A receiver checking a sequence of mailboxes uses
this semaphore to prevent senders from delivering mail to it, while the first
(successful) sender to a blocked receiver uses this semaphore to prevent other
senders from sending mail to that blocked receiver.

5.5 Mail Delivery

The following flelds in a receiver lwp are used by a sender lwp to deliver mail to a
blocked receiver:

Mail_drop Message delivered by a sender for pending receive.

MboxSeqPtr The sequence of mailboxes the receiver is receiving mail from. This
is used by the cleanup routine of the sender to dequeue the receiver from all
other mailboxes after delivering mail to the receiver.

From._mboxPtr The mailbox from which the message in Mail.drop came.

If a sender discovers a blocked receiver in the mailbox it is sending to, it
puts the message into the Mail drop slot of the receiver, sets Received_mail and
From_mboxPtr, and dequeues the receiver from all other mailboxes of MboxSeqPtr
before waking up the receiver. When a receiver wakes up, it retrieves mail from its
fields and returns.

5.6 Race Conditions

Here are some of the race conditions that have been detected and corrected:

o Mail arsves at a mailbox a receiver has enqueued itself in before the receiver
has finished polling all the mailboxes in the sequence.
Solution: Sender is blocked (on Sender_SemaPtr of receiver).

o Receiver is blocked after checking a sequence of mailboxes. Two sender lwps
concurrently send to two mailboxes the receiver is enqueued in.
Solution: The first sender to lock Sender_SemaPtr of the receiver wins.

o Receiver is blocked after checking a sequence of mailboxes. Sender S1 finds
receiver in mailbox ml and delivers mail to it. Before S1 can dequeue the
receiver from mailbox m?2, another sender S2 discovers the receiver in m?2.

Solution: The first (successful) sender, S1, clears the MboxSeqPtr field of
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5.7

the receiver before unlocking the Sender_SemaPtr of the receiver. When 52
discovers that MboxSeqPtr of the receiver is empty, it will unlock m2, de-
schedule itself (onto ReadyLwpQ), and retry the send operation to m2 when
it is scheduled to run again. It will continue doing so until S1 has dequeued
the receiver from m2.

Receiver R is blocked after checking a sequence of mailboxes. A sender S1
unblocks Sender SemaPtr of R after it has delivered mail to R, but before
it dequeues R from all the mailboxes. If R is awakened before this cleanup
is completed, R may begin to execute yet another Receive operation. As the
MboxSeqPtr field of R will now be set again (by the second receive operation),
mail may be delivered to R at one of the mailboxes from the previous receive
operation.

Solution: Wake up R after the cleanup operation has completed.

Deadlock Prevention

To prevent deadlocks, each lwp (sender or receiver) will only lock one mailbox
at any time.

A sender locks a mailbox before locking Sender_SemaPtr of a receiverit findsin
a mailbox, while a receiver locks its Sender SemaPtr before locking a mailbox.
This locking protocol is prone to deadlocks.

Solution: The sender uses the non-blocking operation Sema_P Non Blocking
to acquire Sender SemaPtr of the receiver. If the locking fails, the sender
unlocks the mailbox and retries the locking sequence.



6 Send-after-delay

Send-after-delay sends a message to a specified mailbox after a specified delay. The
caller lwp is not blocked until the message is sent.

6.1 DSendInfo Object

The information associated with a call to Send-after-delay is packaged into an object
with the following fields:

Mbox Mailbox the message is being sent to.
Mesg Message object to be sent.
Interval Delay interval before sending the message.

Sender Sender lwp (for debugging).

6.2 Implementation of Send-after-delay

The lwp calling Send-after-delay cooperates with two Sprite processes (not server
processes) and a new lwp to implement Send-after-delay. When Send-after-delay is
called, the caller lwp enqueues the DSendInfo object into a global FIFO (DSendQ).
It then wakes up DSend_Daemon, a Sprite process. The caller lwp returns imme-
diately. When DSend Daemon wakes up, it checks DSendQ for DSendInfo objects.
For each such object, it forks a Sprite process (SleepPrcs), and passes the object
to SleepPrcs. If DSendQ is empty, DSend.Daemon sleeps. SleepPrcs sleeps for the
duration specified in the DSendInfo object passed to it, creates a lwp (SendLwp)
that will execute the send operation when scheduled, and exits. When SendLwp i1s
scheduled, it sends the message to the specified mailbox and exits.

Caller of Send-after-delay (a lwp)

DSend-Delay-Send (MboxPtr, MesgPtr, Interval)
DSendInfoPtr is a local variable

DSendInfoPtr = Create DSendInfo object

Lock DSend_MonLock monitor

Enqueue DSendInfoPtr into DSendQ

Sprite broadcast to wakeup DSend_Demon Sprite process
return



DSend_Daemon Sprite Process

Lock DSend_MonLock monitor

while (TRUE)

{
while (DSendQ is not empty)
{
Dequeue DSendInfo object from DSendQ
Fork Sprite process SleepPrcs,
passing it DSendInfo object
}
Unlock DSend_MonLock and wait
for Sprite broadcast (atomically)
/* When this returns, DSend_MonLock is held again */
)y

SleepPrcs Sprite Process

SleepPrcs(DSendInfoPtr)

Sleep for interval specified in *DSendInfoPtr

Create a new lwp SendLwp that will send the message
in *DSendInfoPtr when scheduled

SleepPrcs exits

An Idle Sprite Server Process

Dequeue ready lwp SendLwp from ReadyLwpQ and start executicn

SendLwp

Sends message to specified mailbox
SendLwp exits

The initial stack of SendLwp is shown in Figure 8.
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6.3 Design Decision

The implementation described is simple but very expensive, as a Sprite process
is forked for each call to Send-after-delay. If Send-after-delay is found to be used

heavily, a more efficient (but more complex) scheme should be used instead.



7 Future and Delay

Futures and delays are implemented using the mailbox facilities.

7.1 Future Object
A future or delay object has the following flelds:

Future_SemaPtr Mutex semaphore initialized to 1. Used to serialize concurrent
accesses to a future object.

FormToEvalPtr Entry point of code the future is created to evaluate.
ParentPrcsPtr Lwp that created the future (for debugging).

FuturePrcsPtr Lwp created to compute FormToEvalPtr,
NULL for a delay that has not been touched.

Determinedp TRUE iff the future has been determined.
ValuePtr Value of the future, if determined.

NumBlockedPrcs Number of lwps blocked after touching the undetermined fu-
ture. '

Future_MboxPtr Mailbox the blocked (touching) lwps are waiting for mail from.

