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ABSTRACT

Datakit is a highly modular virtual-circuit switch that is designed to act as a com-
ponent of a universal data transport system. The network architecture is struc-
tured to provide efficient data transmission in both wide-area and local-area
environments. AT&T Bell Laboratories has established a nation-wide Datakit
research network, called XUNET, to study Datakit performance in the wide-area
context. Our study utilizes this network to characterize the performance of
remote executions on UNIX hosts.

We designed a number of user-level and network-level tests to identify and
characterize the host and network delay factors that contribute to remote com-
mand execution delay, as seen by the user. This delay is composed of call-
processing delays within the network nodes during call setup, processing time at
the destination host, and call-processing delays within the network nodes during
call teardown. We found that mean call-processing delay during both call setup
and call teardown is roughly linear with the node count of the virtual-circuit path
that connects the source and destination hosts. The mean call setup delay is 0.30
seconds per node, while the mean call teardown delay is 0.15 seconds per node.

We determined that the delay encountered at the remote host is composed of (1)
the processing time of a UNIX server process, which handles Datakit call
requests on XUNET hosts, and (2) the execution time of one or more processes
created by the server to execute the command(s) specified for remote execution.
In general, these host delays are more difficult to quantify than the network
delays because host load fluctuations during testing tend to introduce unpredict-
able distortions in the results.

1 This work was sponsored in part by AT&T Bell Laboratories and in part by the Defense Advanced Research Projects
Agency (DoD), Arpa Order No. 4871, monitored by Space and Naval Warfare Systems Command under Contract
N00039-84-C-0089. The views and conclusions contained in this document are those of the author, and should not be in-
terpreted as representing official policies, either expressed or implied, of the Department of Defense or of the U.S. Govem-
ment.

+ UNIX is a trademark of AT&T Bell Laboratories



1. Introduction

Since the introduction of data networks, their use has grown at a phenomenal rate. The tremen-
dous expansion of the ARPA Internet from less than ten hosts in 1970 to its present configuration
consisting of hundreds of networks and thousands of hosts is just one example of this growth,
Large networks can now be found in the financial, academic, commercial, and military environ-
ments, as well as in the original research environment. Primarily, the desire to share expensive
computing resources to increase their effective utilization has fueled this growth.

Computer systems research has increasingly focused on techniques to improve utilization of dis-
tributed computing resources. Most notably, investigations are ongoing into the techniques of
load balancing (LB) and distributed operating systems (DOS), which perform job allocation in a
distributed system with the goal of maximizing the performance and the overall utilization of the
system resources.

To effectively design a LB/DOS, one must consider the environment in which the system will be
installed. For example, some LB/DOS design decisions can be influenced by the performance
characteristics of the underlying data network on which the system will be implemented. One of
the functions of a LB/DOS is to determine when the performance gains of migrating a job to
another processor outweigh the performance losses caused by the overhead to perform the migra-
tion. Since job migration usually involves message passing between processors on a data net-
work, the performance limitations of the network can be a significant factor in the overall job
migration overhead.

In the case of a virtual circuit network, such as AT&T’s Datakit network, the latency experienced
by job migration messages may (depending on the design of the particular LB/DOS) include call
processing time. Therefore, knowledge of the call processing characteristics of a candidate net-
work for LB/DOS can be beneficial to the designers of such systems. For similar reasons, these
characteristics can have implications in the design of a large number of other distributed applica-
tions, both at the user and system level.

To provide the designers of such applications with a characterization of Datakit call processing
performance, we have implemented a number of user- and network-level tests on an experimental
nation-wide Datakit network. This network, known as XUNET, connects a number of Digital
Equipment Corp. (DEC) VAX hosts running the UNIX operating system.

Our initial approach was to measure remote execution delay across various segments of XUNET
at the user level (as perceived by a user of the remote execution facility). We assumed that the
results of this test would provide valuable insight into Datakit call processing performance; we
also expected that these results might suggest additional tests that would prove beneficial in
further characterizing call processing performance. To implement these initial measurements, we
instrumented the UNIX command rx, which is run at a source host whenever a remote execution
is to be performed.

We initially expected the results of our research to show that the user-level delay for a remote
execution across a Datakit network is dependent on the following factors:

1)  Number of nodes in the virtual-circuit path.

2)  Destination host configuration (hardware and software).

3) CPU utilization of command executed.

4)  Physical distance between source and destination host along the virtual-circuit path.

We list these delay factors from most to least significant, in terms of the effect we expected each
to have on the user-level remote execution delay. We expected the node count to be the most
significant factor, with the other factors contributing to a lesser extent.
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The results of the initial user-level tests were not consistent with our expectations. To further
investigate, we performed three additional tests, one of which included the addition of timestamp-
ing code directly within the Datakit network controller, Radian, and another of which included
the insertion of timestamping code within a UNIX server process that handles Datakit call
requests at the destination host. This document describes the motivation, methodology and
results of each of these tests.

The remainder of this document is organized as follows: Section 2 describes the configuration of
the experimental network (including the attached hosts) at the time the tests were performed dur-
ing the summer of 1988. Sections 3 through 6 describe the methodology and the results of each
remote execution test. Section 3 describes the measurement of typical user delays. Section 4
describes the measurement of delays as a function of the virtual-circuit path length. We present
Radian call-processing delays in Section 5. In Section 6, we describe our measurements of the
delays encountered at the destination host. Finally, in Section 7 we summarize our findings.

Appendix A contains a description of the operating principles and implementation of Radian, the
Datakit controller. A basic understanding of Radian operation is helpful in interpreting the
results of the Radian call processing measurements, presented in Section 5. For those readers
desiring a more detailed knowledge of Radian operation, Appendix B contains a detailed chronol-
ogy of the Radian processing that occurs during a single virtual circuit setup and takedown.
Finally, Appendix C contains selected measurement results in tabular form.

2. The Experimental Environment - XUNET

XUNET (the eXperimental University NETwork) is a wide-area virtual circuit network that util-
izes Datakit technology. We shall describe the origin and configuration of the XUNET, while
only briefly mentioning the basic Datakit operating principles. For a complete discussion of these
principles, see [5].

Datakit is designed to perform efficient data transmission for a wide variety of traffic types in
both the wide- and local-area environments. For example, Datakit can ideally satisfy the high-
bandwidth requirements of bulk file transfers, while also meeting maximum-delay restrictions
imposed for interactive traffic.

Each Datakit node consists of a cabinet that houses a shared backplane through which all attached
devices communicate. Devices interface to the backplane through interface modules that plug
into the cabinet and perform buffering and backplane contention procedures. Utilizing this
configuration, each node performs switching and multiplexing on user data being carried on vir-
tual circuits. In addition, a network controller at each node performs call processing procedures.
In the case of a wide-area Datakit network, such as XUNET, one or more Datakit nodes are usu-
ally located at each user site. User data is carried between distant user sites through multiplexed
T1 transmission lines at the rate of 1.3Mby/s.

Since the original Datakit design, a large number of Datakit networks have been installed
throughout the country. Currently, AT&T Bell Laboratories uses a Datakit network to meet the
majority of its everyday data communication needs between Bell Laboratories locations in
several different states. In addition, Datakit networks have been installed at numerous other com-
mercial and govemment organizations. Some of these networks provide an installed base on
which ongoing Datakit performance testing can take place with a minimum of inconvenience and
expense.

However, the vast majority of these Datakit installations are arranged in the local- or medium-
area configuration. Although changes and enhancements have been made to the original Datakit
design as a result of the experiences gained from these Datakit implementations, the Datakit
design has not been extensively tested in the wide-area context.
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The XUNET has been established by Bell Laboratories in an effort to accumulate experience
using Datakit in the wide-area context and to provide a facility for wide-area Datakit network
testing. The network is composed of four user sites; three are located at major universities across
the country, and the fourth is located at the Bell Laboratories facility in Murray Hill, NJ (see Fig-
ure 2-1).
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FIGURE 2-1. XUNET TOPOLOGY

In Figure 2-1, each XUNET Datakit node is represented as a circle. Two different versions of
Datakit nodes are used - a Datakit 2000, and a Datakit 500. The two versions differ only in the
total number of attached communicating devices that each can accommodate, the Datakit 2000
having the larger capacity. The nodes at Chicago, IL and Oakland, CA are located in AT&T cen-
tral offices. .

The XUNET hosts utilized in our research are represented as boxes in Figure 2-1. Relevant
configuration information for each host is shown in Table 2-1. Note that all hosts are running the
standard 4.3 BSD UNIX operating system except the Wisconsin host, pokey, which is running a
version of 4.3 BSD UNIX that includes a Network File System (NFS) implementation [12].

3. Measuring Typical User Delays



TABLE 2-1. XUNET HOST CONFIGURATIONS

Name Location Model Operating System Interface
vangogh UCB-evans VAX 8600 4.3 BSD UNIX KMC-11B
monet UCB-evans | VAX 11/750 4.3 BSD UNIX KMC-11B
shark Uofl VAX 11/780 4.3 BSD UNIX KMC-11B
pokey UofW VAX 11/750 | 43 BSD UNIX + NFS | KMC-11B
fishonaplatter ATT-BL VAX 11/750 4.3 BSD UNIX KMC-11B

3.1. Methodology

This test was designed to provide a baseline of typical user delays for remote executions over
various segments of the XUNET. We expected that the results would assist us in designing
further tests to characterize remote executions in the more general wide-area context. Using a
version of the UNIX remote execution command rx that includes timestamping code, we meas-
ured the user delay to perform remote executions of a number of common UNIX commands on
four destination hosts, each located at a different XUNET user site. A single XUNET host,
located at UC Berkeley, acted as the source machine in all test cases.

