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Abstract

This work presents an algebraic theory for linear, time-invariant multiinput-multioutput
control systems Due to the algebraic setting, this theory applies to lumped as well as distributed,
continuous-time as well as discrete-time systems. The fundamental problem of stability, the class
* of all stabilizable plants, the class of all stabilizing compensators and all achievable closed-lcop
input-output maps are solved for control system configurations with full output-feedback or

decentralized output-feedback compensators,

The general algebraic setting and the factorization approach are explained in Chapter Two;
the contribution of thls chapter is in collecting and simplifying the fundamental results used in
algebraic system theory and presenting new results in coprime factorizations.

Using coprime factorizations of the plant and the compensator, the stablllty of system
configurations with full compensators are considered in Chapter Three; the first configuration is
the standard unity-feedback system in wiﬁch the plant and the compensator each have one
(vector-)input and one (vector-)output and full feedback is allowed from the plant output to the
compensator. The second configuration represents the most general interconnection of two sub-

systems: the plant and the compensator each have two (vector-)inputs and two (vector-)outputs;



full feedback is allowed from one of the plant outputs to one of the compensator inputs.

In Chapter Four, the unity-feedback system is constrained to have a decentralized compen-
sator, resulting in a block-diagonal structure for the compensator ; the two-channel decentralized
compensation case is considered in detail and the results are extended to m-channel decentralized
control systems. The most important contributions of Chapters Three and Four are the parametri-

- zation of all stabilizing full and decentralized compensators and achievable input-output maps
for each compensation scheme. All compensator design problems aimed at satisfying perfor-
mance goals (disturbance rejection, asymptotic tracking, robust performance, sensitivity minimi-
zation, H>*-norm minimization, constrained optimization problems) rely on this parametrization

of all stabilizing compensators.

Research sponsored by the National Science Foundation Grant ECS-8500993.
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Chapter One

Introduction

This work presents a general algebraic theory for linear, time-invariant (1.t-i), multiinput-
multioutput (MIMO) control systems. This theory applies to lumped as well as distributed,
continuous-time as well as discrete-time systems. The focus i1ere is on three feedback
configurations: The sfandard unity-feedback system S (P, C), the more géneral configuration
Z(ﬁ , 6 ) with two (vector-)input two (vector-)output plant and compensator, and the two-channel
decentralized feedback configuration S (P, C; ), with extensions to the m -channel decéntralized
configuration S (P, C; ).

A unified, straightforward algebraic theory is developed in this work starting with the fol-
lowing general idea: Suppose that we are given an n;-input n, -output Lt-i plant P; then there is
an n,-input n; -output' compensator C that stabilizes-P in the unity-feedback configuration
S(P, C). In fact, it is well-known that we can start with a right-coprime factorization N, Dp-l ora
left-coprime factorization 5; '1\7,, of P and parametrize the class of all stabilizing compensators

for P in this configuration. Now we may ask:

(i) What if we started with a bicoprime factorization N,,,D"N,,, of P ? Can we convert
N,,,D"Np, to either N‘,,D,,,’l or 5;‘57 » and thus use the well-known parametrization of the
class of all stabilizing compensators?

(i) 'Whatif the n,xn; matrix P were a subblock of an (n; + n;)-input (n,, + n, )-output plant P2
Can we stabilize P by only allowing feedback from the n, outputs to the n; inputs of P?
What is the class of all (n, + n,)x(n; + n;) plants P that can be stabilized by such partial
feedback in the configuration Z(ﬁ , ¢ ) ? What is the class of all stabilizing (;” + n, )-input

(Mo’ + n;)-output compensators € in the configuration 2(5 , ¢ ) ? How many free design



parameters does ¢ have? What are the achievable input-output (I/O) maps of Z(ﬁ, ¢ )?
Can we diagonalize the map from the external-input to some output of P while preserving
the stability of Z(P, ') ? After achieving stability and diagonalization, do we still have free

parameters to satisfy other design objectives?

(iif) What if the output-vector of P is partitioned into n,; local outputs y and n,, local outputs
¥2 and the input-vector of P is partitioned into n;; local inputs u and n;, local inputs u, ,
and feedback is allowed only from y, to 4, and from y, to u, , resulting in a block-diagonal
compensator sﬁucture? What is the class of all P that can be stabilized by such decentral- '
ized output-feedback? Can we parametrize the class of all stabilizing decentralized compen-
sators C; ? How do we generalize decentralized stabilization to an m-channel plant P ,

with (local) outputs y , ... , ¥, and (local) inputs u , ... , &, ?

The set of all stabilizing compensators and achievable performance in various feedback
configurations has attracted much attention; the characterization of all possible designs shows
exactly what the limitations are on achievable performance. Stabilizing compensators were
characterized in [You.1] for the lumped continuous-time and discrete-time cases. Later, an alge-
braic formulation was given in [Des.1] to include the lumped and distributed continuous-time and
discrete-time cases. Using algebraic tools, [Zam.1] considered stable plants, characterized all sta-
bilizing compensators and established bounds on closed-loop performance. These methods were
used for design in [Des.2). Further results in parametrization were given in [Per.1], [Che.1],
[Sae.1], [Ohm.1] and [Vid.2]; a general algebraic design procedure, which enables design with
non-square plants and controllers and extends the parametrizations of [You.1] and [Per.1], was

obtained in [Des.3]. An excellent review of research in this area and related work until 1985 can

be found in [Vid.1].

Various feedback configurations have been used to satisfy stability and other performance
specifications. In the classical unity-feedback configuration S (P, C) (shown in Figure 3.1 in
Chapter Three), the class of all stabilizing compensators is parametrized by one free parameter

matrix Q. All closed-loop I/O maps depend on this parameter, and hence, if one performance



requirement is met by choosing Q, then there is no more freedom left in the désign. So then, the
disturbance-to-output map cannot be decoupled from the external-input-to-output map with this
scheme. For a single-input single-output plant, a number of different feedback schemes were
briefly discussed in [Hor.1]; among them was the two-degrees-of-freedom design. A two-input
one-output compensator was proposed in [Igst.ll and later developed in [Per.1, Des.3, Vid.1].
The class of all stabilizing two-input one-output compensators is parametrized by two parameter
matrices; hence, using this two-parameter scheme, the disturbance-to-output map is independent
of the exogenous-input-to-output map. A two-parameter compensation scheme was also used in
[Des.5], where the plant was more general, with a measured-output used in feedback, and an

actual output, which is expected to satisfy certain performance criteria.

A much more advanced scheme, which generalizes the unity-feedback system S (P, C ) and
the two-parameter scheme, is the two-(vector)input two-(vector)output plant and compensator
configuration Z(ﬁ . 6 ) (see for example [Net.1]). In this case, the class of all stabilizing compen-
sators has four parameter matrices. Each input-output map of Z(ﬁ , é ) is an affine (or iinear) map

in one of these parameter matrices.

Decoupling the map from the external-input to the output of an M[Mo plant is extremely
desirable from an engineering point-of-view since each output of a diagbnal system can be mani-
pulated by a single input, which does not affect any of the other outputs. Diagonalization of the
I/O map as a performance speciﬁcation- was studied extensively, mostly using state-space tech-
niques [see, for example, Dio.1, Zam.2]. Using a one-parameter compensator C placed in the
Jfeedback-loop, [Ham.1] gave conditions for a plant P to be decoupled using output-feedback; in
the lumped continuous-time case, using this scheme, there is no "proper" compensator that
decouples a plant whose inverse has off-diagonal polynomial terms (because with strictly proper
plant and proper compensator, the inverse of the resulting diagonal I/O map is
[PU+CP)'1! = (1+CP)P™!, which approaches P~! as s —» oo ). This configuration introduces
the constraint that the polynomial part of P! must be diagonal; ﬁis problem does not arise with

a two-parameter compensation scheme. In a more general algebraic setting, decoupling of linear



time-invariant MIMO systems over unique factorization domains was considered in [Dat.1] and
condit.ions for the existence of a decoupling dynamic or static szate .feedback were established in
the case that the system is internally stable and reachable. Later in [Des.4], a two-parameter
compensation scheme was used for diagonalization; the plant was assumed to be more general as
in [Des.5]; it was shown that diagonalization can be achieved independently of the disturbance-

to-output map.

In large scale systems (for example, power systems, computer communication networks,
chemical process control systems, transbortation networks, socioeconomic systems) it is often
desirable or required due to geographic, economic or other practical considerations, to construct
the feedback control or decision strategy of a system based on a constrained measurement or
information patten. An important case of constrained controllers is decentralized control in
which only local outputs are utilized by local feedback controllers, resuliing in a block-diagonal
compensator structure. The design of local decoupled controllers that require no information
from the other channels is clearly desirable but not all plants can be stabilized in this fashion. It is
important to know the constraints on plants which can be stabilized by decentralized feedback as
well as the class of all stabilizing block-diagonal compensators. A comparison of this class to the
parametrization of all stabilizing centralized compensators shows that, even when the plant
satisfies the conditions for decentralized stabilizability, decentralized compensators form only a

small subset of all possible designs that would achieve stabilization.

This work is organized as follows: Chapter Two collects all algebraic facts and lemmas
which will be used in studying control systems. The standard ring definitions (entire ring, princi-
pal ring, ideal of a ring, ring of fractions) can be found in many texts in algebra [Bou.1, Coh.1,
Jac.1, Lan.1, Mac.1] or in [Vid.1]. In Chapter Three, the unity-feedback configuration S (P, C )
and the general configuration 2(1’3 , 6 ) are studied in detail. The class of all plants that can be sta-
bilized by decentralized feedback and the class of all stabilizing decentralized compensators for
two-channel and m -channel systems are obtained in Chapter Four. The results of Chapters Three

and Four are combined to exhibit the class of all H-stabilizing compensators for the plant P ,
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where the second output is partitioned into two channels, i.e., the system E(ﬁ , C) is restricted to

a decentralized feedback-loop.

The contribution of this work is in its unified approach to different stabilization schemes by
using the same tools of analysis and the same factorization techniques collected under Chapter
Two. Consequently, it is possible to compare compensator design with a unity-feedback system,
a general .two-input two-output system, and a decentralized output-feedback scheme. The
parametrizations of stabilizing full and decentralized compensators presented here are extremely
important in disturbance rejection, asymptotic tracking, robust performance and costrained

optimization problems.



Chapter Two
Algebraic Background

2.1. Introduction

The purpose of this chapter is to clearly separate algebraic facts from system properties, to
introduce the algebraic framework and to collect relevant definitions, known facts and important

lemmas. These will be used repeatedly in Chapters 3 and 4 to study control systems.

If H is a principal ring (also called principal ideal domain, [Coh.1, Mac.1, Jac.1, Lan.1,
Vid.1]), and if ] is a multiplicative subset of H , then any matrix P whose entries are in the ring
of fractions H /I =: G of H associated with the subset / can be factorized as N, D, and as
D,'N, . where N, ,D, ,N, , D,, all have entries in H ; this would not be the case if H were
any ring.

Some well-known rings such as R[s] ( the ring of polynomials in s with real coefficients),
Ry, (s) (the ring of stable rational functions in s with real coefficients), Z (the ring of integers),
are principal rings.

Factorizations in principal rings are important tools in the algebraic theory of control sys-
tems. If the system is represented by a transfer function P whose entries are in IR, (s) (the ring of

proper rational functions in s with real coefficients), then P can be factorized in R[s] or in

Ru(S).

This chapter is organized as follows: The algebraic notation and some important properties
of principal rings are presented in Section 2.2; factorizations in / are defined in Section 2.3.
Various generalized Bezout identities are presented in Section 2.4; using these Bezout identities,
a bicoprime factorization of the form NP,D"NP, is redyccd into a right-factorization N, D‘,"1 ora

left-factorization 5; N »- Solutions (for O, P 1\7c) ) of the equation D~C D, + ﬁch = A , where
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N, D,,'l is a right-coprime factorization of a (given) P , are presented in Section 2.5; this is partic-
ularly useful in compensator design with the unity-feedback system S(P,C) . Matrices parti-
tioned into four sub-blocks are studied in Section 2.6; this will be especially useful in Section 3.3
for the analysis o.f a general system E(ﬁ, é ) . An important lemma, which is very useful in
decentralized control, is presented in Section 2.7; slightly different forms of this lemma can be
found in [And.1]. |

- Although the results of this chapter are completely algebraic, their system-theoretic impor-

tance will be demonstrated by their use in the subsequent chapters.



2.2. Algebraic framework

In this section we introduce the algebraic setting; due to its generality, the results we
present in the subsequent chapters apply to distributed or lumped, continuous-time or discrete-

time control systems.

2.2.1. Notation [Coh.1, Mac.1, Lan.1, Vid.1]:

H is a principal ring (i.e., an entire commutative ring in which every ideal is principal).

J < H is the group of units of H (i.e.,x € J impliesx™! ¢ H ).

I < H is amultiplicative subset,0 ¢ [ , 1 € I Gie.x € I,y e I impliesxy e I).
G=H/I =(n/d :n e H,d el }isthe ring of fractions of H associated with [ .
G is the Jacobson radical of G; G :={x € G :(1+xy)' € G, forally € G }.

2.2.2. Example (Rational functionsin s) :

Let 4 > C, be aclosed subset of C, which is symmetric about the real axis, and let C\ I be
nonempty; let U=U U { o }. The ring of proper scalar rational functions (with real
coefficients) which are analytic in I{ , denoted by Ry, (s), is a principal ring. Now let H be

Ry, (s); for this principal ring, J ,I , G , G are interpreted as follows:

By definition of J, f e J implies that f is a proper rational function, which has neither
poles nor zeros in U. We choose I to be the multiplicative subset of Ry (s) such that
f e I implies that f (=) is a nonzero constant in R ; equivalently, I < Ry, (s) is the set
of proper, but not strictly proper, real rational functions which are analytic in I{ . The ring
of fractions Ru (s)/1 is then the ring of proper rational functions R, (s). The Jacobson

radical of the ring R, (s) is the sct of strictly proper rational functions R, (5).



2.2.3. Facts:

() The multiplicative subset / 'is the set of units of G which are in H .
(i) LetA e mH),B € m(G); then
(@) A™' e mH)iffdetA eJ (A is then called H-unimodular);

(If we choose H as the specific principal ring Ry, (s), then we say R, —unimodular.)

() B € m(G)iffdetB e I (B isthen called G-unimodular).

(i) Let Y € M(Gy) , X,Z e M(G) ; then XY,YZ € M(Gs) and (I +XY)7,
(I1+YZ2)!' e m(G).

2.2.4. Lemma:
(i) Leta,b € H ;then ab e J ifandonlyif a € Jand b e J .

(i) Letc.,d € H ;then cd e I ifandonlyif c € J and d e I .

Proof:

() Clearly,a ,b e J implies that ab e J since J is a (multiplicative) group. To show
the converse, let ab =: u ; by assumption, u™! € H . Therefore, b € H has inverse
(u™a) € H since (u™'a)s =1, and hence, b € J . Similarly, a(bu~') = 1 implies that

a € H hasinverse (bu™") ¢ H andhence,a e J.

(i) Clearly, ¢ ,d e I implies that cd e I since I is a multiplicative subset. To show the
converse,letcd =:v € I ;thenv! € G . Therefore,c € H has inverse (dv=") € G and

d € H hasinverse v"'c) € G ;hence,c andd e I .
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2.3. Coprime-fraction representations

We now define right, left, and bicoprime factorizations in H for matrices with elements in G .

2.3.1. Definitions (Coprime factorizations in / ):

®

(ii)

(iii)

The pair (N, Dp),where N, ,D, e M (H), is called right-coprime (r.c.) iff there exist
U, .V, € M H)suchthat
V,D, +U,N, =1I; 3.
the pair (N, D, ) is called a right-fraction representation (rf.r.) of P € M (G)iff
D, issquare, detD, € I and P =N,D;!; 232

the pair (N,.D,) is called a right-coprime-fraction representation (r.c.f.r.) of

" P e m(G) iff (N,,D,)isanr.fr.of P and (N,,D,)isr.c.

(iv)

v)

(vi)

(vii)

The pair (D,,N,,) , where D, ,N, e M (H), is called left-coprime (l.c.) iff there exist
U, .V, € m(H)suchthat

N,U,+D,V, = 1I; 2.33)

the pgir (5 b N p ) is called a lefi-fraction representation (Lf.r) of P € M (G)iff

~ -

D, issquare, detD, € I and P =D;'N, ; (2.3.4)

the pair (D, oo N ) is called a left-coprime-fraction representation (l.cfx.)of P € M (G)

iff (D,,N,)isanlfr.of P and (D,,N,)islc.

The triple (N, D, Nyy) where Np »D Ny € M (H) , is called a bicoprime-fraction
representation (b.c.f.r) of P € M (G) iff the pair (N, , D) is right-coprime , the pair

(D, Ny)is left-coprime,detD € I and P =N, D7'N, .
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Note that P € M (G) is sometimes given as P =N, DN, +S,, where S, € M (H)
and (Np,,D,Ny) is a bicoprime (b.c.) triple. In this case, the b.c.fr. is given by
(Nps D, Ny, S,) [Vid.11.
(]
Every P € M (G) has an rcfr. (N,.D,) , an lefr. (ﬁp,ﬁp) , and a bcfr.
(N, D,Ny)in H because H is a principal ring [Vid.1]. |

23.2. Lemma:
YP Dp _ _ _ _

Let| :--| =E| +-- ’andlet[xpEYP]=[NPEDP]F,WhéreE ,Fem(H)am
XP NP '

H-unimodular; then

(i) the pair (Np, Dp) isr.c. if and only if the pair.(X,,Y,)isr.c,,
(if) the pair (D, N, ) is Lc. if and only if the pair (¥, X,,) is Lc.
Proof:

(i) From Definition 2.3.1, (Np. Dp) is r.c. iff there exist U, , V, € m (H) such that

DP YP
[V,, : U,] =1=[V,, : UP]E‘I -+ +| ; equivalently, (X,, ¥,)is r.c.
Np : Xp

(ii) Similar to proof of part (i).

23.3. Lemma:

Let (N,, D,) be anr.c.f.r. and let (5,, , IV,, Ybeanlcfr.ofP € M (G); then

i &, Y,) is also an r.fr. (rc.fir) of P if and only if X,.Y,) = (Np,R,D,R) for some
G-unimodular (H-unimodular, respectively) R e 'm H),

(i) (¥,.X,) is also an LLr. (Lc.fr) of P if and only if (¥,,X,) = (LN,,LD,) for some

G-unimodular (H-unimodular, respectively) L- € #1 (H ).
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Proof:
| M (<=)IfX,Y,) = (NPR' +D,R) for some G-unimodular (or H-unimodular)
R € M(H), then detY, = detD,detR e I ;hence N,D;' =X,Y,' =P and (X,,Y,) is an
r.fr. ofP . Nowif R e M (H)is acually H-unimodular, then by the Bezout identity (2.3.1),
R7WV,D,R +R'U,N,R =RV, Y, +R7'U,X, =1,
and hence, X,,Y,)isalsor.c.

(=>)Let (X,,Y,) be an r.fr. of P ; then detY e I and N,D," = X, Y,". From the

Bezout identity (2.3.1), since detD, € [ , we obtain

V,Y, +U,X, =D;'Y, =R €« M H), (2.3.5)
where R =Y,'D, € G ;hence R € M (H)is G-unimodular. Clearly, Y, =D,R and X,
= -y _
=N,D,'Y, =N,R .
If the pair (X, Y, ) is actually r.c., then there are matrices Vy, U e M (H), such that
V,Y,+UX, =1I;
and hence,
VyD, +UN, =Y, 'D, =R ¢ m(H). (2.3.6)
From equations (2.3.5)-(2.3.6), R € M (H)is H-unimodular.
(ii) Similar to proof of part (i).

O
2.3.4. Generalized Bezout Identity for (N, D,) and (D,, N, ) :

Let (N,,D,) be an r.c. pair and let (D,, N, ) be an Lc. pair, and let N, D, = D,N, , where
N, € H"* p, ¢ H"*% p, e H%XW N & H"X" ;hen there are matrices

V,, U, ,ffp ,‘7,, e M (H) such that

vV, U, || b, -U, I, 0
= _ 2.3.7)
-N, D, [| N, V, 0 Ip,
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Equation (2.3.7) is called a generalized Bezout identity; note that detD, and detD p Need not be in

I.

2.3.5. Definition (Doubly-coprime fraction representation):
(i) If the generalized Bezout identity (2.3.7) holds, then ((N,,D,) , (5,,,1\7,, )) is called a
doubly-coprime pair.

@) IfP =N,D,'=D;'N, ,then (N,,D,), (D,.N,)) s called a doubly-coprime-fraction

representation of P.

2.3.6. Generalized Bezout identities for Nprs D, Npp) :

Let (N, D, Npy) be a bec. triple, where N, € H™*" D € H™" N, ¢ H"*" ; then

we have two generalized Bezout identities:

()  For the r.c. pair (N, , D) , there are matrices V,, ,U,, ,X ,Y ,U ,V e M (H)such

that
Vpr Upr D -(7 I n 0
= ; (2.3.8)
X Y N, V 0 I,
equation (2.3.8) is of the form
MM =1,,, . (2.3.9)

(ii) Forthe Lc. pair (D , N,;) there are matrices Vo Uy . X, Y, U,Vem (H ) suchthat

= ; (2.3.10)
u v Uy Y 0 I,
equation (2.3.10) is of the form
MM =1, p. . (2.3.11)

Note that detD need not bein / in equations (2.3.8) and (2.3.10).
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23.7. Lemma:

Let (N,.D.Ny) be a befr. of P e M(G) ; then P € M(H) if and only if
Dl'e m©H). -

Proof:

If D' € m(H) then clearly P =N, DN, € m(H) . To show the converse, let

N,D7'N, e m(H) . From equation (23.10), N, D~'N,U, = N, D71, -DV,) =

N,,D'-N,V, € M(H) ; equivalently, N,,D~' € M (H) . Furthermore, by equation

2.3.8), U, N, D=, -V,,D)D'=D"'-V, e M(H);equivalently, D! € m©H).
0

2.3.8. Comments:

(i) Let P be given as NP,D'INP, +S, , where (N,,,D,Ny) is ab.c. triple and S, € M1 H);
then N,,D7'N,; +S, € M (H) if and only if N,,D™'N,; € M (H) and hence, by Lemma
23.7,P € M(H)ifandonlyif D! € MH).

(ii) Let (N, D,) be an r.c.fx. and (D,, N, ) be anLc.fr. of P € M (G); then by Lemma 2.3.7,
P € M(H)if and only if D,* € M (H) and equivalently, 5;' e M (H) . This follows

from reducing a b.c.fr.to anr.c.fr.if Ny =7 and S, =0orto anlc.fr.if Np, =Iand§, =0.
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2.4. Right- or left-coprime factorizations from bicoprime factorizations

Let (N, D, Ny) be a befr. of P € M(G) . We obtain an rc.fx. (N,, D,) and an
Lefr. (Dp,N,) for P from (N,,,D,N,) in Proposition 2.4.1 below. In Example 2.4.3, we'
apply Proposition 2.4.1 to the state-space representation of a matrix P with rational function

entries, and show that the result in [Net.2] is a special case of our general theory.
2.4.1. Proposition:

A

LetP € Mm(G). Let N, D, Np;) be a b.c.fir. of P; hence, equations (2.3.8)-(2.3.10) hold.

Under these conditions,

Np.Dp) = (N, X ,Y) isanrcfr.of P, 24.1)

(D,.N,) = ( ,XN,) isanlcfr.ofP, (24.2)
where X ,Y ,X ,Y e M (H ) are defined in equations (2.3.8)-(2.3.10).
2.4.2. Comments:

(i) Using equations (2.3.8)-(2.3.10) we obtain a generalized Bezout identity for the doubly-
coprime pair ((Np, X ,Y), (¥ ,X Ny ):

V+UV,N; UU, Y -U,U Ip, 0
_ _ _ =1 . (243)
—X Ny Y N,X 'V +N,V,U 0 I,
Note the similarity between equations (2.3.7) and (2.4.3). Equation (2.4.3) is of the form
MM = I . 2.4.4)

(ii) If, instead of NP,D"N,, , the plant is given by P = N,,,D"Np, +S, ,where S, e M H),

then an r.c.f.r. and an l.c.fir. are given by:
(Np2Dp) :=(N, X +S,Y, Y), (24.5)

(DpN,):=(Y, XNy +75,), (2.4.6)

and the gencralized Bezout identity (2.4.3) is replaced by:
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V +UV,N, -UU,S, UU, Y ~U, U I, 0
XNy -YS, Y ||N,X+S,Y V+N,V,U-5,U,0 0 I,
2.4.7)
O

Proof of Proposition 2.4.1;
By assumption, P = N,,D™'N,; , and equations (2.3.8)-(2.3.10) hold. Clearly N,,X ,Y ,Y ,
X N, € mH) . We must show that (NpyX ,Y) is an r.c. pair with detY e I and that |
(¥ ,X N,)is anLc. pair with det¥ e I :

~

By equation (2.4.3), (N, X ,Y) is an r.c. pair and (17 »X Np;) is an lc. pair; more

~

specifically, if (V,, X, ¥) =: (N,, D,) and (¥ , X N,;)=: (D,,N,), then

VoD, +U,N, =1, N,U,+D,V,=1I,, , (2.4.8)

o

where V, =V +UVA5,NP s Up=UU, , U,:

UuU , V, =V +N,V,U .(249)

Now from equations (2.3.8)-(2.3.10),
’0 Ino MTM}‘- ) = det( _f

detD = det( 0 ,7} M) = det? detM,™;(2.4.10)

I'p,

4D o I, 071[I,-XU X
detD = det( M; M; 01, ) =det( M;

or|| -v I, } ) = deiMder? . 2411

Since M, , M, are H-unimodular by equations (2.3.8)-(2.3.11), and since detD e [ by assump-
tion, equations (2.4.10)-(2.4.11) imply that

detY =detM;'detD e I, (2.4.12)
detY =detM,detD e I . (2.4.13)

Now by equation (2.3.10), N, Y = DX and hence,
PY =N,D;'Y =N, X . | (2.4.14)

Similarly, by equation (2.3.8), Y N, = X D and hence,
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YP=YN,DS'=XN,. (2.4.15)
By equations (2.4.12)-(24.13), Y™' € M(G) and Y ' € M (G) ; therefore, equations
(2.4.14)-(2.4.15) imply:

_ i Fas
P=N,XY" =Y“ XNy, . (2.4.16)
where (N, X, Y) is an r.c. pair and (17 X N,;)is anl.c. pair.