7.2 Implementation of Future and Delay

When Future is invoked, a future object is created, and a lwp is created to compute
the value of the future. When Delay is invoked, a delay object is created, but no
lwp is formed. When a determined future (or delay) is touched, its value is retrieved
from the future (or delay) object. When an undetermined future is touched, the
touching lwp increments a ccunter in the future object, and blocks by receiving from
an empty mailbox associated with the future object. When a delay is first touched,
a lwp is created to compute its value, and the touching lwp is blocked in the same
way as a lwp that touches an undetermined future. When the lwp associated with
a future (or delay) has computed the value of the future (or delay), it stores the
value into the future (or delay) object. It then sends one message containing the
value of the future (or delay) to the mailbox associated with the future (or delay)
for each blocked touching lwp. The future lwp then exits.
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Creating a Future

Fut-Create-Future (FnPtr)
FuturePtr is a local variable

Create a future object *FuturePtr

FuturePtr->FormToEvalPtr = FnPtr (entry point of code)

FuturePtr->FuturePrcsPtr = new lwp created to compute
Fut-Compute-Future(FnPtr, FuturePtr)

return (FuturePtr)

Creating a Delay
Fut-Create-Delay(FnPtr)
FuturePtr is a local variable

Create a future object *FuturePtr

FuturePtr->FormToEvalPtr = FnPtr (entry point of code)
return (FuturePtr)

Touching a Future or Delay

Fut-Touch-Future(FuturePtr)
MboxSeqPtr, MesgPtr and MboxPtr are local variables

P(FuturePtr->Future_SemaPtr)
if (Determinedp)

{
if (FuturePtr->ValuePtr is an undetermined future)
{
Fut-Touch-Future(FuturePtr->ValuePtr)
}
V(FuturePtr->Future_SemaPtr)
return value in FuturePtr->ValuePtr
}
else
{

FuturePtr->NumBlockedPrcs++
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/* Delay */
if (FuturePtr->FuturePrcsPtr == NULLP(PrcsType))

{

Create a new lwp to compute FormToEvalPtr,
and store it in FuturePtr->FuturePrcsPtr

}
V(FuturePtr->Future_SemaPtr)

MboxSeqPtr = single mailbox FuturePtr->Future_MboxPtr
Mail-Receive-Atomic(MboxSeqPtr, &MesgPtr, &MboxPtr)
return value in MesgPtr

Future or Delay becoming Determined

Fut-Compute-Future(FnPtr, FuturePtr)
ValuePtr, PrcsCount and MesgPtr are local variables

ValuePtr = (*FnPtx) ()
P(FuturePtr->Future_SemaPtr)
FuturePtr->ValuePtr = ValuePtr
FuturePtr->Determinedp = TRUE

for (PrcsCount = 0;
PrcsCount < FuturePtr->NumBlockedPrcs;

PrcsCount++)
{
MesgPtr = message object with ValuePtr as data
Mail-Send-Atomic (FuturePtr->Future_MboxPtr, MesgPtr)
by

V(FuturePtr->Future_SemaPtr)

The initial stack of a lwp created to compute a future is shown in Figure 9.
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7.3 Future and Lwp Scheduler

Currently the lwp scheduler does not distinguish between a lwp created by the
user and a lwp created to compute the value of a future. A lwp computing the
value of a future is not favored by the lwp scheduler over other lwps, even if there
are lwps blocked waiting for the value of the future. Furthermore, a lwp invoking
Future is not descheduled in order to execute the lwp created to compute the future.
More measurements are necessary to determine if this policy produces reasonable
performance.

7.4 Design Decisions

The Future module is implemented on top of the Mailbox module. This implemen-
tation is simple and highly portable, at the price of sacrificed performance. If the
speed of futures is of critical importance, a faster implementation using lower level
primitives (such as semaphores) should be chosen.
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8 Asynchronous Interactions

The asynchronous operations between lwps include Kill-Process, Suspend-Process,
Signal-Process and Resume-Process. 3 They are implemented using mailbox routines
and Sprite signals. The caller of Kill, Suspend or Signal does not change the state
of the target lwp directly. Instead, 1t sets flags in the target lwp, sends messages to
special mailboxes of the target Iwp, and perhaps sends a Sprite signal to the target
lwp. A lwp checks for the arrival of asynchronous events when it is safe to do so,

and kills, suspends or signals itself as appropriate.

8.1 Data Structures

Each lwp contains the following data structures used to handle asynchronous inter-
actions:

KillFlag TRUE iff lwp is being killed. Set by the lwp calling Kill.
SuspendFlag TRUE iff lwp is being suspended. Set by the lwp calling Suspend.
SignalFlag TRUE iff lwp has pending signals. Set by the lwp calling Signal.

Async_MboxPtr Each lwp adds its Async MboxPtr to the end of the mailbox
sequence of every Receive operation it executes. The lwp calling Kill, Suspend
or Signal sends a2 message to this mailbox to wakeup a lwp blocked by a
Receive.

SigObj MboxPtr Mailbox for signal objects sent to a lwp.

8.2 Checking for Asynchronous Events

To preserve the atomicity of Send and Receive, a lwp checks its KillFlag, Suspend-
Flag and SignalFlag for asynchronous events when it is safe to do so. This is done
at the following points:

o Before executing user code the first time a lwp is scheduled (procedure Sch Start_Lwp).

¢ Before returning to user code when a lwp that has been blocked at a semaphore
is made runnable (procedure Sema P).

e Upon exiting from a critical (procedure CS_Exit).

o Upon exiting from a code section that locks Schmon (procedure Schmon_UnlockMonStub).

3These will be referred to as Kill, Suspend, Signal and Resume respectively.



e In Sprite signal handlers for the Sprite signals used to implement Kill, Suspend
and Signal (procedures Server Kill Sig Handler, Server Suspend _Sig_Handler
and Server_User Sig_Handler).

e When a message is received from the Async MboxPtr (procedure Mail Receive).

8.3 Sprite Signals and Asynchronous Interactions

A lwp only checks for the arrival of asynchronous events at certain given points
(Section 8.2). When a lwp is executing non-multiprocessing code, it does not poll
for asynchronous events. To force the server process of an executing target lwp to
check for asynchronous events, Sprite signals are used. Three distinct user-defined
Sprite signals are used in the implementation of Kill, Suspend and Signal. To keep
the implementation simple, Sprite signals are disabled in critical sections, as well
as in sections of code locking Schmon. When a Sprite signal is delivered to a server
process, the corresponding Sprite signal handler (for Kill, Suspend or Signal) checks
if it is executing a lwp. If so, it checks the KillFlag, SuspendFlag or SignalFlag of
the lwp, and handles the Kill, Suspend or Signal as appropriate.

8.4 Handling Asynchronous Events

If a lwp discovers that its KillFlag is set, it kills itself by invoking the semaphore
operation P on its SelfKill SemaPtr. This indirectly invokes the semaphore opera-
tion V on the Killed_SemaPtr of the lwp being killed, releasing the blocked killing
Lwp.

