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ABSTRACT

Coherent optical fiber receivers have numerous advantages over direct detection
receivers, most notably increased sensitivity and increased selectivity, at the cost of
increased receiver complexity. It is shown that while the performance of practical
intensity-modulation/direct-detection systems is well below the level predicted by the
quantum limit, coherent systems show promise of attaining this limit. The sensitivity of
coherent optical receivers under shot-noise-limited conditions is derived for PSK, ASK,
FSK, and DPSK modulation formats. When applicable, homodyne, heterodyne, synchro-
nous, and asynchronous systems are considered. In addition, laser phase noise is charac-
terized, and its effects on the performance of FSK, ASK, and DPSK systems is analyzed.

This research was supported in part by the National Science Foundation, Grant MIP-86-57523.
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Performance of Coherent Optical Receivers

John R. Barry

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, California 94720

1. Introduction

Since its introduction nearly two decades ago, optical fiber communications has
become the predominant choice for high-throughput point-to-point digital transmission.
The advantages of optical fiber as a medium are many: large bandwidth, low attenuation,
immunity to interference, and high security are the most obvious. The earliest fiber optic
systems, employed in the 1970’s, used multimode fibers at short wavelengths (850 nm).
Improvements in photodetector technology allowed subsequent systems in the 1980’s to
operate at 1300 nm, the wavelength at which the attenuation of the fiber is minimum. In
the mid-1980’s, improved fiber design, as well as better coupling efficiencies, allowed
operation at wavelengths of 1500 nm through single-mode fibers. These single-mode
fibers avoid inter-modal dispersion, a primary disadvantage of multimode fibers. And
through proper fiber design, the chromatic dispersion for single-mode fibers can be
nearly eliminated for wavelengths in the 1300~1500 nm range.

The modulation scheme used by most commercial optical transmission systems,
including those described above, is called intensity-modulation/direct-detection
(IM/DD). This means that the intensity of the transmitting laser is modulated on and off,
or on-off keying (OOK). The term direct detection stems from the receiver configuration
where the received signal is applied directly to a photodetector. Note that only the inten-
sity or power of the light is relevant; phase and frequency are for the most part ignored.
The throughput of the optical fiber links presently installed throughout the country
represents a significant improvement over that of their predecessors, coaxial cable and
microwave radio links. Nevertheless, only a small fraction of fiber’s potential is met
through the use of these IM/DD systems. To make full use of the capabilities of fiber,
coherent techniques must be used.

Coherent receivers employ the heterodyne technique used extensively in microwave
communications. A common analogy compares IM/DD receivers to RF crystal radios,
whereas optical coherent receivers are more like the modern superheterodyne radio
receivers. In coherent detection, the received optical signal is added to a local optical
signal, and the combined lightwave is directed towards a photodetector. For a hetero-
dyne receiver, the frequency of the local oscillator (LO) is slightly different from the car-
rier frequency of the signal. The resulting current produced by the photodetector is then
centered at an intermediate frequency (IF) equal to the difference in LO and carrier fre-
quency, usually in the GHz range. This allows processing of the signal at microwave
frequencies, where well-established radio techniques can be employed.
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To fully understand the advantages of coherent techniques over direct detection, one
must first study the limitations of IM/DD systems. Section 2 derives a fundamental limit
on the sensitivity of an optical receiver called the quantum limit. Sensitivity is defined as
the number of photons per bit necessary to maintain a bit-error ratio of 10~°. The sensi-
tivity of a practical IM/DD receiver is then derived, and it if found to be much less sensi-
tive than the quantum limit.

Section 3 develops the theory behind coherent reception. First an example is given,
where the theoretical sensitivity of homodyne phase-shift keying is found to be better
than the quantum limit. The example neglects many sources of noise. However, under
certain conditions, the most important being high local oscillator power, the receiver is
said to be ‘‘shot-noise limited.”” In this case, it is shown that the quantum limit can be
approached.

In section 3.2, the shot-noise-limited bit-error ratios are derived for various optical
receivers. First synchronous receivers are analyzed, which offer the highest sensitivity,
but require phase-locked loops (PLL), and are thus complicated. Asynchronous
receivers, which use envelope detectors, are then discussed. Their sensitivity is shown to
be only slightly worse (~ 0.5 dB) than their synchronous counterparts. Also a type of
weakly-synchronous processing of differential phase-shift keying is discussed.

Although there are many similarities between conventional microwave communica-
tion systems and fiber systems, one can not always apply well known principles from
one regime to the other. Section 4 discusses some of the unique traits of optical com-
munications systems. A discussion on fibers, modulators, photodetectors, and polariza-
tion is presented. The automatic 3 dB loss in sensitivity of heterodyne systems with
respect to homodyne is explained. And laser phase noise, a critical impairment in
coherent systems, is discussed. '

Finally, section 5 explores the impact of laser phase noise on receiver performance.

Expressions for the maximum allowable laser linewidths are derived for FSK, DPSK, and
ASK. '

2. Direct Detection

This section develops some of the basic principles of optical communications.
First, the quantum limit, a bound on the sensitivity of an optical receiver, is derived.
Then, the sensitivity of a realistic IM/DD system is examined. Important expressions for
the photodetector current and shot noise are derived, which will be used extensively in
subsequent analysis.

A comment on notation: optical transmissions systems generally operate with an
alphabet size of two. The improvements gained through M-ary signaling are to this date
not worth their trouble. For this reason, ASK in the context of optical systems refers to
OOK. Similarly, PSK means binary antipodal signaling. Also, this paper assumes that a
oNE and a zero occur with equal probability.

2.1. The Photon Counter and the Quantum Limit

Light is a form of electromagnetic radiation, with frequencies in the 400 to 700 THz
range. At these high frequencies, the quantum mechanical nature of the electromagnetic
wave becomes prevalent, and the lightwave can act as if it were a stream of particles.
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Each quanta of energy (called a photon) has energy v (Joules), where 2 = Planck’s con-
stant (Joules-sec) and v is the frequency of the lightwave (Hz). If a lightwave were
directed towards a surface, such as that of a photodetector, the arrival times of the pho-
tons would be randomly distributed according to a Poisson process.

Just as in microwave frequencies, a lightwave can be represented by either its elec-
tric or magnetic field. We know from the Poynting theorem that the power of a wave is
proportional to the product of the amplitudes of the electric and magnetic fields. For the
purpose of analysis, a lightwave is commonly represented by

x(t) = VPscoswyt (1)

where P; is the average power (Joules/sec) of the wave, and @y is the angular frequency.
Since an average of P, Joules arrive each second, and each photon has 2v Joules, the
average number of photons per second is

2, s Ts oy / 2
»= Ty (Photons/sec). 2)
Define n (¢) as the photon arrival process, such that for¢ >0, n(¢z) = the number of pho-
tons that have arrived in the interval from Oto¢. Then equation (2) implies that n(z),
which as stated earlier is a Poisson counting process, has a mean arrival rate of A,,.

An ideal OOK optical transmission system across a noiseless channel would
transmit a pulse of light for a ove, and no light for a zero. The receiver would then count
n, the number of photons it receives in the bit interval (T seconds), and decide onE if one
or more photons were detected, and zero otherwise. This ideal system is depicted in
figure 1 for an isolated pulse. The coefficient g, is either 0 or 1, depending on the k™
data bit. This corresponds to amplitude-shift keying (ASK).

fiber channel
o, \Peostoy Teal | , ;
0s1<T) Conmer | S

Figure 1. A photon counter: an idealized optical receiver counts the number
of photons received in a bit interval, and compares the result with a zero thres-
hold.

If @, = 0, then there is zero probability of receiving any photons. If a;, = 1, then the
photons arrive according to a Poisson process with mean rate A,. That is, for a ong, the
probability of obtaining » photons in T seconds is given by the Poisson distribution:

(APT)ne_APT
n! )

Thus assuming oNves and zEros are equally likely, the probability of a bit error, or bit-
error ratio (BER), is

Pr{n photons!ong] = 3)

P, = — Pr[0 photons|onE] + % Pr[ > O photons | zzro]

1
2
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To simplify notation, use equation (2) to define the exponent in equation (4) as
— P .
M4 I%T = average number of photons per onE bit. (5)

This leads to an important lower bound on the probability of a bit-error called the quan-
tum limit [1] [2]):
1 _ -M

P, = Ee . 6)
Equation (6) represents a fundamental limit on the performance of an optical communi-
cations system: no ASK receiver can do better. For example, to achieve a BER of 107,
an uncoded ASK modulation scheme requires a minimum of M = 20 photons per onE bit,
or an average of 10 photons per bit. The first value of 20 is more significant, however,
because in optical fiber communications, the real limitation is peak power, not average

power. Throughout the rest of this paper, the quantity of interest will be the peak power
per bit.

2.2. Photodetector Current and Shot Noise.

In practice, photons cannot be counted directly, which renders the photon counter of
-figure 1 unrealistic. Instead, a photodetector is needed, which inevitably introduces addi-
tional noise. A photodetector converts incident photons to electron-hole pairs with
efficiency 1. The statistical properties of the resulting current will now be examined.
The derivations that follow rely heavily on [3] and [4].

Define n,(t) as the electron generation process, such that for a given ¢, n,(t) is the
number of electrons generated in the interval from O to t. Then n,(z) is also a Poisson
process, with a mean rate of generation A, & MA,. Let {#,} be the Poisson generation
times of the electrons, each of which will produce a small pulse of current, A(z). The
total photodetector current will be the sum of these individual pulses. The current can be
modeled as the output of a filter driven by z(¢), a train of impulses at the times {2}
This impulse train can in turn be modeled as the time derivative of the electron counting
process n,(t). A diagram of this representation is shown in figure 2(b). Since A(z) is the
current due to one electron, its total integral must be g, the charge of an electron:

fr@eyd: = q. D
The mean and autocorrelation of the electron generation process n,(t) are [3]
Eln,(t)] = At, ®
and
R,(t1,60) = A2 8, + A, min(t,1,). )

From these statistics of n, (), we can derive the statistics of z @) (follqwing [3D:
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photons —p clectrons
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@
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COUNTER i I |H |—'| e 'NS;

(®)

Figure 2. A photodetector converts photons to electrons with efficiency 1: (a)
block diagram representation, (b) equivalent statistical model.

Elz(t)] = E {%new]

-9
= 37 Elr ()]

_ 9
T ot (et)

Ae- (10)

The autocorrelation function for z (¢) is

32
R,(t1,tp) = mRn‘(tl,t,)

2
dt,dt,

= 2 [+ A1) 11)
or,
where u (¢) is the unit step function. This yields
R, (1) = A2+, 8(1). (12)

We are now in a position to determine the second order statistics of i (z). Since i(z) is
the convolution of z(¢) and A (z), we have

[x}zltz + A, min(t 1,t7)]
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E[i(t)] = E| [ h(®z(t —Dd7

= °j"h(’t)E [z(t —'t)] at

e [R(DdT

= ql,, (13)

where the last equality follows from (7). Rewriting i (z) in terms of its mean and devia-
tion from this mean:

i) = qh, +ig@), (14)
where i, (¢) represents the current shot noise : .
in@)2 i(t)~qh,. (15)

The goal of this discussion is to characterize the statistics of this shot noise current. Its
autocorrelation function is

R, () = E[(0)i(t +1)] — q%,2

00 oo

E([ [z@)z@)h@-udh(+t-v)dudv | — g%,2

=—00~=~00

— 8

]

R,(u —v)h(t —udh(t +T—v)dudv — q*\,>2

5

= il [xe2+l38(u —V)]h(t —u)h(t +T-v)dudv — g%>2

2
M| [n@ydt| +x, [R@R@ +Ddr — g2

R,(® =X [R(®OG +D)dt (16)

Thus the spectral density of the shot noise process igy () is the Fourier transform of (16):
Sa(f) = A NH ()12 (17)
The spectrum of h(t) will roll-off at frequencies above 1/T;, where T, is the
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photodetector response time [5]. Alternatively, T, can be thought of as the time-
constant of 4 (z). When T, is small, so that the bandwidth of interest is less than 1/T,,

then H (f ) can be approximated by H(0). Thus from (17) we see that the shot noise is
approximately white, with density

San(F )=\ H(0)1?
2

=M | [R@)dr

= q2,. (18)

The photodetector current due to a lightwave with power P, can now be represented
by

i(t) = qh, +ig(t)

[119- ]Ps +ig(t)

hv
= RP +ig(t), (19)

where R & (Mg/hV) is the responsivity of the photodetector, measured in Amperes per
Watt. The shot noise iy, (t) is a zero-mean white noise process, with density

Ssh(f) = qzke
= g4
q [hv ]Ps
= gRP,. (20)

It will be demonstrated in section 2.4 that IM/DD systems cannot approach the
quantum limit due to extraneous noises, such as dark current and thermal noise. There-
fore, to achieve acceptable performance, the received optical power P, must be large.
Consider the case when P; is large enough so that the mean time between electron for-
mations A,~! = hv/(MP,) is much less than the time-constant T,. For a given ¢, the
current i(¢) is then the sum of a large number of tails of h(z —z;), where {2} are
independent. Therefore, i (¢) is the sum of a large number of independent random vari-
ables, and so it will have a distribution that is nearly Gaussian [4]. Thus for large P, (so
that A, « T,), the photodetector current will be approximated by

i(t) = RP, +ig(t), 1)

where iy, (¢) is a zero-mean Gaussian white noise process with two-sided spectral density
S;u(f) = qRP,;. This concludes the derivation of the statistical properties of the



photodetector current and shot noise.

