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Using Hard Problems to Create Pseudorandom Generators

by

Noam Nisan

ABSTRACT

This thesis describes two methods of constructing pseudorandom gen-

erators from hard problems.

We first give a simple and very general construction of pseudorandom
generators. They stretch a short string of truly random bits into a long
string that looks random to any algorithm from a complexity class C (eg.
P, NC, PSPACE,..) using an arbitrary function that is hard for C. This
construction reveals an equivalence between the problems of proving certain

lower bounds and of constructing pseudorandom generators.

This construction has many consequences. The most direct one is that
efficient deterministic simulation of randomized algorithms is possible under
much weaker assumptions than previously known. The efficiency of the
simulations depends on the strength of the assumptions, and may achieve
P =BPP. We believe that our results are very strong evidence that the gap

between randomized and deterministic complexity is not large.

Using the known lower bounds for constant depth circuits, our construc-
tion yields unconditionally proven pseudorandom generators for constant
depth circuits. As an application we characterize the power of NP with a

random oracle.

Our second pseudvrandom generator stretches short truly random

strings to long strings that look random to all Logspace machines. This i~
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proved without relying on any unproven assumptions. Instead, we use
lower bounds on the complexity of the following multiparty communication
game:

Let f(xy, - - - ,x;,) be a Boolean function that & parties wish to collabora-
tively evaluate. The i'th party knows each input argument except x;; and
each party has unlimited computational power. They share a blackboard,
viewed by all parties, where they can exchange messages. The objective is to
minimize the number of bits written on the board.

We prove lower bounds on the number of bits that need to be written on
the board in order to compute a certain function. We then use these bounds
to construct a pseudorandom generator for Logspace. As an application we
present an explicit construction of universal traversal sequences for general

graphs.
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CHAPTER 1:

Introduction

1. Randomized Complexity

In the last decade randomization became an important tool in the
design of algorithms. There are many problems for which efficient random-
ized algorithms have been given even though no efficient deterministic algo-
rithm is known. This apparently enhanced power which randomization pro-

vides has become a major research topic in complexity theory.

For almost any natural complexity class, a corresponding randomized
class may be defined (in fact several randomized variants can be defined).
In most cases no nontrivial relationship is known between the corresponding
randomized and deterministic classes, and in many cases there are some
interesting problems known to lie in the randomized class but not known to
lie in the corresponding deterministic one. Primality testing is known to lie
in randomized polynomial time ([SS], [AHI]), but not known to lie in deter-
ministic polynomial time. Construction of a perfect matching in a graph is
known to lie in random-NC ((KUW], [MVV]), but not known to lie in NC.
Undirected connectivity is known to lie in random-Logspace ({AKLLR}), but
not known to lie in Logspace. Graph non-isomorphism is known to lie in

AM, the randomized analogue of NP ({GMW)), but not known to lie in NP.



This thesis continues the investigation into the power of randomization,
and the relationships between randomized and deterministic complexity
classes. The line of attack we pursue is the idea of emulating randomness,

known as pseudorandom generation.

2. Pseudorandom Generators

The major conceptual idea behind pseudorandom generation is that
sequences of events may look random even though they are not truly ran-
dom in the information theoretic sense. Sequences may look random to any
observer that does not have enough computational power to "understand”

them.

This revolutionary idea was introduced and formalized in the early '80s
by Blum and Micali [BM], who were influenced by Shamir [Sh], and by Yao
[Y2]. Blum and Micali and Yao proposed the idea of pseudorandom genera-
tors, functions which stretch a short string of truly random bits into a long
string of bits which looks random to observers having limited computational

power.

There are several motivations for research into pseudorandom genera-
tors. Perhaps the most broadly stated one is merely getting better insight
into the nature of randomness from a behavioral point of view. More
specifically, pseudorandom generation is perhaps the most general and
natural method to reduce or eliminate the randomness required by algo-
rithms. Pseudorandom sequences may replace the random sequences
required by algorithms without changing the results in any way. This
reduces the number of random bits required for solving the problem. More

over, the trivial exponential deterministic simulation of randomized



algorithms can now be used to obtain rather fast deterministic simulations.

Another motivation for research into pseudorandom generation is cryp-
tography. A standard element implicit in many cryptographic protocols is to
generate messages that do not give any information to your opponent, in
other words, messages that appear random to him. Pseudorandom genera-
tors are a general framework to study these issues. Indeed many crypto-

graphic protocols may be based on pseudorandom generators ((LR], [ILLD.

Finally, perhaps the practical motivation should be mentioned: in real-
ity random bits are required by many computer programs. Hardly ever are
truly random bits supplied by the computer (or even claim to be supplied by
some physical means such as Zener diodes). Usually some pseudorandom
generator supplies numbers which are hoped to be as good as truly random

ones. It is important to know how much this can be really justified.

3. Basic Definitions

Blum and Micali [BM] and Yao [Y2] were the first to define pseudoran-
dom generators. They were concerned with pseudorandom generators that
look random to polynomial time Turing machines, or to polynomial size cir-
cuits. We will consider the natural extensions and give general definitions of
pseudorandom generators that look random to an arbitrary class of

machines.

Another way in which we modify the definitions given by Blum-Micali
and by Yao is the requirement regarding the running time of the pseu-
dorandom generator. Blum-Micali and Yao defined pseudorandom genera-
tors to be computed in polynomial time We will remove this requirement

from the definition. Of course, for our pseudorandom generators to be



interesting, we will need to show that they can indeed be computed some-
what efficiently.

The definitions that appear here are generic, and more precise specific

definitions for particular complexity classes will appear where we use them.

Blum and Micali and Yao gave competing definitions of what a pseu-
dorandom generator should be. These two definitions really turn out to be
equivalent. Yao's definition is perhaps the strongest one imaginable: that
the pseudorandom bits will behave just like truly random ones in any way
measurable by machines in the class.

Definition : {G,:{0,1)™™—{0,1)"} is called a pseudorandom generator for
class C if for every algorithm A in C, every polynomial p(n), and for all
sufficiently large n:

PriA(y)=1]-PrAG, @) =1]| = ——
_ p(n)

Where x is chosen uniformly at random in {0,1)~") and y in {0,1}".

The definition given by Blum-Micali seems to be a rather minimalist
one: that given any prefix of the pseudorandom sequence, the next bit
would look random.

Definition : {G,:{0,1)™'V—{0,1}"} passes all class C prediction tests if for
every algorithm A in C, every 1=i=n, every polynomial p(n), and all

sufficiently large n:

1
lPT[A(yb oyio)=yl-172) = ‘—o(—n)_

Where y; is the j’th bit output by G,, and the probability is taken over a

random input to G,,.

It turns out that these two definitions are equivalent [Y2).



Theorem (Yao): G is a pseudorandom generator for class C iff it passes all

class C prediction tests.

This fact is extremely helpful, since the usual method of proving that a gen-
erator is pseudorandom, is to show that it satisfies the weaker definition,

and then to conclude that it has all the nice properties of the stronger one.

4. Previous Work

Most work regarding pseudorandom generators has been directed
towards pseudorandom generators for P, polynomial time Turing machines.
The first pseudorandom number generator was designed by Blum and Micali
[BM]. It is based on the unproven assumption that computation of the
“discrete log" function cannot be done in polynomial time. They first showed
that, under this assumption, the most signiﬁcant bit of the discrete log can-
not be approximated by any polynomial time computation, and proceeded to

give a general scheme to produce many pseudorandom bits using this fact.

Yao [Y2] generalized this construction. He showed how any one-way

permutation can be used in place of the discrete log function.

Definition: f={f,:{0,1}"—{0,1}"} is called a one-way permutation if (1) f,
is one-one and onto (2) f can be computed in polynomial time (3) Any poly-
nomial size circuit that attempts to invert f, errs on at least a polynomially

large fraction of the inputs.

Yao first showed how to "amplify" the "unpredictability" of condition 3,
and obtain a "hard bit", a bit that cannot be predicted at all. This
amplification is achieved by taking multiple copies of the hard function on
disjoint inputs, and xor-ing them, Yao shows that this operation indeed

"amplifies" the unpredictability of the bits. Once a "hard bit" is obtained, a



pseudorandom generator can be designed using the Blum-Micali scheme:

A seed x of size n® is given as the random input. The one-way permu-
tation is applied to the seed repeatedly, generating a sequence
xg, flxg), f(f(xg)), - - -, f(")(xo). The pseudorandom output of the generator is
obtained by extracting the "hard bit" from each string in this sequence. The
proof that this is indeed a pseudorandom generator proceeds by showing
how a test that this sequence fails can be used to invert the one-way permu-
tation f.

