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ABSTRACT

Coherent optical fiber receivers have numerous advantages over direct detection
receivers, most notably increased sensitivity and increased selectivity, at the cost of
increased receiver complexity. It is shown that while the performance of practical
intensity-modulation/direct-detection systems is well below the level predicted by the
quantum limit, coherent systems show promise of attaining this limit The sensitivity of
coherent optical receivers under shot-noise-limited conditions is derived for PSK, ASK,
FSK, and DPSK modulation formats. When applicable, homodyne, heterodyne, synchro
nous, and asynchronous systems are considered. In addition, laser phase noise is charac
terized, and its effects on the performance of FSK, ASK, and DPSK systems is analyzed.

This researchwas supportedin partby the NationalScience Foundation, GrantMIP-86-57523.
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Performance of Coherent Optical Receivers

JohnR. Barry

DepartmentofElectricalEngineering and ComputerSciences
UniversityofCalifornia, Berkeley

Berkeley, California94720

1. Introduction

Since its introduction nearly two decades ago, optical fiber communications has
become the predominant choice for high-throughput point-to-point digital transmission.
The advantages of optical fiber as a medium are many: large bandwidth, low attenuation,
immunity to interference, and high security are the most obvious. The earliest fiber optic
systems, employed in the 1970's, used multimode fibers at short wavelengths (850 nm).
Improvements in photodetector technology allowed subsequent systems in the 1980's to
operate at 1300 nm, the wavelength at which the attenuation of the fiber is minimum. In
the mid-1980's, improved fiber design, as well as better coupling efficiencies, allowed
operation at wavelengths of 1500 nm through single-mode fibers. These single-mode
fibers avoid inter-modal dispersion, a primary disadvantage of multimode fibers. And
through proper fiber design, the chromatic dispersion for single-mode fibers can be
nearly eliminated for wavelengths in the 1300-1500 nm range.

The modulation scheme used by most commercial optical transmission systems,
including those described above, is called intensity-modulationldirect-detection
(IM/DD). This means that the intensity of the transmitting laser is modulated on and off,
or on-off keying (OOK). The term direct detection stems from the receiver configuration
where the received signal is applied direcdy to a photodetector. Note that only the inten
sity or power of the light is relevant; phase and frequency are for the most part ignored.
The throughput of the optical fiber links presently installed throughout the country
represents a significant improvement over that of their predecessors, coaxial cable and
microwave radio links. Nevertheless, only a small fraction of fiber's potential is met
through the use of these IM/DD systems. To make full use of the capabilities of fiber,
coherent techniques must be used.

Coherent receivers employ the heterodyne technique used extensively in microwave
communications. A common analogy compares IM/DD receivers to RF crystal radios,
whereas optical coherent receivers are more like the modern superheterodyne radio
receivers. In coherent detection, the received optical signal is added to a local optical
signal, and the combined lightwave is directed towards a photodetector. For a hetero
dyne receiver, the frequency of the local oscillator (LO) is slightly different from the car
rier frequency of the signal. The resulting current produced by the photodetector is then
centered at an intermediate frequency (IF) equal to the difference in LO and carrier fre
quency, usually in the GHz range. This allows processing of the signal at microwave
frequencies, where well-established radio techniques can be employed.
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To fully understand the advantages of coherent techniques over direct detection, one
must first study the limitations of IM/DD systems. Section 2 derives a fundamental limit
on the sensitivity of an optical receiver called the quantum limit. Sensitivity is defined as
the number of photons perbitnecessary tomaintain a bit-error ratio of 10~9. The sensi
tivity of a practical IM/DD receiver is men derived, and it if found to be much less sensi
tive than the quantum limit

Section 3 develops the theory behindcoherentreception. First an example is given,
where the theoretical sensitivity of homodyne phase-shift keying is found to be better
than the quantum limit The example neglects many sources of noise. However, under
certain conditions, the most important being high local oscillator power, the receiver is
said to be "shot-noise limited." In this case, it is shown that the quantum limit can be
approached

In section 3.2, the shot-noise-limited bit-error ratios are derived for various optical
receivers. First synchronous receivers are analyzed, which offer the highest sensitivity,
but require phase-locked loops (PLL), and are thus complicated. Asynchronous
receivers, which use envelope detectors, are then discussed. Their sensitivity is shown to
be only slightly worse (~0.5 dB) than their synchronous counterparts. Also a type of
weakly-synchronous processing of differential phase-shift keying is discussed.

Although there are many similarities between conventional microwave communica
tion systems and fiber systems, one can not always apply well known principles from
one regime to the other. Section 4 discusses some of the unique traits of optical com
munications systems. A discussion on fibers, modulators, photodetectors, and polariza
tion is presented. The automatic 3dB loss in sensitivity of heterodyne systems with
respect to homodyne is explained. And laser phase noise, a critical impairment in
coherent systems, is discussed.

Finally, section 5 explores the impact of laser phase noise onreceiver performance.
Expressions for the maximum allowable laser linewidths are derived forFSK, DPSK, and
ASK.

2. Direct Detection

This section develops some of the basic principles of optical communications.
First, the quantum limit, a bound on the sensitivity of an optical receiver, is derived.
Then, the sensitivity ofa realistic IM/DD system isexamined. Important expressions for
the photodetector current and shot noise are derived, which will be used extensively in
subsequent analysis.

A comment on notation: optical transmissions systems generally operate with an
alphabet size of two. The improvements gained through M-ary signaling are to this date
not worth their trouble. For this reason, ASK in the context of optical systems refers to
OOK. Similarly, PSK means binary antipodal signaling. Also, this paper assumes that a
one and a zero occurwithequalprobability.

2.1. The Photon Counter and the Quantum Limit

light is a form ofelectromagnetic radiation, with frequencies in the 400 to700 THz
range. At these high frequencies, the quantum mechanical nature of the electromagnetic
wave becomes prevalent, and the lightwave can act as if it were a stream of particles.
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Each quanta of energy (called a photon) has energy hv (Joules), where h = Planck's con
stant (Joules-sec) and v is the frequency of the lightwave (Hz). If a lightwave were
directed towards a surface, such as that of a photodetector, the arrival times of the pho
tons would be randomly distributed according to a Poisson process.

Just as in microwave frequencies, a lightwave can be represented by either its elec
tric or magnetic field. We know from the Poynting theorem that the power of a wave is
proportional to the product of the amplitudes of the electric and magnetic fields. For the
purpose of analysis, a lightwave is commonly represented by

x(t) = V?7cosco0r (1)
where Ps is the average power (Joules/sec) of the wave, and oo0 is the angular frequency.
Since an average of Ps Joules arrive each second, and each photon has hv Joules, the
average number ofphotons per second is

a Pa
K - -T- (Photons/sec). (2)

y hv

Define n (t) as the photon arrival process, such that for t > 0, n (t) = the number of pho
tons that have arrived in the interval from 0 to t. Then equation (2) implies that n(t),
which asstated earlier is aPoisson counting process, has a mean arrival rate ofXp.

An ideal OOK optical transmission system across a noiseless channel would
transmit a pulse of light for a one, and no light for a zero. The receiver would then count
n, the number of photons it receives in the bit interval (T seconds), and decide one if one
or more photons were detected, and zero otherwise. This ideal system is depicted in
figure 1 for an isolated pulse. The coefficient ak is either 0 or 1,depending on the kth
data bit This corresponds to amplitude-shift keying (ASK).

fiber channel

ajfe-^COSCDoT O
(0<f <T)

Ideal
Photon
Counter

Figure 1. A photon counter: an idealized optical receiver counts the number
of photons received in a bit interval, and compares the result with a zero thres
hold.

If ak = 0, then there is zero probability of receiving any photons. If ak = 1, then the
photons arrive according to a Poisson process with mean rate Xp. That is, for a one, the
probability of obtaining n photons in T seconds is given by the Poisson distribution:

(KpT)ne~KT
Pr[rt photons Ione] = —- - . (3)

n\

Thus assuming ones and zeros are equally likely, the probability of a bit error, or bit-
error ratio (BER), is

Pe = •— Pr[0 photons Ione] + — Pr[ > 0 photons Izero ]
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- U-"". (4)
2

To simplify notation, use equation (2) to define the exponent in equation (4) as

-a ps
Af = -r—T = average number of photons per one bit. (5)

This leads to an important lower bound on the probability of a bit-error called the quan
tum limit [1] [2]:

p. - \e-". (6)
Equation (6) represents a fundamental limit on the performance of an optical communi
cations system: no ASK receiver can do better. For example^ achieve a BER of 10"9,
an uncoded ASKmodulation scheme requires a minimum ofM = 20 photons per one bit,
or an average of 10 photons per bit The first value of 20 is more significant, however,
because in optical fiber communications, the real limitation is peakpower, not average
power. Throughout the rest of thispaper, thequantity of interest will be thepeak power
per bit

2.2. Photodetector Current and Shot Noise.

In practice, photons cannot be counted directly, which renders thephoton counter of
figure 1 unrealistic. Instead, a photodetector is needed, which inevitably introduces addi
tional noise. A photodetector converts incident photons to electron-hole pairs with
efficiency x\. The statistical properties of the resulting current will now be examined.
Thederivations that follow rely heavily on [3] and [4].

Define ne(t) as the electron generation process, such that for a given f, ne(t) is the
number of electrons generated in the interval from 0 to r. Then ne(t) is also a Poisson
process, with a mean rate of generation Xe = T\Xp. Let {tk} be the Poisson generation
times of the electrons, each of which will produce a small pulse of current, h(t). The
total photodetector current will be the sum of these individual pulses. The current can be
modeled as the output of a filter driven by z(f), a train of impulses at the times {tk}.
This impulse train can inturn be modeled as the time derivative ofthe electron counting
process ne(t). A diagram of thisrepresentation is shown in figure 2(b). Since h(?) is the
current due to oneelectron, its total integral must beq, the charge of anelectron:

oo

jh(t)dt = q. (7)
oo

The mean and autocorrelation of the electron generation process ne(t) are [3]

E[*e(f)] = V> (8)
and

RnV 1J2) = *A'2 + XeTmn(tltt^. (9)
From these statistics of ne (f),we can derive the statistics ofz(t) (following [3]):
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(a)

(b)

electrons

mean rate Xe - ryXp = T\Psl(hv)

t*(0

ill fc£2?