2.3. A Current Averager.

The ideal IM/DD receiver which originally used a photon counter is redrawn in
figure 3 with a photodetector and current averager.

fiber channel

] T Y d,

a VP, cos(wqt) () b i) j’(-)d: F
©0O=<t<T) 0

Figure 3. An ideal current averaging IM/DD receiver.

Assume that P; is large. Using equation (21), the current produced by the photodetector
in figure 3 is

i(t) = aqRP; +ig(2), (22)
isy (¢) is approximated as a zero-mean Gaussian white noise process with density
Ssn(f) = a,qRP;. (23)
The output of the integrator is
Y = qtRP,T +N, (24)
where |
T
N = [ig(e)de (25)
0
is a zero-mean Gaussian random variable with variance
T
E[N?Y = Ef gi,h(u)is,,(v)dudv
T

arqRP, H'o'(u —v )dudyv
0

= aquP sT' (26)

The probability density function for ¥ conditioned on one and zero is shown in figure 4.
Note that since we are considering shot noise only, Y is exactly zero when a zzro is
transmitted. Choosing a zero threshold, the receiver decides one when ¥ > 0, and zero
otherwise. This corresponds to a BER of

P, = —;'—Pr[Y >0Imo]+%Pr[Y <01 onz]

.1_(0)+ IQ ﬂ
2 2 '\/qRPsT



A P[Y lzzro]
P[Y loae]

T - * Y
0 RP,T

Figure 4. The likelihood functions for the idealized current averaging receiver
of figure 3. When a zero is transmitted, Y is 0 with probability one, so that
P[Y |zero] is a delta function.

1 R
—J— _.P T R
) Q [\] il ] (27)
where the special Q-function is defined by

A (L =7
IO ‘{%e dx

= Lo |2
= zerfc[ﬁ]. (28)

But the responsivity R = %, therefore

Rpp o ole

ZPT = T = nM. 2
7 nhv n (29)

Define

P —
M4 nh—iT = MM = number of photoelectrons per onE bit. (30)
For coherent receivers, PIN diodes are generally used, which have efficiency N near
unity. Therefore, the distinction between M and M is a subtle one.

The probability of error from (27) then becomes
M2

P, = 20(M)=2e ", (1)
the second approximation being valid for M >> 1. Since the exponent in equation (31) is
half that in the quantum limit, we conclude that this system is approximately 3 dB less
sensitive than the ideal photon counter. In other words, twice as much power per bit is
needed to maintain the same BER. This difference is due entirely to the approximation
of the electron flow as a white Gaussian process.
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2.4. A Practical IM/DD Receiver

The above analysis of the photon counter and current averager considered only shot
noise. As one might expect, however, in practice other noise sources must be accounted
for. Real photodetectors produce a dark current regardless of the presence or absence of
incident photons, due to the spontaneous formation of electron-hole pairs [6]. Also,
background light can hit the detector’s surface [7]. And since the current produced by a
photodetector can be relatively small, the circuit or thermal noise of the next stage (usu-
ally a FET amplifier) can be significant [6]. A more realistic IM/DD receiver will now
be considered, using the block diagram in figure 5.

fiber channel
. T n
a, VP, cos(ay) O 9 al }\ v (@) I(')d‘ Y g
©0<t<T) / 0

Figure 5. In practical IM/DD receivers, the noises due to dark current and
thermal noise in the amplifier front-end must be dealt with.

When the above mentioned noises are accounted for, the voltage at the output of the FET
amplifier is
v(t) = arZRPs + ng,(t) + ng(t) + nyg(2) + nyi (2). (32)

Here Z is the equivalent impedance of the FET amplifier, and ng, (), ng(t), ny(t), and
ny(¢) represent the shot noise, dark current noise, thermal noise, and background noise
respectively. They can be modeled as zero-mean white Gaussian random processes over
the frequency range of interest [7], with two-sided spectral densities

Ssw(f) = arqZ’RP;,

Sac(f) = Ny = qZ% 4,

Sth(f) = Nth,

Sp(f) = Ny = qZ?RPy,. (33)

Notice that there is more noise when a onE is transmitted than for a zero. Computing ¥,
the output of the integrator:

T
Y = { [@LZRP + 1y (2) + nyy(2) + nyyy (¢) 1t (34)
Define the conditional mean and variance of Y as
my2 E[Y|zro] = 0, 35
m,2 E[Ylone] = ZRP,T, | - (36)
0o22 var[Ylzmo] = NuT +NyT + Ny T, (37)

6,24 var{Y|ove] = NyT +N,T + Ny, T + qZ*RP,T. (38)
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Figure 6 shows the probability distributions for ¥ conditioned on onz and zzro.

P{Y |zzro]
P[Y lons]

-
0 ZRP,T

Figure 6. The variance of the noise in IM/DD receivers depends on the
transmitted bit.

Since onNEs and zEros are assumed equally likely, the optimum threshold Y, that minim-
izes the BER is the value of Y at which the two likelihood functions intersect (hence the
name maximum likelihood, or ML). Since the variance of the two distributions are not
equal, this threshold is not immediately obvious. One can approximate it by finding the
Y,, that causes the probability of a false alarm to equal that of a miss [6] [7]:

Pr{Y > Y, 1zero] = Pr[Y <Y, |onE], (39)

fth—mo ml_fth
o[ B3] - o2

A

Yih—mg  my—=Y,

or

Vi) 1

?

R m Oy +m 0
Y, = 001 1% (40)
Gy + Oy
To justify this approximation, proceed more formally: the exact threshold
Y,, satisfies

- - 2
1 e _(Yﬁ mo)zmg - 1 e —(Ylh ml)zlzal . (41)
\2no? 2162
For the example at hand, this leads to
2 2
G () (6,/69)In (6,/6p)
Y =my|———||1-— \1 + , 42)
. ' 62-cf o M

where M = m,/(gZ) is the mean number of photons per onve bit.. Then for
M > (6,/69)In(c,/0g)?, this reduces to

Y o ! (43)
=m -——,
R P Go
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or
m Gg
0'1+0'0 ’

Yth = (44)

which, because m o = 0, supports the threshold obtained from equation (40).
With this approximation, the BER becomes
P, = Pr{Y >Y, |zo], (45)
and substituting equation (40) yields
my—mg

P,=0Q [——] (46)

O, + Gy

Plugging in the conditional means and variances from equations (35)-(38), we find
the BER for a realistic IM/DD receiver to be

[ ZRP,T

P,=0Q -
[VNdkT +NuT +NpeT +NNgT + Ny T + Ny T +qZ2RP,T

47

This BER is plotted versus peak received power P, in figure 7, using the following typi-
cal parameters [7]:

I; = 1 nAmp (dark current)

N,/z% = 10716 Amps? (thermal current variance)
Py = 107" wars (background light power)

/T = 100 Mbps (bit rate)

A = 1500 nm (wavelength)

For purposes of comparison, the BER for the ideal photon counter is included in the
graph. It is evident that the performance of the receiver is very much inferior, as approx-
imately 26 dB more power is needed to maintain a given BER. In terms of photons per
bit, this receiver needs nearly 8000 photons per one bit for a BER of 10~°. And although
there are some methods for improving the sensitivity of IM/DD receivers, (e.g., through
the use of an avalanche photodiode), practical IM/DD receivers cannot achieve the level
of performance predicted by the quantum limit.

3. Coherent Detection

It was shown in the last section that the dark current and preamplifier thermal noise
caused a 26 dB degradation in sensitivity with respect to the quantum limit. To combat
the thermal noise, IM/DD receivers typically use an avalanche photodiode (APD), which
has an internal gain. The APD current is then large enough so that the preamplifier ther-
mal noise is negligible. However, the gain of an APD fluctuates randomly, which intro-
duces another source of noise. Furthermore, the efficiency of an APD is typically half
that of a PIN diode. Overall, the net improvement brought on by an APD for an IM/DD
system is 5-10 dB; still 15-20 dB worse than the quantum limit [7].
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BER For Ideal and Practical IM/DD
Bit Rate = 100 Mbps
1072
10* - 1 M
Quantum Limit: —2-e
10°¢ |- .
Practical IM/DD Receiver
BER —
10° ,
— ¢ 26 dB
10—10 .
10_12|||||||||||1|||||||[1L||‘
-80.0 -70.0 -60.0 -50.0 -40.0 -30.0
P, (dBm)

Figure 7. The BER curves for the quantum limit and a practical IM/DD re-
ceiver, at a bit rate of 100 Mbps and wavelength A = 1500nm. The parame-
ters for the practical receiver are mean gain <M > = 1, = 1 (PIN diode),
thermal current variance = 10716 A2, dark current = 1nA, background light
power 1070 W,

If the optical power could somehow be amplified before the photodetector, then a
PIN diode could be used, since its current would then be large enough to overcome the
effects of thermal noise. This avoids the noisy gain and low efficiency of the APD. But
how does one achieve this high signal power? An optical amplifier is one possibility. It
turns out that these devices are theoretically possible, but difficult to realize. But by mix-
ing the received lightwave with a local lightwave, the power of the resulting sum is pro-
portional to the received power times the LO power. If P}, is large, this has the effect of
amplification, and the advantages described above can be gained.

In optical communications, coherent has come to describe any receiver that adds a
LO lightwave to the incoming wave, even if subsequent processing ignores its phase, as
do envelope detectors. To differentiate between a correlation type receiver and an
envelope detector, the terms synchronous and asynchronous are used.

3.1. PSK: An Example

To illustrate the principles of a coherent receiver, consider a single pulse of a PSK
modulated lightwave ak\/%cosmot, where g, = 1. Add to this signal a local
lightwave with power Py, and frequency w;p. The resulting sum is then directed
towards a photodetector, as shown in figure 8. With proper attention to the phase and
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JP LoCOSWr ol
JL I(t) |photo i pa(t) i)
a, VP, coswy »1) detector ‘e%cm —

Figure 8. The front end of a coherent receiver adds an LO lightwave to the
incoming signal. The resulting photodetector current is passed through a dc el-
iminator, which removes dc components, and can be realized by a simple RC
high-pass filter.
polarization of the lightwaves, the sum I (¢) is
@) = ak\]Pscosoaot + \]Pw cos®Wypt

= \/asz +Prp+ 201:‘];.}[,0 cos (g — W)t cos[mgr + B(z)]. (48)

The second equality follows from an expansion of /() in terms of its envelope and phase
about @,. The power of I () is

Psum(t) = asz +PL0 +2(1k qPSPLoCOSO)]Ft, (49)
where W = 10y — o | is the intermediate frequency.