Theorem (Yao): If a one-way permutation exists then for every €>0 there
exists a polynomial time computable pseudorandom generator
G:{0,1)*'>{0,1}".

Recently, Impagliazzo, Levin and Luby [ILL] proved that the existence
of any one way function (not necessarily a permutation) suffices for the con-
struction of pseudorandom generators. This condition is also necessary for
the existence of pseudorandom generators that can be computed in polyno-
mial time. All the pseudorandom generators described so far can indeed be

computed in polynomial time.

All the work described so far was concerns generators that pass all
polynomial time tests; pseudorandom generators for P. Some work has also
been done regarding the construction of pseudorandom generators for other

complexity classes.

Reif and Tygar [RT] describe a generator that passes all NC tests, and
moreover, can itself be computed in NC. This generator is based on the
assumption that "inverse mod p" cannot be computed in NC. The main
innovation here is showing that for this particular function, the original

Blum-Micali-Yao generator can be parallelized.



Ajtai and Wigderson [AW] considered pseudorandom generators for
ACY. They use an ad-hoc construction based on the lower bound methods
for constant depth circuits, to construct a pseudorandom generator that
passes all AC? tests. The significance of this result is that it does not
require any unproven assumptions! Instead, it builds upon the known, pro-

ven lower bounds for constant depth circuits.

5. Hardness vs. Randomness

The second chapter of this thesis is devoted to a new general construc-
tion of pseudorandom generators for arbitrary complexity classes. This con-
struction overcomes two basic limitations of the known pseudorandom gen-

erators:

(1) They require a strong unproven assumption. (the existence of a one-

way function, an assumption which is even stronger than P #NP)

(2) They are sequential, and can not be applied to an arbitrary complexity
class. E.g. there is no known construction of pseudorandom generators

for NC that is based on a general complexity assumption about NC.

The construction which we propose avoids both problems: It can be
applied to any complexity class C, it is based on an arbitrary function which
is hard for C, and gives a pseudorandom generator that looks random to the
class C. Although our generator can not necessarily be computed in the
class C, we will show that it can be computed efficiently enough for our
simulation purposes.

Perhaps the most important conceptual implication of this construction

is that it proves the equivalence between the problem of proving lower

bounds for the size of circuits approximating functions in EXPTIME, and



the problem of constructing pseudorandom generators which run
"sufficiently fast". This should be contrasted with the result of Impagliazzo,
Levin and Luby [ILL] showing the equivalence of proving the existence of
one —way functions and constructing pseudorandom generators which run in
polynomial time. Our construction requires much weaker assumptions, but
yields less efficient pseudorandom generators. This loss does not have any
effect when using pseudorandom generators for the deterministic simulation

of randomized algorithms.

This construction has many implications and a large part of the second
chapter describes them. We first show that efficient deterministic simula-
tion of randomized algorithms is possible under much weaker assumptions
than previously known. The efficiency of the simulation depends on the
strength of the assumption, and can be good enough to show P=BPP. Since
the assumptions required for our generator are so weak and natural, we
believe that this work provides overwhelming evidence that the gap

between deterministic and randomized complexity is not large.

We then turn to pseudorandom generators for constant depth circuits.
Since lower bounds for constant depth circuits are known (e.g. [Hal), our
construction yields an unconditionally proven pseudorandom generator for
constant depth circuits. This generator improves upon the known generator,
due to Ajtai and Wigderson [AW], and implies much better deterministic

simulation of randomized constant depth circuits.

Our generator for constant depth circuits turns out to have some
interesting consequences regarding the power of random oracles for com-
plexity classes in the polynomial time hierarchy. We show that NP with a
random oracle is exactly the class AM, solving an open problem of Babai

[BaM]. We also show that a random oracle does not add power to the



polynomial time hierarchy.

A new proof is given of the fact that BPP is in the polynomial time
hierarchy. Our final application is a surprising connection between simula-
tion of "time by space" and simulation of "randomness by determinism". We
show that one of these simulations can be substantially improved over

known simulations.

The results in this chapter have appeared in [NW1], (NW2], and are

joint work with Avi Wigderson.

6. Pseudorandom Generators for Logspace

The third chapter in this thesis describes the construction of a pseu-
dorandom generator for Logspace. This result is unique in that it is not
based on any unproven assumptions. So far the only class for which pseu-

dorandom generators were unconditionally proven to exist was AC 0,

In order to pfove the correctness of our pseudorandom generator we use
the following multiparty communication game, first introduced by Chandra,
Furst and Lipton [CFL]: Let f(xy, - -« ,xp) be a Boolean function that accepts
k arguments each n bits long. k parties wish to collaboratively evaluate f;
the i’th party knows each input argument except x;; and each party has
unlimited computational power. They share a blackboard, viewed by all par-
ties, where they can exchange messages. The objective is to minimize the

number of bits written on the board.

We first prove lower bounds for the number of bits that must be written
on the board in order to get even a small advantage on computing certain
functions. We then show how to use these lower bounds in order to con-

struct a pseudorandom generator for Logspace.
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We conclude by giving some applications of our pseudorandom genera-
tor. We describe a construction of universal sequences for arbitrary regular
graphs; no nontrivial such construction was previously known. We also
show that random Logspace machines with two-way access to the random
bits are better, in some specific sense, than random Logspace machines with

the usual one-way access to the random bits.

The results in this chapter have appeared in [BNS] and are joint work

with Laszlo Babai and Mario Szegedy.
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CHAPTER 2:

Hardness vs. Randomness

1. Introduction

In this chapter we describe a general construction of pseudorandom
generators which can be based on the hardness of an arbitrary function, and

can be applied to any complexity class.

In section two we define, describe in detail, and prove the correctness of
our pseudorandom generator. In section three we then prove a host of appli-

cations and corollaries of our construction.

2. The generator

In this section we state and prove our results for pseudorandom genera-
tors that look random to small circuits, and thus also to time-bounded Tur-
ing machines. All the definitions and theorems we give have natural analo-
gues regarding pseudorandom generators for other complexity classes such
as depth-bounded circuits, etc. It is rather straightforward to make the

required changes, and we leave it to the interested reader.
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2.1. Definitions

Informally speaking, a pseudorandom generator is an "easy to compute"
function which converts a "few" random bits to "many" pseudorandom bits
that "look random" to any "small" circuit. Each one of the quoted words is
really a parameter, and we may get pseudorandom generators of different
qualities according to the choice of parameter. For example, the standard

e; "many"

definitions are: "easy to compute" = polynomial time; "few" = n
= n; "look random" = subpolynomial difference in acceptance probability;
and "small" = any polynomial. We wish to present a more general tradeoff,
and obtain slightly sharper results than these particular choices of parame-
ters allow. Although all these parameters can be freely traded-off by our
results, it will be extremely messy to state everything in its full generality.
We will thus restrict ourselves to two parameters that will have multiple

purposes. The choice was made to be most natural from the "simulation of

randomized algorithms" point of view.

The first parameter we have is "the quality of the output"”, this will
refer to 3 things: the number of bits produced by the generator, the max-
imum size of the circuit the generator "fools", and the reciprocal of
difference in accepting probability allowed. In general, in order to simulate
a certain randomized algorithm, we will require a generator with quality of
output being approximately the running time of the algorithm.

The second parameter is "the price" of the generator, this will refer to
both the number of input bits needed, and to the logarithm of the running
time of the generator. In general, the deterministic time required for simu-
lation will be exponential in the "price" of the generator.

Definition: G ={G,:{0,1}""'—{0,1}"}, denoted by G:l—>n, is called a pseu-

dorandom generator if for any circuit C of size n:
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Pr[C(y)=1]—Pr[C(G(x))=1” < 1/n

where y is chosen uniformly in {0,1}*, and x in {0,1}%.

We say G is a quick pseudorandom generator if it runs in deterministic
time exponential in its input size, G e¢DTIME (290D

We will also define an extender, a pseudorandom generator that only
generates one extra bit:

Definition: G ={G1:{0,1}l—>{0,1}l+1} is called an n-extender if for any circuit

C, of size n:

Pr[C(y)= 1] _Pr

C(G(x))=1” < 1/n

where y is chosen uniformly in 0,1} %1 and x in {0,1%.

We say G is a quick extender if it runs in deterministic time exponen-

tial in its input size, GE€DTIME(29").