If a lwp discovers that its SuspendFlag is set, it suspends itself by invoking the
semaphore operation P on its SelfSuspend_SemaPtr. This indirectly invokes the
semaphore operation V on the Suspended SemaPtr of the lwp being suspended,
releasing the blocked suspending lwp.

If a lwp discovers that its SignalFlag is set, it checks its SigObj.MboxPtr for
signal objects of enabled signals. If these are found, the lwp handles them in FIFO
order. For each enabled signal object in the mailbox, the lwp receives it from the
mailbox, looks up the signal handler, and invokes the signal handler with the signal
and the optional arguments in the signal object.

8.5 Schmon and Sprite Signals

This section describes how asynchronous events are checked (and possibly handled)
after a section of code locking Schmon (but not inside a critical section).

SelfLwpPtr is a pointer to the lwp locking Schmon

Disable Sprite signals
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SelfLwpPtr->SchmonFlag = TRUE
Lock Schmon

[Actual code inside Schmon]
Unlock Schmon
SelfLwpPtr->SchmonFlag = FALSE
Enable Sprite signals

if (SelfLwpPtr->KillFlag)
Kill self

if (SelfLwpPtr->SuspendFlag)
Suspend self

if (SelfLwpPtr->SignalFlag)
Process enabled signal objects in SigObj_MboxPtr

return

8.6 Overview of Kill and Suspend Implementation
To kill or suspend a lwp, the following events occur:
1. Set KillFlag of target lwp for Kill. (Set SuspendFlag of target lwp for Suspend)

2. Send special message to Async MboxPtr of target lwp. (Kill.Mesg or Sus-
pend Mesg)

3. Lock Schmon.

4. If target lwp is in Run-State, send Sprite signal to its server process. Different
Sprite signals are used for Kill and Suspend.

5. Unlock Schmon.

6. Block untill target lwp kills or suspends itself.

37



8.7 Semaphores used for Kill and Suspend
The following semaphores are used in the implementation of Kill and Suspend:

o A lwp killsitself by invoking the semaphore operation P on its SelfKill SemaPtr.
See Section 3.6.

e A lwp suspends itself by invoking the semaphore operation P on its Self-
Suspend SemaPtr. It is resumed when another lwp invokes the semaplore
operation V on this semaphore. See Section 3.6.

e A lwp calling Kill is blocked on Killed SemaPtr of its target lwp until the
target lwp is killed.

e A lwp calling Suspend is blocked on Suspended SemaPtr of its target lwp
until the target lwp is suspended.

8.8 Signal Implementation

The implementation of Signal is discussed in the following sections. This includes
the data structures used to maintain the set of enabled signals, the binding of signals
and signal handlers, and the way signals are delivered and handled.

8.9 Overview of Signal Implementation
To signal a lwp, the following events occur:

1. Send signal object to SigObj MboxPtr of target lwp.

ko

Send special message to Async.MboxPtr of target lwp (Signal.Mesg).
Set SignalFlag of target lwp.

Lock Schmon.

L

If target lwp is in Run-State, send Sprite signal to its server process.

¥

6. Unlock Schmon.

8.10 Data Structures for Signal
The following data structures are used to handle signals:

Signal Object A signal object contains the signaling lwp (for debugging), the
signaled lwp (for debugging), the signal, and the optional arguments to the
signal handler. It is packaged inside a message object and then sent to the
SigObj MboxPtr of the signaled lwp. The current implementation supports a
maximum of 4 optional arguments to a signal handler.
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Signal Stack The signal stack of a lwp (SigStack) maintains the set of enabled
signals and the (signal, signal handler) pairs of each dynamic extent of the
lwp. A stack structure is required because the set of enabled signals before
invoking a signal handler is identical to that upon returning from the signal
handler. In the current implementation the size of a SigStack may not be
expanded dynamically. Signal stacks are allocated in exactly the same way as
lwp stacks. See Section 3.5 for details.

Enabled Signals The enabled signals of a dynamic extent of a lwp is maintained
as a singly-linked list. The list contains a special signal if all signals are
enabled. If not all signals are enabled, the enabled signals are maintained
explicitly.

8.11 Set of Enabled Signals

The following operations are used to update and query the set of enabled signals of
the current dynamic extent of a lwp:

EnbSig_Enable Sig Enable a signal in the current dynamic extent.
EnbSig_Enable_All_p Return TRUE iff all signals are currently enabled.

EnbSig_SigObj_Enable_p Return TRUE iff the signal in the signal object argu-
ment is currently enabled.

EnbSig_Save Push an empty set of enabled signals onto the SigStack, disabling
all signals. The previous set of enabled signals is implicitly saved.

EnbSig Restore Pop the current set of enabled signals from the SigStack. This
restores the set of enabled signals in effect before the last call to EnbSig Save.
The (signal, signal handler) pairs established after the last call to EnbSig Save

are also popped.

8.12 Binding of Signals and Signal Handlers

The following operations are used to maintain the (signal, signal handler) bindings
of the current dynamic extent:

Hdl_Push_Handler Push a (signal, signal handler) pair onto the SigStack. Used
to implement With-signal-handler.

Hdl_Pop_Handler Pop a (signal, signal handler) pair from the SigStack. Used to
implement With-signal-handler.

Hdl_Lookup_Handler Return the current signal handler of the given signal.

39

=it



8.13 Signal Handling

A signal object is packaged in a message object and sent to the SigObj MboxPtr
of the target lwp. This mailbox enqueues all the unprocessed signal objects of the
LIwp. The signal objects in this mailbox are handled as follows:

while there are signal objects for enabled signals
in SigObj_MboxPtr do
{

Receive first enabled signal object
from SigObj_MboxPtr

Save all currently enabled signals, and
disable all signals

Lookup signal handler for signal

Invoke signal handler with the signal and
optional arguments in signal object

Restore all previously enabled signals

)y
clear SignalFlag

return

8.14 Mail and Asynchronous Interactions

To preserve the atomicity of Send and Receive, a lwp only checks for asynchronous
events when it is safe to do so. Send and Receive are coded as critical sections,
within which Sprite signals are disabled. A lwp calling Receive always adds its
Async_MboxPtr to the end of the sequence of mailboxes it is receiving from. A lwp
executing Kill, Suspend or Signal sends a special message to the Async_MboxPtr of
the target lwp. This message cancels the blocked Receive, and forces the target lwp
to check for asynchronous events. When a blocked receiver wakes up because of mail
arriving at its Async.MboxPtr, it checks its KillFlag, SuspendFlag and SignalFlag.
If the operation is Kill, the target lwp kills itself. If the operation is Suspend or
Signal, the target lwp will re-execute the Receive when the lwp is Resumed, or when
it has handled all the enabled signal objects.
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In the following sections the interactions between asynchronous interactions and
mailbox operations are described in detail. This includes a discussion on critical
sections, including their interactions with Sprite signals. The interaction of asyn-
chronous events and blocked Receive, the most complex part of the mailbox im-
plementation, is then presented. This is followed by a complete description of the
algorithm for Send and Recetve.