A number of network and host-related procedures contribute to the user-level delay that we meas-
ured using the timestamping rx code. After taking the first timestamp, the rx process initiates a
virtual circuit setup procedure between the source and destination host. If the call is successfully
established, a UNIX server process on the destination host performs various security checks on
the newly established call. If the call passes these security checks, the server process sends a
"proceed" message to the source host and creates a command interpreter process (shell) to handle
command execution at the destination host.

When the rx process on the source host receives the "proceed" message, it transmits the
command(s) to be remotely executed over the virtual circuit to the destination host. The com-
mand interpreter process at the destination, previously created by the server, then initiates com-
mand execution (which may include the creation of other processes to perform the actual execu-
tion of each command). All command output is transmitted back to the source host. When com-
mand execution is complete, the destination host initiates a procedure to close the connection. At
the completion of call takedown, the rx process at the source host is notified, and the final times-
tamp is taken within the rx process. The delay is calculated based on the values of the two times-
tamps, and the result is stored in a log file for later processing. The timestamps within the rx
code are implemented using the UNIX system call, gettimeofday, which provides an accuracy of
+1 millisecond (ms) on the VAX 8600.

To perform one test trial, consisting of timestamped remote executions of twenty-nine different
UNIX commands on four different destination hosts, we designed a shell script to execute on the
source host. Shell script operation is defined using pseudo-code in Figure 3-1.

Our testing was performed in an environment that included the existence of extraneous load on
the destination machines. Although some of the hosts were in general lightly utilized (namely,
fishonaplatter, vangogh, and shark), others acted as departmental machines which were accessed
daily by a large user population. In addition, we observed that some destination machines experi-
enced significant load fluctuations as a result of the background execution of certain system
processes. For instance, the XUNET host pokey started a number of system processes related to
its network file system each night. During execution of these processes, remote execution delay
increased noticeably when using this host as the destination.



FIGURE 3-1. SHELL SCRIPT USED IN TESTING

for (destination host 1 to destination host 4) do
begin
record destination host load indices

for (typical unix command 1 to typical unix command 29) do
begin
timestamp #1
perform remote execution
timestamp #2
end

record destination host load indices
end

Although we were not authorized to restrict user access to the involved hosts during testing, we
took a number of other precautions to minimize the effects of extraneous host load on our results.
First, all testing was performed during the early moming hours to increase the likelihood that the
hosts would be lightly loaded. In addition, a measure of each destination host’s load was
recorded directly before and after each trial on a particular destination (see Figure 3-1).

These load measurements were recorded in a log file along with the test results for each trial. We
performed a total of sixteen trials to each destination over a period of four nights. We considered
the four trials that had the highest destination host load measurements to be the "outliers" - these
trials were discarded. The load measurements consisted of the average CPU run queue lengths
over the previous 1, 5, and 15 minutes.

The final precaution we took to minimize the effects of unpredictable host load changes was the
use of a very large, lightly loaded machine as the source host. This is a VAX 8600, vangogh,
located at UC Berkeley. We assumed that since vangogh is an order of magnitude faster than the
VAX 750’s and 780’s used as destination machines, and it is consistently lightly loaded, it was
not necessary to monitor the load as frequently as for the destination machines.

Our next decision was to choose a set of UNIX commands that was suitable for remote execution
testing, and would yield the most interesting results. We followed two simple guidelines to
choose the appropriate commands. First, we required that the chosen commands be representative
of those commands that were most frequently executed on general-purpose UNIX systems.
Second, we required that the chosen commands represent a wide variety of CPU and /O usage
characteristics (to maximize the scope of our results).

Although we had access to accounting information on each XUNET host that included a com-
plete log of the most recently executed UNIX commands, we chose to consult the literature to
determine the commands to be used for testing. We believe that the set of commands executed
recently on any XUNET host is not necessarily a good representation of long term command
usage characteristics on general purpose UNIX systems.

Although a number of studies have been performed on the subject ( see [7] and [3] ), we based
our final command selection on a study performed at UC Berkeley in 1985 ona VAX 11/780 run-
ning BSD UNIX [8]. We chose to base our command selection on this study because it provided
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an ordered list of the most frequently executed UNIX commands. Also, the user population on
the host under study was fairly diverse. As such, we believe that the activities on the system at the
time represented a wide cross-section of typical activities that might be found on a "general-
purpose” UNIX system.

To choose the particular UNIX commands from the study to be used for our testing, we began
with the 85 most frequently executed commands (these commands accounted for 88.2% of all
commands executed on the system [8]). We next removed those commands in the list that met
any of the following characteristics:

. not available on all standard BSD UNIX systems

° interactive in nature (no commands such as vi, man, mail, etc.)

° not executable on stand-alone systems (no commands such as ruptime, fip, rlogin, etc.)

e  unusually large execution time!
After removing those commands that fit any of the above characteristics, twenty nine commands
remained that were suitable for testing. We next analyze the remote execution results using these
twenty-nine commands2, shown in Table 3-1.

TABLE 3-1. COMMAND INDEX

No Cmd. Function No. Cmd. Function
1 Is directory listing (8 entries) 16  date current time
2 o change directory 17 w user info
3  echo display argument 18 uptime  system info
4 cat file display (346 Bytes) 19  tail file display (396 Bytes)
5 u list current users 20 In link file
6 finger  userinfo (1 user) 21 rm remove file
7 grep file search (396 Bytes) 22 fgrep file search (396 Bytes)
8 pwd current directory 23 chmod change file permissions
9 mv move a file 24  mkdir  make directory
10 c¢p copy a file 25  rmdir remove directory
11 f user info (all users) 26 sleep process sleep (1 second)
12 who user info 27 du disk space used
13 egrep file search (396 Bytes) 28 wc word count (396 Bytes)
14 SO execute script 29 head file display (346 Bytes)
15 df disk free space

! This requirement is subjective, but necessary since commands with high execution time mask network
performance during remote execution.
2 See [4] for more information about these commands.



3.2. Results

Figure 3-2 depicts the mean remote execution delay as a function of UNIX command for each of
the four destination hosts. The delay values for each host have been connected only to identify
trends. Command index numbers are shown in place of names on the command axis because of
space considerations.

FIGURE 3-2. MEAN REMOTE EXECUTION DELAY (SECONDS)
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As expected, we find that the remote execution delay to any single destination host is dependent
on the particular UNIX command being executed. Delay peaks appear for the UNIX commands:
finger (6), f (11), df (15), and w (17) on all destination hosts.

We contend that the higher delays for these commands are caused by longer execution times at
the remote host, and not by network factors. Closer examination of the function of each of these
commands supports this theory. The w command opens kernel memory and performs numerous
searches to retrieve information conceming the current state of the system. The Sfinger and f com-
mands both open and search a number of system files to retrieve information about users on the
system. Finally, the df command performs a read on the superblock of every file system to
retrieve the number of free disk blocks. Many of these operations are CPU or I/O intensive;
therefore these commands can incur higher execution time than the majority of UNIX commands.

Based on the results shown in Figure 3-2 we also see that the user-level remote execution delay
does not increase linearly with respect to the virtual-circuit path length (in terms of node count).
The destination hosts pokey, shark, and fishonaplatter are each four nodes away from the source
host vangogh. Although the virtual-circuit path length is constant to each of these destination
hosts, our measurements reveal that the mean remote execution delay varies considerably
depending on the virtual-circuit path.
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Although the source and destination hosts are not separated by equal physical distances in each of
the above cases, we believe that the disparities in the propagation delay to each destination host
are not large enough to explain the observed differences in overall user delay to each of these des-
tinations. The disparities in propagation delay are on the order of milliseconds, while the dispari-
ties in user delay can be expressed in terms of seconds.

In Section 6, we show that this disparity is instead caused by host-related factors. One of these
factors is the non-uniform loading of the destination hosts during testing. Despite the precautions
taken to minimize the effects of host load on our results, we are unable to absolutely eliminate
these effects. Another factor causing the disparities in user delay among the four node virtual-
circuit paths, is the fact that each destination host has a different configuration, implying that
command execution time may not be the same on all four hosts, even for the same command.

FIGURE 3-3. STANDARD DEVIATION OF REMOTE EXECUTION DELAY (SECONDS)
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Figure 3-3 shows the standard deviation of the command delay results. The command index is
shown in Table 3-1. We see that the standard deviation of command delays on pokey are larger
than those of any other destination. This is especially true for the long execution time commands
mentioned above. Since pokey was the most heavily loaded destination host, we conclude that
the variance is caused by unpredictable extraneous host load during testing. Load index measure-
ments taken during testing verify this conclusion.