The major difference between our definition, and the "normal"”
definition is the requirement regarding the running time of the algorithm:
normally the pseudorandom generator is required to run in polynomial time,
we allow it to run in time exponential in its input size. This relaxation
allows us to construct pseudorandom generators under much weaker condi-
tions than the ones required for polynomial time pseudorandom generators,
but our pseudorandom generators are as good for the purpose of simulating
randomized algorithms as polynomial time ones. The following lemma 1s
the natural generalization of Yao's [Y2] lemma showing how to use pseu-

dorandom generators to simulate randomized algorithms:

Lemma 2.1: If there exists a quick pseudorandom generator G:l(n)—>n then

for any time bound ¢t =¢(n): RTIME (t)CDTIME (2016,

Proof: The simulation can be partitioned into two stages. First, the origi-

nal randomized algorithm which uses Oit random bits is simulated by a
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randomized algorithm which uses [(¢?) random bits but runs in time 011"
This is done simply by feeding the original algorithm pseudorandom
sequences obtained by the generator instead of truly random bits. Since the
output of the pseudorandom generator looks random to any circuit of size ¢2,
and since any algorithm running in time ¢ can be simulated by a circuit of
size t2, the output of the generator will look random to the original algo-
rithm. Thus the probability of acceptance of this randomized algorithm will

be almost the same as of the original one.

In the second stage we simulate this randomized algorithm determinist-
ically, by trying all the possible random seeds and taking a majority vote.
The number of different seeds is 2!t) and for each one a computation of

complexity 20¢¢ is done.

2.2, Hardness

The assumption under which we construct a generator is the existence
of a "hard" function. By "hard" we need not only that the function can not
be computed by small circuits but also that it can not be approximated by
small circuits. There are basically two parameters to consider: the size of

the circuit and the closeness of approximation.

Definition: Let f:{0,1)*—{0,1} be a boolean function. We say that f is

(e,8)-hard if for any circuit C of size S,

Pr[C(x)=f(x)]—1/2| < ¢/2
Where x is chosen uniformly at random in {0,1}".

Yao [Y2] shows how the closeness of approximation can be amplified by

xor-ing multiple copies of f.
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Lemma 2.2 (Yao) : Let f,: - ,f; all be (¢,S)-hard. Then for any § >0, the
function fi(x)+ - +filxy) is (e*+8,0%1—¢)%S)-hard. Where "+"
denotes exclusive-or, i.e. addition mod 2.

The kind of hardness we will require in our assumption is the follow-
ing:
Definition: Let f={0,1}"—{0,1} be a boolean function. We say that f can-
not be approximated by circuits of size s(n) if for some constant k, all large

enough n, and all circuits C, of size s(n):

Pr[Cn(x) zf(x)|>n""

where x is chosen uniformly in {0,1}".

This is a rather weak requirement, as it only requires that small cir-
cuits attempting to compute f have a non-negligible fraction of error. Yao’s
xor-lemma allows amplification of such hardness to the sort of hardness
which we will use in our construction. We will want that that no small cir-
cuit can get any non-negligible advantage in computing f.

Definition: Let f:{0,1}"—{0,1} be a boolean function, and let f,, be the res-
triction of f to strings of length m. The Hardness of f at m, Hp(m) is

defined to be the maximum integer h, such that f,, is (1/h,,,h,,)-hard.
The following lemma is an immediate application of Yao’s lemma.

Corollary 2.3: Let s(m) be any function (size-bound) such that
m<s(m)<2™; if there exists a function f in EXPTIME that cannot be
approximated by circuits of size s(m), then for some ¢>0 there exists a

function f' in EXPTIME that has hardness Hp(m)=s(m).
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2.3. The Main Lemma

Given a "hard" function, it is intuitively easy to generate one pseu-
dorandom bit from it since the value of the function must look random to
any small circuit. The problem is to generate more than one pseudorandom
bit. In order to do this we will compute the function on many different,
nearly disjoint subsets of bits.
Definition: A collection of sets {S;, - - - ,S,}, where S;C{1, - - - ,l} is called a
(k,m)-design if:

(1) Foralli:
si/=m
(2) Foralli=j:
|s.ns;|=k

A nX! 0-1 matrix is called a (k,m)-design if its n rows, interpreted as sub-
sets of {1..[} are a (k,m)-design.

Definition: Let A be a n X! 0-1 matrix, let f be a boolean function, and let
x=(x; ' ' - x;) be a boolean string. Denote by f4(x) the n bit vector of bits
computed by applying the function f to the subsets of the x’s denoted by the

n different rows of A.

Our generator expands the seed x to the pseudorandom string falx).
The quality of the bits is assured by the following lemma.
Lemma 2.4: Let m,n,l be integers; let f a boolean function, f:{0,1}™—{0,1},
such that Hf(m)znz; and let A be a boolean n X! matrix which is a
(logn,m) design. Then G:l—n given by G/x)=f4(x)is a pseudorandom gen-

erator.
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Proof: We will assume that G is not a pseudorandom generator and derive
a contradiction to the hardness assumption. If G is not a pseudorandom

generator then, wlog, for some circuit C, of size n,
Pr[C(y)=1]—Pr[C(G(x))=1] > 1/n

We first show, as in [GM] and in [Y2], that this implies that one of the bits

of f4(x) can be predicted from the previous ones.

For any i, 0<i<n, we define a distribution E; on {0,1}" as follows: the
first i bits are chosen to be the first i bits of f4(x), where x is chosen uni-
formly over [ bit strings, and the other n —i bits are chosen uniformly at

random. Define
P =Pr[C (2)= 1]

where z is chosen according to the distribution E;. Since pg—p, > 1/n, it is
clear that for some i, p; _;—p; > 1/n>. Using this fact we will build a cir-

cuit that predicts the i'th bit.

Define a circuit D, which takes as input the first i—1 bits of f4(x),
¥y, .¥i—1, and predicts the i'th bit, y;. D is a probabilistic circuit. It
first flips n —i+1 random bits, r;, -+ - ,r,. On input y =<y, - -.y;-,>, 1t
computes C(yy, * * * ¥i—p.Ti» * - * »Fp)- If this evaluates to 1 then D will return
r; as the answer, otherwise it will return the complement of r;. As in [Y2] it

can be shown that
1 1
PriD,(yy, - - - yi-) =Y ) )
n

where the probability is taken over all choices of x and of the random bits
that D uses. At this point an averaging argument shows that it is possible
to set the private random bits that D uses to constants and achieve a deter-

ministic circuit D’ while preserving the bias
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By now we have constructed a circuit that predicts y; from the bits
Yoo Yi-1 To achieve a contradiction to the hardness assumption we will
now transform this circuit to a circuit that predicts ¥; from the bits

x,, - % W.log wecan assume that y; depends on xy, " * * »Xm> i.e.

yi=flxy - Xpm)

Since y; does not depend on the other bits of x, it is possible to set the other
bits to constants, while leaving the prediction of y; valid. By an averaging
argument there exist constants ¢y, 41, * * * »Cf SUCh that setting x;=c; for all
m <j<l, preserves the prediction probability. At this point, however, each
one of the bits ¥y, " ,Yi-1 depends only on at most logn of the bits
Xy, X Lhis is so since the intersection of the set of x,'s defined by ¥;
and by y; is bounded from above by logn for each i #j. Now we can com-
pute each y; as a CNF (or DNF) formula of a linear (in n) size over the bits
it uses. This gives us a circuit D''(xy, " - xn) that predicts y; which is
flxy, = Xp). Itis easy to check that the size of D’ is at most n?, and the

bias achieved is more than n~2, which contradicts the assumption that

Him)>n? W

2.4. Construction of Nearly Disjoint Sets

This section describes the actual construction of the designs that are
used by the pseudorandom generator. In the construction of the generator,
we are given a "hard" function f with a certain "hardness", Hy, and we wish
to use it to generate a pseudorandom generator G:l-n. Our aim is to
minimize [, that is to get a pseudorandom generator that uses the smallest
number of random bits. If we look at the requirements of lemma 2.4, we see

that we will require a (logn,m)-design, where m must satisfy Hf(m)an.
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This basically determines a minimum possible value for m. The following

lemma shows that ! need not be much larger than m.

Lemma 2.5: For every integers n and m, such that logn <m <n, there
exists an n X[ matrix which is a (logn,m)-design, where 1<0(m?. More-
over, the matrix can be computed by a Turing machine running in space

O (logn).

Proof: We need to construct n different subsets of {1 - - 1} of size m with
small intersections. Assume, wlog, that m is a prime power, and let [ =m?2
(If m is not a prime power, pick, e.g., the smallest power of 2 which is
greater than m; this can at most double the value of m) Consider the
numbers in the range {1 - - - [} as pairs of elements in GF(m), i.e. we con-
struct subsets of {<a,b>|a,b€GF(m)}. Given any polynomial g on GF(m),

we define a set Sq={<a,q(a)> a€GF(m)}. The sets we take are all of this

form, where g ranges over polynomials of degree at most logn. The follow-

ing facts can now be easily verified:

(1) The size of each set is exactly m.

