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Abstract

This work presents an algebraic theory for linear, time-invariant multiinput-multioutput

control systems. Due to the algebraic setting, this theoryapplies to lumped as well as distributed,

continuous-time aswell asdiscrete-time systems. The fundamental problem of stability, the class

of all stabilizable plants, the class of all stabilizing compensators and all achievable closed-loop

input-output maps are solved for control system configurations with full output-feedback or

decentralized output-feedback compensators.

The general algebraic setting and the factorization approach are explained in Chapter Two;

the contribution of this chapter is in collecting and simplifying the fundamental results used in

algebraic systemtheory andpresenting new results in coprime factorizations.

Using coprime factorizations of the plant and the compensator, the stability of system

configurations with full compensators are considered in Chapter Three; the first configuration is

the standard unity-feedback system in which the plant and the compensator each have one

(vector-)input and one (vector-)output and full feedback is allowed from the plant output to the

compensator. The second configuration represents the most general interconnection of two sub

systems: the plant and the compensator each have two (vector-)inputs and two (vector-)outputs;



full feedback is allowed from one of the plant outputs to one ofthe compensator inputs.

In Chapter Four, the unity-feedback system is constrained to have a decentralized compen

sator, resulting in a block-diagonal structure for the compensator; the two-channel decentralized

compensation case is considered in detail and the results are extended to m-channel decentralized

control systems. The most important contributions of ChaptersThree and Four are the parametri-

zation of all stabilizing full and decentralized compensators and achievable input-output maps

for each compensation scheme. All compensator design problems aimed at satisfying perfor

mance goals (disturbance rejection, asymptotic tracking, robust performance, sensitivity minimi

zation, //°°-norm minimization, constrained optimization problems) rely on this parametrization

of all stabilizing compensators.

Research sponsored by the National Science Foundation Grant ECS-8500993.
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Chapter One

Introduction

This work presents a general algebraic theory for linear, time-invariant (l.t-i), multiinput-

multioutput (MIMO) control systems. This theory applies to lumped as well as distributed,

continuous-time as well as discrete-time systems. The focus here is on three feedback

configurations: The standard unity-feedback system S(P,C), the more general configuration

Z(/>, C) with two (vector-)input two (vector-)output plant and compensator, and the two-channel

decentralized feedback configuration S(P,Cd), with extensions to the m-channel decentralized

configurationS(P,Cd)m.

A unified, straightforward algebraic theory is developed in this workstarting with the fol

lowing general idea: Suppose that we are given an #i; -input n0 -outputl.t-i plantP; then there is

an n0 -input n,- -output compensator C that stabilizes P in the unity-feedback configuration

S(P, C). In fact, itis well-known that we can start with aright-coprime factorization NpDp~x or a

left-coprime factorization D~xNp ofP and parametrize the class ofall stabilizing compensators

for P in this configuration. Now we may ask:

(i) What if we started with a bicoprime factorization NprD~xNpi of P ? Can we convert

NprD~xNpt to either NpDp~x or Dp lNp and thus use the well-known parametrization ofthe

class of all stabilizing compensators?

(ii) What if the n0 xn,- matrix P were a subblock ofan(rj,- + nt )-input (y\0 + n0 )-output plant PI

Can we stabilize P by only allowing feedback from the n0 outputs to the «,- inputs of P ?

What is the class of all (r\0 + «0)x(T|<- + nfi plants P that can be stabilized by such partial

feedback in the configuration Z(/\ C) ? What is the class of all stabilizing (n/ + n0)-input

Cn/ + rt,-)-output compensators C in the configuration Z(P, C) ? How many free design



parameters does C have? What are the achievable input-output (I/O) maps of I(P, C) ?

Can we diagonalize the map from the external-input to some output ofP while preserving

the stability of I(P, C) ? After achieving stability and diagonalization, do we still have free

parameters to satisfy other design objectives?

(iii) What if the output-vector of P is partitioned into n0 \ local outputs y \ and nQ% local outputs

V2 and the input-vector of P is partitioned into tin local inputs u\ and n^ local inputs ui,

and feedbackis allowedonly from y \ to ui and from y 2to 1*2»resulting in ablock-diagonal

compensator structure? What is the class of all P that can be stabilized by such decentral

ized output-feedback? Canwe parametrize the class of all stabilizing decentralized compen

sators Cd ? How do we generalize decentralized stabilization to an m-channel plant P ,

with (local) outputsy \,..., ym and (local) inputs u1,..., um ?

The set of all stabilizing compensators and achievable performance in various feedback

configurations has attracted much attention; the characterization of all possible designs shows

exactly what the limitations are on achievable performance. Stabilizing compensators were

characterized in [You.l] for the lumped continuous-time and discrete-time cases. Later, an alge

braic formulation was givenin [Des.l] to include the lumped and distributed continuous-time and

discrete-time cases. Using algebraic tools, [Zam.l] considered stable plants, characterized all sta

bilizing compensators and established bounds on closed-loop performance. These methods were

used for design in [Des.2]. Further results in parametrization were given in [Per.l], [Che.l],

[Sae.l], [Ohm.l] and [Vid.2]; a general algebraic design procedure, which enables design with

non-square plants and controllers and extends the parametrizations of [You.l] and [Per.l], was

obtained in [Des.3]. An excellent review of research in this area and related work until 1985 can

befoundin[Vid.l].

Various feedback configurations have been used to satisfy stability and other performance

specifications. In the classical unity-feedback configuration S(P,C) (shown in Figure 3.1 in

Chapter Three), the class of all stabilizing compensators is parametrized by one free parameter

matrix Q. All closed-loop I/O maps depend on this parameter, and hence, if one performance



requirement ismet bychoosing Q, then there is no more freedom left inthe design. So then, the

disturbance-to-output map cannot be decoupled from the extemal-input-to-output map with this

scheme. For a single-input single-output plant, a number of different feedback schemes were

briefly discussed in [Hor.l]; among them was the two^degrees-of-freedom design. A two-input

one-output compensator was proposed in [&L1] and later developed in [Per.l, Des.3, Vid.l].

The class of all stabilizing two-input one-output compensators is parametrized by two parameter

matrices; hence, using this two-parameter scheme, the disturbance-to-output map is independent

of the exogenous-input-to-output map. A two-parameter compensation scheme was also used in

[Des.5], where the plant was more general, with a measured-output used in feedback, and an

actual output, which is expected to satisfy certain performance criteria.

A much more advanced scheme, which generalizes the unity-feedbacksystem S (P, C) and

the two-parameter scheme, is the two-(vector)input two-(vector)output plant and compensator

configuration !(/>,C) (see for example [NeLl]). In this case, the class of all stabilizing compen

sators has fourparameter matrices. Each input-output map of HP, C ) is an affine(orlinear) map

in one of these parameter matrices.

Decoupling the map from the external-input to the output of an MIMO plant is extremely

desirable from an engineering point-of-viewsinceeachoutput of a diagonal system can be mani

pulated by a single input, which does not affect any of the other outputs. Diagonalization of the

I/O map as a performance specification was studied extensively, mostly using state-space tech

niques [see, for example, Dio.l, Zam.2]. Using a one-parameter compensator C placed in the

feedback-loop, [Ham.l] gave conditions for a plant P to be decoupled using output-feedback; in

the lumped continuous-time case, using this scheme, there is no "proper" compensator that

decouples a plant whose inverse has off-diagonal polynomial terms (because with strictly proper

plant and proper compensator, the inverse of the resulting diagonal I/O map is

[P(I+CP)-X]-X = (I+CP)P~X, which approaches P~x as s -> «>). This configuration introduces

the constraint that the polynomial part of P~l must bediagonal; this problem does notarise with

a two-parameter compensation scheme. In a more general algebraic setting, decoupling of linear



time-invariant MIMO systems over unique factorization domains was considered in [DaLl] and

conditions for the existence of a decoupling dynamic or static state feedback were established in

the case that the system is intemally stable and reachable. Later in [Des.4], a two-parameter

compensation scheme was used for diagonalization; the plant was assumed to be more general as

in [Des.5]; it was shown that diagonalization can be achieved independently of the disturbance-

to-output map.

In large scale systems (for example, power systems, computer communication networks,

chemical process control systems, transportation networks, socioeconomic systems) it is often

desirable or required due to geographic, economic or other practical considerations, to construct

the feedback control or decision strategy of a system based on a constrained measurement or

information pattern. An important case of constrained controllers is decentralized control in

which only local outputs are utilized by local feedback controllers, resulting in a block-diagonal

compensator structure. The design of local decoupled controllers that require no information

from the other channels is clearly desirable but not all plants can be stabilizedin this fashion. It is

important to know the constraints on plants which can be stabilized by decentralized feedback as

well asthe class of all stabilizing block-diagonal compensators. A comparison of this class to the

parametrization of all stabilizing centralized compensators shows that, even when the plant

satisfies the conditions for decentralized stabilizability, decentralized compensators form only a

small subset of all possible designs that would achieve stabilization.

This work is organized as follows: Chapter Two collects all algebraic facts and lemmas

which will beused instudying control systems. The standard ring definitions (entire ring, princi

pal ring, ideal of a ring, ring of fractions) can be found in many texts in algebra [Bou.l, Coh.l,

Jac.l, Lan.l, Macl] or in [Vid.l]. In Chapter Three, the unity-feedback configuration S(P,C)

and thegeneral configuration 2(P, C) are studied indetail. The class of all plants that can be sta

bilized by decentralized feedback and the class of all stabilizing decentralized compensators for

two-channel and m-channel systems are obtained inChapter Four. The results of Chapters Three

and Four arc combined to exhibit the class of all //-stabilizing compensators for the plant P ,



where the second output is partitioned into two channels, i.e., the system 2(P, C) is restricted to

a decentralized feedback-loop.

The contribution of this work is in itsunified approach to different stabilization schemes by

using the same tools of analysis and the same factorization techniques collected under Chapter

Two. Consequently, it is possible to compare compensator design with aunity-feedback system,

a general two-input two-output system, and a decentralized output-feedback scheme. The

parametrizations of stabilizing full and decentralized compensators presented here are extremely

important in disturbance rejection, asymptotic tracking, robust performance and costrained

optimization problems.



Chapter Two

Algebraic Background

2.1. Introduction

The purpose of this chapteris to clearly separate algebraic facts from system properties, to

introduce the algebraic framework and to collect relevant definitions, known facts and important

lemmas.These will be used repeatedly in Chapters 3 and 4 to studycontrol systems.

If H is a principal ring (also called principal ideal domain, [Coh.l, Macl, Jacl, Lan.l,

Vid.l]), and if/ is amultiplicative subset of// , then any matrix P whose entries are inthe ring

of fractions H 11 =: G of// associated with the subset/ can be factorized as NpD~x and as

Dp~XNp »where Np %Dp %Np %Dp all have entries in H ; this would not be the case ifH were

any ring.

Some well-known rings such as JR[s] (the ring of polynomials in s with real coefficients),

Ru (s) (the ring ofstable rational functions in s with real coefficients), Z (the ring ofintegers),

are principal rings.

Factorizations in principal rings are important tools in the algebraic theory of control sys

tems. If the system isrepresented by atransfer function P whose entries are in1RP (s) (the ring of

proper rational functions in s with real coefficients), then P can be factorized in lR[s] or in

Rub).

This chapter is organized as follows: The algebraic notation and some important properties

of principal rings are presented in Section 2.2; factorizations in H are defined in Section 2.3.

Various generalized Bczout identities are presented in Section 2.4; using these Bezout identities,

a bicoprime factorization ofthe form NprD~xNpl is reduced into a right-factorization NpD~x or a

left-factorization D~]Np. Solutions (for (Dc, Nc)) of the equation DcDp+NcNp =A , where



NpDpx is aright-coprime factorization ofa(given) P ,are presented in Section 2.5; this is partic

ularly useful in compensator design with the unity-feedback system S(P, C) . Matrices parti

tioned into four sub-blocks are studied inSection 2.6; this will beespecially useful inSection 3.3

for the analysis of a general system Z(P, C) . An important lemma, which is very useful in

decentralized control, is presented in Section 2.7; slightly different forms of this lemma can be

found in [And. 1].

Although the results of this chapter are completely algebraic, their system-theoretic impor

tance willbe demonstrated by their use in the subsequent chapters.



2.2. Algebraic framework

In this section we introduce the algebraic setting; due to its generality, the results we

present in the subsequent chapters apply to distributed or lumped, continuous-time or discrete-

time control systems.

2.2.1. Notation [Coh.i; Macl, Lan.l, Vid.l]:

H is a principal ring (i.e., anentire commutative ring inwhich every ideal isprincipal).

J cz H is thegroup ofunits of// (i.e.,* e J implies x~x e H ).

/ c H isamultiplicative subset, 0 &I , 1 e / (i.e.,* e I,y e I implies xy el).

G =// / / := [n Id :n e H %d el] isthe ring offractions of// associated with/ .

Gs is the Jacobson radical ofG; Gy :={jc e G :(l+xy)~x e G, for ally e G }.

2.2.2« Example (Rational functions in s) :

Let U 3 C+be a closed subset of C, which is symmetric about the real axis, and let C\ U be

nonempty; let U := U u { «» }. The ring of proper scalar rational functions (with real

coefficients) which are analytic in U , denoted by Ru(s), is a principal ring. Now let H be

Ru GO; for this principal ring, / , / , G , Gs are interpreted as follows:

By definition of/,/ € / implies that/ is a proper rational function, which has neither

poles nor zeros in U. We choose / to be the multiplicative subset ofRu(s) such that

/ e / implies that / (~) is anonzero constant in R; equivalently, / c Ru (s) is the set

of proper, butnotstrictly proper, real rational functions which are analytic in U. The ring

of fractions Ru(s)/I is then the ring of proper rational functions TRp(s). The Jacobson

radical ofthe ring IRp (s) is the set ofstrictly proper rational functions lRsp (s).



223. Facts:

(i) Themultiplicative subset / is the setofunits of G which areinH .

(ii) LetA e ffl(H),B e W(G.);then

(a) A"1 € m(//)iffdeU eJ (A is then called //-unimodular);

(Ifwe choose H as the specific principal ring /?M (y), then we say /?M-unimodular.)

(b) B"\ e m(G)iffdetfl <s / (B isthen called G-unimodular).

(iii) Let 7 g m(G,y) , X,Z e m(G) ; then XT.yz e m(G5) and (7+XJT1,

(i + Yzyx e m(G).

22.4. Lemma:

(i) Let a tb e H ;then ab e J if and only if a e J and b e J .

(ii) Letc ,d e H ;then cd e I if and only if c e / and d e / .

Proof:

(i) Clearly, a tb e J implies that ab e J since / is a (multiplicative) group. To show

the converse, let ab =: u ; by assumption, u~x e H . Therefore, b e H has inverse

(K_1a) e // since (u~xa)b = 1 , and hence, b e J . Similarly, a(6m"1) = 1 implies that

a e H hasinverse (6m"1) e H and hence, a e /.

(ii) Clearly, c ,d e I implies that cd e I since / is amultiplicative subset. To show the

converse, let cd =: v e / ; then v"1 e G . Therefore, c e H has inverse (dv~x) e G and

d e H has inverse (v_1c) e G ; hence, c andd e I .

•
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2.3. Coprime-fraction representations

We now define right, left, and bicoprime factorizations in H for matriceswith elements in G.

23.1. Definitions (Coprime factorizations in //):

(i) The pair (Np ,Dp), where Np , Dp e 171 (H), iscalled right-coprime (r.c.) iffthere exist

Up ,Vp e 171(H) such that .

VpDp+UpNp = /; (2.3.1)

(ii) the pair (Np, Dp ) is called aright-fraction representation (r.f.r.) ofP e 171(G) iff

Dp is square, detD, el and P =NpDpx; (2.3.2)

(iii) the pair (Np,Dp) is called a right-coprime-fraction representation (r.c.f.r.) of

P e m(G) iff (A^,Dp)isanr.f.r.of/> and (Np,Dp)vsv.o.

(iv) The pair (5p, Np ) , where Dp ,Np e 7W (//), is called left-coprime flx.) iff there exist

Up ,Vp e 772 (//) such that

NpUp+DpVp = 7; (2.3.3)

(v) the pair (Dp ,Np)\s called a left-fraction representation (l.f.r.) of P e 171(G) iff

73p is square, detDp el and 7> =7) ~Wp ; (2.3.4)

(vi) the pair (5p,Np) is called aleft-coprime-fraction representation Q.cfjr.) of P e J7l(G)

iff (5p,W/,)isanl.f.r.of7> and (Dp,Np) isl.c

(vii) The triple (Npr,D,Npl) , where Wpr ,D ,Wp/ e 171(H) , is called a bicoprime-fraction

representation (b.c.f.r.) of 7> e 171(G) iff the pair (7/^ ,D) is right-coprime , the pair

(D ,A/p/) is left-coprime, dciD el and P =NprD~lNpl .
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Note that 7> e 171(G) is sometimes given as P =NprD~xNpl +Sp, where Sp e 171(H)

and (A/pr.D.A/^/) is a bicoprime (b.c.) triple. In this case, the b.cfx is given by

(Npr,D,Npl,Sp)[\id.\].

•

Every P e 171(G) has an r.cf.r. (Np,Dp) , an Lcf.r. (Dp,Np) , and a b.cf.r.

(Npr, D, Npt) inH because H isaprincipal ring [Vid.1].

2.3.2. Lemma:

Let

V
= E

V

XP A.
, and let [Xp : Yp 1-\ffp \dAf ,where £ ,Fe 171(H) are

//-unimodular, then

(i) the pair (Afp, Dp) isr.c ifand only if the pair.(Xp, rp) is r.c,

(ii) the pair (Dp, Np) is l.c if and only ifthe pair (Yp ,Xp)is l.c

Proof:

(i) From Definition 2.3.1, (Np,Dp) is r.c iff there exist Up , Vp e 171(H) such that

[vp :-Vp]
D,

N„

=7=[vp \Up]e~x ; equivalently, (Xp, Yp) is r.c

(ii) Similar to proofof part (i).

•

233. Lemma:

Let(A/p,D;,)beanr.cf.r.andlct(Dp,Np)beanl.cf.r.of7> e 772(G);thcn

(i) (Xp,Yp) is also an r.f.r. (r.cf.r.) of P if and only if (Xp,Yp) = (NpR,DpR) for some

G-unimodular (//-unimodular, respectively) R e 171(H),

(ii) (Yp,Xp) is also an l.f.r. G.c.f.r.) of P if and only if (Yp,Xp) = (LNp,LDp) for some

G-unimodular (//-unimodular, respectively) L• e 171(H).
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Proof:

(i) ( <= ) If (Xp,Yp) = (NpR,DpR) for some G-unimodular (or //-unimodular)

Rem (H) , then detrp =detDpdetK e I ;hence NpDpx =XpYpx =P and (Xp,Yp) is an

r.f.r. ofP. Now if 7? e 171(H) is actually //-unimodular, then bythe Bezout identity (2.3.1),

R-lVpDpR +R~xUpNpR =R-xVpYp +R~xUpXp =7 ,

and hence, QCp, Yp) is also r.c

( => ) Let QCp,Yp) be an r.f.r. ofP ; then detr e I and NpDpx =XpYpx. From the

Bezout identity (2.3.1), since detDp e /, we obtain

VPYP+UPXP=DPXYP=:R e 171(H), (2.3.5)

where R l=Yp xDp e G ;hence R e 171(H) is G-unimodular. Clearly, Yp =D R and X

=NpDp~xYp=NpR.

If the pair QCp, Yp) isactually r.c,then there are matrices Vy ,UX e 171(H), such that

VyYp+UxXp=I;

and hence,

vyDp +uxnp =r^D, =/r1 e m (//)

From equations (2.3.5)-(2.3.6), /? <= 171(H) is //-unimodular.

(ii) Similar to proofof part (i).

23.4. Generalized Bezout Identity for (Np, Dp)and (Dp ,ND):
p*"p

(2.3.6)

•

Let (Np,Dp) be an r.c. pair and let (DP,NP) be an l.c pair, and let NPDP =5PND , where
p"p "p"p

Np e //^xw ,Dp e Hmxm ,Dp e H"0*"0 , Np e Hn°*m ; then there are matrices

Vp,Up,Up,Vp e m (H) such that

Vp Up

-Np Dp

Dp -Up

N Vtyp yP

lm 0

(2.3.7)

0 In,
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Equation (2.3.7) iscalled ageneralized Bezout identity; note that detDp and dctDp need not be in

/.

23.5. Definition (Doubly-coprime fraction representation):

(i) If the generalized Bezout identity (2.3.7) holds, then ((Np,Dp) , (Dp,Np)) is called a

doubly-coprime pair.

(ii) If P =NpDfx =5pXNp , then ((Np,Dp) , (Sp,Np)) is called adoubly-coprime-fraction
representation of P.

23.6. Generalized Bezout identities for (Npr,D,Npl):

Let (Npr,D,Npl)be ab.c triple, where Npr e H"*™ ,D e Hnxn ,Npl e Hnxm ;then

we have two generalized Bezout identities:

(i) For the r.c pair (Npr,D), there are matrices Vpr ,Upr ,X ,Y ,U ,V e 17l(H)s\ich

that

Vpr Upr D -U

-X Y Npr V

equation (2.3.8) is of the form

MrMr-l=In +n<,

In 0

0 / na

(2.3.8)

(2.3.9)

(ii) For the l.c pair (D ,Npl) there are matrices Vpl ,Upl ,X ,Y ,U ,V e 171(H) such that

D -N,pi

U V

equation (2.3.10) is of the form

Vpi x

-Upi Y

MtMrl=In+ni

In 0

0 / ni

Note that detD need not bein / inequations (2.3.8) and (2.3.10).

(2.3.10)

(2.3.11)
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23.7. Lemma:

Let (Npr,D,Npl) be a b.cf.r. of P e 171(G) ; then P e 171(H) if and only if

D~x e 171(H).

Proof:

If D'x e 171(H) then clearly P =A^D-1//,,/ € 7ft(//) . To show the converse, let

N^-^ e 171(H) . From equation (2.3.10), N^D'^U^ = NprD-x(In -DVpl) =

NprD'1 -NprVpl e 171(H) ; equivalentiy, fl^D"1 e 772(//) . Furthermore, by equation

(2.3.8), UprNprD-x =(In-VprD)D-x=D~x-Vpr e 171 (//); equivalentiy,!)-1 e 7tt(//).

•

2.3.8. Comments:

(i)Let7> begivenas/V^D-^+S, , where (^.D.A^/) is ab.c triple and 5p e 171(H);

then NprD-xNpi +Sp e 171 (H) if and only if N^D'1^ e 171 (H) and hence, by Lemma

2.3.7, P e m(//)ifandonlyifD"1 € 171(H).

(ii) Let(Np, Dp) bean r.cf.r. and (Dp, Np )be an l.cf.r. ofP e 171(G); then byLemma 2.3.7,

P e 171(H) if and only if Dpx e 171(H) and equivalentiy, Dpx e 171(H). This follows

from reducing ab.cfx to an r.cf.r. if Npl =7 and Sp =0or toan Lcf.r. if Npr =7 and Sp =0.
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2.4. Right- or left-coprime factorizations from bicoprime factorizations

Let (Npr,D,Npl) be a b.c.fx of P e 171(G) . We obtain an r.cf.r. (Np,Dp) and an

l.cf.r. (DptNp) for P from (Npr,D,Npl) in Proposition 2.4.1 below. In Example 2.4.3, we

apply Proposition 2.4.1 to the state-space representation of a matrix P with rational function

entries, andshowthat the result in [Net.2] is a special caseof ourgeneral theory.

2.4.1. Proposition:

Let P e m (G) . Let (Npr, D,Npl) be ab.cf.r. of P; hence, equations (2.3.8)-(2.3.10) hold.

Under these conditions,

(NP,DP) := (NprX ,Y) is an r.cf.r. ofP ,'pr

(Dp,Np) := (Y ,XNpl) isanl.cf.r.of7> ,

where X ,Y ,X ,Y e 171(H) are defined inequations (2.3.8)-(2.3.10).

