Trap Architectures for Lisp Systems

Douglas Johnson
Texas Instruments MS 238
P.O. Box 655474
Dallas, Texas 75265
johnson@ti.com
(214) 995-0343

November 18, 1988

Abstract

Recent measurements of Lisp systems show a dramatic skewing of
operation frequency. For example, small integer (fixnum) arithmetic
dominates most programs, but other number types can occur on almost
any operation. Likewise, few memory references trigger special han-
dling for garbage collection, but nearly all memory operations could
trigger such special handling. Systems like SPARC'™ and SPUR. have
shown that small amounts of special hardware can significantly reduce
the need for inline software checks by trapping when an unusual con-
dition is detected.

A system’s trapping architecture now becomes key to performance.
In most systems, the trap architecture is intended to handle errors
(e.g., address faults) or conditions requiring large amounts of process-
ing (e.g., page faults). The requirements for Lisp traps are quite dif-
ferent. In particular, the trap frequency is higher, processing time per
trap is shorter, and most need to be handled in the user’s address space
and context.

This paper looks at these requirements, evaluates current trap ar-
chitectures, and proposes enhancements for meeting those require-
ments. These enhancements increase performance for Lisp 9%-32%
at cost of about 1.4% more CPU logic.

1 Introduction

Much of the early RISC design work focused on the features needed to
support static languages (particularly C) well. In static languages, the data
types are known at compile time and any runtime storage management is
done explicitly by the programmer. With careful design and cost analysis,
RISC architectures are providing dramatic performance improvements over
earlier architectures [MIPS 86].

There is increasing interest in dynamic languages such as Smalltalk or
Lisp. Dynamic language data types may not be known until runtime and
storage management is done implicitly (i.e. garbage collection). These lan-
guages are useful in applications ranging from artificial intelligence to user
interfaces. The boundary between static and dynamic languages blurs as
C++ acquires more dynamic characteristics.

Cursory analysis of dynamic languages shows that RISC architectures are
well matched to the majority of dynamic language operations. Steenkiste
showed that Lisp programs are dominated by data movement, function call-
ing, and integer arithmetic [Steenkiste 88]. Ungar had similar results for
Smalltalk [Ungar 86]. Typical RISC architectures are optimized for those
operations. The problem in supporting dynamic languages well is one of
possibilities rather than probabilities.

For example, any given arithmetic operation will probably have simple
integer operands, but those operands may be any type. In the general case,
one cannot know the operands’ types ahead of time (e.g. at compile time).
Therefore, it is necessary to do extensive checking at runtime, which can be
expensive in time and code space.

Data movement presents similar problems. An incremental garbage col-
lection system [Baker78] requires a read barrier! that must be checked on ev-
ery fetch from heap storage. Generational garbage collectors require a write
barrier? that must be checked with every store into the heap [Lieberman 83].
So far, the cost of inline code for a read barrier has prevented practical im-
plementation of incremental garbage collection on conventional processors.
Inline checks are used for write barriers on conventional processors. They
are practical because stores are much less frequent than reads, but the checks

YA read barrier is used to copy objects as they are referenced. Basically, it requires
some special processing whenever a pointer to an uncopied object is fetched.

2A write barrier is used to remember pointers to recently created objects so those
objects may be easily collected. It requires special processing whenever a pointer to a
“young” object is stored in an “old” object.

[S+]

still cause a significant performance degradation.

Efficient implementation of Lisp and other dynamic languages on RISC
processors requires dramatically different implementation strategies than
were used on Lisp machines [Bosshart 87,Moon 87]. Those machines used
extensive special hardware and microcode to do the necessary checking and
special case handling. RISC processors do not have microcode and RISC
philosophy dictates a careful evaluation of the cost and benefit of special
hardware.

The emerging approach is to use small amounts of special hardware to
detect “unusual” conditions and then trap to a handler for those condi-
tions [Hill 87,Sun 87,Taylor 86,Ungar 86]. This seems to be a very effective
approach; Taylor predicts SPUR Lisp performance to approach that of spe-
cialized Lisp machines. However, this burdens the trap handling architecture
of existing systems beyond their design limits.

This article will show that current trap architectures are too slow to
be effective for dynamic language traps and proposes changes that make
trapping much better than inline code. Section 2 discusses the particular
requirements of Lisp trap handling. Section 3 talks about the limits of cur-
rent architectures with examples drawn from SPARC and SPUR. Section 4
proposes some trap handling features and estimates their cost and benefit
in the context of both SPARC and SPUR. Section 5 is a summary.