Using the result from last section (see (32)), the current produced by the photodetec-
tor can be modeled by

ipd(t) = RP g, (2) +igh (t) + ipgper (2)
= @,RP, + RPp + 20, R\P P cosypt +igy (t) + iy (2), (50)
where i (¢) is a zero-mean Gaussian random process with spectral density
Ssn(f) = qRP g,
= gR (@ P, + Ppp + 2a, P P, coswypt). (51)

When Ppp >> P, which will be shown to be desirable and is easy to achieve, the density
of the shot noise is constant, independent of the transmitted bit:

Ssn(f) = qRPpg. (52)

The term i,,,,,(¢) in (50) models all of the other noises (dark current, thermal, etc.)asa

zero-mean white Gaussian process with density S, (f) = N,p,,. After dc elimina-
tion, the current is

-~

i(t) = a,‘2R \JPSPLoCOS(DIFt +ish(t) + iother(t)' (53)
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The SNR for this current relative to the signal space representation with basis function
y(t) = V2IT coswyzt can be computed:

T
( [ax2RNP Py cosayrt w(r) dt )
SNR = —>

T
E[ [Cish () + ipner () ) W(e) dt 12
0

2TR?P,P;,

= ) (54)
GRPro + N yher

The signal term is proportional to Py, as is the shot noise term. But the other noises
represented by N,,;,., are generally independent of Py, (see [8] for an exception). Thus
one can reduce the effect of these other noises by increasing P;,. In the limit, as Pro
tends to oo, the resulting SNR is

2TR2P,P;,

qRPp

SNR =

= 2M. (55)

For this shot-noise-limited case, then, we can ignore the other noises, and equation (53)
becomes

i(t) = a,2R\P,Procostypt +ig(¢), (56)

where iy, () is a zero-mean white Gaussian process with density S, (f) = gRP;,. The
problem has thus been reduced to the classical detection problem of a signal in additive
white Gaussian noise. The optimum receiver is well known to be a correlator followed
by a threshold test, as illustrated in figure 9.

]~

— &

i)

T
> oj(-)d: £ —

¢

Figure 9. The ML receiver for signals in additive white Gaussian noise is a
correlator, often implemented with a matched filter.

In a signal space representation, the received signal i(¢) is modeled as a vector in a
finite-energy infinite-dimensional linear space. For known signals in additive white
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Gaussian noise, the space can be restricted to the subspace spanned by the known sig-
nals, before they are corrupted by noise. For PSK, the subspace is one dimensional. For
the example at hand, let ;5 = @, so that @z = 0; i.e., homodyne PSK. In this case,
the known signal portion of the current is just a constant:

it) = a,‘ZR\/P:PLO +ig(2). 57
Let the one-dimensional subspace be represented by the normalized basis vector v,

where
- w/i
Y e yi) = T

The above notation means that the signal y(z) is represented in signal space by the vector
Y. For signals in additive white Gaussian noise, the optimal receiver need only compute
the sufficient statistic, which is the component of the incoming signal in the basis vector
y direction. This is because the components of the noise in any other direction are
uncorrelated with those in the sufficient subspace. (For a more complete description of
signal space representations, see, e.g., [9], [10].) The component of i(z) in the ()
direction is found by integrating their product:

T
Y = VIIT fi(t)dt = a,2R\P,PoT +N, (58)
0

where N is a zero-mean Gaussian random variable with variance gRP;,. The signal
space constellation is shown in figure 10.

P[Y 1zzro] P[Y lonz]

ZERO ONB

—2RVP,P,o,T 0 2R\P,PoT

Figure 10. The signal constellation for 2-level PSK, often referred to as
binary antipodal signaling.

The BER is then

4R\P,P.,T

P, =Ql———F2
e =0 2VgRP,, &)

= Q(VaM). (60)
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Comparing with equation (6), we see that under shot-noise-limited conditions, the perfor-
mance of homodyne PSK is slightly (~ 3.5 dB) better than the quantum limit! Note that
3 dB of this advantage is due to the fact that a PSK signal is transmitting at peak power
for both oness and zeros, something an IM/DD system cannot do. Equation (60)
1mphes that 9 photons per bit are needed for a homodyne PSK receiver to achieve a BER
of 107. This result illustrates the increase in receiver sensitivity promised by coherent
detecnon. And although the above analysis neglected some important issues (such as
laser phase noise), it will be shown that the degradation of this result in a more complete
analysis will not be severe.

3.2. Computation of BER for Shot Noise Limited Operation

What follows is a compilation of BER computations for various homodyne, hetero-
dyne, synchronous and asynchronous modulation formats. The spirit of these calcula-
tions is to develop a framework in which the relative merits of the various formats can be
compared. They will serve only as design guidelines, since these values will represent the
lower limit on the BER in the ideal case of shot-noise-limited operation. The receiver
structures and associated analysis in this section are for the most part standard; see, e.g.,
[11] [12][10]

To make the analysis tractable, many assumptions were made:

(i) No laser phase noise.

(i) Shot noise >> thermal, dark current noise, etc.

(iii) Perfect modulation of laser.

(iv) Square pulse shape (0 <t < T), no intersymbol interference.

(v) Perfect phase tracking by PLL (for synchronous receivers).

(vi) Combined lightwaves are identically polarized.

If these assumptions are not made, the analysis would become excessively compli-
cated. The effects of laser phase noise will be considered in section 5. If other noise
sources besides the shot noise are significant, the result will be a uniform power penalty,
so that the relative performance levels derived will stay intact [13]. The difficulty in
cleanly modulating lasers results in inadvertent intensity and frequency noise, which in
general must be accounted for. Since optical fibers have a large bandwidth and optical
PAM is very narrow-band, dispersion, and thus pulse shaping, equalization, and inter-
symbol interference, are neglected. The problem of realizing optical phase-locked loops
(PLL) is also an important one, but it too will be neglected here. Finally, a means of
ensuring identical polarization when combining lightwaves is needed. This can be done
through polarization-maintaining fiber, or more practically through some form of
automatic polarization adjusters [14].

The front end of the receivers considered throughout this section will all be the

same: the received lightwave is mixed with a LO lightwave, the sum directed towards a
PIN photodetector, and the resulting current passed through a dc eliminator (see figure 8.)

Heterodyne demodulation results in an IF signal, which can be processed in three
distinct ways. Synchronous receivers use a correlator or matched filter, and thus require a
PLL. Asynchronous receivers use an energy or envelope detector. Another alternative,
denoted as weakly-synchronous processing, uses some form of an autocorrelator. Since
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homodyning results in a baseband signal, the transmitted signal can be recovered
directly, so homodyne receivers are usually included in the class of synchronous
receivers.

3.2.1. Synchronous Processing

PSK

In the last section, the shot-noise-limited BER for homodyne PSK was found to be
Q(W ). The result for heterodyne PSK can be found using similar methods. From
equation (56), the current produced when a PSK signal is heterodyned using the tech-
nique in figure 8 is

it) = a;2R \JPsPLO CoOSypt + ig, ®), 61

where i, (¢) is a zero-mean Gaussian white noise process with density S;,(f ) = qRP;,.
The ML receiver is a correlator, as shown in figure 9, with basis function

(1) = V2IT coswyt. (62)
The input to the slicer can be computed:

T
Y = [i¢e)y(t)dt = aR\2TP,Py +N, (63)
0

where N is a zero-mean Gaussian random variable with variance gRP;,. The signal
constellation is shown below in figure 11.

P[Y | zzro] P[Y lone]

ZERO ONE
@ | 9 — > Y
-R\NZTP.P, 0 R<21P,Pp,

Figure 11. The signal space constellation for heterodyne PSK. It is the same
as for homodyne PSK, except the basis vector y(¢) has changed.

The BER is then

RN2TP.P,,
P, = — | = .
e = Q= | = 00BM) (64)

The performance of heterodyne PSK is seen to be 3dB worse than homodyne PSK, and
asymptotically equal to the quantum limit, as illustrated in figure 12. The corresponding
sensitivity for heterodyne PSK is 18 photons per bit.
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BER For Shot Noise Limited Operation
1072

. PSK (homodyne)
10 - \ PSK (het-synch)
‘\ Quantum Limit
\ DPSK
FSK - h

10°¢ ‘\ ASK(h(ﬁgxiﬁyge)
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— \ ASK (het-asynch)

‘/
U

BER

10-10 -

10712 ] ] | ] l ] ] | I | 1 1

0.0 10.0 20.0 30.0

10log;oM
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Figure 12. BER curves for shot-noise-limited operation, where BER is the
probability of a symbol error, and M is the number of photons per one bit. M
is proportional to the received peak power; M = MP,/hV)T.

FSK

For frequency-shift keying (FSK), the transmitter sends a lighf pulse with one of
two possible frequencies f o+ f,, where f; is the deviation frequency. The coherent
receiver adds a LO lightwave as before, see figure 13.

Vchosmwt

\Iltcos (0 = o )t

Figure 13. The FSK coherent receiver is similar to that for PSK.

In this case, the combined lightwave /(z) is
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1) = \/P-Tcos(coo oyt + \/IT;coscowt
= P, + P1o +2\P,PLocos (g — Gy £ @)t cos[agt + B(t)], (65)
so that the resulting current, proportional to the power of this lightwave, is
' i(t) = 2R\P Py, cos (O £ 0y)t +ig(t), (66)

where ig(z) is again a zero-mean Gaussian white noise process with density
Ssh(f) = qRP; . For large oy, this corresponds to orthogonal signaling. The resulting
signal space has two dimensions, as shown in figure 14.

W

L 3

ZERO

R\2TP,P,, d\

distance = 2R \JTP,Pw

ONE
o
A4

Yo

v

RN2TP,P,,
Figure 14. FSK is an orthogonal signaling modulation scheme.
Here,

Vo < %cos(m,p+(od)t, 67)

and

Y & %cos(a)lp — Wyt (68)

In this space, a oNe is represented by R\]ZTP_,PLO\VI, and a zEro by R\]ZTP,PLOWO.
The ML receiver finds the projection of the received signal i (¢) onto the (Wo,v1) plane,
and makes the decision that minimizes the Euclidean distance between this projection
and the decision. A block diagram of this receiver is shown in figure 15. Since , and
V are orthonormal, the y, and y; components of the shot noise iy (¢) are independent
and identically distributed (i.i.d.). The BER can then be computed as the probability that

the noise component is greater than half the Euclidean distance between the ove and zero
in signal space [10]:

distance/2
c

-

0 2R\TP,Pr, 12
VgRP
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\I %,'COS((O”} + @)t

T
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Figure 15. The ML FSK heterodyne receiver finds the correlation of the
current signal i () with the two expected pulses for a oNE and zzro .

= QM) (69)

This result is plotted in figure 12, where it can be seen that heterodyne synchronous FSK
reception is 3 dB worse than the quantum limit. It is also 3 dB worse than heterodyne
PSK. This is as expected, since FSK is an orthogonal signaling scheme, while PSK is
antipodal.. In terms of sensitivity, heterodyne synchronous FSK requires 36 photons per
bit for a BER of 10~°. FSK is a popular modulation scheme, however, due to the advan-
tages of direct modulation: by modulating the current of a semiconductor laser, one can
achieve FSK directly. PSK and ASK require external modulators, which can introduce
significant insertion loss.

Note that a homodyne FSK receiver would require two local lasers, one for each
possible frequency. Not only does this make them impractical, but there would be an
additional 3 dB penalty in sensitivity due to the inevitable loss of power when the
received lightwave is separated into the two receiver branches. Therefore, homodyne
FSK will not be considered here.

ASK

The BER for homodyne PSK and heterodyne-synchronous PSK have already been
found to be Q(‘14M ), Q(VZM ), respectively. The same analysis is applicable to ASK,
with two adjustments:

»  The distance in signal space for ASK is half that for PSK.
*  The average signal power for ASK is half that for PSK.

Each of these alone cause a 3 dB degradation in sensitivity, resulting in a total of
6 dB. Therefore, without repeating the analysis, we conclude that for homodyne ASK,

P, = (M), (70)
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and for heterodyne-synchronous ASK,
P. = Q(\5M). 1)

These BERs correspond to a 3 and 6 dB penalty with respect to the quantum limit,
requiring 36 and 72 photons per bit, respectively. Although these ASK modulation
schemes perform worse than the PSK schemes, their use stems from the relative ease in
performing external ASK modulation of a laser. An interesting application of homodyne
ASK will be considered in section 5.3.

3.2.2. Asynchronous Processing

Although synchronous receivers perform well, they require sophisticated com-
ponents, such as a PLL. An alternative way of processing the IF current uses an energy
or envelope detector, which results in simpler receiver design. Their performance, how-
ever, will be seen to be inferior to their synchronous counterparts by ~0.5dB. An
envelope detector can be thought of as an absolute magnitude rectifier followed by a
low-pass filter. It will be assumed in this section that an envelope detector exactly repli-
cates the envelope of its input. Since an envelope detector ignores the phase of its input,

PSK cannot be processed asynchronously, so only ASK and FSK will be considered in
this section.