O
2.4.3. Example: L

Let H be Ry (s) as in Example 2.2.2. Let P € R,(5)™™™ be represented by its state-space

representation
x=Ax+Bu,
y= Cx,
where  (C,A,B) is  ll-stabilizable  and li-detectable. ~ Then

P=(@+a)y'Cls+a)ys/-A)'B , where -ae C\UH{ . The par
(¢ +a)'C ,(s +a)/(st =A)) is rc. in Ry(s) , the pair ((s +a)(s/ —A),B) is lc. in
Ry(s), and  detf(s +a)'si-A)] e I . Therefore, ~ (N,,,D,Ny) =
(s +a)'Cc ,(s +a)yX s/ —A),B) isabcfr. of P . Choose K € R™* and F ¢ R*™o
such that (A —BK') and (A — FC) have all eigenvalues in C\ U. Let Gx :=(sl, -A +BK)™!
and let G,.-. i=(sI, ~A+FC)" ; then Gx , Gr € MR, (s) N M (R,,(s)) and hence,
(s+a)sI,—A+BK)' = (s+a)Gx € M@Ry(s)) and (s +a)(sl, —A +FC)" =
(s +a)Gr € M (R, (s)). Forthis special b.c.fr., equations (2.3.8) and (2.3.10) become:

(s +a)Gr (s +a)c;pp] (s +a)'sl, -A) -F

-CGr Iy, —CGgF (s +a)lc I,, =lpen, s (24.17)

(s+ay'sl, -A) -8B (s+a)Gx (s+a)GyB
(s +a)'K Iy -KGx I, —-KGgB | ~ I'pip; . (24.18)
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Matching the entries of equations (2.4.17) and (2.4.18) with those of (2.4.8) and (2.4.10), respec-
tively, from equation (2.4.3), we obtain a generalized Bezout identity for this special case:

I, +KGpB  KGpF I, -KGgB  —KGgF

= In‘-+no . (2.4.19)

Comparing equations (2.4.3) and (2.4.19), (CGxB,(I 5, —KGgB)) is an rc. pair and
(d p, =CGgF),CGgB ) is anl.c. pair. Note that equation (2.4.19) gives the same coprime fac-
torizations and the Bezout identity entries obtained in [Net.2, equations (1)-(4)].

0

Leta ,b € H ; we say that a is equivalent to b (denoted by a = b ) iff there exists

u e J suchthata = bu . Clearly,a =1iffa e J . "="is an equivalence relation on H .

In Corollary 2.4.4 below, we use the generalized Bezout identities (2.5.7), (2.3.8), (2.3.10),
and Proposition 2.4.1 to show that detD, = det5p = detD; (thus, if any one of detD,, , detﬁp ,
detD is in , then the other two are also in / ). We use the following Bezout identity: If '
Qem (H) is an arbitrary matrix that has elements in H , the generalized Bezout identity

(2.3.7) can be rewritten as:

V,-ON, U,+00,1[ D, -U,-D,0] [Im 0]
N, D, N, V,-N,@ |=| 0o I, |} @420

equation (2.4.20) is of the form

MM =1, . (2.4.21)
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2.4.4. Corollary:

Let (N, D,) be anr.c. pair, (5,, , ﬁp ) be an Lc. pair and (W, D, Np;) be a b.c. triple, where N, ,
D,.D,,N, ,N, .D,N, € M(H).LetN,D, =D,N, and let (N,,XR,YR) = (N,,D,) ,
where R is some F-unimodular matrix, with X , ¥ as in equation (2.3.10); then for all

0 e m#H),
detD, detM = detD,, , (2.4.22)
det(V, — N, Q)detM = dex(V, —QON,,), (2.4.23)

where M is given by equations (2.4.20)-(2.4.21); hence,

det( (V, =ON,)D, 1 =det[ D,(V, -N,Q)]. (2.4.24)

Furthermore,
detD, =detD, =detD . (2.4.25)
m|

Note that detD, and detD p are not assumed to be in I in Corollary 2.4.4. Equation (2.4.25) was

proved in [Vid.1] by assuming that detD, e [ ,detD, e I ,detD e I .

Proof:

From equations (2.4.20)-(2.4.21) we obtain

[ D, o] Iy, ~(U, +D,QN, —~U,+D,Q) [1,,,. 0]
M= vi AR
14

0 I, N 0

A I, (2.4.2§)

and

I, U, +QD,)

Ip, 0 V, -ON,
o0 W,-N\M=| N, I, -N,w,+0D,

0
0 I, J . (2.4.27)

Equations (2.4.22) and (2.4.23) follow by taking determinants of both sides of equations (2.4.26)
and (2.4.27), respectively. Now multiplying both sides of equation (2.4.23) by detD, , and using

equation (2.4.22) we obtain
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det(V,, — N, Q)detM detD, = dex(V, — ON,)detD, = det(V, —N,Q)detD, ; (2.4.28)
hence equation (2.4.24) follows since det(V, —QON,)detD, = det{(V, —QN,)D, ] and
detD . det(f’-p =N, Q) =det[ D P (f’;, -N,0)]. (Note that H is a commutative ing.)

By equation (2.4.22), since detM e J , clearly

detD, =detD, . | (2.4.29)
Now by Proposition 2.4.1, the b.c. triple (N, D, N,,;) reduces to an r.c. pair (N,, X, Y), or anlc.
pair (¥,X Nu) . By assumption, (N,,D,) = (N,XR,YR) for some H-unimodular
R e m (H); therefore, by equation (2.4.12),

detD, = detYdetR = detM, 'detD detR ; (2.4.30)

since detM; e J anddetR e J, equation (2.4.30) implies that

detD, = detD . (2.4.31)
Finally, equation (2.4.25) follows from equations (2.4.31) and (2.4.29):
a
2.4.5. Comment:
Let H be the ring Ry (s) as in Example 22.2. Let P be given by N,D; ! = D;IN, =
NP,D"N,,,; then the'ﬁ—poles of P are the l{~zeros of detD, (and equivalently, of detD p and of
detD ). We denote the l~zeros of detD, by

Z{detD, 1:={(5, € U:detD,(5,)=0}; (2.4.32)
it follows from Corollary 2.4.4, equation (2.4.25), that
Z{ detD, | = Z[detD, ] = Z[ detD ]. (2.4.33)

a
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2.5. Implications of Bezout identities

If P e M), then by Fact 223(ii), N, =PD, € M(Gs) ; similardy,
N, =D,P € Mm(Gy).

In Lemma 2.5.1 below, we show that if N, € M (Gj) , and ((N,,D,) , (D,.N,)) is
doubly-coprime pair satisfying the generalized Bezout identity (2.3.7), then D, , D!,

vV, —ON,Y,(V, -N,0) € M (G). Conséquently, N, = D,N,D,;' e M (Gy) as well

2.5.1. Lemma:

Let Np en (Gs) s let ( (Np »Dp), (5 s N ») ) be a doubly-coprime pair satisfying the general-

ized Bezout identity (2.3.7). Under these conditions,
detD, € I and detD, e [ ; (2.5.1)

and, forallQ ¢ H ,

det(V, -ON,) € I and dewV,-N,Q) e I . (252)

Proof:
| By Fact 2.2.3.(iii), and by assumption, forany Q ¢ M (H), U, +QD~,, N, e M (GS) and

consequently, (/ o, — (U, + oD 2N, € M (G); hence by equation (2.4.20),
det[ (V, —QN,)D, 1 =detl I ,, - (U, + @D, N, 1 € I . (2.5.3)
By Lemma 2.2.4.(ii), equation (2.5.3) holds if and only if detD, e J and dex(V, ~QN,) € I ;

hence by Corollary 2.4.4, (2.5.1) follows from equation (2.4.22) and (2.5.2) follows from equa-
tion (2.4.23), where detM e J.
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2.5.2. Lemma:

Let (N,, D,) be an r.c. pair and'(ﬁp. N ) be an Lc. pair satisfying the generalized Bezout iden-
tity (2.3.7). Consider the equations '

Dch +N.N, =4, 2.54)
and
N,N.+D,D. =B, (2.5.5)

whereA € H™X% B ¢ H"X"o ypder these conditions

() ..N,),withD, ,N, e M H),isa solution of equation (2.5.4) if and only if

~ ., . VP UP
[Dc :Nc] =[A :Q] N D | (2.5.6)
4 4
forsomeQ € MH).
(i) (N.,D.),withN, ,D. € M (H), s a solution of equation (2.5.5) if and only if
-N D, -U
o I R et 2 B . , (2.5.7)
D, N, V, B
forsomeQ € M H). ' .
Proof:

() (<= ) Suppose that equation (2.5.6) holds; then by equation (2.3.7), DD, +N,N, =

[13' ‘1\7] O —[A‘Q] e O ][ 2 —[A:Q] In = A and hence
¢ *Ne|l n ' -N, b, || N, el] o .
equation (2.5.4) holds.

(=>) By assumption, equation (2.5.4) holds; hence

[15; Sﬁc] ﬁ: -‘%] =[A EQ] : 2.5.8)

where Q = -D. cUp + 1\7,, » € M (H) . Post-multiplying both sidcs of cquation (2.5.8) by the
Up

" H-unimodular matrix and using equation (2.3.7), we obtain the solution given

P P

by equation (2.5.6).
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(ii) Similar to part (i), and again follows from the Bezout identity (2.3.7).

a
2.5.3. Comments:

(1) In equations (2.5.4) and (2.5.5),if A =1,;, and B =1, , then (2.5.4) is a left-Bezout identity
for the l.c. pair (5c, I:fc) and (2.5.5) is a right-Bezout identity for the r.c. pair (N,,D.) . Let
(N,,Dp) be anr.c.fr. and (D,,N,) be anlcfr.of P € M(G). If D,,N,)is anLc.fr. and

(N..D,) is an r.cfr. of some C € M (G) , then equations (2.5.4), (2.5.5), with equation

[ Nc
—NP Dp

Note the similarity between equations (2.4.20) and (2.5.9). By Lemma 2.5.2,-(D.,N.) =

((V, ~QN,), (U, +QD,)), WN.,D.)=((U, +D,Q),(V, -N,Q)),forsome @ e M (H).

(2.3.7), imply that

DP —NC Ini 0
N, D, =l 0 I, |- (2.5.9)

@ IPem (H) , then we can choose an r.c.fr. for P as (P,I,;) and an Lefir. for P as
(p, P). With P =N, =1\7P D, =1y, 'Ep =1,, ,in equation (2.3.7) we can choose Vp =
I, V,=Ip, U, =U, =0;hence, forsome Q € MH),D,,N.)=(Un~0P)Q)is

anLc.fr.and (V,, D,) = (Q, (I, -PQ))is anrcfr. of C €. M(G).

(i) f P € M (Gy), then by Lemma2.5.1,

det(V, —ON,) = dewV, -N,0) € I , (2.5.10)
forallQ e Mm(H). .

Let H be R,(s) as in Example 222; then det(V, -QN,)# 0 for almost all
Q € MRy(s)) [Vid.1]. Now we finda Q e M (R (s)) such that equation (2.5.10) holds: If
detD, e J (equivalently, D' € M (Ry(s)) and D' € M (R,(s)) ), then V, = D, and
‘7p = 5; ! satisfics the generalized Bezout identity (2.3.7); clearly, V, and \7,, are

R —unimodular and hence, equation (2.5.10) holds with Q = 0. Without loss of generality, we

assume that detD,, ¢J in our scarch for Q below.
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Choose h € Ry (s) such that

1+h (detD,) € Ry(s), (2.5.11)

(note that one choice for & is —detD, (= )). Let
Q =h (detD,)D, YU, € MRy (s); (2.5.12)

note that (detD,)D,' € M(R,(s)) . By the generalized Bezout identity (2.3.7),
D,(V, —ON,) = In—(1+h detD,)J,N, . By Fact 223.(i)) and equation (2.5.11),

(1+h detD,)U,N, € M (Ry,(s)) . Therefore

detD, det(V, — ON,) = detl 5, —(1 + h detD,)U,N,) e I ; (2.5.13)
by Lemma 2.2.4.(ii), equation (2.5.13) holds if and only if detD, € I and det(V, - Qﬁ p) € 1.

Consequently, equation (2.5.10) holds for the choice of Q € M (R u (s)) in equation (2.5.12).

(iv) In Lemma 2.3.2, we could also start by assuming that a 1.c. pair (5,, . ﬁc ) together with ar.c.

pair (N, D) satisfy the generalized Bezout identity (2.5.14) below:

-Nc Ec

Ve U .
N, V, o I | (2.5.14)

Dc "ﬁc] Iflo 0

Under these conditions, (V,, D, ) , with N,,D, e m (H) , is a solution of equation (2.5.4) if

and only if
=N, D, -U, -0,
D, || N. V. A |

forsome 0, € M (H); similarly, (,,N,),with D, ,N, e M (H), is a solution of equa-
tion (2.5.5) if and only if

forsomeQ, € MH).
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2.6. Coprime factorizations of P -

In this section we consider an (n, + n,)x(M; + n;) matrix Pem (G), partitioned as

N Py Py o )
=[ Py P ] e GMotno)xMitm) — Lporp o GloXni @.6.1)

2.6.1. Lemma:
Let P e M (G) be as in equation (2.6.1); then there exist Nyy ,Ny3,Ngyy N, , Dy, Dy,
Dp € m(H),andl;u,b-u,b-p ,ﬁu,ﬁlz,ﬁzl,ﬁp € m(H).SUChIhat

Ny Ny

®  VpDp= ([ Na N,

Dy O ~
‘| by D ) isanrc.fr.of P, (2.6.2)

Ny W ]) isanlcfr.of P, (2.63)
where

(N,,D,) isan rfr. of P, and (D,,N,) isan Lfr. of P .

2.6.2. Comments:

(i) In Lemma 2.6.1, it i only claimed that (N, D,)) is an r.£x. and (D, N,,) is an L. of the 2-2

Ny

N,

A o .
sub-block P of P ; these fraction representations are not necessarily coprime. However, [
14

is right-coprime with D, by equation (2.6.2), and D p is left-coprime with[ ﬁm ‘N P ] by equa-

tion (2.6.3).

(ii) Let P= NpDg5 =D ;‘1\7 2 » where (N5, Dp) is an r.c. pair as in equation (2.6.2) and (D~ 2 N, 2)
is an lc. pair as in equation (2.6.3). By Lemma 2.3.7, Pem (H) if and only if
D' € m(H), where
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, Dy} 0
D7l = _ _ - (2.6.4)
2 -D, D, D} D;?

and equivalently, D’ e m@H), where

5 D! -DilDD,!

4 0 D;!

(2.6.5)

Proof of Lemma 2.6.1;

P € mGyhasanrctrinH (call it (X,Y)), and an Le.r.in H (call it (¥ , X )).

(i) Recalling the Hermite column-form [Vid.1, Appendix B}, there exists an H=unimodular
Rem (H YsuchthatD :==YR e MH)isin the (block-triangular ) form given by equation
(2.6.2), where we choose to denote the 2-2 entry of D by D, . LetN=XR e M (H), where
we denote the sub-blocks in N as in equation (2.6.3), with N, em (H) as the 2-2 sub-block.
Since R e M (H)is H-unimodular, by Lemma 2.3.3.(5), (N, D) is also an r.c.f.r. of £; there-
fore detY detR = detDp € I .

Now equation (2.6.2) implies that det(YR) = detDp = detD ndetD, € I ; hence by Lemma
2.2.4.(ii), detDy; € I and detD, e I . So from equations (2.6.1)-(2.6.2), P = N, D, , where

Ny, Dp)isanrfr.of P .

(ii) The proof is similar to that of part (i). Pre-multiplying Y by an H-unimodular
L e m@H), we obtain the Hermite row-form in equation (2.6.3); by Lemma 2.3.3.(ii),
(Ds.Ns) is also an Le.£r. of P . Since detLdet?¥ = detD = detD,,detD, e I , we conclude
that (D,, N, ) is an Lf.r. of P . |

a
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2.7. A useful rank condition

The purpose of this section is to prove an important lemma, which will be useful especially

in Chapter Four.

Let H be the ring of proper stable rational functions R (s), as in Example 2.2.2. Let

max rank F(K)

Kex

denote the maximum rank that the matrix F (K') has, as K varies over a specified set .
2.7.1. Lemma:
LetA € C™,B e C,A € CPY B ¢ P,

(i) If,foral Kk € RPM,

max rank [B +KA] <min {p,v}, .7.1)
K e M®) ‘
then
B .
rank [ Al = max rank [B +KA] . 2.7.2)
KeM®)

(i) If,forallK e R

_ max rank [5 +XI?] <min{p,n }, 2.7.3)
K e MR)
then
rank[E X]=~max rank[5+i(1?]. 2.7.4)

o

An important application of Lemma 2.7.1 is given in Corollary 2.7.2 below: It shows that
there is a real constant output-feedback which "moves" all li—poles of P = N,D;" = D;'N, =
NprD™'Np ; in other words, there is a K € R™*™ such that det[ D, +KN, ] has no zeros at

the l{~zcros of detD, (cquivalently, there is a K € R™*™ such that the Il—zeros of

det[ D~P +N » K] are disjoint from those of detD pandthercisa K R™ XM guch that the I{
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—zeros of det[ D + N, KN, ] are disjoint from those of detD ). Note that the region I can be
chosen to include all open-loop poles of P if we wish to prove that all poles can be "moved" by

real constant output-feedback.

2.7.2. Corollary:

Let (N,,D,) be an rcfr, (D,,N,) be an lcfr, (N,,D,N,) be a berf of
P € M(R,(s)), where N, ,D, ,D,.,N, ,N,, ,D ,N, € M ®Ry(s)). Under these condi-
tions,

() thereisak e R™™™ suchthat, foralls, € Z[detD, ],

rank [D, (s,,)+KNp(s,)] =n; 2.7.5)

(i) thereisak e R™™™ suchthat, foralls, e Z{detD, ],

rank [ Ep (s,) +N, » (s,)K ] =n,; (2.7.6)

(iii) thereisak e R™*™ suchthat,foralls, € Z[detD ],

rank [ D(s,) + Ny (s,)KN,, (s, )] =n. 2.7.7)
| O

Since the state-space representation of P given in Example 2.4.3 is a special bicoprime-
fraction representation, Corollary 2.7.2.(iii) implies that, for (4, B, C) minimal, there is a real
constant output-feedback such that the closed-loop eigenvalues (i.e., the zeros of
det(sI, —A +BKC) ) are different from the open-loop eigenvalues (i.e., the zeros of
det(s/, — A) ). Intuitively, all eigenvalues associated with conuollable-anQ-observable modes
can be "moved" by some real constant output-feedback. Corollary 2.7.2. does not imply that the
eigenvalues can be moved arbitrarily; in general, we need dynamic output-feedback to push the

poles into the region of stability C\ u.
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Proof of Lemma 2.7.1:

(i) Call 4 the maximizer of the left-hand-side of equation (2.7.1), i.e., Kis the pxn real matrix
that maximizes rank[ B +KA ] ; by equation (2.7.1), r := rank[ B +KA ] <min {p,Y}.So
there are R, —unimodular matrices L , R (resulting from elementary row operations and elemen-

I, 0 '
tary column operations, respectively), such that L[ B ﬁ-f A ] R = [ 0 0 ] » where the O in the

| bottom right is (p—r) x (y~r), withr <min { p, Y} .

Now since K is the  maximizer, for all K , € Re-"I,

- A I
A [0 LB +KA)R r 0
rank(L[B +(K +L £, YAIR)Sr. |Let AR = (l 2; then
- A A
A 0 T I" 0 . A A A
rank(L(B +KA)R + £, AR) = rank I?zZ 1?22 <r implies that rankK,A =0 forall X,,

A .
and hence A is the zero matrix.

B L O|[B+KA
The proof concludes by the following equalities: rank A | =rank( R)=

01 A
I, 0
rankl 0 O =r=rank[B+I?A]= max rank[B+KA].
Z 0 K e M®)

(i) Similar to proof of part (i).

a

To prove Corollary 2.7.1, the well-known rank-tests are useful (see, for example, [Cal.1]);

we state and prove them to make the discussion complete.
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2.7.3. Lemma (Rank-tests):
() LetN, € Ry(s)*™ ,D, e Ry(s)"™™ ;then(N,,D,)is r.c. if and only if

D, (s)
Np(s)

rank =n; , foralls € U. (2.7.8)

@) LetD, e Ry(s)™*™ N, e Ry(s)*™™ ;then(D,,N,)isLc. if and only if

rank [ D,(s) N,(s)] =n, , foralls e U. 2.79)
O
Note that the rank-tests in (2.7.8) or (2.7.9) need to be performed only at the li—zeros of

detD, (equivalently, at the U—zeros of deiD?, ), since they already hold for all others € u.

Proof:
(® N,,D,) is an r.c. pair if and only if there is an R,—unimodular matrix £ (labeled as

VP UP
-N~p 5,, ) such that

Vo5  Upls)
=N, (s) D,(s)

Dp (S ) 1 n;
Np ) =l o : 2.7.10)

since the matrix E has rank n; +n, foralls e U, equation (2.7.10) holds if and ohly if the rank

condition (2.7.8) holds.
(ii) Similar to part (i). (D,.N,) is Lc. if and only if there is an R, —unimodular matrix F

Dp "ﬁp
(labeled as = such that
N, V, )

~ - D,(s) -U,(s)
[DP“) ”P‘”] Ny(s) V()

since the matrix F has rank n; + n, foralls e u, equation (2.7.11) holds if and only if the rank

=[tn 0]: - e

condition.(2.7.9) holds.
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Proof of Corollary 2.7.2:
Suppose, for a contradiction, that there isans, € Z[ detD,, ] such that
rank [ D,(s,) +i<N,, (s,,)] <n;, forallK e R"* (2.7.12)

Applying Lemma 2.7.1.(3), with D,(s,) =: B , N,(s,) = A ,p :=n; =1 ¥, n, = M, equation

D, (s,)
p \Wo
(2.7.12) implies that rank [ N, (s )] <n; ; but this contradicts the fact that (N,, D, ) is right-
p\Wo

coprime.
(i) Similar to proof of part (i) and again follows from Lemma 2.7.1.(i).
(iii) Suppose, for a contradiction, that there is ans, € Z[detD ] such that

rank [D(sa)-i-Np,(sa)KNP,(s,)] <n; , forallK € R 2.7.13)
equivalently, forall K e R™*" |

D(s,) —Ny(s,)
rank KN, (So). Iy <n+n;. . (2.7.14)

(The equivalence of equations (2.7.13) and (2.7.14) follows by performing elementary row and

column operations on the matrix in equation (2.7.14).)

Post-multiplying the matrix in equation (2.7.14) by the R, —unimodular matrix M (s, y!=

Vpl (so) X (so)
~Un(so) YG,) | and using the generalized Bezout identity (2.3.10), we conclude that
[4 o

equation (2.7.14) holds if and only if

rank [ Y (so)+KNp,(s,)X(so)] <n;. 2.3.17)

Recall that, by Proposition 2.4.1, (N, X, Y) is ar.c.fr.of P ; applying Lemma 2.7.1 as in part (i)

of the proof, equation (2.7.15) implies that

rank

Y(s,)
Ny, (550X (5,) ] <n; (2.7.16)

but equation (2.7.16) contradicts the right-coprimeness of Ny X, Y).
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Chapter Three

Control Systems with Full Output-Feedback Compensators

3.1. Introduction

This chapter presents an algebraic theory for two linear, time-invariant (L.t-i), multiinput-
multioutput (MIMO) control systems: the classical unity-feedback system S (P, C ) and the more
general system configuration Z(I'" , ¢ ) . Due to the general algebraic setting, the results apply to
lumped as well as distributed, continuous-time as well as discrete-time systems in these

configurations.

In the unity-feedback system S(P,C) , the plant has only one (vector-)input, and one
(vector)-output, which is used in feedback to the compensator; the plant model considers only
additive inputs or disturbances, which pass through the actuators in the plant. In general, how-
ever, there may be inputs (for example, disturbances, initial conditions, noise, manual commands)
which are applied directly to the plént without going through the actuators; hence, the map from
the directly applied inputs to the plant outputs may be different than the map from the additive
input‘s to the plant outputs. Furthermore, the regulated output variable of the plant (for example,
tracking error, actuator states) may not be accessible or may be 'differcnt than the measured out-
put (for example, ideal sensor outputs), which is utilized by the compensator. For instance, the
temperature of the blades in jet engines cannot be measured; to prevent the blades ffom burning,
controllers are designed based on measurements of other variables like air flow, angular velocity

and fuel rate.

The unity-feedback configuration S (P, C) is studied in Section 3.2. The system S(P,C)
is called H-stable if and only if all closed-loop input-output (I/O) maps arc FH-stable. The

H—stability condition for S (P, C) is stated in Theorem 3.2.5 in terms of each factorization of P
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and C used in the analysis. The class of all compensators that FH-stabilize the plant P is
parametrized in Theorem 3.2.8; compensator design using the configuration S (P, C) is called
one-degree-of-freedom design due to the single free parameter matrix Q of the H-stabilizing
compensator [Hor.1]. Although a right-coprime or a left-coprime factorization of the plant are
commonly used in obtaining this parametrization, it is also possible to start with a bicoprime fac-
torization and use Proposition 2.4.1 to reduce N, D~'N,; to N, D, orto DN, (see equations
(3.2.29)-(3.2.30)). The class of all achievable maps for S (P, C ) is obtained by using the class of
all stabilizing compensators; all closed-loop I/O maps in the H-stabilized S (P, C) are affine

maps in Q (see equation (3.2.38)).