2 Requirements

The requirements for Lisp trap handling are largely an extension of those
in existing systems. Lisp is still interested in having the system handle
interrupts, page faults, fatal errors, etc. However, Lisp and other dynamic
languages can benefit from additional trap features.

These features fall into two major areas: operand/result type checking
and storage management. Type checking is used to ensure that the operands
to an operation are compatible with the operation and that the results are
appropriate (e.g. do not overflow). Storage management features allow a
Lisp system to implement read and write barriers to support modern garbage
collectors.

2.1 Type Checking

In its full generality, Common Lisp [Steele 84] defines generic arithmetic on
eight distinct numeric types. Any combination of numeric operands may

appear on any operation. If the operands are non-numeric, the proper error
condition must be raised.

Lisp machines use microcode and multi-way branch hardware to imple-
ment macroinstructions with the required functionality. Lisp implementa-
tions on conventional hardware have used a variety of techniques including
out-of-line generic arithmetic routines, compile time type inferencing, and
type declarations. Tag checking on conventional hardware typically con-
sumes 16% to 18% of total execution time [Shaw 88].

The SPARC and SPUR RISC architectures contain instructions for fixed
length integer (fixnum) arithmetic that cause a trap to occur if the operands
are not both integers or if an overflow occurs. SPARC has TADDccTV and
TSUBccTV instructions that do the necessary checking for fixnum operand
types and overflow results. Nearly all SPUR’s arithmetic, logical, and com-
pare operations trap for inappropriate operands or overflows.

This can be a very effective approach. Shaw notes that “fixnum arith-
metic is the dominant type of arithmetic in the test programs”. Fixnums
are 28%~51% of all data accesses and 54%-92% of all objects allocated. The
trapping instructions permit the most common generic operations to be per-
formed in a single instruction and still have the full generality Lisp requires.
12%-34% of SPUR’s dynamic instructions do tag checks while less than 1%
of the instructions actually trapped [Taylor 86] 3.

When a trap occurs, the trap handler must emulate the trapping instruc-
tion or enter the appropriate error context. For emulation, the handler (with
or without hardware assistance) must decode the trapping instruction, fetch
the operands, perform any required data conversion, do the operation, and
place the results in the instruction’s destination. For errors, the trap han-
dler must return control to the Lisp error handler with sufficient information
about the error and sufficient state to allow the error handler to repair the
error (perhaps with the aid of the user) and continue.

The trap handler must have a certain amount of support to emulate
an instruction. Primarily, it must have access to the primitive Lisp envi-
ronment. The handler needs to access the operands, allocate storage for
converted operands and results, and return a result as if it had come from
the trapping instruction. The access and allocation requirements imply that
the trap handler can itself cause traps, either for virtual memory faults or

3The question of how to effectively tag data in RISC machines is not one this paper
will address any further. It is worth noting that Lisp does not require a large number of
tag types. Shaw showed that one tag bit (integer/pointer} identifies 31% of the dynamic
data in his benchmarks, two bits identifies 67%-98%, while three bits identifies over 98%.

storage management traps.

2.2 Storage Management

Garbage collection is a critical issue for Lisp system performance. It must
have minimal impact on interactive response, impose minimal overhead on
program execution, and interact well with virtual memory systems. Garbage
collection has been justly accused of violating the basic premises of virtual
memory. While virtual memory assumes locality of reference, most garbage
collectors exhibit little, if any, locality. They tend to sweep the entire virtual
space, making only a few references to each object in the space.

A great deal of research has gone into this problem with commendable
success. Lisp machines now support very effective garbage collection. Dy-
namic storage management is not only inexpensive [Moon 84}, but actually
improves locality of reference [Courts 88). Lisp machines use considerable
amounts of special hardware, particularly in the memory mapping, to sup-
port storage management.

Garbage collection algorithms for conventional systems have been less
successful. Until recently, Lisps on conventional machines used simple stop-
and-copy garbage collectors. These collectors require a pause in Lisp exe-
cution while the garbage collector traverses the entire Lisp heap finding live
objects and copying them. This approach requires neither a read nor a write
barrier. However, it imposes a delay in interactive response (often several
minutes) and destroys the virtual memory working set.

More recently, several commercial Lisp implementations have begun us-
ing generational stop and copy collectors to reduce these problems. This
approach requires only a write barrier which can be implemented with inline
software. These collectors have been more effective, but limit the practical
virtual memory size of the Lisp and require much more physical memory
than systems that use both a read and a write barrier.