Figure 2. A photodetector converts photons to electrons with efficiency tj: (a)
block diagram representation, (b) equivalent statistical model.

E[z(r)] = E
d_
dt
—ne(t)

dt
= -Z-E[ne(t)]

dt= ^r(V)

= V

The autocorrelation function for z (f) is

a2

d2=dtir fa1*2 +^nrin^i^2)]

where u (t) is the unit step function. This yields

*zW = X.2 +X»5(i;).

(10)

(11)

(12)

We are now in a position to determine the second order statistics of /(f). Since i(t) is
the convolution of z (t) and ft (f), we have
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EP<*)] = E jh(x)z(t-x)dx

=J/i(T)E[z(f-T)ldx

= Xe jh(x)dx

= <lK> (13)

where the last equality follows from (7). Rewriting i (t) in terms of its mean and devia
tion from this mean:

(14)i(r) = qXe+ish(t),

where ish(t) represents the current shot noise:

(15)

The goal of this discussion is to characterize the statistics of this shot noise current. Its
autocorrelation function is

Rish(!) = BU(t)i(t+x)]-q2Xe2

= E j jz(u)z(v)h(t-u)h(t+x-v)dudv - «V

- / JRx(u -v)h{t -u)h(t +x-v)dudv - q\2

OO oo

= j j fye2 +Xeb-(u-v)y(t-u)h(t+x-v)dudv - q\

= X2 jh(t)dt +Xejh(t)h(t+x)dt - q\

Ri*<& = Kjh(t)h(t+x)dt (16)

Thus the spectral density of theshot noise process ish(t) is theFourier transform of (16):

Ssh(f) = Xe\H(f)\2. (17)

The spectrum of hit) will roll-off at frequencies above l/Td, where Td is the
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photodetector response time [5]. Alternatively, Td can be thought of as the time-
constant of h(t). When Td is small, so that the bandwidth of interest is less than \ITd,
then H(f) can be approximated by H(0). Thus from (17) we see that the shot noise is
approximately white, with density

Ssh(f)~Xe\H(0)\2

= k jh(t)dt

= 1% (18)

by
The photodetector current due to a lightwave with power Ps can now be represented

i(t) = qXe + ish(t)

Ps + hh(0
hv

= RPs + ish(t), (19)

where R = (y\qlhv) is the responsivity of the photodetector, measured in Amperes per
Watt The shot noise isn(t) is a zero-mean white noise process, with density

Ssh(f) = q\

= a

= qRPs-

hv

(20)

It will be demonstrated in section 2.4 that IM/DD systems cannot approach the
quantum limit due to extraneous noises, such as dark current and thermal noise. There
fore, to achieve acceptable performance, the received optical power Ps must be large.
Consider the case when Ps is large enough so that the mean time between electron for
mations Xe~l = hvl(y\Ps) is much less than the time-constant Td. For a given t, the
current i(t) is then the sum of a large number of tails of h(t -tk), where {tk} are
independent Therefore, i (t) is the sum of a large number of independent random vari
ables, and so it will have a distribution that is nearly Gaussian [4]. Thus for large Ps (so
that Xe x« Td), the photodetector current willbe approximated by

i(t) = RPs + ish(t), (21)

where i^(r) is a zero-mean Gaussian white noise process with two-sided spectral density
Ssn(f) = qRPs. This concludes the derivation of the statistical properties of the
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photodetector current and shot noise.

2.3. A Current Averager.

The ideal IM/DD receiver which originally used a photon counter is redrawn in
figure 3 with a photodetector and current averager.

afcV^cos(coor)
(0£t<T)

fiber channel

O T

j(-)dt
0

» m. Y
j- ?'

Figure 3. An ideal current averagingIM/DDreceiver.

Assume thatPs is large. Using equation (21), the current produced by thephotodetector
in figure 3 is

i(t) = akRPs + ish(t), (22)

iSh(.t) is approximated as a zero-mean Gaussian white noise process with density

S*(f) = ah(fiPa. (23)

The output of the integrator is

Y=akRPsT+N, (24)

where

T

N = ]ish{t)dt (25)
o

is a zero-mean Gaussian random variable with variance
T

B[N2] = Ejjish(u)ish(v)duav

= akqRPsjfi(u-v)dudv
o

= akqRP5T. (26)

The probability density function for Yconditioned on one and zero is shown in figure 4.
Note that since we are considering shot noise only, Y is exactly zero when a zero is
transmitted. Choosing a zero threshold, the receiver decides one when Y > 0, and zero
otherwise. This corresponds to a BER of

Pe =^-Pr[7>0lzERo] +^-Pr[y^ 01 one]

=>+iG RPST

^qRPsT
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>P[7l2ER0]

P[Y\one]

RPJ
- Y

Figure 4. The likelihood functions for the idealized current averagingreceiver
of figure 3. When a zero is transmitted, Y is 0 with probability one, so that
PUIzero] is a delta function.

-T° V?PST

where the special Q-function is defined by

G(P)= J l

V2it
«^&

= — erfc
2

But the responsivity R =-?^-, therefore
hv

R

_2_
^2

—PST = T|—-T = TlM,

Define

M = T|——T = T]M = number of photoelectrons per one bit

(27)

(28)

(29)

(30)

For coherent receivers, PIN diodes are generally__used, which have efficiency T| near
unity. Therefore, the distinction between M and M is a subtle one.

The probability of error from (27) then becomes

1P* =jft<W) =±e1 -Ma
(31)

the second approximation being valid for M » 1. Since the exponent in equation (31) is
half that in the quantum limit, we conclude that this system is approximately 3 dB less
sensitive than the ideal photon counter. In other words, twice as much power per bit is
needed to maintain the same BER. This difference is due entirely to the approximation
of the electron flow as a white Gaussian process.
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2.4. A Practical IM/DD Receiver

The above analysis of the photon counter and current averager considered only shot
noise. As one might expect, however, in practice other noise sources must be accounted
for. Real photodetectors produce a dark current regardless of the presence or absence of
incident photons, due to the spontaneous formation of electron-hole pairs [6], Also,
background light can hit the detector's surface [7]. And since the current produced by a
photodetector can be relatively small, the circuit or thermal noise of the next stage (usu
ally a FET amplifier) can be significant [6]. A more realistic IM/DD receiver will now
be considered, using the block diagram in figure 5.

aJkVpTcos(ov)
(0Zt<T)

fiber channel

o ,v(,).
r

/(•)<*
0

Y
y

A

Figure 5. In practical IM/DD receivers, the noises due to dark current and
thermal noise in the amplifier front-end must be dealt with.

When the above mentioned noises are accounted for, thevoltage at the output of the FET
amplifier is

v (f) = akZRPs + nsh{t) + ndk(t) + nth(t) + nbk{t). (32)

Here Z is the equivalent impedance of the FET amplifier, and nsh(t)t n^t), nth(t), and
nbk(t) represent the shot noise, dark current noise, thermal noise, and background noise
respectively. They can be modeled as zero-mean white Gaussian random processes over
the frequency rangeof interest [7],with two-sided spectral densities

S*(f) = akqZ2RPs,
S*<f) = N* = qZ2!^
S*(f) = Nth,

_ „7l\Sbk(f) = Nbk = qZ'RP^. (33)

Notice thatthere is more noise when a one is transmitted than for a zero. Computing F,
the output of the integrator:

T

Y = j[akZRPs +nsh(t) +nbk(t) +nth(t)]dt (34)

Define the conditional mean and variance of Y as
A

m0= E[7Izero] = 0,

ml= E[Y\one] = ZRPST,

a02= var[7lz£R0] = N&T+NthT+NbkT,
ax2= var[Y\0NE] = N&T +NthT +NbkT +qZ2RPsT.

(35)

(36)

(37)

(38)
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Figure 6 shows the probability distributions for Y conditioned on one and zero

ZRPST

Figure 6. The variance of the noise in IM/DD receivers depends on the
transmitted bit

Since ones and zeros are assumed equally likely, the optimum threshold Yth that minim
izes the BER is the value of Y at which the two likelihood functions intersect (hence the
name maximum likelihood, or ML). Since the variance of the two distributions are not
eaual, this threshold is not immediately obvious. One can approximate it by finding the
Yth that causes the probability of a false alarm to equal that of a miss [6] [7]:

or

Pr[7 > Yth \zero] = Pr[7 < Yth Ione],

Q

r a

Yth~m0

<*0
A

Yth~m0

= e

A ^

mi~Yth

A

mi-Yth
GQ O^

moGx + m^o
Yth =

tfo + o-i

To justify this approximation, proceed more formally: the exact threshold
Yth satisfies

1 g-iYfi-mofncfZ 1 -V*-m{?/2o?

V27tof
For the example at hand, this leads to

*o2
Yth = m

<*i2-«o

^2kg}

GO y

(G^G^lniGi/°o)2
M

(39)

(40)

(41)

(42)

where M = miliqZ) is the mean number of photons per one bit Then for
M » (a1/a0)ln(a1/a0)2, this reduces to

Yth**mx Co2
of-a,2 <*0

(43)
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**-
rniO,i°o

oykjo

which, because m 0 = 0, supports the threshold obtained from equation (40).

With this approximation, the BER becomes

Pe = Pr|Y >41 zero],
and substituting equation (40) yields

mj-mo
Pe = Q

GX + GQ

(44)

(45)

(46)

Plugging in the conditional means and variances from equations (35)-(38), we find
the BER for a realistic IM/DD receiver to be

Pe=Q
ZRPST

^NAT +NthT +NbkT +^7 +NthT +NbkT+qZ2RPsT
(47)

This BER is plotted versus peak received power Ps in figure 7, using the following typi
cal parameters [7]:

I& - 1 nAmp (dark current)

Nth/Z2 = 10~16 Amps2 (thermal current variance)
Pbk = 10~19 Watts (background light power)
VT = 100 Mbps (bit rate)

X = 1500nm (wavelength)

For purposes of comparison, the BER for the ideal photon counter is included in the
graph. It is evident that the performance of the receiver isvery much inferior, as approx
imately 26 dB more power is needed to maintain a given BER. In terms of photons per
bit, this receiver needs nearly 8000 photons per one bit for a BER of 10"9. And although
there are some methods for improving the sensitivity of IM/DD receivers, (e.g., through
the use of an avalanche photodiode), practical IM/DD receivers cannot achieve the level
of performance predictedby the quantum limit

3. Coherent Detection

It was shown in the last section thatthedark current andpreamplifier thermal noise
caused a 26 dB degradation in sensitivity with respect to the quantum limit To combat
the thermal noise, IM/DD receivers typically use an avalanche photodiode (APD), which
has an internal gain. The APD current is then large enough so that the preamplifier ther
mal noise is negligible. However, the gain of an APD fluctuates randomly, which intro
duces another source of noise. Furthermore, the efficiency of an APD is typically half
that of a PIN diode. Overall, the net improvement brought on by anAPD for an IM/DD
system is 5-10dB; still 15-20 dB worse thanthequantum limit [7].
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BER For Ideal and Practical IM/DD
Bit Rate = 100 Mbps

1 -M
Quantum Limit: —e

2

Practical IM/DD Receiver'

26 dB

,-1210 I I I I I 111 I I I I 111! I l I I

-80.0 -70.0 -60.0 -50.0

Ps (dBm)

^0.0 -30.0

Figure 7. The BER curves for the quantum limit and a practical IM/DD re
ceiver, at a bit rate of 100 Mbps and wavelength X = 1500nm. The parame
ters for the practical receiver are mean gain <M> = 1, T| = 1 (PIN diode),
thermal current variance = 10~16 A2, dark current = InA, background light
power 10-19 W.