The system configuration Z(ﬁ , é ) represents the most general interconnection of two physi-
cal systems, a plant Panda compensator C. This general system configuration Z(ﬁ , é ) is stu-
died in Section 3.3; the plant and the compensator each have two (vector-)inputs and two
(vector-)outputs. The measured output y of P is used in feedback, but the output z is the actual
output of the plant (the output in the performance specifications); the point is that z and y are not
the same. The input v is considered as a disturbance, noise or an external command applied
directly to the plant. The compensator output y’ , which is utilized by the plant in feedback, can
be considered as the ideal actuator inputs; the output z’ of € can be used for performance moni-
toring or fault diagnosis. The input v’ of ¢ is considered as the independent control input like
commands or initial conditions. The signals # and u’, which appear at the interconnection of P

and & » model possible additive disturbances noise, interference and loading.

The conditions for H-stability of E(ﬁ, ¢ ) are stated in Theorem 3.3.5. Intuitively, only
those plants which have "instabilities that the feedback-loop can remove".can be considered for
H-stabilization; these plants are called I-admissible. The restriction on the class of
H-stabilizable P is due to the fcedback being applied only through the second inputs and out-
puts. The class of Z-admissible Pis given in Theorem 3.3.9; the class of all H-stabilizing com-
pensators for Z-admissible plants is given in Theorem 3.3.11. The 2-2 block of Cis essentially

in a feedback configuration like S (P, C ) of Section 3.2; so the sct of all C that FH-stabilizes the



. feedback-loop is already known from the previous section.

In the unity-feedback configuration S(P,C) , the class of all C that H-stabilize P is
parametrized by one parameter matrix Q ; including this parameter matrix Q that comes from C,
the set of all € that H-stabilize P is parametrized by four H-stable matrices and hence, we call
thersystem ).‘.(f" , é ) a four-degrees-of-freedom design (or four-parameter design) [Net.1]. This is
clearly much more advantageous and general than two-degrees-of-freedom design with a two-
input one-output compensator [see, for example, Vid.1, Des.3,4]; Z(f’\ , 6 ) can obviously be
reduced to two parameter design by taking C;, = 0 and C 5 = 0. The class of all achievable maps
for 2(13\ R ¢ ) involves the four compensator parameters; eack closed-loop I/O map achieved by the
H-stabilized Z(ﬁ . ¢ ) depends on one and only one of these four parameter matrices @;, Q12 »
Q2 , Q . Clearly, several performance specifications can be imposed on the closed-loop perfor-
mance of E(ﬁ, é ).

In Section 3.4, we consider the decoupling problem; namely, find € such that, for the given
P, the VO map H,, : v’ 1>z of (P, C) is diagonal. Assuming that N, is nonsingular, it is
always possible to choose Q,; € M (H ) such that H,,- = N,Q,, is diagonal. Diagonalization
with this configuration does not involve the feedback-loop and the parameter Q of C ; hence,
decoupling the I/O map H,,- is independent of the I/O méps that are affine functionsin Q. On the
other hand, in the unity-feedback configuration S (P, C ), diagonalizing the map Hy,-: u’ >y
would depend on the choice for Q such that N, (U, + Q5 ) is diagonal, and hence, di_agonalizing

the map H,,- in S (P, C ) may not be possible for certain plants.
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3.2. The unity-feedback system S (P, C)

- In this section we consider the system S (P, C) in Figure 3.1.

Figure 3.1. The unity-feedback system S (P, C)

3.2.1. Assumptions:
(A) TheplantP e G"eX
Let (N, D,) be an r.c.fx., (D,,N,) be an Lefr., (N, D, Ny,) be a b.c.fr. of P , where

N, € H™*" D, e H™MX" .D, e H™*" N, e H"”xni,Np, e H"X

D e H"‘x”,Np, e H"Xm

(B) The compensatorC e G "X
Let (D,,N.) be an Lcfr. and (N.,D,) be an rcfr. of C , where

D, € HUXt § o HN¥o y o HMXto o [JhoXno.

If P satisfies Assumption 3.2.1 (A), we have the generalized Bezout identities (2.3.7),
(2.3.8), (2.3.10) given in Section 2.3.

3.2.2. Closed-loop /O maps of S (P, C ):

_ y _ u
y :=[y,] , U :=[ u'} . | (3.2.1)

Consider Figure 3.1; let
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The map Hy; 1 4 1>  is called the /O map of S (P, C) . In terms of P and C ,Hy—; is given by

P, +CPY'  P(, +CPYC

Hy = . (3.2.2)
—CP(Ip, +CPY' (I, +CPY'C

3.2.3. Analysis of S(P,C):
We analyze the system S (P, C ) shown in Figure 3.1 by factorizing P and C as
) P=N,D',Cc=D;N,,
() P=D,'N,,C=ND,
(i) P =N,D7'N, ,C=D;'N,,
(ivy P =N,D7'N, ,C=ND.
() Analysis of S(P,C)with P =N,D;" and C = D;'N.:

LetP =N,D,',C =D;'N, , where W, D, ) is r.c. and (D, N ) is Lc. (see Figure 3.2);.

€, denotes the pseudo-state of P.

y >
Figure 3.2. S(P,C)withP =N,D,;" and C = DN,
S (P, C) is then described by equations (3.2.3)-(3.2.4):
- - -~ o~ u
[ 50, 4, |5 =[5, ][ 4], 629
N ,
P y 0 0 u
Dp §P = y,] +[ ln‘- 0 ] [u’:l . (3-2.4)
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Equations (3.2.3)-(3.2.4) are of the form
Dy 1&p =Nt

Npi&p =y =Syt .
If detDy, e I (equivalently, if the system described by equations (3.2.3)-(3.2.4) is well-posed),
then the I/O map Hg; is given by

Hy_u =NR lDI;}NLl 'l'SH] e mn (G) .

By elementary row and column operations on the matrices in equations (3.2.3)-(3.2.4), using

Lemma 2.3.2, it is casy to see that (NR 1 DHl’ NL b SH 1) isab.cfr. OnyTi .

(if) Analysis of S(P,C)with P =D,'N, and C =N,D":

LetP =D,'N, ,C =N,D;!, whcre_(zi'p .N,)isLc. and (N,, D,) is r.c. (see Figure 3.3);

E. denotes the pseudo-state of C.

y
Figure 33. S(P,C)withP =D;'N, and C = N,D,!
S (P, C) is then described by equations (3.2.5)-(3.2.6):
- - - . ~1[ u
[ D,D, +NPNC] E. = [ -N, : D,,J a | (3.2.5)

y 0 _[ﬂo ] .u
&=y 1+l o o || (3.2.6)
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Equations (3.2.5)-(3.2.6) are of the form
Dyy€. =Npjit
Npofe =¥ —Syait .

By elementary row and column operations on the matrices in equations (3.2.5)-(3.2.6), using

Lemma 2.3.2, we conclude again that (Np3, Dy2, Ny 2, Syz) is ab.c.fir. of Hy .

(iii) Analysis of S(P,C)with P =N, D"!N,; and C =D'N,:

Let P =N, D7'N, ,C =D;'N, , where (N,,,D,N,) is bc. and (D,,N,) is Lc. (see

Figure 3.4); £, denotes the pseudo-state of P.

y
Figure 3.4. S(P,C)withP =N, D"'N,; and C = D;'N,
S (P, C) is then described by equations (3.2.7)-(3.2.8):
D : -Ny || & Ny : 0 u
= 1, (3.2.7)
NN, : D, y’ 0 : N, u’
N, : 0 &, [y
=] (3.2.8)
0 : Iy y’ |y’

Equétions (3.2.7)-(3.2.8) are of the form
D383 = Npsu

Nps€3=y .
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If detDy3 e I , then the system is well-posed; again by elementary row and column operations
on the matrices in equatfons (3.2.7)-(3.2.8), using Lemma 2.3.2, (Np3, Dy3, Np3) is a b.c.fir. of

Hg .

(iv) Analysis of S (P, C ) with P = N,,D'N,; and C =N, D ':

Let P =N, DN, , C =N.D;*, where (N,,,D,Np) is bc. and (N,,D,) is r.c. (see
Figure 3.5).

y
Figure35. S(P,C)withP =N, DN, and C =N, D,
S (P, C) is then described by equations (3.2.9)-(3.2.10):
D :-NyN, || & Ny : 0O u
=1 --- R (3.2.9)
N, : D, K 0 : Ip |[[w
Ny 0 & [ Y
v [l =] (3.2.10)
0 Ne [1&| LY

Equations (3.2.9)-(3.2.10) are of the form
Dy,E4=Np4

Npa€a=y .
IfdetDy, € I, then the system is well-posed; by elementary row and column operations on the

matrices in equations (3.2.9)-(3.2.10), using Lemma 2.3.2, (Ngg4, Djy4, Np4) is a b.c.fir. of Hg .

a
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3.2.4. Definition (H-stability):
The system S (P, C ) is said to be H=stable ifny—“ e miH).

IfHy e M (H), then we also say that Hy; is H-stable.

If we choose a specific principal ring like R, (s) , then we say R, —stable.

3.2.5. Theorem (H-stability of S(P,C ) ):
"Consider the system S (P, C) shown in Figure 3.1. Let Assumptions 3.2.1 (A) and (B) hold.

Under these conditions, the following five conditions are equivalent:

(@ S®.C)is H-stable; -

(i) Dy,=|D.D, +1§1'ch] is H-unimodular ; (3.2.11)
(iii) Dy, := L15',,13,: +ﬁch] is H-unimodular ; (3.2.12)
T D N, u
iv) Dys:=| & =" | is H-unimodular; 3.2.13
(IV) 'H3 Nc Npr D . 1S Unim ar ( )
[ D =N\,
() Dus=| y D is H-unimodular . (3.2.19)
pr c

3.2.6. Comments:
(i) Post-multiplying the matrix Dy in equation (3.2.13) by the H-unimodular matrix M,
defined in the generalized Bezout identity (2.3.10), we obtain

-1 _ ~ ~ ~ ~
DusMi™ =\ §.N,v,-D,Uy N.N,X+D,Y |-

But Dy is H-unimodular if and only if DysM;™" is H-unimodular; hence, condition (3.2.13)
holds if and only if

D.Y +N N, X is H-unimodular. (3.:2.15)
Note that the H-unimodularity condition (3.2.15) is the same as condition (3.2.11) since

(Np- X, Y)isanr.c.fir. of P by Proposition 2.4.1.
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Similarly, pre-multiplying the matrix Dy, in equation (3.2.14) by the H-unimodular matrix

M, defined in the generalized Bezout identity (2.3.8), we obtain
I, =V,NuN.+U,D,
MDus=| o  XN,N.+7D,

But Dy, is H-unimodular if and only if M, Dy, is H-unimodular; hence, condition (3.2.14)

holds if and only if
(3.2.16)

X NuN.+Y D, is H-unimodular.

Note that condition (3.2.16) is the same as condition (3.2.12) are the same since (¥ , X N,,) is an

Lec.fir. of P by Proposition 2.4.1.

(if) If condition (3.2.11) (equivalently, (3.2.12)) holds, then by normalization we obtain

D.D, +N.N, =1,,, (3:2.17)

and
N,N.+D,D, = I, . (3.2.18)

With P =N,D,' =D;'N, ,C =D;IN, =N,D;! , equations (3.2.17)-(3.2.18) are equivalent
to i

I, 0 |
= 0 I o . (3.2.19)

D, -N,
N, D,

[4 NC
N, D,
Equation (3.2.19) is the same as equation (2.5.9) and is a useful form of the generalized Bezout

identity.
a

Proof of Theorem 3.2.5:
(i) <=> (ii):
Suppose that we analyze S (P, C ) with P factorized as N, D,,'l and C factorized as 5; ‘ﬁc ; then
equations (3.2.3)-(3.2.4) describe the system. th S(P, C)be H-stable; then by Definition 3.2.4,
Hy—“ e M (H), and in particular, Hy, 1u > y’is given by

Hy =—CP( , +CPY ' = 5, +CPY ' =1,, € MH). (3.2.20)
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Since D;' € M(G)and D' € M (G), by equations (3.2.3) and (3.2.20), .

Dl =D I, +CPY'D} € M (G), (3.2.21)
(equivalently, S (P, C) is well-posed). Thus (Ng 1, Dy1, N1, Sgrp) is a b.c.fr. of Hg . By Lemma
- 237,Hg e M (H ) implies that D;} e M (H ) ; equivalently, condition (3.2.11) holds.

Conversely, if Dy} is H-unimodular, then clearly equations (3.2.3)-(3.2.4) describe a
well-posed system -and hence, Hg is given by Np 1Dy Ny +Sy; . By Lemma 23.7,

Hgpem (H ) and hence, S (P, C ) is H-stable.

(i) <=> (iii) <=> (iv) <=> (v):
Condition (3.2.11) holds if and only if
de DD, +N.N,)=1, (3.222)
if and only if
detD'-c det(l p; + CP)detD, =1. (3.2.23)
Now det(l ,, + CP) = det(l ,, + PC) . By Corollary 2.4.4 (equation (2.4.29)) detD, = detD P
similarly, detD, = detD, . Therefore, equation (3.2.23) is equivalent to

detD,, det(l ,, + PC)detD, =1; (3.224)

equivalently,

de D,D, +N,N,)=1, (3.2.25)
and hence, condition (3.2.12) holds.

Now by Proposition 2.4.1, (N, X, Y) is an r.c.fr. and (if- X Np)is alc.fr. of P, where
the Bezout identities (2.3.8)-(2.3.10) hold. Therefore, from Comment 3.2.6.(i), condition (3.2.13)

is equivalent to (3.2.11) and condition (3.2.14) is equivalent to (3.2.12).
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3.2.7. Definition ( F-stabilizing compensator C ):

(i) C is called an H-stabilizing compensator for P (later abbreviated as: C H-stabilizes P)

iff C € G"X™ satisfies Assumption 3.2.1 (B) and the system S (P, C ) is H-stable.
(ii) The set
S®P):={ € :C H-stabilizes P } (3.2.26)

is called the set of all H-stabilizing compensators for P .

3.2.8. Theorem (Set of all H—stabilizing compensators for P ):

Let P € M(Gs) and let P satisfy Assumptions 3.2.1 (A); then the set S(P) of all
H-stabilizing compensators C for P is given by equation (3.2.27) and equivalently, by equation
(3.2.28) below:

S®)={C=(v,-0oN,)'WU,+0D,): 0 € MH)}; (3.2.27)

S®)={c =0, +D,0)V,-N,0)': 0 € m(#H)}; (3.2.28)

where the matrices VP‘ yUp WV, U p in equations (3.2.27)-(3.2.28) satisfy the generalized
Bezout identity (2.3.7).

Equations (3.2.27) and (3.2.28) give a parametrization of all H-stabilizing compensators for P ;
in each case, the map Q |- C is bijective and, for the same 9 € M (H ), (3.2.27) and (3.2.28)

give the same C .

3.2.9. Comments:
(i) (All F-stabilizing compensators based on a b.c.f.r. of P ):

By Proposition 2.4.1, (N, X,Y) is an rc.for. and ()7 X Np) is an Lefir. of P ; with this
doubly-coprime-fraction represcntation of P , the set S(P) of all H-stabilizing compensators is

given by:
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S®)={ (V+UV, Ny -0X NyY'\UU,, +QY): 0 e M(H)}; (3229)

equivalently,

S®P)={ (UuU +YQ)V +N, VU -N,X0)"' : 0 e m(H)}; (3.230)

where the matrices in equations (3.2.29)-(3.2.30) satisfy the generalized Bezout identities

(2.3.8)-(2.3.10).

Fo]lowing Comment 2.4.2, a generalized Bezout identity for the doubly-coprime pair
(N, X,Y), (17 X Np;)) is given by equation (2.4.3); comparing the two generalized Bezout
identities (2.4.3) and (2.3.7), it is easy to see that equation (3.2.29) is equivalent to equation

(3.2.27) and equation (3.2.30) is equivalent to equation (3.2.28).
(ii) (All H-stabilizing compensators for H-stable P ):
IfP € M(H), then following Comment 2.5.3.(ii), the set S(P) of all H-stabilizing compen-

sators is given by:

SP)={C=Uy-0PY'Q0:0 e miH)};
equivalently,

SP)=(C=0U,-P2Y': 0 e mH)).

(iii) (All H-stabilizing compensatorswhen P ¢ M (G))
In Theorem 3.2.8, if we assume that P e m (G) but not M (Gy) , then in equations (3.2.27)-
(3.2.28) fmd equivalently, (3.2.29)-(3.2.30) ) we choose @ € M (H ) such that

det(V, -ON,) € I (equivalently, det(V, -N,Q) € I) (3.231)
I?ecause equation (3.2.31) is not automatically satisfied forallQ € M H).

IfH isR u (s) as in Example 2.2.2, then following Comment 2.5.3.(iii), @ € M (R, (s))
can be chosen as in equation (2.5.12) to satisfy equation (3.2.3l)i in other words, with @ as in

(2.5.12), we have a proper compensator where the denominator is given by D, = (V, —ON,,) (or

D, =(V, -N,0)).
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(iv) (All P such that S (P, C ) is H-stable):

It is trivial to observe that P and C are symmetric in S(P,C) : Let C e M(Gs) ,
C =D;'N, =N,D;}, be given, let (D,, N, ) and (N, D,) satisfy the generalized Bezout iden-
tity (2.5.14). Under these conditions, the set of all P € (G ) for which S (P, C ) is H-stable

is given by equation (3.2.27P) and equivalently, equation (3.2.28P) below:

(P=(U.+D.Q,)V,-N.Q,)"' : 0, e mM(H)}; (3.2.27P)

{(P=(V.-Q,N.)'\WU.+Q,D,): Q, e M(H)}. (3.2.28P)

If C e M(G) , then 9, € M(H) should be chosen so that det(V, —N,Q,) € [
(equivalently, det(V, —Q,N,) € I ).

Proof of Theorem 3.2.8:

By nommalizing equations (3.2.11) and (3.2.12), S(P, C) is H-stable if and only if equations
(3.2.17)-(3.2.18) (and hence, the generalized Bezout identity (3.2.19)) hold. By Lemma 2.5.2,
(D.,N,),where D ,N, e M (H),is asolution of equation (3.2.17) if and only if

[5.:0] <[1a:0]| & 5

D, -_-:[1,,‘. : Q]M‘ (3.2.32)

forsome Q € M (H); similarly, (N,,D,) , where N, ,D, € M (H), is a solution of equa-

tion (3.2.18) if and only if
N, D, -U,
D. || N, V,

for some Q € M(H) . Now by Lemma 25.1, since P e M (Gs) implics that

Ip,

-0 ] =: M“[ ;Q ] (3.2.33)
o

N, =PD, € M(Gy),forallQ € M(H),dewV, -0ON,) € I anddex(V, -N,0) e I .

Finally, if C is given by the expression in equation (3.2.27) or (3.2.28), then C satisfics
Assumption 3.2.1 (B) and S(P,C) is H-stable. Converscely, if (5c,ﬁc) is an lLc.f.r. and

(N.,D.) is an r.c.frr. of an H-stabilizing C for the plant P , then (Ec N ¢ ) is given by equation
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(3.2.32) and (N, D) is given by equation (3.2.33), for some Q € M (H) ; hence, C satisfies
the expressions in (3.2.27)-(3.2.28).
Nowlet C; = 5;111\7“ ,Car= 5;}17‘2 be two H-stabilizing compensators; hence, C; and
C, are given by the expression in (3.2.27). By equation (3.2.32)
[ D, ﬁcl] M= [1,,5 : Q,] = 5“[1,,,. : c,] M, (3.2.34)

forsome Q, € M (H), and

[b'cz : ch] M= [1,,,. : Qz] =5c,[1,,,. : cz] M1, (3.2.35)
for some Q, € M (H) . But C;=C, in equations (3.2.34)-(3.2.35) if and only if
[I,,‘. : Cl]ﬁ‘l = D7} [Im : Ql] =D} [Im : Qz] ; equivalenly, D,,=D,, , and
D;}0,=D%0, ; hence, Q; = Q, . This shows that, for each C e S(P), there is a unique
Q € mH)suchthat C = (V, -ON,) (U, +0D,).

Now suppose that C; has an L.c.fr. (D~c1 , ﬁc 1) but C, is given by an r.c.f.r. (N4, D, as

in equation (3.2.28). So by equations (3.2.33) and (3.2.34),
[13}, : ﬁ,,]ﬁ-lﬁ | = [1,,,. : Q,] e | (3.2.36)

But Cy = C, if and only if ﬁc',Dcz = 15c 1N¢2 ; from equation (3.2.36), C | = C, if and only if
[-DclNcZ"'ﬁchcZ] =01-0,=0.

'We conclude that Cy-= (V, = N, )\ (U, +Q,D,) equals C; = (V, — Q,N, ) \(U, +Q,D,) if
and only if 0, =Q,.
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3.2.10. Achievable /'O maps of S(P,C) :

The set
AP):={ Hg : C H-stabilizes P } (3.2.37)

is called the set of all achievable I/0 maps of the unity-feedback system S(P,C ).

By Theorem 3.2.8, the compensator C H-stabilizes P if and only if C € S(P) given in
equations (3.2.27)-(3.2.28). substinting D;'N, = (V, -ON,)'(U, +QD,) or N.D} =
(U, +D,Q)(V, =N, Q)™ for C into equation (3.2.2), we obtain the set of all achievable [/O
maps in equation (3.2.38) below:
N,(V,-QON,)  N,(U, +QD,)

AP)={ Hg= _ _ _ : Q0 e MEH) } .(3238)
~U, +D,QN, D,(U,+QD,)

Note that each closed-lcop map of S(P,C) is an affine map in the parameter matrix

Qe mH).

Compensator design using the configuration S(P,C) is called one-degree-of-freedom
design [Hor.1] or one-parameter design [Vid.1] since all achievable maps are parametrized by the

single parameter matrix Q.
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In this section we consider the general feedback system Z(ﬁ s ¢ ) shown in Figure 3.6; the

Mo + 1, )x(M; +m;) plant P € M (G) is partitioned as

~ [Pn Py

Py P ] e GMotno)xMitni) - wroep o GleXni, (33.1)

similaily, § e GMe XM o) 5o partitioned as

.

Cyy C ’
f=| 1T ¢ GMo™ XM 4no) , whereC e G"iXPo (3.32)
v’ 2’ i >
. & P
u’ y' * Y
+ ._? + ]

Figure 3.6. The feedback system }.‘.(ﬁ R é )

3.3.1. Assumptions:

(A) Theplant? e G Mo+e)X(Mi+ti) ;o baritioned as in equation (3.3.1).

By Lemma 2.6.1, P has an r.c.fx. (N5, Dj)and anl.cfr. 5] Py N ») which satisfy equations

(3.3.3)-(3.3.4) below:
Ny Ny
(l) (va Dﬁ)- ( Nzl Np ’
- - D n Dy
(i DpNp)= 0 "p ,

where

(NP,DP) isan r.f.r.of P, and (DP,N,,) isan Lfr.of P .

0
Dp:l )v
AZIZ
Np )’

(3.3.3)

(3.3.4)
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(B) The compensator 6 e G (Mo "+n x(Mi +1o) is partitioned as in equation (3.3.2).

By Lemma 2.6.1 applied to 6, the compensator ¢ has an l.c.f.f. (53, ﬁg) and an r.c.fir.

(N2, Dz) which satisfy equations (3.3.5)-(3.3.6) below:

- - [Di Di Ny Ni
( 37 3) =:( 0 56 ’ ﬁél I-v-c ), (3.3.5)
[ N'n N'p D'y 0
Nz, Dg)=:( N’Zl N, | D '21 D, ), (3.3.6)

where .

(D.,N.) isan Lfr. of C, and (N,,D,) isan rfr. of C.
O

By Lemma 2.3.3, any other r.c.fx. of Pis given by (NzR, DpR), where (N, Dp) is the
r.c.fr in equation (3.3.3) and R e M (H ) is H-unimodular. Similarly, any other lL.c.f.r. of Pis
given by (LD, LN3), where (D, N;) is the Lefr. in equation (3.3.4) and L e M (H) is
H-unimodular. Note that the pair (Np, D) in equation (3.3.3) is not necessarily r.c. and the pair
0, P 1\7,,) in equation (3.3.4) is not necessarily 1.c. Similar comments apply to coprime-fraction

A
representations of C.

3.3.2. Closed-loop I/O maps of P, ¢ )

Consider Figure 3.6; let
z
A y
y = 2’| u= ’
yl

The map Hy; : i > ¥ is called the /O map of (P, ). In terms of £ and € , Hjp is given by



Py - P, T7ICPy P!
dp, -PTIC)Py PT!
~C o p, —PTIC)Py —C,PT!

-T"ICPy, T-I,

where T :=(I,, +CP ).

3.3.3. Analysis of 5P, €):

P, TICy
PT7Cy
C1—CpPT™'Cy
T'Cy

P,,T'C
PT"'C
Ciod , - PT™'C)
T"'C
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,(3.3.7)

We analyze the system E(ﬁ R é ) shown in Figure 3.6 by factorizing P as NyDg ! and € as

D?N, 2 (see Figure 3.7); Ep denotes the pseudo-state of P.

v T T Tz
& -
. | D& Ns |
| P e P 1
| | y
1 A i :
: C \
J
Figure 3.7. The system E(ﬁ, 6) with P =N‘;~D‘;~‘l and € = ~§ ~3
$(P, €) is then described by equations (3.3.8)-(3.3.9):
[ Du 0 0 0 1r a h [ v b
D2| Dp 0 —Im §P 111‘-4.”‘- -0 u
. = e ,. (3.3.8)
NNy NN, Dy D || 2 0 Ng v’
NcNyy NN, o D, |l | u’
- e
Ny i 0 % y
.. N I (3.3.9)
0 ' 11\‘0'.'.”'- 2’ Z'
Y] Ly
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Equations (3.3.8)-(3.3.9) are of the form

A
LU

H

» O
YD SYE)
> 2

- .
- ’

R

by elementary row and column operations on the matrices in equations (3.3.8)-(3.3.9), using
Lemma 2.3.2, it s easy to see that (Vg, Dy, N, ) is a b.c. tiple, with 8 , B .8, « MH).
IfdetDy e I ,then the /O map Hj; is given by

Hya =NRD7'N, ¢ mG).