Steenkiste shows that writes to the heap constitute about 1.7% of the
dvnamic instructions executed. A software write barrier check will consist
of about 12 instructions, 4—6 of which will be executed if no barrier fault is
detected. This implies that a software write barrier adds about 7%-10% to
the runtime, which is consistent with Moon’s estimate of 10% and Shaw’s
7%-14% for Lisp systems [Moon 84,Shaw 88]. This makes software write
barriers expensive, but acceptable.

SPUR provides a hardware write barrier. Each data item has a two bit
generation number as part of its tag. A trap is generated when an item with

a youngar generation tag is stored through a pointer with a older generation
tag.

The Explorer'™ associates generation with the address of an object
rather than with its pointer. Each entry in the memory map has two bits
indicating the generation number of that area of storage. When one pointer
is stored through another, address translation is done on both. The memory
system sets a microcode flag if a pointer to a young storage area is being
stored into an old area [Greenblatt 83].

A read barrier is generally easier to implement in hardware than a write
barrier, but more difficult in software. Reads from the heap (which require a
read barrier check) are 4.3 times more common than writes [Steenkiste 87].
A software read barrier can be implemented with roughly the same number
of instructions as a write barrier. Because of the increased frequency, it will
have a run time penalty that is about 4 times greater than the write barrier
or 28%—-40%, unacceptable in most systems.

The hardware for the Explorer’s read barrier is simple. The same mem-
ory map that contains the generation numbers also contains an oldspace bit.
Pointers fetched from the heap are translated through the memory map and
a microcode flag is set if the pointer references oldspace. [Ellis 88] shows
that read and write barriers can be implemented using standard memory
protection hardware. [Krueger 88] shows how RISC architectures can be
extended to implement read and write barriers.

2.3 Performance

It’s clear that not all dynamic languages are alike. For example, data for
Smalltalk indicates that only 3.9% of the tagged stores trap[Ungar 86], while
Taylor’s Lisp data (for programs that did any generation traps) ranges from
less than 1% to nearly 91%, with a typical number being around 13%. A
designer of a Lisp system who based the trap architecture on the Smalltalk
data will be somewhat disappointed with the Lisp performance.

The performance of trap handlers can be critical to overall system perfor-
mance. While trapping is a good strategy to deal with less common events
and data types, “less common” does not necessarily mean “rare”. Unfortu-
nately, there is little data on trap frequency. Taylor notes that 0%-0.64%
of all instructions cause write barrier traps and 0%-0.89% cause tag faults
depending on benchmark. (He also notes that 0%-19.4% of all instructions
do generation checks while 13%-35% do tag checks.)

If we speculate that read barrier traps are proportional to write barrier

traps, then an estimate for total trap rate might be:

Trap rate = (1)
tag traps +
write traps +

(read/write ratio x write traps)

Using Taylor’s numbers we get a trap rate of 0%-4.3%. An average trap
handler length of 25 instructions would double the runtime of the worst case
program.

Trap handler performance also competes against inline code. Ignoring
some secondary effects such as cache performance, the formula for the trade-
off is:

Trap overhead < (2)
check frequency

* check code length
trap frequency _

Using Taylor’s data for the Boyer benchmark’s write barrier checks, the trap
overhead should be less than 6%7‘9% * 5—about 90 instructions. This does
not include the actual work done in the trap handler since that needs to be
done in either case.

It is easy to get fooled by averages. There is a wide distribution of check
and trap frequencies. A number of Taylor’s benchmarks (9 of 17) did checks,
but did not trap. For those programs, traps improve performance regardless
of trap cost because the inline checks are eliminated. Taylor’s worst case
program (fft) trapped on 91% of the write barrier checks and 4.6% of the
tag checks.

2.4 Requirements Summary

Trap architectures for Lisp systems have requirements that are significantly
different from more conventional systems. The most important requirement
is that the handler must be able to emulate some operation that is not
directly supported by the hardware. Trap handlers need interfaces with
garbage collection and Lisp level error handlers. This means the trap handler
must have ready access to the Lisp environment.

Furthermore, the trap handler cannot accept some restrictions that are
often placed on trap handlers. For example, a Lisp trap handler must ref-
erence arbitrary objects in the Lisp environment, which means it must be
able to tolerate page faults i.e., the trap handler must also be able to trap.

Because Lisp traps occur at a much greater frequency than traditional
system traps, the trap architecture must minimize the runtime (software)
effort to get to the trap handler, determine what must be done, and do it.

Programs that cause unusually high numbers of traps will suffer greatly
with slow trap handlers. Unfortunately, there are interesting programs (such
as floating point intensive programs) that exhibit high trap rates. Without
some care in the design of the trap architecture, the system will not be
usable by those programs. It’s worth spending some hardware to speed trap
handling.