2.4.2. Comments:

(i) Using equations (2.3.8)-(2.3.10) we obtain a generalized Bezout identity for the doubly-

coprime pair((NprX ,Y),(Y ,XNpl)):

V + UVprNpt UUpr

-XNpt Y

-UpiU

NprX V +NprVplU

//»,• o

0 / ru,

Notethesimilarity between equations (2.3.7) and (2.4.3). Equation (2.4.3) is of the form

MM~X = L

(2.4.1)

(2.4.2)

(2.4.3)

m+n0 • (2.4.4)

(ii) If, instead oiNprD'xNpl, the plant is given by P =NprD'xNpl +Sp , where Sp e 171 (//),
then an r.c.f.r. and an Lc.f.r. are given by:

(Np,Dp):=(NprX^SDY, Y),
pr

(Dp,Np):=(Y, XNpl+YSp),

and the generalized Bezoutidentity (2.4.3) is replaced by:

(2.4.5)

(2.4.6)



V + UVprNpl-UUprSp UUt
pr -uplu

-XNpl-YSp NprX+SpY V+NprVpiU-SpUptU

16

U °

o / /to

(2.4.7)

D

Proof of Proposition 2.4.1:

By assumption, P =NprD'xNpl , and equations (2.3.8)-(2.3.10) hold. Qearly N^X ,Y ,Y ,

XNpi e 171(H) . We must show that (NprX ,7) is an r.c pair with dety e I and that

(Y ,XNpi) is an l.c pair with detf e I :

By equation (2.4.3), (NprX ,Y) is an r.c pair and (Y ,X Npl) is an l.c pair, more

specifically, if(ArprX,y)=:(A^,,D/,) and (f,f Npl)=:(Dp,ffp),then

VpDp +UpNp =/„. , Np Up +Dp Vp^In., (2.4.8)

where Vp \=V+UVprNpl , Up \=UUp, , Up i^U^U , Vp := V +NprVplU . (2.4.9)

Now from equations (2.3.8)-(2.3.10),

detD = det(
D 0

-0 / n0

l\-MrMr-v) = det(
In-UX U

-X I
no

In 0

o y
M"1) =detf detM^aAlO)

detD = det( M/Mf1
D 0

o/„
) = det(Af,

In 0

o y

In-XU X

-U I m
) = detM/dety. (2.4.11)

Since Mr ,Mt are//-unimodular by equations (2.3.8)-(2.3.11), and since detD e / by assump

tion, equations (2.4.10)-(2.4.11) imply that

dety =detM/^detD € / , (2.4.12)

detf =detAfrdetD e I . (2.4.13)

Nowby equation (2.3.10), N^Y =DX and hence,

PY=NpDplY=NprX (2.4.14)

Similarly, by equation (2.3.8), Y Npr=X D andhence,
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YP=YNpDp-l=XNpt (2.4.15)

By equations (2.4.12)-(2.4.13), Y'x e 171(G) and Y'x e 171(G) ; therefore, equations

(2.4.14)-(2.4.15) imply:

P=NprXY-x =Y-xXNpl,

where (NprX, Y) isanr.c. pair and (Y ,XNpl) isanl.c pair.

(2.4.16)

•

2.43. Example:

Let H be Ru(s) as in Example 2.2.2. Let F e Rp(j)'loX,li be represented by its state-space

representation

x = Ax + Bu ,

y = Cx ,

where (C,A,5) is W-stabilizable and W-detectable. Then

P =(s+a)-xC[(s+aTx(sI-A)]-xB , where -a e €\U . The pair

((s +a)~xC ,(s +aTx(sI -A)) is r.c. in Ru(s) , the pair ((s +a)~x(sl -A),B) is l.c in

Ru(s), and dQt[(s+aTx(sI-A)] e I . Therefore, (Npr,D,Npl)

((s+a)~xC ,(s+aTx(sI-A),B) is a b.c.f.r. ofP . Choose AT e JRmxn and F e JRrtX"°

such that (A -BK) and 04 -FC) have all eigenvalues in C\ U . LetGK := (sln -A +BK)~X

and let GF := (*/„ -A +FC)"1 ; then GK ,GF e 17l(Ru(s)) n 17l(JRsp(s)) and hence,

(j+a)(j/n-i4+5/S:rl = (s+a)GK e 171 (Ru(s)) and (s+a)(sln-A+FC)'X =

(5 + a)GF e 772 (/?M (j)). For this special b.cf.r., equations (2.3.8) and (2.3.10) become:

(s+a)GF (s+a)GFF

-CGF Ino-CGpF

(s+aT\sIn-A) -B

(s+a)-lK ln.

(s+aTx(sIn-A) -F

(s+a)-xC I
no

(s+a)GK (s+a)GKB

-KGK Im-KGKB

= / n+n0 » (2.4.17)

= /„+*.. (2.4.18)
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Matching the entries of equations (2.4.17) and (2.4.18) with those of (2.4.8) and (2.4.10), respec

tively, from equation (2.4.3), we obtain a generalized Bezout identity for this special case:

I„:+KGvB KGpFm /«,• -KGKB -KGKF

-CGFB In-CGFF CGKB !no+CGKF
= /„.+„,. (2.4.19)

Comparing equations (2.4.3) and (2.4.19), (CGKB,(Im-KGKB)) is an r.c. pair and

((I no" CGFF), CGFB ) is anl.c pair. Notethatequation (2.4.19) givesthe same coprime fac

torizations and the Bezout identity entries obtained in [Net.2, equations (l)-(4)].

•

Let a , b e H ; we say that a is equivalent to b (denoted by a = b ) iff there exists

u e J such that a -bu . Qearly, a =1iff a e J . "=" is an equivalence relation onH .

In Corollary 2.4.4 below, we use the generalized Bezout identities (2.3.7), (2.3.8), (2.3.10),

and Proposition 2.4.1 to show that detDp =detDp =detD; (thus, if any one ofdetDp , detD^, ,

detD is in / , then the other two are also in / ). We use the following Bezout identity: If

Q e 171 (H) is an arbitrary matrix that has elements in //, the generalized Bezout identity

(2.3.7) can be rewritten as:

Vp-QNp Up+QDt

-N„ Dn

equation (2.4.20) is of the form

Dr -UP-DPQ

NP Vp-NpQ

MM"x^l rti+rtfl

0

0

no
(2.4.20)

(2.4.21)
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2.4.4. Corollary:

Let (Np, Dp ) beanr.c. pair, (Dp, Np) bean l.c pair and (Npr ,D,Npl)bza b.c triple, where Np ,

Dp,5p,Np,Npr,D ,Npl e 171(H) .Lzt NpDp =DpNp and let (NprXR,YR) =(Np,Dp),
where R is some //-unimodular matrix, with X , Y as in equation (2.3.10); then for all

Q e 171(H),

dexDpdt\M =detDp ,

deny, -NpQ)dQtM =det(V, -QNp),

where M is given by equations (2.4.20)-(2.4.21); hence,

(2.4.22)

(2.4.23)

Furthermore,

det[ (Vp -QNp)Dp ]=det[Dp(Vp -NpQ) ] (2.4.24)

detDp =dtXDp ~ detD . (2.4.25)

•

Note that detDp and detD^ are not assumed to be in / inCorollary 2.4.4. Equation (2.4.25) was

proved in [Vid.l] by assuming that detDp e I ,detDp e I ,detD e I .

Proof:

From equations (2.4.20)-(2.4.21) we obtain

D
p

0 /

0

M =

Im-(Up+DpQ)Np -(UP+DPQ)
p ' ~p

In0

U 01

0 Dno

and

r Ini 0

0 (VP-NPQ) M =

N,

m (UP+QDP)

-^p In»-ND(UP+QDD)p\~p

Vp-QNp

0 /

0

(2.4.26)

(2.4.27)

Equations (2.4.22) and (2.4.23) follow by takingdeterminants of both sides of equations (2.4.26)

and (2.4.27), respectively. Now multiplying both sides ofequation (2.4.23) by dctDp , and using

equation (2.4.22) we obtain
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det(Vp -Np Q)de\MdetDp = det(Vp - QNp)detDp = det(V, - NpQ )detDp ; (2.4.28)

hence equation (2.4.24) follows since det(Vp -QNp)dcxDp = det[(Vp -QNp)Dp ] and

detD, det(Vp -NpQ)=det[ Dp(Vp-NpQ)]. (Note that H isacommutative ring.)

Byequation (2.4.22), since detM e J , clearly

detD, =detD,. (2.4.29)

Now byProposition 2.4.1, the b.c. triple (Np,,D,Npt) reduces to anr.c. pair(NprX, Y), or anl.c

pair (Y,XNpi) . By assumption, (Np,Dp) = (NprXR,YR) for some //-unimodular

R e 171 (//); therefore, byequation (2.4.12),

detDp = detydetfl =detMfMetD dettf ; (2.4.30)

since detAf/ e /anddeti? e J, equation (2.4.30) implies that

detDp = detD. (2.4.31)

Finally, equation (2.4.25) follows from equations (2.4.31) and (2.4.29).

•

2.4.5. Comment:

Let H be the ring Ru(s) as in Example 2.2.2. Let F be given by NpDp~x = D~xNp =

NprD~xNpl; then the W-poles ofF are the M-zeros of detDp (and equivalentiy, of detDp and of

detD ). We denote the M-zeros ofdetDp by

Z[ detDp ] := {s0 e U: dctDp(s0) =0 }; (2.4.32)

it follows from Corollary 2.4.4, equation (2.4.25), that

Z[ detDp ]=Z[ detDp }=Z[ detD ]. (2.4.33)

•
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2.5. Implications of Bezout identities

If F e 171 (Gs), then by Fact 2.2.3.(iii), Np=PDp e 171 (Gs) ; similarly,

p-DpP e 17l(Gs:
*p ~r"p

NP=DPP e 17l(Gs).

In Lemma 2.5.1 below, we show that if AL e 17l(Gs), and ((NP,DP), (DP,NP) )
P'~P' » ^P"7'

IS

doubly-coprime pair satisfying the generalized Bezout identity (2.3.7), then D~x , D~x ,

<yp-Q&pY\<yp-NpQrl e m(G). Consequently,^ =DpNpDpx e 171 (Gs) as well.

2.5.1. Lemma:

Let Np e 171 (Gs); let ((Np, Dp), (Dp, Np)) be adoubly-coprime pair satisfying the general

ized Bezout identity (2.3.7). Under these conditions,

detDp e / and detDp e I ; (2.5.1)

and, for all Q e H ,

tet(Vp-QNp) e I and det(Vp-NpQ) e I . (2.5.2)

Proof:

By Fact 2.2.3.(iii), and by assumption, for any Q e 171(H) , (Up +QDp)Np e 171 (Gs) and

consequently, (/„. - (Up +QDp)NpYx e 171 (G); hence by equation (2.4.20),

detf (Vp - QNp)Dp ]=det[In. -(Up +QDp)Np ) e I . (2.5.3)

By Lemma 2.2.4.(ii), equation (2.5.3) holds ifand only ifdetDp e I and det(Vp-QNp) e I ;

hence by Corollary 2.4.4, (2.5.1) follows from equation (2.4.22) and (2.5.2) follows from equa

tion (2.4.23), where detAf e J.

D
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2.5.2. Lemma:

Let (Np, Dp) be an r.c pairand (Dp,Np)bean l.c pair satisfying the generalized Bezout iden

tity (2.3.7). Consider the equations

DcDp+NeNp=A ,
and

NpNe+DpDc=B ,

where A e Hmxni ,B e //^x^ . Under these conditions

(i) (De ,Ne), with Dc ,NC e 171(H), isa solution ofequation (2.5.4) if and only if

[6C \Nc] =[a ifl]
for some Q e 171(H).

(ii) (Nc ,De), with Nc , Dc e 171(H),isa solution ofequation (2.5.5) if and only if

-Nc Dp -Up

Np Vp

Vp Up
-Np Dp

-Q
B

(2.5.4)

(2.5.5)

(2.5.6)

(2.5.7)

forsomeg e 171(H).

Proof:

(i) ( <= ) Suppose that equation (2.5.6) holds; then by equation (2.3.7), DcDp +NcNp =

[5C':NC Dr

Nn

equation (2.5.4) holds.

(=>) By assumption, equation(2.5.4) holds; hence

Vp Up
"Np Dp N„ -['=«] 0

= A and hence,

[dc \Ne] Dp -Up

Np Vp -[a\q]. (2.5.8)

where Q :=-DcUp+NcVp e 171(H). Post-multiplying both sides ofequation (2.5.8) by the

//-unimodular matrix

by equation (2.5.6).

vp up

-N, D„ and using equation (2.3.7), we obtain the solution given
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(ii) Similar to part (i);and again follows from the Bezout identity (2.3.7).

•

2.5.3. Comments:

(i) Inequations (2.5.4) and (2.5.5), ifA = / mand B = I^ , then (2.5.4) is a left-Bezout identity

for the l.c pair (DC,NC) and (2.5.5) is a right-Bezout identity for the r.c pair (NC,DC) . Let

(Np,Dp) be an r.cf.r. and (Dp,Np) be anl.cf.r. ofF e 171(G). If (De,Nc) is anl.cf.r. and

(Ne,De) is an r.cf.r. of some C e 171(G) , then equations (2.5.4), (2.5.5), with equation

(2.3.7), imply that

Dc Nc

-Np Dp

Dp -Nc

Np Dc
m

0 /

0

no
(2.5.9)

Note the similarity between equations (2.4.20) and (2.5.9). By Lemma 2.5.2,. (De,Ne) =

«yp-QNp),(Up+QDp)), (Nc,Dc) =((Up+DpQ),(Vp-NpQ)),foTSomeQ e 171(H).

(ii) IfF e 171(H) , then we can choose an r.cf.r. for F as (P,Ini) and an l.cf.r. for F as

(Jno>p) • witn p =Np =Np , Dp =/„. , Dp =/^ , in equation (2.3.7) we can choose Vp =

Im'Vps*1*. ,Up=Up =0;hence, for some Q e 171(H) ,(DC,NC) = ((Im-QP),Q ) is

anl.cf.r. and (NC,DC) = ( Q, (I^ -PQ) ) is an r.cf.r. of C e 171(G).

(iii) IfF e m (Gs), then byLemma 2.5.1,

det(Vp -QNp) ~ det(Vp -NpQ) e I , (2.5.10)
forallfi e 171(H). .

Let H be Ru(s) as in Example 2.2.2; then det(Vp-QNp)± 0 for almost all

Q e 171 (Ru(s))[Vid.l].Nov/v/e find aQ e 17l(Ru(s)) such that equation (2.5.10) holds: If

detDp e J (equivalentiy, Dp~l e 17l(Ru(s)) and D"1 e 17l(Ru(s)) ), then Vp =Dpx and

Vp =D~x satisfies the generalized Bezout identity (2.3.7); clearly, Vp and Vp are

Ru-unimodular and hence, equation (2.5.10) holds with Q=0. Without loss ofgenerality, we

assume that detDp &J in our search for Qbelow.
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Choose h e Ru(s) such that

l +/t (detDp) e Rsp(s), (2.5.11)

(note that one choice for h is -detDp-1( «>)). Let

Q :=h (detDp)(Dpl)Up e 17l(Ru(s)); (2.5.12)

note that (detDp)Dpx e 17l(Ru(s)) . By the generalized Bezout identity (2.3.7),

DP(VP-QNP) = Im-(l+hdetDp)UpNp . By Fact 2.2.3.(iii) and equation (2.5.11),

(1 +h detDp)UpNp e 171 QRsp(s)). Therefore

detDpdet(Vp -QNp) =det(/n. -(1 +h detDp)UpNp) e I ; (2.5.13)

by Lemma 2.2.4.(ii), equation (2.5.13) holds if and only ifdetDp e I and det(Vp-QNp) e I.

Consequendy, equation (2.5.10) .holds for the choice of Q e 171 (Ru (s)) in equation (2.5.12).

(iv) In Lemma 2.3.2,we could also start by assuming thata l.c pair (Dc, Ne ) together with a r.c

pair(Afc, Dc) satisfy the generalized Bezout identity (2.5.14) below:

Uc

-Nc Dc

Dc -Ue

Nc Vc

Ino 0

o im
(2.5.M)

Under these conditions, (Np, Dp), with Np , Dp e 171(H), is asolution of equation (2.5.4) if

and only if

-N„ Dc -Uc

Nc Vc

-QP
A

for some Qp e 171(H) ;sinrilarly, (Dp, Np) .with Dp ,Np e 171(H), is asolution ofequa

tion (2.5.5) if and only if

[6p ':Np]=[B \Qp]
forsomeQp e 171(H).

Vc Ue

-Nc Dc

D
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2.6. Coprime factorizations of F

In this section weconsider an(ti0 + n0)\(y\t + nt) matrix F e 171(G), partitioned as

=G(^+^)x(^+w) , whereF e G^xw . (2.6.1)F =
^11 ^12

F21 F

2.6.1. Lemma:

Let F e 171(G) be as in equation (2.6.1); then there exist Nn , Nl2 , N21 , Np ,Dn,D2l,

Dp e 171(H),andDu,Dl2,Dp,Nn,Nl2,N2l,Np e 171(H), such that

(i) (Np,D*)=:(
p'~p<

Nn Nl2

Nu Np
11

D 21
) is an r.c.f.r. ofF , (2.6.2)

(ii) (Dp, JV»=:(
Du D12

0 D„

Nn Nl2

Nil NP ) isanl.cf.r.ofF, (2.6.3)

where

(NP,DP) is an r.f.r. of F , and (DP,NP) is an l.f.r. of F
p»"p

2.6.2. Comments:

(i) InLemma 2.6.1, it is only claimed that (Np, Dp) is anr.f.r. and (Dp, N.) is anl.f.r. of the 2-2
p*"p

sub-block F of F ; these fraction representations are not necessarily coprime. However,

is right-coprime with Dp by equation (2.6.2), and Dp is left-coprime with | N2l : Np 1by equa
tion (2.6.3).

(ii) Let F =NpDp1 =DplNp , where (Np, Dp) is an r.c. pair as in equation (2.6.2) and (Dp, Np)

is an l.c pair as in equation (2.6.3). By Lemma 2.3.7, F e 171(H) if and only if

Dp1 e 171(H), where

Ni

Nr
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V =
on1 0

-D7xD2lDj DP (2.6.4)

and equivalentiy, 5px e 171 (H) .where

Dpx =
^fi1 -dJd12d;x

D -l (2.6.5)

Proof of Lemma 2.6.1:

F e m(G) has anr.c.f.r. in// (callit(X,y)),andanl.cf.r.in// (call it (Y ,X )).

(i) Recalling the Hermite column-form [Vid.l, Appendix B], thereexists an //-unimodular

R e 171 (H) such that D :=YR e 171(H) isin the (block-triangular) form given by equation

(2.6.2), where we choose to denote the 2-2 entry ofDp by Dp . Let N -: XR e 171(H), where

we denote the sub-blocks inNp as inequation (2.6.3), with Np e 171(H) as the 2-2 sub-block.

Since R e 171(H) is //-unimodular, by Lemma 2.3.3.(1), (Np, Dp) is also an r.cf.r. of F; there

fore detydetK =detDp* el.

Now equation (2.6.2) implies that det(KR )=detDp* =detD ndetDp e / ; hence by Lemma

2.2.4.(ii), detD ii e I and detDp e I . So from equations (2.6.1)-(2.6.2), F =NpDpx , where

(Np, Dp)is an r.f.r. of F .

(ii) The proof is similar to that of part (i). Pre-multiplying Y by an //-unimodular

L e 171(H), we obtain the Hermite row-form in equation (2.6.3); by Lemma 2.3.3.(ii),

(Dp,Np) is also an l.cf.r. of F . Since detLdetf =detDp* =detD ndetDp e I , we conclude

that (Dp,Np) is an l.f.r. of F .

•
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2.7. A useful rank condition

The purpose of this section is to prove an important lemma, which will be useful especially

in Chapter Four.

Let H be the ring ofproper stable rational functions Ru (s),as inExample 2.2.2. Let

max rank F(K)
K 6 K

denote themaximum rank thatthematrix F(K) has, asK varies overa specified set k.

2.7.1. Lemma:

LetA e C™\b e CpxY,A e C™,B e &** .

(i) lf,forahK e TR?** ,

max rank B +KA <min {p,y] , (2.7.1)
k e mm L J(R)

then

rank
B

A
= max rank \B+KA1 . (2.7.2)

r a. m m\ L JK e mCR)

(ii) If, for allK e R^ ,

max rank 5 +A K <min {p,f] }, (2.7.3)
* mcR\ L Jk e mm

then

rank B A = max rank \ B+A K1 . (2.7.4)
a: € mm

•

An important application of Lemma 2.7.1 is given in Corollary 2.7.2 below: It shows that

there is a real constant output-feedback which "moves" all W-poles ofF =NpD~x =D~lNp =

NprD~xNpl ; in other words, there is aK e Rn»'xn° such that detf Dp +KNp ] has no zeros at

the W-zeros of detDp (equivalentiy, there is a K e R/1,'xno such that the W-zeros of

det[ Dp +NpK] are disjoint from those of detDp and there is a K e iRniXn° such that the U
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-zeros of det[ D +NplKNpr ] are disjoint from those of detD ). Note that the region It canbe

chosen to include all open-loop poles of F if we wish to prove thatall poles canbe "moved" by

real constant output-feedback.

2.7.2. Corollary:

Let (Np,Dp) be an r.cf.r., (Dp,Np) be an l.cfx, (Npr,D,Npi) he a b.cr.f. of

F e m (IRp CO), where JVp ,Dp ,Dp.,Np ,Npr ,D ,Npl e 17l(Ru(s)) . Under these condi

tions,

(i) there is aA" e jRmxn° such that, for all sQ e Z[ detDp],

rank [Dp(s0) +KNp(s0)} =nt; (2.7.5)

(ii) there is aK e jRni™° such that, for all sQ e Z[detDp],

rank [Dp(s0)+Np(s0)K^ =n0 ; (2.7.6)

(iii) there isaAT e jRniXn° such that, for all sQ e ZfdetD],

rank [D(s0)+Npl(s0)KNpr(s0)] =n. (2.7.7)
•

Since the state-space representation of F given in Example 2.4.3 is a special bicoprime-

fraction representation, Corollary 2.7.2.(iii) implies that, for (A,B,C) minimal, there is a real

constant output-feedback such that the closed-loop eigenvalues (i.e., the zeros of

det(sIn-A +BKC) ) are different from the open-loop eigenvalues (i.e., the zeros of

det(sin -A)). Intuitively, all eigenvalues associated with controllable-and-observable modes

can be "moved" by some real constant output-feedback. Corollary 2.7.2. does not imply that the

eigenvalues can be moved arbitrarily; in general, we need dynamic output-feedback to push the

poles into the region of stability C\ U.
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Proof of Lemma 2.7.1:

(i) Call K the maximizer of the left-hand-side of equation (2.7.1), i.e., K is the pxT| real matrix

that maximizes rankl B+KA ;by equation (2.7.1), r := rankl B+KA\ <min {p,y}.So
there are -r?M-unimodular matrices L , R (resulting from elementary row operations and elemen

tary column operations, respectively), such that L B +KA \R =

bottom right is (p-r) x(y-r), withr <min { p , y].

Now since £ is the maximizer, for all K2 e IR(P-r>*1i,

Ir 0

0 0
, where the 0 in the

-lrank(L[B +(K+L
0
A*

K2 )A]R)<r. Let
L(B+KA)R

AR

Ir 0

—. 0 0
— a

A A

then

rank(L(B +KA)R +
0

K2 AR)-rank
h 0

£ r implies that rankK2A = 0 for all K2,

and hence A is the zero matrix.

The proof concludes by the following equalities: rank
B

A
- rank(

rank

'ir 0

0 0

A 0

= r = rankl B +KA\ b+ka] =

(ii) Similar to proof ofpart (i).

[fl+KAlmax rank I B +KA
k e mm

L 0

0 /

B +KA

R) =

To prove Corollary 2.7.1, the well-known rank-tests are useful (see, forexample, [Call]);

we state and prove them to make the discussion complete.



2.7.3. Lemma (Rank-tests):

(i) Lettfp g Ru(s)n°xni ,Dp e Ru(s)mxni; then (Np,Dp) is t.c. ifand only if

rank

Dp(s)

Np(s) = ft; , for all 5 e U.

(ii) LetDp e Ru(sfoXn° ,ffp e Ru(s)n°m ;then (Dp, Np) is l.c. ifand only if
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(2.7.8)

rank \dp(s) Np(s)] =n0 , for all s e U. (2.7.9)
•

Note that the rank-tests hi (2.7.8) or (2.7.9) need to be performed only at the W-zeros of

detDp (equivalentiy, atthe W-zeros ofdetDp ), since they already hold for all other s e U.

Proof:

(i) (A/p,Dp) is an r.c. pair if and only if there is an /?M-unimodular matrix E (labeled as

) such that

" Vp(s) Up(s)

-Np(s) Dp(s)

Dp(s)

Np(s)

r / m

0
(2.7.10)

since the matrix E has rank n{ + nQ for all s e U, equation (2.7.10) holds if andonly if the rank

condition (2.7.8) holds.

(ii) Similar to part (i). (Dp,Np) is l.c if and only if there is an /?M-unimodular matrix F

(labeled as
Dp -Up
N„ Vp ) such that

[dp(s) Np(s)] Dp(s) -Up(s)

Np(s) Vp(s) =[//». o] ; • (2.7.11)

since the matrix F has rank n{ + n0 for all s e U, equation (2.7.11)holds if and only if the rank

condition.(2.7.9) holds.

D
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Proof of Corollary 2.7.2:

Suppose, for acontradiction, that there is an sa e Z[detDp ] such that

rank [Dp(s0) +KNp(s0)] <nt , forall£ e Rn*' JJlo
(2.7.12)

Applying Lemma 2.7.1.(i), with Dp(sQ) =: B , Np(s0) =: A , p := n* =: y , na =: i\ , equation

Dp(s0)]
(2.7.12) implies that rank ^Np(s0)

copnme.

(ii) Similar to proofofpart (i) and again follows from Lemma 2.7.1.(i).