8.15 Critical Sections

Send and Receive are coded as critical sections, within which Sprite signals are
disabled. This section describes how asynchronous events are checked (and possibly
handled) before and after a critical section.

SelfLwpPtr is a pointer to the 1lwp entering a critical section
Disable Sprite signals
SelfLwpPtr->NoInterrupt = TRUE
[Code for Send or Receive]
SelfLwpPtr->NoInterrupt = FALSE
Enable Sprite signals

if (SelfLwpPtr->KillFlag)
Kill self

if (SelfLwpPtr->SuspendFlag)
Suspend self

if (SelfLwpPtr->SignalFlag)
Process enabled signal objects in SigObj_MboxPtr

return

8.16 Asynchronous Interactions and Blocked Receive

Receive is atomic unless the lwp blocks because all the mailboxes are empty. This
is implemented as follows:

e Each lwp has a special mailbox Async MboxPtr. This mailbox is added to
the end of each mailbox sequence for receive.
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o If the receive does not block (mail is found), the receive is atomic, and adding
Async MboxPtr to the mailbox sequence does not make any difference.

e If the receive does block because all the mailboxes are empty, the blocked
receive may be broken by an asynchronous action. To do so, a lwp trying to
Kill, Suspend or Signal the blocked lwp does the following;

1. Set KillFlag or SuspendFlag of target lwp for Kill or Suspend.

ko

Send a special message to the SigObj MboxPtr of the target lwp for
Signal. Note that the target lwp is not receiving from this mailbox.

Send a special message to the Async_MboxPtr of blocked receiver lwp.
This wakes up the blocked receiver and informs it about the asynchronous
operation.

Set the SignalFlag of the target lwp for Signal.

5. For Kill or Suspend, the calling lwp blocks until the operation has com-

pleted, i.e. the target lwp enters Suspended-State or Dead-State.

. Upon wakeup (after receiving mail), the target (receiver) lwp checks if

the message came from its Async_ MboxPtr. If so, it checks the message
to see which asynchronous operation it should handle.

Target lwp checks KillFlag or SuspendFlag to verify. (See race conditions
in Section 8.19.)

For Suspend, the canceled Receive is re-executed when the lwp is re-
sumed.

For Signal, the canceled Receive is re-executed when the lwp has handled
all the signal objects of enabled signals.

A Receive that has been canceled by an asynchronous operation uses the C
library routines _setjmp and _longjmp to re-execute the Receive. The code is as

follows:

SelfLwpPtr is a pointer to the receiver lwp

Mail_Receive_Atomic(MboxSeqPtr, MesgPtrPtr, FromMboxPtrPtr)

Saved_JmpEnv and Value are local variables

/* Save setjmp environment into local variable */
Saved _JmpEnv = SelfLwpPtr->JmpEnv

Retry:

if ((Value = _setjmp(SelfLwpPtr->JmpEnv) == 0)
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Enter critical section

Mail_Receive(MboxSeqPtr, MesgPtrPtr, FromMboxPtrPtr)

Exit critical section

}

else

{
goto Retry

by

/* Restore setjmp enviromment from local variable */
SelfLwpPtr->JmpEnv = Saved_JmpEnv

return

8.17 Complete Algorithm for Send and Receive

This section presents the algorithms for Send and Receive in pseudo-code form. The
code for critical sections, which surrounds the code for Send or Receive, is presented

separately in Section 8.15.

Initial values of Semaphores

MboxPtr->Mbox_SemaPtr 1

WaitPrcsPtr->Sender_SemaPtr 1
WaitPrcsPtr->Mail_SemaPtr 0
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Send

Mail_Send(MboxPtr, MesgPtr)

WaitPrcsPtr, SavedMboxSeqPtr and XMboxPtr are local variables

while (TRUE)

{

P(MboxPtr->SemaPtr)
if there is no waiting (receiver) lwp in MboxPtr->PrcsQPtr

{

}

else

{

Enqueue MesgPtr in MboxPtr->MesgQPtr

V(MboxPtr->Mbox_SemaPtr)

return

/* This does NOT dequeue WaitPrcsPtr */
WaitPresPtr = First (MboxPtr->PrcsQPtr)

/* Non_Blocking to prevent deadlock */
if (! P_Non_Blocking(WaitPrcsPtr->Sender_SemaPtr) )

{
V(WaitPrcsPtr->Sender_SemaPtr)

/* This is necessary if server processes are not
time-sliced

*/

Voluntary context switch

continue

/* Race with another sender: WaitPrcsPtr is blocked on
2 or more mboxes

*/

if (WaitPrcsPtr->MboxSeqPtr == NULLP(MboxSeqType))

{
V(WaitPrcsPtr->Sender_SemaPtr)

/* Unlock MboxPtr so that the other sender can
dequeue WaitPrcsPtr from MboxPtr

*/
V(MboxPtr->Mbox_SemaPtr)
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/* This is necessary if server processes are not
time-sliced

*/
Voluntary context switch
continue

3

else

{

Dequeue WaitPrcsPtr from MboxPtr->PrcsQPtr
WaitPrcsPtr->From_MboxPtr = MboxPtr
WaitPrcsPtr->Mail_Drop = MesgPtr
SavedMboxSeqPtr = WaitPrcsPtr->MboxSeqPtr

WaitPrcsPtr->MboxSeqPtr = NULLP(MboxSeqPtr)

/* Only after setting WaitPrcsPtr->MboxSeqPtr
to NULL

*/

V(WaitPrcsPtr->Sender_SemaPtr)

/* Unlock MboxPtr so that only 1 mbox is locked
at a time to prevent deadlocks

*/

V(MboxPtr->Mbox_SemaPtr)

/* Sender dequeues receiver from all other mailboxes */
for each XMboxPtr in SavedMboxSeqPtr do

{
if (XMboxPtr != MboxPtr)
{
P(XMboxPtr->Mbox_SemaPtr)
Dequeue WaitPrcsPtr from XMboxPtr->PrcsQPtr
V(XMboxPtr->Mbox_SemaPtr)
)y
b

/* This must come after WaitPrcsPtr is dequeued from
all mailboxes in SavedMboxSeqPtr, or else WaitPrcsPtr
may start another receive, setting its MboxSeqPtr,
so that another sender will dequeue it from the
mailbox before the above code (loop) does so.