3 Limitations of Current Architectures

Current trap architectures are not designed for handling the traps of a dy-
namic language. They are intended to handle errors (e.g. address faults) or
conditions requiring large amounts of processing (e.g. page faults). These
trap architectures are inadequate for dynamic languages for three key rea-
sons. First, all traps enter kernel mode. The user has little or no control
over how the trap is handled. Second, there is insufficient support for rapid
trap execution. Third, trap handlers cannot tolerate traps themselves.

3.1 Kernel Mode Trap Handlers

Most existing trap architectures (including SPARC and SPUR) expect the
kernel to handle all traps?. If all traps enter the operating system, either the
trap handlers for dynamic languages are built into the kernel or the kernel
needs mechanisms to return control to the user for certain traps.
Fundamentally, the kernel is the wrong implementation level for dynamic
language trap handlers. The kernel is both over privileged and under privi-
leged. It’s over privileged in the sense that it can generally do things users
can’t, such as accessing protected memory. If the trap handler is emulating
a user instruction, it needs to do so with the the same access rights as the

*The SPARC processor enters supervisor state for all traps, while SPUR stays in user
state for some traps. Both systems vector the traps through a table that cannot be
modified by the user. Both schemes effectively constrain the kernel to fielding all traps.

user program, otherwise security holes may be opened. The kernel is under
privileged because trap handlers usually run at low levels within the kernel
and often do not have access to higher level functions such as file systems
or communications.

Different dynamic languages need different trap handlers. They have
different encoding schemes, different data types, different semantics, and
different garbage collectors. The kernel needs a different set of handlers for
each implementation of each language and must switch handlers with each
process switch.

On a more mundane level, kernel trap handlers cause problems unless
all the dynamic languages and the kernel are written and maintained by the
same vendor. Kernel vendors are understandably reluctant to put “strange”
code into the privileged portion of the system. Even then, the details of
coordinating kernel releases with all the dynamic language releases seem
overwhelming.

SPUR and the Sprite Operating System [Ousterhout 87] provide a much
more flexible mechanism. A user program can “register” trap handlers with
the kernel that will be used when a particular trap occurs. These trap
handlers are part of the user process and run in user mode. The kernel calls
the registered handler after a trap occurs, passing information such as the
decoded trapping instruction and its operands. When returning, the trap
handler can return results as if it came from the trapping instruction or it
can cause the instruction to be re-executed.

This approach eliminates most of the functional difficulties of kernel
resident trap handlers. Unfortunately, it does nothing to deal with the
performance problems. In fact, the additional interface requirements slightly
aggravate the situation.

3.2 SPUR Trap Architecture

Let’s examine what SPUR does for the tag trap caused when instruction
operands are not both fixed length integers. The numbers in parenthesis are
the approximate® number of instructions required to perform the operation.

1. Preserve trap state and re-enable traps (35)

2. Decode trapping instruction and recover operands (63)

®The counts are approximate because there is some variance in path length and because
some instructions contribute to more than one operation.

3. Find user handler and enter it (31)

4. User handler returns(via trap). Preserve state and re-enable traps.
(24)

5. Place results in destination register and resume with next instruction.
(35)

This is a total of 188 instructions for the trap overhead. With this
overhead, a floating point operation will be about 200 times slower than the
equivalent small integer (fixnum) operation.

The code is all hand coded assembly language. In a few places, the code
is written more for generality than speed. However, the majority of the work
is required by the trap architecture and is not “waste”. About half of it (90
instructions, items 1, 3, and 4), is caused by having to enter and exit the
kernel twice for each trap. Most of the remainder (items 2 and 5) is present
because the software must emulate the hardware instruction fetch, decode,
operand fetch, and result write,

3.3 SPARC Trap Architecture

While not available in any current commercial systems, the same approach
to dynamic language traps could be used for the SPARC. The instruction
counts for a tag trap handler interface are:

1. Preserve trap state and enter user mode (17)

2. Decode trapping instruction and recover operands (45)
3. Find user handler and enter it (21)
4

. User handler returns (via trap). Place results in destination register
and resume with next instruction. (23)

SPARC requires a total of 106 instructions for the interface. While better
than SPUR, it is still unacceptable. Decoding the instruction is simpler
because the SPARC has full 32 bit left and right shifts while SPUR can only
shift 3 bits left and one bit right.

Recovering the operands and returning the results is far easier because
SPARC’s SAVE and RESTORE instructions can transfer data directly from
one register window to another. On the other hand, the trap handler must
correctly set SPARC’s condition codes for the emulated instruction.