(iii) Suppose, fora contradiction, that there is ans0 e Z[ detD ] such that

rank [D(s0) +Npl(s0)KNpr(s0)^ <nt , ferall* e R***
equivalentiy, forallK e ^niXn° f

< K; ; but this contradicts the fact that (Np,Dp) is right

rank

D(sQ) -N^)
KNpr(s0)' Im <n +nt

(2.7.13)

(2.7.14)

(The equivalence of equations (2.7.13) and (2.7.14) follows by performing elementary row and

column operations on the matrix in equation (2.7.14).)

Post-multiplying the matrix in equation (2.7.14) by the /?M-unimodular matrix M[(s0)~x =

Vpl(sQ) X(sa)

-UpiM Y(sQ) , and using the generalized Bezout identity (2.3.10), we conclude that

equation (2.7.14) holds if and only if

rank [Y(s0) +KNpr(s0)X(s0)^ <n( . (2.3.17)
Recall that, byProposition 2.4.1, (NprX, Y) is a r.cf.r..ofF ; applying Lemma 2.7.1 as inpart(i)

of the proof, equation (2.7.15) implies that

rank

Y(sQ)

Npr(s0)X(s0) <nt ; (2.7.16)

butequation (2.7.16) contradicts the right-coprimeness of (NprX, Y) .
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Chapter Three

Control Systems with Full Output-Feedback Compensators

3.1. Introduction

This chapter presents an algebraic theory for two linear, time-invariant (Lt-i)v multiinput-

multioutput (MIMO) control systems: the classical unity-feedback systemS(P,C) and the more

general system configuration Z(F, C). Due to the general algebraic setting, the results apply to

lumped as well as distributed, continuous-time as well as discrete-time systems in these

configurations.

In the unity-feedback system S(P,C) , the plant has only one (vector-)input, and one

(vector)-output, which is used in feedback to the compensator; the plant model considers only

additive inputs or disturbances, which pass through the actuators in the plant. In general, how

ever, there may be inputs (for example, disturbances, initial conditions, noise, manual commands)

which are applied directly to the plant without going through the actuators; hence, the map from

the directly applied inputs to the plant outputs may be different than the map from the additive

inputs to the plantoutputs. Furthermore, the regulated output variable of the plant (for example,

tracking error, actuatorstates) may not be accessible or may be different than the measured out

put (for example, ideal sensoroutputs), which is utilized by the compensator. For instance, the

temperature of the blades in jet engines cannot be measured; to prevent the blades from burning,

controllers are designed based on measurements of othervariables like air flow, angularvelocity

and fuel rate.

The unity-feedback configuration S(P, C) is studied in Section 3.2. The system S(P,C)

is called //-stable if and only if all closed-loop input-output (I/O) maps are //-stable. The

//-stability condition for S(P, C) is stated inTheorem 3.2.5 in terms ofeach factorization ofF
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and C used in the analysis. The class of all compensators that //-stabilize the plant F is

parametrized in Theorem 3.2.8; compensator design using the configuration S(P, C) is called

one-degree-of-freedom design due to the single free parameter matrix Q of the //-stabilizing

compensator [Hor.l]. Although a right-coprime or a left-coprime factorization of the plant are

commonly used in obtaining this parametrization, it is also possible to start with a bicoprime fac

torization and use Proposition 2.4.1 to reduce NprD~xNpi to NpDp~x or to D~xNp (see equations

(3.2.29)-(3.2.30)). The class of all achievable maps for S (P, C) is obtainedby using the class of

all stabilizing compensators; all closed-loop I/O maps in the //-stabilized S(P,C) are affine

maps in Q (see equation (3.2.38)).

The system configurationZ(F, C) represents the most generalinterconnection of two physi

cal systems, a plant F and a compensator C. This general system configuration Z(F, C) is stu

died in Section 3.3; the plant and the compensator each have two (vector-)inputs and two

(vector-)outputs. The measured output y of F is used in feedback, but the output z is the actual

output of the plant (the output in the performance specifications); the point is that z andy are not

the same. The input v is considered as a disturbance, noise or an external command applied

direcdy to the plant The compensator outputy', which is utilized by the plant in feedback, can

be considered as the ideal actuator inputs; the output z' of C canbe used for performance moni

toring or fault diagnosis. The input v' of C is considered as the independent control input like

commands or initial conditions. The signals u and u', which appear at the interconnection of F

and C, model possible additive disturbances noise, interference and loading.

The conditions for //-stability of Z(F, C) are stated in Theorem 3.3.5. Intuitively, only

those plants which have "instabilities that the feedback-loop can remove".can be considered for

//-stabilization; these plants are called Z-admissible. The restriction on the class of

//-stabilizable F is due to the feedback being applied only through the second inputs and out

puts. The class of Z-admissible F is given in Theorem 3.3.9; the class of all //-stabilizing com

pensators for Z-admissible plants is given in Theorem 3.3.11. The 2-2 block of C is essentially

in a feedback configuration like S(P, C) of Section 3.2; so the set of all C that //-stabilizes the
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feedback-loop is alreadyknown from the previous section.

In the unity-feedback configuration S(P, C) , the class of all C that //-stabilize F is

parametrized by one parameter matrix Q ; including this parameter matrix Q that comes from C,

the setof all C that //-stabilize F is parametrized byfour //-stable matrices and hence, wecall

the system Z(F, C) a four-degrees-of-freedom design (or four-parameter design) [Net.l]. This is

clearly much more advantageous and general than two-degrees-of-freedom design with a two-

mput one-output compensator [see, for example, Vid.l, Des.3,4]; Z(F,C) can obviously be

reduced to two parameter design by taking C n = 0 and C \2 = 0. The class of all achievable maps

for Z(F, C) involves the four compensator parameters; each closed-loop I/O map achieved by the

//-stabilized Z(F, C) depends onone and only one of these four parameter matrices <2u »Qn »

Q21» Q • Clearly, several performance specifications can be imposed on the closed-loop perfor

mance of Z(F,C).

In Section 3.4, we consider the decoupling problem; namely, find C such that, for the given

F , the I/O map H^ : v h» z of Z(F, C) is diagonal. Assuming that Af12 is nonsingular, it is

always possible to choose Q2X e 171(H) such that H2V' =Nl2Q2l is diagonal. Diagonalization

with this configuration does not involve the feedback-loop and the parameter Q of C ; hence,

decoupling the I/O map H^ is independent of the I/O maps that are affine functions in Q. On the

other hand, in the unity-feedback configuration S(P,C), diagonalizing the map Hyu>: u' Y*y

would depend onthechoice for Q such that Np(Up + QDp) is diagonal, and hence, diagonalizing

themap Hyu> in S(P, C) maynotbe possible for certain plants.
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3.2. The unity-feedback system S(P,C)

In this section we consider the systemS (P, C) in Figure 3.1.

Figure 3.1. The unity-feedback system S(P,C)

3.2.1. Assumptions:

(A) TheplantF e G^*™ .

Let (Np,Dp) be anr.c.f.r., (Dp,Np)be anl.c.f.r., (Npr,D,Npl) be ab.c.f.r. ofF , where

Np e Hn°xni ,Dp e Hmxm ,Dp e H*™* ,Np e //*>x"'\ NDr e Hn°xn

D e Hnxn,Nal e Hnxm .

'pr

(B) The compensator C e Gmxn° .

Let (DC,NC) be an Lc.fr. and (NC,DC) be an r.c.f.r. of C , where

Dc e Hmxni ,NC e Hmxn° ,NC e Hmxn° ,DC e //^x^ .

If F satisfies Assumption 3.2.1 (A), we have the generalized Bezout identities (2.3.7),

(2.3.8), (2.3.10) given in Section 2.3.

3.2.2. Closed-loop I/O maps of S(P, C):

Consider Figure 3.1; let

v :=

y

y'
, u :=

u

u'
(3.2.1)
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ThemapH-:u H> y is called theI/O map ofS (P,C). In terms ofF andC , H-is given by

P(Ini+CPTx P(Im +CPTXC "

-CF^.+CF)-1 ffw+CT)-1C
/% = (3.2.2)

323. Analysis ofS (P, C):

We analyze the systemS(P,C) shownin Figure3.1 by factorizing F and C as

(i) P=NpDpx , C=D-XNC,

(ii) P^DpxNp , C=NCD-X,

(iii) F =NprD~xNpl , C=D-1^ ,

(iv) F =N^D^Npt , C =NeD-x.

(i) Analysis of S(P, C)with F =A/pDp~l and C =DJ1^:

LetF =NpDpx ,C =D~XNC , where (Afp, Dp) is r.c. and (DC,NC) is l.c. (see Figure 3.2);

§p denotes thepseudo-state ofF.

Figure3.2. 5(F,C) withF = NPDPX andC = D^N,
p~p

S(P, C ) is thendescribed by equations (3.2.3)-(3.2.4):

[5cDp+NcNpYp =[Dc \ Nc]
N„

5„ =
y

y' /«

u'

u

u'

(3.2.3)

(3.2.4)
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Equations (3.2.3)-(3.2.4) are of the form

DH\%P =NLlu

NRAp=y-SHlu .

If detD//1 e I (equivalentiy, if the system described byequations (3.2.3)-(3.2.4) is well-posed),

then the I/O map H^ is given by

Hyu=NRlDZ\NLl+SHle 171(G).

By elementary row and column operations on the matrices in equations (3.2.3)-(3.2.4), using

Lemma 2.3.2, it is easy to see that (NR lt DHl, NL lf SHl) is ab.c.f.r.of//— .

(ii) Analysis of S(P, C) with F =5;xNp and C=A^D,."1:

Let F =DpxNp ,C=NcD~l, where(Dp,Np)isl.c. and(Ne,Dc)is r.c. (seeFigure 3.3);

5c denotesthe pseudo-state ofC.

Figure3.3. S(P,C)withF =DpxNp andC =A^D,"1

S(F, C ) is then described by equations (3.2.5)-(3.2.6):

[6pDe+NpNc]z,c =[-Np ': Dp]

-A:

Nc t-
y

y'

-/ /to

u

u'

U

(3.2.5)

(3.2.6)
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Equations (3.2.5)-(3.2.6) are of the form

Dhi^c = NL2u

Nri%c =y-S//2w.

By elementary row and column operations on the matrices in equations (3.2.5)-(3.2.6), using

Lemma 2.3.2, we concludeagain that (NR2, DH2, NL2, SH2) is a b.c.f.r.of H— .

(Hi) Analysis of S(P,C) with F =A^D-fy, and C =DJxNe:

LetF =NprD~xNpl , C=D~XNC , where (A^D.A/p,) is b.c. and (DC,NC) is l.c. (see

Figure3.4); %x denotes the pseudo-state of F.

W

-rQVh Nc -• D? -r^<>7 Npl —i d-1 —. iVpr t-
i 1 » 1 1 , i 1 1 1 1 1 1,
! C « ! F i
L _ j ' j

y

-n-ljFigure 3.4. S(P,C) with F =N^D'^ and C = D"W,

S(P,C) is then describedby equations (3.2.7)-(3.2.8):

D : -AT,
W

tfc^V : 0c y'

V : 0

u

Equations (3.2.7)-(3.2.8) are of the form

D//353 = AfL3u

^/?3?3=y •

Wp, : 0

0 : N,

Ly J

(3.2.7)

(3.2.8)
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IfdetD//3 e I , then the system is well-posed; again by elementary row and column operations

on the matrices in equations (3.2.7)-(3.2.8), using Lemma 2.3.2, (NR3, D//3, NL3) is a b.cf.r. of

Hyu'

(iv) Analysis ofS(P,C) withF =NprD'xNpi and C =NCDC'X:

Let F ^NprD^Npt , C=NCDC'\ , where (I^.D.fy) is b.c. and (Afc,Dc) is r.c. (see

Figure 3.5).

r

5c
—I

u ,

* AT1 w ''/<+1S» i
iVc ! +(

c
j

5x

ty D"1 *pr

-lFigure3.5. S(F,C)withF =NprD-xNpi andC =AfcD;

S(F, C) is thendescribed by equations (3.2.9)-(3.2.10):

D :-NplNc Npi : 0

Npr : Dc 0 : /
/i*

N,
V

0 : tf.

Equations (3.2.9)-(3.2.10) are of the form

DH&4 =^L4"

(3.2.9)

(3.2.10)

NR4£>4=y •

IfdetD//4 e I , then the system is well-posed; by elementary row and column operations on the

matrices in equations (3.2.9)-(3.2.10), usingLemma 2.3.2, (A^, D//4,NL4) is a b.c.f.r. of//- .

D



40

3.2.4. Definition (//-stability):

Thesystem S(P, C) is said to beH-stable iff//- e 171(H).

If//— e 171(H), then wealso say that H—is //-stable.

If wechoose a specific principal ring like Ru(s) , then wesayRu-stable.

3.2.5. Theorem(//-stability of S(P, C)):

Consider the system S(P,C) shown in Figure 3.1. Let Assumptions 3.2.1 (A) and (B) hold.

Under these conditions, the following five conditions are equivalent:

(i) S(P,C)is //-stable;

(ii) D//!:= DcDp+NcNp is //-unimodular;

(iii) DH2:=\ DpDc+NpNc\ is//-unimodular;

(iv) D//3:=
-Npi

NcNpr is //-unimodular;

(v) D//4:=
D -NpiNc

N pr

is //-unimodular.

(3.2.11)

(3.2.12)

(3.2.13)

(3.2.14)

3.2.6. Comments:

(i) Post-multiplying the matrix DH3 in equation (3.2.13) by the //-unimodular matrix Mfx

defined in the generalized Bezout identity (2.3.10), we obtain

DH3^rx = NeNprVpi _DcUpi NcNprX +dcY

But D//3 is //-unimodular if and only if DH3M{~X is //-unimodular; hence, condition (3.2.13)

holds if and only if

DcY +NcNprX is //-unimodular. (3.2.15)

Note that the //-unimodularity condition (3.2.15) is the same as condition (3.2.11) since

(NprX, Y) is an r.c.f.r. of F by Proposition 2.4.1.
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Similarly, pre-multiplying the matrix DH4 in equation (3.2.14) by the //-unimodular matrix

Mr defined in the generalized Bezout identity (2.3.8), we obtain

MrDH4 =

But D//4 is //-unimodular if and only if MrDHA is //-unimodular, hence, condition (3.2.14)

holds if and only if

XNplNc +YDe is //-unimodular. (3.2.16)

Note that condition (3.2.16) is the same as condition (3.2.12) are the same since (Y ,XNpl) is an

Lcf.r. ofF by Proposition 2.4.1.

(ii) If condition (3.2.11) (equivalentiy, (3.2.12)) holds, thenby normalization we obtain

and

1 n

0

-VprNplNc+UprDc

XN^Nc+YDc

DcDD+NcNB=Ins,c~p • "c"p m

A^p^+DpDc=/^

(3.2.17)

(3.2.18)

With F =NpDpx=Dp-xNp , C =D~XNC =NCD~X , equations (3.2.17)-(3.2.18) are equivalent

to

• 5C Nc I TDp -Nc 1 I" /„• 0 1
-Np Dp\[np Dc J= 0 U ' <3'2-19>

Equation (3.2.19) is the same as equation (2.5.9) and is a useful form of the generalized Bezout

identity.

•

Proof of Theorem 3.2.5:

(0 <=>(»):

Suppose that we analyze S(P, C) with F factorized as A^Dp"1 and C factorized as D~lNe ; then

equations (3.2.3)-(3.2.4) describe the system. Let5 (F, C) be//-stable; then byDefinition 3.2.4,

//— e 171(H), and in particular, Hy»u:u \-> y' is given by

Hy.u=-CP(Ini+CP)-x = (Ini+CPTl-Ini e 171(H). (3.2.20)
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Since Dp-1 e 171(G) and 5? e 171 (G), by equations (3.2.3) and (3.2.20),

Dh\ =Dpx(im +cpyx5;x e nt(G), (3.2.21)

(equivalentiy, S(P, C) is well-posed). Thus (NR X,DHX, NL x, SH,) is ab.c.f.r. of //- . By Lemma

2.3.7, H- e 171(H) implies that Dfi\ e 171(H); equivalentiy, condition (3.2.11) holds.

Conversely, if Dfi\ is //-unimodular, then clearly equations (3.2.3)-(3.2.4) describe a

well-posed system and hence, //— is given by NRiDHl~xNLl + SH1 . By Lemma 2.3.7,

Hw e 171 (H) and hence, S(P,C)is //-stable.

(ii) <=> (iii) <=> (iv) <=> (v):

Condition (3.2.11) holds if and only if

det( DcDp +NcNp ) = 1, (3.2.22)

if and only if

detDcdet(/w. +CF)detDp =1. (3.2.23)

Now det(Ini+CP) =det(Ino +PC) . By Corollary 2.4.4 (equation (2.4.29)) detDp =detDp ;

similarly, detDc =detDc . Therefore, equation (3.2.23) is equivalent to

detDpdet(/Wo +FC)detDc =1; (3.2.24)

equivalentiy,

det( DpDc +NpNe ) ~ 1, (3.2.25)

and hence, condition (3.2.12) holds.

Now by Proposition 2.4.1, (NprX, Y) is an r.c.f.r. and (Y ,X Npi) is a Lc.f.r. of F , where

the Bezout identities (2.3.8)-(2.3.10) hold. Therefore, from Comment 3.2.6.(0. condition (3.2.13)

is equivalent to (3.2.11) and condition (3.2.14) is equivalent to (3.2.12).

•
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3.2.7. Definition ( //-stabilizing compensator C ):

(i) C is called an H-stabilizing compensatorfor P (later abbreviated as: C H-stabilizes P)

iff C e G mxn° satisfies Assumption 3.2.1 (B) and the system S(P, C) is //-stable.

(ii) The set

S(F):={ C:C H-stabilizes P } (3.2.26)

is called the setofall //-stabilizing compensators for F .

3.2.8. Theorem (Set of all //-stabilizing compensators for F ):

Let F e 171 (Gs) and let F satisfy Assumptions 3.2.1 (A); then the set S(F) of all

//-stabilizing compensators C for F is given by equation (3.2.27) and equivalentiy, byequation

(3.2.28) below:

S(F) ={C=(Vp -QNpTx(Up +QDp): Q e 171(H)); (3.2.27)

S(F)= {C =(Up +DpQ)(Vp -NpQTx : Q e 171(H)}; (3.2.28)

where the matrices Vp , Up , Vp , Up in equations (3.2.27)-(3.2.28) satisfy the generalized

Bezout identity (2.3.7).

Equations (3.2.27) and (3.2.28) give aparametrization of all //-stabilizing compensators forF ;

in each case, themap Q h> C is bijective and, for the same Q e 171(H), (3.2.27) and (3.2.28)

give the same C .

3.2.9. Comments:

(i) (AH //-stabilizing compensators based on ab.c.f.r. ofF ):

By Proposition 2.4.1, (NprX,Y) is an r.c.f.r. and (Y ,X Npl) is an l.c.f.r. of F ; with this

doubly-coprime-fraction representation of F , the set S(F) of all //-stabilizing compensators is

given by:
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S(F)= { (V +UVprN^-QXN^UUpr+QY) : Q e 171(H) }; (3.2.29)

equivalentiy,

S(F) ={(UplU +YQ)(V +NprVplU -NprXQTx :Q e 171(H)}; (3.2.30)

where the matrices in equations (3.2.29)-(3.2.30) satisfy the generalized Bezout identities

(2.3.8)-(2.3.10).

Following Comment 2.4.2, a generalized Bezout identity for the doubly-coprime pair

((NprX,Y),(Y ,X Npi)) is given by equation (2.4.3); comparing the two generalized Bezout

identities (2.4.3) and (2.3.7), it is easy to see that equation (3.2.29) is equivalent to equation

(3.2.27) and equation (3.2.30) is equivalent to equation (3.2.28).

(ii) (All //-stabilizing compensators for //-stable F ):

IfF e 171(H), then following Comment 2.5.3.(ii), the set S(F) of all //-stabilizing compen

sators is given by:

S(F) = { C = (Ini-QPTXQ :Q e m(H)};
equivalentiy,

S(F)={C=fi(/Wo-Ffir1 : Q e 171(H)}.

(iii) (All //-stabilizing compensators when F e 171(G))

InTheorem 3.2.8, if we assume that F e 171(G) butnot 171 (Gs) , then in equations (3.2.27)-

(3.2.28)(and equivalentiy, (3.2.29)-(3.2.30))we chooseQ e 171(H) such that

det(Vp-(2Np) e I (equivalentiy, det(Vp -NpQ) e I) (3.2.31)

becauseequation(3.2.31) is notautomatically satisfied for all Q e 171(H).

If// isRu (s) as inExample 2.2.2, then following Comment 2.5.3.(iii), Q e 171 (Ru (s))

can be chosen as in equation (2.5.12) to satisfy equation (3.2.31); in other words, with Q as in

(2.5.12), we have a proper compensator where the denominator is given by Dc = (Vp - QNp) (or

Dc=(Vp-NpQ)).
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(iv) (All F such that S (P, C ) is //-stable):

It is trivial to observe that F and C are symmetric in S(P,C) : Let C e 171 (Gs) ,

C = D~XNC = NCD~X, be given, let (DC,NC) and (Nc,De) satisfy die generalized Bezout iden

tity (2.5.14). Underthese conditions, the set of all F e 171(G) for whichS (P, C) is //-stable

is given by equation (3.2.27P) and equivalentiy, equation (3.2.28P) below:

{ F =(Uc +DcQp)(Ve -NcQp)'x :Qp e m(H)}; (3.2.27P)

{ P =<yc-QpNcTx(Uc+QpDc) : Qp e 171(H) } . (3.2.28P)

If C e 171(G) , then Qp e 171(H) should be chosen so that det(Vc-NcQp) e I

(equivalentiy, det(Vc -QPNC) e I ).

Proof ofTheorem 3.2.8:

By normalizing equations (3.2.11) and (3.2.12), S(P, C) is //-stable if and only if equations

(3.2.17)-(3.2.18) (and hence, the generalized Bezout identity (3.2.19)) hold. By Lemma 2.5.2,

(Dc ,NC), where Dc ,NC e 171(H), isasolution ofequation (3.2.17) if and only if

[dc :Ne] =[/„. !q] Vp Up

-Np Dp -[/,: fl] M (3.2.32)

for some Q e 171(H); similarly, (NC,DC), where Afc ,DC e 171(H), is a solution ofequa

tion (3.2.18) if and only if

-AT. Dp -Up
Nn Vn

-Q
I no

=:ATX
-Q
I n0

(3.2.33)

for some Q e 171(H) . Now by Lemma 2.5.1, since F e 171 (Gs) implies that

Np=PDp e 17l(Gs), for all Q e 171(H) ,det(Vp-QNp) <= I and dct(Vp-NpQ) e I .

Finally, if C is given by the expression in equation (3.2.27) or (3.2.28), then C satisfies

Assumption 3.2.1 (B) and S(P,C) is //-stable. Conversely, if (DC,NC) is an l.c.f.r. and

(Nc, Dc) is an r.cf.r. of an //-stabilizing C for the plant F , then (Dc ,Nc)is given by equation
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(3.2.32) and (Nc,De) is given by equation (3.2.33), for some Q e 171(H); hence, C satisfies

the expressions in (3.2.27)-(3.2.28).

Now let Cx =D~\NcX, C2 =D~\Nc2 be two //-stabilizing compensators; hence, Cx and

C2 are given by the expression in (3.2.27). By equation (3.2.32)

[dc1 iNcX]Atx =[ln. Id] =Dcl[/„. iCx]m~x, (3.2.34)

fbrsome£i e 171(H),and

[Dc2 !tfc2] JIT1 =[/„. ;Q2] =Dc2[/„,. ;C2] JIT1, (3.2.35)

for some Q2 e 171(H) . But CX = C2 in equations (3.2.34)-(3.2.35) if and only if

[/w iC^iiT1 =5"j[/w :fii] =Ari[/w :fi2] 5equivalentiy, DcX=Dc2 , and
^c"ifii -DciQi; hence, (2i =^2 • This shows that, for each C e S(F), there is a unique

Q e 171(H) such that C =<yp - QNpTx(Up +QDp).

Now suppose that Ci has an l.c.f.r. (DcX, NcX) but C2 is given by an r.cf.r. (Nc2, Dc2) as

in equation (3.2.28). So by equations (3.2.33) and (3.2.34),

[dc1 ;nc1]m-1m
-Nci

DC2
=[u :-q]

-Qi

I
nQ

(3.2.36)

But C! = C2 if and only if NcXDc2 = DcxNc2; from equation (3.2.36), C x= C2 if and only if

[-^cl^c2+̂cA2] =Gi-G2=0

We conclude that Cx =(Vp -QxNpTx(Up +QxDp) equals C2=(Vp-Q2NpTx(Up +Q2Dp) if

and only if Qj = <22.

D



3.2.10. Achievable I/O maps of S (P, C):

The set

A(F) := { tf_ : C //-stabilizes F }•yu
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(3.2.37)

is called the set ofall achievable I/O maps of the unity-feedback system S(P,C).