4. Measuring Network Delays
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4.1. Methodology

The results of the user-delay test described in the previous section show that the user delay for
remote executions is composed largely of delays incurred at the remote host as well as delays
incurred within the network. In addition, although we had taken precautions against load fluctua-
tions at the destination host, their effects can still be seen in the high variance of the results.

This test was designed to minimize the effects of the host-related delay factors during remote
execution in order to study the network factors independently. Our approach was to select a sin-
gle UNIX command to be remotely executed in all test cases that would place minimum demands
on the remote CPU and I/O subsystem, thereby making execution time at the remote host a
smaller fraction of the total user delay.

In addition, we increased the number of remote execution trials to fifty for each destination host.
We then analyzed only the minimum measured delay for each destination. We assumed that this
represented the ideal case when the command is executed immediately after arrival at the remote
CPU, thereby reducing the host related delays in our results to a minimum.

To enable further study of the dependence between the number of nodes in the virtual-circuit path
and the user-level delay, logical loops were installed in the Cory, Oakland, Chicago, and New
Jersey XUNET nodes (see Figure 2-1). These loops enabled us to remotely execute commands
from the source host, vangogh, through various virtual-circuit paths consisting of one, three, four,
five, or seven nodes, instead of being restricted to the one or four node path lengths available
from vangogh without using logical loops.

A string of ASCII characters called a "dialstring" specifies a destination device within a Datakit
network. During call establishment, the destination dialstring, provided by the call originator, is
passed to each subsequent node in the virtual-circuit path. Each node routes the call based on the
dialstring information. In the case of a "looped" virtual-circuit path, the node containing the loop
translates the dialstring so that the incoming virtual circuit is routed back to the original node at
which the call request originated.

FIGURE 4-1. SHELL SCRIPT USED IN TESTING

for (virtual-circuit path 1 to virtual-circuit path 8) do
begin
record destination host load indices

for (repetition 1 to repetition 50) do

begin
timestamp #1
perform remote execution
timestamp #2

end

record destination host load indices
end

The shell script to perform this test is shown in Figure 4-1 using pseudo-code. We chose to use
the UNIX command echo in all test cases. Because the echo command is built directly into the
csh command interpreter, a time consuming process creation is avoided when executing the
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command; the csh process performs the command execution directly. Also, since the command
is executed without an argument, minimum command output is generated for transmission back
to the source host. This minimizes the effects of delay factors that may be dependent on the size
of the command output returned to the source host.

4.2. Results

In this section, we first describe the final results of the network delay measurements, then we
briefly discuss two network problems that originally corrupted the results of our first attempts at
these measurements.

FIGURE 4-2. MINIMUM REMOTE EXECUTION TIME VS. VIRTUAL CIRCUIT PATH LENGTH (SECONDS)
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Figure 4-2 illustrates the minimum remote execution delay for each virtual-circuit path. To be
concise, the virtual-circuit paths have been labelled on the graph ordinate with an ID that can be
referenced in Table 4-1.

TABLE 4-1. PATH INDEX

PathID | Node Path
Count
M 1 evans
CL 3 evans - cory - evans
OL 3 evans - oakland - evans
S 4 evans - oakland - chicago - illinois
P 4 evans - oakland - chicago - wisconsin
F 4 evans - oakland - chicago - nj
IL 5 evans - oakland - chicago - oakland - evans
NL 7 evans - oakland - chicago - nj - chicago - oakland - evans

We see from Figure 4-2 that although there is a generally increasing trend in user delay as a func-
tion of path length, not all paths conform to this trend. Most notably, the S path, which is four
nodes long, yields a minimum delay that is smaller than those of the three node paths CL and OL.
In addition, the five-node path, IL, shows only a slight delay increase over paths P and F, which
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are only four nodes in length. However, despite these inconsistencies, the results are close to our
original expectations of a linear dependence between user delay and virtual-circuit path length.

We should explain that the reason we expect to see a user-delay characteristic that is linear with
the node count of the virtual-circuit path is that each node in the path must perform a similar pro-
cedure to set up the virtual circuit. This procedure includes call routing, channel allocation, win-
dow size negotiation, and a modification to switch memory to establish the virtual circuit. (We
explain this procedure in great detail in Appendix B). Since the procedure is the same for each
node, we assume that each node would incur the same average delay.

With regard to our efforts to minimize the standard deviation of the results through higher repeti-
tion counts and the use of a single low CPU utilization command, we have been successful only
for the P path, which had the highest standard deviation of all paths in the typical user delays test.
We believe that we were successful primarily because the load on pokey was lower during testing
in this case. This reaffirms our previous conclusion that the variance of our results is caused pri-
marily by load fluctuations at the destination host. The minimum, mean, and standard deviation
of the results shown in Figure 4-2 can be found in Appendix C in tabular form.

We next describe two problems that originally occurred during execution of this test. Each prob-
lem caused drastic call processing performance degradations in our original results. The first
problem involves the Radian network controller software that executes on a DEC PDP-11 micro-
computer attached to each Datakit node. The Radian software contains an option to output vary-
ing levels of diagnostic information on the network console during call processing activity. The
diagnostic information is generated on the network controller and output to the network console
by the Radian software. The console is connected to the controller through the Datakit node with
an RS-232 connection at 1200 baud. The Radian controller software places diagnostic messages
destined for the console in an intemnal buffer. The contents of the buffer are emptied to the con-
sole at the rate of 1200 baud.

If a large volume of data is to be transmitted to the console, then the controller must wait until the
buffer at least partially empties before it can write additional diagnostic messages to the buffer.
This process significantly slows call processing since the Radian software cannot resume call pro-
cessing duties until each diagnostic message is entirely written to the buffer. We discovered that
this Radian option had been set on the Oakland Datakit console, which corrupted our original
results for all virtual-circuit paths that contained that node.

The second problem we encountered was caused by electromagnetic interference on a number of
unshielded RS-232 lines that connect terminals to the Evans Datakit node. The Radian network
controller monitors the RS-232 leads on each terminal interface line. Voltage fluctuations on this
lead can be mistakenly interpreted by Radian as various types of call processing messages. In
this case, the interference on these lines loaded the Radian processor so that overall call process-
ing performance through the node was severely degraded.

The measurements made while the console output problem was present are shown in dotted lines
in Figure 4-3. For comparison, the results obtained after all network problems were corrected are
shown in the foreground in solid lines. Results obtained while the terminal interface problem
was present are of the same magnitude.

5. Measuring Radian Call-Processing Delays

5.1. Methodology

This test was created to measure Radian call processing delays directly by using timestamping
code within the Radian network controller software, which runs on a DEC microcomputer
attached to each Datakit node. We hoped to accomplish two goals: (1) to determine if Radian
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FIGURE 4-3. MINIMUM REMOTE EXECUTION TIME (CONSOLE OUTPUT CASE)
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call processing delay during call set up and takedown is constant across all XUNET nodes, and
(2) to arrive at an estimate of this delay.

To implement the timestamping, we performed a minor Radian software modification. This
modification simply consisted of increasing the resolution of a set of timestamps that were
already a part of Radian. To accomplish our goals, we decided it was not necessary to insert
additional timestamping code beyond that which was already included. The resolution was
increased from 1 second to 1/60th of a second (which we round up to 0.02 seconds in our results).

We next present a brief description of the specific timestamp locations within the Radian
software. This description is intended for those readers already acquainted with Radian opera-
tion. Those readers desiring more information about Radian are referred to Appendix A for a
description of the theory and operation. In addition, for a more complete chronology of the
Radian operations (including timestamping) that occur during a virtual circuit session, which
includes call establishment, connect time, and call takedown, see Appendix B.

During the course of a Datakit virtual circuit session, each node in the virtual-circuit path issues
three timestamps. Two of these timestamps occur during the call setup phase, and the final
occurs during call takedown. The first call setup timestamp marks the beginning of the setup pro-
cedure at a particular node. It is issued by the Radian process on that node that first receives a
call setup request message from a communicating device attached to the node. We refer to this as
the "c" (lower-case c¢) timestamp.

The second timestamp occurs when the switch memory on a particular node is written to establish
the call through that node. The event that triggers the write to switch memory depends on
whether the node is connected to a subsequent node in the virtual-circuit path or whether it is
connected directly to the destination host. In the former case, the switch memory is written at the
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same time a Radian process on that node forwards the call setup information to the next node in
the virtual-circuit path. In the latter case, the switch memory is written when a Radian process
transmits a connection request message to the server process on the destination host. In either
case, we refer to this as the "C" (capital C) timestamp.

The final timestamp occurs during call takedown. One of the two parties communicating over the
virtual circuit signals the node to which it is connected that it wishes to teardown the connection.
In the case of a remote execution call, the destination host normally transmits a call teardown
request signal after command execution is completed. A Radian control message indicating the
call takedown is then passed back to the source host through each node in the path. When a
Radian process in each node first receives this message, which enables it to erase the switch
memory entry for that circuit, it issues a "d" timestamp.

To generate these timestamps for our experiment, we executed the same shell script used in the
previous experiment. The UNIX command echo was again used in all test cases. A single execu-
tion of this script on vangogh yielded fifty trials for each of eight different virtual-circuit paths.
However, despite the wide variety of virtual-circuit path lengths available for testing, the scope of
our results was limited by the fact that the Radian software modifications were performed on only
three of the XUNET nodes. Logistical constraints permitted us to modify only the Evans, Cory,
and Illinois XUNET nodes.