10

3.4 Limitations Summary

Both SPARC and SPUR have serious limitations on traps for dynamic lan-
guages. It is difficult for a user to get control after a trap occurs. The
handler must use software to decode the trapping instruction and returning
an emulated result is awkward. All this degrades performance to such an
extent that inline code is faster for most programs.

4 Features

This section proposes a few additional features needed for good performance
on dynamic language traps. Those features have very low implementation
cost and yield much improved performance. The purpose is to give the user
program control over certain traps, eliminate undue restrictions on code
within trap handlers, provide information about the trap to the handler,
and allow the handler to return a result as if it had come from the trapping
instruction.

The features are first described in general terms that apply to many ar-
chitectures. Then specific modifications to SPUR and SPARC are proposed
with an analysis of cost and benefit.

4.1 User Trap Control

It’s clear that the user program is the most effective place to handle certain
traps, while the operating system must handle others. Traps should be
divided into two groups: user and system. The system traps include:

e reset

e error

e interrupt

e page fault and protection violation
e window overflow and underflow

e Illegal or privileged instruction

e Half of the trap codes for a trap instruction.

which are basically the traditional traps.
The user traps include:

e tag tran

11

e overflow

GC trap (read and write barrier faults)

Unaligned address trap.

e Half of the trap codes for a trap instruction.

which are basically the traps added for dynamic language support.

System traps vector through a table in the kernel space®. User traps
vector through a table in the user’s address space, indicated by a special
register, the User Trap Base Register (UTBR), which can be modified by
the user.

System traps have priority over user traps. If both occur during an
instruction, the system trap will be taken and the user trap ignored. Re-
execution of the instruction after the system trap will generate the user trap
if the trap condition is still present.

A user trap is best viewed as a forced subroutine call. The current
register window pointer is incremented (a system window overflow trap may
occur), the PC and NextPC7 are stored in the new window, user traps are
disabled, and execution continues at the proper location in the user trap
vector. The processor remains in user state. In addition, information about
the trapping instruction and it’s operands are written to user accessible
special registers.

System traps use the system window and do not generate a window
overflow trap. They vector through the system trap table, disable system
traps, and put the processor into supervisor state. The trap instruction
information is not written to the special registers. This allows system traps
to occur transparently, even in user trap handlers.

4.2 Trap Information

A large part of the tag trap handlers is devoted to recovering information
(opcode and operands) that the hardware had available at the time of the
trap. A major improvement in trap performance can be achieved by making
the information directly accessible to the trap handler. What’s needed are
four special registers that can be read by user programs.

8SPUR has the table at a fixed location in low memory while SPARC uses a special
register, the TBR, to hold a pointer to the trap vector.

"Most RISC machines (including SPUR and SPARC use delayed control transfer in-
structions. This means the next instruction to be executed may not be related to the
trapping instruction. Two program counterss are a necessary part of the trap state.

12

The registers are:

Opcode — Contains the opcode of the trapping instruction.

Opt — Contains the value of the first source operand of the trapping in-
struction.

O0p2 — Contains the value of the second source operand of the trapping
instruction.

Dest — Contains the register number of the destination register of the
trapping instruction.

These registers are loaded with the appropriate values as part of a user
trap. System traps do not modify them. If they were modified by a system
trap, system traps could not be tolerated in user trap handlers. While a
parallel set of registers would be useful for system traps, they probably do
not “carry their weight” due to the lower frequency of system traps.

Each user trap handler should copy these special registers to general
registers in the handler’s window. At that point, user traps may be re-
enabled. In fact, the only real purpose of disabling user traps is make sure
the trap information registers are preserved until thev can be read bv the
trap handler®.

4.3 Handler Return

A user trap handler does one of two things on return. If the handler has
corrected whatever condition caused the trap, the trapping instruction will
be re-executed as if the trap had not occurred. If the handler has emulated
the trapping instruction, a value must be returned as if it had come from
the trapping instruction and execution continued with the next instruction.
The former is what system trap handlers do with traps like virtual memory
faults. Nearly all trap architectures provide good support for that style of
trap return. '

8An alternative implementation is to have the hardware trap logic place the values
directly in general registers in the new window—this is already done for the PC and
NextPC. This simplifies the trap handler code and eliminates the need to disable user
traps. However, it makes the trap logic considerably more complex. Either the register
file needs more write ports or the trap logic needs to force instructions into the pipe that
copy the necessary values into the register file.

13

Architectures do not provide good support for instruction emulation by a
trap handler. What needs to be done is for the emulated result to be placed
in the destination register of the trapping instruction and any condition
codes to be set appropriately.