V(WaitPrcsPtr->Mail_SemaPtr)

return
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Receive

RecLwpPtr is a pointer to the receiver 1lwp

Mail_Receive(MboxSeqPtr, MesgPtrPtr, FromMboxPtrPtr)

EmptyMboxPtr, EmptyMboxSeqPtr and MboxPtr are local variables
P(RecLwpPtr->Sender_SemaPtr)

/% See if this is a retry after a canceled receive */
if (LastElt(MboxSeqPtr) '= RecLwpPtr->Async_MboxPtr)
add RecLwpPtr->Async_MboxPtr to tail of MboxSeqPtr

RecLwpPtr->MboxSeqPtr = MboxSeqPtr
EmptyMboxSeqPtr = empty mailbox sequence

for each MboxPtr in MboxSeqPtr do

{
P(MboxPtr->Mbox_SemaPtr)
if there is message in MboxPtr->MesgQPtr
{
*MesgPtrPtr = first message dequeued from
MboxPtr->MesgQPtr
*FromMboxPtrPtr = MboxPtr

/% Before cleanup loop to prevent deadlocks */
V(MboxPtr->Mbox_SemaPtr)

for each EmptyMboxPtr in EmptyMboxSeqPtr

{
P(EmptyMboxPtr->Mbox_SemaPtr)
Dequeue RecLwpPtr from EmptyMboxPtr->PrcsQPtr
V(EmptyMboxPtr->Mbox_SemaPtr)

b

RecLwpPtr->MboxSeqPtr = NULLP(MboxSeqPtx)
V(RecLwpPtr->Sender_SemaPtr)

if ( (*FromMboxPtrPtr) == RecLwpPtr->Async_MboxPtr )

{
switch ((*MesgPtrPtr)->MesgClass)

{



)

else

{

case Kill _Mesg:
if (RecLwpPtr->KillFlag)

{

Kill self
}
break;

case Suspend_Mesg:
Exit from critical section
if (RecLwpPtr->SuspendFlag)
{
Suspend self

}

/* RecLwpPtr being Resumed */

/* Redo receive by jumping back to
Mail_Receive_Atomic*/

_longjmp(RecLwpPtr->JmpEnv)

break;

case Signal_Mesg:
Exit from critical section
Handle signal objects in
RecLwpPtr->Siglbj_MboxPtr

/* Redo receive by jumping back to
Mail_Receive_Atomic*/
_longjmp(RecLwpPtr~>JmpEnv)

break;
}
}
else
{
return
}

Enqueue RecLwpPtr in MboxPtr->PrcsQPtr
Add MboxPtr to EmptyMboxSeqPtr
V(MboxPtr->Mbox_SemaPtr)
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)

/* By now all the mailboxes in MboxSeqPtr are found
to be empty

*/

V(RecLwpPtr->Sender_SemaPtr)

/* A sender lwp may get in at this point, but this does not
create a problem since receiver will bolck on Mail_SemaPtr

*/
P(RecLwpPtr->Mail_SemaPtr)

/* Mail has been delivered to RecLwpPtr when it wakes up */

*MesgPtrPtr
*FromMboxPtrPtr

RecLwpPtr->Mail _Drop
RecLwpPtr->From_MboxPtr

RecLwpPtr->Mail_Drop = NULLP(MesgType)
RecLwpPtr->From_MboxPtr NULLP(MboxType)

[t}

if ( (#FromMboxPtrPtr) == RecLwpPtr->Async_MboxPtr )
{
switch ((*MesgPtrPtr)->MesgClass)
{ :
case Kill_Mesg:
if (RecLwpPtr->KillFlag)

{

Kill self
}
break;

case Suspend_Mesg:
Exit from critical section
if (RecLwpPtr->SuspendFlag)
{
Suspend self
3

/* RecLuwpPtr being Resumed */
/* Redo receive by jumping back to
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Mail_Receive_Atomic*/
_longjmp(RecLwpPtr->JImpEnv)
break;

case Signal_Mesg:
Exit from critical section

Handle signal objects in
RecLwpPtr->Sig0bj_MboxPtr

/* Redo receive by jumping back to
Mail_Receive_Atomic*/

_longjmp(RecLwpPtr->JImpEnv)

break;

return



8.18 Design Decisions

¢ The Asynchronous module 1s implemented on top of the Mailbox module. The
implementation is highly portable; it does not contain any machine-dependent
code. A machine-dependent implementation of the Asynchronous module may
be more efficient, but much more complex. This can only be justified if the
asynchronous operations are found to be used heavily.

e Send and Receive are coded as critical sections to simplify the implementation.
In the typical case a Receive involves only a small number of mailboxes. Each
mailbox in the sequence is only locked for a short, finite duration. Since
the time spent by a lwp in a critical section is typically short, the effect of
an asynchronous action may be delayed until the target lwp is no longer in
the critical section. This includes the case when the target lwp blocks after
discovering that all mailboxes are empty. In the worst case, however, this
implementation may take an arbitrary amount of time for an asynchronous
operation to take effect. (This happens when the target lwp is trying to gain
access to a mailbox being locked by another lwp.)

o Sprite signals are disabled within critical sections and sections of code locking
Schmon. This is done because Sprite system calls, which are used to en-
able and disable Sprite signals, are relatively inexpensive. This simplifies the
implementation considerably, at a small cost to efficiency.

e When a blocked Receive is awaken by an asynchronous operation, the C library
routines _setjmp and _longjmp are used to execute a non-local exit. To make
this scheme recursive, the (previous) _setjmp environmemt must be saved in
a local variable (on the stack) before Receive is called, and restored if the
Receive completes normally. On a SPUR workstation, the large number of
hardware registers on a processor that must be saved by _setymp and Jongymp
make this implementation rather expensive. An alternative way of handling
canceled Receive operations has to be developed.

8.19 Race Conditions

Here are some of the race conditions that have been detected and corrected:

e A Sprite signal may be delivered to a server process that is no longer running
the target lwp for which the Sprite signal 1s intended. When a Sprite signal
arrives at a server process, the Sprite signal handler checks if it is executing a
lwp. If so, the KillFlag, SuspendFlag or SignalFlag of the lwp are examined
as appropriate. If the proper flag is not set, the Sprite signal handler simply
returns.
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o A special message (Suspend Mesg or Signal Mesg) is sent to the Async.MboxPtr
of a target lwp as part of a Suspend or Signal. For Suspend, the Sus-
pendFlag of the target lwp is set before the Suspend Message 1s sent to the
Async MboxPtr of the target lwp. For Signal, the signal object is sent to
the SigObj MboxPtr of the target lwp before the Signal Mesg is sent to the
Async MboxPtr of the target lwp.