5.2. Results

The results of the Evans node Radian timestamping are shown below in Figure 5-1 for the direct
(non-looped) virtual-circuit path cases. The path ID’s can be referenced in Table 4-1. The node
count for each path is shown in parentheses next to each path ID. All Radian call processing
delays are referenced to the initial "c" call request timestamp.

Figure 5-1 shows that, with the exception of the M path, the mean call set up time through the
Evans node is constant at 0.30 seconds for every direct virtual-circuit path through that node (full
results including minimum and standard deviation values are found in Appendix C). The discon-
nect times (d), however, are not the same, even for those paths having identical node counts (see
paths S, P, F in Figure 5-1).

We conjecture two possible causes for this disparity in disconnect times. (1) the remote host com-
mand processing time is not constant over all destination hosts, and/or (2) the call processing
time is not constant among all nodes in XUNET, implying that the delay to establish a complete
virtual circuit (the sum of the delays incurred at each node in the path) is dependent on the partic-
ular path as well as the node count of the path. Similar Radian measurements taken on the Illi-
nois and Cory nodes support the first theory. The mean time to set up a call (call request "c" to
call connect "C") through the Ilinois and Cory nodes was also measured to be 0.30 seconds, an
identical delay to that encountered on the Evans node (except for the results obtained using the M
path, which we will explain shortly using the timestamps taken for the looped virtual circuit
paths).

The results of the Evans node Radian timestamping for the looped virtual circuit path cases are
shown below in Figure 5-2. The time stamp labels ¢, C, and d are subscripted with an "i" or an
"0" to denote whether each stamp refers to the outgoing segment of the virtual circuit (before it
reaches the looping node) or the incoming segment. In all cases, vangogh acted as the source
host, and monet was the destination. Both of these hosts are attached directly to the Evans
Datakit node. As before, the path ID’s are referenced in Table 4-1, and the node count for each
path is shown in parentheses next to the path ID.

The results of Figures 5-1 and 5-2 reveal that all calls through the Evans node can be classified
into one of two categories based on the mean delay to perform the call set up. The first category
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includes all calls established directly to a destination host from the Evans node (the direct-
connected case). We have measured a mean call set up delay of 0.16 seconds for a call of this
type. Examples are the incoming calls on the looped virtual-circuit paths, and the direct call
through the virtual circuit path M. The second category includes those calls that are established
to subsequent nodes in the virtual-circuit path (the forwarding case). We have measured a mean
set up delay of 0.30 seconds for calls of this type. Examples are the outgoing calls for the looped
virtual-circuit paths, and calls through each of the direct paths except M.

Analysis of the Radian call processing procedures for the two cases reveals two reasons for this
apparent delay disparity. First, the call set up procedure in the two cases is inherently different.
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Second, as we shall see in the call set up description that follows, the "C" timestamp for the
direct-connected case occurs before the call set up is complete.

During call set up in both of the above cases, the "c" timestamp occurs directly after the call setup
request message is transmitted via interprocess communication (IPC) from the source to the desti-
nation line process within the Radian controller on the Evans node. The destination line process
in both cases then performs a few simple operations including window-size negotiation for the
link. From this point, the Radian procedure differs depending on which of the above cases
applies.

In the first case, in which the node is directly connected to a destination host, the destination
Radian line process, which is assigned to a logical channel on the host interface, sends a call
request message via IPC to the Radian server line process assigned to the destination host. This
is a low-delay procedure since the message is being transmitted between two line processes that
are both executing in the same microcomputer (which is acting as the controller on the Evans
node). Immediately after the message is transmitted, the destination line process generates the
"C" timestamp, although the call set up is not complete. In order to complete the call, the server
line process must transmit the call request to the destination host. When the message arrives, a
routine executing within the host performs channel and memory allocation and otherwise com-
pletes the connection to the destination host.

In the second case, in which the node is connected to the next node in the virtual-circuit path, the
destination line-process, which is assigned to a logical data channel on a multiplexed trunk, per-
forms a more complex and time-costly procedure before the "C" timestamp is issued. The desti-
nation line process first sends a "start conversation" request to the partner data channel line pro-
cess at the remote end of the trunk. After the conversation request reaches the remote line pro-
cess, it sends a dialtone message back over the trunk to the original destination line process. This
message signifies that the remote process is now listening and ready to receive messages.

Only at this time does the destination line process transmit the dialstring information to the
remote node and generate the "C" timestamp. We see that, since some communication occurs
between nodes during this procedure, additional propagation delay is incurred in this case, rela-
tive to the first case. This delay can be significant in the wide-area context. In addition, extra
line processes are involved in this procedure, possibly further increasing the overall delay.

It is important to note that, although we now understand why the timestamps indicate a delay
disparity, the results are inconclusive about whether the mean call set up delay is different in the
two cases. The reason is that the timestamps for the direct-connected case do not measure the
delay incurred during the entire call setup procedure.

Referring again to the results shown in Figure 5-2, we see that mean call setup delays are constant
for all XUNET nodes in the forwarding configuration. In addition, the variance of these delays is
small - less than 23% of the mean in all test cases. We can now estimate the delays for the other
XUNET nodes simply by analyzing the Radian timestamp results for the looped virtual-circuit
paths through the Evans node.

For example, we see from Figure 5-2 that the mean delay between C, and c; for the IL path case
is 0.94 seconds. We know that call setup occurs through three nodes during this period - first the
Oakland node, then the Chicago node (which contains the loop), and finally back to the Oakland
node. Therefore, the average call setup delay for these three nodes in this case is 0.94/3 or 0.31
seconds per node, which is very consistent with the mean call setup delay of 0.30 seconds meas-
ured for the Evans node in the forwarding configuration. Repeating the same calculations for the
NL path case yields an average call setup delay of 0.28 seconds per node, also consistent with the
results for the other looping paths.
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Similarly, using the delay measured between d; and d, for each looping path, we can determine
the average call teardown delay per node. However, based on the placement of these timestamps
within the Radian code, we see that the calculations will be slightly different in this case. The d;
timestamp occurs directly after the destination line process in the Evans node receives a call take-
down message from the destination host. After the timestamp is recorded, the line process begins
the takedown process, which includes a switch memory modification, and the notification of the
subsequent node in the virtual-circuit path. Therefore, the call teardown time for the Evans node
is included in the observed delay between d; and d,.

Again using the IL path as an example, we see that the observed mean delay between di and d, is
0.60 seconds. This includes the delay to teardown the call through the Evans, Oakland, Chicago,
and Oakland (again) nodes, in that order. Since this measurement includes the teardown time for
four nodes, the average delay is 0.60/4 or 0.15 seconds per node. Similar calculations on the
other looped paths yield average disconnect times of 0.16 seconds for the OL and NL paths, and
0.15 seconds for the CL path.

We make a final observation about the results shown in Figure 5-2. It appears that the network-
related delays that we have measured have, in general, very small variance, and are also very
small in magnitude compared to the delays encountered at the remote host. We find that execu-
tion time of the command echo at the remote host (which is roughly équal to the delay seen
between C: and di) ranges from 2.9 to 3.3 seconds depending on the remote host, while the net-
work delays within each node are an order of magnitude smaller. These large host-related delays,
which often also have large variance, have the potential to make the study of network characteris-
tics very difficult at the user level. In this test, we have taken one approach to avoid this problem
by measuring some of the network delays at the network level. In the next experiment, we take a
different approach by attempting to factor the host-related delays out of our user-level measure-
ments, so that the network delays can be studied independently.

6. Factoring Remote Host Delays from User-Level Remote Execution Delay

6.1. Methodology

This test was designed to measure the various delays encountered at the destination host during
remote executions. We characterize the sources of these delays, and make some observations
about how they are affected by various host configurations and utilization levels. In addition, we
factor the delays encountered at the remote host from the overall remote execution user delay,
thereby enabling us to analyze the network delays independently.

There are two primary sources of delay at the destination host during a remote execution: (1) pro-
cessing time for the UNIX server process, which we describe shortly (we call this "server time"),
and (2) processing time to run the UNIX command(s) that were specified for remote execution
(we call this "command time"). The command time can be further factored into two components,
the time to create the shell on which the command(s) will execute, and the time to actually per-
form command execution.

Depending on the particular UNIX command, command execution may actually be performed by
a separate process that is created by the shell. In this case, command execution time would
include the delay to create this additional process. For our testing, we have chosen to remotely
execute the UNIX command echo in all cases, which is a shell facility. Therefore, command exe-
cution is performed by the shell process itself; no additional processes are necessary.

Our approach was to measure these host-related delays using timestamping code within the UNIX
server process that handles Datakit call requests on XUNET hosts. We next describe the times-
tamped server operation at the destination host. In all cases, the timestamps are implemented
within the server code using the UNIX gettimeofday system call, which provides 1 ms accuracy.
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All Datakit call requests to a particular host are received on one logical channel, known as the
“server channel". In the idle state, the server process listens on the server channel for incoming
call requests. Each request specifies a separate channel, known as a data channel, on which the
call will eventually be established if it passes the security procedure.