Results are normally set in the register window before the window being
used by the trap handler. The SPUR requires 35 instructions to do this and
it must be done in kernel mode to prevent interrupts or other traps from
destroying the trap handler window during the (brief) time it is running in
the trapping instruction’s window. This requires 24 more instructions to
enter the kernel. The problem is less difficult on SPARC, which is able to
use the RESTORE instruction to return a result directly.

4.4 SPUR Implementation

SPUR needs three modifications to implement the proposed trap architec-
ture. It should partition it’s trap vector into user and system vectors, it
needs to add the user readable special registers, and it needs to add an
instruction to return an emulated result.

The instruction VALUE_RETURN takes two arguments, the value to be re-
turned and the number of the register to return it to (both arguments in
registers). The instruction reads the return value and the destination regis-
ter number out of the current register window, moves the window pointer to
the previous window, and stores the return value in the proper destination
register. It can be implemented with minor extensions to the existing SPUR
data paths.

The 59 instructions SPUR needs to return an emulated result are reduced
to 2:

/* The trap handler is now executing in the register window
immediately below the trapping instruction’s window. Register values
are:

NEXT_PC_REG -- the address of the next instruction to be executed.

DEST_REG —-- the number of the destination register of the
trapping instruction.

RESULT_REG ~— the value to be returned.

*/

/* Go back to user program */

jump_reg NEXT_PC_REG

value_return DEST_REG,RESULT_REG
/*In delay slot, return value */

14

The JUMP_REG instruction continues the user program at the next instruc-
tion after the trapping instruction. The VALUE_RETURN executes in the delay
slot of the jump and returns the emulated result and restores the current
window pointer.

4.5 SPUR Performance

The suggested changes have a major impact on trap performance. The 188
instructions from the SPUR’s tag trap handler are reduced to 9:

/*Get trap information */

rd_special opcode,0PCODE_REG
rd_special opl,0P1_REG
rd_special op2,0P2_REG
rd_special dest,DEST_REG

/* Enable user traps*/
rd_special upsw,TMP_REG

or TMP_REG,TMP_REG,UTRAP_ENABLE
wr_special upsw,TMP_REG

/* Begin trap handler */

/* Go back to user program */
jump_reg NEXT_PC_REG
value_return DEST_REG,RESULT_REG

The reduction in instruction count is pretty spectacular. However, it’s
important only as it contributes to performance at the user level. As men-
tioned in section 2.3, there are two ways to measure it. Against inline code,
we can rewrite equation 2 to show the “equivalent inline instructions” of the
trap overhead:

Equivalent inline instructions = (3)
trap frequency

t head
rap overheadx check frequency

15

For the Boyer benchmark’s write barrier checks, the trap is cheaper than
an inline check of 9 * 02'—_1:%9 instructions—about a half an instruction. Since
inline checks seem to cost about 4-6 instructions, the new trap architecture
is a major improvement. The old architecture has 188 % %f%ﬂ or about 10
“equivalent inline instructions” which indicates most checks are better done
inline.

The actual execution time cost of the trap overhead is proportional to
the percentage of instructions that trap. Taylor shows that tag traps occur
on 0%-0.89% of the instructions executed. The cost of tag checking with a
nine instruction trap overhead will be 0%—8%. Compare this to Steenkiste’s
24% and Shaw’s 16%-18% cost for inline tag checking.

Taylor also shows generation (write barrier) traps occur on 0%-0.64%
of the instructions executed for an overhead of 0%-6%. Shaw estimates
inline write barrier checks to cost 7%-14%. Using traps for both tag and
write barrier checks will give a net performance improvement in the 9%-32%
range.

4.6 SPUR Hardware

Little additional hardware is needed to implement this trap architecture on
SPUR. The user trap vector requires an additional register (the UTBR) to
hold the base address of the vector. This would be implemented in parallel
to the existing Trap PC register used for the system traps. When a trap
occurs, the proper register is selected based on trap type.

A user trap enable bit needs to be added to the existing User Processor
Status Word register (UPSW). This controls whether user traps are taken
or not. It also controls the updating of the user trap registers. If the bit is
not set, the user trap registers are not changed.

The user trap registers are extensions to the existing SPUR special reg-
isters. Op1 and Op2 are placed in front of the ALU inputs and are loaded
during the execute pipe stage. The OpCode and Dest registers are slightly
more difficult. This information is not readily available after the instruction
fetch stage. So two sets of temporary latches need to be added to carry
the data through intermediate stages to the execute phase (when user traps
occur).