The definition of H-stability for Z(l"\ . é ) is analogous to the H-stability definition for S (P, C):
3.3.4. Definition ( H-stability ):

The system (P, C) is said to be H-stable ift Hyy € M (H).

33.5. Theorem ( H-stability of =P, €)):
Consider the system E(ﬁ. é ) shown in Figure 3.6. Let Assumptions 3.3.1 (A) and (B) hold.

Under these conditions, the following three conditions are equivalent:

) =P, E)is H-stable

(i) Dy is H-unimodular; (3.3.10)
(iii) D, is H-unimodular , and ’ (3.3.11)
D'}, is H-unimodular , and (33.12)

[Ecb,, +1\7ch] is H-unimodular . (3.3.13)

D, and D 11 are defined in equations (3.3.3) and (3.3.4), respectively.

3.3.6. Comments:

" (i) Condition (3.3.10) of Theorem 3.3.5 is equivalent to dctﬁ n € J ; byequation (3.3.8),

det[’)\” = detD “detD—. {ldet( D~ch + ﬁch ) . (33,14)
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By Lemma 2.34.3), detD y € J ifand only if each of the three factors in equation (3.3.14) is in
J ; hence, by equations (3.3.3) and (3.3.5), detDy; e J if and only if

detDy, = detDp(detD, )™ € J (equivalently, detDy = detD,, ), (3.3.15)
and

detD {; =detDz(detD, ) € J (equivalently, detD2 =detD, ), (3.3.16)
and

det(D.D, +N.N,) € J (equivalently,det( DD, +N.N,)=1).  (3.3.17)
Due to equation (3.3.14), condition (3.3.10) of Theorem 3.3.5 is equivalent to conditions

(3.3.11)-(3.3.12)~(3.3.13).

(ii) By normalization, conditions (3.3.11)-(3.3.12)-(3.3.13) of Theorem 3.3.5 can be written as:

Dy=Iy and (33.18)
Dj=Iy, and (3.3.19)
DD, +N.N, =1, . (3.3220)

Equation (3.3.20) is in fact a right-Bezout identity for the r.c.fir. (Np.Dp) of P and a left-Bezout
identity for the Le.fr. (D,, N, ) of C ; by equations (3.3.18)-(3.3.20), if Z(P, ) is H-stable,
then the r.c.fr. (N3, Ds) of P in equation (3.3.3) and the Le.fr. (D, N2) of € in equation (3.3.6)

can be written as:

Ny le]

Nz, Dp) =([ Ny N

I, 0
|| pa D ]), (3.321)

P

where (N, D,) is a right-coprime-fraction representation of P ,

..‘ ~ Iﬂo' b;il
Gelir=C| o 5. |

where (ﬁc , ﬁc ) is a left-coprime-fraction representation of C .

Niy Nj 2320
Nil Nc )v (-- )

(i) From equation (3.3.14), using det(/ ,, + CP) = det(/ ,, + PC) , we can express deth ;1 also

as:

deth n =detD ydetD, detD i,dctD~ cdetd p, +PC). ' (3.3.23)
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Now by Corollary 2.4.4 applied to PandC , using equations (3.3.3)-(3.3.6), we obtain

detDp=detD;  (equivalently, detD ,detD, = detD udetD?' ») (3.3.24)
and

detb'g =detDy (equivalently, detD ildeﬁc =detD’ detD, ); (3.3.25)
hence, substituting equations (3.3.24)-(3.3.24) into equation (3.3.23), we obtain
detDy = detDy,detD’,det( D, D, +N,N, ). (3.3.26)

Therefore, if we analyze the system X(P, C) with P factorized as D5'N s and C factorized as

NzD#! , by normalization, condition (iii) of Theorem 3.3.5 is equivalent to

Dy =1y, and (3.327)
D'u = Inl-' and (3.3.28)
D,D.+N,N, =1I,, . (3.3.29)

As in equations (3.3.18)-(3.3.20) above, we conclude that if 5(P, &) is H-stable, then the Lc.fr.

of P in equation (3.3.4) and the r.c.f.r. of Cin equation (3.3.6) can be written as:

Iy, Dy,

~ - ﬁll ﬁlZ
GCsNp=(| o 5 || §y &, | (3.3.30)

P

where (5 b N ) is aleft-coprime-fraction representation of P ,

Ne D N’y Ny I 0 33'1
( c? c)_( 121 Nc ’ DI21 Dc ), ( . .3 )
where (N, D,) is a right-coprime-fraction representation of C .

@iv) If E(ﬁ , 6 ) is H-stable, then ﬁ has an r.c.f.r. as shown in equation (3.3.21), and an l.c.fr. as
shown in equation (3.3.30); also 6 has an Lc.fr. and an r.c.f.r. as shown in equations (3.3.22)

and (3.3.31), respectively. Under these conditions,

N -l

# | -p,'Dy DS F=| o D! ), (3.3.32)
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Iy’ -D D! Iy’ 0

D' = ~ , (Df'= - a ).
c c -DcID’Zl Dcl

0 -t (3.3.33)

Conditions (3.3.11)-(3.3.12)-(3.3.13) can be interpreted as follows: 2(13 , é ) is H-stabilized if
and only if 1) the only source of "instability" in the plant Pis D, (equivalently, D p ) 2) and the
only source of "instability" in the compensator ¢ is 5c (equivalently, D, ) 3) and the feedback-
loop (with P and C ) is H—stable. Note that the H-stability of the "feedback-loop" is equivalent
to the Fl-stability of the unity-feedback system S (P, C ) ; indeed, equation (3.3.20) is identical
10 (3.2.12).

Proof of Theorem 3.3.5:

@) <=> (ii)
The proof is similar to' Theorem 3.2.5. Let Z(;, é ) be H-stable; then by Definition 3.3.4,
Hpz € M (H), and in particular, Hy,, € M (H ), where H,, is given by equation (3.2.20).
Since P = N;b,;?l and € = D5'N; implies that D' € M (G)and D5 ¢ M (G), by equa-
tions (3.2.20) and (3.3.23), D' € M (G) (equivalently, (P, () is well-posed); hence,
Mg, Dy, Ny is a befr of Hyy . By Lemma 237, H}; e mH) if and only if

Di' € m (H) and hence, the equivalence of conditions (i) and (ii) follows.
(i) <=> (iii)

Following Comment 3.3.6.(i), equation (3.3.14) implies that detD g € J if and only if
detDy; € J .detD §, « J andde DD, +N.N,) e J.
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Theorem 3.3.5 shows that not all plants P can be H-stabilized by some compensator € in
the configuration Z(I'; , ¢ ) ; the restriction on the class of plants is a consequence of the feedback
being applied only from the output to the input of P . Plants which can be H-stabilized in the
configuration E(ﬁ, é ) are called Z-admissible. Clearly, ¢ must also be T-admissible to

H-stabilize P .

3.3.7. Definition ( H-stabilizing compensator C ):

@ € is called an H-stabilizing compensator for P (later abbreviated as: ¢ H—stabilizes ﬁ)
iff & ¢ GMo™+HMIXMi"™*+0) Guicqe Assumption 3.3.1 (B) and the system I(P, C) is
H-stable.

(ii) The set
S#y:={ &:& Hostavilizes P ) (3.3.34)

is called the set of all H-stabilizing compensators for P |

3.3.8. Definition ( *-admissibility):

P e m(G)is called T-admissible iff P can be H-stabilized by some & ¢ M (G).

Let (N5, Dp) be an r.c.fr. of P ; by Theorem 3.3.5, Pis 2~admissible if and only if two
conditions are satisfied: 1) detDp = detDp and 2) (N, D,) is a right-coprime-fraction representa-
tion of P . In terms of the lL.c.f.r. (5 ~ N 2) of 1'5, again by Theorem 335, P is T-admissible if
and only if 1) 5;; = detD, p and 2) (5},, N p)isa left-éOprime-fraction representation of P . The
necessity of these conditions follows from Definition 3.3.8 and Theorem 3.3.5; the sufficiency
follows by observing that if (N3, Dy) and (5 2 ﬁ;) satisfy these conditions, then the system

Z(ﬁ . 6 ) is made H-stable by choosing a 6 that satisfics equations (3.3.12) and (3.3.13).

We now parametrize the class of all Z-admissible plants P and then we parametrize the

class of all H-stabilizing compensators ¢ for T-admissible P .
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3.3.9. Theorem (Class of T-admissible £ ):

Let P € M (G) be partitioned as in equation (3.3.1); then P is E-admissible if and only if P

has an r.c.fir. in the form given by equation (3.3.35) and an l.c.f.r. given by equation (3.3.36)

below:
Ny Np Iy 0
WpDp)=(| _ _ ) ). (3.3.35)
riv21 NP -U,Na D,
Iq, -N1pU, Nu NV,
Dp.Np)=( _ | _ ), (3.3.36)
0 bD, Ny N,

where (N, D,) is anr.c.fr. and (Ep. ﬁp) is an Lefr. of P ; the pairs (N, Dp) and (5p,ﬁp )
together with U, , V,, , U, , V, , satisfy the generalized Bezout identity (2.3.7), and N1 , N1,

N,y € M (H ) are free parameter matrices.

3.3.10. Comments:

(i) By Theorem 3.3.5, P is E-admissible if and only if an r.c.fx. (N, D) of P satisfies equation
(3.3.21) and an L.c.frr. (5 B N 2)of P satisfies equation (3.3.30). Another point of view is the fol-
lowing: suppose that (N, D, ) is an r.c.f.r. and (5 ps N p)isanlcfr. of P, and that the general-
ized Bezout identity (2.3.7) holds. From this information, we generate the class of all —admissi-
ble plants by choosing three completely free matrices N 11-N12, 1\721 e M (H ) and forming the
r.c. pair (N3, D;) in equation (3.3.35) or the l.c. pair (5;, N ;;) in' equation (3.3.36); with this
assignment of (D, 2 N, 2)and (Np, Dg), P= NsDF' =D, ;,TW- 5 is a T-admissible plant. Note that

detD; e I (equivalently, detD} e I ) follows from detD, e I (equivalently, dctﬁp e I.

(ii) Theorem 3.3.9 states that the class of all Z-admissible plants is parametrized by only three

frccmatﬁCCSﬁ” ’N12’ﬁ2] € m(H) .
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(iii) We can consider the following "easy check for E-admissibility of P" asa corollary to
Theorem 3.3.9: Suppose that we are given aPem (G) , partitioned as in equation (3.3.1), and
that the coprime-fraction representations N, D, = DN, of P satisfy the generalized Bezout
identity (2.3.7); then I’; is Z-admissible if and only if the three conditions in equation (3.3.37)
below hold:

Py ~PyD,U,Py € M(H) and PpD, € MH) and D,Py € MEH). (3:337)

We justify that T-admissibility of Pis equivalent to equation (3.3.37) as follows: If Pis
Z-admissible, then by Theorem 3.39, P, = g n+NuD WU, Ny, Pp=NyuD'
Py =D;'Ny and P = N,D," ; hence, equation (3.3.37) holds. To show the converse, choose-
any Cem (G) such that equations (3.3.12)-(3.3.13) hold; then the closed-loop I/O map in
equation (3.3.7) is in H because equation (3.3.37) holds and hence, by Definition 3.3.8, P is
Z~admissible.

a
Proof of Theorem 3.3.9:

By Theorem 3.3.5, Pis X—admissible if and only if the r.c.f.r. (N3, Dp) and the L.c.fr. (5 X N 2)

of P » given in Assumption 3.3.1, satisfy equations (3.3.21) and (3.3.30), respectively. Now since

2 -t _ A=IxT ;
P=N‘;~D;,\ =Dy ;,weobtam

N 12Dp + (-512)Np =Nz, (3.3.38)
~N,Dy +D, Ny =Ny, (3.3.39)
ﬁlzDzl‘ﬁlzNzl =Ny =Ny (3.3.40)

By Lemma 2.5.2.G), (N 12 D, 12) is a solution of equation (3.3.38) (with N. 12+ D ne MH))if
and only if

-, -~ A VP UP

(¥ -0u] =[¥218]| 7 5 | (3.341)

for some é e M(H) ; similarly, by Lemma 2.5.2.(ii), (D31, N4y) is a solution of equation
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(3.3.39) (with Dy, , Ny € M (H))if and only if

D21 D -(7 _Q
=7 =P, (3.3.42)
N21 Np Vp NZl

for some Q~ e miH). Substituting equations (3.3.41)-(3.3.42) into (3.3.40) and using the gen-
eralized Bezout identity (2.3.7), we obtain

[ﬁlz : -512] [i: =[N12 : é] [;"Q;

Using equations (3.3.41)-(3.3.42), the r.c.£1. (Nz, Dp) and the Le.£r. (D, N) become:

N _ ~Nu _ Ny _ ~1~nz _ 0 2344
( 9Dp)—( VpNZI—NpQ N ’ _UpNzl-DpQ DP )l ( oode )

=N"-ﬁ” . (3.3.43)

P

- - Iy, -NyU, - QD~p Ny NV, - éﬁp 1345
(DﬁaNp)—( 0 DP | Ny Np ). (33.45)
Iy 0 In, 0
Let R =| ~ e MH) ,let L =] 1 e m@H) . Using equation
(3.3.43), let
Ny =Ny+Npd =Ny, +0N,,. (3.3.46)

Since R and L are H-unimodular, by Lemma 2.3.3, (N,;;R, DjR) , which is the same as the
r.c.f.r. given in (3.3.35), is also an r.c.f.r. and (Lb}, LN ) » which is the same as the L.c.f.r. given
in (3.3.36), is also anlc.fr. of P ; we conclude that P is T-admissible if and only if an r.c.f.r. and

an Lc.fr. of P are given by equations (3.3.35) and (3.3.36), respectively.
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33.11. Theorem (Set of all H-stabilizing compensators C for P ):

Let P & M(G)be T-admissible with P & M (Gs); let (N,, D,) be an r.c.£r. and ®,.N,)
be an Lc.fr. of P, and let the generalized Bezout identity (2.3.7) hold. Under these conditions,
the set §(ﬁ) of all H-stabilizing compensators € for P is given by equation (3.3.475 and

equivalently, by equation (3.3.48) below:

a Ing —Quahp On 012D,
S@)={ C= _ _
0 Vp —QN‘, Qz; Up +QDP
011,012,02.0 €« MHA) }, (3.3.47)
-1
. On Qn Iy 0
Sé={ €=

D,0n Up+D,Q || NQu V,-N,Q
011,012,02.0 € m@H) }, : (3.3.48)

Equations (3.3.47) and (3.3.48) give a parametrization of all H-stabilizing compensators for P ;
each of these equations defines a bijection from 0, , @15, 05,,.Q € MH) 0 € e SP).

For the same (Q11, @12, @21, @) , equations (3.3.47)-(3.3.48) give the same & ¢ S(P).

Proof:

By assumption, £ is E-admissible; hence, by Theorem 3.3.5, £(F, &) is Hstable if and only if
equations (3.3.12) and (3.3.13) hold. From Comments 3.3.6.(i) and (ii), ¢ H-stabilizes P if and
only if an lc.fr. (5;, 1\73) of C satisfics equation (3.3.22), an r.c.fr. (N2, Dz)-of € satisfies
(3.3.31), where C is such that (Ec,ﬁc) and (N, D.) satisfy the gencralized Bezout identity

(3.2.19).
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By Theorem 3.2.5, the set of all C which satisfies equation (3.3.20) (and equivalendy,
(3.3.29)) is given by the set S(P?) in equation (3.2.27) (and equivalently, (3.2.28)). Substituting
equations (3.3.22), (3.3.31) into N. ¢De = 53Ng and using equations (3.3.27)-(3.3.28), we obtain

N {2D; +(-D i)N, = N3, (3.3.49)
-N.D’y+D N’y =N3, (3.3.50)
N 2D'3 =D 3N’y =N"y; =N ;.. : (3.3.51)

By Lemma 2.5.2, using the generalized Bezout identity (3.2.19), (1\7 {2,5 12) is a solution of

equation (3.3.49)

-~ . . A D_P ﬁP 4
[N 12 :-D iz] =[N’12:Q’] N, D, |° (3.3.52)

and (D’3;, N';y) is a solution of equation (3.3.50) if and only if
’ D, -N,1[-0"
21 -0 :
, ] e (3.3.53)
N’y N. D, N2

for some O’ € MH) and 0’ €« M(H) . Substituting equations (3.3.52)-(3.3.53) into

(3.3.22) and (3.3.31), we obtain

- - Iy,» NN, -QD, N1 N'125p-Q’ﬁc
Dz, Ng) =( 0 D, | N N, ), (3.3.54)
Nz, D N'n N e 0 3.3.55
We.be)=(| N.G'+D,N3 N, |*| D.G’-N,Ny D, |)» G35
where (5,, , N, ¢)and (N, D.) are as in equations (3.3.27)-(3.3.28).
.l'ﬂo' é’ ITli' 0 ’ ~ ~
LetL’ = R =| 7, ; then (L’Dg, L’Np) is also an l.c.f.r. and

(N2R’,DgR’) is also anr.c.fir. of C.
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Nowlet 0y; :=N §, + O'N 4, ; by equation (3.3.51), N {; + O'N 5, =N’y +N'120 " = Q1.
Let Qyp:= N’13, Qg1 :=N 4, . Finally, ¢ H-stabilizes 7 if and only if € has an Lc.fr. and an

r.c.fr. as in equations (3.3.47) and (3.3.48).

Nowlet & 1 and ¢ 2 be two compensators in S(ﬁ) given by equation (3.3.47); then

P Q11+Q12fv—p5;ll le(ﬁp +ﬁpC1) . Q11"'Q121§’”,;a15-¢?2l QIZ(D~p +N,C»
- . ~_ an = ~_ A
! D104 o8] 2 D;0n C,

where Cy = (V, = Q\N,) (U, +01D,) , C3 = (V, = Q2N, )" '(U, +Q,D,) . It was shown in
the proof of Theorem 3.2.8 that C; = C, if and only if Q; = Q; and D, = D, ; hence, C, = &,
if and only if Q,; = én , and le(ﬁp +1§I-chDc“) = é 12(5,, +1\-I;,NCDC‘1) ; thus, using equa-
tion (3.3.29), Q13 = é 12 and hence, @ = é 11 . Therefore, there is a unique set of parameters
Q11,012,072 » Q for each H-stabilizing é. Using DN = N2D3 , a similar argument as in
the proof of Theorem 3.2.8 shows that, for the same é , the parameter rﬁatrices in (3.3.47) are the

same as the ones in (3.3.48).

3.3.12. Comments:

(i) Consider Figure 3.8, which shows 2(13\ , é ) where Pis Z—-admissible; this figure is obtained by
taking P= N;D;,?l » where (N, D) is given by equation (3.3.35), and by taking

A [’no' 'Quﬁp]"

=l o D,

On Q12D~p
On N, ’

note that the only instabilities in 2 and ¢ are due to D, and Ec , respectively. In Figure 3.8, ¢
and P already satisfy equations (3.3.11) and (3.3.12); hence, =(P, &) is H-stable if and only if
the "feedback-loop" is H-stablec.

If the ring H is the ring of proper stable rational functions R, (s) as in Example 2.2.2, then

the Z—admissibility of P implies that cvery U —pole of Py , P13, Py is a l{ —pole of P =
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N‘,D‘,,"l , with at most the same McMillan degree [Vid.1, Net.1]. Similarly, for Ctobean -
H-stabilizing compensator for P , the U —poles of Cy; , Cy5 , C9 must be "contained” in the

U —polesof C = D c 11\7., , and C must be chosen so that the feedback-loop is H-stable.

] 0 ‘2 I

N g

v : v

: 02 Q1a}, ,

|

) It I

1 T |

IDP P: u ]

1 , i

u’ ) = + = Iy +

X -1 X

Y Ne [=O0—1D: —O \
— A

I C : I

Figure 3.8. The system X7, €) with a Z-admissible plant # = N3D;! ;

note the duality between C = D5'Np and P .

(i) The class of all H-stabilizing compensators is parametrized by four matrices, Qq;, Q12 »
031, Q € M(H) ; the matrix Q parametrizes the class of all C that H-stabilizes the loop
S(P, C). We refer to design with the unity-feedback system S (P, C ) as one-degree-of-freedom
design [Hor.1] because only one parameter matrix is available for design (see Section 3.2). In
contrast, for the more general system Z(f’\ s ¢ ) , there are four-degrees-of-freedom because € has
four completely free matrices in H , which can be chosen to meet performance specifications.
For example, in Section 3.4, we use the parameter Q,; to Aiagondize the input-output map

Hy:vibz.



33.13. Achievable VO maps of 5P, €) :

The set
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Af):={Hyp : ¢ H-suabilizes P ) (3.3.56)

is called the set of all achievable /0 maps of the system (P, €) .

Substituting for ¢ from the expression in equations (3.3.47) and (3.3.48) into the closed-

loop I/O map Hy in equation (3.3.7), we obtain the set of all achievable I/O maps for 2(1’3 , é ):

[ N =N 20Ny

AP)

1l
—_—

o
159

(]

—Q 12Ny

V, =N,Q)Ny,

N12(Vp—QI—V-p)

N,(V, —ON,)

_QIZNp

~U, +D, Q)N | U, +D, QN

i N,Qa i N,(U, +0D,)

N12Qy i Nyp(U, +QD,)

Qu : Qub,

D,Q3 : D,(U, +0D,)

:011.012,02.,.0 € MHA) }. (3.3.58)

Inspection of equation (3.3.58) shows that each closed-loop map achieved by Z(ﬁ , ¢ ) depends on

only one of four free parameters Q1 , Q12, Q21 ,Q € M (H); in fact, each of these maps is

an affine function of one parameter only.

IfP;=0and Py =1,, ,thenv can be viewed as an additive disturbance at the output y ;

the disturbance-to-output map H,, : v > y is given by (I7p —NpQ)ﬁZI = (17,, -NPQ)D~,, ,

which depends on the parameter @ € M (H ). On the other hand, the external-input to output

maps H,,-= N 1502 and Hy,-= N, 0, depend on a different parameter Q 5, . Consequently, out-

put shaping and disturbance rejection can be achieved simultancously, since H,,- and H,,- are

decoupled from H,; .



3.4. Achievable diagonal maps
We now consider the problem of achieving a diagonal I/O map for a Z-admissible plant P ;
more precisely, we require the closed-loop map H,,-: v’ |- z from the extemnal-input v’ to the

output z of the H-stabilized }:(ﬁ ) é ) to be diagonal. We obtain the class of all achievable diago-

nal maps H,,-.

Suppose that Pem (G)., partitioned as in equation (3.3.1), is a =-admissible plant. We
. assume that and n;’ = n; =n, ; consequently, P, € G XM 5 square since there are n; inputs
v’ and m; outputs z. Furthermore, we assume that N, € H™*™ is nonsingular (i.e.,

deth #£0 ).

We define two diagonal (nonsingular) matrices Ay, and Ag as follows:

(i) Let Ay € H be a greatest-common-divisor (g.c.d.) of the elements of the k-th row of
Ny. Fork=1,--- ,n ,Ar; e H exists since H is a principal ring [Lan.1]. We define A7 -

and N 12 by the following equations:
Ap =diag [Apy, -+ Ay 1, (3.4.1)

le = AL ﬁlz . (3.4.2)

By construction, detA;, # 0 . Note that the diagonal elements Az of Ay are unique except for

factorsinJ .

(ii) By assumption, detN |, = detA; deth 12 % 0; hence, detV 12 # 0. Write the ij-th entry of

A m-o
N} as —di , where (m;;, d;;) is a coprime pairin H ; note that d;; ¢ 0 since the dchominator of
»

each entry is a factor of detV' 12 (i.e., detN' 12 =dj;a;; forsome a;; € H).
Let Ap; e H be a least-common-multiple (em)of {dy;, -+ ,dy,; } (e, alcm. of

the denominators of the elements in the j-th column of N @Z)Forj=1,---,n,Ap j CXists
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since H is a principal ring. Let

Ag =diag [Ap1, *** Agy 1 (3.4.3)

detAg = Osince d;; # 0. The entries Ag; of Ag are unique except for factors in J . Note that if
N3 € m#H),then Ag =1y .

A m;:
Now for some b;; € H , Ap; = djjb;; ; therefore the ij-th element of N Ag is —d“' Ap;
i

=m,-jb,-j € H ,and hence,
Ni7Ar e m#H). (3.4.4)

Intuitively, if H is Ry (s) as in Example 2.2.2, then we can interpret the diagonal matrices
Ap and Ag as follows: Ap; extracts the I{—zeros that are common to all elements in the &-th
row of N5 ; Ap "book-keeps" the U~zeros of Pi,=N ,2Dp“ that appear in each entry of some
row of Ny, . Clearly, P, may have other l~zeros that canmot be extracted by A7 ; these u
—zeros are the U~zeros of detV 12 (equivalently, the L-t-poles of N 1‘—} ). Now the diagonal matrix
AR makes N7 Ag H-stable, i.c., cancels these U~poles. Lets e I be azero of Ag (hence a
l~zero of detN 12 ); the multiplicity of s € Uin detAp may exceed its multiplicity in detN 12 -

IfdetV;; € H" hasn zerosats e il , then detAp has at most n™ zerosats € U ; so

Ap has at most as many I~zeros as (detN ,)/ n -

3.4.1. Definition (Achievable diagonal H,,-):

The set

A, -Py:={H,.: H-stabilizes P and the map H,, is diagonal and nonsingular } (3.4.5)

is called the sct of all achievable diagonal nonsingular maps H,,-: v’ - z .