By Theorem 3.2.8, the compensator C //-stabilizes F if and only if C e S(F) given in

equations (3.2.27)-(3.2.28). substituting 5~xNe = (Vp-QNpTx(Up+QDp) or A^D"1 =

((7p +Dpj2)(Vp -NpQTx for C into equation (3.2.2), we obtain the set of all achievable I/O

maps in equation (3.2.38) below:

A(F)={ H- =
NP(VP-QNP) NP(UP+QDP)p\~p

-(UP+DPQ)NP DP(UP+QDP)p\~p

: Q e 171(H) } .(3.2.38)

Note that each closed-loop map of S(P,C) is an affine map in the parameter matrix

Q e 171(H).

Compensator design using the configuration S(P,C) i$ called one-degree-of-freedom

design [Hor.l] or one-parameter design [Vid.l] since all achievable maps are parametrized by the

single parameter matrix Q.
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3.3. The general feedback system Z(P,C)

In this section we consider the general feedback system S(F, C) shown in Figure 3.6; the

(Ho + nQ)\(y\i + nt) plant F € 171(G) is partitioned as

F =

C =

^11 ^12

F21 F

cxx CX2

C2X c

= G^-^Wto+w) , whereF e G"*™ ;

similarly, Ce G(Tl/+w)x(Tl/+,Io) is partitioned as

: G(^/+w)x(Tl|'/+^) , whereC e Gmxn°

»

"^—.

c

> H '

v' +

——o-—•

F

•

1—*

t
+ ~KS 1

(3.3.1)

(3.3.2)

Figure 3.6. The feedback system I.(P,C)

3.3.1. Assumptions:

(A) The plant F e GCn°+"")x(lv+'l/) is partitioned as in equation (3.3.1).

ByLemma 2.6.1, F has an r.cf.r. (Np, Dp) and anl.c.f.r. (Dp, Np)which satisfy equations

(3.3.3)-(3.3.4) below:

where

(i) (N?,Dp)=:(p*~p.

(ii) (D^,^)=:(
p»"p

NXX NX2

N1X Np

Dlx D12

0 D„

Z>„ 0

D2X Dp

Nlx NX2

Nil NP

).

),

(NP,DP) is an r.f.r. of F , and (Dp,NP) is an l.f.r. of F
'p%~p p" p

(3.3.3)

(3.3.4)
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(B) The compensator Ce G^°'+m )x(T1/ '+n°>is partitioned as in equation (3.3.2).

By Lemma 2.6.1 applied to C, the compensator C has an Lc.f.r. (D?,N?) and an r.c.f.r.

(N?, D*) which satisfy equations (3.3.5)-(3.3.6) below:

where

(DC-,A^)=:(

(A^,D?)=:(

D'„ D\2-

0 D,

ii 12

AT21

12

N,

D'„ 0

£>'2i Dc

),

),

(DC,NC) is an l.f.r. of C , and (NC,DC) is an r.f.r. of C .

(3.3.5)

(3.3.6)

D

By Lemma 2.3.3, any other r.c.f.r. ofF is given by (NpR,DpR), where (Np,Dp) is the

r.c.f.r inequation (3.3.3) and R e 171(H) is //-unimodular. Similarly, any other l.c.f.r. ofF is

given by (LDp,LNp), where (Dp,Np) is the l.c.f.r. in equation (3.3.4) and L e 171(H) is

//-unimodular. Note that the pair (Np ,Dp)in equation (3.3.3) is not necessarily r.c. and the pair

(Dp,Np) in equation (3.3.4) is not necessarily l.c. Similar comments apply to coprime-fraction

representations of C.

3.3.2. Closed-loop I/O maps of Z(F, C):

Consider Figure 3.6; let

z V

y :=
y

z' , u :=

u

v'

r u'
. .

The map H$z :u |-» y iscalled the I/O map ofS(F, C). In terms ofF and C , H$z is given by



"yu

Pn-PnT-vCP2X PX2Tl

(Ino -PT-XC)P2X PT~X PT-xC2l

-C12Ono -PT-XC)P'2I -CX2PTTX CXX-CX2PT-XC2X CX2(Ino-PTXC)
-TXCP 21 r-1-/.,

PX2T C2X

r-lc2l

P„T-XC12J

pT-\c

TXC
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,(3.3.7)

where T :=(/n.+CF ).

3.3.3. Analysis of Z(F, C):

We analyze the system Z(F, C) shown in Figure 3.6 by factorizing F as NpDp1 and Cas

D?lN? (see Figure 3.7); qp denotes thepseudo-state ofF.

v'
1

z' V

'A*

r -

1

T
Z

0—'

1—»

1—»

Nt ) Df
-i—>

1

1

1
—j—)

Of1
^P

1 N*Up

-1 •

1 y
-j 1 fr

+ J
L_

F
+ U 1

1

1

c
J

^ ~ , ~

Figure 3.7. The system KP,C) withF = NpDp1 and C = D?XN£

Z(F, C ) is then described by equations (3.3.8)-(3.3.9):

011 0 0 0
a V

D21 Dp : 0 -/„. % /ifc+ni : 0 w

N[2N2X finNp : D\x 5\2 z' 0 ** v'

,. (3.3.8)

ficN2i NcNp : 0 Dc [y'\ u'

A z

Np : 0 $P
_

v

(3.3.9)

0 : Ir\0'+m z' z'

[y'\ [y'\



Equations (3.3.8)-(3.3.9) are of the form

DH% = NLu
* £ -A.

NRt, = y;
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by elementary row and column operations on the matrices in equations (3.3.8)-(3.3.9), using

Lenmia 2.3.2, it is easy to see mat (^,D^,iVL) is ab.c. triple, with ^ ,DH,NL e 171(H).
IfdetD„ e / , then the I/O map H$$ isgiven by

H?£=NRD]jxNL e 171(G).

The definition of//-stability for Z(F, C) isanalogous to the //-stability definition for S(P,C):

33A. Definition (//-stability ):

The system Z(F, C) issaid to be H-stable iffH$s e 171(H).

333. Theorem (//-stability of Z(F, C)):

Consider the system 2(F, C) shown in Figure 3.6. Let Assumptions 3.3.1 (A) and (B) hold.

Undertheseconditions, the following three conditions areequivalent:

(i) liP,C)is H-stable;

(ii) DH is /i-unimodular; (3.3.10)

(iii) Dn is //-unimodular , and (3.3.11)

D \\ is //-unimodular , and (3.3.12)

IDcDp +NcNp J is //-unimodular. (3.3.13)
Dn and Dn aredefined inequations (3.3.3) and (3.3.4), respectively.

33.6. Comments:

(i)Condition (3.3.10) ofTheorem 3.3.5 is equivalent todetD// e / ; byequation (3.3.8),

detD,, = detD„detD \xdet(DcDp +NcNp ). (3.3.14)
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By Lemma 2.3.4.(i), detDH e J if and only if each of the three factors in equation (3.3.14) is in

/ ;hence, byequations (3.3.3) and (3.3.5), detD„ e / if and only if

detD n =detD-(detDp )_1 e / (equivalentiy, detD- =detDp ), (3.3.15)
and

detD [x =detD?( detDc )"* e J (equivalentiy, detD? =detDc ), (3.3.16)
and

det( DcDp+NcNp) e J (equivalentiy, det( 5eDp +NcNp )- 1). (3.3.17)

Due to equation (3.3.14), condition (3.3.10) of Theorem 3.3.5 is equivalent to conditions

(3.3.11)-(3.3.12)-(3.3.13).

(ii) By normalization, conditions (3.3.11)-(3.3.12)-(3.3.13) ofTheorem 3.3.5 can be written as:

Dxx=rAi and

^ii=/V and
DcDp+NcNp=In..

Equation (3.3.20) is in fact aright-Bezout identity for the r.cf.r. (Np, Dp) ofF and aleft-Bezout

identity for the Lcf.r. (Dc,Nc)ofC;by equations (3.3.18)-(3.3.20), if Z(F,C) is //-stable,

thenthe r.cf.r. (Np, Dp) of F in equation (3.3.3) and thel.cf.r. (D?, N?) of C in equation (3.3.6)

can be written as:

(Np,Dp) = (
'p'~p

N„ N,11 'v 12

P
N2X N

r iru o i

^21 Dp

where (Np ,Dp)isa right-coprime-fraction representation ofF ,

(D?,N?) = (
V D

0 D

12 N'xx N'X2-

fiii fie

).

).

(3.3.18)

(3.3.19)

(3.3.20)

(3.3.21)

(3.3.22)

where (Dc, Afc) is a left-coprime-fraction representation of C .

(iii) From equation (3.3.14), using det(/„. +CP) = dct(Ino +PC), we can express detD,, also

as:

dctD„ = detD ndctDpdetD ndctDgdctC/^ +PC). (3.3.23)
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Now by Corollary 2.4.4 appliedto F andC, using equations(3.3.3)-(3.3.6), we obtain

detD^ =detD^ (equivalentiy, detD xxdetDp =detD xxdetDp ) (3.3.24)
and

detD? =detD? (equivalentiy, detD ndetDc =detD'ndetDc ); (3.3.25)

hence, substitutingequations(3.3.24)-(3.3.24) into equation(3.3.23), we obtain

detD,, =detDndetD'udetfDpD,. +NpNc ). (3.3.26)

Therefore, if we analyze the system 2(F, C) with F factorized as DplNp and C factorized as

N?Dfx ,bynormalization, condition (iii) ofTheorem 3.3.5 isequivalent to

Dxx=Ir\0 and

£>'n=/n/ and
D^+NpN^I^

(3.3.27)

(3.3.28)

(3.3.29)

As in equations (3.3.18)-(3.3.20) above, we conclude that if Z(F, C) is //-stable, then the l.cf.r.

ofF in equation (3.3.4) andthe r.cfx of C in equation (3.3.6) can be written as:

0>Atff) = (p'"p

ho D
0 D,

12 NXX NX2

JpN2X N.

where (Dp ,Np)isa left-coprime-fraction representation ofF ,

(Af?,D?) = (
"'ii N*

N'2X Nc
12 T\i 0

^'21 Dc

), (3.3.30)

), (3.3.31)

where (NC,DC) is a right-copri/we-fraction representation of C .

(iv) If S(F, C) is //-stable, then F has an r.cf.r. as shown inequation (3.3.21), and an l.cf.r. as

shown in equation (3.3.30); also C has an l.cf.r. and an r.c.f.r. as shown in equations (3.3.22)

and (3.3.31), respectively. Under these conditions,

V = -DZXD

0

21 D
-1 ( D?1 =

lr\0 -dX2d;x
D -1 ), (3.3.32)
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-DUD71

-lr»'
D?l =

0 D -l ( Dfx = -l-Dc~lD'2x D- (3.3.33)

Conditions (3.3.11)-(3.3.12)-(3.3.13) can be interpreted as follows: T(P,C) is //-stabilized if

and only if 1)the only source of"instability" inthe plant F isDp (equivalentiy, Dp ) 2) and the

only source of "instability" in the compensator C is Dc (equivalentiy, De ) 3) and thefeedback-

loop (with F and C ) is //-stable. Note that the //-stability ofthe "feedback-loop" is equivalent

to the //-stability of the unity-feedback system S(P,C); indeed, equation (3.3.20) is identical

to (3.2.12).

•

Proof ofTheorem 333:

(i)<=>0i)

The proof is similar to Theorem 3.2.5. Let Z(F, C) be //-stable; then by Definition 3.3.4,

H$£ e 171 (//), and in particular, Hyu e 171 (H) , where Hy>u is given by equation (3.2.20).

Since P= NpDp1 and C=D?W? implies that Dp1 e m(G) and D?1 e 171(G), by equa

tions (3.2.20) and (3.3.23), D„x e 171(G) (equivalentiy, Z(F,C) is well-posed); hence,

(NR,DH,NL) is a b.cf.r. of H?£ . By Lemma 2.3.7, H^ e 171(H) if and only if

D^1 e 171(H) and hence, the equivalence ofconditions (i) and (ii) follows.

(ii) <=>(iii)

Following Comment 3.3.6.(i), equation (3.3.14) implies that detD,/

detDn e J ,detD'n e / anddet(DcDp +NcNp ) e J.

J if and only if

a
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Theorem 3.3.5 shows that not all plants F can be //-stabilized by some compensator C in

the configuration Z(F, C); the restriction on the class of plants is a consequence of the feedback

being applied only from the output to the input of F . Plants which can be //-stabilized in the

configuration Z(F,C) are called Z-admissible. Qearly, C must also be Z-admissible to

//-stabilize F .

3.3.7. Definition (//-stabilizing compensator C ):

(i) C is called anH-stabilizing compensatorforP flater abbreviated as: C H-stabilizes P)

iff Ce G(TV+n/)x(T1/'+'k) satisfies Assumption 3.3.1(B) and the system Z(F, C) is
//-stable.

(ii) The set

S(F) := { C:C H-stabilizes P } (3.3.34)

is called the setofallH-stabilizing compensatorsforP .

3.3.8. Definition (Z-admissibility):

F e m(G)iscanedIr-admissibleUfPcmbeH-stabilizedbysomeC e 171(G).

Let (Np, Dp) be an r.c.f.r. of F ; by Theorem 3.3.5, F is Z-admissible if and only if two

conditions are satisfied: 1) detDp- = detDp and 2) (Np,Dp) is a right-coprime-fraction representa

tion ofF . In terms of the Lcf.r. (Dp, Np) ofF, again by Theorem 3.3.5, F is Z-admissible if

and only if 1)Dp = detDp and 2) (Dp ,Np)isa left-coprime-fraction representation ofF . The

necessity of these conditions follows from Definition 3.3.8 and Theorem 3.3.5; the sufficiency

follows by observing that if (Np,Dp) and (Dp,Np) satisfy these conditions, then the system

Z(F, C) ismade //-stableby choosing a C that satisfies equations (3.3.12) and (3.3.13).

We now parametrize the class of all Z-admissible plants F and then we parametrize the

class of all //-stabilizing compensators C forZ-admissible F .
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3.3.9. Theorem (Class of Z-admissible F ):

Let F e 171 (G) be partitioned as in equation (3.3.1); then F is Z-admissible if and only if F

has an r.cf.r. in the form given by equation (3.3.35) and an Lcf.r. given by equation (3.3.36)

below:

(Afe,/>*) = (wp'~p

(D*fAL*) = (
p%"p

Nxx NX2

VPN2X Np

'* -Nv&, '

0 6p
•

'* o
). (3.3.35)

-tf,"2i Dp

NXX NX2Vp

). (3.3.36)

N2i Nt

where (A/p, Dp) is an r.cf.r. and (Dp, Np) is an l.cf.r. of F ; the pairs (Np,Dp)and (Dp,Np),

together with Up ,Vp ,Up ,Vp , satisfy the generalized Bezout identity (2.3.7), andNxx ,NX2,

N2X e 171 (H) arefree parameter matrices.

3 3.10. Comments:

(i) By Theorem 3.3.5, F is Z-admissible if and only if an r.cf.r. (Np, Dp) ofF satisfies equation

(3.3.21) andan l.cf.r. (Dp, Np) of F satisfies equation (3.3.30). Another point ofview is the fol

lowing: suppose that (Np,Dp) is an r.cfr. and (Dp,Np) is anLcf.r. ofF , and that the general

ized Bezout identity (2.3.7) holds. From this information, we generate the class of all Z-admissi

ble plantsby choosing three completely free matrices NXX,NX2,N2X e 171(H) andforming the

r.c. pair (Np, Dp) in equation (3.3.35) or the Lc pair (Dp, Np) in equation (3.3.36); with this

assignment of(Dp, Np) and (Np, Dp), P := NpDp1 =DpxNp is aZ-admissible plant Note that

detD£ e I (equivalentiy, detDp* el) follows from detDp e / (equivalentiy, detDp el).

(ii) Theorem 3.3.9 states that the class of all Z-admissible plants is parametrized by only three

free matrices Nx x, NX2,N2X e 171(H).
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(iii) We can consider the following "easy check for Z-admissibility of F" as a corollary to

Theorem 3.3.9: Suppose that we are given aF e 171(G),partitioned asinequation (3.3.1), and

that the coprime-fraction representations NpDp~x =DpxNp ofF satisfy the generalized Bezout

identity (2.3.7); then F is Z-admissible if and only if the three conditions in equation (3.3.37)

below hold:

Pi\-P\2DpUpP2x e 171(H) and PX2Dp e 171(H) and DpP2x e 171(H). (3;3.37)

We justify that Z-admissibility of F is equivalent to equation (3.3.37) as follows: If F is

Z-admissible, then by Theorem 3.3.9, Pxx=Nxx+NX2DpxUpN2X , PX2 =Nx2Dp-x ,

I*2i =D~XN2X and F =NpDp~x ;hence, equation (3.3.37) holds. To show the converse, choose

any C e 171(G) such that equations (3.3.12)-(3.3.13) hold; then the closed-loop I/O map in

equation (3.3.7) is in H because equation (3.3.37) holds and hence, by Definition 3.3.8, F is

Z-admissible.

•

Proof of Theorem 33.9:

By Theorem 3.3.5, F is Z-admissible ifand only ifthe r.cf.r. (Np, Dp) and the l.c.f.r. (Dp, Np)

ofF, given inAssumption 3.3.1, satisfy equations (3.3.21) and (3.3.30), respectively. Now since

F =NpDp1 =DpxNp ,we obtain

^i2Dp + (~D\2)NP = NX2, (3.3.38)

-fipD2l +DpN2x =N2X, (3.3.39)

fiX2D2x-DX2N2X =Nxx-Nxx. (3.3.40)

By Lemma 2.5.2.(i), (Nx2, Dx2) is a solution ofequation (3.3.38) (with NX2 ,DX2 e 171(H)) if

and only if

[^12 ''-Dn] =[n12 !£] Vp Up

-Np Dp (3.3.41)

for some Q e 171(H) ; similarly, by Lemma 2.5.2.(ii), (D2x,N2l) is a solution of equation



(3.3.39) (with D2X,N2X e 171(H)) if and only if

D21

N2l

Dp -Up
Nn Vn

-Q
N2X
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(3.3.42)

for some Q e 171(H). Substituting equations (3.3.41)-(3.3.42) into (3.3.40) and using the gen

eralized Bezout identity (2.3.7), we obtain

[fit2':-DX2] „l =[NX2\Q] -Q
N2X = NXX-NXX (3.3.43)

Using equations (3.3.41)-(3.3.42), the r.c.f.r. (Np, Dp) andthe Lcf.r. (D*. N?) become:
p*"p

Let R :=

(Np,Dp) = (

(Dp,Np) = (

'51 0
Q U

(3.3.43), let

Nxx NX2

Vpfi2i-NpQ Np

In* -NX2UP-QD\2"p ~-p

6.

171(H) , let L :=

-Upfi2x-DpQ Dp ), (3.3.44)

Nxx NX2Vp-QNp
N 21 N,

). (3.3.45)

1\o

0

Q

no
171(H) . Using equation

NXX:=NXX+NX2Q =NXX + QN2X (3.3.46)

Since R and L are //-unimodular, by Lemma 2.3.3, (NpR, DpR) , which is the same as the

r.cf.r. given in(3.3.35), is also an r.cf.r. and (LDp, LNp),which is the same as the l.c.f.r. given

in (3.3.36), is also an Lcf.r. ofF ; we conclude that F is Z-admissible if and only if an r.c.f.r. and
/s

an Lcf.r. of F are given by equations (3.3.35) and (3.3.36), respectively.

D
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3J.11. Theorem(Set of all//-stabilizing compensators C for F ):

LetF e 171 (G) be Z-admissible withF e 171 (Gs); let (Np,Dp) he an r.c.f.r. and (Dp,Np)

be an l.cf.r. of F , and let the generalized Bezout identity (2.3.7) hold. Under these conditions,

the set S(F) of all //-stabilizing compensators C for F is given by equation (3.3.47) and

equivalentiy, by equation (3.3.48) below:

S(F)={ C =
/V -QnNp Q n Q12D,

0 Vp-QNl Q21 UP+QD.

fin.fi12.fi21.fi e rn(H) } , (3.3.47)

S(F)={ C =
Q 11 e 12 V 0

n -1

DpQ2i UP+DPQ -w„02i Vp-iVpQ

fin.fi12.Q21.fi e m(//) }, (3.3.48)

Equations (3.3.47) and (3.3.48) give a parametrization of all //-stabilizing compensators for F ;
A /seach of these equations defines a bijection from Qxx ,QX2, Q2X ,Q e 171 (H) to C e S(F)

ft ^
Forthesame (fi n. Q12. fi21. fi ). equations (3.3.47)-(3.3.48) give thesame C e S(F).

Proof:

By assumption, F is Z-admissible; hence, by Theorem 3.3.5, Z(F, C) is //-stable if and only if

equations (3.3.12) and (3.3.13) hold. From Comments 3.3.6.(i) and (ii), C //-stabilizes F if and

only if an Lcf.r.. (D?,N?) of C satisfies equation (3.3.22), an r.c.f.r. (N?,D?) of C satisfies

(3.3.31), where C is such that (DC,NC) and (NC,DC) satisfy the generalized Bezout identity

(3.2.19).
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By Theorem 3.2.5, the set of all C which satisfies equation (3.3.20) (and equivalentiy,

(3.3.29)) is given by the set S(F) inequation (3.2.27) (and equivalentiy, (3.2.28)). Substituting

equations (3.3.22), (3.3.31) into N?D? = D^Afc and using equations (3.3.27)-(3.3.28), we obtain

N'x2De+(-D'X2)Nc=N'X2, (3.3.49)

-tfcD'21+DcAr21=Ar21, (3.3.50)

N'X2D'2X-D'X2N'2X=N'XX-N'XX. (3.3.51)

By Lemma 2.5.2, using the generalized Bezout identity (3.2.19), (N X2,D X2) is a solution of

equation (3.3.49)

[iVja :-Jjja] =[AT12 :£'] D„ N,

-AL D.

and(D'21, JV"21) is a solution ofequation (3.3.50) if and only if

D'21
N'2X

Dc -Np

Nc Dp
-Q'
N2X

(3.3.52)

(3.3.53)

for some Q' e 171(H) and Q ' e 171(H) . Substituting equations (3.3.52)-(3.3.53) into

(3.3.22) and (3.3.31), we obtain

fin N'X2Dp-Q'Nt
(DC-,A^) = (

fV -N'nNp-Q'D
0 Dc

0V>,D?) = (
N'n N'X2

-NcQ' + DpN'2X Nc

p » *' c

fill fie

DCQ'-NPN'2X Dc

), (3.3.54)

), (3.3.55)

where (Dc, Nc ) and (Nc, Dc) are as in equations (3.3.27)-(3.3.28).

LetL':=
Q'

0 Ini

(N?R', D^R') is also an r.c.f.r. of C

,R':=
Q' I no

; then (L'D?, L'N?) is also an l.c.f.r. and



61

Now letQxx:=N'xx + Q'N'2X;hy equation (3.3.5l),N\x + Q'N2x=N'xx+N'X2Q'= Qxx.

Let QX2 := N'X2, Q2X:=fi'2X. Finally, C //-stabilizes F if and only if C has an Lcf.r. and an

r.cf.r. as in equations (3.3.47) and (3.3.48).

Now letCxand C2 betwo compensators in S(F) given by equation (3.3.47); then

Ci =
Qn +QnfipDcl Qi2(Dp+fipCx)

d;Iq2i
and C2 =

* — ~

fin + fii2^p^c"2 QniDp+NpCJ

D~222i C2

where C! =(Yp -QxfipT\Up+QxDp), C2 =(Vp - Q2fipTx(Up +Q2Dp). It was shown in

the proof ofTheorem 3.2.8 that C x= C2 if and only if QX = Q2 and DcX = Dc2; hence, Cx = C2

ifand only ifQ2X =£21, and fii2(Dp +NpNcD~x) =fii2(^p +fipNcD~x) ;thus, using equa-

tion (3.3.29), fi 12 = fi 12 and hence, fin = fin . Therefore, there is a unique set of parameters

fin . fi 12 • fi21» fi f°r eacb //-stabilizing C . Using D^Afc = N?D£ , a similar argument as in

the proof ofTheorem 3.2.8 shows that, for the same C , the parameter matrices in (3.3.47) arethe

same as the ones in (3.3.48).

•

3.3.12. Comments:

(i) Consider Figure 3.8,whichshows Z(F, C) where F is Z-admissible; this figure is obtained by

taking F=NpDp1 ,where (Np, Dp) is given by equation (3.3.35), and by taking

r/«.' -Qnfir~lr
C =

0

fin Q120,
fi21 N,

note that the only instabilities in F and C are due to Dp and Dc , respectively. InFigure 3.8, C

and F already satisfy equations (3.3.11) and (3.3.12); hence, Z(F, C) is //-stable if and only if

the "feedback-loop" is //-stable.

If the ring H is the ring of proper stable rational functions Ru(s) as in Example 2.2.2, then

the Z-admissibility of F implies that every W-pole of Fu , F12 , F21 is a W-pole of F =
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-lNpDpl , with at most the same McMillan degree [Vid.l, Net.l]. Similarly, for C to be an

//-stabilizing compensator for F , the U-poles of Cxx , CX2 , C2X must be "contained" in the

U-poles ofC =D~XNC , and C must be chosen so that the feedback-loop is //-stable.

u'

11 •** Af u ^
:2i Q 12

±
AT21

AT12

5

N,

C

AT,

-1 4
tf,

+<>
-1 AT„ t-6

Figure 3.8. The system Z(F, C)with aZ-admissible plant F =NpDp1 ;

note the duality between C =D£lN£ and F .