Finally, the VALUE_RETURN instruction requires a fourth input be added
to the multiplexor that selects the register to be modified. This allows
the register number to be a data value rather than an immediate in the
instruction.

16

None of these changes have an effect on the CPU’s critical path. They
also have only a minor impact on the area and gate counts. The trap
information registers and their control logic require about 1300 transistors.
The user trap base register and it’s logic adds another 400 transistors. The
other changes are trivial. The additional input to the multiplexor costs 10
transistors and adds 0.3% to the length of one data bus. The additional
opcode requires only slight changes to the opcode PLA. Since the present
SPUR CPU uses about 120,000 transistors, the proposed changes add about
1.4% to the chip.

4.7 SPARC Implementation

SPARC’s changes are very similar to SPUR’s. It should partition its trap
vector into user and system vectors, add the instruction decode registers, and
allow user programs to directly modify the integer condition codes. It is not
necessary to add a VALUE_RETURN instruction. The RESTORE instruction can
be used to perform the same function, although slightly more trap handler
code is required.

SPARC has unique opcodes for reading and writing each special register.
RDPSR and WRPSR read and write the processor status register while RDTBR
and WRTBR read and write the trap base register. Following this model, ten
new instructions need to added to read and write the five new registers®.

A user trap enable bit needs to be defined. Unlike SPUR, SPARC does
not have a user writable control register. It does have unused space in the
processor status register (bits 19:14). It seems convenient to use one of those
bits. By extending the privileged instructions RDPSR and WRPSR to allow the
user to read and write only the condition codes and user trap enable, the
user can control traps and easily emulate instructions that set condition
codes.

4.8 SPARC Performance

The 108 instructions from SPARC’s tag trap handler are reduced to 14:

/*Get trap information */

®This probably requires the least additional hardware, but it consumes considerable
opcode space. An alternative is to borrow a couple of instructions from SPUR, RD_SPECIAL
and WR_SPECIAL. These instructions use an immediate operand to specify the special reg-
ister to be read or written.

17

rd Yopcode, ¥ 0PCODE_REG
rd Yopl,/0P1_REG

rd %op2,%OP2_REG

rd %dest,\DEST_REG

rd Y%psr,PSR_REG

/* Enable user traps*/
or “PSR_REG,UTRAP_ENABLE, \TEMP_REG
wr %TEMP_REG,Ypsr

/* Begin trap handler */

/* Go back to user program */
/* get current pc */

Li call L2

s1l %DEST_REG,2,4DEST_REG

L2 add %o7,%DEST_REG, %07

jmpl [%o7+(table-L1)],%0

wr %PSR_REG, /ipsT

table

jmpl %NEXT_PC_REG,%0
restore YDEST_REG,0,%0
jmpl %NEXT_PC_REG, %0
restore YDEST_REG,0,%1

The first part of the handler picks up the trap information, enables user
traps, and enters the handler. It requires seven instructions. The return
section uses the destination register number as an index into a table of
jmpl-restore pairs that return the emulated result, restore the window,
and continue execution at the next instruction. This takes an additional
seven instructions!? for a total overhead of 14 instructions.

Translating the 14 instruction overhead through equation 3, shows that
the equivalent inline instructions for the Boyer benchmark will be: 14 %

10A VALUE_RETURN instruction could reduce this from seven to three, which would speed
up a program with a high trap rate by several percent.

18

—7-02'.196?’ or about .77 instructions. The unmodified architecture has an inline

equivalent of about six instructions, indicating unmodified traps are about
as eflicient as inline code.

Tag traps will cost 0%-12% with the proposed changes and generation
traps will cost 0%-9%.

4.9 SPARC Hardware

The hardware cost of making these changes on SPARC will vary depending
on the implementation technology. The 20,000 transistor limit of the original
gate array implementation makes it hard to justify the 1700 transistors
needed. On the current custom VLSI implementations, the modifications
should be no more expensive than they are for SPUR and are well worth
doing.

5 Summary

Small amounts of hardware support can significantly improve the support
for dynamic languages on RISC architectures. The technique of detecting
“unusual” conditions and trapping is an efficient means of handling the wide
range of operand types and storage management required by Lisp and other
dynamic languages.

An architecture that wishes to support dynamic languages well must
provide slightly more powerful trap mechanisms than previously necessary.
In particular, the trap architecture must give the user control over certain
trap types, the ability to rapidly recover information about the trap, and
a means of returning emulated results. These features can be implemented
as simple extensions to the trap architectures of most RISC systems and do
not require large amounts of chip area or high degrees of complexity. They
do yield substantial performance improvement over either inline software
checks or existing trap architectures.