When the server process receives a call request, it issues the first of three timestamps. It then per-
forms various security checks on the call request based on access control information stored on
the destination host. If the call request passes, the server process returns a "proceed” message to
the source host over the data channel and initiates creation of the shell on which the specified
commands will execute. At this point, the server process issues the second timestamp. Aside from
further timestamping, the duties of the server process are now complete for this particular call.
The server processing delay is calculated by subtracting the value of the first timestamp from the
second. The resuit is recorded in a UNIX server log file.

The server process resumes listening on the Datakit server channel for subsequent call requests.
After shell creation is completed, the shell executes the echo command. Upon completion, the
shell process sends a signal to the server process before exiting. This triggers the third timestamp
within the server process, from which the command execution time can be calculated by subtract-
ing the value of the second timestamp from the value of the third.

To generate these timestamps for the purposes of our experiment, we executed the same shell
script on vangogh as in the previous two experiments. A single execution of this script yielded
fifty remote executions of the UNIX command echo for each of the eight virtual-circuit paths.

The results of each repetition consist of three delay measurements. In addition to the server and
command delays measured using the server process timestamps, we record the overall user delay
as well, by using timestamps within the rx code at the source host, as was done in the Typical
User Delays Test.

We processed these raw results by matching the overall user delay of each repetition with the
server and command delays for the same repetition. Since the server and command delays are the
primary contributors to the remote host delay, we subtract the sum of these two delays from the
user delay, theoretically leaving the delay caused only by network factors.

6.2. Results

We begin with a characterization of the mean delays encountered at the destination host during a
remote execution. These delays are shown for various destination host configurations in Figure
6-1, and for various host utilization levels in Figure 6-2. We see that, in both cases, the command
delay, which is shown in dotted lines, is much larger than the server delay, shown in solid lines.

Command time is composed of two parts - shell creation time and command execution time. We
believe that when the UNIX command to be executed is echo, the delay incurred when creating
the shell is much larger than the actual command execution time.

Rough measurements on a VAX 11/750, using the UNIX fime measurement facility, support this
theory. Delay measurements for local execution of the command echo using a previously created
shell process yield delays on the order of 0.02 seconds. In the case when shell creation time is
included in the measurement, average delay increases to roughly 2.0 seconds.

In Figure 6-1, we see the effects of destination host configuration on command and server delays.
Each of the four destination hosts shown is a VAX 11/750, except for the destination host shark,
which is a higher performance VAX 11/780. Partly because it is a faster machine, the command
and server delays are smaller than for the other destination hosts. Mean command delay using
shark is lower than command delay for monet, the host yielding the next lowest average delay, by
0.422 seconds, or a 21% margin. Although this is a significant margin, we cannot attribute it
solely to the differences in host configuration. We assume that differences in host utilization
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levels during testing also played a role, as evidenced by the differences in command delay among
the other hosts, even though they are all VAX 11/750’s,

Variations in destination host utilization level can also have a significant impact on the observed
command and server delays. We see the effects of fluctuating destination host loads in Figure 6-
2. Each of the four trials shown was performed using monet as the destination host. The only
difference between the various trials is the load level on monet. The mean command execution
delay varies by as much as 0.301 seconds, or 14%, among these paths.

These disparities in mean delay, caused by host load fluctuations and differing destination host
configurations, emphasize the importance of measuring host-related delays independently during
remote execution testing. The host-related delays can then be factored from the user delay, leav-
ing consistent network delay results.

A last observation based on Figures 6-1 and 6-2 is that the server process does not experience the
same degree of variation in processing time as the command process. The mean server process-
ing time varies by only 0.164 seconds, or 16% among all destination host configurations and load
levels tested, while the mean command delay varies by as much as 0.853 seconds, or 36%. We
believe this is so because the command process, which includes shell creation, is a more CPU
intensive process than the server process.

Figure 6-3 shows the portion of remote execution delay that is caused by network factors, for
each virtual-circuit path. We calculated these delays by subtracting the remote host delay results
from the user delay, as previously discussed. We see from Figure 6-3 that the network delays for
the virtual-circuit paths having identical node counts are essentially constant. In addition, the
total network delay increases as a roughly linear function of node count. To calculate the average
call processing delay per node for each virtual-circuit path, we divide the network delay measured
for each path by the number of nodes in that path to obtain an average delay per node. The
results are shown in Figure 6-4. The delay values are connected only to identify trends.

We see that these results are consistent with the network level call processing delays that we
measured using timestamping code within the Radian software (the delays measured this way are
represented with a dotted line in Figure 6-4). Specifically, the average call processing delay per
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node is about 0.45 seconds, and it is independent of the particular virtual circuit path. We believe
that the small deviations between the two delay results are caused by measurement errors as well
as load fluctuations on the destination host, which can make the measurement of command exe-
cution time inaccurate.

7. Conclusion

The user delay for remote executions across a wide area Datakit network is composed of host and
network-related factors. In mathematical terms:

Trexec = Ther + Thost

where Trexec represents the remote execution user delay. We have determined that the host
related delay factors are ofien much larger in magnitude, and more difficult to quantify than the
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network factors. Fluctuating host loads during testing, and differences in destination host
configuration cause inconsistencies in command execution time among different virtual-circuit
paths. These inconsistencies can mask the true delay characteristics of the network. One way to
avoid this problem is to measure the delays incurred at the remote host independently while also
measuring the overall user delay. Using this method, the remote host delays can be factored from
the user delay, leaving consistent network delay results.

Delays incurred at the destination host during remote execution are caused by UNIX server pro-
cessing time, and execution time to run the specified command(s).

Thost = Tserver + Tema

For low-execution delay commands (such as echo), command time, Tema, is composed primarily
of shell creation delay, which can take up to two seconds on a VAX 11/750. Mean server delay
on a VAX 11/750 takes roughly one second, depending on host utilization at the time. We found
server delay to be less sensitive to changes in host load and configuration than the command
delay.

The results of our experiments show that the network-related delay, Ther, is a linear function of
the node count in the virtual circuit path:

Thet = (Tcp )N

where N is the number of nodes in the virtual circuit path, and T, represents the average call
processing delay per node. Although we do not differentiate in this formula between nodes in the
forwarding and directly-connected configurations, further investigation is necessary to fully
characterize the effects of host load fluctuations on the call-processing delay for directly-
connected nodes.

The call processing delay, Tcp, can be further factored into delays incurred during call set up, and
those incurred during call teardown:

Tcp = Tselup + Tieardown

The results of the Radian call processing experiment show that mean call processing time during
virtual circuit setup (Tsersp ) is about 0.30 seconds per node, and mean call processing time during
call teardown (Tteardown ) is about 0.15 seconds per node, for a total mean call processing delay of
0.45 seconds per node during the course of a single virtual circuit session. Combining the above
equations into a single formula that describes remote executions over XUNET, we get:

Trexec = (Tszlup + Ttakedown )N + Tserver + Temd

This formula has a number of implications to the design of distributed applications over Datakit
networks. We briefly mention one of these implications. Because the network call-processing
delay is linearly dependent on the node count in the virtual circuit path, a restriction on the max-
imum network diameter may be necessary for Datakit networks that are supporting distributed
applications that require a given level of call-processing performance. We might envision the
scenario in which applications designers must predict the expected maximum diameter of a given
Datakit network in order to calculate the minimum call-processing performance that can be
expected from that network in the future. This implication adds another complication to the
design of distributed applications over Datakit.

Based on our formula, many people may argue that because a delay penalty is incurred during
call processing in virtual-circuit networks, datagram networks are more suitable for distributed
applications. We do not support this claim because the overall effect of the performance penalty
on distributed applications can be minimized by proper design of the application. Applications
Designers should make tradeoffs between the delays incurred by setting up and taking down
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virtual circuits as necessary, and leaving them open, despite the fact that they consume network
bandwidth. If these tradeoffs are handled properly, distributed applications can enjoy the benefits
of virtual circuit technology, while minimizing the performance penalties.

Besides deriving this formula, and the average values of its variables, we have leamed a number
of other valuable lessons during the course of this work, many of which may apply to the wider
environment of network testing in general. We found that it is difficult to accurately measure net-
work call processing performance within a distributed system by utilizing only user-level meas-
urements. This is especially true if the extraneous load on the hosts used for testing cannot be
absolutely controlled while testing is taking place. The use of faster, more powerful hosts may
improve the accuracy of the results, but it appears that, to obtain the most consistent network call
processing results, measurements at the network level are necessary.

The logistical problems of performing call processing tests on a wide-area network without
access to centralized administration have also become painfully apparent during the course of our
testing. First, we were unable to install the Radian software modifications on all XUNET nodes
simply because we did not have the authority to perform the necessary rebooting on the majority
of the nodes. We were forced to settle for installation of the modified Radian software on only
three of the seven XUNET nodes.

Second, the call processing performance degradation caused by the output of diagnostic informa-
tion on some XUNET consoles would have been impossible to diagnose without at least indirect
access to all of the XUNET consoles. These two logistical difficulties limited the scope of our
test results, and caused valuable time to be wasted.