(ii) The class of all //-stabilizing compensators is parametrized by four matrices, Qxx , QX2 ,

fi21. fi e 171(H) ; the matrix Q parametrizes the class of all C that //-stabilizes the loop

S(P, C). We refer to design with the unity-feedback system S(P,C)as one-degree-of-freedom

design [Hor.l] because only one parameter matrix is available for design (see Section 3.2). In

contrast, for the more general system Z(F, C) , there are four-degrees-of-freedom becauseC has

four completely free matrices in H , which can be chosen to meet performance specifications.

For example, in Section 3.4, we use the parameter Q2X to diagonalize the input-output map

Hzv>:v' h» z .



33.13. Achievable I/O maps of Z(P, C):

The set

A(P) := [Hf* : C //-stabilizes P }

is calledthe set of all achievable I/O maps of thesystem I(/\ C).
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(3.3.56)

Substituting for C from the expression in equations (3.3.47) and (3.3.48) into the closed-

loop I/O map Hff in equation (3.3.7), we obtain the setofallachievable I/O maps forZ(P,C):

*n-*120*21 : Nn(Vp-QNp) ':NnQ2l':Nl2(Up+QDp)

M={«w«
(Yp-NpQ)N2l : Np(Vp-QNp) i tf,021 ! Np(Up+QDp)

H2l2^21 -fi 12^ : fin : Gi2^

-(Up+DpQ)N21 ': -(Up+DpQ)Np ': DpQ2l ': Dp(Up+QDp)

:fin.C12.G21.fi e m(//) } . (3.3.58)

Inspection of equation (3.3.58) shows thateach closed-loop map achieved by I(/\ C) depends on

only one offour free parameters fi n , fi 12» fi21» fi e 171(H); in fact, each of these maps is

an affine function ofone parameter only.

If P u = 0 and P2\-Ino »men v canbe viewed as an additive disturbance at the output y ;

the disturbance-to-output map H^ : v K y is given by (Vp -NpQ)N2l = (Vp -NpQ)Dp ,

which depends on theparameter £ € 171(H). Ontheother hand, theexternal-input to output

maps //zv'= NiiQ2i and//yv'= NpQ2\ depend on a different parameter Q21 •Consequently, out

put shaping and disturbance rejection can be achieved simultaneously, since Hzv' and Hyv> are

decoupled from Hyv .



64

3.4. Achievable diagonal maps

We now consider the problem of achieving a diagonal I/O map for a ^-admissible plant P ;

more precisely, we require the closed-loop map H„*: v' h» z from the external-input v' to the

rr *• A
output z of the //-stabilized !(/>, C) to be diagonal. We obtain the class of all achievable diago

nal maps H„*.

Suppose that P e 171(G)., partitioned as in equation (3.3.1), is a^-admissible plant We

assume that and Tjt' =nf =ti<, ;consequently, P12 e G n'xn' issquare since there are n,- inputs

v' and nt outputs z. Furthermore, we assume that Nn e Hmxni is nonsingular (i.e.,

de\Nl2£ 0).

We define two diagonal (nonsingular) matrices A/, and Ar as follows:

(i) Let A/,* € // bea greatest-common-divisor (g.cd.) of the elements of the krth row of

Nn. For £ = 1, ••• , Hi , A^jfc e // exists since H is aprincipal ring [Lan.l]. We define A^

and N\2 by the following equations:

AL:=<fczg[AL1, ••• tALnt], (3.4.1)

Nl2=:ALNl2. (3.4.2)

By construction, detA/, £ 0 . Note that the diagonal elements A^ of A/, are unique except for

factors in/.

(ii) By assumption, detAf12 =detA^det/V^ £ 0; hence, dctW12 56 0*. Write the i/'-th entry of

^—1 "**/ rrN\i ^ ~r~ »where (m,-,-, ^) is acoprime pair in /* ;note that di} g 0 since the denominator of
aij

each entry is a factor of dctN12 (i.e., detyv12 =d^a^ for some a^ en).

Let A^- e H be alcast-common-multiple O-C.m.) of {Jly- , ••• ,dn.j } (i.e., al.c.m. of

the denominators of the elements in the 7-th column of Nf2 ). For j = 1, ••• , n-t , A^y exists
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since H is a principal ring. Let

Ar :=diag [AR1, ••• ,ARn. ]; (3.4.3)

detA# ^ 0 since ^ sfe 0. The entries A/y ofAr are unique except for factors in /. Note that if

Nii e 171(H),thenAR =/„,..

Now for some btj e H , ARj =dVjbVj ;therefore the 17-th element ofN^Ar is —ARj
dij

=/n£j-,bij e // , and hence,

N^Ar e 171(H). (3.4.4)

Intuitively, if// is/?M (5) as in Example 2.2.2, then we can interpret the diagonal matrices

Aj, and Ar as follows: A^ extracts the M-zeros that are common to all elements in the £-th

row ofNi2 ; A^ "book-keeps" the W-zeros ofPl2 =Nl2D~l that appear in each entry of some

row of Nl2 . Clearly, PX2 may have other W-zeros that cannot be extracted by A^ ; these U

-zeros are the W-zeros of detW12 (equivalently, the W-poles of N{2 ). Now the diagonal matrix

Ar makes Aff2A/? //-stable, i.e., cancels these W-poles. Lets e Ube azero ofAr (hence a

W-zero of detAf12 ); the multiplicity of s e U in detA# may exceed itsmultiplicity in detW12 .

IfdetW12 e HniXnt has n zeros at s e U, then detA/j has ar m<wf nm zeros at .y e W;so

Ar has at most as many W-zeros as (det/V12)/rt..

3.4.1. Definition (Achievable diagonal Hw*):

The set

AJV'(/>) := { Hzv': C H-stabilizes P and the map #2V' is diagonal and nonsingular } (3.4.5)

is called the set of all achievable diagonalnonsingular maps Hzv*: v' |-» z .

Clearly, A^/*) is a subset of the achievable v h» z map in A(P) , because C must be a

//-stabilizing compensator, in other words, A2V'(P) is the set of all NX2Qi\ e 171(H) that are
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diagonal and nonsingular. Thus we must choose the parameter Q2X e 171(H) so thatN\2Q2X

is diagonal and nonsingular (see equation (3.3.58)). The "minimal" restriction on Q2l to achieve

diagonal H„* is given in Theorem 3.4.2 below:

3.4.2. Theorem (Class of all achievable diagonal Hzy)>):

LetP € 77Z(G) be L-admissible, and let/* e 171 (Gs); letNl2 e Hmxm be nonsingular.

Under these conditions,

&„>(?) ={AlArQ2i : Q2i e 171(H) is diagonal and nonsingular }, (3.4.6)

where A^ and Ar are the diagonal, nonsingular matrices defined by equations (3.4.1) and

(3.4.3).

3.4.3. Comments:

(i) The map H„* = Aj,Ar Q2l (where Q2l e 171(H)) is an achievable map of Z(P,C) if and

only if the compensator parameter Q2l is chosen as

fi2i=%i1A/?fi2l; (3.4.7)

where Q2X e Hmxni is diagonal and nonsingular. By equation (3.4.4), £21 e 171(H) .

Therefore, to achieve diagonalization, from the setS(P) of all //-stabilizing compensators C ,

we must choose C21 =D~XQ2X =(Vp - QNp)~xQ2X as

C21 = ( Vp - QNp TlNX2xAR Q2l, (3.4.8)

where the matrix Q2l e Hmxni is diagonal and nonsingular. Note that in equation (3.4.8),

Q e HniXn° is a frce parameter and is not used in diagonalizing the I/O map Hzv>. The other

compensator parameters Qn and Ql2 shown in equations (3.3.47)-(3.3.48) arc not used in

diagonalizing the map Hzv' either.
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(ii) If// is Ru (s) as in Example 2.2.2, then the "cost" of diagonalizing the map Hzv* is that the

number of W-zeros are increased. Since A^ is a factor of Af12 , Hzv> must have zeros at the U

-zeros ofAL ; the multiplicity ofaW-zero ofH„> may be larger than its multiplicity in det/V12
due to Ar . IfAi represents all W-zeros ofPl2 (equivalently, if NX2l e 171(H)) and if Q2i is

chosen so that it has no W-zeros, then the W-zeros of the diagonal Hzv> have the same multipli

city as indetAf12 since Ar =Im .

Note that the parameter Q21 is now restricted tobeNX2Ar Q2l and hence, can nolonger be

assigned arbitrarily in order to meetother design specifications; theonly freedom left is the diag

onalnonsingular matrix Q21 e 171(H).

(iii) Although we chose to diagonalize the map Hzv> , we could also choose to diagonalize

#yv': v' h» y , the map from the same external-input v' to the outputy ofP(y is the output

used in the feedback-loop). In that case, assuming that nQ =nt and that Np e HniXni is non-

singular, we would define ARp ,ALp ,Np from A^ as we did above to obtain A^ ,Ar and #12

from Ni2; the set ofall achievable nonsingular maps H^ would then be A^P), where

Ayy^P) ={ AipArp Q2l: Q2l € 171(H) is diagonal and nonsingular } .

The compensator parameterQ21 would then be chosen as

tfp-'Atyfi*.

•

Proof of Theorem 3.4.2:

The map Hzv> is an achievable map of Z(P,C) if and only if Hzv> = Nl2Q2l for some

Q2l e 171(H). By equation (3.4.1),

"2v' =Wl2fi21=AL//2122l (3.4.9)

for some Q2l e 171(H) . Now Hzv> e 171(H) is diagonal and nonsingular if and only if
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Q2\ € 171(H) is such that AiNX2Q2X is diagonal and nonsmgular. Choose Q21 as inequation

(3.4.7); then by equation (3.4A), Q21 e 171(H) . Clearly, H^ =AL Ar Qi\ is an achievable

diagonal nonsingular map.

Now if H^ is a given diagonal map achieved by !(/*, C), then by equation (3.4.7), Ai is

clearly a factorofH^. Now suppose, for a contradiction, that

H^ = ALARQ2X, (3.4.10)

where all (diagonal) entries of AR are the same as those of Ar except the y-th entry, which is a

proper factor ofARj ;i.e., for some 5y &J ,

ARj=ARjZj. (3.4.11)

Since ARj is al.c.m. of dy , i =1, ••• , nt , the £-th row y-th column denominator dkj has that

factor 8y- , i.e., dkj =§j2kj . The jy-th entry of Q21 is then -—^-A^^ , where fy is the y-th
dkj

(diagonal) entry of <22i. Since oy- isnot a factor ofARj , the only way that the Jfcy-th entry will be

in H is if qj =bjq/ , for some q/ e H ; Q21 then becomes <#ag[ 1 ••• 8y ••• 1]<2'2i .

Therefore, H^^ ALARdiag[\ •• 8; ••• 1]Q'2l =AL A* Q'2l, for some Q'i\ e m(//).

D
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Chapter Four

Decentralized Control Systems

4.1. Introduction

In Chapter Three we studied two system configurations, S(P,C) and S(P, C); these sys

tems put no constraints on the structure of the feedback-compensator. We now investigate the

consequences of restricting the compensator to be block-diagonal.

In large scale systems, we often encounter restrictions on the feedback controller structure.

These systems have several local control stations; each local controller observes only the

corresponding (local) outputs. Such decentralized control of systems results in a block-diagonal

controller-matrix structure.

A multi-channel plant P , which has rational function entries, can be stabilized by a decen

tralized dynamic output-feedback compensator if and only if P has no unstable decentralized

fixed-eigenvalues (misleadingly called fixed-modes in the literature) with respect to block-

diagonal real constant output-feedback [Wan.l]. Decentralized fixed-eigenvalues can be charac

terizedvariousways and interpreted in terms of planttransmission-zeros [see for example, And.l,

Cor.l, Dav.l, 2,}. An algebraic characterization of fixed-eigenvalues using left-factorizations of

the plant is given in [And.l]; the rank-testdeveloped there can also be used to obtain other char

acterizations in a state-space setting.

Decentralized compensator synthesis methods for linear time-invariant systems are avail

able in the literature; these procedures do not result in an explicit expression for the class of all

stabilizing compensators. The original method in [Waal] uses state-space techniques to move all

unstable controllable and observable modes to the left-half complex plane by applying feedback

to each channel sequentially; an algorithm that includes improper plants is given in [Dav.2]. In

[Cor.l], if the plant is strongly-connected, the system is made stabilizable and detectable through

one channel by applying appropriate feedback to all other channels (see also [Vid.3]). In [GUc.1],
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an N x N plant, which has no unstable fixed-eigenvalues with respect to diagonal constant feed

back, is considered; using polynomial algebra, an N-step algorithm is given to determine a com

pensatorwhich moves the poles of this square plantto a symmetric region of stability. This pro

cedure gives one diagonal compensator explicitly.

In this chapter, we obtain the necessary and sufficient conditions on P for stabilizability by

a decentralized dynamic compensator in the completely general algebraic framework of Chapter

Two; hence, the results are applicable to distributed and lumped, continuous-time and discrete-

time systems. Decentralized stabilizability conditions turn out to be certain Smith-form-like

structures that must be satisfied by coprime factorizations of the plant P. When the compensator

structure is required to be block-diagonal as in decentralized output-feedback, finding the class of

all stabilizing decentralized compensators is complicated; the task is to find a structured general

ized Bezout identity where the coprime factorizations of P satisfy, decentralized stabilizability

conditions. For plants that satisfy these conditions, we parametrize the class of all stabilizing

decentralized compensators; this class has as many parameter matrices as the number of channels

(here the parametermatrices satisfy a unimodularity condition).

The chapter is organized as follows: Section 4.2 gives the system description; to simplify

derivations, we consider a two-channel MIMO system in detail (see Figure 4.1). Conditions on

coprime factorizations of P for decentralized stabilizability and the set of all stabilizing decen

tralized compensators Cd are given in Section 4.3. In Section 4.4, the main results of Section 4.3

are interpreted when the plant can be represented by a transfer matrix with rational function

entries; it is shown that the decentralized stabilizability conditions of Section 4.3 in fact general

ize the requirement that the system has no fixed-eigenvalues [And.l, Wan.l]. An algorithm is

given for designing stabilizing decentralized compensators for a given strictly proper P based on

any of its right-coprime factorizations. In Section 4.5, the main theorems of Section 4.3 arc

extended to m -channels and interpreted in the special algebraic setting of proper stable rational

functions. Finally in Section 4.6, decentralized compensator design is extended to the general

system I(P, C)ofSection 3.3.



4.2. System description

Consider the decentralized control system S(PtCd) shown in Figure 4.1.

Figure 4.1: The two-channel decentralized control systemS(P,Cd).

4.2.1. Assumptions:

(A) Let? € G""x"' be atwo-channel plant, where n0 =: n0 x+no2, nt =: n{x +ni:

Let (A^, Dp) be anr.cf.r. ofP, where

Np=:
N,p\

N,pi

€ jjnoxm
• °p~

'pi

>,2
zrmxni

Npl e H"°ixni ,Np2 s //"•*« ,Dpl e Hmim ,Dp2 e HlUTWli

Let (Dp, Np) be an Lcf.r. ofP , where

Dp=:[6pX \Dp2] €//

*,-[",! :^,2] e //

noXfio

n0xm

DpX e Hn°xn°ltDp2 e Hn°xn°2,Npl e Hn°xnn ,Np2 e Hn°xni2

71
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N.
Let (Npr,D,Npi) be a b.c.f.r. of P where Npr =:

pr\

N,
H no in , D e H nxn

prl

Npt =: [Nplx iA^] e //nx,I/ , N.prX eH"°l™ , N„2 e Hn°** , Npn e Hnxm\

AT _ IJ/lX/li2Npl2 e H

(B) Let Cd € Gnt™* be a decentralized compensator, where Q =

Cx e Gmxn°l,C2 e Gni2Xn°2.

Cx 0

0 C2

Let (DcX,NcX) be an l.c.f.r. of Cx and let (Dc2,Nc2) be an l.c.f.r. of C2 , where

DeX e Hmxm,Dc2 e Hm2Xni2,NcX e Hmxn°l ,Nc2 e Hni2Xn°2.

Let £>c :=
DcX 0

0 5c2 , Ne:=
NcX 0

0 tfc2
; note that (De, Nc) is an l.c.f.r. of Q if

and only if (Dc x, Nc x) is an l.c.f.r. ofC xand (Dc2,JVc2) is an Lcf.r. ofC2.

Let (NcX,DcX) be an r.c.f.r. of Cx and let (Nc2,Dc2) be an r.cf.r. of C2 , where

NcX e Hnnxn°l , Ne2 e //*«*,2 §^ G //Koix/fci f ^ 6 jjnovnoi # Let

Dc:=
Del 0

0 Dc2
, /v\:=

NcX 0

0 ATC2
; note that (NctDc) is an r.c.f.r. of Cd if and

only if (NcX, DcX) is an r.cf.r. of Cx and (Afc2, Dc2) is an r.cf.r. of C2.

•

If P satisfies Assumption 4.2.1 (A) we have the generalized Bezout identity (2.3.7) for the

doubly-coprime pair ( (Np, Dp ), (Dp, Np)). For the b.cf.r. (Npr, D,Npl) ofP wehave the two

generalized Bezout identities (2.3.8) and (2.3.10), partitioned as follows: for the r.c. pair

(Npr ,D), there are matrices Vpr ,Upr ,X ,Y ,U ,V e m(//)suchthat

" Vpr Vpr' D -U " Vpr Uprl Upr2 D -U ' K 0

-X Y Npr V

^™*

-X Yx Y2
Npr l

m"pr2 v2

—

0 '"•.

; (4.2.1)
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for the l.c pair (D ,Npl),there are matrices V^ ,17^, X ,Y ,U ,V e 171 (H) such that

D -N,
Pi Vpi X

U V -Upl Y

Let

D -Npll-Npll Vpi x

-Upii Y
U V, -U,pil

y :=

y\ "i

yi
, u :=

u2

y{ u{
. .

l

Y2

In 0

0 / m

the map //— :« Ky is called the I/O map. In terms ofP and Cd , H— is givenby

P(Jm +CdPr P(Im +CdP)~lCd

Hyu~
r-h-CdPQm +CdP)~l (Im +CdP)"1Cd

Note that equation (4.2.3) is the same as equation (3.2.2), where C isreplaced by Cd .

4.2.2. Definition (//-stability):

Thesystem S(P,Cd) is said to beH-stable iff//- e 171(H).

(4.2.2)

(4.2.3)

4.2.3. Analysis:

We now analyze the system S(P, Cd) by factorizing P and Cd ; as expected, we consider four

cases:

(i) Let P =NpDpl , let C=D"1^ , where (Np,Dp) is an r.c. pair as in Assumption 4.2.1 (A),

and (DC,NC) is an l.c pair as in Assumption 4.2.1 (B) (sec Figure 4.2); again, %p denotes the

pseudo-state of P.
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ui

u2

"1
1"1

+ |
> |LfOir Ncl 0C-11

! y,' J
N„i -

yi

; +'° ! '
Op-1

%
1

L
<M i i

-i m2 i

~i

S i .
#c2 0*1

: *' J Np2 -
1 y2

+ s
i i |

i

L _

c2
•

1 L
r

- 1

Figure42: S(P,Cd) withP =NpDpl andQ =D?NC .

5 (P, Cd ) is then described by equations (4.2.4)-(4.2J) below:

^cl^l+^cl^l

Oe2Dp2 + Nc2Np2
t-

Npl yi

NP2

DPI Sp-
y2

yi'
+

Dpz y2'

Equations (4.2.4)-(4.2.5) are in the form

£>H&p =NLXu

Mr&p =y-SHXu ,

£>,i 0 AT,, 0cl

0 Dc2 0 A/c2

0 0 o o" Ml

0 0 0 0 "2

wi 0 0 0 «l'

0 /„.2o 0 u{

"l

"2

*i'

"2#

(4.2.4)

(4.2.5)

(4.2.6)

where (NR x, Dn x) is an r.c pair and (Du lfNL x) is an l.c pair. If dct£>//x e /, then

Hyu=NRXDt7\NLX+SfIX e 171(G).

S(P,Cd) is //-stable if and only if D/jJ € 171(H) (equivalcntly, detD//i e / and hence,

Dui is //-unimodular). Dux can beexpressed several ways:



Dm = DCDP +NCNP =

DcX 0 : NcX 0

0 Dc2i 0 tfc2
AL

^cl^pl+^cl^pl

Oc2Dp2 + Nc2Np2

DcX NcX : 0 0

0 0 : Dc2 Afc2
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Vi

N,pl

(4.2.7)

V2

MP2

and detDHX can also be written as detDHX = detDcdet(/ +CdP)detDp . By normalization and

due to the block-diagonal compensator structure, DHX e 171(H) is //-unimodular if and only if

there are block-diagonal matrices Vp := Dc ,Up :=NC e 171(H) such that

VpDp+UpNp=Im. (4.2.8)

Equation (4.2.8) is a Bezout identity where Vp , Up e 171(H) are restricted to be block-

diagonal as shown in equation (4.2.7).

(ii) Let P =D~lNp , let C =AfcD "*,where (Dp, Afp ) is an r.c pair as inAssumption 4.2.1 (A),

and (NC,DC) is an l.c pair as in Assumption 4.2.1 (B) (see Figure 4.3); for i = 1,2 , %ci denotes

the pseudo-state of Q.

"i

H

ufi
1"i

+
>> 1

1 » Dm1
5cI

"cl
i*' J

^i
yi

J ' ' ; +,(^
+

i>- ^Pl
L .

Cl
-J K2

H
+

S"V-* at*1
5c2

Nc2 :*' I *P2
! ?2

i +°
P

c2 L
L . j

Figure 4J: S(P,Cd) withP =D"1^ and Cd =tfcD-1.



S(P,Cd) is then described by equations (4.2.9)-(4.2.10) below:

[DpXDeX+NpXNcX ': Dp2Dc2+Np2Nc2]

-DcX

0

0

0

-Del

0

Nc2
Sc2

5c2

Jl

y2

yi'

?2

=[-iVpl -Afp2 Dpl Dp2]

r 0 0 -/

0 0

0 0

0 0

r«ol o • "1

0 ""^«o2 "2

0 0 «l'
0 0 u{

.

"l

"2

«2'
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, (4.2.9)

(4.2.10)

Following similar steps as in case (i) of theanalysis, S(P,Cd)is //-stable if and onlyif

DH2:=[dpXDcX+NpXNcX ': Dp2Dc2+Np2Nc2] =[6pDe+NpNe] e 171(H)

is //-unimodular. DH2 can bewritten also as

Dm=[-Npi Dpi ''-Np2 Dp2]

-NcX 0

Dci 0

0 -Nc2

0 Dc2

(4.2.11)

(iii) Let P=N^D^Npt ,let C=5?NC ,where (Npr,D,Npl) is ab.cf.r. ofP as in Assump

tion 4.2.1 (A), and (Dc, Nc ) is anl.cf.r. of C as in Assumption 4.2.1 (B) (see Figure 4.4).

S(P,Cd) is then described by equations (4.2.12)-(4.2.13) below:
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"l

•

1 / +
r ~

- '

"cV d;\ ! yi A Nptl Npr I
yi

~* i

Ci
. +'0

V
D"1

tL
1

J u2

i

Nc2 D7i %/2 NprT. \ yi
1 i

c2 \ +u
Pl

i
i

. J
J

+ T

Figure 4.4: 5(P, Cd )with P =NprD-xNpl and Cd =DC"WC.

NjlNprl
Nc2Npr2

-Npn -Npn ' "Sx"

Dcl

0

0

A:2
y{

yi

Npti Npl2 0 0

N,prl

N,prl

0

0

0 0 NcX 0

0 0 0 Nc2

0

0

mi

0 /

0 rti y\

0 yi

0 y<
—

yi

nn y{ y{

The system S(P, Cd ) is //-stable if and only if

DH3:=
Z> -AT,

NcNpr Dc

D

NjlNprl
Nc2Npr2

-Nplx -Npl2

DcX

0

0

Dc2

"l

u2

*l

u{

. (4.2.12)

(4.2.13)

(4.2.14)

is //-unimodular. Post-multiply D//3 by R :=

(4.2.2); then S(P, Q) is //-stable if and only if

Vpi X

-Upi Y 171(H) defined in equation



Dcy+Ncivprx =
Dci 0

0 Dc2

Dci NcX ': 0 0

0 0 \Dc2Nc2

I/2.
+

'^ci o -

0 Afc2

"NprXX-

Npr2X

NpriX

is //-unimodular

Npr2X

By Proposition 2.4.1, the pair (NprX, Y) is an r.cf.r. of P . Note that, with Dp := Y =

, equation (4.2.15) is the same as equation (4.2.7).Np :=NprX =
NpnX

Npr2X
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(4.2.15)

Yi

Y2

(iv) Let P =NprD lNpi , let C =NCD ~l , where (Npr,D, Npi) is ab.cf.r. ofP as in Assump

tion 4.2.1 (A), and (Nc, Dc) is an r.cf.r. of C as in Assumption 4.2.1 (B) (see Figure 4.5).