If the optical power could somehow be amplified before the photodetector, then a
PIN diode could be used, since its current would then be large enough to overcome the
effects of thermal noise. This avoids the noisy gain and low efficiency of the APD. But
how does one achieve this high signal power? An optical amplifier is one possibility. It
turns out that these devices are theoretically possible, but difficult to realize. But by mix
ing the received lightwave with a local lightwave, the power of the resulting sum is pro
portional to the received power times the LO power. IfPjjq is large, this has the effect of
amplification, and the advantages described above can be gained.

In optical communications, coherent has come to describe any receiver that adds a
LO lightwave to the incoming wave, even if subsequent processing ignores its phase, as
do envelope detectors. To differentiate between a correlation type receiver and an
envelope detector, the terms synchronous and asynchronous are used.

3.1. PSK: An Example

To illustrate the principles of a coherent receiver, consider a single pulse of a PSK
modulated lightwave aky[P^cosaiQt, where ak = ±1. Add to this signal a local
lightwave with power Pt/j and frequency co^. The resulting sum is then directed
towards a photodetector, as shown in figure 8. With proper attention to the phase and
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VPloCOS©//)*

ak^cCOSCOq/ 4 /(O

Figure 8. The front end of a coherent receiver adds an LO lightwave to the
incoming signal. The resulting photodetector currentis passed through a dc el
iminator, which removes dc components, and can be realized by a simple RC
high-pass filter.

polarization of the lightwaves, the sum / (t) is

/(f) = ak-4P^COS(O0t +^IPlo COSCOq t

=^hps +Plo+ ^PsPloCos(co0-®uo)t cos[G>or +p(f)]. (48)
The second equality follows from an expansion of / (f) in terms of its envelope and phase
about cd0. The power of /(f) is

PsunSf) = akPs+Pw +2ak^P^cos(oIFt, (49)
where CO/;? = Ico0 - g>lo I is the intermediate frequency.

Using the result from last section (see (32)), the current produced by thephotodetec
tor can be modeled by

ipd{t) = RPSum(t)+ish(t) + i0ther(t)

= akRPs +RPW +2akRs[P^cosGiIFt +ish(t) +iother{t), (50)
where ish(t) is a zero-mean Gaussian random process with spectral density

Ssh(f) =qRPsum
= qR (akPs +PLQ+ 2aky\PsPwcos(&IFt). (51)

When Ptjq » Ps, which will beshown tobedesirable and is easy to achieve, the density
of the shotnoise is constant, independent of the transmitted bit:

Ssh(f)~qRPL0. (52)

The term iotner(t) in (50) models all of the other noises (dark current, thermal, etc.) as a
zero-mean white Gaussian process with density Sother(f) = Nother. After dc elimina
tion, the current is

i(t) = aklR^FJ^oos^pt +i5h(t) +iother(0- (53)
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The SNR for this current relative to the signal space representation with basis function
\|/(f) = ^2/T cos(0IFt can becomputed:

SNR =

(jak2RylP^Pr~^cos(aIFt y(t) dt )2
o

T

Z[j(ish(t) +iother(0)V(Odt]2
0

qRPrx) +Nother
(54)

The signal term is proportional to Pr/), as is the shot noise term. But the other noises
represented by Nother are generally independent of Pjq (see [8] for an exception). Thus
one can reduce the effect of these other noises by increasing P^q. In the limit, as Piq
tends to «©, the resulting SNR is

SNR =
2TR2PSPW

qPPuo

= 2M. (55)

For this shot-noise-limited case, then, we can ignore the other noises, and equation (53)
becomes

/(f)« aklR^PsPijoCostojpt + ish(t\ (56)

where isn(t) is a zero-mean white Gaussian process with density Ssh(f) = qRPjj)• The
problem has thus been reduced to the classical detection problem of a signal in additive
white Gaussian noise. The optimum receiver is well known to be a correlator followed
by a threshold test, as illustrated in figure 9.

1

m

Figure 9. The ML receiver for signals in additive white Gaussian noise is a
correlator, often implemented with a matched filter.

In a signal space representation, the received signal /(f) is modeled as a vector in a
finite-energy irifinite-dimensional linear space. For known signals in additive white
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Gaussian noise, the space can be restricted to the subspace spanned by the known sig
nals, before they are corrupted by noise. For PSK, the subspace is one dimensional. For
the example at hand, let co^ = co0, so that (oIF = 0; i.e., homodyne PSK. In this case,
the known signal portion of the current is just a constant:

/ (f) = ak2R iPsPw + ish(t). (57)

Let the one-dimensional subspace be represented by the normalized basis vector \p,
where

V *-* V(0 -Vf
The above notationmeans that the signal \|/(f) is represented in signal space by the vector
\jf. For signals in additive white Gaussian noise, theoptimal receiver need only compute
the sufficient statistic, which is the component of the incoming signal in the basis vector
\|/ direction. This is because the components of the noise in any other direction are
uncoixelated with those in the sufficient subspace. (For a more complete description of
signal space representations, see, e.g., [9], [10].) The component of /(f) in the \\r(t)
direction is found by integrating their product:

T
Y= <Ur\i{t)dt = ak2R^PsPwT +N, (58)

o

where N is a zero-mean Gaussian random variable with variance qRPjx>. The signal
space constellation is shown in figure 10.

P[7l2»0] p[rio«s]

-2R^PSPWT 0 2R^IFST^T

Figure 10. The signal constellation for 2-level PSK, often referred to as
binary antipodal signaling.

The BER is then

P. = Q
ARiPsPrnT

2iqRPw
(59)

= QdAM). (60)
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Comparing withequation (6), we see thatunder shot-noise-limited conditions, theperfor
mance of homodyne PSK is slightly (~ 3.5 dB) better than the quantum limit! Note that
3 dB of this advantage is due to the fact that a PSK signal is transmitting at peak power
for both oness and zeros, something an IM/DD system cannot do. Equation (60)
implies that 9 photons per bit are needed for a homodyne PSK receiver to achieve a BER
of 10 . This result illustrates the increase in receiver sensitivity promised by coherent
detection. And although the above analysis neglected some important issues (such as
laserphase noise), it will be shown that the degradation of this result in a morecomplete
analysis will not be severe.

3.2. Computation of BER for Shot Noise Limited Operation

What follows is a compilation of BER computations for various homodyne, hetero
dyne, synchronous and asynchronous modulation formats. The spirit of these calcula
tions is to develop a framework in which the relative merits of the various formats can be
compared. They will serve only as design guidelines, since these values will represent the
lower limit on the BER in the ideal case of shot-noise-limited operation. The receiver
structures and associated analysis in this section are for the most part standard; see, e.g.,
[11] [12] [10]

To make the analysis tractable, many assumptions were made:

(i) No laser phase noise.

(ii) Shot noise »thermal, dark current noise, etc.

(iii) Perfect modulation of laser.

(iv) Square pulse shape (0 < f < T), no intersymbol interference.

(v) Perfect phase tracking by PLL (for synchronous receivers).

(vi) Combined lightwaves are identically polarized.

If these assumptions are not made, the analysis would become excessively compli
cated. The effects of laser phase noise will be considered in section 5. If other noise
sources besides the shot noise are significant, the result will be a uniform power penalty,
so that the relative performance levels derived will stay intact [13]. The difficulty in
cleanly modulating lasers results in inadvertent intensity and frequency noise, which in
general must be accounted for. Since optical fibers have a large bandwidth and optical
PAM is very narrow-band, dispersion, and thus pulse shaping, equalization, and inter
symbol interference, are neglected. The problem of realizing optical phase-locked loops
(PLL) is also an important one, but it too will be neglected here. Finally, a means of
ensuring identical polarization when combining lightwaves is needed. This can be done
through polarization-maintaining fiber, or more practically through some form of
automatic polarization adjusters [14].

The front end of the receivers considered throughout this section will all be the
same: the received lightwave is mixed with a LO lightwave, the sum directed towards a
PIN photodetector, and the resulting current passed through a dc eliminator (see figure 8.)

Heterodyne demodulation results in an IF signal, which can be processed in three
distinct ways. Synchronous receivers use a correlator or matched filter, and thus require a
PLL. Asynchronous receivers use an energy or envelope detector. Another alternative,
denoted as weakly-synchronous processing, uses some form of an autocorrelator. Since
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homodyning results in a baseband signal, the transmitted signal can be recovered
directiy, so homodyne receivers are usually included in the class of synchronous
receivers.

3.2.1. Synchronous Processing

PSK

In the last section, the shot-noise-limited BER for homodyne PSK was found to be
Q (v4Af ). The result for heterodyne PSK can be found using similar methods. From
equation (56), the current produced when a PSK signal is heterodyned using the tech
nique in figure 8 is

/(f) = ak2R^PsPrx) coso/pf + ish(t), (61)

where ish(t) is a zero-mean Gaussian white noise process with density Ssh(f) = qRPjjo.
The ML receiver is a correlator, as shown in figure 9, with basis function

Y(f) = ^2/T cos(aIFt. (62)
The input to the slicer can be computed:

T

Y = J/(f)V(f)^f = akRi2TPsPw +N, (63)
o

where N is a zero-mean Gaussian random variable with variance qRPr/) • The signal
constellation is shown below in figure 11.