(2) Any two sets intersect in at most logn points.

(3) There are at least n different sets (the number of polynomials over
GF(m) of degree at most logn is m'€"*1=n).

It should be noted that all that is needed to construct these sets
effectively is simple arithmetic in GF(m), and since m has a length of
O(logn) bits, everything can be easily computed by a log-space bounded Tur-
ing machine. [

It can be shown that the previous design is optimal up to a factor of
logn, i.e for given m and n, | is within a log factor of the design with the

smallest value of [. For most values of m this small added factor is not so
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important, however for small values of m we may wish to do better. One
way to achieve a better design for small values of m is to consider mul-
tivariate polynomials over finite fields. These multinomials may define sets
in a similar manner as in the previous design, and for small values of m, [
can be reduced up to about mlogm. We leave the details to the interested

reader.

A case of special interest is m =0(logn). In this case it is possible to
reduce [ also to O(logn). We do not have an explicit construction for this,

however we note that such a design can be computed in polynomial time.

Lemma 2.6: For every integers n and m, where m =Clogn, there exists a
n X1 matrix which-is a (logn,m)-design where [ =2C%ogn. Moreover, the
matrix can be computed by a Turing machine running in time polynomial
inn.

Proof: The Turing machine will greedily choose subsets of {1, - - - ,I} of car-
dinality m, which intersect each of the previously chosen sets at less than
logn points. A simple counting argument shows that it is always possible to
choose such a set, whatever the previous sets that were chosen are, as long
as there are at most n such sets. The running time is polynomial since we

are looking at subsets of O(logn) elements. |}

2.5. Main Theorem

The main theorem we get is a necessary and sufficient condition for the

existence of quick pseudorandom generators.

Theorem 1: For every function (size bound) [ <s(l)<2! the following are

equivalent:

(1) For some ¢>0 some function in EXPTIME cannot be approximated by

circuits of size s(l¢).
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(2) For some ¢ >0 there exists a function in EXPTIME with hardness s(I°).
(3) For some ¢ >0 there exists a quick s(I¢)-extender G:l—>[+1.

(4) For some ¢ >0 there exists a quick pseudorandom generator G:l—s([°).
Proof:

(1) -> (2) is corollary 2.3.

(4) -> (3) is trivial.

(3) -> (1) is proven by the following observation: Let G={G;} be an
extender as in (3). Consider the problem of "Is y in the range of G?". It can
be easily seen that this can be computed in exponential time; however, no
circuit of size s(I°) can approximate it since that circuit would distinguish
between the output of G and between truly random strings.

The main part of the proof is, of course, (2) -> (4). Let f be a function
in EXPTIME with hardness s(I). We build a quick pseudorandom genera-
tor G:l->n, for n =s(m°’%): For every n let A, be the matrix gﬁaranteed by
lemma 2.5 for m =12, Notice that this is an n X! matrix which is a
(logn,m)-design. Notice also that, by our choice of parameters, Hf(m)>n2.
Thus, by lemma 2.4, the function G,(x)=f, (x) is a pseudorandom genera-
tor. G={G,}is a quick pseudorandom generator simply since f is in EXP-
TIME. R

This theorem should be contrasted with the known results regarding
the conditions under which polynomial time computable pseudorandom gen-
erators exist. Impagliazzo, Levin and Luby [ILL] prove the following
theorem:

Theorem ([ILL]): The following are equivalent (for any 1>¢>0):

(1) There exists a 1-way function.
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(2) There exists a polynomial time computable pseudorandom generator
G:nt-n.
The existence of polynomial time computable pseudorandom generators
seems to be a stronger statement, and requires apparently stronger assump-

tions than the existence of "quick" pseudorandom generators.

3. Main Corollaries

3.1. Sequential Computation

The major application of the generator is to allow better deterministic
simulation of randomized algorithms. We now state the results we get

regarding the deterministic simulation of BPP algorithms.

Theorem 2: If there exists a function computable in DTIME (2°1),

(1) that cannot be approximated by polynomial size circuits. Or,

(2) that cannot be approximated by circuits of size 2"° for some £>0. Or,
(3) with hardness 2" for some €>0.

Then

(1) BPPC O\ DTIME(2").

e>0

(2) BPPCDTIME (21°8")) for some constant c.
(3) BPP=P.
respectively.

Proof: using theorem 1, (1) implies the existence of a quick pseudorandom
generator G:n®—n for every €>0, and (2) implies the existence of a quick

pseudorandom generator G:(logn)*—n for some c¢>0. (3) implies the
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existence of a quick pseudorandom generator G:Clogn—>n for some C>0.
This can be seen by modifying the proof of theorem 1 as to use the design
specified in lemma 2.6 instead of the "generic" design (lemma 2.5). The

simulation results follow by lemma 2.1. |l

3.2. Parallel Computation

The construction of the generator was very general, it only depended on
the existence of a function that was hard for the class the generator is
intended for. Thus we can get similar simulation results for other complex-
ity classes undef the analogous assumptions. We will now state the major

simulation results we get for parallel computation.

Theorem 3: If there exists a function in PSPACE that

(1) cannot be approximated by NC circuits. Or

(2) cannot be approximated by circuits of depth n® (for some constant ¢>0).
Then

(1) RNCC N\ DSPACE(n®).

e>0

(2) RNCCDSPACE (polylog).
Respectively.

Proof: The proof is the straightforward adaptation of our pseudorandom
generator to the parallel case. The important point is that the generator
itself is parallel, and indeed in the proof of the main lemma, the depth of

the circuit C increases only slightly. |l
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3.3. Constant Depth Circuits

A special case of interest is the class of constant depth circuits. Since
for this class lower bounds are known, we can use our construction to obtain
pseudorandom generators for constant depth circuits that do not require any

unproven assumption.

Our generator is based on the known lower bounds for constant depth
circuits computing the parity function. We will use directly the strongest

bounds known due to Hastad [Hal.

Theorem (Hastad): For any family {C,} of circuits of depth d and size at

1

most 2*°"", and for all large enough n:

Pr Cn(x):parity(x)]—1/2l < 2"

When x is chosen uniformly over all n-bit strings. |l
Applying to this our construction we get:
Theorem 4: For any integer d, there exists a family of functions:
{Gn:{0,1}1—+{0,1}"}, where [ =0((logn)?¢ *5) such that:
(1) {G,} can be computed by a log-space uniform family of circuits of poly-
nomial size and d +4 depth.

(2) For any family {C,} of circuits of polynomial size and depth d, for any

polynomial p(n), and for all large enough n:

Pr[c,,(y)=1] - Pr[C,l(Gn(x))=1]|s—’71n—)
where y is chosen uniformly in {0,1}*, and x is chosen uniformly in
{015,

Proof: Again G,=f4 where f is the parity function, and A, is the design

described in section 2.3 for m =(logn)¢*3 Notice that: (1) the generator can
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be computed by polynomial size circuits of depth d+4 since it is just the
parity of sets of bits of cardinality (logn)?*3. (2) All the considerations in
the proof of correctness of the generator apply also to constant depth cir-
cuits. In particular the depth of the circuit C in the proof of lemma 2.4
increases only by one. i

We can now state the simulation results we get for randomized constant
depth circuits. Denote by RAC® (BPAC?Y) the set of languages that can be
recognized by a uniform family of Probabilistic constant depth, polynomial
size circuits, with 1-sided error (2-sided error bounded away from 1/2 by

some polynomially small fraction).
Theorem 5:

BPAC® , RAC® C | JDSPACE ((logn)*)

and

BPAC® , RAC® C | UDTIME (2%°8")
[

Denote by #DNF the problem of counting the number of satisfying
assignments to a DNF formula, and by Approx-#DNF the problem of com-
puting a number which is within a factor of 2 (or even 1+n~%) from the
correct value. Clearly #DNF is #P complete. However, our results imply

that:
Corollary 3.1: Approx-#DNF € DTIME (21087

Proof: Karp and Luby [KLu] give a probabilistic algorithm for Approx-
#DNF. It is not difficult to see that this algorithm can be implemented by
RAC? circuits of depth 4. |l
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3.4. Random Oracles

The existence of our pseudorandom generator for constant depth circuits
has implications concerning the power of random oracles for classes in the

polynomial time hierarchy.