+ ^ i

U{

De-i
>cl

^1

N cl

1#c2

I1yfV I" Pi""
^^rO—H tyi —i

J U2 I ^

' 2+<J r» ^p/2

Mprl

D -1

N prl

-iFigure 4.5: 5(P, Cd) withP =NprD'xNpl and Q =WCDC_1.

—¥

yi
—•
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S(P,Cd) is then described by equations (4.2.16)-(4.2.17):

ATprl

-NptxNcX -Npl2Nc2

Dcl 0

0 De2
4c2

Nplx Npl2 0 0

0 0 Ui o
0 0 0 U

"1

u2

u{

, (4.2.16)

N,prl

N,prl

N,prl

0

0

0 0 "f yi

0 0 y2

Nd 0 Ci
^

yi'
0 Nc2 5c2 y2'

ltol

The system S(P, Cd ) is //-stable if and only if

^//4:=
D -NplNe

N,
pr

D,
Nprl

Nprl

-NpixNd -Npl2Nc2

Del 0

0 Dc2

(4.2.17)

is //-unimodular. Pre-multiply DH4 by L :=

(4.2.1); then S(P, Cd) is //-stable if and onlyif

XNplNc+YDe =[xNplx IXN^

Vpr Up
-X Y

171(H) defined in equation

Ncx 0

0 Nc2 [Yx:Y2] Dcx 0

0 Dc2

=[-XNplx Yx ': -XN^ f2]
-Nd

Dci

0 -Nc2

0 Dc2

is //-unimodular. (4.2.18)

By Proposition 2.4.1, the pair (Y ,X N^) is an l.c.f.r. of P . Note that, with Dp := Y =

Yx : Y2\,Np := XNpl = XNplx : XNpl2 , equation (4.2.18) is the same as equation

(4,2.11).
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4.3. Main results

In this section the plant P satisfies Assumption4.2.1 (A).

43.1. Definition (//-stabilizing decentralized compensator):

Cd is called an H-stabilizing decentralized compensator for P (later abbreviated as Cd

//-stabilizes P) iff Cd e Gmxn° satisfies Assumption 4.2.1 (B) and the system

S(P,Cd) is //-stable.

43.2. Definition (Class ofall //-stabilizing decentralized compensators):

The set

Srf(P):={ Cd:Cd H-stabilizes P } (4.3.1)

is called the stt ofallH-stabilizing decentralized compensatorsfor P .

433. Comment:

In Chapter 3 (Theorem 3.2.8) we showed that the setS(P) ofall centralized (full-feedback) com

pensators that//-stabilize P is given by

S(P) ={ C =(Vp -QNpT\Up +QDp) :Q <s 171(H) ), (4.3.3)

where Vp , Up are as in the generalized Bezout identity (2.3.7). S(P) can also be expressed in

terms of an r.cf.r. (Np ,Dp)ofP :

S(P)={C =(Up+DpQ)(Vp-NpQTl:Q e 171(H) }.

Following Comment 3.2.9.(iii), if P e 171 (G) instead of 171 (Gs), then Q s 171(H) should

be such that det(Vp -NpQ) e / (equivalently, det(Vp -QNp) el).

The class of all //-stabilizing decentralized compensators S</ (P) will turn out to be more

complicated. (Note that S^ (P) is a subset of S(P)). For the existence of such decentralized
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compensators, the plant P has to satisfy additional conditions which are not required for the

existence offull-feedback compensators that would achieve //-stabilization; these conditions are

due to the block-diagonal structure of the compensator.

•

Theorems 4.3.4R and 4.3.4L below establish the necessary and sufficient conditions on (an

r.cf.r. (Np,Dp) or an l.cf.r. (Dp,Np) of) P for the existence of//-stabilizing decentralized

dynamic output-feedback compensators:

43.4R. Theorem (Conditions on P =NpD~l for decentralized //-stabilizability):

Let P e 171 (Gs ) satisfy Assumption 4.2.1 (A); then there exists an //-stabilizing decentralized

compensator Cd for P if and only ifP has an r.cf.r. (Np, Dp) such that

Dpl' " 011 Dx2m ' I mi 0 '

.V
—• Nn NX2 = EX 0 Wx (4.3.4)

wherein <= //(w1+^l)x(wi+^l) is//-unimodular and ^! e //^"'Vroman" and

>p*

N p2

D2x D^

N2x Nn = E-
0 /n*

W2 0

where£2 e //(n'̂ ^2)x(n/2+rto2) is//-unimodular and W, g H"*2™11.

(43.5)

D

Equation (4.3.4) implies that the pair (Arn,£>n) is r.c and similarly, equation (4.3.5)

implies that the pair (Af^,D22) is r.c
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43.5L. Theorem (Conditions on P =5p xNp for decentralized //-stabilizability):

Let P e m (Gs) satisfy Assumption 4.2.1 (A); then P has an r.c.f.r. (Np,Dp) which satisfies

conditions (43.4)-(43.5) ofTheorem 4.3.4R ifand only ifP has an l.c.f.r. (Dp, Np )such that

0 L

[~NP1 DpX] =

[-NP2 Dp2] =

Hoi

-w2 0

-Wx 0

0 / «©2

-1 , and (4.3.6)

E? (43.7)

where the //-unimodular matrices Ex e H^m+n°l^nn+no):>, E2 e H^ni2+no2)x^ni2+no2)

and the matrices Wx e Hn°xxni2 , W2 e H"07*™1 are defined in equations (43.4)-(43.5).

Equivalentiy, there exists an //-stabilizing decentralized compensator Cd for P e 171 (Gs) if

and only if P has an l.cf.r. (Dp,Np). such that conditions (43.6)-(43.7) hold for some

//-ummodularE!,^ e 171(H) and some Wx, W2 e 171(H).

43.6. Comments:

(i) Let (Np,Dp) be an r.cfx of P; then by Lemma 2.33.(i), (Xp, Yp) is another r.c.f.r. ofP if

andonlyif(^,yp) =(^/?,Dp/?)forsome//-unimodularmatrixP e Hmxm . By Theorem

4.3.4R, P can be //-stabilized by adecentralized compensator ifand only ifany r.c.f.r. (Xp, Yp),

XP-
lp1

lp*
,r,:=

rpl

rp2
,ofP is of the form

V •°pl"
Xpi w„l

= R =

YP2 DP2
xp2 NP2

*i

0

'*nn 0"
0 0 Wj

E2 o /«,
W2 0

p. (4.3.8)

for some //-unimodular matrix R e Hmxni , where Ex ,E2 e 171(H) are //-unimodular

andWlfW2 € m(//).

Similarly, let (Dp,Np) be an l.c.f.r. of P ; then (Yp,Xp) is another Lc.f.r. of P if and only
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if (Yp,Xp) = (LDp%LNp) for some //-unimodular matrix L e Hn°xn°. By Theorem 4.3.5L,

P can be //-stabilized by adecentralized compensator Cd if and only if any l.cf.r. (Yp,Xp),

Yp :=[ypX Yp2] ,Xp := [XpX Xp2] ofPis of the form

I ~XpX YpX : -Xp2 Yp2\ =L
0 Ui '- "W, 0

-W2 0:0/noi

for some //-unimodular matrix L e H*0™0 .

ETl 0

. (43.9)

0 : E?

(ii) In Section 4.4 below, we show that, if// is /?u(s) as in Example 2.2.2, conditions (4.3.4)-

(4.3.5) (equivalentiy, conditions (43.6)-(43.7)) on P e lRsp (s )n°xni are equivalent to the con

dition that the system S (P, Cd) has nofixed-eigenvalues in U.

(iii) Suppose thatP is given by ab.cf.r. (N^.,D,Npi) and Cd is given byanl.cf.r. (Dc,Nc)as

in case (iii) of Analysis4.2.3. Consider equation (4.2.15) and applyTheorem 4.3.4R to the r.cf.r.

(Np,Dp) := (NpX, Y) ofP ;then equation (4.3.8) implies that P =NprD-xNpi e 171 (Gs)can

be //-stabilized by adecentralized compensator Cd if and only if there exists an //-unimodular

matrix R e Hmxni such that

Yi

NprlX

Y2

NprlX

= Ei

= E<

0 Wx

0 /*2
W2 0

R , and

P .

(4.3.4B)

(4.3.5B)

where Ex <s /fOBH*iWwi+w) and £2 6 //<wi+*2)xew2«i»2) are //-unimodular, and

Wj g //^lxW2,W2e H"*2™1.

Similarly if Cd is given by an r.c.f.r. (NC,DC) as in case (iv) of Analysis4.2.3, then consid

ering equation (4.2.18), we apply Theorem 43.5L to the l.c.f.r. (Dp,Np) := (Y ,X Npl) of P.

Following equation (4.3.9), P can be //-stabilized by adecentralized compensator Cd if and only

if there exists an //-unimodular matrix L e Hn° xn° such that



[-^i : Yx] =L

[-XNpl2 ': F2] =L

0 /*,
-W2 0

-W! 0

0 /
n<>2
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-1Exl , and (4.3.6B)

E? (4.3.7B)

whereof1 e JjCwi^i^H^OandEJ1 e tf(W2+^2)x(w2+ko2) are //-unimodular and

Wx e Hn°lXni2,W2<z: HHo2Xm.

Equations (43.4B)-(43.5B) (equivalentiy, (43.6B)-(43.7B)) will be useful in Section 4.4

when we explain "rank-tests" for decentralized //-stabilizability in terms of the state-space

description ofP.

•

Proof ofTheorem 43.4R:

(<= ) Byassumption, an r.cf.r. (Np ,Dp)ofP satisfies conditions (43.4)-(43.5); then

" DPI' 'dxx dX2
Npl Nxx NX2

= =

DP2 D2X D22

NP2 N2l #22

Ei

0

0

E2

Urn 0 "

0 wx

0 Inn
w2 0

(4.3.10)

Refer to equation (4.2.7) and consider the compensators Cx = D~\NcX , C2 = D~2lNcX , where

De 1»Dc2, Nc x, Nc2 aregiven by

[dci ':Nci] =[lnn :0]£f! ,

[Dc2 ': ATc2] =[ Ini2 ': 0]E? .

Since Exl , E2l e 171(H) .clearly DeX ,Dc2 ,NcX ,Nc2 e 171(H); for k = 1,2, (Dck,NCk)

is anl.c. pair since Ek is //-unimodular.

With (DcX,NcX) as in equation (43.11) and (Dc2,Nc2) as in equation (43.12), and

(Np,Dp) as in equation (43.10), equation (4.2.7) becomes

(4.3.11)

(4.3.12)



DHi =
Dei NcX

0 0

Dxx DX2

0 0'
Nn NX2

Del Ncl
D2x D22,

N21 N^
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0 : /

(4.3.13)

«£2

Now P e 171 (Gs) implies that Np e 171 (Gs) , hence Nxx , N& e 171 (Gs) and

NcXNxx, Nc2N22 6 171 (Gs) . We use these facts to establish that detDcl e / and

detDc2 e /: from equation (4.3.13),

^cl^U+^cl^ll88/*! (4.3.14)

D«2D22 +*c2tf22='«,2 • <4-3-15)

By equation (4.3.14), detDcldetDn =det(/nn -NciNxx) e /; therefore, by Lemma 2.2.4.(ii),

detDcl e / and detDn e /. By equation (4.3.15), detD^detD^s teti!m2-Ne2N22) € ^

therefore, by Lemma 2.2.4.(ii), detDc2 € / and detD^ e /.

This proves that (Dcl, Wcl) given by equation (4.3.11) is an l.cf.r. of Cx <= 171(G), and

(Dc2, Wc2) given by equation (4.3.12) is al.cf.r. of C2 e 171 (G). Now since equation (4.3.13)

implies that DHX is //-unimodular, with this choice of (Dcl, Wcl) and (Dc2, Nc2) , where Cd =

Cx 0

0 C2

,-iD",Wel 0

0 DelNel
, the system S(P,Cd) is //-stable. Therefore the decentral

ized compensator Cd , specified by equations (4.3.11)-(43.12), //-stabilizes P .

(=> ) By assumption, P satisfies Assumption 4.2.1 (A), and P can be //-stabilized by a decen

tralized compensator Cd . So (by Definition 4.3.1) Cd satisfies Assumption 4.2.1 (B) and the sys

tem S(P, Cd) is //-stable; therefore DHX given by equation (4.2.7) is an //-unimodular matrix,

and hence, by normalization, equation (4.3.13) holds for some r.c.f.r. (Np ,Dp)ofP. Using the

fact that P e 171 (Gs) and the same reasoning as in the sufficiency proof above, equation

(4.3.14) implies that (NXXfDn) is an r.c pair and dctDu e /; similarly, equation (43.15)

implies that (N22, D22) is an r.c pair and dctD22 e /.
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Now let(Dn, Nxx) bean Lc.f.r. ofNXXD xxl and let (D^, N^i) be an Lc.f.r. ofN22D22l (note

that Dxx, 5-22 e / ); then with Uxx, Vxx, U^,V^ e 171(H), we write the following general

ized Bezout identities using equation (4.3.13):

DcX Nc{

-Nxx Dxx

Del Nd

-N22 D22

Dxx -Uxi

Nxx Vxx

D22 -U22

N22 V21

''«.. 0"
0 /«.!

"'«2 0"
—

0 Ui
.

The matrices in equations (4.3.16) and (4.3.17) are //-unimodular. Let Exl :=

;clearly Exand E2 are //-unimodular matrices, withelements in H .letE^1 :=
Dci Nji
-N22 D22

(4.3.16)

(4.3.17)

*>cl A^ci
-Nxx Dxx and

Now let Wx := -NxxDxz+DxxNxi « //'k^71*'2 and let W2 := -N22D21+D22A^21

e Hno2Xnn ; from equations (4.3.13), (4.3.16), (43.17) we get

Ef1

0 Kl

D„ D12

tf„ W12

D21 D^

N2X N^

/*! 0

0 W^

0 ^/Ji2
w2 0

(4.3.18)

Pre-multiplying both sides of equation (4.3.18) by

P satisfies conditions (43.4)-(43.5) for some //-unimodular Ex e 171(H) and some

//-unimodular E2 e 171(H).

•

Ex 0

0 £2 , we see that this r.cf.r. (Np, D_) of
p*~p>
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Proof ofTheorem 43.5L:

( => ) By assumption, an r.cf.r. (Np,Dp) ofP satisfies conditions (43.4)-(43.5). Consider the

following generalized Bezout identity:

"'*! 0* ' 0 o"
0 0

Ex1
I mi 0

-w2 o Erl
•Wx 0

0 /
W*2

Eol

Eol

Inn 0-
0 Wx

0 /nJ
w2 0

0 0

UxO

0 0

0/n02

Inn 0

0 U:
0

'*i 0
0 /

fto2

(4.3.19)

is as inLet (Dp,Np) be such that [-Wpi DplJ is as in equation (4.3.6) and \-Np2 Dp2\ i
equation (4.3.7); then equation (4.3.19) is of the form

vpI upX vp2 up2

-Npx DpX -Np2 Dp2

Dpi -°,x
N„i ?P1
DP2 ~UP2

Np2 Vp2

where Vpl 6 Hmxnn , Upl e Hmm°x , v., e HKWi , UB'p\ *= ** » »>2 *= " . ^p2

^i € " , Kpi e /7 , i/p2 e /i ' " , vp2 € /* ^ "® are defined in an

obvious manner by comparing equations (4.3.19) and(4.3.20).

We must show that the pair (Dp,Np) , satisfying conditions (43.6)-(43.7), is in fact an

(4.3.20)

H nixnoi

Lcf.r. of P : If (Dp,Np)is so that conditions (43.6)-(43.7) hold, then clearly 5p e H

and Np e Hn° mi .By equation (4.3.20), the pair (Dp ,Np)is Lc; furthermore,

noxrio

[-Npl -Np2] DPp\ +[d„ Dp2 N>i

N,P2
= -NpDp+DpNp =0, (4.3.21)

hence, NpDp =DpNp . By Corollary 2.4.4, equations (43.20)-(43.21) imply that

detD - = detD- , (4.3.22)



where, detD, € / since (Np,Dp) is an r.cf.r. ofP ;hence, detDp e / by equation (4.3.22).

Now we have established that D"1 e 171(G)', therefore equation (43.21) implies that

P =DplNp .Finally, (Bp, Np )defined by equations (43.6)-(43.7) is an l.cf.r. ofP.

ByTheorem 4.3.4R, P can be//-stabilized by a decentralized compensator Cd if and only

if (Np,Dp) satisfies conditions (43.4)-(43.5); we have shown above that conditions (4.3.4)-

(43.5) imply thatan Lcf.r. (Dp,Np ) satisfies conditions (43.6)-(43.7). It is entirely similar to

show the converse, and thus we omit the proof ofsufficiency.

•

Theorem 4.3.4R states that P can be //-stabilized by a decentralized compensator Cd if

and only if conditions (43.4)-(43.5) are satisfied. So in Theorem 4.3.7 below, we assume that

some r.cf.r. (Np ,Dp)ofP satisfies these conditions in addition to Assumption 4.2.1 (A) in order

to find theclass of all//-stabilizing compensators. Equation (4.2.7) is once again the key tool.

43.7. Theorem (Set of all //-stabilizing decentralized compensators):

Let P e 171 (Gs) satisfy Assumption 4.2.1 (A); let in addition an r.c.f.r. (Np,Dp) of P satisfy

conditions (4.3.4) and (4.3.5) of Theorem 4.3.4R; equivalentiy, let an l.c.f.r. (Dp,Np) of P

satisfy conditions (4.3.6) and (43.7) ofTheorem 4.3.5L. Under these conditions the set Sj (P)

ofall//-stabilizing decentralized compensators forP isgiven by

Sd(P):={ Cd =
Cx 0

0 c2
DelNel 0

[6cX ;aFc1] ; o
0 :[Dc2 ': Nc2]

[lnn:-Qi]^T1'- 0
0 i[/«2: Qi]E2l

forsomefi! e Hnnxrlol,Q2 g Hni2Xn°2 such that det(Ini2-Q2W2Q{Wx) e j} ;(43.23)

equivalentiy,



S</(P):={ Q =
Cx 0

0 C2
NcxDc~xl 0

0 Nc2D-2l

Ki 0

>cl 0

=

0 -Ncl

0 Del

-Qi
In0\

0

0

-Qi
Inoi

89

forsomefi! e Hmxn°x,Q2 g Hm2Xn°2 such that det(/n.2-£2^221^) e /} (4.3.24)

the map (Qx,Qi) \-+ Cd , Qx , Q2 e 171(H) , such that det(Im%-Q2W&{$/{) g / ,

Cd g Sj (P), is abijection; for the same pair (Q x, Qi), equations (4.3.23) and (4.3.24) give

the same //-stabilizing Cd .

43.8. Comments:

(i) Inconditions (43.4)-(43.5) (equivalentiy, (43.6)-(43.7)) if either one of Wx orW2 is the zero

matrix (i.e., if both of D12 =0 and Af12 =0 in equation (4.3.4) orbothof D21 =0 and N2X =0 in

equation (4.3.5) ), then for all Qx,Q2e 171(H) , det(Im +QW) := det
Inn QiWi

QlW2 Ini2

<te(Ini2-Q2WzQxWx) = ^(Inn"QiwiQ2^i) = 1 and hence, the set Sd(P) in equation

(4.3.23) (or (4.3.24)) is parametrized by twofree parameters Qxand Q2 e 171(H).

(ii) In Theorem 4.3.7, if P g 171(G) instead of 171 (Gs) , then the matrices Qx g 171(H) and

) e / andQ2 g 171(H) should be chosen so that detDcl := det( | Inn :Qx 1Exx /iii

0

rdet£>c2:=dct(^/Bl.2:i22[£2-] -l

[7 /J«2

0
) g / in addition to det(/„; +0V) e 7,
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Proof of Theorem 43.7:

We only prove equation (4.3.23); the proofof (4.3.24) is entirelysimilar.

IfCd is given by theexpression in equation (4.3.23), then Cd H-stabilizes P:

With (Np,Dp) as in conditions (43.4)-(43.5) and (5C,NC) given as in the expression (4.3.23),

we obtain

[Del tfcl]
0

[/mi :QiJ^T1 : 0
0 :[Inn :Qz] E2l

[Dc2 Ncl]

Inn 0"

0 Wx

0 I mi
W2 0

'pl

N,Pi

D P2

N p2

r / mi QiW

QiW2 Ini2
=: R. (4.3.25)

The matrix R defined in equation (4.3.25) is //-sinimodular since by assumption, Qx , Q2

g 171(H) satisfy det(Inn-Q2wiQi^i) e /. Therefore equation (4.2.7) is satisfied;

equivalentiy,

DcDBR-l+N*NnR-l=IiC"p< c"p* ru (4.3.26)

Note that P g 171 (Gs) and Np , NcNpR~x g m(Gs)\ hence equation (4.3.26) implies that

detDc = detDc 1detDc2 g / and therefore, by Lemma 2.2.4.(ii), detDc x e / anddetDc2 e / .

By equation (4.3.23), the pair (Dcl,Ncl) is Lc in 171(H) since

Dex i• Ncx\ = Inn •Qi \ETl »wnere Eil e 171(H) is //-unimodular. Similarly,

(Dc2,Nc2) is also l.c. Therefore, using equation (43.26) and the same reasoning as in the

(sufficiency) proofof Theorem 4.3.4R, weseethatthis Cd //-stabilizes P.
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Any decentralized compensator Cd that H-stabilizes P is given by the expression in equa

tion (4 J23) for some unique pair QX,Q2 g 171 (H) such that det(I ni2-Qi^2Qi^i) € /:

The pair (Np,Dp) satisfies conditions (43.4)-(43.5); we have the generalized Bezout iden-

DclNci 0

0 Dciifci
tity in equation (4.3.19). By assumption, Cd = //-stabilizes P , where

Dcx* Dc2, NcX, Ne2 g 171(H); hence by equation (4.2.7), deiDHX g J. Bynormalizing DHX,

with(2i.-=[5ei :Nci]ex
0

I no\

obtain DCDP +NCNP =Im ; hence

[dci Nd]
0 [dc2 nc2]

Ei

0

m(H),Q2:=[5c2:. nci]e2
0

g 171(H), we

0

E2

Inn 0 0 0

0 Wx 1^, 0

0 Im2 0 0

Wo 0 0 /
rto2

noi

Inn 0 Qx 0

0 Inn 0 22

(4.3.27)

Post-multiplying both sides of equation (4.3.27) by the first //-unimodular matrix in equation

(43.19), we obtain

[dci Ncl]
0 [dc2 Ncl]

Inn 0 Qx 0

0 Inn 0 Qi

Inn 0 0

0 0/,nn w

0 /*,! -Wi 0

-^2 0 0 Ino2

[inn Qi]ex~X [-QiWx o]e2x

[~Q2W2 oJEf1 [lni2 q2]e2x

Exx : 0

0 : Eox

(4.3.28)
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By equation (4.3.28), I-Q2W2 oj Efl =0 implies that Q2W2 =0; similarly,

[-Q1W1 ol E2X =0implies that QXWX =0. Therefore det( Ini2-Q 2^2Qi^i) =1for this

choice of Qx ,Q2 e 171(H). It is also clear that QXWX =| 5eX iVcl1 ^x

=[Dc2 Nc2] 0

W2 = 0 from equation (4.3.27).

0

Wx = 0 and Q2W2

Finally, equation (43.28) shows that (DcX,NcX) and (Dc2,Ne2) are of the form given by

the expression in (4.3.23).

Now we prove that thematrices QX,Q2 e 171(H) define C1 and C2 uniquely:

Let Cd =

and

-1
Dei <T

0 Dc2

Ncx 0-

0 Nd
g Sd(P),andCd =

Dcx 0

0 Dc2

where Srf (P) is given inequation (4.3.23). By equation (4.3.23),

Ncl 0

0 Ncl

[Dcx Ncl] Ex 0

0 I D,, AT,, IE2[dc2 Ncl]

[dc1 nc1]e}
0 [^2 ^2]

[*mi:-Qi] 0

['wa^fli]

[inn :£1]
0 [/«a -: Ql]

SdtP).

, (4.3.29)

(4.3.30)

then Cd =Cd implies that \ Im Cx\ex =5~l[ Inn Gil =̂ lMwi Gil and hence,

D-l=D-l ; consequently, QX =Q{ . Similarly, [/W2 C2J E2 =Dc~2l[/W2 £2J =
~ r >\ "I ~ ~ /\

^rfl ^m-2 QiJ a™1 hence, D"2l =D^ ;consequently, Q2 =Q2.

Now let Cd be given by an Lc.f.r. as in equation (4.3.23) but Cd be given by an r.cf.r.