P|Y Izero] ?\Y\one]

* Y

-R^TXPsPuo 0 R^lTPfuo

Figure 11. The signal space constellation for heterodyne PSK. It is the same
as for homodyne PSK,exceptthe basis vector \j/(f) haschanged.

The BER is then

Pe=Q
/?V277>PsrW

MPPw
= 2(V2M). (64)

The performance of heterodyne PSK is seen to be 3dB worse than homodyne PSK, and
asymptotically equal to the quantum limit, as illustrated in figure 12. The corresponding
sensitivity for heterodyne PSK is 18 photonsper bit
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BER For Shot Noise Limited Operation

>». \.\ \\ \\ . PSK (homodyne)

\ \ \ JvC^\\ ^PSK^-sy11011)
\*^W \\ 3r\ Quantum Limit

\\ ^V\ \\ ^ DPSK
\ V\ \\ J£\ FSK (het-synch)

\\ ^\ \\ ^ ASK (homodyne)

\\ V^\\ ^ FSK (het-asynch)
\ \\ \\ ^AV^^ ^^ASK (h^-synch)

— \ \\ \\ X\ ^ ASK (het-asynch)

1 1 t 1 1\ l \l\ l \\ l \l\ I i i i

0.0 10.0 20.0

101og10Af
Peak Received Power

30.0

Figure 12. BER curves for shot-noise-limited operation, where BER is the
probability of a symbol error, and M is the number of photons per one bit M
is proportional to the received peak power, M = (r\Ps/hv)T.

FSK

For frequency-shift keying (FSK), the transmitter sends a light pulse with one of
two possible frequencies fo±fd, where fd is the deviation frequency. The coherent
receiver adds a LO lightwave as before, see figure 13.

yPijocosfHuot

^pjcos(.(ao±<od)t 4 HO

Figure 13. The FSK coherent receiver is similar to that for PSK.

In this case, the combined lightwave /(f) is
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/(f) = ^7cOS(G>o ±®d)t +^PLOCOSQwt

= >/*% +Pw +2^PsPLOcos (co0- ©^ ±©^)f cos[co0f +p(f)], (65)
so that the resulting current, proportional to the power of this lightwave, is

/(f) = 2R^PSPWcos(co/F ±cod)f + ish(f), (66)

where /s/,(f) is again a zero-mean Gaussian white noise process with density
Sshtf) = QPPlo• F°r tergz <&if> this corresponds to orthogonal signaling. The resulting
signal space has two dimensions, as shown in figure 14.

R^l2TPsP>srLO

ZERO

distance = 2RVTP5Puo

ONB

39 >

R^2TPSPW

Vo

Figure 14. FSK is anorthogonal signaling modulation scheme.

Here,

Yo <-> y-fC°s(<*iF +<*d)t>
and

¥i <-» y-fWsiPiF-tod)*'

(67)

(68)

In this space, aoak is represented by R^ZTP^yy^ and azero by R^2TPsPw\fQ.
The ML receiver finds the projection of the received signal /(f) onto the (Yo.Vi) plane,
and makes the decision that minimizes the Euclidean distance between this projection
and the decision. A block diagram of this receiver is shown in figure 15. Since \|/0 and
Vi are orthonormal, the \jr0 and \|/j components of the shot noise ish(t) are independent
and identically distributed (i.i.&). The BER can then becomputed as the probability that
the noise component is greater than half the Euclideandistance between the one and zero
in signal space [10]:

Pe=Q
distance/2

= 2
2R^TPK7l2

^qRPuo
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*\ljCQS((JiIP +®d)t

VpIjOCOSdiijot -*® »]<•)*

r(0 >® •
•^yCOS(C0//7-(0<<)f

y
a*

r(t) = ^P7cos(<flo±a>d)f
*® • /<•)*

Figure 15. The ML FSK heterodyne receiver finds the correlation of the
current signal / (f) with the two expected pulses for a one and zero.

= QCfif) (69)

This result is plotted in figure 12, where it can be seen that heterodyne synchronous FSK
reception is 3 dB worse than the quantum limit It is also 3 dB worse than heterodyne
PSK. This is as expected, since FSK is an orthogonal signaling scheme, while PSK is
antipodal. In terms of sensitivity, heterodyne synchronous FSK requires 36 photons per
bit for a BER of 10~9. FSK is a popular modulation scheme, however, due to the advan
tages of direct modulation: by modulating the current of a semiconductor laser, one can
achieve FSK directly. PSK and ASK require external modulators, which can introduce
significant insertion loss.

Note that a homodyne FSK receiver would require two local lasers, one for each
possible frequency. Not only does this make them impractical, but there would be an
additional 3 dB penalty in sensitivity due to the inevitable loss of power when the
received lightwave is separated into the two receiver branches. Therefore, homodyne
FSK will not be considered here.

ASK

The BER for homodyne PSK and heterodyne-synchronous PSK have already been
found to be Q(^4M), QOfcAf), respectively. The same analysis is applicable to ASK,
with two adjustments:

• The distance in signal space for ASK is half that for PSK.

• The average signal power for ASK is half that for PSK.

Each of these alone cause a 3 dB degradation in sensitivity, resulting in a total of
6 dB. Therefore, without repeating the analysis, we conclude that for homodyne ASK,

Pe = Q06#), (70)
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and for heterodyne-synchronous ASK,

pe =Qt\[jM). (71>
These BERs correspond to a 3 and 6dB penalty with respect to the quantum limit,
requiring 36 and 72 photons per bit, respectively. Although these ASK modulation
schemes perform worse than the PSK schemes, their use stems from the relative ease in
performing external ASK modulation of a laser. An interesting application of homodyne
ASK will be considered in section 5.3.

3.2.2. Asynchronous Processing

Although synchronous receivers perform well, they require sophisticated com
ponents, such as a PLL. An alternative way of processing the IF current uses an energy
or envelope detector, which results in simpler receiver design. Their performance, how
ever, will be seen to be inferior to their synchronous counterparts by -0.5 dB. An
envelope detector can be thought of as an absolute magnitude rectifier followed by a
low-pass filter. It will be assumed in this section that an envelope detector exactly repli
cates the envelope of its input. Since an envelopedetector ignores the phase of its input,
PSK cannot be processed asynchronously, so only ASK and FSK will be considered in
this section.

ASK

In the last section, it was shown that the synchronous ASK receiver found the com
ponentof / (f) in the \|/ direction usinga correlator. In practice, this is implemented using
a matched filter, as illustrated in figure 16(b). These synchronous receivers use a PLL to
track the phase of the received signal. The motivation behind asynchronous receivers is
the desire to detect the signal without regard to the phase, and thus simplifying the
receiver design. If the matched filter implementation of figure 16(b) were used without
phase tracking (modeled as a uniform random variable 0 over [0,2rc]), sampling p(t) at
f=T will in general not yield Y. In fact, p (T) could be zero, or worse negative! But
even if p(f) were not maximum at f=7\ its envelope will be close to its maximum.
Therefore, an asynchronous receiver samples the envelope ofp (f), as illustrated in figure
16(c). Forthe ideal envelope detector, theresultr will be independent of 6.

Considerthe asynchronous receiverfor heterodyne ASK, shownin figure 17. Here,
the IF current is

i (f) = ak2RylPsPLOcos((0IFt + Q) + ish(t) (72)

where 9 represents the fact that the absolute phase of the pulse is not tracked, so it's an
unknown random variable. The matchedfilter - envelope detector - samplercombination
shown in the figure estimates r, the envelope of /(f). Analytically, this is equivalent to
projecting

i <-» HO (73)

onto the (Vc,\|/5) plane and finding the distancefrom the origin,where

Vc <-> yj^os^pt, (74)
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¥(0
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i(0 -® >}(.)*
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P(t)

0 T 2T

—yA/VW—,
/(O y(T-t)

T

(b)

Pit)

0 T 2T 0 7 27

—WvW—
/(0 V(7-0

ENVELOPE

DETECTOR

(c)

Figure 16. Evolution of asynchronous receivers: (a) the ideal correlator, (b) a
matched filter implementation; (c) an asynchronous envelope detector imple
mentation. Adapted from [15].

^Puocomiot

aky[pJcosai(f—&— PD>——B3 •MATCHED
FILTER

ENV.

DET.

Figure 17. The heterodyne asynchronous ASK receiver uses a filter matched
to the expected pulse at IF, followed by an envelope detector.

¥. <-» ^jsuMiFt* (75)

Figure 18 shows the signal space representation. It is evident from figure 18 that the
enelope r will be independent of 9. So without loss of generality, assume 9 = 0.
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ZERO

/

-/—- V,

/

/

/

I /

Vc

Figure 18. The signal space for ASK: 9 represents the unknown phase, and
ish represents the shot noise. The envelope of /(f) is r, the distance from the
origin to the projection of i onto the (ycA|f,) plane.

Computing the projections of i onto the plane axes:
T

*c = jnOVc(*)dt = akR^2TP^P^+nc,

and

is = jnOVsiOdt = nsy
o

(76)

(77)

where nc and ns are i.id. zero-mean Gaussian random variables with variance qRPjj).
To simplify notation, define

/ = R^2TPSPW (78)

and

G2 = qRPw (79)
as the normalized currentamplitude and noise variance, respectively. Then the envelope
r is

-VZOTc ' ¥s

= ^l(akI+nc)2 +n2. (80)
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The probability distribution function for r can be obtained as follows (see, e.g., [15]
[16]).

pr(p)dp = Pr[p<r<p + dp]

= Pr[p <V(a*/ +nc)2 +n2<p +dp]

= iJPnent(nc-akIt ns)dncdns,
AN

(81)

where AN is a ring of radius p andthickness dp in the (nc,ns) plane, as shown in figure
19.

Pn.,i.(ne/ls\0NE)

Figure 19. The probability distribution function for r can be found by in
tegrating a two-dimensional jointly Gaussian distribution centered at (1,0) over
AN.