The final lesson learned during the course of this project is the value of automating network tests.
Before we corrected the console /O problem, many test results had already been collected.
Because this problem corrupted the results of our original tests, we were forced to re-execute
many of the tests after the problem was remedied. Automating the raw data collection and data
processing procedures saved us a tremendous amount of time during the re-execution phase of
testing.
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Appendix A - The Radian Network Controller

Radian (Research And Development Interactive Network) is a special purpose operating system
that runs on the Datakit network controller, a DEC PDP-11/23. Radian functionality can be
classified into two broad categories: call processing, which includes virtual circuit setup and
takedown for all devices attached to the network, and operations, administration, and
maintenance (OA&M) chores, which include call logging, maintaining network configuration
information, and monitoring network hardware failures. We concentrate on Radian call
processing functions.

The Radian discussion is organized as follows: in Section 1, we discuss the Radian design
philosophy. In section 2, we discuss the relevant aspects of the Radian implementation. For
those readers desiring more detail than is provided in these two sections, Appendix B contains a
highly detailed chronology of the Radian operations that occur during a single virtual circuit
session.

1. The Radian Design Philosophy

Many of the Radian design goals follow naturally from the goals of the Datakit network as a
whole. We first examine some important Datakit design goals, and then discuss how they have
influenced the subsequent Radian design.

One of the primary Datakit design goals is that it be highly modular in nature [5]. There are two
aspects to this modularity requirement. First, the network should be modular on a short term,
day-to-day basis. Reconfiguring or expanding the network to accommodate additional users
should ideally be fast, convenient and, in most cases, inexpensive. Experience has shown that, if
networks are to efficiently evolve to meet the ever-changing demands placed on them, this feature
is essential.

The second aspect of Datakit modularity is modularity from a long term perspective. As new
devices requiring data communications services are introduced to the marketplace, the Datakit
network should ideally be able to accommodate those new devices without mandating a complete
redesign of the network (with all of the associated hassles and expense). By meeting this goal, the
Datakit technology will maintain interoperability with the latest data communications market
offerings.

To satisfy this two-pronged modularity requirement, Radian utilizes a process per device
software architecture. Each communicating device attached to the network is assigned its own
distinct Radian process in the network controller with which the device communicates to
accomplish call processing functions. The flexibility of the Radian architecture lies in the fact
that various device attachment configurations can be accommodated simply by the creation or
removal of the appropriate Radian processes. In addition, when new device types are introduced
in the data communications market, new Radian process types can be developed to enable Datakit
networks to easily accommodate these new devices.

We should clarify the concept of a communicating device. The single most important
characteristic of a communicating device is that it utilizes a single virtual circuit data stream for
its communication needs. Examples include: a terminal attached to Datakit through a single RS-
232 interface, or a host process utilizing a single logical data channel in a multiplexed host
interface. Subsequently, we group all types of communicating devices together under the term
terminal. We next describe the Radian implenientation that enables these terminals to
communicate using the Datakit hardware.
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2. The Radian Implementation

The Radian operating system is composed of a set of independent, but communicating processes
that control the state of the Datakit switch to effect call processing. Radian processes receive call
processing requests and other supervisory information from terminals attached to the network.
Each terminal is assigned its own separate Radian process with which it communicates this
information. Each of these Radian processes can in turn communicate with other Radian
processes to determine whether it is appropriate to change the state of the Datakit switch.

The Radian processes to which terminals communicate are called line processes. A single line
process instance is created for each attached terminal. Different terminal types communicate
with different line process types and multiple instances of a single terminal type require multiple
instances of the appropriate line process type [10]. The goal is to ensure that each terminal has its
own distinct Radian process of the appropriate type with which it is able to communicate
supervisory information.

2.1. Line Processes

A terminal communicates with its line process by using a private protocol that may not be known
to other Radian line process types. Because the protocol is private, different terminal types can
use protocols that are tailored to their specific needs. The job of each line process is to translate
the tailored protocol that it uses when communicating with its terminal into a universally known
protocol through which it is able to communicate with all other Radian line processes.

Through its private protocol, a terminal communicates signalling and supervisory information to
its assigned line process. Based on this information, the line process initiates conversations with
other line processes to decide what action to take as a result of receiving this information. The
line processes may decide that the state of the switch needs to be changed, and, if so, the change
is implemented in the switch memory.

During virtual circuit set up procedures, two line processes are involved in the conversation, one
associated with the terminal requesting the call set up (the source), and one associated with the
terminal to which the call will connect (the destination). The protocol used between line
processes in this situation is called the Virtual Line Protocol.

2.1.1. The Virtual Line Protocol

The Virtual Line Protocol (VLP) is the means by which line processes can communicate with one
another. It is universally known among all line processes, and acts as the "glue" by which the
line processes of different terminal types are able to communicate. The VLP is implemented by
use of system calls which move message data (often only a few bytes) from the user data area of a
source line process to the user data area of a destination line process.

One interesting feature of VLP is the use of conversation identification numbers, called cparams.
A conversation identification number is included with every VLP message. It is used to identify
a particular conversation with another line process. The originator of a VLP conversation
chooses the number, by picking one which will uniquely identify that particular VLP
conversation. Any subsequent messages during that conversation will carry the same cparam
number as a message argument. This method assures that line processes will avoid confusing
leftover messages from previous conversations with messages associated with a conversation
that has just started [10].
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2.1.2. UNIX CSC Line Processes

VLP conversations are often started by a line process after it receives a call processing request
from its terminal. There are a variety of ways for terminals to communicate these requests to the
appropriate Radian line processes within the network controller. Terminals attached to Datakit
through RS-232 lines need only very simple supervisory messages to communicate their call
requests to Radian. These messages usually can be transmitted simply by asserting the
appropriate RS-232 leads. On the other hand, UNIX hosts connected to Datakit use a much
wider, more complex set of messages to communicate call processing requests, as well as
perform other functions.

A separate logical channel in each multiplexed host interface that connects a UNIX host to
Radian is reserved for supervisory messages of this type. This channel is known as the Common
Supervisory Channel (CSC); supervisory messages pertaining to any logical data channel on that
particular interface are carried on this channel. To distinguish supervisory messages that pertain
to different logical data channels on the same interface, each message carried on the CSC
contains an argument which specifies the data channel to which it pertains.

The reason a separate channel on each host interface is dedicated to the transmission of these
supervisory messages is to avoid the collision of user and supervisory data on the same channel.
Suppose a virtual circuit has been previously established on one of the logical data channels in a
multiplexed host interface. Suppose now that the host wishes to close that circuit. The host
cannot communicate that request to Radian over the data channel carrying the virtual circuit,
because it may be confused with the user data being carried on that channel. There must be some
way for Radian to distinguish between user and supervisory data. The Radian designers have
chosen to accomplish this by transmitting supervisory messages on a separate logical channel, the
CSC.

The Radian line process associated with the CSC is called the CSC line process. This process
forwards supervisory messages from the data channels on that interface to the UNIX host over the
supervisory channel. It also receives supervisory messages from the host on the CSC channel,
and forwards them to the appropriate data channel>.

Besides forwarding supervisory information, the UNIX CSC processes perform another important
function. Each CSC process monitors the status of the host to which it is attached by receiving
"keep-alive" messages from the host at periodic intervals (usually every 5 seconds). Every 30
seconds, the UNIX CSC process in the controller checks if it has received any "keep-alives”
during the last thirty seconds. If not, the CSC process tears down any active virtual circuits on
that module (since they connect to a dead host, and may be consuming valuable bandwidth
elsewhere in the network) [10]. Next, the CSC process sets a network alarm indicating that the
host is down. The alarm is reported on the network console, allowing the Datakit administrator to
easily keep track of the status of all UNIX hosts on the network.

Both UNIX CSC and data channel line processes use URP (the Universal Receiver Protocol)
Grade of Service 3* for exchanging supervisory messages with an attached UNIX host? [11]. This
provides an added measure of reliability to the call set up process since messages that have been
corrupted in transit are detected and discarded. This is in contrast with the trunk CSC and trunk

3 The forwarding of these messages from CSC to data channel line process is private and does not fall
under the domain of the VLP protocol previously discussed.

4 URP Grade of Service 3 (GOS #3) provides error detection without retransmission and without flow
control [6]. Flow control is not necessary in this case since messages are of short, fixed length. Retransmis-
sion is not necessary since a timeout mechanism is provided at the user level.

5 Tt will become evident shortly that some limited supervisory information is transmitted over the data
channel in addition to that transmitted on the CSC channel.
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data channel line processes which do not implement URP. These processes will be discussed
next.

2.1.3. Trunk CSC Line Processes

During call set up, VLP messages are exchanged between the line processes associated with the
source and destination terminals. Consider the situation in which the source and destination
terminals are not attached to the same Datakit node. It is necessary to define a mechanism so that
source and destination line processes can transparently communicate VLP messages between
adjacent nodes. As in the UNIX CSC channel case, it is important to be able to transmit these
messages without contention from user data on a virtual circuit.

The adopted solution is to use a CSC channel on every multiplexed trunk that connects adjacent
Datakit nodes. This channel carries VLP messages originating at any data channel line process
on either end of that trunk. At each end of the CSC channel is a trunk CSC line process which
communicates with the partner CSC line process located on the same channel at the remote end.
If a data channel line process wishes to communicate supervisory information to the data channel
line process at the remote end, it sends the information in the form of a private message to the
CSC process at the local end of the trunk. The CSC process forwards the information to the CSC
process at the remote end of the trunk. From there, the message is again forwarded to the
appropriate data channel line process (the channel number is specified in the message received by
the remote CSC process, a method similar to that used in the UNIX CSC case).