Let C be any complexity class (e.g. P, NP, ...). Asin [BM] we define the

class almost —C to be the set of languages L such that:
Pr[LGCA] =1

where A is an oracle chosen at random. The class almost—C can be

thought of as a natural probabilistic analogue of the class C.

The following theorem is well known ([Ku], [BG)), and underscores the

importance of BPP as the random analogue of P:
Theorem: BPP=almost-P [l

Babai [Ba] introduced the class AM. An AM Turing machine is a
machine that may use both randomization and nondeterminism, but in this
order only, first flip as many random bits as necessary and then use non-
determinism. The machine is said to accept a language L if for every string
in L the probability that there exists an accepting computation is at least
92/3, and for every string not in L the probability is at most 1/3 (the proba-
bility is over all random coin flips, and the existence is over all nondeter-
ministic choices). The class AM is the set of languages accepted by some
AM machine that runs in polynomial time. The randomization stage of the
computation is called the "Arthur" stage and the second stage, the nondeter-
ministic one is called the "Merlin" stage. For exact definitions as well as

motivation refer to [Ba], [BaM], also see [GS].

[BaM] and [GS] raised the question of whether AM =almost-NP? This

would strengthen the feeling that AM is the probabilistic analogue of NP.
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Our results imply that this is indeed the case.
Theorem 6: AM=almost-NP.

Proof: We first show that AMCalmost —NP. Given an AM machine we
can first reduce the probability of error such that for a given £¢>0, on any
input of length n, the machine errs with probability bounded by e4™". An
NP machine equipped with a random oracle can use the oracle to simulate
the Arthur phase of the AM machine. For any given input, this machine
will accept with the same probability as the AM machine. By summing the
probabilities of error over all possible inputs we get that the probability that
this machine errs on any input is at most €. Since ¢ is arbitrary we get that -

AMCalmost —NP.
We will now prove almost —-NPCAM. We first prove the following fact:

Fact: If L € almost-NP then there exists a specific nondeterministic oracle
Turing machine M that runs in polynomial time such that for an oracle A

chosen at random:

PrlM# accepts L|=2/3

Proof (of fact): Since there are only countably many Turing machines,
some fixed Turing machine accepts the language L on non-zero measure of
oracles. By using the Lebesgue density theorem, we see that it is possible to
fix some finite prefix of the oracle such that for oracles with this prefix the
Turing machine accepts L with probability at least 2/3. Finally, this prefix

can be hard-wired into the Turing machine.

Up to this point we have only used the standard tools. The difficulty
comes when we try to simulate M (with a random oracle) by an AM
machine. The difficulty lies in the fact that the machine may access (non

deterministically) an exponential number of locations of the oracle, but AM



28

computations can only supply a polynomial number of random bits. We will
use our generator to convert a polynomial number of random bits to an

exponential number of bits that "look" random to the machine M.

Let the running time of M be nk. We can view the computation of M as
a large OR of size on* of all the deterministic polynomial time computations
occurring for the different nondeterministic choices. Each of these computa-
tions can be converted to a CNF formula of size 2" gver the oracle entries.
Altogether the computation of M can be written as a depth 2 circuit of size

k .
at most 22* over the oracle queries.

Our generator can produce from 2n1% random bits 22" bits that look
random to any depth 2 circuit of this size. So the simulation of M on a ran-
dom oracle proceeds as follows: Arthur will flip 2n1% random bits, and then
M will be simulated by Merlin; whenever M makes an oracle query, the
answer will be generated from the random bits according to the generator.
Note that this is just a parity function of some subset of the bits, which is
clearly in P. Since the generator "fools" this circuit, the simulation will
accept with approximately the same probability that M accepts on a random
oracle. |l

Exactly the same technique suffices to show that for any computation in
PH, the polynomial time hierarchy ([St], [CKS)), a random oracle can be
substituted by an "Arthur" phase. Applying to this Sipser’s [Sil] result that
BPPCZ,N 11, allows simulation of the "Arthur” phase by one more alterna-

tion and thus we get:

Theorem 7: almost-PH = PH Hi
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3.5. BPP and the Polynomial Time Hierarchy

In [Sil] Sipser showed that BPP could be simulated in the polynomial
time hierarchy. Gacs improved this result and showed simulation is possi-

ble in 3515 In this section we give a new simple proof of this fact.
Theorem 8 (Sipser, Gacs): BPP C 2, IL,.

Proof: It suffices to show that BPPCZ,. The main idea is that a pseudoran-
dom generator that stretches O(logn) random bits to n pseudorandom bits
can be constructed in =,. To simulate BPP then, a £, machine will then

run over all of the polynomially many possibilities of the random seed.

To get such a pseudorandom generator, using our construction, we only
need a function with exponential hardness (specifically we want a function
on O(logn) bits with hardness which is Q(n?). Such a function can be found
in £, A simple counting argument shows that such a function exists
(although non uniformly), and verifying that a function on Oflogn) bits has
indeed a high hardness can easily be seen to be in Co-NP. (The function
can be described by a polynomial size table, and the verification can be done

by nondeterministically trying all circuits of size n?).

Thus the simulation of BPP will proceed as follows: (1) Nondetermin-
istically guess a function on O(logn) bits with high hardness (first alterna-
tion). (2) Verify it is indeed hard (Second alternation). (3) Use it as a basis

for the pseudorandom generator, using our construction. (4) Try all possible
seeds. |l

Actually, this proves a slightly stronger statement, namely that
BPPCZPPNP  (ZPPNP is the class of languages that have polynomial time,

randomized, zero error algorithms, using an NP-complete oracle).
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3.6. Randomness and Time vs. Space

Our generator is based on the assumption that there exists a function
in, say, DTIME(2™), that can not be approximated by small circuits. In this
section we show that if this assumption does not hold then some nontrivial

simulation of time by space is possible.

This result shows that either randomized algorithms can be simulated
deterministically with subexponential penalty, or that, in some sense, an
algorithm that runs in time T can be simulated in space T!~¢ for some
¢>0. This simulation is significantly better than the best known simula-
tion of time T in space T/logT due to Hopcroft, Paul and Valiant [HPV]. A
‘result of a similar flavor, giving a tradeoff between simulation of of random-
ness by determinism and of time by space, was proved using different
methods by Sipser [Si2] under an unproven assumption regarding certain

strong expanders.

Consider the following function: On input <M ,x,t> the output is a
representation of what Turing Machine M does on input x at time ¢. Where
the representation includes the state the machine is in and the location of
the heads. Moreover, consider a language L which encodes this function,

and let L, be the restriction of L to strings of length n.
Hypothesis H1(e,n): There is a circuit of size o21=6en that computes L,,.

We will show that if hypothesis H1 is true then some non trivial simu-
lation of time by space is possible, and if it is false then we can use our con-

struction to get a pseudo random bit generator.

Lemma 3.2: I'f Hypothesis H1(g,n) is true for some £¢>0 and all sufficiently
large n then for some constants C>1 and €>0, and for every function

T(n)=QUC™), DTIME(T (n))CDSPACE (T ¢(n)).
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(Compare with [KLi])

Lemma 3.3: If for every e¢>0, Hypothesis H1(e,n) is false for all
sufficiently large n, then for every ¢>0 and every ¢ >0, there exists a poly-
nomial time generator that converts n° truly random bits to n bits that look

random to any circuit of size n°.

Proof (of lemma 3.2): We will show that (1) if for some ¢>0 Hypothesis
H1(e,n) is true for all n then LE€DSPACE(21~27) and that (2) this implies

the lemma.

(1) A space-efficient algorithm for L is as follows: The machine tries all
circuits of size 219" for each one it checks whether this is indeed the
circuit for L. Once it finds the correct circuit, it uses it to look up the
answer. Note that checking whether the circuit is the correct one is
easy, since it only needs to be consistent between consecutive accesses

to the same cell.

'(2) Consider any Turing machine M running in DTIME(T(n)) where
T(n)=2%". The result of the Turing machine can be derived by look-
ing whether <M ,x,T(n)>€L. This can be done is DSPACE(24~9m)
where m is the size of the input which in this case is n +¢t(n)+ K, where
K is the length of the description of M. It can be easily checked that

the statement of the lemma follows. |l

Note: Actually a stronger statement can be made, as under the assumption
H1 the simulation mentioned can even be performed in

3, —TIME(T~%(n)).