Since nc and ns are independent zero-mean Gaussian random variables with variance c2,
the joint distribution is the product of the marginal distributions, so that (81) becomes

pr(P)dp = jj—je e
ANJ 2kg1

Substitute

to get

nc = pcosO,

ns — psinO,

dncdns = pdpdB

dncdns. (82)

(83)

pr(p)dp = J J—^ p</9dp
p o 2tvt

2n

=pdpfe* "e
p -<p2+«/W j^. «P/cose/o^0

2tc 0
(84)
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Recognizing the bracketed term as the zero'* order modified Bessel function of the first
kind, we find that

pr(p) =̂ -(p2+-/WI( akpl
(P>0). (85)

This result, which holds for the envelope of a narrow-band signal in additive white Gaus
sian noise, is well known to be the Rician density. When ak is zero, this reduces to the
Rayleigh distribution. The conditional distributions for the envelope are

Pr(p \zero) =-^e -p2/2^ (p >0),

Pr(p\oNE) =̂ e^^%
1 g-ip-ifnd*

where the second approximation is valid for large

SNR = -^r
G2

R^TP.PsrLO

G2

(86)

(P>0)

(87)

(iPPw

= 2M. (88)

The conditional densities for heterodyne ASKare sketched in figure 20.

Pr(p\0NB)

Figure 20. The Rayleigh distribution (zero) and Rician distribution (one).

The optimumthreshold rth is wherepr(pIzero) = pr(p Ione), which again for highSNR
is rth = 112. The BER for heterodyneasynchronous ASK with M»1 is then

Pe =^PT[r>j-\ZERO] +̂ PT[r<^\ONE]
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=lj^-pwdp+le
2//2(r

2 2^

_ _1_^ -/2/8o2
~2

where the last approximation follows from

Q

r ~\

1/2

112

G

112

G

<e-/2/4o2«e-/W
G

V -J

(89)

(90)

Notice that a false alarm is more probable than a miss. Substituting the original
definitions for I and g from equations (78) and (79), we get

1 -MIA

?e=\e ' (91)
Thus heterodyne asynchronous ASK is 6 dB worse that the quantum limit, as shown in
figure (12). The sensitivity is 80 photons per one bit

FSK

An FSK modulated lightwave can be demodulated asynchronously using two
branches, one for each possible frequency. Consider the receiver shown in figure 21.

•n/p^Tcuocomuot

1 r

MF ENV
DET

m '<*>
(®0+®d)

uc

MF ENV
DET

r(t) »© • PD>—•

r(t) = JP~cos(<Ook(Od)t

((0o-(od)

+4

-^-

Figure 21. A dual filter heterodyne asynchronous FSK receiver.

The IF current is

/(f) = 2R^lPsPLOcos(0)0±(Od)t + ish(t)

= /\yCOS(G)0±G)rf)f +ish(0,
where again,

SSh(f) = o2 = qRPw
is the the shot noise density, and

y ak

(92)

(93)
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/ = R^TP.Puo (94)

is the normalized current amplitude. The two branch filters are matched to the expected
RF pulse at frequencies G)0±G)d. F°r tog? frequency deviation (co0 » (Od »1/7), there
will be no cross-talk between branches, so the system is symmetric (i.e., the probability
of a false alarm equals that of a miss). Assuming a one is sent, then

Pe = Pr[r1-r0<0loN£], (95)

where rx and r0 are the envelopes detected by the two branches. Each branch is seen to
be a replica of the ASK heterodyne asynchronous receiver considered earlier (see figure
16). The probability distribution of rx and r0 can thus be found from equation (86) and
(87) (see, e.g., [15] [16]):

pri(px\oNE) = — e v I0

Pr(pQ\ONE) =
PO „ -PoW

O2 ,

(P>0).

(P>0), (96)

(97)

The noise in each branch will be independent due to the separate frequency ranges
spanned by the two matched filters. Therefore

PnroCPl'Po1™*) = Pr,(pi\ONE)pro(pQ\ONE). (98)

The BER can now be computedby integrating this joint distribution over the range dic
tated by equation (95):

Pe = \\Prl(P\\ONE)prQ(pQ\ONE)dptflpl
Opi

_ 1 WWJaT
- 3* IpA,

i r -/W
G2 0

Substituting x = V2px, a = //V2, yields

- Kw!f•»

Pi£
o2

Pi£
G2

OCX

G2

-Pi'/o2 f Po^-Po^o2
Pi*2

dpQ

-2p?/2o*
e dpv

^-(a'+xW ^

dp]

(99)

(100)

Recognizing the integrand as the Riciandensity, the totalintegral must be one. Thus

e ~ 2e (101)

Substituting I and a2 from (93) and(94) yields the BER for heterodyne asynchronous
FSK:

1 -Ma
P = -=-e (102)
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This corresponds to a 3 dB penalty with respect to the quantum limit, as illustrated in
figure (12). The sensitivity is 40 photons per bit

3.2.3. Weakly Synchronous Processing: DPSK

The synchronous receivers of section 3.2.1 are known to be optimum for additive
white Gaussian channels. They essentially found the correlation of the received
lightwave with a local replica of the transmitted pulse. Since this requires accurate phase
synchronization which complicates the receiver structure, the asynchronous receivers
described in section 3.2.2 are commonly used, with an accompanying penalty of ~0.5 dB.
These asynchronous receivers used envelopedetectors, which obliterate all knowledge of
phase, and thus they are inappropriate for PSK systems. Fortunately, however, there is a
way to demodulate a certain type of PSK called differential phase-shift keying (DPSK)
without replicating the transmittedpulse locally, and without die need for tracking phase.
To send a zero in DPSK, the transmitter changes the phase of the pulse by 180° with
respect to the previous pulse. To send a one, the phase of the transmitted pulse is kept
the same as the previous one. That is, the received signal is

V?7cos(0)0f + <!>* +8) (103)
where fa e {0,tc} represents the modulated phase of the \s?h bit:

one <-» fa - fa_x = 0,

ZERO <-» fa - fa_x = ±7C. (104)

Here 9 represents the unknown absolute phase, which is not tracked. If this unknown
phase varies slowly, enough so that it is virtually constant over a time interval of two bit
periods, then the pulses in two adjacent slots will differ by either 0 or tc. A DPSK
receiver uses this knowledge and finds the correlation of the mcomingpulse with the pre
vious pulse. Except for the effects of shot noise, they will be the same for a one,resulting
in a positive correlation, and opposite for a zero, resulting in a negative correlation. The
block diagram of such a receiver is shown in figure 22.

VPxtfCOSGOjLof

-^cos^+fc +6) •© . PD>- n m itfti i

T

j(-)dt
0

y* Jc

L- i
1r

inV>= iO>-T)

Figure 22. The DPSK receiver uses a one bit-delay demodulator. When the
phase of two consecutive pulses are the same, the result is positive, and when
the two IF pulses have opposite phase, the result is negative.

The IF current is

/(f) = 2RJPJ^cos((0IFt +Q) +ish(t), (105)

where



-30-

S*(f) = o2- 4*PlO' (106)
To analyze the DPSK receiver, it is easiest to use signal space concepts. From equation
(104), one can surmise the best receiver will estimate p = the difference in phase
between / (f) and / (t —T\ and

decide one if Ip Imo<j2n <^2,

and

decide zero if\$\mod2„>7t/2. (107)

From equation (105), we see that without the additive shot noise, the set of all possible
expected signals falls on the (\|/c, \fs) plane, where

¥c «-» yjcomjpt,

and

V* «-• VrsinG)^r- (108)
And since the shot noise is white, its (\j/c, \|f5) components are uncorrelated with any of
its other components. Therefore, no information is lost if the currents /(f) and i(t-T)
are restricted to the sufficient subspace spanned by \jrc andys. In this signal subspace, P
is the angle betweenthe projections of i and \D ontodie 0|fc, \jfs) plane, where

i ~ HO,

and

iD <-» /(f-T). (109)

Also define

s <-» Icos((0IFt + 0),

n <-> WO.

*d <-> «j*fr-n. (110)

where s represents the expected signal, and again

/ = R^TP.Puo. (Ill)

Notice that since n and nD are sample functions of a white noise process over two dis
joint time intervals, they are independent Furthermore, since

T

<¥c*> <-> jVc(OY"*(0<fr = 0, (112)

then

nc= <n,\|/c>,

ns= <n,y5>,

*D,C- <nD,¥c>»
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"Dj= <nD>Vs> (113)

are all i.i.d zero-mean Gaussian random variables with variance a2 = qRPjj)> With
these definitions, the signal space diagram is shown in figure 23, where only the projec
tions of the vectors onto the (\j/c, \\fs) plane are illustrated.

V,
i + i/)

Vc

Figure 23. Signal space representation for DPSK. The absolute phase 9 is ir
relevant, only the relative phase p between i and iD is important

SinceDPSK is a symmetric modulation scheme [12], the BER can be found by consider
ing only the probability of a miss:

Pe = Pr[miss]

= WPlmodai >^2\ONE]

= Pr[cosp < 0 Ione]

<Ud>
= Pr

llilllliDll

wherethe last equalityfollows from <d,id> = IIiII IIiD II cosp. Next use the identity

<0 \ONE

4<i,iD> = lli + iDll2-lli-iD

(114)

(115)
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toget:

Pe = Pr[lli + iDll2- lli-iDll2<0 \one]
= Pt[R+<R_\one], (116)

where

R+= lli + iDll

= 1128 + n + nDll, (117)

and

R. = lli-iDll

= lln-nDll, (118)

That is, R+ and R_ are the lengths of two-dimensional vectors with mean lengths 21 and
0, respectively, corrupted by additivewhite Gaussian noise. From the analysisof hetero
dyne asynchronous ASK reception in section 3.2.2, we know that R+ and R_ have a
Rician distribution. Now, however, the mean and variance are 2/ and 2a2, instead of /
and a2. From equations (86) and (87) we get the conditional distributions for R+and R_:

pR+(p Ione) =-^-e^a^\ (p >0), (119)
Pr(?1one) =-J^^+VW**^ 0(21)

(2a2)
(p>0). (120)

The evaluation of (116) for Rician distributions was already carried out in section 3.2.2,
for heterodyne asynchronous FSK. The result can be directly applied here, by replacing
/ by 21, and a2 by 2a2 in equation (101). Thus for DPSK reception, the BER under
shot-noise-limited conditions is

p = le-m^eo2)
e 2

" 26
1 -Af= \e , (121)

where / and a2 were substituted from equations (111) and (113). This BER represents a
-0.5 dB degradation with respect to heterodyne-synchronous PSK, equaling the perfor
mance of the quantum limit, at the gain of simpler receiver structure. This means that a
DPSK receiver needs only 20 photons perbit for a BER of 10"9. As one might expect,
however, both PSK and DPSK are sensitive to phase noise, which turns out to be a
significant impairment for semiconductor lasers (see section 4.8).