ASK

In the last section, it was shown that the synchronous ASK receiver found the com-
ponent of i (¢) in the y direction using a correlator. In practice, this is implemented using
a matched filter, as illustrated in figure 16(b). These synchronous receivers use a PLL to
track the phase of the received signal. The motivation behind asynchronous receivers is
the desire to detect the signal without regard to the phase, and thus simplifying the
receiver design. If the matched filter implementation of figure 16(b) were used without
phase tracking (modeled as a uniform random variable 8 over [0,2x]), sampling p (¢) at
t=T will in general not yield Y. In fact, p(T) could be zero, or worse negative! But
even if p(¢) were not maximum at ¢=T, its envelope will be close to its maximum.
Therefore, an asynchronous receiver samples the envelope of p (¢), as illustrated in figure
16(c). For the ideal envelope detector, the result » will be independent of 6.

Consider the asynchronous receiver for heterodyne ASK, shown in figure 17. Here,
the IF current is

i(t) = a2RP,Prpcos(@ypt +0) + iy, () (72)

where O represents the fact that the absolute phase of the pulse is not tracked, so it’s an
unknown random variable. The matched filter - envelope detector - sampler combination
shown in the figure estimates r, the envelope of i (¢). Analytically, this is equivalent to
projecting

i & i) 73)
onto the (Y, ,y,) plane and finding the distance from the origin, where

Y, & %COSCD”:I, (74)
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Figure 16. Evolution of asynchronous receivers: (a) the ideal correlator; (b) a
matched filter implementation; (c) an asynchronous envelope detector imple-
mentation. Adapted from [15].

Vchosmwt
{®) | MATCHED ENV T

Figure 17. The heterodyne asynchronous ASK receiver uses a filter matched
to the expected pulse at IF, followed by an envelope detector.

and

v, < -;)'Tsina),pt, (75)

Figure 18 shows the signal space representation. It is evident from figure 18 that the
enelope r will be independent of 6. So without loss of generality, assume 6 = 0.



Figure 18. The signal space for ASK: 0 represents the unknown phase, and
ig;, represents the shot noise. The envelope of i (t) is 7, the distance from the
origin to the projection of i onto the (y,y,) plane.

Computing the projections of i onto the plane axes:

T
i. = [ie)y.()dt = qR\2TP,Py +n,, (76)
0
and
T N
is = fiew,()dt = n,, (77)
0

where n_ and n; are i.i.d. zero-mean Gaussian random variables with variance gRP; .
To simplify notation, define

I = R\2TP,P,, C(78)
and
o? = qRP;, (79)

as the normalized current amplitude and noise variance, respectively. Then the envelope

ris
r = \‘icz+i_,2

= N(a I +n, 2 +nl. (80)
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The probability distribution function for r can be obtained as follows (see, e.g., [15]
[16)).

p,(p)dp = Prlp<r <p+dp]

Prip < V(g I +n, )2 +n2<p+dp]
= [ [Pan(nc —ail, ng) dndng, ®81)
AN

where AN is a ring of radius p and thickness dp in the (n,,n,) plane, as shown in figure
19.

P (0 | oNE) AN

Figure 19. The probability distribution function for r can be found by in-

tegrating a two-dimensional jointly Gaussian distribution centered at (7 ,0) over
AN .

Since n, and n, are independent zero-mean Gaussian random variables with variance o2,
the joint distribution is the product of the marginal distributions, so that (81) becomes

1 ~n. - a I Y126% _ -n22c?
dp = | |—=e e dn.dn,. 82
p,(P)dp Aijmz cdng (82)
Substitute
n, = pcosb,
ng = pPsind,
dn.dn, = pdpd® (83)
to get
p+dp2rn .
1 —(pcosd — a,l 1262 - pisin?0/262
(pdp = e dod
p-(P)dp { £ - pdedp
2r 2_ 2
_ PdPJ 1 e-(p 2paklcos9+ak12)/20d9

2
= dp _Q_e ~(p2+ a I D202 __1_J-ea,,;:blccselo2

2 2% § de|. (84)
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Recognizing the bracketed term as the zero™ order modified Bessel function of the first
kind, we find that

o2 o

This result, which holds for the envelope of a narrow-band signal in additive white Gaus-
sian noise, is well known to be the Rician density. When g, is zero, this reduces to the
Rayleigh distribution. The conditional distributions for the envelope are

(p>0), (86)

—(p? '
p,(p) = Lo EHaNL [a_k&] (> 0). (85)

p(p\zer0) = f;e*’”"’ :

p,(plong) = —;%e“"’*””z"zlo [’é] (>0)

1 —p - I1Yr20%
= e , ¢:7))
\/21t0'2

where the second approximation is valid for large

= 2M. (88)

P (p|zmo)

Figure 20. The Rayleigh distribution (zzr0) and Rician distribution (onE).

The optimum threshold r,;, is where p,(p |z2r0) = p, (p | oNE), which again for high SNR
is ry; = 1/2. The BER for heterodyne asynchronous ASK with M >>1 is then

P, = %Pr[r >§|ZERO]+%PI[I‘ <§|0NE]



c
-1 e %gg? - (89)
2 ?
where the last approximation follows from
0 [Lc’%] <o o g8 (90)

Notice that a false alarm is more probable than a miss. Substituting the original
definitions for I and ¢ from equations (78) and (79), we get
1 -Mi

Pe = -2—e . 1)

Thus heterodyne asynchronous ASK is 6 dB worse that the quantum limit, as shown in
figure (12). The sensitivity is 80 photons per onE bit.
FSK

An FSK modulated lightwave can be demodulated asynchronously using two
branches, one for each possible frequency. Consider the receiver shown in figure 21.

. T r
VP ocos ot MF E])%¥ Y
‘o (g + ©g) .
r((—® b ad O
T
r(¢) = VP, cos(wgtm,)t
we {5 >v—
(03— )

Figure 21. A dual filter heterodyne asynchronous FSK receiver.

The IF current is
i(t) = 2R\P,PLocos(wy+ )t +ig(t)
=1 %cos(o)oi @)t +igy(t), 92)
where again,
S;(f) = o® = gRPy, 93)

is the the shot noise density, and
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I = R\2TP_P., (94)

is the normalized current amplitude. The two branch filters are matched to the expected
RF pulse at frequencies Wyt w,. For large frequency deviation (wg > w, > 1/T), there
will be no cross-talk between branches, so the system is symmetric (i.e., the probability
of a false alarm equals that of a miss). Assuming a onE is sent, then

P, = Pr[ry—ry<0Ilone], 95)

where r, and r ¢ are the envelopes detected by the two branches. Each branch is seen to
be a replica of the ASK heterodyne asynchronous receiver considered earlier (see figure
16). The probability distribution of r; and r can thus be found from equation (86) and
(87) (see, e.g., [15][16]):

P (prlone) = Se 0TI [%211] (p>0), 96)
Pr(PolonE) = gg e ™ (>0 o7

The noise in each branch will be independent due to the separate frequency ranges
spanned by the two matched filters. Therefore

Pr 1r°(pl’p0 lone) = pr,(pl IONE)pro(pO loNE). (98)

The BER can now be computed by integrating this joint distribution over the range dic-
tated by equation (95):

P, = g [P+ (P110NE) P, (pol onE)d Pod py
P1 .

-ty o [P | -pEio|T Po  -pane?
e oo |5 €™ ‘[02 e ™" dpy |dp,
P

L
2

1 1262 I | 292062
—e” '2‘3:[9110 BL e g, (99)

Substituting x = V2p,, o = I/¥2, yields

1 -I%4ac%p x ox |, —(a2+x3202
— —e — — e dx.
> £ 210[ 2] (100)

Recognizing the integrand as the Rician density, the total integral must be one. Thus

P, = %e T4’ (101)

Substituting I and o2 from (93) and(94) yields the BER for heterodyne asynchronous
FSK:

1 _-Mr
P, =e . (102)
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This corresponds to a 3 dB penalty with respect to the quantum limit, as illustrated in
figure (12). The sensitivity is 40 photons per bit.

3.2.3. Weakly Synchronous Processing: DPSK

The synchronous receivers of section 3.2.1 are known to be optimum for additive
white Gaussian channels. They essentially found the correlation of the received
lightwave with a local replica of the transmitted pulse. Since this requires accurate phase
synchronization which complicates the receiver structure, the asynchronous receivers
described in section 3.2.2 are commonly used, with an accompanying penalty of ~0.5 dB.
These asynchronous receivers used envelope detectors, which obliterate all knowledge of
phase, and thus they are inappropriate for PSK systems. Fortunately, however, there is a
way to demodulate a certain type of PSK called differential phase-shift keying (DPSK)
without replicating the transmitted pulse locally, and without the need for tracking phase.
To send a zero in DPSK, the transmitter changes the phase of the pulse by 180° with
respect to the previous pulse. To send a one, the phase of the transmitted pulse is kept

the same as the previous one. That is, the received signal is

VP, cos(wgt + ¢y + 6) (103)
where ¢ € {0,x} represents the modulated phase of the k™ bit:
CONE & Qp—0py = 0,
ZERO & Op—Pp = . (104)

Here O represents the unknown absolute phase, which is not tracked. If this unknown
phase varies slowly, enough so that it is virtually constant over a time interval of two bit
periods, then the pulses in two adjacent slots will differ by either 0 or x. A DPSK
receiver uses this knowledge and finds the correlation of the incoming pulse with the pre-
vious pulse. Except for the effects of shot noise, they will be the same for a onE, resulting
in a positive correlation, and opposite for a zzro, resulting in a negative correlation. The
block diagram of such a receiver is shown in figure 22.

\/chosmwt

: T
*IP_,oos(mo+¢,‘+e) o b = i(t) T_ !(.)d, Va

ip(t) = it -T)

Figure 22. The DPSK receiver uses a one bit-delay demodulator. When the
phase of two consecutive pulses are the same, the result is positive, and when
the two IF pulses have opposite phase, the result is negative.

The IF current is
i(¢) = 2R\P,Prpcos(aypt +8) +ig(¢), (105)
where
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Sa(f) = 6%& gRPp,. (106)

To analyze the DPSK receiver, it is easiest to use signal space concepts. From equation
(104), one can surmise the best receiver will estimate Bé the difference in phase
betweeni(t)andi(t —T), and

decide onNE if IB]yodon < /2,
and
decide zero if | Bl pogon > T/2. (107)

From equation (105), we see that without the additive shot noise, the set of all possible
expected signals falls on the (., ;) plane, where

Y, & %COSO)”J s

and

v, & %sino),pt. (108)

And since the shot noise is white, its (y,, ;) components are uncorrelated with any of
its other components. Therefore, no information is lost if the currents i (¢) and i (¢—T)
are restricted to the sufficient subspace spanned by Wy, and . In this signal subspace, 8
is the angle between the projections of i and ip onto the (., ;) plane, where

i o i),
and
ip & i¢-T). (109)
Also define
s &> Icos(wypt +6),
n & igr),
np & ig@-T), (110)
where s represents the expected signal, and again
I = R\2TP,P,,. (111)

Notice that since n and np are sample functions of a white noise process over two dis-
joint time intervals, they are independent. Furthermore, since

T
<Y W> o [ dt =0, (112)
0

then
ne. = <nY.>,
ng = <ny,>,

<np,Y.>,

> s> i

nD'c



np s 2 <Np,Ys> (113)
are all i.i.d. zero-mean Gaussian random variables with variance o2 = qRP;p. With

these definitions, the signal space diagram is shown in figure 23, where only the projec-
tions of the vectors onto the (. , ;) plane are illustrated.

Vs

i+iD
A

Ve

Figure 23. Signal spacé representation for DPSK. The absolute phase 0 is ir-
relevant, only the relative phase B between i and iy is important.