Proof (of lemma 3.3): First note that if H1(e,n) is false then every circuit
of size 27’2 errs on at least 27 ¢" fraction of the inputs, since otherwise there
would be at most oll—=en orrors which could be corrected by a table. Next,

Yao's Xor lemma (lemma 2.2) allows amplification of the unpredictability by
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Xoring disjoint copies of L. By taking 2ken disjoint copies (for an appropri-
ately chosen constant k), a function with arbitrary large polynomial hard-

ness can be reached, which can be used as the basis for our generator. |
The exact statement of the theorem we obtain is thus:
Theorem 9: One of the 2 following possibilities holds:

(1) BPPC " DTIME@2™).

e>0
(2) There exist e>0 and C>1 such that for any function T(n)=Q(C"),
every language in DTIME(T(n)) has an algorithm for it that for
infinitely many n, runs in SPACE (actually even 2, —TIME) T1=8(n)

on all inputs of length n.

Proof: If for every €>0 Hypothesis H1(e,n) holds for only finitely many n
then lemma 3.3 assures the existence of pseudorandom generators stretch-
ing n® bits to n bits, and by lemma 2.1 (1) is true. Otherwise the algorithm
in the proof of lemma 3.2 will work for some £¢>0 and infinitely many n

which implies (2). |}
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CHAPTER 3:

Multipartg Protocols
an

Pseudorandom Generators for Logspace

1. Introduction

This chapter describes how to construct pseudorandom generators for
Logspace. The main combinatorial tool we use is a certain multiparty com-
munication game.

Section 2 describes the multiparty communication game and proceeds to
give lower bounds on the communication complexity of a certain function.

We conclude this section by mentioning some results related to our bounds,

In section 3 we define and discuss pseudorandom generators for
Logspace. We then show how to use the lower bounds given in section 2 in
order to construct them. We finally give some applications of our pseu-

dorandom generators.

2. Multiparty Communication Complexity
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2.1. Definitions

Chandra, Furst and Lipton (ICFL)) introduced the following multiparty
communication game: Let f(x,, - - - ,x;) be a Boolean function that accepts &
arguments each n bits long. There are k parties, each having unlimited
computational power, who wish to collaboratively evaluate f. The i’th party
knows all the input arguments except x;. They share a blackboard, viewed
by all parties, where they can exchange messages. The objective is to

minimize the number of bits written on the board.

The game proceeds in rounds. In each round some party writes one bit
on the board. The last bit written on the board is considered the outcome of
the game and should be the value of f(xy, - - ,x;). The protocol specifies
which party does the writing and what is written in each round. It must
specify the following information for each possible sequence of bits that is

written on the board so far:

(1) Whether the game is over, and in case it is not over, which party writes
the next bit: this should be completely determined by the information

written on board so far.

(2) What that party writes: this should be a function of the information
written on the board so far and of the parts of the input that the party

knows.

Definition: The cost of a protocol is the number of bits written on the
board for the worst case input. The multiparty communication complexity of

f, C(f), is the minimal cost of a protocol that computes f.

We will also be interested in the number of bits needed in order to com-

pute f correctly on even most inputs.
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Definition: The bias a protocol P achieves on f, B(P,f), is defined to be:

B(P.f) =

prlp( =iz )|-Prlpe= fo)
Where x =(xq, - * - ,X}) is chosen uniformly over all k-tuples of n-bit strings.

Definition: The e-distributional communication complexity of f, C f) is

the minimal cost of a protocol which achieves a bias of at least e on f.

Let us just mention that it is possible to define natural probabilistic or
nondeterministic analogues of the multiparty communication complexity.
Although we will not be concerned with them, the interested reader may
notice that our techniques are strong enough to give lower bounds for all
these complexity measures. Also, it is possible to consider the average com-
plexities, and our techniques suffice to bound the average complexities as

well.

2.2. Previous Work

For the special case k=2, this multiparty game is exactly the game
standard in communication complexity theory, where one party knows x;,
and the other x,. This case has been extensively investigated in many
different contexts and many different lower bounds appear in the literature
(IAUY], [Y1], [BFS], and many more). The distributional communication
complexity has been studied as well. Yao [Y3] first considered the distribu-
tional communication complexity and proved a lower bound of Q((logn)?) for
the "inner product mod 2" function. Vazirani [Va] improved this bound to

Q(n/logn), and Chor and Goldreich [CG] improved it to Q(n).
For other values of k& less is known. Chandra, Furst and Lipton [CFL]
Considered the complexity of the function Ey defined by En(xq, "« " xp) =1

iff x,+xo+ - +x,=N. They showed that for k=3 Ey has a



36

communication complexity of 2(VlogN) and for general k they only suc-
ceeded in showing that the complexity is w(1). For the distributional com-

munication complexity, no previous lower bounds were known.

2.3. Cylinder Intersections

In this subsection we study the basic structure that a multiparty proto-
col induces on the set of possible inputs, the set of k-tuples.

Consider a multiparty protocol for evaluating a function. For every
possible k-tuple x=(xy, - ,x) a certain communication takes place, and
some string is written on the board. The k-tuples may be partitioned
according to the string that gets written on the board.

Definition: Let s be a string and P a multiparty protocol. The s-
component, Xp ;, is defined to be the set of k-tuples x €({0,1}*)* such that on
input x the protocol P results in exactly s being written on the board.

The s-components have a very special structure, which we will now
specify.

Definition: A subset S of k-tuples is called a cylinder in the i'th dimen-
sion, if membership in S does not depend on the i’th coordinate. A subset of
k-tuples is called a cylinder intersection if it can be represented as an inter-

section of cylinders.
Lemma 2.1: For any protocol P and string s, Xp;is a cylinder intersection.

Proof: Define S; to be the set of k-tuples that is consistent with the com-

munication pattern from the i’th party point of view. Le.
S, ={(xy, - - ,xp) : for some x;" (xq, " - X xp)€Xp g

It is clear that for each i, S, is a cylinder in the i’th coordinate. We will
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show that Xp ;=(NS;.
i
It is clear that Xp C(NS;, it remains to show that (MS;CXp,. Let
i i

(x1, - x)ENS;, then for every i there exists x; such that
i

(x1, -, -+ x)€Xp ;. We claim that on input (xy, - - - ,x;) the protocol
will still write s on the board. The reason is that all through the communi-
cation process the i'th party cannot distinguish between the input of
(xq, - -+ ,x,) and the input of (x, - - - \x;°, - - - ,x). Thus, the bits written on

the board will never deviate from s. i

Given a protocol which computes a function f, the value of f must be
constant over any single s-component. Our lower bounds will be based upon
the fact that for our particular functions f, any cylinder intersection must

contain approximately the same number of 1's and 0’s of the function.
Definition: Let f:({0,1}*)*—{0,1} be a boolean function. The discrepancy of
fis

I'H = mgx Pr[f(x)zl and xES]—Prlf(x)=0 and xES”

where S ranges over all cylinder intersections and x is chosen uniformly

over all k-tuples.

Lemma 2.2: For any function f:

1
C(f)=log, T

and

C.(f)=log,

_&_
I
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Proof: Consider a protocol P achieving a bias of ¢ on f. We can compute
the bias of P on f as the sum of the biases achieved on the different s-

components.

=

Bias(P.,f) =

Pr[P(x) = f‘(x)] —Pr[P (x) % f(x)]

Pr[P(x)=f(x) and xEXp’s] —PrlP(x)if(x)‘and xEXp‘s]

2

where s ranges over all the possible strings that may be written on the

board by the protocol.

For any x€Xp ;, P(x) was defined to be the last bit of s, thus

Pr[P(x)-‘:f(:c) and xEX’P!S] —Pr[P(x):tf(x) and xGXp,s]

Pr[f(x)=1 and xEXp,s}-’Pr[f(x)ZO and xGXP!S]

Since Xp; is a cylinder intersection, we get that the last quantity is
bounded from above by I'(f). Thus, if M is the number of different possible

strings that may be written on the board by the protocol P, we get that
Bias(P,f) = M-T(f)

The statement of the lemma follows since to produce M different strings

requires at least log,M bits. |

2.4. A lower Bound for Generalized Inner Product

In this subsection we prove a lower bound on the multiparty communi-

cation complexity of the generalized inner product.

Definition: The %k -wise generalized inner product function on n bit

strings is defined by

GIP, ylxy, - xp)=1 off the number of locations in which all of the
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x;'s have 1 is odd

We will prove a lower bound on the communication complexity of GIP
by giving an upper bound to the discrepancy. We first introduce a slightly

modified notation to facilitate easier algebraic handling.
Definition: f(xy,---,x,) is 1 if GIP(xy,: - ,x)=0 and -1 if
GIP(xl, e ,xk)=1.

Definition: Let

Ak(n)= max E f(xl’ . :xk)q’l(xl’ C e ’xk) .. ‘Pk(xh e :xk)

o alry
Where the maximum is taken over all functions (pi:({O,l}")k—>{0,1} s.t. @;

does not depend on x;.