4. Unique Characteristics of Optical Communication Systems

In many ways, communicating with the visible portion of the electromagnetic spec
trum is the same as using RF frequencies. Enough differences exist, however, so that one
cannot always directly apply proven principles from one realm to the other. For exam
ple, the bandwidth of RF systems is generally limited, whereas for optical systems it is
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plentiful. And a virtually noise-free RF oscillator is relatively easy to build, whereas the
best of today's semiconductor lasers have significant phase noise. So although lightwave
communications overcomes many of the limitations in RF communications, it introduces
a new set of impairments. This section describes some of these unique traits.

4.1. Narrow-band

An optical pulse is very narrow-band, since the frequency of its carrier is large. As
an example, consider an isolated pulse of a 100 Mbps system, with wavelength
X= 1300«m. Then the ratio of the bandwidth of this pulse to its carrier is -10"6,
whereas the same square pulse with a carrier of only 1 GHz would have a ratio of ~10~2.
Also, the bandwidth of optical fiber is immense. Furthermore, today's high quality fiber
has a very small dispersion coefficient Together, these facts make the dispersion of an
optical pulse relatively small, so it is commonly ignored in the analysis of optical
receivers. This precludes the need for equalization to eliminate inter-symbol interfer
ence. Consider next some of the components of an optical communications system.

4.2. Optical Fiber

Multimode fibers have a large core with respect to the wavelength of the propagat
ing wave. When a pulse of light is applied to one end of a fiber, the light can be thought
of as traveling down the fiber via total reflection. When the core radius is large enough,
many different modes reflecting at different angles can propagate. Since the resulting
path traveled by the lower modes (small angle of reflection) is shorter than that of the
higher order modes (large angle of reflection), the lower order modes will arrive at the
receiver before the higher modes, resulting in a spreadingof the pulse. This type of dis
tortion is called inter-modal dispersion, and can be overcome by making the core radius
small enough so that only a single mode can propagate, namely a single-mode fiber. For
this reason, single-mode fibers are expected to prevail in high-throughput communication
applications, especially coherent systems. Because of the small core radius, however, it
is difficult to launch light into a single-modefiber.

Another form of degradation is chromatic dispersion, which arises from the fact that
lightwaves at different frequencies travel through the dielectric waveguide at different
speeds. The wavelength of zero chromatic dispersion for standardfiber is near 1300nm,
but it can be shifted anywhere from 1300-1500 nm through properfiberdesign.

The attenuation of high-quality production fibers is ^0.2dB/km, which is quite
favorable compared to the ~ 10 dB/km loss for metallic coaxial cables. And since this
low attenuation exists in the 1450-1650 nm wavelength range, optical fiber offers a
potential bandwidth of over 30,000 GHz. Other attributes of fiber as a medium are its
immunity to interference, absence of energy radiation (which provides high security),
and reduced overall effective cost Together, these characteristics make optical fiber a
nearly ideal communications medium.

4.3. Lasers

A crucial element of coherent communication systems is the laser. Ideally, it should
be inexpensive, rugged, spectrally pure (small Av), and tunable over the entire low
attenuation window. Gas lasers can have smalllinewidths, but they are bulky, expensive,
and sensitive to vibrations. The future of coherent systems is thought to rely heavily on
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advancements in semiconductor laser technology. Presently, semiconductor lasers need
external cavities to get Av < 1 MHz. But these external optical devices lack robustness,
so it is hoped the properties of semiconductor lasers can be improved through other
means (such as distributed feedback, or DFB). The best of today's DFB lasers have a
linewidth Av of no less than 5 MHz.

4.4. Modulators

There are basically two ways of modulating a laser:
Direct modulation:

Where FSK can be obtained by controlling the injection current of the semiconduc
tor laser.

External modulation:

Where the lightwave is modulated via a phase modulator, usually a lithium niobate
device, to achieve ASK, PSK, or FSK.

Attempting to performASKor PSK via directmodulation resultsin spurious chirp noise,
and so is not commonly attempted. Externally modulated FSK seems to be possible,
although there is an extra requirement of some form of line coding. To investigate this
idea further, consider the phasemodulator modeled in figure 24.

cosov

V(t)

PHASE

MODULATOR
-» cos ©or +^-V(t)

Figure 24. The phaseof the outputof an idealphasemodulator is proportional
to the modulating voltage input V(t).

Vn is the voltage necessary for a phase change of %radians. To perform FSK, V(t)
would need to be linearly increasing or decreasing. Neglecting coding considerations,
let's say we want to transmit a 1010 pattern. This will provide a quick check of the via
bilityof thisdevicein an FSK system. ThenV(t) would need to be triangular waveform,
as shown in figure 25:

ppV(f)= ±-^f+<t>* (122)

where fa is a constant during each bit intervalT. It maintains V(t) as a piecewise con
tinuous function. Then the output of the phase modulatoris

cos[co0f +-£-V(t)] = cos ©Qf ±±^k,+ 71
VJ V,

•fcfc

= COS 2k
V

2V„T v n

(123)
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Figure 25. Modulating voltage V(t) necessary for a 1010 FSK pattern.

Notice that the since V (t) is continuous, the output of the phase modulator has continu
ous phase. From the previous equation, we see that the effective frequency deviation is

fd =
pp

2VnT

A typical value for Vn is 10 volts [17]. Since — = R = bit rate, we can rewrite

V

fd =ifr*'
which indicates a reasonable range for Vpp. For example, for MSK (fd = R/4),
Vpp = 5 volts. Butwhat about the phase modulator, can it track a triangle wave at a fre
quency of-^ = y#? Typical lithium niobate phase modulators have abandwidth of8-
13 GHz [17]. Thus, as long as ±R « 8-13 GHz, the triangle wave will be sufficiently
tracked

The preceding calculations seemto assert that FSK using anexternal phase modula
tor is practical. However, it has neglected an important aspectof phase modulators: their
modulating inputvoltage range. To ensure the linear phase relationship depicted in figure
24 is valid, V(t) must be maintained within specific limits, typically ± 50 volts. One
solution would be to make a discrete jump by somemultipleof 2V„. But this would not
be tracked adequately by the lithium niobate modulator, resulting in a distorted signal.
An alternative is to code the bits before modulation, ensuring that V(t) stays within
i^max- A simple (and inefficient) code is a 1B2B code, illustrated in figure 26.
Transmitting v x(t) for a one will appear as a one-zero sequence to the FSK receiver.
Similarly, applying v0(t) to the phase modulator would appear as a zero-one sequence.
Although this is a practical system, the effective bit rate has been cut in half. However,
further studymay provethe advantages of external modulation outweigh the codinglimi
tations. A simple FSK system using an external FSKmodulator is shown in figure 27.

(124)

(125)
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Figure 26. Pulse shapes for V(t): (a) one-zero sequence, (b) zero-one se
quence.
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Figure 27. An externalmodulator in anFSK system.

4.5. Photodetectors

There are two classes of photodetectors:

• PIN diodes: Quantum efficiency T|« 1, mean gain <M> = 1, less sensitive than
avalanche photodiodes.

• Avalanche Photodiodes (APD): Quantum efficiency T|~ 0.5, mean gain <M> ~ 50,
more sensitive than PIN diodes, but gain is noisy.

APDs are used for IM/DD systems, because the incident light is generally weak, requir
ing the amplification effect provided by the APD. A price is paid for the APD's
increased sensitivity; multiplicative noise. The gain M has statistical fluctuations that
vary as <M>X, where x is typically 0.5. Since heterodyne techniques amplify the light
before the photodetector, the gain produced by an APD is not necessary; the light
incident in a coherent system is strong enough so that the more efficient and less noisy
PIN diode can be used.
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4.6. Polarization

An important consideration in coherent optical systems is polarization. Since the
state of polarization of a lightwave traveling through a fiber will vary randomly, some
means of recovering this polarization is necessary. In some ways, the problem is similar
to a random phase variation. And a solution analogous to the PLL would be some sort of
polarization tracking system. It has been shown that the rate of polarization fluctuation is
small enough so that some of form of feedback tracking shouldbe possible [2]. Another
alternative is to break the received lightwave into two orthogonal states of polarization,
then process each in a separate branchof the receiver. The performance of the resulting
receiver would then in theory be independent of the state of polarization of the received
signal [18].

4.7. Heterodyne versus Homodyne

Many of the principles developed in standard RF communication theory can be
applied directly to optical communications. For example, the criteria used to choose
modulation-demodulation schemes in optical communications are in many cases directiy
analogous to those developed in RF communications. One interesting difference, how
ever, is this: optical heterodyne reception is 3 dB less sensitive than optical homodyne.
There is no such distinction in RF communications. The reason for this difference is not
immediately obvious, and to the author's knowledge, there has been no straightforward
explanation given in the literature. In fact, one article states [19]

"Heterodyne reception entails a penalty, however,because the carrier and local oscillator con-
stantly slip out of phase with each other. The receiver is most sensitive at the instant when the
signal and local oscillator arc in phase. When they are out of phase by 90 degrees, sensitivity
approaches zero. The IF signal averages those good and bad conditions, making a heterodyne
receiver at least 3 dB less sensitive than homodyne."

Although the argument may be intuitively pleasing, it fails to explain why a 3 dB penalty
does not occur for RF heterodyne. The inspiration for the discussion that follows comes
from a paper by Kazovsky [20], which is dedicated to the heterodyne/homodyne distinc
tion. The purpose of this discussion is to not only verify a 3 dB penalty for optical
heterodyne, but to make a direct comparison with microwave systems. What follows is
a side by side comparison of optical and RF heterodyne/homodyne techniques.

Optical Homodyne

Consider first optical homodyne reception of a PSK signal, under shot-noise-limited
conditions. The ideal receiver is depicted in figure 28(a). The baseband current after dc
elimination is

i(0 = ak2RJFJ^+ish(t), (126)
where Ssh(f) = qRPu). The output of the integrator is then

Y = ak2R^TPsPw+N, (127)

where N is a zero-mean Gaussian random variable with variance qRPu). The SNR at
the input to the slicer is thus

4R2TPsPLO
SNRoptJtom

qRPjjo
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Figure 28. The optimum receiver configurations for optical (a) homodyne,
and (b) heterodyne.