(NC,DC) as in equation (43.24); then



'-Nc{ '-Qi' '

£,-' Del
0

I no\
0

•-Nci
=

"-fi2"
0 EI1

De2
0

I noi
. . m

By equations (4.3.29) and (4.3.31),

[5ci Ncl] 0

0 [5c2 nc2]
£f' 0

0 Eil
'-Nd

Dc2
. ••

-fii+fii o

0 H22 + Q2

93

(4.3.31)

(4.3.32)

By equation (4.3.32), Cd=Cd , equivalentiy, D^1^ =NCD.~X , ( -5cXNcX +NciDcx =0 and

-De2Nc2+Nc2De2 = 0) if and only if -Qx + Q i = 0 and -fi2 + Qi = 0 . Therefore for the same

Qx g HnixxnoX and fi2 g Hni2Xn°2 , equations (4.3.23) and (4.3.24) give the same Cx and

C2.

•
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4.4. Application to stable rational functions

In thissection weconsider thecase when H = Ru(s) asinExample 2.2.2. Working in this

principal ring allows us to show the connection between our results and those of [Wan., And.l].

The major result in this section is that P satisfies conditions (43.4)-(43.5) of Theorem 4.3.4R

(equivalentiy, conditions (43.6)-(43.7) of Theorem 4.3.5L) if and only if the system has no

fixed-eigenvalues in U. Therefore, for H =Ru(s)* Theorem 4.3.4R becomes equivalent to

[Wan.l, Theorem 1]: P canbe //-stabilized by a decentralized dynamic compensator if and only

if it has no decentralized fixed-eigenvalues in U.

In [And.l], a rank test for fixed-eigenvalues was given in terms of a left-fraction representa

tion of the plant P. We find that a similar test is useful in our approach; we give rank conditions

in terms of an r.c.fx, an Lcf.r. and a b.cf.r. of P. We start our discussion by considering real

constant decentralized compensators.

Consider the system S (P, Kd ) in Figure 4.6; let Kd :=
Kx 0

0 K2
nnxnoi, Kx e R

K2 g ]Rw2Xii»2# Note that S(P,tfd) inFigure 4.6 is the same as5(P.Q) inFigure 4.1, where

C =
Cx 0

0 C2 is replaced by the real constant matrix Kd =
Kx 0

0 K2

ux

ui

"1
1—

"; , U
' 1

^ 1 > *i
: * J

y-*

p

yi

J \ * +,(-
; Kd "2

+

s ,~\ ' > K2
yi

J 1 *

_ J

J *

L —

Figure 4.6: The constant output-feedback decentralized control system S(P ,Kd).
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The plant P still satisfies Assumption 4.2.1 (A) of Section 4.2, where H is replaced byRu(s).

Equations (4.2.4)-(4.2.5) are now replaced by equations (4.4.1)-(4.4.2) describing the system

S(P,Kd) with constantdecentralized output-feedback control:

Dpx+KxNpx
Dp2 + K2Np2 \p =

Imi 0 Kx.O

0 Im2 0 K2

"1

"2

ux*

ui

' Np\- 'y{

Np2

dpI V-
3"2

+

Dp2 y{

0 0 o o" ""f

0 0 0 0 «2

Imx 0 0 0 «i'

0 InnO <T ui

(4.4.1)

(4.4.2)

Theclosed-loop system S(P,Kd), described byequations (4.4.1)-(4.4.2), is //-stable if and only

Dpx+KxNpx
ifdet Dp2 +K2Np2
and only if

g /. Furthermore, $„ g Mis aneigenvalue of the closed-loop system if

det

Dpx(s0)+KxNpx(s0)
Dp2(s0)+K2Np2(s0) = 0 (4.4.3)

4:4.1. Definition (Decentralized fixed-eigenvalue):

The plant P is said to have a decentralized fixed-eigenvalue (or fixed-pole) at s0 g U (with

Dpx(s0) + KxNpl(s0)'

Dp2(s0) + K2Np2(s0)respect to Kd =
Kx 0

0 K2 ) iff det = 0forallKltK2 e ITIQR).

If sa g U is a fixed-eigenvalue (fixed-pole), then obviously s0 g Wis an eigenvalue of

£>pifo)'
Dp2(s0)the open-loop system (i.e., with Kx = 0, K2 = 0, det

of P); this eigenvalue s0 e U remains as a pole of the closed-loop system for all real constant

decentralized feedback compensators. We prefer to call such s0 g U afixed-eigenvalue rather

than afixed-mode; although the eigenvalue at sQ g U remains fixed irrespective of the constant

decentralized compensator, the eigenvector v0 associated with the fixed-eigenvalue s0 g It

= 0 and hence, s0 is an eigenvalue
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depends on Kx and K2. Therefore the "mode" v0eSot changes "direction" depending on the

choice.of constant decentralized control; equivalentiy, the initial condition that sets up the mode

v0 eSot varies withK\% K2 although the eigenvalue at s0 g U does notmove.

In Definition 4.4.1, fixed-eigenvalues are defined as those eigenvalues of the plant which

cannot be moved by any real constant decentralized feedback. We will later establish that these

fixed-eigenvalues remain fixed even under dynamic decentralized output-feedback, in particular

under complex constant decentralized output-feedback.

Theorem 4.4.2R is the main result of this section. Theorem 4.4.3L and Theorem 4.4.4B are

dual results for an l.cf.r. (5p, Np) and ab.cf.r. (Npr ,D,Npl), respectively.

4.4.2R. Theorem (Rank test on (Np,Dp) for fixed-eigenvalues and //-stabilizability):

Let P g 17l(JRsp(s)) , P =NpDp~x satisfy Assumption 4.2.1 (A) where H is Ru(s). Then

statements (i), (ii), (iii), (iv) below areequivalent:

(i) The plant P has no decentralized fixed-eigenvalues in U;

(ii) for any r.c.f.r. (Np, Dp)of P as in Assumption 4.2.1 (A),

rank

rank

'Dpx(s)'

Npx(s)

'Dp2(s)'

Np2(s)

>nn, for alls g U, and (4.4.4)

>szt-2, for all s e U; (4.4.5)

(iii) conditions (43.4)-(43.5) of Theorem 4.3.4R hold; i.e., an r.cf.r. (Np,Dp) of P can be

chosen so that

Dpx(s)

Npx(s) = Ex(s)
Inn 0 "

0 Wx(s)

whereEx(s) e 171 (Ru(s)) isRu-unimodular and Wx(s) g 17l(Ru(s)) ,and

Dp2(s)
Np2(s) = E2(s)

0 Inn
W2(s) 0

where£2(.y) g 171 (Ru(s)) is/?„-unimodular and W2(s) g m(Ru(s))\

(4.4.6)

(4.4.7)
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(iv) there exists a dynamic decentralizedcompensator Cd =

4.2.1 (B)) which //-stabilizes P.

Cx 0

0 C2 (satisfying Assumption

4.4.3L. Theorem (Rank test on (5p, Np) for fixed-eigenvalues and //-stabilizability):

Let P g m(Rsp(s)) , P -5pxNp satisfy Assumption 4.2.1 (A) where H is Ru(s); then

statements (i), (ii), (iii), (iv) below are equivalent:

(i) The plant P has no decentralized fixed-eigenvalues in U;

(ii) for any l.cf.r. (5p, Np) ofP as in Assumption 4.2.1 (A),

rank\ -NpX(s) : 5pX(s)\ ZnoX, for all s e U, and

rank\ -Np2(s) : 5p2(s)\ Zno2, for alls g U;

(4.4.8)

(4.4.9)

(iii) conditions (43.6)-(43.7) of Theorem 4.3.5L hold; i.e., an Lcf.r. (5p,Np) of P can be

chosen so that

[-NpX(s) ': DpX(s)] = 0 Inoi
-W2(s) 0

,-iEx(sTl,

where Ex(s) g 171 (Ru(s)) is^-unimodular and W2(s) g 17l(Ru(s)), and

[~Np2(s) i5p2(s)] = -W^j) 0

0 / no2

-1
^2(^r1,

(4.4.10)

(4.4.11)

whereE2(s) g /72(^M(5))is/?M-unimodularandWx(s) e 17l(Ru(s)),

(satisfying Assumption(iv) there exists a dynamic decentralized compensator Cd =

4.2.1 (B)) which //-stabilizes P.

Cx 0

0 C2
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4.4.4B. Theorem (Rank teston(A^,D, Np[) for fixed-eigenvalues and//-stabilizability):

Let P g 171 (Rsp(s)) , P =NprD'xNpl satisfy Assumption 4.2.1 (A) where H =Ru(s); then

statements (i), (ii), (iii) below are equivalent:

(i) The plant P has no decentralized fixed-eigenvalues in U;

(ii) forany b.cf.r. (Npr, D, Npi) ofP asinAssumption 4.2.1 (A),

rank

D(s) -Npl2(s)

NPrx(s) 0
> n , for all 5 g U, and

rank

D(s) -Nplx(s)

Npr2(s) 0 > n , for all 5 g U;

(iii) there exists a dynamic decentralized compensatorCd =

4.2.1 (B)) which //-stabilizes P.

Cx 0

0 C2

(4.4.4B)

(4.4.5B)

(satisfying Assumption

4.4.5S. Remark (State-space description of P):

Consider P =C (sln -A)~XB , where (C,A,B) is W-stabilizable and W-detectable. LetNor :='pr

C 1

c2
,D :=

sin -A
s+a s+a s +a

,Npi := B=IBx: P2j ,where -a g C\ M;then

(Npr,D,Npi) as defined here is a b.c.f.r. of P. By Theorem 4.4.4B, the plant has no fixed-

eigenvalues in U if and only if conditions (4.4.4S)-(4.4.5S) below hold [And.l]:

rank

rank

sln -A -B2

Cx 0

sIn-A -Bx

C2 0

>n , for all j e U, and

> n , for all s g U;

we omitted the factor
1

s +a
in equations (4.4.4S) and (4.4.5S) for simplicity.

(4.4.4S)

(4.4.5S)

Note that conditions (4.4.4S)-(4.4.5S) need to be checked only for those s s 11 such that

det(sln -^A) = 0 . The derivation of conditions (4.4.4S)-(4.4.5S) is very simple due to Theorem

4.4.4B.
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4.4.6. Comments:

(i) Theorem 4.4.2R states that s0 g U is a fixed-eigenvalue if and only if either

rank
Dpi(s0)

Npx(So)
<ntx or rank

Dp2(s0)

Np2(s0) < ni2. Note that conditions (4.4.4) and (4.4.5) cannot

both fail at the same time: if both conditions were not satisfied, then

rank

'Dp(s0)

Np(s0) Zrank Npl(So) + rank
"3p2M

vl(So)

is a r.c pair. Therefc)re, if rank
'Dpx(s0)

NpX(s0) = a-

<«,-1 + nx2 , which contradicts that (Np, Dp)

>ni2 + a so that= oc<rtn, men rank

s0 g U is a fixed-eigenvalue but not an eigenvalue associatedwith a hidden-mode.

Similarly, conditions (4.4.8) and (4.4.9), conditions (4.4.4B)-(4.4.5B) or conditions

(4.4.4S)-(4.4.5S) cannot fail at the same time.

(ii) Theorem 4.4.2R states that if the system hasno fixed-eigenvalues in U , then the Smith form

Dp2(s0)

Np2(s0)

of
>p\

N pi
is

Inn 0]
0 Wx (here we assume that Wx is also put in the Smith form), and at the same

D 0 /

time the Smith form of
>2

NPi
IS

nn

W2 0 (here W2 is also put in the Smith form and

appropriate column permutations are made). Equivalentiy, the first nix invariant factors of

'p\

N,pi
are equal to 1 and the first n,-2 invariant factors of

'p2

NPi
are equal to 1. Hence, s0 g U

is a fixed-eigenvalue of P if and only if either the nixth invariant factor of
'pi

N,p\
is zero at

s0 g U or the nl2th invariant factor of
'P2

N,Pi
is zero at sa g U.

(iii) Let P g /72(1RV(^)); then in equations (4.4.6)-(4.4.7), since NpX , A^2 g 17l(lRsp(s)) ,

Dpk(~)-\
Wx and W2 g 17l(SRsp(s)); hence, for k = 1,2, rank

(4.4.4)-(4.4.5) hold, then
>pt

N,pk

Npk(oo)

has exactly n^ invariant factors that arcequal to 1

< nik . Hence if conditions
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(iv) Conditions (4.4.4B)-(4.4.5B) ofTheorem 4.4.4B need to be checked only foralls g U such

that detD(j) = 0 (in Remark 4.4.5S, for all s g U such that det(sln -A) = 0 ) since

rankD (s) = n for all other s g U. In other words, if s0 g U is a fixed-eigenvalue, then s0 is an

U-pole ofP =N^D-^.

(v) From conditions (4.4.4B)-(4.4.5B) ofTheorem 4.4.4B, we obtain the following conditions on

fixed-eigenvalues: Rewrite P as
^11 ^12

P2i P22

NpriD-xNplx NprXD~xNpl2
Npr2D-xNplx Npr2D-%l2

(a) (A sufficient condition for no fixed-eigenvalues in U): If (NprX,D,Nplx) is a b.cf.r. of

Pxx »then the plant P has no fixed-eigenvalues in U ; (the same holds if (Npr2, D,Npi2) is a

b.cf.r. of P22). This claim follows from noting that rank

(Npr^D) is an r.c pair (hence condition (4.4.4B) holds) and that rank\ D(s): -Nplx(s) =n

for all j g U (hence condition (4.4.5B) holds). We can state this same condition in the state-

space setting of Remark 4.4.5S where Pn = Cx(sln -A)~XBX : if (Cx, (sln -A),BX) is U

-stabilizable and W-detectable (sometimes referred to as single-channel minimality), then P has

no fixed-eigenvalues in U.

(b) (Some necessary conditions on the transmission-zeros ofthe partial maps Ptj ifs0 g U

is a fixed-eigenvalue): (1) Let s0 g U be a fixed-eigenvalue; then either condition (4.4.4B) fails

(and hence s0 g U is a transmission-zero (t.z.) of P12) or condition (4.4.5B) fails (and hence

s0 g U is a t.z. of P21). (2) Let noX = niX and no2- nl2\ifsQ g U is a fixed-eigenvalue, then

s0 is a Lz. of Pxx , P22 and of the plant P. To justify this claim, without loss of generality, let

D(s)

Nprl(s) = n for all s g 1/ since

condition (4.4.4B) fail at s0 g U then rank

D(s0)-

Nprl(s0) < n implies that

rank

D(s0) -NptfaJ

NPri(s0) 0
< n + nix (and hence s0 e Wis a t.z. ofPn ), and

rank\ D(s0) : -Npl2(s0) <n implies that s0 g Wis alz.of P^ . Finally, since condition
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(4.4.4B) fails, rank
D(sQ) -Npl2(sa) : -NpiiM

Nprx(s0) 0 ! 0 <n+niX implies that

D(s0) -Npl2(sa) -Nplx(soy\
NpriM 0

rank
0

<n+niX + no2and hence, s0 g U is a t.z. of the plant P

Npr2(S0) 0

Existence of these transmission-zeros is similarly proved if we start by assuming that condition

(4.4.5B) fails.

•

4.4.7. Corollary:

If s0 g U is a fixed-eigenvalue, then the system S(P,Cd) also has a mode associated with

sQ e U for all dynamic decentralized compensators Cd (in particular, for all complex constant

decentralized compensators).

Proof:

By Theorem 4.4.2R, s0 g U is a fixed-eigenvalue if and only if either condition (4.4.4) or

'Dpx(sJ
LNpl(s0)

'DpxM

(4.4.5) fails. Suppose, without loss of generality, that rank < nix. Then

rank([5cX(s0) NcX(s0)]
NPi(s0) )< nix, for allDcX(s0),Ncl(s0).

Therefore rank
(DcXDpX+NcXNpX)(s0)
(5c2Dp2 +Nc2Np2)(So) rank[(DcXDpX+NcXNpX)(s0)] +

rank[(De2Dp2+Nc2Np2)(s0^ <nn +ni2, for aR 5c x(s0) ,NcX(s0) ,5c2(sQ) ,Ne2(So)',
quently, s0 e Uis always a closed-loop eigenvalue ofS(P, Cd ).

conse-

•

We only prove Theorem 4.4.2R in detail; the proof ofTheorem 4.4.3L is very similar and

follows from Theorem 4.3.5L. The proof of Theorem 4.4.4B follows from Theorem 4.4.2R

(equivalentiy,Theorem 4.43L) and Comment 43.6.(iii).
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Proof of Theorem 4.4.2R:

The equivalence of statements (iii) and (iv) was already established in Theorem 43.4R for any

principal ring H; here we take H =Ru(s). Now we prove the first, three statements:

(i)<=>(H)

( =>) Without loss of generality, suppose that condition (4.4.4) fails for some sQ g U, i.e., let,

for some s0 g U,

rank
Dpx(s0)
Npx(s0) < niX\

then rank[ Dpl(s0) +KxNpX(s0^ =rank ([lnn *1] Dpl(s0)

Npx(s0) ) <rank
Dpx(s0)
Npx(s0)

(4.4.12)

<«I'i for all

Kx g m(R). So, rank
DpX(s0)+KxNpX(s0)
Dp2(s0)+K2Np2(s0) rank[DpX(s0)+KxNpX(s0^

rank\ Dp2(s0) +K2Np2(s0)\ <nix+ ni2, for all Kx, K2 g 171 (R); therefore, by Definition 4.4.1,

s0 g U is a fixed-eigenvalue.

The proof would be entirely similar if we started by assuming that condition (4.4.5) fails at

somes0 g U.

( <= ) Let equations (4.4.4)-(4.4.5) hold but suppose, for a contradiction, that s0 g 11 is a fixed-

eigenvalue. Then

max rank
DpX(s0) + KxNpX(s0)

Dp2(s0) + K2Np2(s0) <nt , (4.4.13)

for KX,K2 g m(R). Let Ki := { Kx g m(R) : rank(DpX(s0)+KxNpX(s0)) = niX }; by

Lemma 2.7.1, Ki is nonempty since (4.4.4) holds.

Choose ^"i g Ki; then there are AM-unimodular matrices Lx , Rx such that

L>i(Dpx(s0) +K\NpX(s0) )Rx-\ Inn 0 »where the 0matrix on the right is nix xnt2. Let



103

Li(DpX(s0) + KxNpX(s0))

Dp2(s0)
Np2(s0)

Pi=:

Inn ^0
D2i(sQ) Dn(s0)

N2l(s0) N^So)

(4.4.14)

then max rank
K2 e m OR)

DpX(s0) + KxNpX(s0)

Dp2(s0) + K2Np2(s0) = max rank
Kte m(R)

Lx(DpX(So)+KxNpX(s0))Ri

(Dp2(So) + K2Np2(s0))Rx

max rank(
Ki e mm

Inn 0.0-

0 Im2 Ki

J mi ^0
D2l(sa) D»CO

N2l(s0) #22<W
) = ^ x+ max rank( D^fo) + K2N22(s0));

at2 e mm

and hence, by equation (4.4.13), max rank(D22(s0)+K2N22(s0))<ni2, Therefore, by
Kt e m OR)

Lemma 2.7.1, with A := tf^fo), B := D^fo), tf2 g r*«*2 , p =y := „/2,n := n<j2,

ran/:
£>22CU

JV22(^)
= max rank(D22(s0) + K2N22(s0)) < ni2;

Kte mm

hence rank

J mi ^0
D21(s0) D22(s0)

N2l(s0) N^So)

= niX + rank

(4.4.14) holds for allKx g Ki ,

D^So)

N22M < »/i + zi/2 • Consequently, since equation

max^ rank
Ki 6 Ki

Dpx(s0) + KxNpX(s0)

Dp2(s0)

Np2(s0)

= max rank
Kie mm

DpX(s0) + KxNpX(s0)

Dp2(s0)

Np2(s0)

< ni . (4.4.15)

Let rank
Dp2(s0)
Np2(s0) =: r2 ; by equation (4.4.5), r2Zni2 ; then there are /?M-unimodular

0It
matrices L2 , R2 such that L2

(ii2+io2-''2) x (ni-ri). Let

implies that

Dp2(s0)

Np2(s0) P, =

Dpx(So)
Npx(s0)

Dp2(s0)

Np2(s0)

R, =:

ri

0 0 , where the 0 in the bottom left is

Dlx(s0) Dx2(soy\

NxiM Nn(s0)

0 Iri

0 0

; then equation (4.4.15)



max rank

Kiemm

Dpx(s0) + KiNpx(So)
Dp2(s0)

Np2(s0)

R2 = max rank (
K^mm

ImKx 0 0

0 0 Ir2 0

.104

Dxl(s0) DX2(s0J\

NnM NX2(s0)

0 Ir2

0 0

)

= r2 + max rank(Dxx(s0) + KxNxx(s0))<ni. But ft,- -r2 £ ft,-! since r2 >ni2; hence
^ie mm

mm{ n,—T2./i;i }= ft/-r2 ; therefore, max rank(Dxx(s0) + KxNxx(s0)) <n-r2 . Once
^r, € mm

again by Lemma 2.7.1, with A := Nxx(s0) ,B := D n(r0), p = y :=/in , T| := noX,we obtain

(4.4.16)raft&
Aifo)'

A^nte) = max rank(Dxx(s0) + KxNxx(s0))<ni-r2
*, 6 m or)

Dxx(s0) Dl2(soy\

NxxM NX2(s0)

0 Ir2

0 0

Finally, by equation (4.4.16), rank

' DpX(s0j
Npx(s0)

Dp2(s0) = rank

Np2(s0)

= rank
Dxx(sJ

NxxM
+ r2

< ft; ; but this is a contradiction to rank
Dp(s)

Np(s)

an r.c pair and if equations (4.4.4) and (4.4.5) hold, s0 e U cannot be a fixed-eigenvalue.

(ii) <=> (iii)

(<=) If conditions (4.4.6)-(4.4.7) hold for some r.cf.r. (Np ,Dp)ofP, then any other r.cf.r. of P

is of the same form as in these conditions except for /?M-unimodular right-factors R(s). Clearly

then the rank conditions in (4.4.4)-(4.4.5) are satisfied for all r.c.f.r. *s of P since the matrices

Ex(s), E2(s) and the right-factors R(s) areRu-unimodular.

( => ) Condition (4.4.4) implies that there are /?M-unimodular matrices Lx ,RX g 171 (Ru(s))

such that

= ft,- , for all s g U . Therefore, if (Np,Dp)is

V

N,pi
Pi =

Inn 0
0 N 12

.^12 * RU(S)n0\xnn (4.4.17)
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Furthermore, by equation (4.4.5), there is an Ru-unimodular matrix L2 g 171 (Ru (s)) such that

L2(
'p*

NPi
*i)=:

-D21 D^"

Nix 0
nnxnn, where D<22 g Ru(s)

and rank\ 52X : D^ =«i2 1for all 5 e U

(4.4.18)

(4.4.19)

By equation (4.4.19), the pair(D^, D21) is l.c; hence there are matrices Vy , Uy , X2, Y2, U2,

V2 g 17l(Ru(s))such that

" v2 -2" "^2 -Uv 'inn 0 "
-D21 #22 X2 Vu 0 Inn

Now since(AL, Dp) is anr.c pair,

rank(

0

0pi(*)'
0 A^i(^)

L2 &p&)
Np2(s)

R x= raft*

Inn 0

0 tf12(*)

02ifr) S^s)
N2x(s) 0

= ft;, for all s g U

(4.4.20)

(4.4.21)

Equation (4.4.21) implies that rank
Nl2(s)

5^(5) (s) = ni2 , for all s g U ; equivalentiy, (Af 12, D^

is an r.c pair, and hence (recalling the Bezout identity) there are matrices V^ ,11^ ,X2,Y2,

U2, V2 g 171 (Ru (s)) such that

-X2 Y2

DK -Ui

Nil Vi

Inn 0

0 Ui

From the two generalized Bezout identities (4.4.20) and (4.4.22) we obtain

V2 + C/2V2rD21 u2u2;

-X2D2l Y2

Y2 -U*5i ' 'Ui ° "
NX2X2 V2 + Nx2V2lU2 —

0 /«.,
.

(4.4.22)

. (4.4.23)



Now let

and let

Ro:=
Y2

X2

R :=RXR2
nn

-Uy

Vll
e Ru(s)ni™;

UiV*

nn
Ru(s)mxm

By equations (4.4.22), (4.4.24), and (4.4.17), R is /?M-unimodular. Let

106

(4.4.24)

(4.4.25)

ETl :=
Vl +UjVjrDn U&*

-X2D2X Y2
Lx g Ru(s)(ni+»oi)x(nn+noi) (4426)

By equations (4.4.23) and (4.4.17), Exx is /?M-unimodular. Let

nn 0

N2iUuU2X2 IM
/r-l _ L2 g /?M((S)(w'2+ft(,2)x(m2+ft<>2) (4.4.27)

By (4.4.18), E2X is also #M-unimodular. RnaUy let Wx := X2 g /?w(1y),lolX/I•2 and let W2 :=

tf2172 g Ru(s )/lo2Xn»1. Then from equations (4.4.25), (4.4.26) and (4.4.27), weobtain

>p\

ETX : 0 N,>i

0 i E*1 D >2

AT,p2

R =

0 wx

0 /W2
w2 0

(4.4.28)

and hence, with R an #M-unimodular matrix, we have shown that some r.cf.r. (NpR, DpR) ofP

satisfies

Dpi 'Inn 0-

NpI
Ex 0 Wx

R =

Dpi ' 0 Inn
Np2 E2 W2 0

(4.4.29)

Therefore, any r.c.f.r. of P can be put in the form in equations (4.4.6) and (4.4.7), except that they
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may have some /?M-unimodular right-factor.