The E stands for expected value over all the possible 2"t choices of
xy, - - ,x,. Note that A*(n) is exactly [(GIP, ,), the discrepancy of the k-

wise inner product function on n-bits.

Lemma 2.3:

A"(n)s‘u,;‘

o . \ / 1+
where p, is given by the recursion: £, =0, and p, = —

Note: It can be shown by induction that g, <1-4!"* which is approxi-
mately e 47

Proof: We proceed by induction on k. It is clear that A'(n)=0, expect for

the case n =0, where we get 1 (let us define 0°=1 for this paper).

Let k=2, Since ¢, does not depend on x,,

Ak(n) < E f(xl’ . rxk)‘pl(xlv R ,xk) Ce (Pk—-l(xlv C e ’xk)

X107 K- hX

In order to estimate the right-hand side, we will use the following version of
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the Cauchy-Schwartz inequality:
Cauchy-Schwartz inequality: For any random variable z: E[z)2<E[z2.

Thus our estimate is:

1172
Ak(n) = [ E Eflxq, - Xp)@ylxy, - Xp) Pr_1{x, Xp) 2 =

Xy, " Xe-14En

1172
=[ E Flxy, mp ey, X —DPLPL  PE— 1Pk -1
1

uu,Xy, o Xe-

where @ stands for @;(xy, -+ * ,Xx—1,4), and @} for @;(xy, - - Xp—1,0).

To estimate this we will need the following observation: For every par-
ticular choice of u and v, flxy, - -, Xu_pu)f(xy, " ,%p_1,0) can be
expressed in terms of the function f on k—1 strings of a possibly shorter
length. Inspection reveals that flxy, - = %1, u)f(xy, - Xp-1,0) is simply
f(zy, e 2, —1) where z; is the restriction of x; to the coordinates j such that
uj I'vj. We will now view each x;’ as composed of two parts: z; and y;, where
z; is the part of the x where u;=v;, and y; the rest (this is done separately
for every u,uv).

For every particular choice of u,v and consequently y;, - -,y -1, We

define a function of the "z-parts™:

UU,y, Yo
i 1 [y l(zl' R ’zk—l) = (pi(xl, e ,xk—l’U)(pi(xlv N yxk-—l’U)

where the z;’s are obtained by the concatenation of the corresponding y; and

z;. We can now rewrite the previous estimate as

, ‘ 1/2
Ak(n) S |{E  E  §*Iv

U yn e

where S¥ Y7177 15 defined by

u.vy.. 7
S J ) —
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UT10% SYIRRS JO L2105 RTINS U
E f(zlr"'vzk—l)£1 1 k 1(217""212—1)"' k—-ll k 1(21""’212—1)
C Lk~

Now, S“Y71t"""%-1 can be estimated via the induction hypothesis.

Indeed note that £ 7" " 7*-' does not depend on z;.. Thus the previous
i 14

estimate of A*(n) is bounded by

U0y, "t -1

1/2
Ak(n>s[ E A Ym, )| =

172

E [Ty

U,U,yl- RS /T |

=

Where m, , is the length of the strings z;, which is equal to the number of

u,v
locations j such that u;=v;.
Since u and v are distributed uniformly in {0,1}", m, , is distributed

according to the binomial distribution. for any constant m, the probability

that m, ,=m is exactly 27", Thus the previous estimate is given by:

m

: 1/2
Ak(n) < l i 'nlz—np’m =
= m k-1
m=0

1/2
=[2—"[1+#k—1]n] = pi
Which completes the proof of the lemma. fli}

Combining this bound with lemma 2.4 we get:

Theorem 1:

CS[GIP,M] = Q

n
n +logq€
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2.5. Further Results

Our techniques and bounds have several other applications and implica-
tions. Since these results are not directly related to pseudorandom genera-
tion, we will only describe them briefly here. Complete definitions, discus-

sion and proofs appear in [BNS].
Other lower bounds

Lower bounds on the multiparty communication complexity can also be
proved for other functions. In particular, bounds which are slightly stronger

than in Theorem 1, are proven for the following function:

Definition: The quadratic character of the sum mod p function is:

QCpplxy, -+ - xp) =1 iff x,+ - +x, is a quadratic residue mod p

Theorem: For any n-bit long prime number p:

ce[Qcp,k] = Q %+logze]

Time-Space tradeoffs for Turing machines

Multiparty protocols are a general model of computation, and lower
bounds on their complexity may be used to obtain lower bounds in other
models. Our lower bounds for the generalized inner product function imply

the following time-space tradeoff for general Turing machines:

Theorem: Any k-head Turing machine computing the &+ 1-wise general-
ized inner product function on n-bit strings requires a time-space tradeoff of
TS =Q(n?).

This bound is tight, and significantly better than the previously known
tradeoffs for k-head Turing machines ([Kal, {(GuS], [DG)).
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Branching programs

Chandra Furst and Lipton [CFL] observed how lower bounds for Mul-
tiparty protocols can be used to prove length-width tradeoffs for branching
programs. Using different techniques, related to those used in [AM], and
relying on our lower bounds for multiparty communication complexity, it is
possible to obtain length-width tradeoffs for branching programs. These
bounds also imply new lower bounds on the size of branching programs and

on the size of boolean formula computing certain functions.

3. Pseudorandom Generators for Logspace

In this section we show how to use our lower bounds for multiparty pro-
tocols in order to construct pseudorandom generators for Logspace (or gen-

erally any small-space machines).

3.1. On Randomized Space

There are quite a few subtle points to consider when defining random-
ized space bounded classes. We will present here the "correct" definition.

For an overview of the subtleties involved refer, e.g., to [].

Definition: A randomized, space s(n) Turing machine is defined to have

the following properties:
(1) The Turing machine runs in space s(n) on any input of size n.
(2) The Turing machine may flip a fair unbiased coin at any stage.

(3) The Turing machine may never get into an infinite loop, for any
sequence of coin flips. In particular, with probability 1 it terminates in

time exp(s(n)) on any input of length n.
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A Turing machine accepts a language L with one-sided error if for
every x€L the machine accepts with probability of at least 1/2 and for any x
not in L it rejects with probability 1. A Turing machine accepts a language
L with two-sided error if for any x€L, the Turing machine accepts with pro-
bability of at least 2/3, and for any x not in L it rejects with probability of

at least 2/3.

RSPACE(s(n)) is the class of languages accepted with one-sided error
by a space s(n) randomized Turing machine. BPSPACE(s(n)) is the class of
languages accepted with two-sided error by a randomized space s(n) Turing

machine. RL is RSPACE(O(logn)), and BPL is BPSPACE (O(logn)).

We want to focus attention on condition (2), the kind of access the
machine has to the random bits. As defined, the randomized Turing
machine has access to the random bits one by one. When it wants a random
bit it can flip a coin, but in no case can it go "back" and review the result of
a previous coin flip. Any bit that it wishes to "remember" must be kept in
the limited storage. This restriction that the machine does not have multi-
ple, 2-way, access to the random bits is essential, as, for example, random-
Logspace machines with 2-way access to the random bits are not even
known to be in deterministic polynomial time (in contrast to RL and BPL
being in P).

It is interesting to notice that the same apparent difference in power
between one-way and two-way access holds also for nondeterministic compu-
tation. In the "correct" definition of NL, the Turing machine has one-way
access to the nondeterministic bits. If the definition is changed to allow
two-way access to nondeterministic bits, then the machines turn out to have

the full power of NP.
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3.2. Space Bounded Statistical Tests

We are interested in producing pseudorandom sequences that might be
used instead of truly random sequences in space bounded computations.
Thus the statistical tests that must be passed by the generator are the ones
that can be performed by a space bounded Turing machine on its random
source. Note that this class of tests is a proper subset of the tests that may

be performed by space bounded machines on their input tape.
We will allow non-uniform statistical tests as well.

Definition: A space-s(n) statistical test is a deterministic space s(n) Turing
machine M, and an infinite sequence of binary strings a=(ay, " * " ,@p,-)
called the advice strings. We require that the length of a, is at most
exp(s(n)).

The result of the test on input x, M%(x), is determined as follows: The
string a,, where n is the length of x, is put on a special read-only tape of M
called the advice tape. The machine M is run on the advice tape, treating it
is a normal input tape. The machineAhas the following one-way mechanism
to access x: at any point it may request the next bit of x (in the same
fashion that a randomized Turing machine may request the next random

bit).