= AM. (128)

Optical Heterodyne

Next, consider the same PSK signal and a heterodyne receiver, as shown in figure
28(b). Here,

i(t) = ak2R ^r\P^coscoIFt +ish(t), (129)
where againSsh(f) = qRPw. The basisfunction for this signal is

yjcostofft, (130)

instead of^=. The resulting correlation Yis then

Y = akR^2TPsPL0'¥N, (131)

where again N is a zero-mean Gaussian random variable with variance qRP[/). Thus,
the SNRat the slicerinputfor ideal shot-noise-limited heterodyne PSK is

RhTP.P,
SNRoptjhet

srLO

qRPw

= 2M. (132)

Comparing (128) and (132), we see that indeed, even for ideal noiseless lasers under
shot-noise-limited conditions,

S^&optjiet ~ "7SNRop/,/wm- (133)
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Since the receivers used in the above analysis are optimum, no different or further pro
cessing can improve the relationship given by (133).

RF Homodyne.

To clarify the reasons why there is no heterodyne penalty in RF communications,
consider the front-end of an RF homodynePSK receiver shown in figure 29(a).

akAcos(£>ot

+ n(t)

akAcos(O0t +n(t)

W w

-o)0 0 oo0

(a)

IcOSdijjot

*2

-0—'

«2 n3

(b)

W W

nn

2cos<Oipt

Jul
»5

w
4—>

II
0

*6

«6

Figure 29. Front-end processing for RF receivers: (a) homodyne, and (b)
heterodyne.

The only noise under consideration is n (t), a channel-induced zero-mean white Gaussian
process, with two-sided density N0. The bandwidth of the low-pass filter W is chosen to
be large enough to pass the signal undistorted. Computing x2(t), the output of the mixer:

x 2(t) = akA + akAcos2©0r + n2(t), (134)

where

n2(0 = 2n(t)cos(OQt (135)

is also a zero-mean white Gaussian noise, with density Sn2(f) = 2N0. This result is
derived in appendix A. After the low-pass filter, which filters out the high frequency
term:

x3(t) = akA +n3(t),

where

Sn3(f) = 2Norect(f,W/2) = «

At this point in the receiver, the SNR is

SNRRF,hom ""

2^0 for\f\<WI2
0 for\f\>WI2

2N0W

(136)

(137)

(138)
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RF Heterodyne.

Finally, consider an RF heterodyne receiver, with the same PSK input, as shown in
figure 29(b). Since the noise is introduced in the channel, it is advantageous to pre-filter
the received signal with a band-pass filter before demodulation. This would not have
helped the homodyne receiver, but the spectral densities shown in figure 30 illustrate its
benefit for the heterodyne case. Assuming the band-pass filter passes the expected signal
undistorted, its output is

x2(t) - akA cosa>or + n2(t), (139)

where Sn2(f), along with Snff), Snff), Sns(f), and Sn6(f), is illustrated in figure 30.
After the first mixer,

x3(t) = akA cos(0IFt + akA cos(oo0 + ®lo )t +n 3(t). (140)

After the secondband-pass filter, whichis centered in frequency at (0IF,

x4(t) = akAcos®IFt +n4(t). (141)

The second mixer results in

x 5(t) = akA + akAcos (2co/F )t + n5(t). (142)

After the final low-pass filter, the output is

x6(t) = akA+n6(t). (143)

Comparing this result with (136), we find that the RF heterodyne receiver results in the
same signal-plus-noise. The corresponding SNR is

A2
2N0W

= SNR^F>m (144)

which verifies the claim that there is noheterodyne penalty in RF systems.
In case the above analysis is not transparent, here is an explanation in words:

Demodulation of a modulated waveform requires a frequency translation of the signal's
spectrum from the carrierdown to its baseband form, at zerofrequency. This frequency
translation also applies to the surrounding noise. In homodyne, the translation is done in
one step, fromfc to zero. In heterodyne, however, there is an intermediate step: first
from/ o to fIF, then fromfIF down to zero. If the noiseis white, each translation dou
bles the relative noise density, making heterodyne 3 dB worse than homodyne. Thekey
difference between RF and optical communications is the source of the white noise. In
optical systems, it's from shot noise, which is a resultof the demodulation process, while
for RF systems, the noise is generated in the channel (or at least before the mixer). This
latter fact allows the RF heterodyne receiver to pre-filter the noise before mixing,
preventing the noise density from doubling after both translations. This is notpossible in
optical systems, because the noise is generated after the mixing, and thus the 3 dB
penalty for optical heterodyne.
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Figure 30. Spectral densities for the noises at various points of the RF hetero
dyne receiver of figure 29(b). Notice that without thepre-filter, Sn$(f) would
have height 2iV0 instead of NQ.

4.8. Laser Phase Noise

Of all the obstacles preventing coherent reception techniques from making a smooth
transition into the optical domain, laser phase noise is the most critical. Ideally, the spec
trum of a sinusoidal signal is a delta function centered at the carrier frequency. When
the phase of the sinusoid is a random process, the spectrum spreads out so that it has
nonzero width. For modern RF oscillators, the width of its spectrum is < 1 Hz. For
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typical semiconductor lasers, however, this width is 5-100 MHz. And even though the
carrier frequency of an optical oscillator is - 105 times that of an RF oscillator, the rela
tive quality is still deficient by a factor of- 103.

To deal with this phase noise analytically, it must be accurately modeled. Define
the linewidth Av of a laser as the 3 dB bandwidth of its spectrum (see figure 31). The
laser phase noise process ty(t) is commonly characterized by a Wiener process, such that
its time derivative <j>(f) is azero-mean white Gaussian process with density

Stff) = 2itAv. (145)

Atlow frequencies, the density of<j>(f) is not flat, due to 1// noise, but it is expected that
the resulting variations in frequency are slow enough to be adequately tracked [1]. There
is also apeak inS^(f) at the relaxation frequency of the laser, but this isusually beyond
the bandwidth of the receiver. Thus the approximation of <(>(t) as a white process is a
good one. As will be shown, it leads to a spectral shape called Lorentzian that has been
observed experimentally [21].

It is not obvious that choosing (j)(t) to be white with density 2tcAv results in a
sinusoidal signal whose spectrum has bandwidth Av. To show this, considerthe represen
tation of a laser source as

X(t) = ^P^COS[G>tf +W) +el' <146)
The randomvariable 0 is uniform over [0,2n], andindependent of $(t). It is introduced
to to make x(t) stationary, and can be justified by realizing that the time origin is arbi
trary, not absolute. That is, since

t

<KD= jku)du, (147)
o

x(t = 0) = V?7cos0 should still be random. To find the spectral density ofx(t), its
autocorrelation is needed:

Rx(rx,r2) = Efrfr^Cfa)]

= PsE[cos((o0t i + $(t i) + e)cos(G)<)f2+ <K* 2)+ 9)]

= —PsE[cos(<Oo(tl-t2) + $(ti)-W2))]

+y/%E[sin( (a0(t1 +'2) +<K'i) +<K'2) +29)]. (148)

The secondterm in (148) is zero when the expectation over 9 is taken. Thus

R*fr 1^2) =^PsE[cos(o0(t1 -t^ +O]
=yJVosCQoa1~'2MCOSO] - ±-Pssm®0(t! -12)E[sinO], (149)

where for a given t xand 12,

<*>= <K'i)-<K'2>

= fau)du -]§(u)du
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= j$(u)du. (150)

Therefore, since §(t) is a zero-mean white Gaussian process, <£> is a zero-mean Gaussian
random variable with variance

gI = E[02]
t\tx

=E[ \\'$(u)it(v)duav]
tit 2

*ltl

= 27tAv Jj5(i* - v)dudv

= 2jtAvlr1-r2l. (151)

It is shown in appendix B that for a zero-mean Gaussian random variable O with vari
ance a|,

Thus (149) becomes

E[cos<E>] = e

E[sinO] = 0.

-a|/2

n , <^ Ps ^-JtAvlrx-Zol
Px(h>t2) = -x-e coscoq^! - tfr

andreplacing tl-t2byz gives

*xft) = -f*
^c -JtAvltl

COSCOoT.

(152)

(153)

(154)

The Fourier transform of this autocorrelation function yields the spectral density of a
laser source corrupted by phase noise:

Sx(f) =
2rcAv

1 +
/±/o

\2

Av/2

(155)

This spectral shape is referred to asLorentzian, andis sketchedin figure 31.
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Figure 31. The Lorentzian spectral shape of a sinusoid corrupted by a Wiener
phase noise process.

The effect of this nonzero linewidth is the subject of the next section.

5. Laser Phase Noise Analysis

Much of the recent research in semiconductor lasers has concentrated on reducing
laser linewidth. Nevertheless, the linewidths are still significant, and it looks like this
impairment will be around for a while. It is important, then, to analyze its effects on the
performance of various coherent receivers, as the phase noise must be understood before
its overall impact can be diminished. There are numerous papers available which study
the effects of laser phase noise; see e.g., [22] [1] [23] [24]. Most of the proceeding
analysis is based on the works by Kazovsky [22] [25].

All of the analysis in the previous sections assumed zero linewidth (Av = 0).
When this assumption is not valid, the BER curves as shown in figure 12 are affected in
two ways:

Power penalty:
If Av > 0, then the Lorentzian shape of the light source tends to smear the spectrum
of the modulated signal. To recover the signal, then, the IF bandwidth must be
increased, which subsequently passes more shot noise. This power penalty results
in a shift of the BER curve to the right Note that by increasing the received power
Ps, this penalty can be overcome (see figure 32).

BER floor:

For angle modulation schemes (PSK, FSK), a nonzero linewidth can be devastating.
It should be clear that if the phase process were allowed to take a "random walk,"
the performance of a DPSK receiver, which relies on the coherence of the phase in
two successive bit intervals, would rapidly deteriorate. For a given Av, then, one
must choose the bit rate R large enough so that there still is some phase correlation
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in successive pulses. If not, then no amount of received power Ps can overcome
this effect The result is a BERfloor, and is illustrated in figure 32.

BER
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Figure 32. Phase noise has two effects on a BER curve, a power penalty,
which causes a shift to the right, and a BER floor, which is a lower limit on the
BER.

The power penalties are in general more difficult to obtain analytically, because
they require simultaneous consideration of both phase noise and shot noise. First, we
will compute the BER floors for angle-modulation schemes.