Since DPSK is a symmetric modulation scheme [12], the BER can be found by consider-
ing only the probability of a miss:
P, = Pr{miss]
= Pr{ 1B pnodon > /2 l0NE]
= Pr{cosP <0 lonE]

- Pr <i,id> 01 114)
= T Mmnmipn S0 (

where the last equality follows from <i,i;> = Ilill-llip Il cosp. Next use the identity

4<iin> = Ni+ipl12=lli-iy N2 (115)
D D D
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to get:
P, = Prlli+ip 2= lli-ip %<0 lone]
= Pr{R, <R_lone], (116)
where
R, 2 lNi+ipl
= l12s+n+npll, (117)
and
R_2 lli-ipl
= lln-npll, (118)

That is, R, and R _ are the lengths of two-dimensional vectors with mean lengths 2/ and
0, respectively, corrupted by additive white Gaussian noise. From the analysis of hetero-
dyne asynchronous ASK reception in section 3.2.2, we know that R, and R_ have a
Rician distribution. Now, however, the mean and variance are 2/ and 202, instead of /
and o2 From equations (86) and (87) we get the conditional distributions for R , and R _:

PR (plone) = E%e D, (p>0), (119)
PR_(P loNE) = Tz%)_e -p+ (2[»2/2(202)10 [.22(%;_], (p >0). (120)

The evaluation of (116) for Rician distributions was already carried out in section 3.2.2,
for heterodyne asynchronous FSK. The result can be directly applied here, by replacing
I by 2, and o by 262 in equation (101). Thus for DPSK reception, the BER under
shot-noise-limited conditions is

P, = le-<21)2/4<202)

2

1, -I*12¢?

—e

2

1 M

= — , 121
>e (121)
where I and o were substituted from equations (111) and (113). This BER represents a
~0.5 dB degradation with respect to heterodyne-synchronous PSK, equaling the perfor-
mance of the quantum limit, at the gain of simpler receiver structure. This means that a
DPSK receiver needs only 20 photons per bit for a BER of 107°. Asone might expect,
however, both PSK and DPSK are sensitive to phase noise, which turns out to be a

significant impairment for semiconductor lasers (see section 4.8).

4. Unique Characteristics of Optical Communication Systems

In many ways, communicating with the visible portion of the electromagnetic spec-
trum is the same as using RF frequencies. Enough differences exist, however, so that one
cannot always directly apply proven principles from one realm to the other. For exam-
ple, the bandwidth of RF systems is generally limited, whereas for optical systems it is
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plentiful. And a virtually noise-free RF oscillator is relatively easy to build, whereas the
best of today’s semiconductor lasers have significant phase noise. So although lightwave
communications overcomes many of the limitations in RF communications, it introduces
a new set of impairments. This section describes some of these unique traits.

4.1. Narrow-band

An optical pulse is very narrow-band, since the frequency of its carrier is large. As
an example, consider an isolated pulse of a 100 Mbps system, with wavelength
A = 1300mm. Then the ratio of the bandwidth of this pulse to its carrier is ~1075,
whereas the same square pulse with a carrier of only 1 GHz would have a ratio of ~1072,
Also, the bandwidth of optical fiber is immense. Furthermore, today’s high quality fiber
has a very small dispersion coefficient. Together, these facts make the dispersion of an
optical pulse relatively small, so it is commonly ignored in the analysis of optical
receivers. This precludes the need for equalization to eliminate inter-symbol interfer-
ence. Consider next some of the components of an optical communications system.

4.2. Optical Fiber

Multimode fibers have a large core with respect to the wavelength of the propagat-
ing wave. When a pulse of light is applied to one end of a fiber, the light can be thought
of as traveling down the fiber via total reflection. When the core radius is large enough,
many different modes reflecting at different angles can propagate. Since the resulting
path traveled by the lower modes (small angle of reflection) is shorter than that of the
higher order modes (large angle of reflection), the lower order modes will arrive at the
receiver before the higher modes, resulting in a spreading of the pulse. This type of dis-
tortion is called inter-modal dispersion, and can be overcome by making the core radius
small enough so that only a single mode can propagate, namely a single-mode fiber. For
this reason, single-mode fibers are expected to prevail in high-throughput communication
applications, especially coherent systems. Because of the small core radius, however, it
is difficult to launch light into a single-mode fiber.

Another form of degradation is chromatic dispersion, which arises from the fact that
lightwaves at different frequencies travel through the dielectric waveguide at different
speeds. The wavelength of zero chromatic dispersion for standard fiber is near 1300 nm,
but it can be shifted anywhere from 1300~1500 nm through proper fiber design.

The attenuation of high-quality production fibers is <0.2 dB/km, which is quite
favorable compared to the ~ 10 dB/km loss for metallic coaxial cables. And since this
low attenuation exists in the 1450-1650 nm wavelength range, optical fiber offers a
potential bandwidth of over 30,000 GHz. Other attributes of fiber as a medium are its
immunity to interference, absence of energy radiation (which provides high security),
and reduced overall effective cost. Together, these characteristics make optical fiber a
nearly ideal communications medium.

4.3. Lasers

A crucial element of coherent communication systems is the laser. Ideally, it should
be inexpensive, rugged, spectrally pure (small Av), and tunable over the entire low
attenuation window. Gas lasers can have small linewidths, but they are bulky, expensive,
and sensitive to vibrations. . The future of coherent systems is thought to rely heavily on
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advancements in semiconductor laser technology. Presently, semiconductor lasers need
external cavities to get Av <1 MHz. But these external optical devices lack robustness,
so it is hoped the properties of semiconductor lasers can be improved through other
means (such as distributed feedback, or DFB). The best of today’s DFB lasers have a
linewidth Av of no less than 5 MHz. -

4.4. Modulators
There are basically two ways of modulating a laser:

Direct modulation:
Where FSK can be obtained by controlling the injection current of the semiconduc-
tor laser.

External modulation:
Where the lightwave is modulated via a phase modulator, usually a lithium niobate
device, to achieve ASK, PSK, or FSK.

Attempting to perform ASK or PSK via direct modulation results in spurious chirp noise,
and so is not commonly attempted. Externally modulated FSK seems to be possible,
although there is an extra requirement of some form of line coding. To investigate this
idea further, consider the phase modulator modeled in figure 24.

v
PHASE | | colag + ¥
Gosot MODULATOR [°‘ V. ¢

Figure 24. The phase of the output of an ideal phase modulator is proportional
to the modulating voltage input V (¢).

Vg is the voltage necessary for a phase change of &t radians. To perform FSK, V (¢)
would need to be linearly increasing or decreasing. Neglecting coding considerations,
let’s say we want to transmit a 1010 pattern. This will provide a quick check of the via-
bility of this device in an FSK system. Then V () would need to be triangular waveform,
as shown in figure 25:

Vop
Vi) = % —T—t + Oy (122)
where ¢, is a constant during each bit interval T. It maintains V (z) as a piecewise con-

tinuous function. Then the output of the phase modulator is

114
cos[mgt + LV(:)] = cos |yt £ —25-1 + I

Va v.T V. O

[ 1%
= cos |2 [foi ZV””T]I + = ¢k]. (123)
K
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Figure 25. Modulating voltage V (¢ ) necessary for a 1010 FSK pattern.

Notice that the since V (¢) is continuous, the output of the phase modulator has continu-
ous phase. From the previous equation, we see that the effective frequency deviation is

fa Vop (124)

ST

A typical value for V ; is 10 volts [17]. Since % = R = bit rate, we can rewrite

fa= _‘;pr , {125)
which indicates a reasonable range for V,,. For example, for MSK (f; = R/4),
Vpp = 5 volts. But what about the phase modulator, can it track a triangle wave at a fre-
quency of % = 1R? Typical lithium niobate phase modulators have a bandwidth of 8-
13 GHz [17]. Thus, as long as %R << 8-13 GHz, the triangle wave will be sufficiently
tracked. -

The preceding calculations seem to assert that FSK using an external phase modula-
tor is practical. However, it has neglected an important aspect of phase modulators: their
modulating input voltage range. To ensure the linear phase relationship depicted in figure
24 is valid, V(¢) must be maintained within specific limits, typically + 50 volts. One
solution would be to make a discrete jump by some multiple of 2V . But this would not
be tracked adequately by the lithium niobate modulator, resulting in a distorted signal.
An alternative is to code the bits before modulation, ensuring that V (¢) stays within
1V max- A simple (and inefficient) code is a 1B2B code, illustrated in figure 26.
Transmitting v (t) for a ove will appear as a oNeE—zEro sequence to the FSK receiver.
Similarly, applying v ¢(t) to the phase modulator would appear as a zErRo—oNE sequence.
Although this is a practical system, the effective bit rate has been cut in half. However,
further study may prove the advantages of external modulation outweigh the coding limi-
tations. A simple FSK system using an external FSK modulator is shown in figure 27.
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Figure 26. Pulse shapes for V(¢): (a) ove—zero sequence, (b) ZERO—ONE se-
quence.

. SIGNAL
bits b, —
1 GEN.
e o
- or |-
fiber channel .
| e by
PHASE ( ) K
LASER FS DECODER [——
MOD. RECEIVER -
' R § L1
rate: T rate: T

Figure 27. An external modulator in an FSK system.

4.5. Photodetectors
There are two classes of photodetectors:

*  PIN diodes: Quantum efficiency 1 = 1, mean gain <M> = 1, less sensitive than
avalanche photodiodes.

*  Avalanche Photodiodes (APD): Quantum efficiency N~ 0.5, mean gain <M > ~ 50,
more sensitive than PIN diodes, but gain is noisy.

APDs are used for IM/DD systems, because the incident light is generally weak, requir-
ing the amplification effect provided by the APD. A price is paid for the APD’s
increased sensitivity; multiplicative noise. The gain M has statistical fluctuations that
vary as <M >*, where x is typically 0.5. Since heterodyne techniques amplify the light
before the photodetector, the gain produced by an APD is not necessary; the light
incident in a coherent system is strong enough so that the more efficient and less noisy
PIN diode can be used.
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4.6. Polarization

An important consideration in coherent optical systems is polarization. Since the
state of polarization of a lightwave traveling through a fiber will vary randomly, some
means of recovering this polarization is necessary. In some ways, the problem is similar
to a random phase variation. And a solution analogous to the PLL would be some sort of
polarization tracking system. It has been shown that the rate of polarization fluctuation is
small enough so that some of form of feedback tracking should be possible [2]. Another
alternative is to break the received lightwave into two orthogonal states of polarization,
then process each in a separate branch of the receiver. The performance of the resulting
receiver would then in theory be independent of the state of polarization of the received
signal [18].

4.7. Heterodyne versus Homodyne

Many of the principles developed in standard RF communication theory can be
applied directly to optical communications. For example, the criteria used to choose
modulation-demodulation schemes in optical communications are in many cases directly
analogous to those developed in RF communications. One interesting difference, how-
ever, is this: optical heterodyne reception is 3 dB less sensitive than optical homodyne.
There is no such distinction in RF communications. The reason for this difference is not
immediately obvious, and to the author’s knowledge, there has been no straightforward
explanation given in the literature. In fact, one article states [19] :

‘‘Heterodyne reception entails a penalty, however, because the carrier and local oscillator con-

stantly slip out of phase with each other. The receiver is most sensitive at the instant when the

signal and local oscillator are in phase. When they are out of phase by 90 degrees, sensitivity

approaches zero. The IF signal averages those good and bad conditions, making a heterodyne

receiver at least 3 dB less sensitive than homodyne.”’
Although the argument may be intuitively pleasing, it fails to explain why a 3 dB penalty
does not occur for RF heterodyne. The inspiration for the discussion that follows comes
from a paper by Kazovsky [20], which is dedicated to the heterodyne/homodyne distinc-
tion. The purpose of this discussion is to not only verify a 3 dB penalty for optical
heterodyne, but to make a direct comparison with microwave systems. What follows is
a side by side comparison of optical and RF heterodyne/homodyne techniques.

Optical Homodyne

Consider first optical homodyne reception of a PSK signal, under shot-noise-limited
conditions. The ideal receiver is depicted in figure 28(a). The baseband current after dc
elimination is

i(t) = @ 2RPPrg +ig,(2), (126)
where S, (f ) = qRP.,. The output of the integrator is then
Y = a,2R\NTP,P;, +N, 127

where N is a zero-mean Gaussian random variable with variance gRP;,,. The SNR at
the input to the slicer is thus

4R?TP,P.,

SNR 4t jom = o
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Figure 28. The optimum receiver configurations for optical (a) homodyne,
and (b) heterodyne.

aM. . (128)

Optical Heterodyne

Next, consider the same PSK signal and a heterodyne receiver, as shown in figure
28(b). Here,

it) = akZR \IPSPLOCOS(OIFI + ish @®), (129)
where again S, (f ) = gRPp. The basis function for this signal is

‘\’ %’COSO)IFI , (130)

instead of 71_77 The resulting correlation Y is then

Y = qR VZTP,PLO +N, (131)
where again N is a zero-mean Gaussian random variable with variance gRP;,,. Thus,
the SNR at the slicer input for ideal shot-noise-limited heterodyne PSK is
R%TPP,

= 2M. (132)

Comparing (128) and (132), we see that indeed, even for ideal noiseless lasers under
shot-noise-limited conditions,
1

SNRopt.het = ESNRop"m. (133)
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Since the receivers used in the above analysis are optimum, no different or further pro-
cessing can improve the relationship given by (133).