Clearly, A”'(ﬁ) is a subset of the achicvable v’ }-» z map in A(ﬁ) , because ¢ must be a

H-stabilizing compensator; in other words, A,vr(ﬁ) is the sct of all N 1,04, € M (H ) that arc
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diagonal and nonsingular. Thus we must choose the parameter Q,; € M1 (H ) so that N ;04
is diagonal and nonsingular (see equation (3.3.58) ). The "minimal" restriction on Q5,; to achicve

diégonal H,, is given in Theorem 3.4.2 below:

3.4.2. Theorem (Class of all achievable diagonal H,,- ):

Let 7 € M (G) be S-admissible, and let P € M (Gs);let Ny; € H ™™ be nonsingular.

Under these conditions,
A, ®)={ALArD,, : Oy € MH) is diagonal and nonsingular } ,  (3.4.6)

where A; and Ap are the diagonal, nonsingular matrices defined by equations (3.4.1) and
(3.4.3).

3.4.3. Comments: |

(i) The map H,, = Ay A 05, (where 05, € M (H)) is an achievable map of £(P, &) if and

only if the compensator parameter Q,, is chosen as

Qg = N z-llAR é 21 (3.4.D

where 0, € H™*™ is diagonal and nonsingular. By equation (3.4.4), Oy € M (H) .
Therefore, to achieve diagonalization, from the set S(ﬁ) of all H-stabilizing compensators é ,

we must choose C5, = D;1Q a=, - Qﬁp )10, as
Ca=(V, - 0N, Y"'NijAr O, (348)

where the matrix 05, € H"™*™ is diagonal and nonsingular. Note that in cquation (3.4.8),
Q e H"*" is a free parameter and is not used in diagonalizing the /O map H,,- . The other
compensator parameters Q; and Q;, shown in equations (3.3.47)-(3.3.48) arc not uscd in

diagonalizing the map H,,- either.
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@ii) If H is Ry (s) as in Example 2.2.2, then the "cost" of diagonalizing the map H,,- is that the
number of ll~zeros are increased. Since Ay, is a factor of Ny, , H,,- must have zeros at the u
—zeros of Ay ; the multiplicity of a U~zero of H,,- may be larger than its multiplicity in detV ,
due to Ag . If Ay, represents all Zi~zeros of P, (equivalently, if N demH))mdifd 21 18
chosen so that it has no l/~zeros, then the l{~zeros of the diagonal H,,. have the same multipli-

city asin detN, since Ag =1, .

Note that the parameter Q,, is now restricted to be N AR é 21 and hence, can no longer be
assigned arbitrarily in order to meet other design specifications; the only frecedom left is the diag-

onal nonsingular matrix 05, € M (H).

(iii) Although we chose to diagonalize the map H,,- , we could also choose to diagonalize

Hy-:v' > y , the map from the same extemal-input v’ to the output y of P (y is the output.

used in the feedback-loop). In that case, assuming that n, = n; and that N, e H"™*™ is non-
singular, we would define Ag, , A, , N » from N, as we did above to obtain A7, , Ag and N

from N j5; the set of all achievable nonsingular maps H,,» would then be A,,'(ﬁ), where
A,,,:(I"\) ={ A, Arp 021:0y € M(H )is diagonal and nonsingular } .
The compensator parameter Q ,; would then be chosen as

N;'App Q3 -
a
Proof of Theorem 3.4.2:

The map H,,- is an achicvable map of 2(13\. 6) if and only if H,,-=N;0,, for some
Qa1 € M (H). By equation (3.4.1),

Hyo=NypQy = AL NuQy (3.4.9)

for some Q4 € M (H) . Now H,,- € MH) is diagonal and nonsingular if and only if
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Q2 € M H)is such that Ay, N 12Q2; is diagonal and nonsingular. Choose Q4; as in equation
(3.4.7); then by equation (3.4.4), Q5 € M (H) . Clearly, H,,» = A; Ag O, is an achievable

diagonal nonsingular map.

Now if H,,- is a given diagonal map achieved by }.‘.(ﬁ , é ) , then by equation (3.4.7), Ay, is

clearly a factor of H,,. . Now suppese, for a contradiction, that
Hor=ALAp Gy, (34.10)

where all (diagonal) entries of KR are the same as those of Ajg except the j-th entry, which is a

proper factor of Ag; ; i.e., for some §; ¢J ,
A
Apj = Ag;d; . (3.4.11)

Since Ag; isalcm.ofd; ,i =1, --- ,n; , the k-th row j-th column denominator dy; has that
factor 8; , i.e., dy; = 8;d,; . The kj-th entry of O, is then —9-4 here g; is the j-th
actor o; , i.e., dy; = 0;d,; . The kj-th entry of Q,, is en?; Rjq; » where g; is the j-

(diagonal) entry of é 21 - Since §; is not a factor of KR j » the only way that the j -th entry will be
in H is if ¢; = §;q;" , for some ¢/’ € H ; 0>, then becomes diag[1 - - 5 <+ 1 102 .

Therefore, H,,-= A Apdiag[ 1 - - - & - 1107, = AL Ap 0’5y . forsome O’y € M(H).

a
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Chapter Four
Decentralized Control Systems

4.1. Introduction

In Chapter Three we studied two system configurations, S (P, C ) and 2(1'3, ¢ ) ; these sys-
tems put no constraints on the structure of the feedback-compensator. We now investigate the

consequences of restricting the compensator to be block-diagonal.

In large scale systems, we often encounter restrictions on the feedback controller structure.
These systems have several local control stations; each local controller observes only the
corresponding (local) outputs. Such decentralized control of systems results in a block-diagonal

controller-matrix structure.

A multi-channel plant P , which has rational function entries, can be stabilized by a decen-
tralized dynamic output-feedback compensator if and only if P has no unstable decentralized
ﬁ.xed-eigenvalues. (misleadingly called fixed-modes in the literature) with respect to block-
diagonal real constant outl;ut-feedback [(Wan.1]. Decentralized fixed-eigenvalues can be charac-
terized various ways and interpreted in terms of plant transmission-zeros [see for example, And.1,
Cor.1, Dav.1, 2,]. An algebraic characterization of fixed-eigenvalues using left-factorizations of
the plant is given in [And.1]; the rank-test developed there can also be used to obtain other char-

acterizations in a state-space setting.

Decentralized compensator synthesis methods for linear time-invariant systems are avail-
able in the literature; these procedures do not result in an explicit expression for the class of all
stabilizing compensators. The original method in [Wan.1] uses state-space techniques to move all
unstable controllable and obscrvable modes to the left-half complex plane by applying feedback
to cach channel sequentially; an algorithm that includes improper plants is given in [Dav.2]. In
[Cor.1], if the plant is strongly-connected, the system is made stabilizable and dctcctable through

one channcl by applying appropriate feedback to all other channels (see also [Vid.3]). In [Giig .1},
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an N x N plant, which has no unstable fixed-eigenvalues with respect to diagonal constant feed-
back, is considered; using polynomial algebra, an N-step algorithm is given to determine a com-
pensator which moves the poles of this square plant to a symmetric region of stability. This pro-

cedure gives one diagonal compensator explicitly.

In this chapter, we obtain the necessary and sufficient conditions on P for stabilizability by

a decentralized dynamic compensator in the completely general algebraic framework of Chapter
‘Two; hence, the results are applicable to distributed and lumped, continuous-time and discrete-
time systems. Decentralized stabilizability conditions tum out to be certain Smith-form-like
structures that must be satisfied by coprime factorizations of the plant P. When the compensator
structure is required to be block-diagonal as in decentralized output-feedback, finding the class of
all stabilizing decentralized compensators is complicated; the task is to find a structured géneral-
ized Bezout identity where the coprime factorizations of P satisfy decentralized stabilizability
conditions. For plants that satisfy these conditions, we parametrize the class of all stabilizing
decentralized compensators; this class has as many parametér matrices as the number of channels

(here the parameter matrices satisfy a unimodularity condition).

The chapter is organized as follows: Section 4.2 gives the system descriptidn; to simplify
derivations, we consider a two-channel MIMO system in detail (see Figure 4. 1'). Conditions on
coprime factorizations of P for decentralized stabilizability and the set of all stabilizing decen-
tralized compensators C; are given in Section 4.3. In Section 4.4, the main results of Section 4.3
are interpreted when the plant can be represented by a transfer matrix with rational function
entries; it is shown that the decentralized stabilizability conditions of Section 4.3 in fact general-
ize the requirement that the system has no fixed-eigenvalues [And.1, Wan.1]. An algorithm is
given for designing stabilizing decentralized compensators for a given strictly proper P based on
any of its right-coprime factorizations. In Section 4.5, the main thcorems of Scction 4.3 arc
extended to m-channels and interpreted in the special algebraic sctting of proper stable rational
functions. Finally in Scction 4.6, decentralized compensator design is extended to the general

system Z(l’; , 6 ) of Section 3.3.
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4.2. System description

Consider the decentralized control system S (P, C, ) shown in Figure 4.1.

Figure 4.1: The two-channel decentralized control system S (P, C ).

4.2.1. Assumptions:

(A) LetP e G™*" pe 3 two-channel plant, where n, =:n,1+n,2,n; = n;1 +n;,.

Let(N,,D,)beanrcfr.of P, Where

e Hlli Xn;

Ny € H@™N N, e H™®% p e HMX% p , e HMHXN

Let (5 s ﬁ,,-) be anl.c.frr. of P , where

O
i

P :[DplEDpZ] € Hnoxno

Np '—":[Npl E sz] € Hnoxni

B

Dpl e Hnoxnol'Dpz e Hnaxnaz,Npl e Hnoxn‘l’sz e Hnoxnl'z.
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Npry
Let (N,,,D,N,) be a befr. of P where N, = Nwz] e H%WX* p ¢ HRR |
, o

Np, = [Np“ NpIZ] € anni ’ Nprl € Hn01xn ’ Np,2 € Hnazxn ’ NP“ € ann“,

Npl2 € anniz .

. c, 0
B) Let C; € G™*™ be a decentralized compensator, where -C, =[ 0 Cz} ,

Cl c (;nilelol’c2 c Gni2Xﬂ02

Let (D~c1, 1\7“) be an lcfr. of C; and let (5.,2, ﬁcz) be an lcfr. of C, , where

D, e I_Inilxrlc'l’l)c2 e Hn.‘zxn.'z.Ncl e HﬂilXﬂal’ch c Hni2xn02.

501 0 N—-cl 0 -
0 D 0 N, ; note that (D, N.) is an Le.fr. of Cy if

» N =

Let 5,_. :=[

and only if (D, N,1) is an Lc.£x. of Cy and (D4, N,) is anlc.fr. of C;.

Let (N.1,D.p) be an rc.fir. of C, and let (N3, D.7) be an rcfr. of C, , where

N, € HUWiXnol |y o HU2XNo2 p o HMolXMol ' o FNo2XMo2 g

D, O N,y O
y N, =

0 N, |® note that (N, D,) is an r.c.Lr. of C, if and

D, = 0 D,,

only if (N.q, D.y) is anr.c.f.r. of Cy and (N5, D.,) is anr.c.fir. of C,.
a

If P satisfies Assumption 4.2.1 (A) we have the generalized Bezout identity (2.3.7) for the
doubly-coprime pair ((N,, D), (D, N,)) . Forthe b.c.£r. (N, D, Ny) of P we have the two
generalized Bezout identities (2.3.8) and (2.3.10), partitioned as follows: for the r.c. pair

(N, D), there are matrices V,, ,U,, ,X .Y ,U ,V e m (H ) such that

Vpr Upr D =U Vpr U prl U pr2 D —(7 I n 0
_ _ _ = L _ Nprl Vi = : 4.2.1)
X Y N, V X Y 0|\ N, V, 0 I,
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for the L.c. pair (D , ;) , there are matrices V,; , Uy ,X ,Y ,U ,V € M (H)such that

= —Uﬂllﬁ = . @22
U |4 —Upl Y U V] V2 _UpIZ YZ 0 Im
Let
h r“1
_ Y2l _ Uz
y Baand y 1’ ') u P u 1’ [}
y? uy’

the map HyT {4 > y iscalled the /O map. Interms of P and C, , H;'u' is given by

Py +CyPY! P p +C4P)Cy
Hg = . 4.2.3)
~C4PU p; +C4P)Y (I, +CaP)Y'Cy

Note that equation (4.2.3) is the same as equation (3.2.2), where C is replaced by C, .

4.2.2. Definition (H-stability):

The system S (P, C, ) is said to be H-stable it Hy « M (H).

4.2.3. Analysis:

We now analyze the system S (P, C,) by factorizing P and C, ; as expected, we consider four

cases:

(i) Let P =N,D,* ,let C =D;'N, , where (N, D,) is an r.c. pair as in Assumption 4.2.1 (A),
and (ﬁc, ﬁc) is an L.c. pair as in Assumption 4.2.1 (B) (sce Figure 4.2); again, €, denotcs the

pscudo-state of P,



74

A
: Y1
¥
)
I
|
1 Y2
| >
}
|
Figure 4.2: S(P,C,)withP =N,D; and C, = D;'N, .
S (P, Cy) is then described by equations (4.2.4)-(4.2.5) below:
~ -~ -~ - .ul-
Dchpl"'Nclel D, 0 N, O Uy
_ _ E, = _ e 4.24)
D 3Dpy+ N oNp2 0 D, 0O N uy
Npi J1 0 0 00 u
Ny2 Y2 0 0 0 0|2
D,, & = |t Ipyy 0 0 O ||uy (42.5)
Dy, y2 0 I,,0 O]|ug
Equations (4.2.4)-(4.2.5) are in the form
Dy & =Npu
4.2.6)

Npi&p =y =Sy,
where (Ngy, Dyyy) is an r.c. pair and (Dyy, Ny 1) is an Lc. pair. If detDy;, € I, then
Hg = NpiDjfiNL1 +Siy € M (G).

S(P,C,) is H-stable if and only if D;j} € M (H) (equivalently, detD;;; € J and hence,

Dy, is H-unimodular). D;;, can be expressed scveral ways:
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Dchpl+Nclel
Dy, = D.D, +Nch =l _ _
Dc2Dp2+Nc2Np2
i - 1
D,y
D, 0 Ny 07|P| D, N, 0 o 7|V
=l 0 b, 0 Ny || o0 o0 :iD,nN,|| |} ©2D
Np - D,,
.szﬂ

and detDy; can also be written as detDy; = detﬁ,_. det(/ + C4P)detD, . By normalization and
due to the block-diagonal compensator structure, Dy, € M1 (H ) is H-unimodular if and only if

there are block-diagonal matrices V, := D, , U, = N. e M (H)such that

VoD, +U,N, =1y, . 4.2.8)
' Equation (4.2.8) is a Bezout identity where V, , U, M (H ) are restricted to be block-

diagonal as shown in equation (4.2.7).

(i) LetP =D,'N, ,let C =N,D;', where (D,, N, ) is an r.c. pair as in Assumption 4.2.1 (A),
and (N, D.) is an Lc. pair as in Assumption 4.2.1 (B) (see Figure 4.3); fori = 1,2, & denotes

the pseudo-state of C;.

Y2

v

Figure 4.3: S(P,C,) withP =D;'N, and C; = N, D",



S (P, C,) is then described by equations (4.2.9)-(4.2.10) below:

[ Dpchl +NplNcl Dp20c2+Np2Nc2]

I

Following similar steps as.in case (i) of the analysis, S(P, C,)is H-stable if and only if
Dyp = [ DDy +N,N,, Dpchz-i-ﬁpchz] = [ D,D, +NPN,_.] e MmH)

is H-unimodular. Dy, can be written also as

(iii) Let P =N, D7'N; ,let C = DN, , where (N, D,Ny)is abefir. of P asin Assump-

tion 4.2.1 (A), and (D~,,, 1\7,_. )is anl.c.fir. of C as in Assumption 4.2.1 (B) (see Figure 4.4).

[ D, } 0

o0 © O

—~ -~ -~

=Np1

—Vp2 pl
0 O 0
0 0 0

el 0

D, O
0 - c2
0 D,

S (P, C,) is then described by equations (4.2.12)-(4.2.13) below:

~
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Uy
__________ - Fm o e mmmmmmmmmm e
’ + |
~ — . 1'n ! ! Y1
|
__-_91____.: Us : + D"l gx :
SEEESLIEE 1 b o— :
~ ~ 11 Y2 <1> 1 Y2
Ne 2 O Noi2 Ner2 (41—
C, : , P !
__________ J TS TTT ST T s TS s TS
Figure 44: S(P,C,) withP =N, DN, and C, = DN,
. & uy
D =Nuyi =Nz || Nypr Nyz 0 O 4,
NN, : D,y 0O vl = 0 0 N, O uy| (4.2.12)
chNp,.z . 0 D,_-z )'2’ 0 0 0 ch Uy
Nprl 0 0 gx F)’l
0 (1, O | |y’ (4.2.13)
0 : 0 I,,||» y?

The system S (P, C,) is H-stable if and only if

D =Ny Ny,
=| NN, i D,y 0 (4.2.14)

NcZNprz 0 Dc2

D Ny

Dus=| N, b,

is H—unimodular. Post-multiply Dy;; by R :=

Vy X
e M (H) defined in equation

U, Y

(4.2.2); then S (P, C,) is H-stable if and only if
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Y,
DyN.,: 0 o 7|NerX
=| 0 o0 :5,N, is H-unimodular. . -  (4.2.15)
[4 [4 Yz
| Nor2X
By Proposition 2.4.1, the pair (V,, X, Y) is an r.c.fx. of P . Note that, with D, =Y = Y,|
Ny X
N, =N,X = NpyoX | * equation (4.2.15) is tpe same as equation (4.2.7).

@iv)LetP = N,,,D"Np, ,let C =N.D;?, where (Nprs D, Npy) is ab.cfir. of P as in Assump-

tion4.2.1 (A), and (N, D, ) is an r.c.f.r. of C as in Assumption 4.2.1 (B) (see Figure 4.5).

ety (]; it
— 1 1yy ! | 1
Dc]l _C+Ncl : n : Np“ Nprl ; >
J |
___-..c.l__._..l U, : + D_l gx :
Ty — + + !
uz ! 1] &2 21 I ! Y2
T Dc21 ¢ ch X + T NplZ ) Npr2 : >
- C, | : ‘ P !
b e - - T R I J

Figure 4.5: S(P,C,)withP =N, DN, and C; =N.D.".
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S(P, C,) is then described by equations (4.2.16)-(4.2.17):

: &1 ¢ uy
D : =NpyWey =NpoNea || Nyy Nz 0 O Uy
Npr1 D, 0 e =0 0 Tay O ||, @216
Nya : 0 D, 1l e, I 0 0 0 Inoz U,
[ Ny, 0 0 |7 E Y1
N, : 0 0 ces Y2
0 :N, 0 ||E&:| Tyl @217
0 : 0 N | &2| |7

The system S (P, C, ) is H-stable if and only if

D -NuN; D =Np1Ney  =NpioNea
DH4 = Npr Dc = Nprl . Dcl 0
Npr2 . 0 DcZ

Vor  Upr .
is H-unimodular. Pre-multiply Dy, by L := X 7 e M (H) defined in equation

(4.2.1); then S (P, C,) is H-stable if and only if

~ ~ ~ . - Ncl 0 [~ .~ Dcl 0
XNplNc+YDc=[XNpll:XNpl2] 0 ch +-Y1:Y2] 0 Dc2

—Ne1 0
D, ©
=[-}'EN,,,, Y, XNy, 172] v+« +++| is H-unimodular. (4.2.18)
0 - c2
0 D,

By Proposition 2.4.1, the pair (f ,f Np) is an lcfir. of P . Note that, with 5,, =Y =
[ Y, : )72] VN, = XN, = [fNPH : pr,Z] , equation (4.2.18) is the same as equation

4.2.11).
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4.3. Main results
In this section the plant P satisfies Assumption 4.2.1 (A).

4.3.1. Definition (H-stabilizing decentralized compensator):

C, is called an H-stabilizing decentralized compensator for P (later abbreviated as C,
H-stabilizes P) iff C; € G™*" satisfies Assumption 4.2.1 (B) and the system

S(P,C,)is H-stable.

4.3.2. Definition (Class of all F/-stabilizing decentralized compensators):

The set

Sq®P)={ C;:C; H-stabilizes P } 4.3.1)
is called the set of all H-stabilizing decentralized compensatbrs forP .

4.3.3. Comment:

In Chapter 3 (Theorem 3.2.8) we showed that the set S(P) of all centralized (full-feedback) com-
pensators that F/—stabilize P is given by

S®)={C=,-0oN,)y'(U,+0D,):0 « mH) }, 4.3.3)

where V, , U, are as in the generalized Bezout identity (2.3.7). S(P) can also be expressed in

terms of an r.c.f.r. (N,,D,) of P :

S®)=(C=W,+D,0)V,-N,0)":0 e m(H) }.

Following Comment 3.2.9.(ii), if P € M (G ) instead of M (Gs) , then @ € 1 (H ) should
be such that det(V, ~N,Q) € I (equivalendy, det(V, —ON,) e I).

The class of all H-stabilizing decentralized compensators Sy (P) will tum out to be more

complicated. (Note that Sd (P) is a subset of S(P) ). For the existence of such decentralized
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compensators, the plant P has to satisfy additional conditions which are not required for the
existence of full-feedback compensators that would achieve FH-stabilization; these conditions are

due to the block-diagonal structure of the compensator.
O

Theorems 4.3.4R and 4.3.4L below establish the necessary and sufficient conditions on (an
rcfr. (N,,D,) or an lefir. (5 p ﬁp) of) P for the existence of H-stabilizing decentralized

dynamic output-feedback compensators:

4.3.4R. Theorem (Conditionson P =N, D,,'1 for decentralized H—stabilizability):

LetP e M (Gs) satisfy Assumption 4.2.1 (A); then there exists an F/-stabilizing decentralized
compensator C, for P if and only if P has anr.c.fr. Wy, D,) such that

Dy, Dy Dy, £ Ipy O @34
Noy| 7| Nu N[ 7Y 0 W, |° -
where E, e H WittnoOX(nittnon) ;o 1y rimnodular and W, e H™™H42 ~oman * and”
D,s D3 Dy
Npa| 7| Nayy Ny

where E, e H (H2¥noX(nizthod) i B ynimodular and W, € H 70?1

0 Ip,
= Ez[ W, 0 ] , 4.35)

a

Equation (4.3.4) implies that the pair (Ny;, D) is r.c. and similarly, equation (4.3.5)
implies that the pair (N5, D4,) is T.C.
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4.3.5L. Theorem (Conditionson P = D, > N » for decentralized H-stabilizability):

LetP e M (Gs) satisfy Assumption 4.2.1 (A); then P has an rc.fr. (N,, D,) which satisfies

conditions (4.3.4)-(4.3.5) of Theorem 4.3.4R if and only if P has an l.c.f.r. (5 2 N, » ) such that

-3 0 I -
[-A’f D ] = R ga and (4.3.6)
pl pl -w, 0 1 X
-N,, D,,| = 0 E;! @4.3.7)
p2 “p2l = 0 I, |72 3.

where the H-unimodular matrices £, ¢ HtHo)x(nirtno1) g o py (niztno2)x(niztno2)
and the matrices W, e Hnowxniz Wy e HMPMi 4re efined in equations (4.3.4)-(4.3.5).
Equivalently, there exists an H-stabilizing decentralized compensator C, for P € M (Gy) if
and only if P has an lc.fr. (5p,1§l-p )- such .that conditions (4.3.6)-(4.3.7) hold for some

H-unimodularE, ,E, € M (H)andsome W,,W, € MH).