Besides forwarding supervisory information between nodes, each trunk CSC process also
monitors the status of the node at the remote end of its trunk. It does so by exchanging keep alive
messages periodically with the remote trunk CSC process. If a trunk CSC does not receive three
consecutive keep alives, it sets a network alarm so that the Datakit network administrator can
monitor the status of the network (this feature is similar to the keep alive messages transmitted on
the UNIX CSC)[11].

2.2. Operations, Administration, and Maintenance Processes

The job of the OA&M processes is wide ranging and varied. Administrative processes are used
for network console I/O, alarm reporting, and record keeping chores in addition to many others.
However, we are primarily concerned with only one function of these processes. That is the job
of maintaining network configuration information. This information ensures that the correct type
of Radian line process is created to communicate with each connected and active terminal on the
network.

The configuration information is stored internally in a network configuration table which is
updated when configuration information is entered by the Datakit administrator at the network
console. Within certain constraints, the addition of a new device to the network can be
accomplished simply by entering a few commands at the network console, and physically
attaching the device to the network.

2.3. Switch Model

Each Radian line process exchanges supervisory information with its associated terminal and
with other line processes to decide whether it is appropriate to change the state of the Datakit
switch to effect virtual circuit set up or teardown. An abstract model of this switch exists at the
Radian user level, which is implemented by system level routines. All of the necessary switch
state changes can be implemented on this abstract model through use of system calls.

Each terminal has its own separate switch model, which specifies connections pertaining only to
that particular terminal. The model also only applies to non-supervisory data [10]. Supervisory
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data from each terminal is permanently routed to its associated line process.

Each terminal’s switch model consists of three poles. A pole corresponds to a place where data
can both originate and terminate. The state of the switch model is determined by the connection
pattern among these three poles. The poles are listed below along with a brief description of

each.

Terminal: The communicating device connected to that channel.

Process: The line process for that channel.
Switch: A meeting point. Separate channels specifying the same meeting point will
be logically connected.

The switching element is always in one of four possible states. The connection pattern among the
three data termination points is shown below in Figure A-1 for each of the four possible states.

(t-erminal]} | process] | switch } Iterminal‘i { switch |
| : |
+ & \ | <+
!
| process |
1) IDLE STATE 2) DIALING STATE
z ' * ' z ]
) terminal! ‘ process | | process { terminal|
7 T P
] il
1 <z <
| switch | | switch |
3) TALKING STATE 4) INTERCEPT STATE

FIGURE A-1. THE FOUR SWITCH MODEL STATES

When a channel is in the idle state, non-supervisory data originating from all three sources is
discarded. The switch is kept in this state when the data channel is not being used to carry a
virtual circuit. During a virtual circuit set up, the switch is put in the dialing state, so that the
associated terminal can communicate dialstring information to its line process directly over the
data channel. After the virtual circuit is established, the switch model is put in the talking state,
and the line process is effectively removed from the path through which the user data travels. The
data travels directly from the terminal to the switch meeting point (and then to a destination
terminal or line process, if another channel specifies the same meeting point, and sets its switch
model to the talking state). In this configuration, the switch is often said to be in the "cut-through”
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state because the line process has been cut out of the user data path®. The final switch model state
is known as the intercept state. It is included here for completeness; we do not encounter this
state in our virtual circuit session example. It is used when a line process wishes to communicate
directly with a terminal other than its own.

6 Because the line process is removed from the user data path in this state, a Datakit network controller
can theoretically be rebooted without any effect on existing virtual circuits through the node.
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Appendix B: A Chronology of Radian Operations during a Virtual-Circuit Session

The following is a step by step description of Radian procedures that occur during a remote
execution between a source and destination host that are located on separate Datakit nodes
connected by a multiplexed trunk. We assume in this description that all interprocess messages
arrive at their intended destinations without error.

In Radian, different message formats are used when communicating between different classes of
line processes. In keeping within this framework, each message in the following description is
prefixed with a single letter which indicates the format of the message [11]. Each message is
referenced by one of these single letter codes, followed by a single word message name chosen to
convey the purpose of the message. The various single letter codes are shown below, along with
a brief description of each.

(1]

(3]

E_: A message exchanged between a terminal attached to the network and its associated
line process.

P_: A private message exchanged between processes which work together to support a
single network interface. For example, a supervisory message between a CSC
process and a data channel process on the same trunk. These messages are not
known to other types of line processes.

V_: A VLP message, which is known system-wide. These messages provide the glue
by which all line processes communicate.

A user level process on the source host wishes to make a call on the Datakit network. Using
the Common Supervisory Channel, the source host sends an URP call request message,
E_DIAL, to the Radian line process assigned to that channel (we will call this process scsc:
see Figure B-1 for explanations of all the line process abbreviations). The call request
specifies Wthh channel number the source host wishes to call out on as well as suggested
window sizes’ for the source and destination hosts.

Scsc translates the channel number into an internal IPC address for the line process assigned
to that channel (call this process sdata). Using this internal address, scsc issues a
P_OFFHOOK message to sdata to alert it that the host wishes to establish a call. The
message contains window size suggestions for the call.

Sdata receives the P_OFFHOOK message and immediately sets its channel to busy, so that
no other line process will attempt to connect a call through that channel. The switch is set to
the Dialing state, and an URP initialization request is sent to the source host to establish an
URP conversation [5]. Since the switch is in the Dialing state, sdata will communicate
directly with the source host over this URP data channel.

While waiting for the host’s response to the URP initialization request, sdata retrieves the
value of the maximum window size for its module type from an internal database. The
source host window size is set to the minimum of the value suggested by the source host in
the P_OFFHOOK message, and the value retrieved from the database.

The URP conversation is initialized, and sdata receives dialstring information from the
source host. The ascii dialstring is translated into an IPC destination line process address on
that particular node, and sdata issues a VLP V_CALL message to that line process (call the
process torig). After this message is successfully delivered, a timestamp is generated which

7 Windowing is the means by which flow control is implemented in the URP transport protocol.
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scsc: the source host UNIX CSC line process
sdata:  the source host data channel line process
tocsc:  the trunk originator CSC line process

tresc.  the trunk receiver CSC line process

torig:  the trunk originator data channel line process
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desc: the destination host UNIX CSC line process
ddata:  the destination host data channel line process
server: the destination host server line process

FIGURE B-1. LINE PROCESS ARRANGEMENT

indicates that a connection request has been received by this node.

Sdata now sets the switch to the Talking state. The destination is specified to be the
channel associated with the torig process. However, the switch memory is not written at this
time. Only one half of the virtual circuit is established. In reference to the switch model
discussed in Section A.2.3, we can say that, at this point, the terminal has been connected to
a "meeting point”. Another line process must also connect its terminal to the same meeting
point in order to complete a connection between two channels. So, before the memory can



(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

-32-

be written, the torig process must set its switch model to the Talking state as well, while
specifying the channel associated with the sdata process as the destination [9].

The torig process receives the V_CALL request complete with with the full dialstring. It
immediately sets its channel busy and performs window size reduction similar to that
performed by sdata earlier in the call set up. The V_CALL message is forwarded to the
local trunk CSC process (call it tocsc) in the form of a private P_OPEN message which also
includes the source channel number and windowsize values. The switch model is set to the
Dialing state and to waits indefinitely for a response to the P_OPEN that it just issued.
Since the switch model is in the Dialing state, the line process can listen on the trunk data
channel for the response.

The tocsc process receives the P_OPEN message from the to process. It immediately
forwards the message to the partner trunk CSC process at the remote end of the CSC
channel (call it trcsc), this time in the form of an E_INCALL message.

Trcsc process receives the E_INCALL message from the tocsc. The destination data
channel number is specified as part of the message. The trcsc forwards the message to the
line process associated with this channel (call it trecv) in the form of a P_INCALL message
which includes window size information.

The trecv process receives the P_INCALL message and sets its channel to busy. It
performs the window size reduction, and sets the switch to the Dialing state. An "O" is sent
over the data channel to the torig process that originally sent the P_OPEN and is currently
waiting for a response. This "O" acts as a dialtone to notify torig that the connection has
been successfully established between the two ends of the trunk and that the trecv process is
waiting for the dialstring. In case the first "O" is not correctly received, trecv will timeout in
five seconds and send another "O" until it receives the dialstring from torig.

When the torig process receives the "O", it sends the ascii dialstring over the data channel.
The switch model is then set to the Talking state with the destination specified to be the
sdata process. At this time, both the source and destination line processes (sdata and torig,
respectively) have set their switch models to the Talking state, and each has specified the
other as the destination. (Recall that the sdata process set the switch to the Talking state
after issuing the VLP V_CALL message to torig.) The switch memory is written at this
time to complete the virtual circuit through this node. A timestamp is generated at this
point indicating that a connection has been established through the node.

The trecv process receives the ascii dialstring, and translates it into a destination line
process IPC address on the same node. It then issues a VLP V_CALL message (containing
the dialstring) to the destination line process (in this case, ddata). A call request timestamp
is recorded within this node’s log after the V_CALL message is issued.