RF Homodyne.

To clarify the reasons why there is no heterodyne penalty in RF communications,
consider the front-end of an RF homodyne PSK receiver shown in figure 29(a).

2cos Wyt
,)L X2 X X3
aA coswyt +n(t) "% A1l —
noy 0 nia
(@
2cos ot 2cos Wyt
w W W W W x
akACOSOJoI Py - | X2 X3 —> > X4 Xs - 6
. T 0 Sl Y R Sl B
+ n() -0 0 ® ny ny -0 0007 ng ns 0 ng
® .

Figure 29. Front-end processing for RF receivers: (a) homodyne, and (b)
heterodyne.

The only noise under consideration is # (z), a channel-induced zero-mean white Gaussian
process, with two-sided density Ng. The bandwidth of the low-pass filter W is chosen to
be large enough to pass the signal undistorted. Computing x,(z), the output of the mixer:

xo(t) = arA +apAcos20t +no(t), (134)
where
ny(t) = 2n(t)coswyt (135)

is also a zero-mean white Gaussian noise, with density S, .(f) = 2N This result is

derived in appendix A. After the low-pass filter, which filters out the high frequency
term:

x3(t) = @A +na(t), (136)

where

2No  for If1 <W/2
At this point in the receiver, the SNR is
A 2
2N W -

SNRRF hom = (138)



RF Heterodyne.

Finally, consider an RF heterodyne receiver, with the same PSK input, as shown in
figure 29(b). Since the noise is introduced in the channel, it is advantageous to pre-filter
the received signal with a band-pass filter before demodulation. This would not have
helped the homodyne receiver, but the spectral densities shown in figure 30 illustrate its
benefit for the heterodyne case. Assuming the band-pass filter passes the expected signal
undistorted, its output is

X,(t) = arAcoswyt +n,(t), (139)

where S, (f ), along with S, .(f), S,,(f ), Sp,(f), and S, (f), is illustrated in figure 30.
After the first mixer,

x3(t) = qA cosypt + akA cos(Wg + Wyt + n3(t). (140)
After the second band-pass filter, which is centered in frequency at o,

x4(t) = arAcoswypt + n4t). (141)
The second mixer resuits in

xs5(t) = q,A +arAcos Quyp)t +ns(t). (142)
After the final low-pass filter, the output is _

xg(t) = arA +ngt). (143)

Comparing this result with (136), we find that the RF heterodyne receiver results in the
same signal-plus-noise. The corresponding SNR is

A?.

SNRRF.he! = ZNOW

= SNRgr hom (144)

which verifies the claim that there is no heterodyne penalty in RF systems.

In case the above analysis is not transparent, here is an explanation in words:
Demodulation of a modulated waveform requires a frequency translation of the signal’s
spectrum from the carrier down to its baseband form, at zero frequency. This frequency
translation also applies to the surrounding noise. In homodyne, the translation is done in
one step, from f,. to zero. In heterodyne, however, there is an intermediate step: first
from f o to fyr, then from f;z down to zero. If the noise is white, each translation dou-
bles the relative noise density, making heterodyne 3 dB worse than homodyne. The key
difference between RF and optical communications is the source of the white noise. In
optical systems, it’s from shot noise, which is a result of the demodulation process, while
for RF systems, the noise is generated in the channel (or at least before the mixer). This
latter fact allows the RF heterodyne receiver to pre-filter the noise before mixing,
preventing the noise density from doubhng after both translations. This is not possible in
optical systems, because the noise is generated after the mixing, and thus the 3 dB
penalty for optical heterodyne.
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Figure 30. Spectral densities for the noises at various points of the RF hetero-
dyne receiver of figure 29(b). Notice that without the pre-filter, S, 3(f) would
have height 2V  instead of N .

4.8. Laser Phase Noise

Of all the obstacles preventing coherent reception techniques from making a smooth
transition into the optical domain, laser phase noise is the most critical. Ideally, the spec-
trum of a sinusoidal signal is a delta function centered at the carrier frequency. When
the phase of the sinusoid is a random process, the spectrum spreads out so that it has
nonzero width. For modern RF oscillators, the width of its spectrum is < 1Hz. For
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typical semiconductor lasers, however, this width is 5~100 MHz. And even though the
carrier frequency of an optical oscillator is ~ 10° times that of an RF oscillator, the rela-
tive quality is still deficient by a factor of ~ 10°.

To deal with this phase noise analytically, it must be accurately modeled. Define
the linewidth Av of a laser as the 3 dB bandwidth of its spectrum (see figure 31). The
laser phase noise process ¢(¢) is commonly characterized by a Wiener process, such that
its time derivative ¢(t) is a zero-mean white Gaussian process with density

S4(f) = 2mAv. (145)

At low frequencies, the density of ¢(z) is not flat, due to 1/f noise, but it is expected that
the resulting variations in frequency are slow enough to be adequately tracked [1]. There
is also a peak in § $(f) at the relaxation frequency of the laser, but this is usually beyond
the bandwidth of the receiver. Thus the approximation of ¢(t) as a white process is a
good one. As will be shown, it leads to a spectral shape called Lorentzian that has been
observed experimentally [21].

It is not obvious that choosing <i>(t) to be white with density 2wAv results in a
sinusoidal signal whose spectrum has bandwidth Av. To show this, consider the represen-
tation of a laser source as

x(t) = VP cos[wgt + ¢(r) + 6]. (146)

The random variable 6 is uniform over [0, 2x}], and independent of ¢(¢). It is introduced
to to make x(¢) stationary, and can be justified by realizing that the time origin is arbi-
trary, not absolute. That is, since

- t
o) 2 [o@u)du, (147)
! .

x(it =0 = \lPscose should still be random. To find the spectral density of x (¢), its
autocorrelation is needed:

R, (r1.29) = E[x(t )x(z5)]
= P;E[cos(agt + ¢ 1) + B)cos(amgr 2 + ¢(z ) + 6)]

= 2 P,E[cos(@y(ty ~ £+ §(t1) = 4(t) )]
+ %PSE[sin( Qolty +19) + 0( ) + 6() +20)]. (148)
The second term in (148) is zero when the expectation over 0 is taken. Thus

R,(f15) = —;-PSE[coscoo(tl — 1))+ @]

= %Pscosmo(tl — t9)E[cos®] - %Pssincoo(tl —to)E[sin®@], (149)

where for a given ¢, and z,,

D 2L o)) - 0(2y)

H ta

= [o(u)du — [du)d
£¢(u) U £¢(u) u
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&
= [¢(u)du. (150)
ta :

Therefore, since ¢(t) is a zero-mean white Gaussian process, @ is a zero-mean Gaussian
random variable with variance
o0& = E[®}]
Hhy

= E[ [ [¢(u)o(v) dudv ]

tats
Hh

= 27Av [ [8(u - v) dudv
tats

= 2nAVIt, —t,l. | (151)

It is shgwn in appendix B that for a zero-mean Gaussian random variable ® with vari-
ance Og,

Elcos®] = e %2,
E[sin®] = 0. (152)
Thus (149) becomes
P -
Ry(t1ty) = —zie"‘A""‘ “ cosag(ty — 1), . (153)
and replacing ¢, — ¢, by T gives
P, —maviti
R,(%) = e " coswyT. (154)

The Fourier transform of this autocorrelation function yields the spectral density of a
laser source corrupted by phase noise:

Py
2nAv

Ftfo|
Av/2

This spectral shape is referred to as Lorentzian, and is sketched in figure 31.

() = (155)
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Figure 31. The Lorentzian spectral shape of a sinusoid corrupted by a Wiener
phase noise process.

The effect of this nonzero linewidth is the subject of the next section.

5. Laser Phase Noise Analysis

Much of the recent research in semiconductor lasers has concentrated on reducing
laser linewidth. Nevertheless, the linewidths are still significant, and it looks like this
impairment will be around for a while. It is important, then, to analyze its effects on the
performance of various coherent receivers, as the phase noise must be understood before
its overall impact can be diminished. There are numerous papers available which study
the effects of laser phase noise; see e.g., [22] [1] [23] [24]. Most of the proceeding
analysis is based on the works by Kazovsky [22] [25].

All of the analysis in the previous sections assumed zero linewidth (Av = 0).
When this assumption is not valid, the BER curves as shown in figure 12 are affected in
two ways:

Power penalty:

If Av > 0, then the Lorentzian shape of the light source tends to smear the spectrum

of the modulated signal. To recover the signal, then, the IF bandwidth must be

increased, which subsequently passes more shot noise. This power penalty results
in a shift of the BER curve to the right. Note that by increasing the received power

Py, this penalty can be overcome (see figure 32).

BER floor:
For angle modulation schemes (PSK, FSK), a nonzero linewidth can be devastating.
It should be clear that if the phase process were allowed to take a ‘‘random walk,”’
the performance of a DPSK receiver, which relies on the coherence of the phase in
two successive bit intervals, would rapidly deteriorate. For a given Av, then, one
must choose the bit rate R large enough so that there still is some phase correlation
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in successive pulses. If not, then no amount of received power P, can overcome
this effect. The result is a BER floor, and is illustrated in figure 32.
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Figure 32. Phase noise has two effects on a BER curve, a power penalty,
which causes a shift to the right, and a BER floor, which is a lower limit on the
BER.

The power penalties are in general more difficult to obtain analytically, because
they require simultaneous consideration of both phase noise and shot noise. First, we
will compute the BER floors for angle-modulation schemes.

5.1. Effect of Phase Noise on FSK

The received lightwave corrupted by laser phase noise for FSK can be represented
as

r(t) = VP cos[(@g £ @,)t + 05 (1)]. (156)
where ¢,(z) is the phase noise process, and ‘i’s (¢) is a zero-mean white Gaussian process
with with spectral density S ;p'(f ) = 2rAv,. Similarly, the LO lightwave is

1) = VPocoslarot + oo (1)l (157)
where this time S q-,w(f ) = 2rAv;,. When the two lightwaves are combined and
directed towards a PIN diode, the resulting IF current after dc elimination is

i(t) = ZRVPstcos[(coIF + wy)r +6@1)], (158)
where

)2 O;()—Opo(t) (159)



is again a Wiener process, and
S () = 2m(Av; + Avpp). (160)

Throughout the rest of this analysis, assume Av; + Av;, = 2Av, so that S 6(f) = 4mAy,
and Av can be thought of as the average of the transmitter and LO linewidths.

Consider the FSK receiver shown in figure 33.

quCOS [(I)wt + q)w(t)]
K
Ideal | *(0)|T Y 4,
B oo =

r(t) = VP, cos [(@stwa)t + d,(¢)]

Figure 33. A practical FSK-discriminator receiver.

An ideal frequency discriminator is used, whose output is the instantaneous frequency of
its input with respect to w;, scaled by a conversion factor K. Thus

instantaneous
= OF (161)

x@)=K [ frequency
of i(1)

= K[+, + ¢@)].