By the time the special message (Suspend.Mesg or Signal Mesg) is received
from its Async MboxPtr (in the course of a receive), the lwp may have already
processed the corresponding Suspend or Signal. To prevent the arrival of
the special message at its Async_MboxPtr from causing the asynchronous
operation from being repeated (erroneously), the lwp checks its SuspendFlag
(for Suspend Mesg) or SigObjMboxPtr.

ot
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9

Sprite Features Used

This section describes the features of the Sprite operating system used by the 1m-
plementation. The system can be ported easily to another operating system that
supports multiple processes in a shared address space.

Proc (proc.h): Proc_Fork, Proc.Detach, Proc_Wait, Proc_Exit
User-level processes in a shared address space

Monitor (syncMonitor.h): LOCK MONITOR, UNLOCKMONITOR,
Sync_GetLock, Sync_Unlock, Sync_Wait, Sync Broadcast, Sync_SlowVait
Mesa-style monitors and conditions

Vm: Vm_CreateVA, Vm_DestroyVA, Vm_PageSize
Create and destroy virtual memory for a process

Clock (time.h): Sync_WaitTime
Interval timer

Signal (sig.h): SigSend, Sig_HoldMask, Sig_SetAction
Asynchronous signals, disable and enable signals, signal handlers

C library routines:

— Input output (io.h): o PrintStream, Io Flush
— String (string.h): String Length, String_Copy
— Memory allocation (mem.h): Mem_Alloc, Mem Free

— Non-local exit (setjmp.h): setjmp, longjmp



10 Implementation Status

This section describes the major problems that must be solved before a multipro-
cessing SPUR Lisp system will be available on the SPUR workstation:

¢ C/Lisp interface: memory allocation in C routines and garbage collection.

¢ SPUR port: machine-dependent code.

e Lisp system integration: adapting the uniprocessing SPUR Lisp system for
multiprocessing.

11 Known Problems
e Signal handlers can only have a maximum of 4 (optional) arguments.

e The Async_MboxPtr mailbox of a receiver lwp is added to the end of the
mailbox sequence. This mailbox should be removed from the mailbox sequence

after the Receive.



12 Summary

We described an implementation of Multiprocessing SPUR Lisp under the Sprite
operating system on Sun workstations. We examined the major parts of the sys-
tem, including the Lightweight Process Scheduler, the Synchronization module, the
Mailbox module, the Future module, and the Asynchronous module.

Our aim was to develop a system that was simple, easy to port to a differ-
ent hardware architecture, and reasonably efficient for frequently-used operations.
Simplicity was achieved by optimizing for frequently-used operations, and by imple-
menting infrequent operations using existing primitives. The implementation strat-
egy was to construct a simple but working prototype, measure its performance, and
then optimize its performance for the frequently used operations. As lwp creation
and mailbox operations are assumed to be used much more frequently than asyn-
chronous operations, the Asynchronous module was implemented in a completely
machine-independent manner using the Mailbox module (Section 8). As the usage
pattern of futures has not been established, the Future module was also imple-
mented using the Mailbox module (Section 7). This strategy greatly reduces the
number of low-level primitives required in the implementation.

Since SPUR Lisp processes are expected to be used heavily, they are imple-
mented as lightweight processes and not as Sprite processes. This reduces the
overhead of Lisp process creation and synchronization (Section 3).

Lwp scheduling is performed in FIFO order, and the lwp scheduler does not
distinguish between lwps created by the user (using Make-process) and lwps created
by the system (when Send-after-delay, Future or Delay is invoked). More studies on
actual usage of these features will be needed to determine if a more sophisticated
scheduling strategy should be used (Sections 3.1 and 7.3).

Portability across architectures is important because the system has been de-
veloped on Sun-3 workstations running the Sprite operating system, and will be
ported to a multiprocessor SPUR workstation running Sprite when the hardware
becomes available. To facilitate the SPUR port, the amount of machine-dependent
code has been kept to a minimum. Machine-dependent routines are (only) used to
allocate and access the process control blocks (saved hardware state) and runtime
stacks of lwps. It is estimated that the SPUR port can be accomplished in a matter
of days.

Following the above principles, a reasonably clean implementation of the mul-
tiprocessing features of SPUR Lisp has been developed in spite of the complexity
introduced by the asynchronous operations (in all parts of the system). The effort
to improve the performance of the system is described in Appendix F.
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A MP Lisp Constructs and C Interface

In this section we list the C procedural interface that implements the multiprocess-
ing SPUR Lisp extensions. *

A.1 Process

e make-process closure &optional process-name [Function]

Sch-New-Lwp(FnPtr, StringName)
FnPtr: entry point of closure
StringName: process-name

e processp object [Function]

(No C interface. This is done by checking the type of object.)

e process-state process [Function]

Prcs-External-State(PresPtr)
PrcsPtr: process

A.2 Mailbox

e make-mailbox &optional mailboz-name [Function]

Mbox-New(StringName)
StringName: mailboz-name

e mailboxp object (Function]

(No C interface. This is done by checking the type of object.)

e send message mailboz [Function]

Mail-Send-Atomic(MboxPtr, MesgPtr)
MboxPtr: mazlboz
MesgPtr: message

o send-after-delay messege mauboz delay [Function]

4C routine names of the form Foo Bar are formatted as Foo-Bar here.
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DSend-Delay-Send(MboxPtr, MesgPtr, Interval)
MboxPtr: MbozPtr

MesgPtr: message

Interval: delay

o receive mailboz-sequence [Function]

Mail-Receive-Atomic(MboxSeqPtr, MesgP trPtr, FromMboxPtrPtr)
MboxSeqPtr: mailboz-sequence

MesgPtrPtr: message is returned here

FromMboxPtrPtr: mailbox the message was sent to

e mailbox-empty-p mailboz [Function]

Mbox-Empty-P(MboxPtr)
MboxPtr: mailboz

¢ mailbox-message-count mailboz [Function]

Mbox-Message-Count(MboxPtr)
MboxPtr: mailboz

A.3 Asynchronous Interactions

e kill-process process [Function]

Async-Kill-Pres(PresPtr)
PrcsPtr: process

Server-Kill-Sig-Handler(Signal-Number)
~ Signal-Number: (internal)

e suspend-process process [Function]

Async-Suspend-Pres(PresPtr)
PrcsPtr: process

Server-Suspend-Sig-Handler(Signal-Number)
Signal-Number: (internal)

e resume-process process [Function]

Async-Resume-Pres(PresPtr) PresPtr: process
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e signal-process signal process &rest arguments [Function]

Async-Signal-Pres(PresPtr, SignalPtr,SigArgPtr)
PrcsPtr: process

SignalPtr: signal

SigArgPtr: arguments

Server-User-Sig-Handler( Signal-Number)
Signal-Number: (internal)

e with-signal-handler ({(name signal-handler)}¥) {form}* [Special Form]