4.3.6. Comments:
() Let (N,,D,) be an r.c.fr. of P; then by Lemma 2.3.3.(37), (Xp, Yp) is another r.c.fr. of P if
and only if (X,, ¥,) = (N, R, D, R) for some H~unimodular matrix R € H™*™ _ By Theorem

4.3.4R, P can be H-stabilized by a decentralized compensator if and only if any r.c.f.r. (X'P »Yp),

X1 Yp1]
X, = [ sz} 2 Yp = Y, , of P is of the form
-Ypl- -Dpl- rlnn 0 ]
X1 Ny, E, : 0 0o w,
=|.--[R=]|". ool o |R, (4.3.8)
Y,2 D,y 0 : Ep|| 0 Ip,
.XPZJ -N,,z_ i Wy, 0 ]

for some H-unimodular matrix R € H"™**%  where E, , E, ¢ M (H) are H-unimodular

andWl,Wz € m(H)

Similarly, lct (D~p . N p)beanlcfr. of P ;then ()7 b X p) is another Le.fir. of P if and only
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if (¥, X,) = (LD, , LN,,) for some H-unimodular matrix L e H"™*" By Theorem 4.3.5L,

P can be H-stabilized by a decentralized compensator C; if and only if aﬁy Le.fr. (f’- p,f 2)

Rall

:=[ f’;,l fpz] ,fp :=[fpl fpg] of P is of the form

. -1 :
- - 0 Ip,:-w, o |[ET - O
[-Pl YPI + TAp2 sz] =L -W, 0 ‘00 1”02 ) b, (439)
0 :E;!

for some H-unimodular matrix L ¢ H "X |

(ii) In Section 4.4 below, we show that, if H is Ru (s) as in Example 2.2.2, conditions (4.3.4)-
(4.3.5) (equivalently, conditions (4.3.6)-(4.3.7))onP € Rgy(s )'eX ™ are equivalent to the con-

dition that the system S (P, C,) has no fixed-eigenvalues in I

(iiii) Suppose that P is given by a b.c.fr. (N,,, D, N,;) and C, is given by an Lc.fr. (D,, N, ) as
in case (iif) of Analysis 4.2.3. Consider equation (4.2.15) and apply Theorem 4.3.4R to the r.c.fir.
(Np. Dp) == (N, X, Y) of P ; then equation (4.3.8) implies that P = NP,D'INP, em (Gs) can
be H-stabilized by a decentralized compensator C; if and only if there exists an H-unimodular

matrix R € H™*™ gych that

Y] [T O
Nox | =B 0 w, |k md (4.3.4B)
R Ero In.-z'R ,

where B, ¢ HitHoDX(tittno)) anq . o | (iztno2)X(miz+no2) ore I nimodular, and

W, e HMeixniz, W, e HM"omni1

Similarly if C, is given by an r.c.f.r. (N, D,) as in case (iv) of Analysis 4.2.3, then consid-
ering equation (4.2.18), we apply Theorem 4.3.5L to the l.c.for. (15,,. N p) = ()7 X Ny) of P.
Following cquation (4.3.9), P can be H-stabilized by a decentralized compensator Cy if and only

if there exists an H~unimodular matrix L e H "°*" such that
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. - 0 I,

| XNy P Yy | =L |y o |ET'. and _ (4.3.6B)
. _— Wy 0]

| XNpz © Y2 | =L| o f |Ei', (4.3.7B)

where Ef! ¢ H (irtro)Xx(irtno1) ong Efl e H(niz+noz)X(n£2fnaz) are H—unimodular and

W, e I.I”olx'h‘Z’vV2 c Hﬂo?.xnc'l

Equations (4.3.4B)-(4.3.5B) (equivalently, (4.3.6B)-(4.3.7B)) will be useful in Section 4.4

when we explain “rank-tests” for decentralized H-stabilizability in terms of the state-space

description of P.
O
Proof of Theorem 4.3.4R:
( <=) By assumption, an r.c.f.r. (Np. D) of P satisfies conditions (4.3.4)-(4.3.5); then
D,, Dy Dy Iy, O
N, pl N 1 N 12 E 1 - 0 0 Wl
=1 - Jd=1 - 4.3.10)
Np2 Ny Nnp W2 0]
Refer to equation (4.2.7) and consider the compensators C,; = N,,l yCa= D;‘zlﬁ c1 » Where

Dcl 'DcZ'Ncl ,charegivenby

[ ] [ mi ]E , 4.3.11)
[0t Ha] -

Since E{' ,E;' € mM(H),clearlyD,, ,D 2, N, N,y € MH); fork =1,2, Dy, Ny)

[ Iy ]E;‘ . 4.3.12)

is an l.c. pair since E; is H-unimodular.

With (D, N,;) as in equation (4.3.11) and (D5, N.;) as in equation (4.3.12), and

Wy, D, ) as in equation (4.3.10), equation (4.2.7) becomes
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Dy Dy
Dy Ny 0 0 Niu Nip Ipy: 0
Dy, = 0 0 iB,, Mol | =l (4.3.13)
Dy Dp 0 :1p,
Ny Ny

Now P e M (Gy) implies that N, € M (Gs) , hence Ny; , Ny € M (Gs) and
NNy, NNy € M(Gs) . We use these facts to establish that detD,; € / and

detD,, e I: from equation (4.3.13),

b-c lDll +I‘V-c1Nu =In“ ’ (4.3.14)

DDy +NNyp=1p,. (4.3.15)

By equation (4.3.14), detD, detD 1, = det(l 5, = NN ;) € I ; therefore, by Lemma 2.2.4.(ii),
detD,, e [ and detDy; e I. By equation (4.3.15), detD ,,detD 23 = det(l 5., ~ N.oN3p) € I;

therefore, by Lemma 2.2.4.(ii), detD,, e I and detD,, € 1.

This proves that (D"c,,v 1\7”) given by equation (4.3.11) is an L.cfr. of C; € M (G), and
(5;-2' ﬁcz) given by equation (4.3.12) is a Lc.fr. of C, € M (G). Now since equation (4.3.13)
implies that Dy, is H-unimodular, with this choice of (D1, N,;) and (D3, N,,) , where C; =

¢, 0 DNy 0

[ 0 ¢, l = 0 B | the system S (P, C, ) is H~-stable. Therefore the decentral-
ized compensator C, , specified by equations (4.3.11)-(4.3.12), H-stabilizes P .

(=>) By assumption, P satisfies Assumpﬁon 4.2.1 (A), and P can be H-stabilized by a decen-
tralized compensator C, . So (by Definition 4.3.1) C, satisfies Assumption 4.2.1 (B) and the sys-
tem S (P, C;) is H-stable; thercfore Dy, given by equation (4.2.7) is an H-unimodular matrix,
and heﬁce, by normalization, equation (4.3.13) holds for some r.c.f.r. (Np.D,) of P. Using the
fact that P € M (Gy) and the same reasoning as in the sufficiency proof above, equation
(4.3.14) implies that (N, Dy,) is an r.c. pair and detD,, € [; similarly, equation (4.3.15)

implies that (N 59, Dop) is anr.c. pairand detDy, € 1.



86

Now let (Dy3, Nyp) be anLe.£ir. of N 3Dt and let (Dgg, Nog) be an Le.fir. of NosD 33 (note
that Dy, , Dyy € I); then with Uy, Vyy , Ugg , Vay € M (H ), we write the following general-
" ized Bezout identities using equation (4.3.13):

"D,y N.j)[Dy Uy Ipy O

~Ny Dyl [Ny V| = 0 1, ' (4.3.16)

no1

[D.y Neg)[Dayg U] |Imn O

Ny D| [Ny Vo | =| 0 1,,,,| @.3.17)
) D¢y Ney
The matrices in equations (4.3.16) and (4.3.17) are H-unimodular. Let E;! := _ﬁ" 5“
DcZ N c2
letE5! = Ny Dol * clearly E, and E, are F{-unimodular matrices with elements in H .

Now let W, = -ﬁ"Dlz'l'b-ule € Hnolxniz and let W, = —ﬁZZDZI"'EZZNZl

e H"P"1; from equations (4.3.13), (4.3.16), (4.3.17) we get

[Dy; Dy Ip, 0

Ef': 0 ||Ny Ny 0 w,
cee el (4.3.18)

0 EEfl Dy Dy 0 Ip,

Ny Np| |w, 0

E, 0
Pre-multiplying both sides of equation (4.3.18) by [ 0 Ez} » we see that this r.c.f.r. (V,, D, ) of

P satisfies conditions (4.3.4)-(4.3.5) for some H-unimodular £, € () and some

H-unimodularE, € M H).
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Proof of Theorem 4.3.5L:

(=>) By assumption, an r.c.f.r. (N,, D,) of P satisfies conditions (4.3.4)-(4.3.5). Consider the

following generalized Bezout identity:

Imi 01 To o] || [ 0] o o] T 0 0

o ol|ET 1., 0|2 ||E1] o w,| Ei1,, 0 0 I,

O Tni) [-%1 07 | [0 7Tm [0 0 ] In, ©
W, 0 |EU | 0 1,,|E7||E2w, o 520 1p, | 0 0 I,

4.3.19)

Let (5p,ﬁp) be such that [— ~pl Dpl] is as in equation (4.3.6) and [- ~p2 Epz] is as in

equation (4.3.7); then equation (4.3.19) is of the form

Dpl -Upl
Vor Upt Voo Up N,y f;pl I, O
T e I PR
“p1 1 ~p2 2 7
P P p p sz sz
where V,; e Hmxnin Uy e Hnixno1 V3 € Hnixniz Uy, e Hnixnoz

—~ o~ ~

Upy € H"XMo |y | e HMolXo" Upy € H"%XMo |y, & HM™™ Mo are defined in an

obvious manner by comparing equations (4.3.19) and (4.3.20).

We must show that the pair (5p,ﬁ » ) » satisfying conditions (4.3.6)-(4.3.7), is in fact an
Lefr. of P 1 1f (D, N, ) is so that conditions (4.3.6)-(4.3.7) hold, then clearly 5, & H ™"

and N, € H"*" By equation (4.3.20), the pair (5, N, ) is Lc.; furthermore,

- - D,, - - N, - -
[-N”l - p2] Dp2 +[DP' Dpz] Np2 =-NpD, +D,N, =0, (4321)

hence, N Dy = D pNp . By Corollary 2.4.4, equations (4.3.20)-(4.3.21) imply that

detD, =detD,, -(4.3.22)
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where, detD, e I since (V,, D,)is anr.c.fr. of P ; hence, detD, e I by equation (4.3.22).

Now we have established -that 5; 1 ¢ m(G); therefore equation (4.3.21) implies that
P =D,'N,, . Finally, (D, , N, ) defined by equations (4.3.6)-(4.3.7) is an Lcf.r. of P.

By Theorem 4.3.4R, P can be H-stabilized by a decentralized compensator C, if and only
if (N,,D,) sau‘sﬁes conditions (4.3.4)-(4.3.5); we have shown above that conditions (4.3.4)-
(4.3.5) imply that an Lc.fx. (D, N, ) satisfies conditions (4.3.6)-(4.3.7). It is entirely similar to
show the converse, and thus we omit the proof of sufficiency.

O

Theorem 4.3.4R states that P can be H-stabilized by a decentralized compensator C if
.and only if conditions (4.3.4)-(4.3.5) are satisfied. So in Theorem 4.3.7 below, we assume that
some r.c.for. (N,, D,) of P satisfies these conditions in addition to Assumption 4.2.1 (A) in order

to find the class of all H-stabilizing compensators. Equation (4.2.7) is once again the key tool.

43.7. Theorem (Set of all H-stabilizing decentralized compensators):

LetP e M (Gs) satisfy Assumption 4.2.1 (A); let in addition an r.c.f.r. (N,,Dp) of P satisfy
conditions (4.3.4) and (4.3.5) of Theorem 4.3.4R; equivalently, let an lc.fr. (D,,N,) of P
satisfy conditions (4.3.6) and (4.3.7) of Theorem 4.3.5L. Under these conditions the set Sd P)

of all H-stabilizing decentralized compensators for P is given by
C; 0 J DN, ©

Sa @)= { C[ 0 c, 0 B,

[b’cl Eﬁc,] : 0 [1,,,., : Q,]E;‘ : 0

0[B! ﬁ,,.z] - 0 : [1,,,.2 AR

for some Q; € H"™1%! g, & H"™M2X"2gych that det(/ ,,, — Q,W,0,Wy) € J } @323

equivalently,
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Cc, 0 N.DF} O
Sd(P)=={ Ca=| 0 c,| =

0 NDF
- 0 _ -
ct E‘[;Ql] 0
Dcl 0 Nol
0 B c2 . —Qz
0 i E

forsome 0, € H™XMol o, ¢ H™Ro2 quch that det(l ,,, — Q,W,0,Wy) € J } (4.324)

the map (Q,,Q2) > Cs . @1, @, € M(H) , such that det(l p,,— Q,W,0, W) e J
C; € S;(P),is a bijection; for the same pair (Q, Q») , equations (4.3.23) and (4.3.24) give

the same H-stabilizing C; .

4.3.8. Comments:

(i) In conditions (4.3.4)-(4.3.5) (equivalently, (4.3.6)-(4.3.7)) if either one of W, or W, is the zero

matrix (i.e., if both of D, = 0 and N, = 0 in equation (4.3.4) or both of D; =0 and N5; =0 in

Inu Q IWI

equation (4.3.5) ), then for all Q,,0, € M (H) , det(I,,, + QW) := det oW, I | =
i2

det(l p;, — QW20 W) = det(l ,, ~ Q,W,Q,W>,) = 1 and hence, the set S4 (P) in equation

(4.3.23) (or (4.3.24)) is parametrized by two free parameters O, and 0, € M (H). 7
(ii) In Theorem 4.3.7,if P € M (G ) instead of 71 (Gs) , then the matrices 0, € M (H) and

~ Inil
Q, € M(H) should be chosen so that detD,, := det([l,,anI]Ei"[ 0] e I and

- ! pis
detD ., = det( [ 1,,‘.25 Qz] Ez_l[ 0 ] ) € I inaddition to det(/,, + QW) € J.
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Proof of Theorem 4.3.7:
We only prove equation (4.3.23); the proof of (4.3.24) is entirely similar.
If C4 is given by the expression in eéuation (4.3.23), then C4 H-stabilizes P:

With (N,, D) as in conditions (4.3.4)-(4.3.5) and (D, N, ) given as in the expression (4.3.23),

we obtain
Dpl
[ cl Ncl] 0 Npl
0 [ ] || 1,
sz
-E [ p;y 01]
I:Im1 Ql]El—13 0 1_ 0 Wl_ In, O\W,
= : : B = =: R. (4.3.25)
0 : [Imz . Qz] E3! F 0 Ipg [szz Imz]
Ed w, o

The matrix R defined in equation (4.3.25) is H-unimodular since by assumption, Q, , Q,
e MH) satisty detd p,,— Q,W20,W,) € J. Therefore equation (4.2.7) is satisfied;

equivalently,

D.D,R' +N.N,R =1, . (4.3.26)

Note that P € M (Gs) and N, , N.N,R™' € m (Gs); hence equation (4.3.26) implies that
-detD, = detD, detD,, € I and therefore, by Lemma 2.2.4.(ii), detD., € I anddetD,, e I .
By equaton (4.3.23), the pair (D.,N;) is Llc. in mM@E) since
[5“ Eﬁcl] =[I,,,.l : Q,]Erl , where Ef' € m(H) is H-unimodular. Similarly,
(D~c2, ﬁcz) is also l.c. Therefore, using equation (4.3.26) and the same reasoning as in the

(sufficiency) proof of Theorem 4.3.4R, we see that this Cy H-stabilizes P.
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Any decentralized compensator Cy that H-stabilizes P is given by the expression in equa-

tion (4.3.23) for some unique pair Q1 ,Q2 € M (H) such that det(I p,, — Q2 W,0,Wy) € J:

The pair (N, D, ) satisfies conditions (4.3.4)-(4.3.5); we have the generalized Bezout iden-

~-lﬁ cl 0
tity in equation (4.3.19). By assumption, C; = 0 SN H-stabilizes P , where
cl

D,y D3 N,y ,N,; € M (H); hence by equation (4.2.7), detDy, € J . By nomalizing Dy,

0 0
withQy:= | Do i N |Eo| -+ | € MEH)LQr=[ By Ho]Eof | & Mt we
Inol Iﬂoz
obtainﬁch+1\7ch =1, ; hence
L Iy, 0 0 O
[Dcl Ncl] 0 Ery 2 0] 0 w, In, 0 Ipy 0 0, 0
0 D,y Ny 0 : E 0 Iy 0 0 |7 I )
"7 wy, 0 0 1, 0 fnz 0 Q2
4.327)

Post-multiplying both sides of equation (4.3.27) by the first /~unimodular matrix in equation
(4.3.19), we obtain

Iy O 0 O]

[Dcl N”:l 0 Ini 0 Q1 01| 0 0 1,, 0[BT 0
0 [5,,2 1\762] o Iz 0 Q; 0 Ip,,-W; O 0 E‘l
[1m @i]&* [-em o]Es
= N (4.3.28)

[0 o] 1y 0] E5
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By equation (4.3.28), [-Qsz 0] E{' =0 implies that Q,W,=0; similarly,

[-Q Wy 0] E3;' =0 implies that QW = 0. Therefore det( ] p;,— Q2W20,1Wy) =1 for this

~ =~ 0
choice of 0,0, € M (H ). Itis also clearthatQIW1=[D,_.l Ncl]El[Wl] =0 and Q,W,

- ~1 1o
= [ D,y ch'] Ez[Wz] = ( from equation (4.3.27).

Finally, equation (4.3.28) shows that (D, N.1) and (D2, N.2) are of the form given by
the expression in (4.3.23).

Now we prove that the matrices Q,, 0, € M (H ) define C, and C, uniquely:

Ecl 0 - ﬁcl 0 A 5{:1 /9 - ﬁcl AO
LetCy = 0 5c2 0 ﬁcZ e SgP),andC, = 0 5(:2 0 N, € Sa®),

where S (P) is given in equation (4.3.23). By equation (4.3.23),

[5cl ﬁcl]El 0 [’nn : Ql] 0 ’
-~ - = . , (4.3.29
0 [Dc2 ch] E, 0 [Imz : Qz]
and
[Ecl ﬁcl]El 0 [Iml él] 0
A A = A i (4.3.30)
0o [0 Na|E, A

-1=D:} ; consequently, Q;=0; . Similarly, [I,,,-2 Cz] E;= ;'21[1,,,-2 Qz] =
Dc‘zl[ Ip; éz] and hence, ~c‘§ = D~c'73 ; consequently, O, = éz .

Now let C; be given by an l.c.f.r. as in equation (4.3.23) but 64 be given by an r.c.fir.

(N;, D) as in cquation (4.3.24); then
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-1 el —Ql 0
El Dcl 0 . Inol

= A . 4.3.31
o[ ez 0 ~0> ¢ )

0 Ez: D.> I no2

By equations (4.3.29) and (4.3.31),
~ ~ [ -1 el - A
[Dcl Ncl]El 0 ET| p,, 0 -0,+2; O
o 5. #lell Nl = ) (4.3.32)
[ c2 ”] 2 0 E;‘[ D; 0 -0:+0;

By equation (4.3.32), C; = C, , equivalently, D;'N, = N,D.! , (=D, \N.; +N.,D,, = 0 and
—D,3N.2+N,2D, = 0) if and only if -0; +Q; = 0 and 0 + O, = 0 . Therefore for the same
Q, € H™MXl and 9, ¢ HM&N2  equations (4.3.23) and (4.3.24) give the same C, and
Ca.
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4.4. Application to stable rational functions

In this section we consider the case when H = Ry, (s) as in Example 2.2.2. Working in this
principal ring allows us to show the connection between our results and those of [Wan., And.1].
The major result in this section is that P satisfies conditions (4.3.4)-(4.3.5) of- Theorem 4.3.4R
(equivalently, conditions (4.3.6)-(4.3.7) of Theorem 4.3.5L) if and only if the system has no
fixed-eigenvalues in U. Thereforé, for H = Ry (s), Theorem 4.34R becomes eéuivalent to
[Wan.1, Theorem 1]: P can be F-stabilized by a decentralized dynamic compensator if and only
if it has no decentralized fixed-eigenvalues in u.

In {And.1], a rank test for fixed-eigenvalues was given in terms of a left-fraction representa-
tion of the plant P. We find that a similar test is useful in our approach; we give rank conditions
in terms of an r.c.fr, an l.c.fr. and a b.cfr. of P. We start our discussion by considering real
constant decentralized compensators.

K, 0
Consider the system S (P, K,) in Figure 4.6; let K, := [ 0 Kz] Ky e RWXAo1

K, € R Note that S (P, K,) in Figure 4.6 is the same as S (P, C, ) in Figure 4.1, where

c, 0 K, 0
Ca= 0 C, is replaced by the real constant matrix Ky = 0K, |-

Uy
F====-==== ‘; l
- [ +
1
u Ve ! K X J1 }’1
+ S 1 1 I . + "
I I
' Kg ! e P
'
] ! +
“2 »() : K, l ki ‘J\ y:z
+ N ! | +
1 |
Cmmm - = J

Figure 4.6: The constant output-fcedback decentralized control system S (P, Ky ).
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The plant P still satisfies Assumption 4.2.1 (A) of Section 4.2, where H is replaced by Ry, (s).
Equations (4.2.4)-(4.2.5) are now replaced by equations (4.4.1)-(4.4.2) describing the system

S (P, K;) with constant decentralized output-feedback control:

u

Dy + K Np ] Ipy 0 Ky 0 7| u;
[Dpz'l'Kszz E’"[ 0 Ip, O Kz] uy|’ (@4.1)

uz'

Np1 [ Y1 0 00 O0]|[®

Np2 Y2 0 0 0 0%
Dy, % = wi ¥ Iy 0 0 O | uyf- “.42)

Dp2 -yz' 0 I,,,.z'O 0 u2'

The closed-loop system S (P, K, ) , described by equations (4.4.1)-(4.4.2), is H-stable if and only

Dp 1+K 1N Pl . . |
if det D3+ KNy, e J. Furthermore, s, € U is an eigenvalue of the closed-loop system if
and only if

Dpl(so)"‘Klel(So) |
det» Dpo(so) + K2Npo(s,) =0. 4.4.3)

4:4.1. Definition (Decentralized fixed-eigenvalue):

The plant P is said to have a decentralized fixed-eigenvalue (or fixed-pole) at s, € ﬂ‘ (with

Kl 0 . Dpl(so)"'Klel(so)
respectto K; = 0 K, ) iff det D, 2(5,) + Ko, 5(s,) =0 forallK,,K, € M R).

Ifs, € Uisa fixed-eigenvalue (fixed-pole), then obviously s, € U is an eigenvalue of

Dpi(s,)
the open-loop system (i.e., withK, =0,K, =0, det[ D,,Gs.)| = 0 and hence, s, is an eigenvalue
p2\0o

of P); this cigenvalue s, € I remains as a pole of the closed-loop system for all rcal constant
dccentralized feedback compensators. We prefer to call such s, € ia fixed-eigenvalue rather
than a fixed-mode; although the cigenvalue at s, € I remains fixed irrespective of the constant

decentralized compensator, the eigenvector v, associated with the fixed-cigenvalue s, € U
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depends on Ky and K,. Therefore the “mode” v,e*’ changes "direction” depending on the
choice of constant decentralized control; equivalently, the initial condition that sets up the mode

v, e*! varies with K1, K, although the eigenvalue at s, U does not move.

In Definition 4.4.1, fixed-eigenvalues are defined as those eigenvalues of the plant which
cannot be moved by any real constant decentralized feedback. We will later establish that these
fixed-eigenvalues remain fixed even under dynamic decentralized output-feedback, in particular

under complex constant decentralized output-feedback.

Theorem 4.4.2R is the main result of this section. Theorem 4.4.3L and Theorem 4.4.4B are

dual results for an l.c.f.r. (D~p N, p)andab.cfr. (N, , D, Ny) , respectively.

4.4.2R. Theorem (Rank test on (Np, D,) for fixed-eigenvalues and H-stabilizability):

Let P € M (R,,(s)) , P =N,D," satisfy Assumption 4.2.1 (A) where H is Ry (s). Then

statements (i), (ii), (iii), (iv) below are equivalent:
(i) Theplant P has no decentralized fixed-eigenvalues in If;

(i) foranyr.c.fir.(N,,D,)of P asin Assumption4.2.1 (),

[Dp1(s))] -
rank N, (s) 2n;, foralls € U, and 4.44
p
-DpZ(s). -

(iii) conditions (4.3.4)-(4.3.5) of Theorem 4.3.4R hold; i.e., an r.c.fir. (Np,Dp) of P can be

chosen so that

Dpy(s) Ipy O
Npl(s) =E1(S) 0 Wl(s) ’ (4.4.6)

where E (s) € M (R, (s)) is Ry—~unimodular and W(s) € M (R, (s)), and

Dpa(s) 0 Ip,
Npa(s)| = Eq(s) Wys) 0| 4.4.7

where Eo(s) € M (R, (5)) is Ry—unimodular and Wo(s) € M1 (R, (5));
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c:; 0
there exists a dynamic decentralized compensator C; = [ 0 C, } (satisfying Assumption

4.2.1 (B) ) which H-stabilizes P.

4.4.3L. Theorem (Rank test on (5,, N ) for fixed-eigenvalues and H-stabilizability):

Let P € M(R,(s) , P =D;'N, satisfy Assumption 4.2.1 (A) where H is Ry (s); then

statements (i), (ii), (iii), (iv) below are equivalent:

®
(ii)

(i)

iv)

The plant P has no decentralized fixed-eigenvalues in I;

for any Lc.fr. (D,, N, ) of P as in Assumption 4.2.1 (A),

rank _—-pl(s) : 15,,1(5) 2n,,, foralls € U, and 4.4.8)

rank| ~N,(s) } Dpa(s) | 2n,z, foralls e U; 4.49)

conditions (4.3.6)-(4.3.7) of Theorem 4.3.5L hold; i.e., an Lc.fr. (D,,N,) of P can be

chosen so that

~ . e~ 0 Iﬂol
[0 £ Byu0] =[ “Wals) © ]Em“- (4.4.10)

where E(s) € M (R (s)) is Ry—unimodular and Wy(s) € 11 (R, (s)),and

- L~ -Wis) 0
[- p2(s) : DPZ(S)] =[ 0 Imz]Ez(s)-l’ 4.4.11)

where E5(s) € M (Ry(s)) is Ry—-unimedular and Wy(s) € M1 Ry (s)),

c, 0
there exists a dynamic decentralized compensator C; = [ 0cC, ] (satisfying Assumption

4.2.1 (B) ) which H-stabilizes P.
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4.4.4B. Theorem (Rank test on (N, D, Nj;) for fixed-eigenvalues and H-stabilizability):

Let P € MRy (s)) , P =N, DN, satisfy Assumption 4.2.1 (A) where H = R, (s); then

statements (i), (ii), (iii) below are equivalent:
(i) The plant P has no decentralized fixed-eigenvalues in If;
(ii) foranyb.c.fir.(N,,D, Np;) of P as in Assumption 4.2.1 (A),

[ D(s) ~Npas) ] - »
>
rank Npr1(s) 0 2n, foralls e U, and (4.4.4B)

[ D(s) —=Npn(s) ] s -
rank N a(s) 0 2n, foralls e U; (4.4.5B)

c; 0
(iif) there exists a dynamic decentralized compensator C; = [ 0 C, } (satisfying Assumption

4.2.1 (B) ) which H-stabilizes P.

4.4.5S. Remark (State-space description of P):

Consider P = C(sI, ~A) 1B , where (C,A,B) s U-—stabilizable and l{—detectable. Let Ny =

c 1 [Cr sIp-A , )
= C, WD = ———| , Ny :=B=[BI:82] ,where-a € C\U ; then

s+a s+a s +a

(Npr» D, Ny) as defined here is a b.c.f.r. of P. By Theorem 4.4.4B, the plant has no fixed-
eigenvalues in U if and only if conditions (4.4.4S)-(4.4.5S) below hold [And.1]:

[ sln —A -82 ) -

rank C, 0 2n, foralls € U, and 4.4.45)
[ sIn -A -B] T -

rank c, 0 2n, foralls € U; (4.4.55)

we omitted the factor p 1 in equations (4.4.4S) and (4.4.5S) for simplicity.