The ddata process receives the V_CALL request, sets its channel to busy, and performs the
window size negotiation for the link. The dialstring is translated into a destination line
process address (in this case, call it the server process). Ddata then sends a P_INCALL
message to the server process, notifying it that it wishes to set up a call with the host. The
P_INCALL message contains the dialstring and the channel number on which the call to the
host should be established. The ddata process then sets the switch to the Talking state,
specifying trecv as the destination. Since trecv already has set its switch to the Talking
state, and has specified ddata as the destination, the switch memory is written and a
timestamp of the connection is generated at this time.

The server process receives the P_INCALL message and forwards it to the destination host
in the form of an E_INCALL message containing: the channel number of ddata, the lower
16 bits of the controller clock at the time the message is sent, the window size information,
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and the dialstring.

After the host processes the message, it sends an E_ACK message back to the server which
contains: the channel number on which the virtual circuit has just been established (it
should be the same as the channel number requested in the E_INCALL message), the lower
sixteen bits of the controller clock that were received in the E_INCALL message, and a
reason code. For a successful call, the reason code will be zero.

The server process, upon receiving the E_ACK, forwards a P_ANSWER message to the
ddata process. This ANSWER is an acknowledgement that the call setup was successful.
The message is propagated back through all of the involved line processes in both nodes
(over the CSC channels in the case of the trunk, and the host interfaces). Each data channel
line process, upon receiving the ANSWER message, goes to a dormant state in which the
process is Idle until it receives another supervisory or administrative message. Note that
each line process is no longer in the user data path, because the switch is in the Talking or
"cut-through" state for each process. The call is now established.

When the remote execution session is complete, the virtual circuit is gracefully closed by the
following sequence of events:

(15]
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[19]

[20]

(21]

The dcsc receives an E_CLOSE request from the destination host8. The message is
forwarded to ddata in the form of a P_ONHOOK message.

Ddata receives the P_ONHOOK, and sets the switch to Idle state which generates a
disconnect timestamp [9]. It then sends a V_HANGUP to trecv, and an P_CLOSE to dcsc
(which acts as an acknowledgement of the P_ONHOOK message). Lastly, it sets its
channel to available so that future virtual circuits can now use that channel.

Dcsc receives the P_CLOSE from ddata, and writes an E_ISCLOSED acknowledgement to
the destination host.

Trdata receives the V_HANGUP and the switch is set to the Idle state. Also, a P_CLOSE
message is sent to the trcsc process. Every 15 seconds another P_CLOSE is sent to the
trcsc until an P_ONHOOK message arrives from trcsc confirming the virtual circuit
takedown on that link. Only then is trecv ready to accept another call set up.

Upon receiving the P_CLOSE, the trcsc sends a P_ONHOOK to trecv (which acts as an
acknowledgement of reception of the P_CLOSE), and an E_CLOSE to tocsc.

Upon receiving the E_CLOSE, the tocsc acknowledges it with an E_ISCLOSED and sends
a P_ONHOOK to torig.

Todata receives the P_ONHOOK, and sends V_HANGUP to sdata. The switch is then set to
the Idle state which generates another disconnect timestamp - this time for the node on
which to is executing.

Sdata receives the V_HANGUP, the switch model is set to Idle state, and a P_HANGUP is
sent to scsc every five seconds until it is acknowledged with a P_ONHOOK.

Scsc receives the V_HANGUP, and sends an E_CLOSE to the source host. The E_CLOSE
is acknowledged with an E_CLOSE request from the host, at which point the scsc sends the
P_ONHOOK to sdata, allowing sdata to become ready for the next call.

8 Nommally, the destination host initiates call takedown after remote command execution is completed.
However, if the user at the source host aborts remote command execution before completion, the source host
initiates call takedown in a similar fashion.



-34-

{24] On receipt of the P_ONHOOK, sdata sends a P_CLOSE to scsc.

[25] Scsc receives a P_CLOSE acknowledgement from sdata at which point a E_ISCLOSED is
sent to the source host. The call is now completely tomdown. All line processes are in the
same state as before the call was established.
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Appendix C - Selected Data in Tabular Form

Table containing data used in Figures 3-1 and 3-2:

Path ID
Command S P
Mean SD Mean SD Mean SD Mean SD
Is 4.099 0391 | 5271 0.393 9201 2503 | 6.395 0414
cd 3230 0327 | 5.197 0.683 8.616 2.092 | 5.850 0.256
echo 3.180 0.261 | 5.157 0.487 7.806 0.749 | 5759 0.247
cat 3482 0341 | 5.143 0.256 7913 1512 | 6.119 0.770
u 3507 0352 | 5.005 0418 9.399 1446 | 6473 1.245
finger 5223 0270 | 6307 0.738 | 11933 3.821 | 7.059 0.434
grep 3.727 0369 | 5.511 0.739 9381 2.590 | 6.233 0478
pwd 3.691 0554 | 5.147 0.468 9.047 2.288 | 6247 0.736
my 3908 0570 | 5.244 0.397 9.583 2763 | 6963 1.582
cp 3923 0749 | 5.392 0.589 9.565 2.883 | 6.245 0.396
f 4617 1.016 | 5.746 0.548 8983 1.883 | 6.999 0.486
who 4264 1240 | 5408 0.526 8.680 1.715 | 6.269 (0.287
egrep 3.823 1.040 | 5.123 0.314 8.135 1.523 | 6.323 0.228
SO 4506 0.707 | 5.835 0412 9243 1.039 | 7.014 0.375
df 5.153 0679 | 6.651 0.507 | 12.605 2.302 | 7.364 0.282
date 4.037 0502 | 5307 0.194 9.636 1.235 | 6.089 0.189
w 5.350 0.626 | 8.581 1.840 | 12.127 2.125 | 7.359 0.280
uptime 4468 0415 | 5769 0.802 9.690 1.655 | 6527 0.195
tail 3.620 0481 | 5.303 0483 8.170 1.531 | 6.217 0.337
In 3777 0441 | 5314 0931 8311 1.626 | 6.220 0.294
m 3.626 0280 | 5.265 0462 7.592 1344 | 6.183 0274
fgrep 3.886 0.661 | 5.203 0.520 8.580 1.153 | 6.307 0.471
chmod 3.642 0736 | 5.130 0.564 8.072 1.353 | 6.094 (0.454
mkdir 3.824 0703 | 5.233 0.579 8350 1.595 | 6490 0.498
rmdir 3.672 0577 | 5424 1.000 9.050 2.211 | 6408 0.853
sleep 4745 0595 | 5991 0.514 8938 0.951 | 7.367 0.620
du 4481 0.354 | 5.141 0.381 9.794 2.191 | 6.757 0.977
wC 3763 0393 | 5232 0.717 8.108 1.358 | 6.105 0.213
head 3.541 0252 | 5.190 0.548 7920 1448 | 6510 0.258
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Table containing data used in Figure 4-1:

User Delay
Path ID
Minimum  Mean SD
M 2.820 3252 0456
CL 3.503 4573 1301
OL 3.648 4203 1.068
S 3.133 4.147 0.629
P 4.376 5073 0487
F 4410 4.808 0.622
IL 4.566 5.539 1.116
NL 5.194 5953 0.854

Table containing data used in Figure 5-1:

Radian Operation

Path c—>C C—od

Min Mean SD | Min Mean SD

.07 .16 07 | 230 267 .26
23 31 07 | 267 370 .82
23 28 04 | 392 463 .69
25 .30 05 | 388 4.32 .67

m Y w
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Table containing data used in Figure 5-2:

Radian Operation
Path c0—>Co CQ—-->ci ci—>Ci
Min  Mean SD Min Mean SD | Min Mean SD
CL .23 .30 .04 23 30 .07 .07 15 .06
OL .23 .30 .04 .18 .30 .07 .07 .16 .05
L 25 30 05 77 .95 17 .07 .16 .06
NL 23 .30 04 | 1.23 1.40 .17 .07 17 .06
Radian Operation
Path Ci - di di - dO
Min  Mean SD Min Mean SD
CL 2.28 3.31 1.32 25 30 .04
OL 2.42 2.96 1.22 23 31 .06
IL 2.41 3.25 99 .50 .60 .16
NL 2.55 3.06 .56 .70 .82 .10
Table containing data used in Figures 6-1, 6-2, and 6-3:
User Time Server Time Total Remote Time
Path ID
Min Mean SD Min  Mean SD Min Mean SD
M 2726  3.103 254 1 734 869 115 | 2.229 2.560 279
CL 3503 4573 1301 | 739 1022 379 | 2230 3.131 1.260
OL 3.648 4203 1.068 | .738 853 239 | 2.361 2.801 1.041
S 3.133 4.147 629 | 776 844 289 | 1.608 2.370 607
P 4376 5.073 487 | 776 986 .195 | 2.808  3.365 475
F 4410 4.808 622 | 835 1.002 294 | 2.870 3.198 .599
IL 4566 5.539 1.116 | .740 1000 348 | 2.364 3.189 1.057
NL 5.194 5.953 854 | 838 1.008 .161 | 2469 2.896 510