Hdl-Push-Handler(SignalPtr, HandlerPtr)
SignalPtr: name
HandlerPtr: signal-handler

Hdl-Pop-Handler()
Hdl-Lookup-Handler(SignalPtr)

SignalPtr: name

e enable-signal signal [Function]

EnbSig-Enable-All(SigStackPtr)
SigStackPtr: (internal)

EnbSig-Enable-Sig(SignalPtr)
SignalPtr: signal

EnbSig-Disable-Sig(SignalPtr)
SignalPtr: signal

e *self-process* [Variable]

CUR-PRCS-PTR (PerServerPtr->CurPresPtr)
A.4 Future

e future form [Special Form]
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Fut-Create-Future(FnPtr)
FnPtr: entry point of form

Fut-Touch-Future(FuturePtr)
FuturePtr: (internal, object returned by Fut-Create-Future)

Fut-Compute-Future(FnPtr, FuturePtr)

FuPtr: entry point of form
FuturePtr: (internal, object returned by Fut-Create-Future)

delay form [Special Form]
Fut-Create-Delay(FnPtr)

FnPtr: entry point of form

futurep object [Function]

(No C interface. This is done by checking the type of object.)

delayp object [Function]
(No C interface. This is done by checking the type of object.)

future-eq objI 0bj2 [Function]
(No C interface. This is done by checking the types of objI and 0bj2.)
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B Modules

The partition of the various modules into files is described as follows.

Process Scheduler (Files: Pcb-stack, Prcs, Stack-sun, Presfifo, Switch, Server)

Pcb-sun: Saved hardware registers and stack base of C stack
Pres: Lightweight processes (lwp)
Stack-sun: C stack for lightweight processes

PresFifo: FIFO implementation of lwp queues used by the scheduler,
semaphores and mailboxes. The optimized version is used by the sched-
uler and semaphores, and the unoptimized version is used by mailboxes.

Switch: Lwp scheduler

Server: Server routines and signal handlers

Synchronization (Files: Lock, Schmon, Sema)

Lock: Sprite-style locks (Sync.GetLock, Sync_Unlock) and Mesa-style
monitor routines (Sync.Wait, Sync_Broadcast)

Schmon: Scheduler monitor routines (lock, unlock, wait, broadcast)

Sema: Counting semaphores for lwps

Mailbox (Files: Mesg, Mesgfifo, Mbox, Mboxseq, Mbox2, Dsendfifo, Dsend)

Mesg: Message object

MesgFifo: FIFO of undelivered message objects in a mailbox
Mbox: Mailbox object

MboxSeq: Mailbox sequence

Mbox2: Send and Receive

DSendFifo: FIFO of information about unprocessed invocations of Send-
after-delay

DSend: Send-after-delay

Future (File: Future)

Future: Implementation of future and delay using mailbox routines

Asynchronous Interaction (Files: Sigobj, SigStack, Enbsigfifo, Enbsig, Handler,
Signal, Kill, Suspend)

SigObj: Signal object
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SigStack: Stack keeping track of enabled signals and signal handlers
EnbSigFifo: FIFO of enabled signals

EnbSig: Enabled and disabled signals

Handler: Signal handlers

Signal: Signal

Kill: Kill

Suspend: Suspend and Resume

Clock (File: Clock)

Clock: Sprite interval timer used by Send-after-delay

Machine Dependencies (File: Mach-sun)

Mach: Lwp creation, context switching, test-and-set

Main (Files: Main, Cmdline, Debug, Memhack)

[ 2

Main: Top-level, miscellaneous initialization
Cmdline: Command line options
Debug: Output with monitor lock, error routines

Memhack: Fast version of memory allocator (Mem_Alloc)
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C Size of the Implementation

This section presents the total size of the implementation, as well as the relative
sizes of the various modules. Debugging aids and sanity checks in the code have

not been commented out.

C.1 Source Code Size

Files Lines | Number of files
C source files 11100 30
C header files 1500 32
Assembly language files 300 1
Total 12900 63

Table 1: Source Code Size



C.2 Relative Module Sizes

This section presents the relative sizes of the various modules, measured in lines of

source code.

Module Lines | Relative Size (%)
Lwp Scheduler 2500 22
Synchronization | 1350 11
Mailbox 3000 27
Future 350 3
Asynchronous 2950 26
Clock 50 <1
Main 900 8
Total 11100 100

Table 2: Relative Module Sizes
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D Parameters

The current values of these parameters are in parentheses.

¢ Lwp Stack:

MA X-NUM-STACK Maximum number of lwp stacks (100)

VALID-PAGES-PER-STACK Number of valid operating system pages
in each lwp stack (3)

MAGIC Magic number pushed on top of a lwp stack during a context switch
(0xFEEDBABE)

e SigStack:

MAX-NUM-SIGSTACK Maximum number of signal stacks (100)
VALID-PAGES-PER-SIGSTACK Number of valid operating system pages

in each signal stack (1)
e MemHack:

MEM-HACK-SIZE Total amount of storage that may be allocated by the
fast (simple) memory allocator (0x1000000 bytes)

e Server:

NUM-SERVER-PRCS Number of Sprite server processes (default 1)
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E Storage Allocation

This section presents the size of various objects, and the storage allocated by various
operations. Fields used for debugging have been commented out.

E.1 Object Sizes

In the current implementation a pointer occupies 4 bytes.

Object Bytes
Sync_Lock 8
Sync_Condition 4
PerServerType 16
PcbType 68
PresType 616
SemaType 32
PresFifo 12
MesgType 8
MesgFifo 8
MboxType 68
MboxSeqType 8
DSendInfoType 12
DSendFifo 8
Future 128
EnbSigFifo 8
SigStackType 16
SigObjType 20
jmp._buf 60
link element of Fifo 8

Table 3: Object Sizes
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E.2 Stack Sizes

Pages | Bytes
Sprite Page 1] 8192
Lwp Stack 3+1 | 32768
Signal Stack | 1+1 | 16384

Table 4: Stack Sizes

E.3 Allocation per Operation

This section summarizes the amount of memory allocated dynamically by each
operation. Operations not shown do not allocate memory.

Operation Bytes
Make-process 616
Make-mailbox 68
Send (no blocked receiver) 16
Send (with blocked receiver) 16
Send-after-delay (no blocked receiver) | 1268
Receive (non-empty mailbox) 32
Multiple receive (3rd of 5 non-empty) 48
Kill-process 24
Suspend-process 24
Resume-process 0
Signal-process 52
With-signal-handler 0
Enable-signal 8
Future T44
Delay 128

Table 5: Storage Allocation Per Operation
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F Speed of Operations

This section presents performance numbers for various multiprocessing SPUR Lisp
operations. The current implementation has vast potentials for performance im-
provement. Possible modifications are identified and discussed regarding the poten-
tial performance gain and the ease of change. A ma jor performance tuning effort is
currently under progress, and the performance of the tuned system will be reported
in an upcoming paper [7].