Notice that these tests have considerable power. We next give some
examples of operations that may be performed and combined by Logspace

tests:

Consider the input as partitioned into consecutive words, each of some
fixed small length (O(logn)). The following questions may all be answered

by a Logspace test.
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e  Count the number of times a certain value appears.
«  Compute the average value of a word.
«  Compute the standard deviation, or higher moments.

« Compute any of the previous measures for an arbitrary subset of the
words, or of the bits.
In fact the vast majority of the statistical tests described by Knuth

([Kn)) lie in this class.

3.3. Definition of Pseudorandom Generators for Space Bounded
Computation

A Pseudorandom generator for space s(n) must produce strings that
look random to any space s(n) statistical test.
Definition: G={Gn:{0,1}l(")—->{0,1}”} is called a pseudorandom generator for
space s(n), if for every polynomial p(n), all large enough n, and every space
s(n) statistical test M%,

1
p(n)

Pr[M“(y) accepts —Pr[M“(G(x)) accepts” <

where y is chosen uniformly in {0,1}*, and x uniformly in 0,1},

The first observation we should make when trying to construct a pseu-
dorandom generator for space bounded Turing machines is that without loss
of generality we can restrict the class of statistical tests that have to be
passed. In a similar fashion to Yao’s ([Y2]) results for general (polytime-
hard) pseudorandom generators, we show that any generator that passes all

space s{(n) prediction tests will be a pseudorandom generator for space s(n).

Definition: {G,:{0,1}""'—{0,1}"} passes all space s(n) prediction tests if for

every polynomial p(n), every large enough n and every space s(n) statistical
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test M?, and every 1=i1=<n,

Pr[M“(ﬁrst i —1 bits of G(x)) = i'th bit of G(x)]—l

2 p(n)

Where x is chosen uniformly in {0,1}"".

Lemma 3.1: G is a pseudorandom generator for s(n) space iff it passes all

space s(n) prediction tests.

Proof: Similar to Yao’s proof. [l

3.4. Description of the Generator

Our generator is based on a function f that takes & arguments each r

bits long, and has high multiparty communication complexity.
The generator

INPUT: the input to the generator will consist of ¢ boolean strings, each r
bits long (all together rt random bits).

OUTPUT: each output bit will be of the form f(S) where S is some cardi-
nality k subset of the input strings. The order is extremely important, and
we will take all the k-subsets in the colexicographic order. (Le. f(S))

appears before f(S,) if the latest string in the symmetric difference of S,

t
and S, is in S,y.) All together there are [k output bits.

Lemma 3.2: Any Turing machine attempting to predict any bit of the out-
put of the generator from the previous bits with bias &, requires at least

space of C (f)/k.

Proof: Assume not, we will give a multiparty protocol that predicts f with a
bias of € that uses less than C(f) bits of communication. Suppose f(S) can

be predicted by the Turing machine, where S={xi‘,xi2,---,xiJ, and
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i;>ig> -+ >ip. We will now show how k parties, the j'th knowing the
values of all x;’s in S except x;, can predict flx; %, -« %), with low com-
munication.

By an averaging argument, it is possible to fix all the other x;’s to con-
stants in some way, while preserving the prediction bias of the Turing
machine. Thus we can assume w.l.o.g that all the other x;’s are fixed and

known to all the parties beforehand.

The parties will simulate the Turing machine running on the first i —1
bits of the output of the generator. The only problem with the simulation is
to determine the input bits. The first party can simulate the Turing
machine by itself until the first time any input involving x; comes along.
At this point the first party sends the total state of the Turing machine to
the second party, who continues with the simulation. Note that this
requires only s(n) bits of communication. The second party can now con-
tinue the simulation until x;, comes along. And now the second party sends
the state of the machine to the third party which now continues the simula-

tion.

It is important to notice that, because of the ordering of the subsets we
chose, by the time the k’th player begins the simulation, he can continue it
all the way until the prediction of the i’th bit, f(S). The total number of bits

communicated is (k—1)s(n). B
We can now state the main theorem we reach in this section:
Theorem 2: For some constants c;,co>0, there exists (an explicit) pseu-

dorandom generator, G‘—'{Gn:{O,l}““)ﬁ{O,l}"}, for space 27 logn  where

Viegn

[(n)=2" Moreover, G can be computed by a Logspace Turing

machine (having multiple access to its input bits).
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Proof: We use the construction of the generator described in this section,
with f being the "generalized inner product” function, k=O(\/Hg;), t=2k,
and r=exp(O(\/1_o_g—n)). Theorem 1 guarantees the high communication com-
plexity of this function, and thus lemma 3.2 shows that the generator passes

all prediction tests, and lemma 3.1 concludes that it is a pseudorandom gen-

erator. i

3.5. One way vs. Two-way Access to Randomness

Our generator sheds some light on the difference between one-way and
two-way access to the random bits given to Logspace machines. We show
that 2-way access is better, at least in the sense that fewer random bits are
necessary.

Corollary 3.3: A randomized Logspace Turing machine with one-way
access to the random bits that uses a polynomial number of random bits
may be simulated by a randomized Logspace machine with 2-way access to

the random bits that uses only 20 Y1°6® random bits.

Proof: Our generator can be implemented by a Logspace machine having
2-way access to the random bits. The generator can be easily run "on the
fly", and generate one bit at a time to supply to the original, simulated

machine, whenever it flips a coin. |

3.6. Universal Sequences

One of the most interesting subclasses of Logspace statistical tests are
those related to walks on graphs. Given a graph H in the advice tape, a
Logspace machine can treat the input to the test as directions for a walk on
the graph and perform the walk. Thus the output of a pseudorandom gen-

erator for Logspace will behave like a random walk on any graph. We use
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this fact in order to construct universal traversal sequences.

Definition: A graph is called (d,n)-labeled if it is a d-regular graph on n
vertices and the edges adjacent to each vertex are labeled by a permutation
of {1, - - - ,d} (an edge may be labeled differently at each of its 2 vertices). A
string wefl, - - - dJ is said to cover a (n,d)-labeled graph, if w, when
treated as directions to a walk on the graph, visits all vertices of the graph,

whatever the starting vertex is.

Definition: A string wefl, - - d} is said to be a (n,d) universal traversal

sequence if it covers every (d,n)-labeled graph.

[AKLLS] first showed that a random string of length O(d%ndlogn) is a
(d,n)-universal sequence with high probability. Results shown in [KLNS]
imply that a random string of length O(dn®logn) actually suffices. How-
ever, explicit construction of short universal sequences is more difficult.
Explicit constructions are known for two special cases: for d =2 an explicit
construction is known of polynomial length universal sequences ([Is]); and
for d=n an explicit construction of length n'g" is known ([KPS]). Our
pseudorandom sequences allow us to give (d,n)-universal sequences of

Viegn)

length 22% for all values of d.

We will be using the output of the generator as a random walk. A
technical issue that should be mentioned is that we need to convert the
binary string which is the output of the generator to a string in {1, ---.,d}
One way to do this is to take every 5logn bits consecutive bits modulo d.
This way a uniform distribution on binary string will be converted to an

almost uniform distribution on walks.
Lemma 3.4: Let G={Gn:(0,1}l(’”—>{0.1}"‘} be a pseudorandom generator for

Logspace. Ther for every (d,n)-labeled graph H, Gix) (converted as men-

tioned) will cover H with probability 1t least 1/2 iprobability taken over a
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random choice of x).

Proof: The description of H can be put in the oracle, and then a Logspace
machine can perform the walk on H given by its input. A truly random
string y of length n* converted in this manner will result in a nearly uni-
formly random walk on H, and as such will visit every vertex, starting from
every vertex with probability of at least 1— 1/3n2. A Logspace machine can
determine whether vertex i is reached in a walk starting from vertex j, and
thus for every i, the probability that G(x) (converted to a walk) will reach
vertex i starting from vertex j, should be at least 1—1/2n2%. Thus the pro-
bability that there exist i,j such that the walk from i does not reach j is at
most 1/2. |l

Lemma 3.5: Let G={Gn:{0,1}“")—»{0,1}"‘} be a pseudorandom generator for
Logspace. Then the string achieved by the concatenation of G(x) for all pos-
sible 2/ values of x (and converted as mentioned) is a (d,n) universal
traversal sequence.

Proof: For each (n,d)-labeled graph H, half the substrings of the form G(x)
will cover H. Thus when one of these substrings is reached, whatever vertex

the walk is in, H will be covered by it. i
Applying our generator to this lemma we get:

Theorem 3: For every d and n, there exists an (explicitly given) (d,n)
Viegn»

universal traversal sequence of length 92”7 Moreover the sequence can

be constructed by a Turing machine running in space logarithmic in the

length of the sequence. |
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