Since ¢(¢) is a white noise process, we see that for the case of FSK with a frequency
discriminator receiver, the laser phase noise problem has reduced to a binary antipodal
scheme in additive white Gaussian noise. The optimum receiver integrates x (¢) over one
bit period, then applies a zero threshold test, as shown in figure 33. The output of the
integrator Y is

T

Y = [x(t)ar
0

T
= Kf (£, +6(t) ) dt
0

= K(2w,T +N ), (162)
where
T.
N = [o(t)dt (163)
0
is a zero-mean Gaussian random variable with variance

T
EIN?] = EIf[6)o() dudv]
0
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T
= 47:Avj jS(u —v)dudv
0

= 4mAVT. (164)

The BER is then
P, = Pr{Y <0 lone]
([ Ko,T
= ¢ b_———KW]
( 2mf,T
- e[

=0 YnfulR (165)
“JAv/R L

Define the deviation ratio

a 2fa
h= R (166)

where f; is half the difference between the ove and zzro frequencies, and R is the bit

rate. Then from (165), we find the BER floor due to laser phase noise for FSK discrimi-
nation detection:

/4 h
= Q[‘/W] (167)

The BER floors for FSK are plotted in figure 34, parameterized by A . Laser linewidth
requirements can be obtained from these curves. For instance, suppose you want to build
an MSK (2 = 0.5) system to run at 100 Mbps. From figure 34 (or more accurately from
equation (167)), you see that to get a BER floor of less than 1072, you need

AV/R <0.00546, (168)
so that Av must be less than
Av <0.00546R
< 0.00546 (100 Mbps)
< 546 KHz. (169)

Thus to build such a system, the average of the linewidths of your transmitter and LO
lasers must be less than 546 KHz. Note that equation (167) was derived assuming no
shot noise. For h <3, the signal spectrum is compact enough so that the shot noise
admitted through the IF filter will cause a penalty of no more than 1 dB [22]. For larger
deviation, however, the IF bandwidth must be so large that the amount of shot noise let in
negates any gain obtained with respect to the phase noise. In this respect, equation (167)
must be viewed as being valid (to within 1 dB) only for 2 <3.
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BER Floor Due to Phase Noise for FSK Heterodyne Receiver
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Figure 34. BER floors for FSK discriminator reception due to phase noise:
plotted versus AV/R, where Av is the average linewidth of the transmitter and
LO lasers, and R is the bit rate. The parameter is 4, the deviation ratio, which
is the frequency difference between a onve and zzro divided by the bit rate.
Also included is the BER floor for DPSK, derived in the next section.

5.2. Effect of Phase Noise on DPSK

The DPSK receiver structure was analyzed for zero phase noise in section 3.2.1. It
was shown that the ML receiver (constrained to the delay-demodulation technique) found
the correlation of two successive pulses and applied the result to a zero threshold test.
The BER was then found by recognizing the equivalence of this correlation test with a
signal space projection test. When Av >0, the analysis is not so simple. However,
observe that an ideal DPSK receiver would determine the phase of i () and i (¢—T'), and
average their difference. Thus a lower bound on the BER can be obtained from this
idealized model [26] [22] shown in figure 35.

The IF current of the DPSK receiver will be
i(t) = 2R \jPSPw COS[(!J":t + ¢(t) + ¢k] (170)

where ¢, {0, &) is the phase modulation, and ¢(¢) is the Wiener phase noise process.
The estimates of the phase of i (¢) and i (¢—T) will therefore be '

8(t) 2 o)+

and
Op(t)2 ¢ -T) + 01 (171)
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i(r) PHASE 6(r) ~ 1 B
ESTIMATOR +_¥ 71! (D ol
T
6p(t)

Figure 35. The performance of a DPSK receiver can do no better than this

idealized receiver, which averages the phase difference between i(z) and
i(t=T).

The BER floor for DPSK is the probability that the phase noise causes the average phase
difference :

A lT
= }-g [e(t)—ep(t)]dt (172)
to vary by more than w/2:
P, = Pr{miss]
= Pr{IB! o on >§|o~s]. (173)
But from (171),
1% -
= Lifoor-o¢-1]ar + o - 0ecs (74
0

To evaluate the BER using (173), assume a ove was sent, which from (104) implies that
¢r —9x_; = 0. Thus P becomes

1z '
B = ?(j) [¢(t)—¢(t —T)]dt. (175)

Since ¢(¢) is defined as the integral of q.>(t ), and since d)(t) is a zero-mean Gaussian pro-
cess, B is a zero-mean Gaussian random variable. Its variance, derived in appendix C, is

of£ E[F) = SravR. (176)

For reasonably small Av/R, the probability of IB| >3n/2 is negligible, so that the

mod 2x on the absolute value in (173) can be removed. Thus the BER floor due to laser
phase noise for DPSK is

P,

Pr{IB| > n/2 | onE]

/2
2 —_—
¢ | OB ]

=20 FL
(V@3mAviR




32AV/R

Comparing this result with (167), we see that this BER floor for DPSK is equivalent to

the BER for FSK (except for the factor of 2), with a deviation ratio of » = '\f % The

plot of this floor is included with the FSK floors in figure 34. It can be seen from the
graph that for a BER floor of less that 10~, one must have

Av/R <0.00819. (178)

Thus, for example, to build a DPSK system at 100 Mbps, the linewidths from the
transmitter and LO lasers must average less than 819 KHz. The graph in figure 34 also
reveals that the laser linewidth requirements for DPSK are less stringent than for MSK,
but more stringent than for large deviation FSK.

=2Q[ 3% ] aA77)

5.3. Effect of Phase Noise on ASK

If there is no phase noise (Av = 0), then the signal constellation for ASK lies com-
pletely on the Wy, axis, as shown in figure 36(a).

Ys Vs
] ONE
2ZERO ONE ZERO o) '
0 [ A4 Wc 0 / ‘Vc
(a) ®

Figure 36. Signal space representation for ASK. If there is no phase noise,
then the constellation lies completely on . axis (a). Phase noise causes the
constellation to rotate randomly, as shown in (b).

IF Av >0, however, then the constellation rotates randomly, as depicted in figure 36(b).
The axes for this discussion are defined as

Y, & %cosmot

Y, & %sincoot. (179)

The conventional ASK receiver, as developed in section 3.2.1, found the correlation of
the received lightwave with v, and applied the result to a threshold test. But if there is
some phase noise, this method is no longer optimum. For example, if the phase noise
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¢(z) lingers about 7/2, then one can see from figure 36(b) that the projection onto Y,
would always be zero. A better receiver would look at both dimension in signal space,
which leads to the receiver called a two-port or phase-diversity receiver.

It can be shown [11] that for a received signal i (¢) with a constant unknown phase,
the ML ASK receiver (accounting for both phase noise and shot noise) computes

Y = <iy,>%+<iy,>? (180)

and compares the result to a threshold. For the more general case when the phase is not
constant but a random process ¢(¢), deriving the ML receiver is more difficult. However,
one is always free to choose a receiver structure, then analyze its performance and hope it
is acceptable. Extending the optimal receiver for unknown constant phase to the case of
random time-varying phase, consider the phase-diversity receiver shown in figure 37
(adapted from [25]).

H(f)
_ ) W
r(g) = ak\/ITcos ot +q>,(¢)] b 4 i (t) ﬁ x.(2) (oY
- rl(‘) 0
r@)—  90° ’
OPTICAL | 740 H) O £
=2 iy(t) w x,(t) ,
PD ‘ ﬁo (*)

- 16) = VPrg00s [a + 0000 |
Figure 37. A phase diversity homodyne ASK receiver, following [25].

The 90° hybrid is a device whose output are the in-phase and quadrature sums of it inputs
[27]. Thatis,

rie) = Re(r@)+1())
and
rolt) = 71_2-Re[ r)+HD) ). (181)

The resulting baseband currents are

ic(t) = alcosd(t) +ig, o (t)

is(t) = apIsind(r) + igp 5(2) (182)
where
12 R\P,P, (183)
is the baseband current amplitude and
00)2 6,() = o) (184)

is the combined phase noise process. Its time derivative ¢(z) is white Gaussian with
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density S ¢(f ) = 4nAv. The terms ig, .(¢) and ig, ((t) are the zero-mean white Gaus-
sian shot noises in branches one and two, respectively, with spectral density
Sshef) =Spus(f)=N ol gRP;o. Note that since they arise from physically
separate photodetectors, iy, .(¢) and iy (¢) are independent. The low-pass filter in
figure 37 has a bandwidth W, which is chosen large enough to pass without distortion the

signal corrupted by phase noise. Under this assumption, the filtered currents in (182)
become

x.(t) = ailcosd(t) +n.(t)

x,(t) = aplsind(t) + ng(t) (185)
where n, and n; are zero-mean filtered white noise processes with spectral densities
$..(f) = S,(f) = Ngrect(f W12). (186)
The input to the sliceris ¥ = x.2+x.2. Note that if there were no shot noise, then
Y = x2+x?
= a1 %cos(t) + al *sin®0(r)
= q,l> - (187

Thus without the shot noise, the receiver recovers the signal exactly. The fact that there
is shot noise, however, complicates the matter, causing Y to be a non-Gaussian random
variable. It has some n—cross—n terms, s—cross—n terms, and its mean and variance
depend on the transmitted symbol.

To obtain a numerical BER, make two approximations:

* Y is nearly Gaussian

*P, = Q(p),
where
ps e
m,2 E[Y |onE] (189)
mo2 E[Y |zzro] (190)
624 varlY |one] (191)
o¢ 2 varlY lzero] (192)

The second approximation made above was discussed in section 2.4, and is valid for
large I /(N oW) ~M. For the sake of brevity, the derivations of the conditional means
and variances of Y are relegated to appendix D. The results are

my = I2+2N W (193)
mo = 2NOW (194)
o = 4AI*N W +4Ngw? (195)

Gp = 4N0W2. (196)
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Computing the SNR defined in (188),
_ m 1— My
p= G+ Gy
12
VAIN W + AN W2 + 2N oW
Ly

= x (197)

\/3M+1 +1
o

w
R
is the normalized bandwidth of H(f). The bandwidth must be large enough so that
apl cos¢(t) and a,lsing(z) are passed undistorted. The larger Av is, the larger W must

be. An expression for W in terms of Av is difficult to obtain; a slight modification of a
result by Kazovsky [22] yields

W = RV1+161.3(AV/R)?, (199)

where

>

o (198)

so that

o = V1+161.3(AV/iR)% (200)

Notice that for Av = 0, o = 1, which corresponds to a matched filter (W = R). Com-
bining equations (197) and (200), the BER for a homodyne phase-diversity receiver is

M
,' 2
P, =0 1+ 161.3(AV/R)

\/ 1+ M + 1
: V1 + 161.3(AV/R )2

The BER curves from this result are plotted in figure 38. Note that for the special case of
Av = 0, then oo = 1 and the BER reduces to

(201)

_of—M
fes@ [m+1 ] 202

Furthermore, for large peak received power M,

P, =0 [‘\/%-M] (203)

Thus even under ideal conditions (Av = 0, large M), the phase-diversity homodyne ASK
receiver performs 3 dB worse than homodyne synchronous ASK, and 6 dB worse than
the quantum limit. Nevertheless, phase diversity techniques may be important in multi- -
gigabit applications [28]. In this regime, the IF bandwidth needed for a heterodyne
receiver makes homodyne systems more attractive. And unlike most homodyne
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BER Floors Due To Phase Noise for 2-Port Homodyne Receiver

AVR = 0.0

AVR = 0.2
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10 log,oM
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Figure 38. BER curves for 2-port ASK homodyne receiver (figure 37). The
parameter is AV/R, where Av is the average laser linewidth, and R is the bit
rate. For Av = 0, the performance of this receiver is 3 dB worse than the
homodyne synchronous receiver under shot-noise-limited conditions.

schemes, the phase diversity receiver does not need to track phase.

From inspection of the BER curves in figure 38, we see that nonzero linewidth
results in a power penalty- not a BER floor- for the homodyne phase diversity receiver.

This is an indirect result of the increased bandwidth necessary to accommodate the signal
contaminated by phase noise.
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6. Discussion

The analysis of optical receivers in the preceding text had two major themes: the
computation of the BER under shot-noise-limited conditions for various receivers, and
the effects of laser phase noise on receiver performance.

The BER computations yielded a complete set of equations for various heterodyne,
homodyne, synchronous, and asynchronous receivers. These equations were derived
assuming all noises were negligible with respect to the shot noise, and thus represent a
lower bound on the BER. The results are tabulated in table 1. In practice, laser phase
noise [4] [22], intersymbol interference, chromatic and polarization dispersion, imper-
fect modulation [2], dark current and thermal noise [6] will all degrade performance.

Modulation
Format Receiver Type BER Sensitivity
PSK homodyne 0 [JW] 9
PSK heterodyne-synchronous 0 [W] 18
IM/DD (Quantum Limit) 1, 20
DPSK delay-demodulation _21__ e N 20
ASK homodyne QZ[W ] 36
FSK heterodyne-synchronous 0 [41.—[] 36
FSK heterodyne-asynchronous 1742 40
ASK heterodyne-synchronous Qz[m ] 72
ASK heterodyne-asynchronous % e 80

Table 1. BERs and sensitivities of various shot-noise-limited receivers.