Proof of Theorem 4.43L:

Conditions (4.4.10)-(4.4.11) are equivalent to conditions (4.4.6)-(4.4.7) by Theorem 4.3.5L.

Therefore Theorem 4.4.3L follows from Theorem 4.4.2R.

•

Proof ofTheorem 4.4.4B:

We only need to prove that conditions (4.4.4B)-(4.4.5B) are equivalent to conditions (4.4.4)-

(4.4.5); the rest follows by Theorem 4.4.2R:

Following equation (4.3.4B) in Comment 43.6.(iii), condition (4.4.4) of Theorem 4.4.2R

holds if and only if

Yx

NprxX (s)=Ex(s)
Inn 0

0 Wx(s) R(s) (4.4.30)

for some /?M-unimodular R g Ru(s)mm and Ru-^inimod\ilarEx g H^m+n°l^m+nol\

where Wx(s) g Ru (s)"01™12. By Theorem 4.4.2R, condition (4.4.4) is equivalent to condition

(4.4.6); hence condition(4.4.4B) holdsif andonly if

rank
Yx(s)

NPrxX(s)

From the Bezout identity (4.2.2) we obtain

> ft;i , for alls g U.

D -Npll -Wp/2 " Vpi X In 0

0 Inn 0 -vplx Yx = -Upil Yi

_Nprl 0 0 -upl2 Y2 NprlVpl NprlX

(4.4.31)

(4.4.32)

Condition (4.4.31) holds if and only if the matrix on the right of equation (4.4.32) has

rank Zn +nix , for all s e II ; since the second matrix on the left of equation (4.432) is

/?M-unimodular, condition (4.431) holds ifand only if
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rank

D(s) -Nplx(s) -Npl2(s)
0 /„.., 0

0

nn

0

£ ft + /in , for all s g li,

if and only if rank

Nprxis)

D(s) -Npn(s)

Npr2(s) 0 + ft;x^ ft + ft;i, for all s g W. We conclude that condi

tion (4.4.31) holds if and only if condition (4.4.4B) holds.

The equivalence ofcondition (4.4.5B) to condition (4.4.5) can be established similarly.

•

4.4.8. Algorithm (Decentralized compensator design):

Theorem 4.3.7 and the proof of Theorem 4.4.2R ((ii) => (iii)) suggest the following algorithm

for finding thesetof all//-stabilizing decentralized compensators based onany r.cf.r.ofP .

Given: P g 171 QRsp(s)) satisfying Assumption 4.2.1 (A) and conditions (4.4.4)-(4.4.5) in

Theorem 4.4.2R.

Step I: Find /?M^unimodular matrices Lx,Rx such that

>p\

N,p\
Pi =

nn 0

0 Nl2 (4.4.33)

Step 2: Find an/?M-unimodular matrix L2 g 17l(Ru(s)) such that

L2(
D >2

Np2
*i) =

-D21 D22

N2l 0 , where D22 g Ru(s)m2Xni2,

and (D22, D21) is an l.c pair.

Step 3: Find a generalized Bezout identity for the l.c pair (D22, D21):

V2 U2

-52X D^
Y2 -Uu 'Inn 0-

x2 Vn 0 Inn

(4.4.34)

(4.4.35)

(4.4.36)



Find ageneralized Bezout identity for the r.c pair (NX2, D^):

-X2 Y2

Step 4: Let

Dn -Ui

Nil V2

r/«2 o

o Ux

Inn 0

E? :=

and let

V2 +U2Vj,D2l UiU^
-X2D2X Y2 Lx, E2X NnUvlIfa Irto2

Wx:=X2, W2:=N2XY2

;-i
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(4.4.37)

L2, (4.4.38)

(4.4.39)

Step 5: Cd =

where

Cx 0

0 C2

D-{NcX 0

-1]0 D£Nel //-stabilizes the given P g 17l(Rsp(s)),

[5cx iNcl] =[lnn -: Qij^f1 .

[^c2.:^c2] =[lnn'' Qi]Eil .
forsomeelffi2 e m(/?tt(j))suchthat

<>et(/«2-(22^2(21^1) e /.

(4.4.40)

(4.4.41)

(4.4.42)

•
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4.5. Extension to multi-channel decentralized control systems

In this sectionwe extendthe results of Section 4.3 to m-channel decentralized systems

( m > 2 ), and studythe implications of the rational functions caseof Section 4.4. Wedo not give

completeproofs here since the two-channel case was studied in detail; the clues we give for each

proof should suffice.

We only analyze the m-channel decentralized system as in Analysis 4.23.(i); the other

cases are also easy to extend.

Consider the m-channel decentralized control system S(P,Cd )m shown in Figure 4.7; the

subscriptm is addedin S (P, Cd )m to emphasize that this is an m-channelsystem.

«i r

s

J"1
1

' yi J+

S j
1

Cx
Vl

A J 1 +<•
1 i »

p
•

•

•

/

cd
•

•

•

• i

«

1 I

i 'm *

>f

>

»

+

•

•

•

—^"} Cm
ym

+ s 1 +^J 1

Figure 4.7: Them-channeldecentralized control system S(P,Cd)m.

4.5.1. Assumptions:

Extend Assumption 4.2.1 to m -channels:

(A) Let P g GrtoXm be an m-channel plant, where n0 = noX+ ••• +nc

N,p\

ft; = ft,i•+ • • • + nim . Let (Np, Dp) be an r.c.f.r. ofP, whereNp =: j^/loX«i

N,pm
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'Pi

Dp- e Hm7UU , N„ e H**w , Doi e ff ««»» , j =1, ••• ,m . Let'PJ 'PJ

'pm

(5p,Np) be an Lcf.r. of P , where 5p =: T5pX ••• Dpm 1 g //

[npX '•• Jv>a] gH**™ ,5pj gH"*™* ,NpJ gHnoXnV,j =l, ••• ,ni.
The b.cf.r. (A^.,D,Npl)ofP is similarly partitioned into m-channels.

(B) Let Q=diagl" Cx •••COT1 , Cy g Gm'xn°J . Let (5cj,Ncj) be an l.cf.r. of C, ,

where Dcy- g HniJxniJ , Ncj g HmJxn°J . Let (Ncj,Dcj) be an r.cf.r. of Cy- , where

Ncj g HmI™°J9 Dcj g Hn°Jxn°J, j =1, •• ,m . Then (Dc, ATC) is an l.cf.r. and

(NC,DC) is an r.cf.r. of Q, where Dc =<tazg Dcl ••• Dffl , Nc =

rf/ag ^Nel ••• Nc,n],Ne =diag [nc1 ••• AUj.D,. =dtag [dc1 ••• D^J.

no xno X7 _.

43.2. Analysis:

Let P =NpDp'x and let C=5~XNC , where (Afp,Dp) is an r.c pair as in Assumption 4.5.1 (A),

and (5C,NC) is an l.c. pair as in Assumption 4.5.1 (B). The m-channel system S(P,Cd)m is

then described by equations (4.5.1)-(4.5.2).

DclDpl+NcxNpx 'cl 0 NcX

i =
0 Dcm 0 AL

' Npx • 'yi ""l"

Npm

Dpx 5„ =
ym

+

0

Im

0

0
Hi

*"pm ym' Um'

«1

um

*l'
(4.5.1)

(4.5.2)
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The system S(P,Cd )m is //-stable if and only if

V

DclNcx ••• 0 0 N,pi

is //-unimodular (4.5.3)

0 0 "Don Nan D pm

N pm

45.3. Theorem (Conditionson P for decentralized //-stabilizability):

LetP g 171 (Gs) satisfy Assumption 4.5.1 (A); then there exists an//-stabilizing decentralized

compensator Cd (satisfying Assumption 4.5.1 (B)) forP if and only if P has an r.c.f.r. (Np, Dp)

which satisfies condition (4.5.4R) and equivalentiy, anLcf.r. (Dp, Np) which satisfies condition

(4.5.5L) below:

'pi

N pi

D >2

N p2

D pm

N,pm

Inn 0 • • o •

0 Wl2 •• • wXm

0 Inn " • o •

W2X 0 •• • w^

0 0 • I nim
wmX wm2 • " 0

[-Npi 5pX \-Np2 5p2 ••• -Npm 5pm] =

0 Inoi' '-W12 o •

W2X 0

Ex'1 :
0 In02

Ef» •••

wmX 0 -wm2 0

-wlm o

-^2m 0

0 / Horn

(4.5.4R)

-1 , (4.5.5L)

where, for y=1,2, ••• ,/n , Ej e H^mJ+n°J^niJ+no^ is //-unimodular and

Wy* g Hn°Jxnik , £ = 1,2, ••• ,m(note that Wjk =0when £ =j ).
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Proof:

We only prove condition (4.5.4R); the proof of condition (4.5.5L) is similar

( <=) By assumption, condition (4.5.4R) holds. Fory = 1, • • • , m , consider the compen

sators Cj =Dc/Ncj , where

[5cj :. Ncj ]=[/„(,: o] Efx. (4.5.6)
It can be shown that the C/s satisfy Assumption 4.5.1 (B) the same way as in the proof of

Theorem 43.4R. Now substitute equation (4.5.6) into equation (4.5.3); clearly, the m-channel

system S(P,Cd )m is //-stable.

( => ) For j =1, ••• ,m , partition the matrices Dpj =: Djx ••• Djm , Npj =:

\njx -" Njm .The system S(P,Cd )m is //-stable by assumption; therefore, by normalizing

equation (4.5.3), we have

ArlJVcl ' •0 0

'dxx •
Nxx •

•* Dxm

" Nlm

0 0 • l^cm "cm Dml ' '-'mm

Nmx • - Nl1mm

Inn

0

(4.5.7)

I nun

As in the proofofTheorem 4.3.4R, fory = 1, ••• ,m , (A^-.D^Oisanr.cpairanddetD^ g /;

let (5jj,Njj) be an Lc.f.r. of NjjDjj1. Then there exist matrices Ujj , Vn e 171(H) such that

the following generalized Bezout identity canbe written for eachj = 1, • •• , m :

Dci Nej
-Njj 5jj

DjJ -Uj/ 'Imi 0-
Njj Vjj 0 Inoj (4.5.8)

-l ._Fory = 1, •• • , m , let Ep :=

:=-NjjDjk+5jjNjk ,k = \,

(4.5.7)-(4.5.8) we obtain

Dcj Ncj
-Njj 5jj ; Ej is //-unimodular by equation (4.5.8). Let Wjk

,y-l,;+l, - • ,m (note that Wjj = 0). Then by equations



•Dji • • *v • 0 • "• Imj ° ' • 0 '

V Njl- • • NJm
— Wjx • •• o wm • rrjm

Q:=diag [qx ••• Qm] ,

W :=

0 W12

W2l 0

Wml Wm2

Wlm

^lm

0
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.(4.5.9)

For y = 1, ••• ,m , pre-multiplying both sides of equation (4.5.9) by Ej, we get condition

(4.5.4R).

D

We now extend Theorem 4.3.7, which gives the set of all //-stabilizing compensators, to m-

channels: For future reference, we define

(4.5.10)

(4.5.11)

4.5.4. Theorem (Set of all //-stabilizing decentralized compensators for S(P, Cd )m):

Let P g 171 (Gs) satisfy Assumption 4.5.1 (A); let in addition an r.cf.r. (Np,Dp) ofP satisfy

condition (4.5.4R) and equivalentiy, let an Lc.f.r. (5p,Np) of P satisfy condition (4.5.5L) of

Theorem 4.5.3. Under these conditions, the set S^ (P) of all //-stabilizing decentralized com

pensators forP is given by

Srf(P):={ Cd=diag [Cx ••• Cm] =diag [5;xxNcX ••• 5~}Ncj] :

for 7=1, ••• ,m, [5cj':Ncj] =[/„.. :Qj ]Efx,

for some Qj e HmJxn°J such that dct(Im +QW) e J } ; (4.5.12)

equivalentiy,

Sd (P) := { Cd =dtag [Cx •••Cm ] =<ta* [NcXD~xx •••NcjDcf] :

for y = 1, • • ,/ft ,
-Ncj

Dcj
= £;

-Qj
noj

for some Qy g Hniixn°J such that dct(/w +QW) g / } . (4.5.13)
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Furthermore, for 7 = 1, ♦ ••, m , the matrices Qj , subject to det(/Wi +QW) g /, determine Cj

uniquely.

Proof:

The proof is similar to that of Theorem 43.7. We write a generalized Bezout identity which

extends equation (4.3.19) to m -channels:

Inn 0 0 0

: : EX~X .. • • • ^m

0 0 I nun 0

0 Ino{ '-Wlm o -

•

-W2X 0 -Wlm 0

: •
EXX .. • ;

•

E~XC'm

•wml 0 0 * ftom

I nn • 0 " 0 ... o

Ex 0 • •• wXm '• Ex
I no\ ... o

" 0 • I nun "0 •• • 0 *
Em

"ml " 0
'

Em 0 •• *• nom

= Im+n0.- (4.5.14)

Equation (4.5.14) is obtained from conditions (4.5.4R)-(4.5.5L) and is of the form

V„, Utpi upl *.' ' vpm upmU„

-NpX DpX -N„„ D„«*' pm '•'pm

Dpi -Upx

NpI Vpi

*^pm ^ pm

N Viypm v pm

= / m+no

Using standard methods, by normalizing equation (4.5.3), it is easy to show that if Cd

//-stabilizes P then Cd = (Vp -QNpTx(Up +Q5p) , where 5C := (Vp -QNp) and Nc :=

(Up +Q5p) and Qare block-diagonal. For j =1, ••• ,m, let 5cj := Vpj - QjNpj and Ncj :=
UpJ +Qj5pj . From equation (4.5.14),
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Dcx Ncl 0 0

0 0 • • • Dcm No*

[inn Qi]ex~1
0 '•• [/«. Qm]Em'x + QW; (4.5.15)

substituting equations (4.5.10)-(4.5.11) into (4.5.15), QW = 0 , and hence, det(/n/ + QW) g /.

Therefore, Cd is given by the expression in equation (4.5.12).

Conversely, if Cd is given by the expression in equation (4.5.12), then the matrix in equa

tion(4.53) becomes Im + QW, which is //-unimodular due to the condition in (4.5.12).

The proofof equation (4.5.13) is similar.

•

43.6. Comments (The rational functions case): [And.l, Xie.l]

Let H beRu(s) as in Section 4.4. The definition ofdecentralized fixed-eigenvalues is extended

to m-channels as follows: The plant P has a decentralized fixed-eigenvalue at sQ g U (with

Dpx(s0)+KxNpx(s0)
respect to Kd = diag[Kx • • • Km ] ) iff det

rank

pCLi\S)

panNnnXs)

Dp0t(s)

Npajl(s)

Dpm(s0) + KmNpm(s0)

Km g 171 (R). Extending Theorems 4.4.2R, 4.4.3L, 4.4.4B to m-channels, we state six

equivalent conditions below:.

(i) The plant P has no decentralized fixed-eigenvalues in U;

(ii) for k = 1, • • • m-\, for all nonempty subsets a = { c^ , • • • , ak } of {1, • • • , m},

^ S n«a,.f°ralls e 11;
a> e a

= 0 for all K{, ...,

(4.5.16R)

(iii) for k = 1, • • • m-l, for all nonempty subsets a = { o^ , • • • , ak } of { 1,..., m},

rankl -NpaLl(s) 5p(Xl(s) •• Npa*(s) 5p0Li(s)1> £ nia., for all s g.II; (4.5.17L)
L J a;- e a
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(iv) conditions (4.5.4R) and (4.5.5L)of Theorem4.5.3 hold;

(v) for k = 1, ••• m-1 , for all partitions of the set {1, ••• ,m} into two disjoint subsets

{alt ••• .a^andfc^!, ••• ,am}',

rank

D(s) -NpinJs) ••• -Arp/am(.y)]
Npraxis) 0 •• 0

Nprokis) 0 •• 0

£ft , for all * g U\ (4.5.18B)

(vi) there exists a dynamic decentralized compensator Cd = diag Cx ••• Cm\ which

//-stabilizes P .

In conditions (4.5.16R)and (4.5.17L), the set a is a strictiy proper subset of { 1, • • • , m }

'Dp(s) _ _ _
Np(s)because (Np,Dp) is r.c implies rank = ft,- , for all s g U and (Dp,Np)is Lc implies

rank\ Np(s) 5p(s)\ =«,- , for all s g W. In condition (4.5.18B) the two disjoint subsets are

strictly proper subsets of { 1, • • • , m } because if either one was equal to { 1, • • • , m }, then

condition (4.5.18B) is automatically satisfied since (A^, D, Npl) isbicoprime.

Condition (4.5.18B) can also be written in the state-space setting as in Remark 4.4.5S.

•

43.7. Achievable I/O maps of5 (P, Cd )m :

The set

A<j(P):={ H- : Cd //-stabilizes P }•yu (4.5.19)

is called the set of all achievable I/O maps of the m-channel decentralized feedback system

S(P,Cd)m.
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Since theclass S^ (P) is asubset of the class S(P) of all stabilizing decentralized compen

sators for P in the configuration S (P, C), the class A^ (P) is also a subset of the set A(P) of

all achievable maps of the unity-feedback system S(P,C).

Let an r.cf.r. (Np,Dp) of P satisfy condition (4.5.4R); then from equation (4.2.3), we

obtain

Ad(P)={ Hw =yu

Np(Im+QWrDc • Np(Ini+QWrxNc

Dp(Im +QWTX5C -Im Dp(Im +QWTXNC

: Q g 171 (H) such that det(Ini+QW) e J } ,

where

Dc = diag [inn Qi]E? q1 '•• [IHim QmjEmX

Nc = diag [inn Qi]ex~1 Inoi •••[/*. Qm ]E^X

Mm

0

nom

(4.5.20)
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4.6. 2(P, C) with a decentralized feedback compensator

In order to summarize the results of Chapters Three and Four, we now combine the

//-stabilizing compensator design procedure using Z(P, C) with-decentralized control: Suppose

that the general configuration Z(P, C) requires the additional restriction that the 2-2 block C of

C is block-diagonal, i.e., C is replaced by Cd :=

is block-diagonal as in Assumption 4.2.1' (B) (seeFigure4.8).

Cxi Cxi

C2x Cd , where Cd =diag\ Cx C2\

u\

«1

•^ ,

A*

c *' A+ . P Vl

J +\j
"2

-rO—
3-2' 1+ yi

+\J

Figure 4.8: Z(P, C) with a decentralized feedback-loop.

The class of all P =
^n Pii

P21 P

some C g G^° +««')x(Tli +ft<>) ^is given in Theorem 3.3.9. The class of all two-channel

Cx 0

0 C2

G(r\o+no)\(T\i+ni) mat can be //_stabilizcd by

P g Gn°xnt that can be//-stabilized by some decentralized compensator Cd =

Cx g G mxxn°l , C2 g Gni2Xn°2 in the configuration 5(P, Q), is given in Theorem 43.4R.
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Combining these two, the class ofall P g G(y\o+no)x(T\i+m) ^ can be //—stabilized by some

Cd is given by the set

N u

L VpN2l

N 12

[o /ah]*!

[o /*a]*a

'nil °l"
0 W!

: 0 'rt»2

W2 0
• •J.

0

-UpN2l

[Imi' 0]

0 £-[inn o]

' /Ml °1
0 Wx

: 0 Inn
w2 0

- •J.

-1

£i,£2 e m(H) are H-unimodular andWx e H"0™2 ,W2 g Hno2Xmx } . (4.6.1)

Let Srf (P) denote the set of all //-stabilizing compensators Cd =
Cn Ci2

Cix Cd ; i.e.,

Sd(P):={ Cd =
Cn C12

C21 Cd Cd H-stabilizes P } . (4.6.2)

£ /v

Combining S(P) given in Theorem 3.3.11 and Sd (P) given in Theorem 4.3.7, the class Sd (P)

ofall //-stabilizing compensators Cd isgiven by:
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§*(P):={ Cd =
-QllNp

-l

0

[inn Qi]ETl [Inn]
0

o [ini2 q2]e2xtlm^

11 QnDp

Q 21

[inn Qi]ExX 0

ftol

0 [lni2 Qi]EIl 0

fto2

•-Qii'Qn'Qu e Tn\H)t

Qx g HmxxnoX,Q2 g Hni2Xn°2 such that det(/Wl.2-22^2Gi^i) € / } .(4.6.3)

Note that the subblock P could have m -local channels instead of two channels; the extension to

this case follows from Theorem 4.5.3.
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Chapter Five

Conclusions

A unified algebraic theory for full output-feedback and decentralized output-feedback

schemes is presented in Chapters Three and Four, using the fundamental tools of the factorization

approach presented in Chapter Two. For each compensation scheme, the main objectives are

//-stability, the class of all //-stabilizable plants, the class of all //-stabilizing compensators,

and all achievable closed-loop I/O maps.

In Section 3.2, //-stabilizing compensators for the standard unity-feedback system

S(P, C) are parametrized starting with right-coprime, left-coprime and bicoprime factorizations

of theplant (see equations (3.2.27)-(3.230) fortheclass of allone-parameter //-stabilizing com

pensators). Each closed-loop I/O map of S (P, C) in equation (3.2.38) is an affinefunction of the

compensator parameter matrix Q. The conditions for //-stability of the general system

configuration 2(P, C) are given in Section3.3; this system allows full feedback from one of two

(vectpr-)outputs of the plant P to one of two (vector-)inputs of the compensator C. The class of

all P that can be //-stabilized by some C in the configuration S(P, C) is parametrized in

Theorem 3.3.9. The class ofall //-stabilizing two-input two-output compensators C is given in

Theorem 3.3.11; this class is parametrized by four parameter matrices Qxx . Qxi » Qn »

Q g 171 (H) . Each closed-loop I/O map ofX(P, C) in equation (3.3.58) is an affine function

of one of these four compensator parameters, which can be chosen tosatisfy several performance

requirements. Themap H^iv' h»z from the external-input v' of C to theactual output z ofP

is diagonalized in Section 3.4 by choosing the matrix Q21 as in equation (3.4.7). Theclass of all

achievable mapsHzv> which are diagonal and nonsingular is givenin Theorem 3.4.2.

The two-channel decentralized feedback system S(P, Cd) is studied in Chapter Four. This

system is the same as the unity^feedback system S(P,C) except that the compensator is res

tricted to be block-diagonal. Clearly, not all plants P can be //-stabilized by a decentralized
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compensator, the class of all decentralized //-stabilizable plants P is given inTheorem 4.3.4R.

The class of all //-stabilizing decentralized compensators Cd is given in Theorem 4.3.7; this

class is parametrized by two matrices which satisfy a unimodularity condition. In Section 4.4,

the general algebraic results are applied to the case of proper stable rational functions Ru (s);

decentralized //-stabilizability conditions are interpreted in terms of fixed-eigenvalues in

Theorem 4.4.2R. See Algorithm 4.4.8 for designing an //-stabilizing decentralized compensator,

starting with any right-coprime factorization NpDpx ofP. In Section 4.5, the parametrization of

//-stabilizing compensators is extended to m-channel decentralized control systems. In Section

4.6, the compensation schemes of X(P, C) and S(P, Cd) are combined; the two-channel plant P

is considered as the 2-2 subblock of a plant P in the configuration 2(P, C) and the 2-2 subblock

of C is restricted to be block-diagonal. The class of all compensators Cd such that X(P, C) has a

decentralized feedback-loop is given in equation (4.6.3).

The parametrization of all //-stabilizing compensators is akey concept in all compensator

design problems. The constrained optimization design approach is formulated in terms of these

parametrizations: the optimizationalgorithm chooses the compensator parameter matrices (Q for

S(P,C) ; Qxx, QX2,Q2X ,Q for Z(P, C) ; Qx , ... , Qm , where det(/n. +QW) g /, for

S(P,Cd )m ), that satisfy performance criteria as well as time-domain or frequency-domain con

straints (see for example [Gus.l]). //"-norm minimization problems rely on the parametrization

of all //-stabilizing compensators and the achievable I/O maps (see for example [Sal.l] and the

references therein). The four independent parameter matrices of Z(P, C) would be extremely

useful in minimizing the //"-norm of I/O maps, each of which are affine functions in only one of

the four parametermatrices; in this configuration, minimizing the //°°-norm of the disturbance-

to-output map would not result in undesirable responses in the map from the control-input to the

actual output since these maps aredecoupled from each other. Computer-aided design algorithms

for one-parameter compensation schemes like S(P,C) arc already used extensively. The

parametrizations of all //-stabilizing compensators presented in this work forms the basis of the

development of numerical algorithms and software for computer-aided design.
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left-factorization, 6

left-fraction representation Q.fx), 10

m-channel decentralized control system, 109
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principal ring H, 6,8
rank test, 27
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