+a

Note that conditions (4.4.45)-(4.4.5S) need to be checked only fo_r those s € If such that
det(s/, —A) = 0. The derivation of conditions (4.4.4S)-(4.4.5S) is very simple due to Theorem
44.4B.
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4.4.6. Comments:

(i) Theorem 4.4.2R states that s, € Uis a fixed-eigenvalue if and only if either

Dp1(s,) Dpa(s,) - .
rank Nyi(s,) <n;, or rank N,2(s,) < n;,. Note that conditions (4.4.4) and (4.4.5) cannot

both fail at the same time: if both conditions were not satisfied, then

Dp (so) Dp l(so) Dp2(so)
rank N, (s,) Srank N, 1650) + rank Ny2lso) < n;1 + n;2 , which contradicts that (N, D,)

. . . Dp l(so)
is a r.c. pair. Therefore, if rank N,1(5,)

DPZ(Sa )]

= o< n;q, then rank[N 2(55) 2n;o+0 so that
P2V

s, € Uisa fixed-eigenvalue but not an eigenvalue associated with a hidden-mode.

Similarly, conditions (4.4.8) and (4.4.9), conditions (4.4.4B)-(4.4.5B) or conditions

(4.4.45)-(4.4.5S) cannot fail at the same time.

(ii) Theorem 4.4.2R states that if the system has no fixed-eigenvalues in I , then the Smith form

Dpy Ipy O
of [ N 1] is [ 0w, (here we assume that W, is also put in the Smith form), and at the same
P

Dy,

N,

time the Smith form of

0 Imz
is [Wz 0 ] (here ‘W, is also put in the Smith form and

appropriate column permutations are made). Equivalently, the first n;; invariant factors of

Dpl Dp2 -
[ N, 1] are equal to 1 and the first n;5 invariant factors of [ N, are equal to 1. Hence,s, € U
P P

Dy

Np,

is a fixed-eigenvalue of P if and only if either the n; ¢th invariant factor of [ is zero at

Dy,
Np2

S, € U orthe n;yth invariant factor of iszeroats, € U.

(iii) Let P € M (IR,,(s)); then in equations (4.4.6)-(4.4.7), since Npy , Npa € M(Ry,(s)) ,

Dy (=)
p
W, and W, € M (R,,(s)); hence, for k = 1,2, rank[ N, ( o0 )] < ny . Hence if conditions
p

Dy

' f2
(4.4.4)-(4.4.5) hold, then N has exactly n; invariant factors that arc cqual to 1.
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(iv) Conditions (4.4.4B)-(4.4.5B) of Theorem 4.4.4B need to be checked only foralls e U such
that detD(s) =0 (in Remark 4.4.5S, for all s € U such that det(s/, —A)=0 ) since
rankD (s) = n for all others € U. In other words, if 5, € Uisa fixed-eigenvalue, then s, is an

U-pole of P =N,,D-'N,,.

(v) From conditions (4.4.4B)-(4.4.5B) of Theorem 4.4.4B, we obtain the following conditions on

Py Py NprlD—leIl Npp1D7 N2
pr pr

fixed-eigenvalues: Rewrite P as[ Py Py| =N 2D"NP“ | N 2D“Np,2 .

(a) (A sufficient condition for no fixed-eigenvalues in lz.l): If (Npr1, D, Npypy) is a boefir. of
P, , then the plant P has no fixed-eigenvalues in U ; (the same holds if WNpr2s D, Npypp) is a

D(s)

b.cf.r. of P,,). This claim follows from noting that rank N, (s )] =n forall s e U since
pr

(Npr1, D) is an r.c. pair (hence condition (4.4.4B) holds) and that rank[ D(s):— Pn(s)] =n
foralls € U (hence condition (4.4.5B) holds). We can state this same condition in the state-
space setting of Remark 4.4.5S where Py, = Cy(sI, —A)'B, : if (Cy,(sI, —A),B;) is u

—stabilizable and U—detectable (sometimes referred to as single-channel minimality), then P has
no fixed-eigenvalues in u.

(b) (Some necessary conditions on the transmission-zeros of the partial maps P;; if 5, € 7}
is a fixed-eigenvalue): (1) Let s, € Ubea fixed-eigenvalue; then either condition (4.4.4B) fails
(and hence s, € U is a transmission-zero (f.z.) of P, ) or condition (4.4.5B) fails (and hence
S, € Uis atz of Py). (2 Letny,y=nand n,y=n;y ;5 if s, € lisa fixed-eigenvalue, then
s, isatz. of Py;, Py, and of the plant P. To justify this claim, without loss of generality, let

D(s,)

Nprl(sa

condition (444B) fail at s, € Il ; then rankI: )] <n implies that

[ D(so) _Npll(so) ~
rank Ny 1(50) 0 <n+n;; (andhences, € Uisatz. of P;), and

rank| D(s,) : — p,z(so)] < n implies that s, € Uisatz. of Py . Finally, since condition
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D(so) - plZ(Sa) "Npll(so)

(4.44B) fails, rank Ny 1(50) 0 : 0 <n+n; implies thatl

D(so) = pl2(sa) _Npll(so

Nprl(so) 0 0 -
rank| <n +n;,+n,; and hence, s, € Uisat.z of the plant P.

N, pr2(so) 0 0
Existence of these transmission-zeros is similarly proved if we start by assuming that condition
(4.4.5B) fails.

O
4.4.7. Corollary:

Ifs, e Uis a fixed-eigenvalue, then the system S (P, C,) also has a mode associated with
S, € U for all dynamic decentralized compensators C4 (in particular, for all complex constant

decentralized compensators).

Proof:
By Theorem 4.4.2R, s, € Uis a fixed-eigenvalue if and only if either condition (4.4.4) or

Dp l(sa)

< n;q.
Np l(so) i1 Then

(4.4.5) fails. Suppose, without loss of generality, that rank[

Dp l(so ) ~

rank([b'cl(s,,) ﬁc,(s,,)]- N,1,) )< myy, forall D, (s,) » No1(s, ).

(5chp1 +ﬁc1Npl)(so)

Therefi Y g
prelore ’“”"[ (De2Dpa+NeaNpa)(s,)

< rank[ (EClel +1—v-clel)(Sa)] +

rank[ (De2Dp2+ NeaNp2)(so >] <1+, for all D y(s,) s Ner(s,) » Dealso) » Neals,) ; conse-
quently, s, € Uis always a closed-loop eigenvalue of S (P, C,).
(]

We only prove Theorem 4.4.2R in detail; the proof of Theorem 4.4.3L is very similar and
follows from Thcorem 4.3.5L. The proof of Theorem 4.4.4B follows from Theorem 4.4.2R
(equivalently, Theorem 4.4.3L) and Comment 4.3.6.(iii).
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Proof of Theorem 4.4.2R:

The equivalence of statements (iii) and (iv) was already established in Theorem 4.3.4R for any

principal ring H ; here we take H = Ry, (s). Now we prove the first three statements:
(i) <=> (ii)

(=>) Without loss of generality, suppose that condition (4.4.4) fails for some s, € I, i.e., let,

forsomes, € U,

Dpl(so) 4.4.12

.Dpl(sa)

Dpy(s,)
then rank[ D, (s,) +K,Np1(s,,)] = rank ([Im1 Kl] Np1(5,) ) Srank

Dpl(sa) +K1Npl(so).
Kl € m (R). SO, rank Dpz(so) +K2Np2(sa) S rank[Dp 1(S0) +K1Np [(so)] +

rank[Dpz(so) +KN,yo(s, )] <m+np,forall Ky, K, € M (R); therefore, by Definition 4.4.1,
S, € Uisa fixed-eigenvalue.

The proof would be entirely similar if we started by assuming that condition (4.4.5) fails at

somes, € U.

( <=) Let equations (4.4.4)-(4.4.5) hold but suppose, for a contradiction, that s, € Il is a fixed-

eigenvalue. Then

Dp l(so) + Kle l(so)

max Akl D o(so) + KoNpa(s,)

KuKie M@®)

<n;, (4.4.13)

A A A
for K,,K, € M(R). Let K = { Kie M(R) : rank (D, (s,) + KNy i(s,)) = iy }; by
A
Lemma 2.7.1, K} is nonempty since (4.4.4) holds.

A
Choose I'<\ 1 € Ki; then there are R,~unimodular matrices L, , R; such that

L(Dpi(s,) + I?INP 18) Ry = [Inu 0] ,» where the O matrix on the right is n;4 X ;5 . Let
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Ll(Dpl(so)'"lepl(so)) Inu 0
Dp2(so) R 1= D21(so) D22(so) 4 (4-4-14)
NpZ(so) NZl(so) N22(So)

Dy 1(s,) + K1N,1(5,) Ly(Dp1(5,) + K 1N, (s, )R |

then max rank
K, e m (]R)

max rank[ (Dpa(so) + KaNpa(s, R

DpZ(so)+K2Np2(so) =K; e M®)

max rank(

0 I K DZI(so) D22(so) ) n;+ max rank(Dzz(so)-l-Kzsz(s,))
Kie M@®) ni2 2

Iiy 0. 07| IO
K, e MR)

Nai(so) Nagls,)
and hence, by equation (4.4.13), max rank(Dy(s,)+KoN2(s,)) < niz . Therefore, by

Kie (R)
. A A s
Lemma 2.7.1, with A := Nyg(s,), B :=Dy(s5,), K2 € R¥PM2 o =yi=pn ni=n,,,

D 22(so) A ’ A
rank N 22(5,) max rank(Dy(s,) + KaN2x(s,)) < njz;
o K € M W)
Iml 0 D 22(30)
hence rank Dzl(so) Dgz(s,) = n;y +rank 52 22(5,) < ;1 + n;2 . Consequently, since equation
NZI(So) N22(so)
(4.4.14) holds for all K, e K1 .
pl(so)+Klel(so) Dpl(so)+K1Npl(so)
max, rank Dya(s,) = max rank Dpa(s,) <n;. (4.4.15)
K m
£ K Np2(s,) e m® Np2(so)
Dpa(s,)
Let rank =i rz ; by equation (4.4.5), r2 2 n;5 ; then there are R —unimodular
Np2(s,)
(So) 0 I r2|
matrices L, , R, such that L, N o5, ) 0ol where the O in the bottom left is
D1i(ss) Dialss)
Dp1(so) N1a(s,) Nia(s,)
(n;ztn,2—-ry) x (n;—ry). Let Npi(so) Ry = 0 I, ; then equation (4.4.15)
Dp2(so) 0 0
L™2| Npalso)|d

implies that
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A A .
D yy(s,) Da(s,

" Dy y(s5) +K 1N, 1(s,) R nt ( Iy Ky 0 0| | Nyy(s,) Nia(s,)
Kie M®) Dpa(s,) Kie M® 0 01/,,0 0 I,
2 NpZ(So) 0 0

A A
=ry+ max rank(Dy(s,)+K Ny (s,))<n; . But n; —ry<n;q since ro 2 n;5 ; hence
Kie M®

min{ n;=r,,n;; }= n;-r,y ; therefore, max rank(ﬁ,l(s,)+K,ﬁ“(so)) <n;-ry . Once
. Kie MR)

again by Lemma 2.7.1, with A = ﬁu(s,,) B :=51,(s0) yP=Y=n;,M:=n, , weobtain

Dyy(s,) _ a a
rank| & = max rank(Dy(s,)+KN(s,))<ni=ry. (4.4.16)
NuGod| "¢ e mmy
Dy, (s,) Dy(s,) Dyals,
N, i(s,) N11(55) Nya(s,) Dy(s,)
Finally, by equation (4.4.16), rank D,s,)| = rank 0 1, = rank ﬁ“(s ) +r,
p2\¥o 2 o
L Np2(so) 0 0

D,(s) :
P - .
< n; ; but this is a contradiction to rank[ N = n; ,forall s e U .Therefore,if Ny, Dp) is
p

an r.c. pair and if equations (4.4.4) and (4.4.5) hold, 5, € U cannot be a fixed-eigenvalue.

(i) <=> (iii)
( <=) If conditions (4.4.6)-(4.4.7) hold for some r.c.f.r. (Np, Dp) of P, then any other r.c.f.r. of P
is of the same form as in these conditions except for R;,—unimodular right-factors R (s). Clearly

then the rank conditions in (4.4.4)-(4.4.5) are satisfied for all r.c.f.r.’s of P since the matrices

E (s) , E5(s) and the right-factors R (s) are R —unimodular.

( =>) Condition (4.4.4) implies that there are R—unimodular matrices L, , Ry € M (R, (s))

such that
o 2 e 2 ] i e R (s )orxmiz (4.4.17)
1 Npl 171 0 Nppl|” 12 u . <
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Furthermore, by equation (4.4.5), there is an R, —unimodular matrix L, € 1 (R, (s)) such that
D -D,, D.
p2 21 2 ~ X1
=| , where D Ry (s)¥miz 4.4.18
Lz([ sz]Rl) [NZI 0] where Dy; € Ky (s) ( )

andrank[ Dy : 522] =n, , foralls € If. | (4.4.19)

By equation (4.4.19), the pair (D~22, 52,) is Lc.; hence there are matrices Vo , Uy ,X3,Y,,U>,

V, € M Ry (s)) such that

Vo, Uz][Y: -Uy Ipy O
2 7 _ , 4.4.2
Dy Dy|| X, Vy 0 Iy, (4.4.20)

Now since (N,, D,) is an r.c. pair,

-Dpl(s)- [ Iy 0
Li i 0 || Nyt 0 Nys) )
rank(| -+ --|| -+ |Ry=rank| --- - | =n forals € U. 4.4.21)
0 i Ly || Dpls) Dy(s) Dxfs)
Npafs) (R 0|
Nia(s)

Equation (4.4.21) implies that rank

5n(s) (8)=n;p, forall s € U; equivalently, (N, Dgy)

is an r.c. pair, and hence (recalling the Bezout identity) there are matrices V,, , U,, , fz R ?2 ,

U,,Vy € MRy (s)) such that
_fZ i-;2

From the two generalized Bezout identities (4.4.20) and (4.4.22) we obtain

Dy -Uj;
Ny Vp

=[ o I, |- 4.4.22)

Va+UVy Dy UgUy,
—X2D7, Y,

Y, ~UyU, Ipy O
> - 5 = . (442
N12X2 V2+N12V21U2 0 Iﬂol (¢ 3)
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Now let
' Yz —'Uy .
Ra=|x, v, | € RuGy™; (4.4.24)
and let
Tny UsVy .
R=RiRy o . | RuGY™. (4.4.25)

By equations (4.4.22), (4.4.24), and (4.4.17), R is Ry-unimodular. Let

Vot UV Dy UUa 1 , )
Ef! -=[ By 7, |Lie Rumrtmedsturtien — 4.426)

By equations (4.4.23) and (4.4.17), E{" is Ry~unimodular. Let
e ° (niz+no2)x(niz+no2)
-1._| ~ — RizHnoD)X(MizHod

By (4.4.18), E5! is also Ry—unimodular. Finally let W, := X, € Ry (s)™""2 and let W, :=

NuY3 € Ry (s)™?! Then from equations (4.4.25), (4.4.26) and (4.4.27), we obtain

[Dpt| [T 0]
Ef' i 0 [| N, 0 w,
.. AR=--¢ o] (4.4.28)
0 : E3ll|Dpa 0 Iy,
Np2 W2, O

and hence, with R an R,—unimodular matrix, we have shown that some r.c.f.r. (NpR,DpR) of P

satisfies
-Dpl. [ .Inn 0-.
Npy Eil o w,
IR = - . 4.4.29)
Dp2 [0 Iy
Np2 Edw, o

Therefore, any r.c.f.r. of P can be put in the form in equations (4.4.6) and (4.4.7), except that they
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may have some Ry, —unimodular right-factor.

Proof of Theorem 4.4.3L:
Conditions (4.4.10)-(4.4.11) are equivalent to conditions (4.4.6)-(4.4.7) by Theorem 4.3.5L.

Therefore Theorem 4.4.3L follows from Theorem 4.4.2R.

Proof of Theorem 4.4.4B:
We only need to prove that conditions (4.4.4B)-(4.4.5B) are equivalent to conditions (4.4.4)-
(4.4.5); the rest follows by Theorem 4.4.2R:

Following equation (4.3.4B) in Comment 4.3.6.(iii), condition (4.4.4) of Theorem 4.4.2R

Yy
NoiX

for some Ry—unimodular R € Ry (s)*™% and Ry~unimodular E, e H ®ittno)x(nirtno1)

holds if and only if

) =El(s)[ 0 Wis) ] R(s) (4.4.30)

where Wy(s) € Ry (s)""™"2 By Theorem 4.4.2R, condition (4.4.4) is equivalent to condition

(4.4.6); hence condition (4.4.4B) holds if and only if

Yy(s) -
rank Nop X (5) 2n;y, foralls e U. 4.4.31)
From the Bezout identity (4.2.2) we obtain
D =Ny =Np2 Va X I, 0
0 Inn 0 =Upt1 Yl = =Upt1 Y] . (4432)
Nyp 00 ~Up2 Y Nor itV NpriX

Condition (4.4.31) holds if and only if the matrix on the right of equation (4.4.32) has
rank 2n +n;; , forall s e I{ ; since the second matrix on the lcft of cquation (4.4.32) is

Ru—unimodular, condition (4.4.31) holds if and only if
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D(s) =Npii(s) =Npals)
rank| ©+ 0 y 0 2n+n;,, foralls e i,
Nprl(s) 0 0

D(s) —Np(s) -
if and only if rank N, a(s) 0 +n2n +n;,forall s € U. We conclude that condi-
pr

tion (4.4.31) holds if and only if condition (4.4.4B) holds.

The equivalence of condition (4.4.5B) to condition (4.4.5) can be established similarly.

4.4.8. Algorithm (Decentralized compensator design):

Theorem 4.3.7 and the proof of Theorem 4.4.2R ( (ii) => (iii) ) suggest the following algorithm

for finding the set of all H-stabilizing decentralized compensators based on any r.c.fr.of P .

Given: P € M (R,,(s)) satisfying Assumption 4.2.1 (A) and conditions (4.4.4)-(4.4.5) in
Theorem 4.4.2R.

Step I: Find Ry—unimodular matrices L, , R, such that

D pl [ nii 0
Step 2: Find an Ry;—unimodular matrix L, € M (R, (s)) such that
Dp2 D Dn ~ ni2Xni2
Lo N, Ry = Ny 0 |° where Dy; € R, (s) , (4.4.34)
and  (Dy,D,) isanlc. pair. (4.4.35)

Step 3: Find a generalized Bezout identity for the 1.c. pair (522 , 521):

Y2 “Uy] [{mn O
=| 0 I, - (4.4.36)

X2 Vyu

V. U,
-Dy; Dp
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Find a generalized Bezout identity for the r.c. pair (N2, D2p)

Vo Uy)[Dn -U; Ipy O
X, Y||Np Vo|=| 0 In, |- (4.4.37)
Step 4. Let
L [VatUVaDn Usly . Iy 0
Ef = ~X,Dp Y, Ly, E3 = NaUnUsXy I,y L,, (4.4.38)
and let
Wl = fz s W2 = ﬁzle . (4.4.39)
¢, 0 ~c-l]ﬁcl 0
Step 52 Ca=| o ¢c,| =| o 53, H-stabilizes the given P e -1 (Ry, (s)),
c
where
[Ecl ﬁcl] =[Im1 QI]E:I-l - (4.4.40)
[iz 5 ﬁcZ] =[1n}'z : Qz] E5', (4.4.41)

for some Q,Q, € M (R (s)) such that

det(] pi; = QW20 W) € J. 4.4.42)

a
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4.5. Extension to multi-channel decentralized control systems

In this section we extend the results of Section 4.3 to m -channel decentralized systems
(m >2), and study the implications of the rational functions case of Section 4.4. We do not give
complete proofs here since the two-channel case was studied in detail; the clues we give for each

proof should suffice.

We only analyze the m-channel decentralized system as in Analysis 4.2.3.(i); the other

cases are also easy to extend.

Consider the m -channel decentralized control system S (P, C4),, shown in Figure 4.7; the

subscript m is added in S (P, C4),, to emphasize that this is an m -channel system.

]
| Y1
) >
! :
. - . ! .
:  Ca 1 U p :
! ?
: o b 7
1 : + S "
1
]

Figure 4.7: The m-channel decentralized control system S (P, Cy ).

4.5.1. Assumptions:
Extend Assumption 4.2.1 to m-channcls:
(A) Let P € G™*Y be an m-channel plant, where n, =ny + - +npm

Np

n = nip+ 0 4Ny . Let(N,,Dp) beanrcfir. of P, where N, = | e HMhoXni
Npm
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D

. Pl

Dp=:| : | e H"™ Ny e HWXW Dy e HWXM j=1, -+ ,m. Let
Dym

(5p,ﬁp) be an l.c.fr. of P , where D~,, = [5p1 ﬁpm] e HmoXno ﬁp =

[ﬁpl T ﬁpZ] € Hnoxn‘. ’ﬁpj € Hnoxnoj ,ﬁpj (=] Hnoxnij’j=l’ e ,m.,

The b.c.f.r. (N, D, Npy) of P is similarly partitioned into m -channels.

Let C, =diag[ Cy - c,,,] , Cj € GMi*Moj  1et (D,;,N,;) be an lefr. of Cj ,

where D,; € H™MiX%i N_. e HMiXRoj 1et (N, D,;) be an rcfr. of C; , where
] . J 7 7] J
N, € H"X"i p. e H"Xj j=1, .- m . Then (D,,N,) is an lcfr. and

(Ne,D;) is an rcfr. of C,;, where Dc=diag[Dcl---Dc,,,:|, N, =

diag [ﬁcl ﬁc,,,].zvc = diag [N,, Nc,,.],Dc = diag [D‘,l Dc,,,].

4.5.2. Analysis:

LetP = N,,Dp'l andlet C = D~;1ﬁc » where (N, D, ) is an r.c. pair as in Assumption 4.5.1 (A),

and (D~c, ﬁc) is an l.c. pair as in Assumption 4.5.1 (B). The m-channel system S(P,Cy)p is

then described by equations (4.5.1)-(4.5.2).

g
Echpl+Nclel D, 0 N, 0 u.m ‘
- - &%=\ K luy| s @sD
D oDy + N oy N 0 -+ Dy 0 - Noml| -
Uy’
[ Np1 ] [ ¥1] [ uy]
Npm : Ym 0:0 Up
= ’ see 1 e A 4.5.2)
Dy, 2 B : U (
7 : Ip : 0 :
me ym' Uy’




The system S (P, C4 ). is H-stable if and only if

Dy,
Dy Ney - 0 0 Ny,
0 O - Dy Nom|| Dpm
Nopm

is H-unimodular .

4.5.3. Theorem (Conditions on P for decentralized H-stabilizability):
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4.5.3)

Let P € M (Gy) satisfy Assumption 4.5.1 (A); then there exists an H-stabilizing decentralized

compensator C, (satisfying Assumption 4.5.1 (B)) for P if and only if P has anr.c.fr. (N,, D,)

which satisfies condition (4.5.4R) and equivalenty, an Lc.fx. (D,, N, ) which satisfies condition

(4.5.5L) below:
Dy, [ Iy O
Npl El 0 le N
Dp2 0 Ipy
Dpm 0 o
3 Npm 4 Em[ Wml Wm2
[-NJ,,1 D,y i-Np2 Dyp +++ ~Npm D,,,,,] =
-Wz] 0 -1 0 Inoz 1
o |E ¢ |E2
“YWmi 0 “'m2 0
where, for j=1,2,---,m

ij c Hnojxn:’k'k=1’2’

T
0 1
Wlm
0 1
. W2m ’
I pim
0]
“Wim O
Wy, O
o I

m (note that Wy, =0 whenk = ).

(4.54R)

, (4.5.5L)

, Eje H (nij+noj)x(nij+noj) is  H-unimodular and
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Proof:
We only prove condition (4.5.4R); the proof of condition (4.5.5L) is similar:
( <=) By assumption, condition (4.5.4R) holds. For j =1, - -+ ,m , consider the compen-
sators Cj = DN, , where
[ﬁcj : ﬁc-] = [1,,,., E 0] Eit. (4.5.6)
It can be shown that the C;’s satisfy Assumption 4.5.1 (B) the same way as in the proof of

Theorem 4.3.4R. Now substitute equation (4.5.6) into equation (4.5.3); clearly, the m-channel

system S (P, Cy),, is H-stable.
(=>) For j=1, - ,m , partition the matrices D,; =: [Dj, 2 ] » Npj =t

[ Nj; -+ N ] . The system S (P, C;),, is H-stable by assumption; therefore, by normalizing

equation (4.5.3), we have
Dy ** Dim
D,y N, 0 0||Ny Nim| | Ins 0
Do Do : A Y Pl 4.5.7
o o0 --- D~cm ﬁcm Dni *** Dy 0 - Ip, )
le * Npm

As in the proof of Theorem 4.34R, forj =1, -+« ,m , (Njj» Dj;) is anr.c. pair and detDj; € I;
let (5 575 N jj)beanlcfr. of N j,-Dj}' . Then there exist matrices U i s f/:,-,- e M (H) such that

the following generalized Bezout identity can be written foreach j =1, -+ ,m :

5Cj ﬁc‘l Ini[' 0
=l 0 Inl" 4.5.8)

bjj -Uj
Nij Vi

i i

—N.. D.| 3 Ej is H-unimodular by cquation (4.5.8). Let W

= -A-f,-,-Djk +5ijj vk=1, -+, j=1,j+l, .-+ ,m (notc that Wj; =0). Then by cquations
(4.5.7)-(4.5.8) we obtain '
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- Dj D_,m 0 "'Imj 0 0
j [le. ijJ = [Wj s 0 Wiyt Wil (4.5.9)
For j=1,--- ,m , pre-multipiying both sides of equation (4.5.9) by E;, we get condition
(4.54R).

a
We now extend Theorem 4.3.7, which gives the set of all H-stabilizing compensators, to m-

channels: For future reference, we define

0 =diag [ Q1 Qn] . 4.5.10)
0 Wi " Wi,
W21 0 PN W%
We=| : : I 4.5.11)
Wml Wm2 e 0

4.5.4. Theorem (Set of all H-stabilizing decentralized compensators for S (P, C; ), ):
Let P € M (Gy) satisfy Assumption 4.5.1 (A); let in addition an r.c.f.r. (Np, Dp) of P satisfy
condition (4.5.4R) and equivalently, let an Lc.fr. (D,,N,) of P satisfy condition (4.5.5L) of

Theorem 4.5.3. Under these conditions, the set Sy (P) of all H-stabilizing decentralized com-

pensators for P is given by

~ L

Sd(P):={ C, = diag [Cl C,,,] =diag[ NGy e 5,_.'jlﬁcj] :

forj=1,---,m, [ﬁcjchj] =[]mjfgj]Ej-l'

forsome Q; € H™i*"ei suchthatdet(l,; +QW) € J }; (4.5.12)

equivalently,

. Sd(P):={ Cd =diag [C] C,,,] =diag [Nchc-ll chDc}I] :

.
=Ej

/ Noj

=N,

for j=1,---,m, D.
cj

for some Q; & H'™i%Moi suchthatdet(/ 5, +QW) € J } . (4.5.13)
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Furthermore, forj =1, - - -, m , the matrices Q; , subject to det(l »; + QW) € J, determine C i

uniquely.