The equations are expressed in terms of M e NPT /(h V), the number of photons per oNE
bit. It should be emphasized that M is the peak power per bit. Some European authors
prefer to talk in terms of the average power per bit. To compare their results with those
of table 1, one must realize that for ASK and IM/DD, M is twice the average power per
bit.

From the equations in table 1, one can compute receiver sensitivity: the number of
photons M required for a BER of 10™. The sensitivity of each receiver considered is
included in table 1. Here we see that homodyne PSK is the most sensitive. As was dis-
cussed in section 4.7, and as the tabulated results verify, heterodyne reception is 3 dB
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less sensitive than homodyne. Another advantage of homodyne systems is the reduced
IF bandwidth needed, thus easing the electrical processing requirements. The fact that
homodyne receivers generally need to track the phase of the incoming signal is a major
disadvantage. One possible solution, discussed in section 5.3, is a phase-diversity
receiver.

Figure 12 shows a plot of the BER versus M, using the expressions in table 1. From
this plot, or from table 1, it is evident that the asynchronous receivers incur an additional
penalty of ~ 0.5 dB with respect to their synchronous counterparts. This penalty is often
seen as a reasonable compromise between receiver performance and complexity, espe-
cially since asynchronous receivers are in general less sensitive to laser phase noise [23]
[22] [24].

Also included in table 1 is the BER for the ideal IM/DD receiver, and the accom-
panying sensitivity (called the quantum limit) of 20 photons per one bit. In section 2.4 it
was demonstrated that extraneous noises such as thermal noise and dark current in a real-
istic IM/DD receiver caused a 26 dB penalty with respect to the quantum limit. In an
attempt to overcome these extraneous noises, typical IM/DD receivers use APDs.
Although these sensitive photodetectors improve receiver sensitivity somewhat, detailed
analysis [7] reveals that IM/DD receivers still require anywhere from 800-2000 photons
per onE bit. This corresponds to a 16-20 dB power penalty with respect to the quantum
limit.

In section 4.8, laser phase noise was characterized as a Wiener process. Section 5
then went on to analyze the effect of this phase noise on FSK, DPSK, and ASK receivers.
The resulting analysis revealed a BER floor for the angle-modulation schemes, namely
FSK and DPSK. The expressions for these floors (equations (167) and (177)) were
derived assuming that the power of the received signal was sufficient to recover the phase
unambiguously. It should be clear that if the received power P, were small, then the
thermal and shot noises would in effect alter the phase, resulting in reduced sensitivity.

Comparing the BER floor plots in figure 34, we see that MSK (4 = 0.5) requires
the narrowest laser linewidth: to obtain a floor of 1072, the average laser linewidth of the
transmitter and LO must be less than 0.55% of the bit rate. In contrast, wide deviation
FSK (h = 3) can achieve this BER floor with an average linewidth as high as 20% of the
bit rate. For even larger deviation FSK (h > 3), the linewidth requirements are even less
stringent [22]. This cannot be inferred from (167) directly, because when the separation
between onve and zero frequencies gets very large, the shot noise admitted by the
widened IF bandwidth results in a power penalty. This secondary effect is not reflected
in (167). And although (167) is still a lower bound on the BER for (4 > 3), it is no
longer a very tight bound. Again from figure 34, it is seen that DPSK is is almost as sen-
sitive to phase noise as MSK. A DPSK receiver re.%uires an average linewidth of no
more than 0.82% of the bit rate to obtain a BER of 10~°.

The analysis of the phase diversity receiver resulted in figure 38, which shows the
power penalties for nonzero laser linewidths. The derivation of the expression used for
this plot (equation (201)) required numerous approximations. This is because both phase
noise and shot noise were accounted for, significantly complicating the analysis.
Nevertheless, the results imply the possibility of a homodyne, phase insensitive coherent
receiver- an intriguing combination. Recent experiments verify the feasibility of the
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phase-diversity receiver [29] [30].

7. Conclusion

An analysis of coherent optical fiber receivers was presented. A review of direct
detection techniques was provided, and the quantum limit for an ideal IM/DD receiver
was found to be 20 photons per one bit. The photodetector current was shown to be con-
taminated by shot noise. When the optical power incident to the detector is large enough,
the resulting shot noise process can be approximated as a Gaussian white noise process,
thus simplifying analysis. Because of extraneous noises such as dark current and thermal
noise, a practical IM/DD receiver using a PIN diode was shown to be 26 dB less sensitive
than the quantum limit. Coherent techniques were shown to alleviate these extraneous
noise effects by maintaining a high local oscillator power. This high power can cause the
shot noise to dominate all other noise, a condition referred to as shot-noise-limited opera-
tion.

The BER for various heterodyne, homodyne, synchronous, and asynchronous
receivers was derived for shot-noise-limited conditions. It was found that homodyne
PSK was 3.5 dB more sensitive than the quantum limit, requiring only 9 photons per bit
for a BER of 10°. The next most sensitive receiver was heterodyne PSK, followed by
DPSK, homodyne ASK, heterodyne synchronous FSK, heterodyne asynchronous FSK,
heterodyne synchronous ASK, and heterodyne-asynchronous ASK. A straightforward
explanation of the 3 dB penalty for heterodyne receivers was presented. Then laser
phase noise was modeled as a Wiener process, and its effect on FSK, DPSK, and ASK
receivers was examined. A BER floor of 10~ required that the average laser linewidth of -
the transmitter and LO be less than 0.55%, 0.82%, and 20% of the bit rate for MSK,
DPSK, and FSK (h = 3), respectively. Finally, the effect of phase noise on a homo-
dyne phase-diversity ASK receiver was examined. It was found that nonzero laser
linewidth resulted in a power penalty only, implying that its effect could be reduced by
increasing the transmitted power.
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8. Appendix

Appendix A. Spectrum of a Modulated Random Process.

What follows is a derivation of the spectral density of the product of a stationary
random process with a sinusoid. Suppose n(¢) is a zero-mean stationary process, with
autocorrelation function R,, () and spectral density function S, (f ). Next let

y(@) = n(t)(2cos(wyt +0)). (A-1)

The random variable 9 is uniform over [0,2%] and independent of r(z), and is needed to
make y (z) stationary. Then to compute the.spectral density of y (z), first obtain its auto-
correlation function:

Ry(t) = Ey @)yt +1)] - (A-2)
= 4E[n (t)n (t + T)cos(mgt + B)cos(wyr + Wyt + 6)] (A-3)
4R, (t)E[%coswot + %cos(Zcoot + 0T+ 26)] (A-4)
= 2R,(T) [cos(o)o'c) + E[cos(2mgt + T + 20)] ] (A-5)
Since 0 is uniform over [0,2x], the expectation over 0 is zero:
2
E[cos(2wy? + @yt +268)] = ?11:' [ cosayt + wot +26)d0 (A-6)
0 .
= 0.
Thus
Ry (t) = 2R, (T)coswyT. (A-7)
Taking the Fourier transform gives the spectral density of y (¢):
Sy(F) = Sp(f +f ) +8,(f = F o) (A-8)

Therefore, if n(¢) is a white noise process with density N o» then y (¢) will also be a white
noise process, but with density 2N ,,

\

Appendix B. The Mean of cos @, where @ is a Gaussian random variable.
Suppose @ is a zero-mean Gaussian random variable with variance 02. First, calcu-

late
i®l T ie
Ele’®] = [e"po@as B-1)
= | 211t02 e—@z-jchzp)/zo’ do B-2)

|
fo—3
;?l_
W

~(¢ - jo¥420? e +(jo??20?

e do (B-3)
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oo

-2 1 —6 - jo*Pra?
= —_— d -4
e — o (B-4)

This is an integral of a Gaussian probability density function (pdf) along a line at j o2
parallel to the real axis in the complex plane. Since the Gaussian pdf has no poles in the
region bounded by the real axis and a line parallel to it at j 6, its integral on the contour
bounding this region is zero. Therefore the integral at jo? in one direction is the nega-
tive of the integral on the real axis in the other:

T —(9 - jo¥20? T o1 -9*202
——€ dp = - | ——=¢ do (B-5)
—‘[o V2ro? +J; V2ro?
T 1 —4%202
= | 7€ do (B-6)
-L V2ro?
This is just the total integral of the Gaussian pdf, which is one. Thus
i@
E [e’ ] = e (B-7)

And since — @ is also a zero-mean Gaussian random variable with variance 0'2, we must
also have

_'(b
E[e j ] = g2 ®-8)
Therefore,
i D —-id
E[cos®] = %E [e’ ]+%E [e 4 ] (B-9)
= e " (B-10)
and
D -id
E[sin®] = ——E e’ ]-——1-,5 [e 4 ] B-11)
2j 2j
- o (B-12)

Appendix C. Derivation of variance of p.
From equation (113),

B2 1f[owr-o¢-1))a o

Q Sy N

1
T
and
‘ .
02 [o(u)du, (C-2)
0

where (i)(u) is a zero-mean white Gaussian process with density S q',(f ) = 4nAv. First,
define the phase difference
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Or(t) 2 0¢t)—0¢ - T)

t-T

t
= [om)du - [ o(u)du
0 0

t
= [ o@)du.
t!chu i\

Thus ¢r(¢) is a zero-mean Gaussian random process with autocorrelation function

Ry,(® = E [or(@)or( + )|

t @¢+7) . .
=E| [ [ o@)6w)dudv
@¢-TYt+2-T)

t (t+1)
= 4mAV J' _f d(u - v) dudv
@¢-TYt+1-T)

ARAV(T -I1l)  for It <T

= 4nAVT tria(t, T) = { 0 for Izl >T

Now equation (C-1) becomes

lT
= 7£¢Tm)du

and its variance is

var[B] = E[p?]

T
=E [—T%g J’¢T(u)¢T(v)dudv]

T
= ?lz-wa(u —v) dudv

T
= 2 T~ 1w =1 ] duay
T 9
Tl T
= 4“%VII[T+u—v]du+I[T—u +v]du dv
T OLO v
TP
_ A4mAv 1 2 2.2 1,2, 1 2 2
= Ty + —p2— _-Ty — — — -
TZI 2v ve+T“—=Tv 2T+2v-i-Tvvdv

(C-3)

(C-4)

(C-5)

(C-6)

(C-7)

(C-8)

(C9)

(C-10)

(C-11)

(C-12)

(C-13)

(C-14)

(C-15)

(C-16)
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T
= 4”%" I [Tv -v2s sz] dv (C-17)
Tc p 2
4mAv (1.3 1.3, 1,3
= —— |=T°-=T°+=T C-18
T2 [2 3 2 ] ( )
8
= ?nAv/R (C-19)
" Appendix D. Derivation of Conditional Means and Variances of Y.
From equation (120),
%, (t) = aplcoso(t) +n,(r) ®-1)
xs(t) = apIsing(z) + ns(¢) (D-2)

where ¢(¢) is a Wiener process, n.(¢) and ny(¢) are independent zero-mean Gaussian ran-
dom processes with an ideal low-pass spectral density

Sa(F) = $,,(f) = Negect (f , W12). ®-3)

Note that for ASK, a; € {1,0}. The derivation of the mean and variance of ¥, defined
by :

Y = x2(t)+x2(¢) (D-4)
requires careful bookkeeping. Proceeding,
Y = [aklcosq)(t) +n, (z)]2 + [akl sind(z) + n, (t)]2 (D-5)
= a1 %0s’0(t) + 2aIn, (¢ )cosd(t) + n 2(t)
+ @ U %sin2¢(t ) + 2a,Ing (¢ )sind(r) + n2(t) (D-6)
= g% +2a,] [nc (£)cosd(z) + ng (t)sinq)(t)] +n2(t) +n2@) ®-7)

But n,(t), ny(t), and ¢(¢) are all pairwise independent. And since n.(z) and ng(¢) have
zero mean, the expectation of the bracketed term is zero. Furthermore,

Eln2(t)] = ElnX(t)] = NoW. (D-8)
Thus
E[Y] = a2+ 2N,W. D-9)

Substituting a; = 1 and O results in the conditional means of equation (122). To com-
pute the variance of Y, first compute its mean-square:
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