F.1 Measurement Conditions

The measurements are performed on a diskless Sun-3/75 (16.7 MHz MC68020)
workstation with 8 (or 16) MBytes of physical memory running the Sprite operating
system. All debugging code has been commented out. Only the C runtime system
is measured; the C/Lisp interface is not included. The Sun-3 timer has a resolution
of 20 milliseconds.

F.2 Preliminary Performance Numbers

This section presents the performance figures of the implementation. Table 6 shows
the performance of the implementation as described. Table 7 shows the perfor-
mance of the improved implementation in which Sprite signals are not disabled (
Section F.3). Performance of the asynchronous operations have not been measured.
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Operation Time (pus) Trials | Servers | Lwps
Make-process 7200 100 11 1(+1)
Make-mailbox 200 200 1 1
Send (no blocked receiver) 500 200 1 1
Send (with blocked receiver) 1000 100 1] 1+1
Send-after-delay (no blocked receiver) 400 200 1| 1(+1)
Receive (non-empty mailbox) 800 200 1 1
Multiple receive (3rd of 5 non-empty) 1600 200 1 1
Future 7500 100 1| 1(+1)
Delay 350 200 1 1
Create+Touch future (+ Context Switches) 12700 100 1] 1(+1)
Create+Touch delay (+ Context Switches) 12000 100 1| 1(+1)
Enter+Exit Critical Section 300 10000 1 1
Lock+Unlock Schmon 330 10000 1 1
Lock+Unlock Schmon in Critical Section 40 10000 1 1
Create+Run Lwp (+ Context Switches) 10200 100 1] 1(+1)
Setjmp (+save-+restore environment) 77 | 1000000 1 1
MemHack-Alloc(8) 12 10000 1 1

Table 6: Speed of Multiprocessing SPUR Lisp Operations (0ld)



Operation Time (us) Trials | Servers | Lwps
Male-process 6600 600 1] 1(+1)
Make-mailbox 150 10000 1 1
Send (no blocked receiver) 192 10000 1 1
Send (with blocked receiver) 600 700 1 1+1
Send-after-delay (no blocked recciver) 400 200 1| 1(+1)
Receive (non-empty mailbox) 456 10000 1 1
Multiple receive (3rd of 5 non-empty) 1096 5000 1 1
Future 6900 700 1| 1(+1)
Delay 280 1000 1 1
Create+Touch future (+ Context Switches) 9800 1000 1] 1(+1)
Create+Touch delay (+ Context Switches) 9800 1000 1| 1(+1)
Enter+Exit Critical Section 16 10000 1 1
Lock+Unlock Schmon 38 10000 1 1
Lock+Unlock Schmon in Critical Section 36 10000 1 1
Create+Run Lwp (+ Context Switches) 7000 400 1| 1(+1)
Setjmp (+save+restore environment) 77 | 1000000 1 1
MemHack-Alloc(8) 12 10000 1 1

Table 7: Speed of Multiprocessing SPUR Lisp Operations (New)
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F.3 Performance Tuning

As discussed in Section 12, the current implementation is optimized for portability
and simplicity of design at the price of some performance penalty. This section
identifies the main candidates for performance improvement, and estimates the
difficulty involved in implementing each change. The changes are chosen to optimize
the performance of lwp creation and mailbox operations. No significant effort has
been made to identify the performance bottlenecks of the Asynchronous module.

The following items are ranked in decreasing order of the potential performance
improvement and the ease of adopting the change.

Not Disable Sprite Signals The synchronous operations (lwp creation and mail-
box operations) are expensive because Sprite signals, which are used to imple-
ment asynchronous operations, are disabled before a lwp locks the lwp sched-
uler monitor Schumon or enters a critical section. As Sprite signals are disabled
and re-enabled using Sprite system calls, the time required to complete a syn-
chronous operation is increased by the system call overhead significantly. (See
Section 8.3.) Table 7 shows the performance of the system after adopting this
change.

Pre-Allocation of Objects Lwp creation is slow because of the time spent allo-
cating and initializing the large number of fields and objects associated with
a lwp object. If free lists of initialized lwp objects or objects associated with
a lwp object (especially semaplores) are maintained, lwp creation can be
speeded up significantly without much effort.

Context Switching Currently two context switches are required to switch from
one lwp to another: one to switch from the lwp to the server process, and
one to switch from the server process to the new lwp. This simplifies the
lwp scheduler significantly at a high performance penalty. On the SPUR
workstation, this double context switching will lead to even more performance
degradation because of the large number of hardware registers on a processor
that must be saved and restored. The lwp scheduler should be modified to
switch from one lwp to another directly when there are runnable lwps, and
only switch to a server process when no runnable lwp exists. (See Section
3.3)

Reduce Size of Lwp Object Lwp creation is expensive because a lot of time is
spent initializing the large number of fields of a lwp object. The size of a lwp
object may be reduced by merging some of the special semaphores used by the
lwp scheduler to switch out a lwp. This change should be relatively simple to
implement, but would complicate the lwp scheduler moderately. (See Section
3.7)



Future Module The Future module is implemented using the Mailbox module.
If futures are found to be used heavily, the Future module should be re-
implemented using lower level primitives. (More experience with the actual
usage of the multiprocessing SPUR Lisp features in large programs are nec-
essary.) (See Section 7.2.)

Asynchronous Module The Asynchronous module 1s implemented in a machine-
independent way using the Mailbox module and Sprite signals. If the perfor-
mance of asynchronous operations is important, the module should be re-
implemented using lower level primitives (possibly in a machine-dependent
way). This modification is expected to be very difficult. (See Section 8.)

Send-after-delay Module The current implementation of Send-after-delay forks
a Sprite process for each call to Send-after-delay. If this feature is used heav-
ily, it should be re-implemented so that no Sprite process is forked for each
call. This can be done if the Send-after-delay module maintains some form of
internal clock. (See Section 6.2.)

Receive and Asynchronous Operations Receive uses the C library routine Jongymp
to perform a non-local exit if a blocked receiver lwp is awaken by an asyn-
chronous operation. To make this scheme recursive, the state saved by (a
previous) _setymp is copied into a local variable before a Receive, and is re-
stored from the local variable if the Receive completes normally. On a SPUR
workstation, the large number of hardware registers on a processor that must
be saved and restored by _setjmp and longjmp make this implementation
rather expensive. An alternative way of handling Receive operations that are
awaken by asynchronous operations has to be developed. (See Section 8.16.)
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