Proof:

The proof is similar to that of Theorem 4.3.7. We write a generalized Bezout identity which

extends equation (4.3.19) to m -channels:

Iy O 0 O
AR -r R N o
0 O Ip, O
0 Illol. —Wlm. 0 7
-Wy O Woun O
D | BT Do (B
i =mi 0 0 Inmj j
L i i _
[T iy 0] [0 0
S I =lpin, . (45.18)
LU F (0 --- 0
E, Wny - 0 "'Emo cee Iy

Equation (4.5.14) is obtained from conditions (4.5.4R)-(4.5.5L) and is of the form

D,, -Up
Vor Upt " Vom Upm| | N1V
o R | N Y e
“Np1 Dp1 *** ~Npm Dpm| | Dpm —Upm

| Nom Vom

Using standard methods, by normalizing equation (4.5.3), it is casy to show that if C,

H-stabilizes P then C4 = (V, =QN,)'(U, +QD,) , where D, := (V, —QN,) and N, :

W, +Q5p) and Q are block-diagonal. For j =1, .-+ ,m, lct 5cj = Vi = Qjﬁpj and ﬁcj :

Uy + Qjﬁpj . From equation (4.5.14),
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BNy - 0 0] [[1w u]ER 0

IR : : +Q0W; (4.5.15
~ -~ e -1
0 0 PN Dcm Ncm 0 [Inim Qm]Em

substituting equations (4.5.10)-(4.5.11) into (4.5.15), QW =0, and hence, det(/ ,, + QW) € J.

Therefore, C, is given by the expression in equation (4.5.12).

Conversely, if C; is given by the expression in equation (4.5.12), then the matrix in equa-

tion (4.5.3) becomes I ,,; + QW , which is H-unimodular due to the condition in (4.5.12).

The proof of equation (4.5.13) is similar.

4.5.6. Comments (The rational functions case): [And.1, Xie.1]
Let H be Ry (s) as in Section 4.4. The definition of decentralized fixed-eigenvalues is extended
to m-channels as follows: The plant P has a decentralized fixed-eigenvalue at s, € u (with

Dpl(sa)"'Klel(so)
respect to Ky = diag[K, --- K,, 1 ) iff det : =0 for all Ky, ..,
me (s5)+ KmNpm (S0)

K, € M (R). Extending Theorems 4.42R, 4.4.3L, 44.4B to m-channels, we state six

equivalent conditions below: .

(i) The plant P has no decentralized fixed-eigenvalues in u;

(i) fork =1, --- m-1, for all nonempty subsets 0= { &y, -+ ,0 }of {1, --- ,m},
[ D poy(s)
Npa.(s)
rank| i |2 3 ng,,foralls e U; (4.5.16R)
me(s) a; e
Npa(s)
(iii) fork =1, --- m-1, for all nonempty subsets &t = { oy, - -- , 0 Jof { 1,..,m},

rank[ “Npou(s) Dpou(s) -+ Npay(s) 5pm(s)] > Y ng, . foralls € Il (45.17L)
o€ O .
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(iv) conditions (4.5.4R) and (4.5.5L) of Theorem 4.5.3 hold;

' (v) fork=1, - m-1, for all partitions of the set {1, --- ,m} into two disjoint subsets

{o, =+ o} and {0ty “ o ¢ L 0},
D(s) “Nplagu(8) -+ =N i, (s
Nproy(s) 0 te 0 _
rank : : : 2n, foralls € U; (4.5.18B)
V1 Npra,(s) 0 0

(vi) there exists a dynamic decentralized compensator C; = diag [Cl C,,,] which

H-stabilizes P .

In conditions (4.5.16R) and (4.5.17L), the set O is a strictly propcr subsetof {1, -+ ,m }

‘ D,(s)
P - ~ -
because (N, Dp) is r.c. implies rank|: N ()| =nio forall s € Uand(Dp,N,)isl.c. implies
p .

rank[ N,(s) Ep(s)] =n; ,forall s e I In condition (4.5.18B) the two disjoint subsets are

strictly proper subsets of { 1, --- ,m } because if either one was equalto { 1, --- ,m }, then

condition (4.5.18B) is automatically satisfied since (N, D, Nj;) is bicoprime.

Condition (4.5.18B) can also be written in the state-space setting as in Remark 4.4.58S.

4.5.7. Achievable /O maps of S(P, Cy)m ¢

The set

Agq(P)={ Hg : C; H-stabilizes P } 4.5.19)

is called the set of all achievable 1/0 maps of the m-channel decentralized feedback system

SP,.Cqdm -



118

Since the class Sd (P) is a subset of the class S(P) of all stabilizing decentralized compen-
sators for P in the configutation S (P, C ), the class A4 (P) is also a subset of the set AP)of

all achievable maps of the unity-feedback system S (P, C).

Let an r.c.fir. (Np,D,) of P satisfy condition (4.5.4R); then from equation (4.2.3), we
obtain
Ny p +QWY'D, Ny +QW)'N,

AgP)={ Hg = o _ (4.5.20)
Do p +QWY'D. ~Ip; Dyl +QWY'N,

: Q € MH)suchthatdet( ,, +OW) e J },

where

-~ . I'p;y] - 1] ]
DC =dlag [Inil QI]EI- 0 oo Inim Qm E’;l 0 ’

0
Nc=dia8[[1n.-1 Q']El_l|:1no1 | Tnim Qm | En'
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4.6. Z(ﬁ , é ) with a decentralized feedback compensator

In order to summarize the results of Chapters Three and Four, we now combine the
H-stabilizing compensator design procedure using Z(I"\ , ¢ ) with-decentralized control: Suppose
that the general configuration E(I? , é ) requires the additional restriction that the 2-2 block C of

A a a Cu Cn ,
C is block-diagonal, i.e., C is replaced by C := [ Cy Cy |° where C; = diag[ C, Cz]

is block-diagonal as in Assumption 4.2..'1‘ (B) (see Figure 4.8).

uy Y1

llz' y2' Y2

5
o
=
7
s O3
i)Y
v

v

Figure 4.8: 2(1’5 , ¢ ) with a decentralized feedback-loop.

~ Py Py -
The class of all P = [ Py P ] € G(n""'”" X(Mi+ni) that can be H-stabilized by

some ¢ e GMe+)XMi™no) s given in Theorem 3.3.9. The class of all two-channcl

c, 0
P e G ™ X% hat can be H-stabilized by some decentralized compensator Cy = [ 0 C, } .

CC, e Gkl ¢, & GM2XM02 iy the configuration S (P, C,), is given in Theorem 4.3.4R.
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Combining these two, the class of all P e G Mo+1)X(Mi+1i) ot can be H-stabilized by some

64 is given by the set

- . |
- -1
{ Ny Ny Iy 0
[ Ty 0] I Tpy 0]
N L I | | I | N 2 e
L 21 - o J =U N2l .L. pu
P 0 Ip, | TP 0 Ip,))
L[O Inoz] ) W, 0 [Iniz 0] EZsz 0
- 4 L J

Ey,E; € M (H)are H-unimodular and W, e H™ X2 w, ¢ HroXm1 1 447

A ~ Cn Cn
Let S; (P) denote the set of all H-stabilizing compensators C; = [ Cy Cu ; e,

A a Cn Cn2 - -
Sa P )2={ Ca= Cu €, : Cq4 H-stabilizes P } 4.6.2)

Combining S(P) given in Theorem 3.3.11 and S4 (P) given in Theorem 4.3.7, the class Sy (P)

of all H-stabilizing compensators 64 is given by:
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[
A | In _ 01N, B
Sipy={ ¢, =

i . i
[T Ql]Er‘[ S‘] 0
| 0 ' I |
0 [Imz Qz] Ez_l[ 0]
On QIZEp
i . ]
[ s Ql]Er‘[,M] 0
| Oz o1l
0 [Imz Qz] 52-1[1'“2]

101,012,921 € MH),

Q, € H"W¥el g, ¢ H™Mo2 gichthat det(l ,,, — Q. W20, W) € J }.(4.6.3)

Note that the subblock P coﬁld have m -local channels instead of two channels; the extension to

this case follows from Theorem 4.5.3.



122

Chapter Five

Conclusions

A unified algebraic theory for full output-feedback and decentralized output-feedback
schemes is presented in Chaptel;s Three and Four, using the fundamental tools of the factorization
approach presented in Chapter Two. For each compensation scheme, the main objectives are
H-stability, the class of all H-stabilizable plants, the class of all H-stabilizing compenthors,

and all achievable closed-lcop I/O maps.

In Section 3.2, H-stabilizing compensators for the standard unity-feedback system
S (P, C) are parametrized starting with right-coprime, left-coprime and bicoprime factorizations
of the plant (see equations (3.2.27)-(3.2.30) for the class of all one-parameter H-stabilizing com-
pensators). Each closed-loop I/O map of S(P,C) in e‘quation (3.2.38) is an affine function of the
compensator parameter matrix Q. The conditions for H-stability of the general system
configuration Z(ﬁ & ) are given in Section 3.3; this system allows full feedback from one of two
(vector-)outputs of the plant P to one of two (vector-)inputs of the cdmpensator 6 . The class of
all P that can be H-stabilized by some ¢ in the configuration Z(ﬁ , ¢ ) is parametrized in
Theorem 3.3.9. The class of all F-stabilizing two-input two-output compensators Cis given in
Theorem 3.3.11; this class is parametrized by four parameter matrices Qq; , Q12 » Q2 »
Q e mH). Each closed-loop /O map of Z(ﬁ . 6 ) in equation (3.3.58) is an affine function
of one of these four compensator parameters, which can be chosen to satisfy several performance
requirements. The map H,,-: v’ - z from the external-input v’ of € to the actual output z of P
is diagonalized in Section 3.4 by choosing the matrix Q,, as in equation (3.4.7). The class of all

achievable maps H,,- which are diagonal and nonsingular is given in Theorem 3.4.2.
The two-channel decentralized feedback system S (P, C,) is studied in Chapter Four. This

system is the same as the unity-feedback system S (P, C ) except that the compensator is res-

tricted to be block-diagonal. Clearly, not all plants P can be H-stabilized by a decentralized
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coxﬁpensator. the class of all decentralized H-stabilizable plants P is given in Theorem 4.3.4R.
The class of all Fl-stabilizing decentralized compensators C, is given in Theorem 4.3.7; this
class is parametrized by two matrices which satisfy a unimodularity condition. In Section 4.4,
the general algebraic results are applied to the case of proper stable rational functions R (s) ;
decentralized H-stabilizability conditions are interpreted in terms of fixed-eigenvalues in
Theorem 4.4.2R. See Algorithm 4.4.8 for designing an H-stabilizing decentralized compensator,
starting with any right-coprime factorization N, D,,‘l of P. In Section 4.5, the parametrization .of
H-stabilizing compensators is extended to m-channel decentralized control systems. In Section
4.6, the compensation schemes of X(ﬁ , ¢ )and S (P, C4) are combined; the two-channel plant P
is considered as the 2-2 subblock of a plant P in the configuration 2(13\ . é ) and the 2-2 subblock
of € is restricted to be block-diagonal. The class of all compensators 64 such that 2(1? ,C )hasa

decentralized feedback-loop is given in equation (4.6.3).

The parametrization of all H-stabilizing compensators is a key concept in all compensator
design problems. The constrained optimization design approach is formulated in terms of these
parametrizations: the optimization algorithm chooses the compensator parameter matrices (Q for
SP.C): 011 Q12+ Qo » Q for 2B, 6); 0y, ..., O » where det(l , + QW) € J , for
S(P,C4), ) that satisfy performance criteria as well as time-domain or fmquéncy-domain con-
straints (see for example [Gus.1]). H™-norm minimization problems rely on the parametrization
of all H-stabilizing compensators and the achievable /O maps (see for example [Sai.l] and the
references therein). The four independent paraméter matrices of Z(ﬁ , ¢ ) would be extremely
useful in minimizing the #*-norm of I/O maps, each of which are affine functions in only one of
the four parameter matrices; in this configuration, minimizing the H“-norm of the disturbance-
to-output map would not result in undesirable responses in the map from the control-input to the
actual output since these maps are decoupled from each other. Computer-aided design algorithms
for one-parameter compensation schemes like S(P,C) are already used cxtensively. The
parametrizations of all F/—stabilizing compensators presented in this work forms the basis of the

development of numerical algorithms and software for computer-aided design.



[Ast.1]

[And.1]}

[And.2]

[Bio. 1]

[Bou.1]

[Bra.1]

[Cal.1]

[Cal.2]

[Che.1]

{Chen 1]

[Coh.1]

[Cor.1]

124

References

K. J. Sstrﬁxh, "Robustness of a design method based on assignment of poles and

zeros," IEEE Transactions on Automatic Control, vol. AC-25, pp. 588-591, 1980.

B. D. O. Anderson, D. J. Clements, "Algebraic characterization of fixed modes in

decentralized control," Automatica, vol. 17, pp. 703-712, 1981.

B. D. O. Anderson, "Transfer function matrix description of decentralized fixed
modes," IEEE Transactions on Automatic Control, vol. AC-27, no. 6, pp. 1176-1182,
1982.

H. Blomberg, R. Ylinen, Algebraic Theory for Multivariable Linear Systems,
Academic Press, 1983.

B. Bourbaki, Commutative Algebra, Addison-Wesley, 1970.

F. M. Brash, Jr., J. B. Pearson, "Pole placement using dynamic compensators", JEEE

Transactions on Automatic Control, vol. AC-15, pp. 34-43, 1970.
F. M. Callier, C. A. Desoer, Multivariable Feedback Systems, Springer-Verlag, 1982.

F. M. Callier, C. A. Desoer, "Stabilization, tracking, and disturbance rejection in

multivariable control systems", Annales de la Socie‘te’Scientifique de Bruxelles, T.

94,1, pp. 7-51, 1980.

L. Cl}eng, J. B. Pearson, "Frequency domain synthesis of multivariable linear regula-

tors", IEEE Transactions on Automatic Control, vol. AC-26, pp. 194-202, Feb. 1981.

M.J. Chen, C. A. Desoer, "Necessary and sufficient condition for robust stability of

distributed feedback systems", International Journal of Control, vol. 35, no. 2, Pp.

255-267, 1982.
P. M. Cohn, Algebra, Vol. 2, John Wiley, New York, 1977.

J. P. Corfmat, A. S. Morse, "Decentralized control of lincar multivariable systems,”

Automatica, vol. 12, pp. 479-495, 1976.



[Dat.1]

[Dav.1]

[Dav.2]

[Des.1]

[Des.2]

[Des.3]

[Des.4]

[Des.Sj

[Des.6]

125

K. B. Datta, M. L. J. Hautus, "Decoupling of multivariable control systems over
unique factorization domains," SIAM Journal of Control and Optimization, vol. 22,

no.1, pp. 28-39, 1984.

E. J. Davison, S. H. Wang, "A characterization of fixed modes in terms of transmis-
sion zeros," IEEE Transactions on Automatic Control, vol. AC-30, né.l, pp. 81-82,

1985.

E. J. Davison, T. N. Chang, "Decentralized stabilization and pole assignment for gen-

eral improper systems," Proc. American Control Conference, pp. 1669-1675, 1987.

C. A. Desoer, R. w. Liu, J. Murray, R. Saeks, "Feedback system design: The frac-
tional representation approach to analysis and synthesis," IEEE Transactions on

Automatic Control, vol. AC-25, pp. 399-412, 1980.

C. A. Desoer, M. J. Chen, "Design of multivariable feedback systems with stable

plant," IEEE Transactions on Automatic Control, vol. AC-26, pp. 408-415, April

1981.

C. A. Desoer, C..L. Gustafson, "Algebraic theory of linear multivariable feedback
systems," IEEE Transactions on Automatic Control, vol. AC-29, pp. 309-917, Oct.

1984,

C. A. Desoer, A. N. Gundes, "Decoupling linear multivariable plants by dynamic
output feedback,” IEEE Transactions on Automatic Control, vol. AC-31, pp. 744-

750, Aug. 1986.

C. A. Desoer, A. N. Giindes, "Algebraic Design of Lincar Multivariable Fecdback
Systems," Presented at IMSESS, Arlington, Texas, published as Integral Methods in
Science and Engineering, F. R. Payne, et al., editors, pp. 85-98, Hemisphere, 1986.
C. A. Desoer, A. N. Gundes , "Algebraic Theory of Lincar Time-Invariant Feedback
Systems with Two-Input Two-Output Plant and Compensator," International Journal

of Control, to appear, also University of California, Berkeley ERL Memo M87/1, and



[Des.7]

[Des.7]

[Dio.1]

[Doy.1]

[Fes.1]

[Gug .1]

[Gus.1]

[Ham.1]

[Hor. 1]
[Jac. 1]

[Joh.1]

[Kai. 1]

126

presented at the MTNS, Phoenix, AZ, June 1987.

C. A. Desoer, A. N. Gindey, "Linear time-invariant controller design for two-
channel decentralized control systems,” University of California, Berkeley ERL

Memo M87/27, also Proc. American Control Conference, pp.1703- 1704, June 1987.

C. A. Desoer, A. N. Giindes , "Bicoprime factorizations of the plant and their relation
to right- and left-coprime factorizations", University of California, Berkeley ERL

Memo M87157, also IEEE Transactions on Automatic Control, to appear.

J. M. Dion, C. Commault, "On linear dynamic state feedback decoupling," Proc.

24th Conference on Decision and Control, pp. 183-188, Dec. 1985.
J. Doyle, ONR/Honeywell Workshop lecture notes, October 1984.

P. S. Fessas, "Decentralized control of linear dynamical systems via polynomial

matrix methods," International Journal of Control, vol. 30, no. 2, pp. 259-276, 1979.

A. N. Giiglii, A. B. Ozgiiler, "Diagonal stabilization of linear multivariable systems,"

International Journal of Control , vol. 43, pp. 965-980, 1986.

C. L. Gustafson, C. A. Desoer, "Controller design for linear multivariable feedback
systems with stable plants, using optimization with inequality constraints", Interna-

tional Journal of Control , vol. 37, pp. 881-907, 1983.

J. Hammer, P. P. Khargonekar, "Decoupling of linear systems by dynamical output

feedback,"” Math. Systems Theory, vol. 17, No. 2, pp. 135-157, 1984.
I. M. Horowitz, Synthesis of Feedback Systems, Academic Press, 1963.
N. Jacobson, Algebra, vol. 1, W. H. Freeman & Co., 1980.

L. Johansson, H. N. Koivo, "Inverse Nyquist array technique in the design of a mul-
tivariable controller for a solid-fuel boiler," International Journal of Control, Vol.

40, No. 6, pp. 1077-1086, Dec. 1984.

T. Kailath, Linear Systems, Prentice Hall, 1980.



[Lan. 1]
[Lin.1]

[Mac.1]
[Net.1]

[Ohm 1]

[Per.1]

[Ros.1]

[Sae.1]

[Sal.1]

[Sig.1]

[Tar.1]

[Vid.1]

[Vid.2]

127

S. Lang, Algebra, Addison-Wesley, 197T;

A. Linnemann, "Decentralized control of dynamically interconnected systems,"

IEEE Transactions on Automatic Control, vol. AC-29, pp. 1052-1054, 1984.
S. MacLane, G. Birkhoff, Algebra, 2nd ed., Collier Macmillan, 1979.

C. N. Nett, "Algebraic Aspects of Linear Control System Stability," IEEE Transac-
tions on Automatic Control, vol. AC-31, pp. 941-949, 1986.

D. Y. Ohm, J. W. Howze, S. P. Bhattacharyya, "Structural synthesis of multivariable

controllers," Automatica, vol. 21, no. 1, pp. 35-55, 1985.

L. Pemebo, "An algebraic theory for the design of controllers for linear multivariable
feedback systems," IEEE Transactions on Automatic Control, vol. AC-26, pp. 171-
194, February 1981.

H. H. Rosenbrock, "State-space and Multivariable Theory", John Wiley, 1980.

R. Saeks, J. Mufray, "Fractioﬁal representation, algebraic geometry and the simul-
taneous stabilization problem," IEEE Transactions on Automatic Control, vol. AC-

27, pp. 895-904, August 1982.

S. E. Salcudean, "Algorithms for optimal design of feedback compensators”, Ph.D.
Thesis, University of California, Berkeley, 1986.

L. E. Sigler, Algebra, Springer-Verlag, 1976.

M. Tarokh, "Fixed modes in multivariable systems using constrained controllers,”

Automatica, vol. 21, no. 4, pp. 495-497, 1985.

M. Vidyasagar, "Control System Synthesis: A Factorization Approach", MIT Press,

1985.

M. Vidyasagar, H. Schneider, B. Francis, "Algebraic and topological aspects of sta-
bilization," IEEE Transactions on Automatic Control, vol. AC-27, pp. 880-894,

1982.



[Vid.3]

[Vid4]

[Wan.1]

[Xie 1]

[You.1]

[Zam.l]‘

[Zam.2]

128
M. Vidyasagar, N. Viswanadham, "Algebraic characterization of decentralized fixed

modes and pole assignment," Report 82-06, University of Waterloo, 1982.

M. Vidyasagar, N. Viswanadham, "Construction of inverses with prescribed zero
minors and applications to decentralized stabilization," Linear Algebra and Its Appli-

cations, vol. 83, pp. 103-105, 1986.

S. H. Wang, E. J. Davison, "On the stabilization of decentralized control systems,"

IEEE Transactions on Automatic Control, vol. AC-18, pp. 473-478, 1973.

X. Xie, Y. Yang, "Frequency domain characterization of decentralized fixed modes,"

IEEE Transactions on Automatic Control, vol. AC-31, pp. 952-954, 1986.

D.C. Youla, H. A. Jabr, J. J. Bongiomo, Jr., "Modern Wiencr-Hopf design of optimal
controllers, Part II: The multivariable case,” IEEE Transactions on Automatic Con-

trol, vol. AC-21, pp. 319-338, 1976.

G. Zames, "Feedback and optimal sensitivity: Model reference transformations, mul-
tiplicative seminorms and approximate inverses," JEEE Transactions on Automatic

Control, vol. AC-26, pp. 301-320, April 1981.

G. Zames, D. Bensoussan, "Multivariable feedback, sensitivity and decentralized

control,” IEEE Transactions on Automatic Control, vol. AC-28, pp. 1030-1034, Nov.
1983.



Index

- achievable diagonal maps, 64

achievable I/O maps

-of S(P,C),47

-of Z(P, C), 63

-of S(P,Cy)m, 117
Bezout identity, 12
bicoprime (b.c.), 10

- factorization, 6

. - fraction representation (b.c.f.r.), 10

closed-loop I/O maps

-of S(P,C), 35

-of £(P, €), 49
commutative ring, 8, 20
coprime factorizations in H , 10
decentralized

- compensator, 71

- control system, 72

- fixed-eigenvalue, 69, 94
doubly-coprime, 13

- fraction representation, 13
four-degrees-of-freedom design, 33, 62
four-parameter design, 33
G-unimodular, 11
generalized Bezout identity, 6, 12, 13, 15, 18
H-stability

-of S(P,C), 39

-of 2P, €), 51

-of S(P,Cy),73
H-stabilizing compensator C, 42
H-stabilizing decentralized compensator C4 , 79
H-stabilizing compensator C, 55
H-unimodular, 9
Hermite column-form, 26
Hermite row-form, 26
Jacobson radical of Gy, 8
left-Bezout identity, 23
left-coprime (1.c.), 10

- fraction representation (l.c.f.r.), 10



left-factorization, 6
left-fraction representation (1.f.r.), 10
m-channel decentralized control system, 109
multiplicative subset / , 6, 8
one-degree-of-freedom design, 32, 47, 62
one-parameter design, 47
principal ring H , 6, 8
rank test, 27

- for fixed-eigenvalues, 95

- for right-coprimeness, 30

- for left-coprimeness, 30
rational functions, 8 )
right-Bezout identity, 8
right-coprime (r.c.), 10

- fraction representation (r.c.f.r.), 10
right-factorization, 6
right-fraction representation (r.f.r.), 10
ring of fractions G , 6, 8
Ry —unimodular, 9
Z~admissible, 54
two-degrees-of-freedom design, 3
two-parameter

- compensation, 3

- design, 33
U—detectable, 17
ﬁ—pole, 20
U-stabilizable, 17
U-zero, 20, 27



	Copyright notice1988
	ERL-88-1
	ERL-88-1 (2 of 2)