The same extensions that benefit dynamic languages can benefit conven-
tional languages to a lesser extent. This trap structure makes it easy to have
language specific handlers for integer overflow and similar conditions. Even
C can benefit—Sun 4 C has a compiler option (“-misaligned”) that allows
access to integers that are not on a four byte boundary. It’s implemented
by using a subroutine instead of a 1d instruction. With the proposed trap
architecture. it conld be a 1d that traps if the data is misaligned.

19

A final word of advice: any trap handlers of importance must be fully
written before the processor architecture is finalized. Without a complete
implementation, it is much too easy to ignore some awkward feature that
seriously damages performance.

5.1 Acknowledgments

I'd like to thank Bob Courts, Randy Katz, Steve Krueger, and Dave Patter-
son for their encouragement and thoughts in writing this paper. Shing-Ip
Kong provided the details of the SPUR hardware implementation and needs
special thanks. Finally, I'd like to thank everyone on the SPUR project who
made me feel like a welcome part of the project for the last year.

References

[Baker78] Henry Baker, “List Processing in Real Time on a Serial Com-
puter”, Communications of the ACM 21(4), pp. 280-294, 1978.

[Bosshart 87] Patrick Bosshart et al., “A 533K-Transistor Lisp Processor
Chip,” Digest 1987 International Solid-State Circuits Conference, Febru-
ary 1987, IEEE, New York, pp. 203-203.

[Courts 88] H.R. Courts, “Improving Locality of Reference in a Garbage-
Collecting Memory Management System.” Communications of the ACM,
September 1988,

[Ellis 88] John R. Ellis, Kai Li, and Andrew W. Appel, “Real-time Con-
current Collection on Stock Multiprocessors” Digital Systems Research
Center Research Report 25. February, 1988.

[Greenblatt 83] Richard Greenblatt, private communication, Dallas, Texas,
June 1983.

[Hill 87] Mark Hill, et. al. “Design Decisions in SPUR: A VLSI Multipro-
cessor”, IEEE Computer, November 1986, pp. 8-22.

[Krueger 88] Steven D. Krueger, “VLSI-Appropriate Garbage Collection
Support”. To be published.

(Lieberman 83] H. Lieberman and C. Hewitt, “A Real-Time Garbage Col-
lector Based on the Lifetimes of Objects.”, Communications ACM, June
1983, pp. 419-429.

20

[MIPS 86] MIPS Computer Systems, Inc. Performance Brief, April 24,
1986, April 1986.

[Moon 87] David Moon, “Symbolics Architecture,” IEEE Computer, Jan-
uary 1987, pp. 43-52.

[Moon 84] David Moon, “Garbage Collection in a Large Lisp System.” ACM
Symposium on Lisp and Functional Programming, Austin, Texas, 1984,
pp. 235-246.

[Ousterhout 87] John Ousterhout, Andrew Cherenson, Fred Douglis,
Michael Nelson, and Brent Welch, “The Sprite Network Operating Sys-
tem” Computer, Feburary 1988, also appeared as UC Berkeley Report
No. UCB/CSD 87/359 June 1987.

[Steele 84] Guy L. Steele, Common Lisp, The Language, Digital Press, 1984.

[Steenkiste 87] Peter Steenkiste and John Hennessy, “Tags and Type Check-
ing in Lisp: Hardware and Software Approaches,” Proceedings Second
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ACM/IEEE, October 1987, pp. 50-59.

[Steenkiste 88] Peter Steenkiste and John Hennessy, “Lisp on a Reduced
Instruction-Set Processor: Characterization and Optimization.” Com-
puter, July 1988, pp. 34-45.

[Shaw 88] Robert Shaw, Empirical Analysis of a Lisp System, PhD disser-
tation, Stanford University, February 1988. Also appeared as Stanford
Technical Report CSL-TR-88-351.

[Sun 87] Sun Microsystems, Inc., The SPARC(tm) Architecture Manual Re-
vision 50 of August 8, 1987.

[Taylor 86] G.S. Taylor, P.N. Hilfinger, J. Larus, et al. “Evaluation of the
SPUR Lisp Architecture.” Proceedings of the 13th Annual International
Symposium on Computer Architecture, ACM, Tokyo, June, 1986,pp. 444-
452.

[Ungar 86] David Michael Ungar, The Design and Evaluation of a High Per-
formance Smalltalk System, PhD dissertation, U.C. Berkeley, Feburary
1986, Also appeared as Berkeley Technical Report UCB/CSD 86/287.