5.1. Effect of Phase Noise on FSK

The received lightwave corrupted by laserphase noise for FSK can be represented
as

r(t) = V^cos[(a)o ±®d)t +fa(t)]. (156)
where fa(t) is thephase noise process, and fa(t) is a zero-mean white Gaussian process
with with spectral density S^(f) = 2kAvs. Similarly, the LO lightwave is

HO = VP^cosfco^r +tyuo (t)], (157)
where this time S^(f) = 2jtAvL0. When the two lightwaves are combined and
directedtowardsa PIN diode, the resulting IF currentafter dc eliminationis

i(t) = 2R <Pj^cos[((0IF ±<od)t +<KOL (158)
where

<KO= <MO-too<0 (159)
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is again a Wiener process, and

Stff) = 2%(Avs+AvL0). (160)

Throughout the rest of this analysis, assume Avs + Av^ = 2Av, so that Si(f) = 4rcAv,
and Av can be thought of as the averageof the transmitterand LO linewidths.

Consider the FSK receiver shown in figure 33.

*JF^o~cos [(O^t +$w(t)]

r(t)—@ »

r(t) = ^Pjcos[(<Oo±(iid)t +<M01

Figure 33. A practical FSK-m^criminator receiver.

An ideal frequency discriminator is used, whoseoutputis the instantaneous frequency of
its input with respect to co/F, scaledby a conversion factor K. Thus

x(t) = K
instantaneous

frequency - ©/=•
of i(t)

= /ST[±cod + <t)(r)].

(161)

Since <j)(r) is a white noise process, we see that for the case of FSK with a frequency
discriminator receiver, the laser phase noise problem has reduced to a binary antipodal
scheme in additive white Gaussian noise. The optimum receiver integrates x (t) over one
bit period, then applies a zero threshold test, as shown in figure 33. The output of the
integrator Y is

T

Y = jx(t)dt

where

= KJ(±G>d +<\>(t))dt
o

= K(±G>dT+N),

N = fa(Odt
o

is a zero-mean Gaussian random variable with variance

T

E[N2] = E[jj^(u)^(v)dudv]

(162)

(163)
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= 4tcAvJJ8(m -v)dudv
o

= 47tAvT.

Pe = Pr[7 <0 \one]

K(OdT
= Q

= Q

= Q

KMnAvT

2nfdT

MnAvT

'<^fdIP '
VAv/fl

h±
Vd_

R

(164)

(165)

(166)

where fd is half the difference between the one and zero frequencies, and R is the bit
rate. Then from (165), we find the BER floor due to laser phase noise for FSK discrimi
nation detection:

Pe=Q
^iz/4h
VavZr

(167)

The BER floors for FSK are plotted in figure 34, parameterized by h. Laser linewidth
requirements can be obtained from these curves. Forinstance, suppose you want to build
an MSK (h = 0.5) system to run at 100 Mbps. From figure 34 (or more accurately from
equation (167)), you see that to get aBER floor of less than 10"9, you need

so that Av must be less than

Av/R < 0.00546,

Av< 0.00546*

< 0.00546 (100 Mbps)

< 546 KHz.

(168)

(169)

Thus to build such a system, the average of the linewidths of your transmitter and LO
lasers must be less than 546 KHz. Note that equation (167) was derived assuming no
shot noise. For h ^3, the signal spectrum is compact enough so that the shot noise
admitted through the IF filter will cause a penalty of no more than 1 dB [22]. For larger
deviation, however, the IF bandwidth must be so largethat the amount of shot noise let in
negates any gain obtained with respect to the phasenoise. In this respect, equation (167)
must be viewed as being valid (to within 1 dB) only for h < 3.
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BER Floor Due to Phase Noise for FSK Heterodyne Receiver

- DPSK

J_L

0.001 0.01 0.1

Av//?

0.5 (MSK)

h = 1.0

h = 1.5

h:= 2.0

h = 2.5

h = 3.0

1 1 1 1 Mil

1.0 10.0

Figure 34. BER floors for FSK m^criminator reception due to phase noise:
plotted versus Av//?, where Av is the average linewidth of the transmitter and
LO lasers, and R is the bit rate. The parameter is h, the deviation ratio, which
is the frequency difference between a one and zero divided by the bit rate.
Also included is the BER floor for DPSK, derived in the next section.

5.2. Effect of Phase Noise on DPSK

The DPSK receiver structure was analyzed for zero phase noise in section 3.2.1. It
was shown that the ML receiver (constrained to the delay-demodulation technique) found
the correlation of two successive pulses and applied the result to a zero threshold test.
The BER was then found by recognizing the equivalence of this correlation test with a
signal space projection test When Av>0, the analysis is not so simple. However,
observe that an ideal DPSK receiver would determine the phase of i (t) and i (t-T), and
average their difference. Thus a lower bound on the BER can be obtained from this
idealized model [26] [22] shown in figure 35.

The IF current of the DPSK receiver will be

i(t) = 2R ^IFf^cos[(i>IFt +<KO +fa] (170)
where fae {0, tc) is the phase modulation, and §(t) is the Wiener phase noise process.
The estimates of the phase of i (t) and i (t-T) will therefore be

9(0= ^(O + fa

and

MO= <K'-r)+<i>*-i (171)
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W)
if?* ±\(-)dt

1 0

JiPHASE
y

ESTIMATOR

T

+ y

8^(0

Figure 35. The performance of a DPSK receiver can do no better than this
idealized receiver, which averages the phase difference between i(t) and
i(t-T).

The BERfloor for DPSK is theprobability that thephase noise causes the average phase
difference

T

P= yj(e(0-eD(o]dr
to vary by more than k/2:

But from (171),

Pe = Pr[miss]

TC= Pr[ipimod2re >-£-!<>»£].

T

P=jj\*(0-W-T)}dt + fa- fa^.

(172)

(173)

(174)

To evaluate the BER using (173), assume a one was sent, which from (104) implies that
fa - fa_i = 0. Thus P becomes

T

V=jj\$(0-W-T)]dt. (175)
Since $(0 is defined as the integral of <j>(r), and since (j>(f) is a zero-mean Gaussian pro
cess, p is a zero-mean Gaussianrandomvariable. Its variance, derived in appendix C, is

o2± E[p2] =^kAv/R. (176)
For reasonably small Av/R, the probability of Ip I > 3jc/2 is negligible, so that the
mod 2k on the absolute value in (173) can be removed. Thus the BER floor due to laser
phase noise for DPSK is

Pe = Pr[ipi >k/2\one]

= 2Q

= 2Q

7E/2

^ •* J

K/2

V(8/3)7cAv//?
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= 2Q u 3k

32AV/R
(177)

Comparing this result with (167), we see that this BER floor for DPSK is equivalent to

the BER for FSK (except for the factor of 2), with adeviation ratio of h = *\j—. The
plot of this floor is included with the FSK floors in figure 34. It can be seen from the
graph that fora BER floor ofless that 10"9, one must have

Av/R < 0.00819. (178)

Thus, for example, to build a DPSK system at 100 Mbps, the linewidths from the
transmitter and LO lasers must average less than 819 KHz. The graph in figure 34 also
reveals that the laser linewidth requirements for DPSK are less stringent than for MSIC,
but more stringent than for large deviation FSK.

5.3. Effect of Phase Noise on ASK

If there is no phase noise (Av = 0), then the signal constellation for ASK lies com
pletely on the y\fc axis, as shown in figure 36(a).

%

ZERO
ONE

* Vc * ¥,

(a) (b)

Figure 36. Signal space representation for ASK. If there is no phase noise,
then the constellation lies completely on \j/c axis (a). Phase noise causes the
constellation to rotate randomly, as shown in (b).

IF Av > 0, however, then the constellation rotates randomly, as depicted in figure 36(b).
The axes for this discussion are defined as

Yc <->

Vs «-»

-\/ycosa)0r

-\/ysinoty. (179)

The conventional ASK receiver, as developed in section 3.2.1, found the correlation of
the received lightwave with \|/c, and applied the result to a threshold test. But if there is
some phase noise, this method is no longer optimum. For example, if the phase noise
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ty(t) lingers about k/2, then one can see from figure 36(b) that the projection onto \pc
would always be zero. A better receiver would look at both dimension in signal space,
whichleadsto the receiver called a two-port orphase-diversity receiver.

It can be shown [11] that for areceived signal i (t) with a constant unknown phase,
the ML ASK receiver (accounting for both phase noise and shot noise) computes

Y = <i,\j/c>2 +<i,\|^>2 (180)
and compares the result to a threshold. For the more general case when the phase is not
constantbut a random process §(t), deriving the ML receiver is more difficult. However,
one is always free tochoose areceiver structure, then analyze its performance and hope it
is acceptable. Extending the optimal receiver for unknown constant phase to the case of
random time-varying phase, consider the phase-diversity receiver shown in figure 37
(adapted from [25]).

r(t) = ^Vp^cos

r(t) '

Gw+<i>,(0

90°

OPTICAL

HYBRID

ri(0

r2(t)

l(t) =̂ Tcos [av +4>io(o]

PD dc
ie(t)

is(t)
PD dc

H(f)

W

0

H(f)

W

1-0-
0

xc(t)
(•)2

9
Xs(t)

(•)2

Figure 37. A phase diversity homodyne ASK receiver, following [25].

jf

The 90° hybrid is a device whose output are the in-phase and quadrature sums of it inputs
[27]. That is,

ri(t) =^Re{r(r)+/(r)}
and

r2(t) = -±=Re{jr(t) +nO}.
The resulting baseband currents are

ic(t) = akIcosty(t) + ishc(t)

*,(0 = akIsm$(t) + ishj(t)

where

/= Ry[KPsrLO

is the baseband current amplitude and

<KO= fa(0-$Lo(0

(181)

(182)

(183)

(184)

is the combined phase noise process. Its time derivative <j>(r) is white Gaussian with
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density Si(f) = 4kAv. The terms i^,c(r) and i^iO are the zero-mean white Gaus
sian shot noises in branches one and two, respectively, with spectral density
ssh,c(f) = Sshj(f) - No- QPPlo- Note mat since mev arise from physically
separate photodetectors, ish,c(0 and /^(f) are independent. The low-pass filter in
figure 37 has a bandwidth W, which is chosen large enough to pass without distortion the
signal corrupted by phase noise. Under this assumption, the filtered currents in (182)
become

*c(0 = aklcosty(0 + nc(t)

xs(t) = a*/sin<|>(0 + ns(t) (185)

where nc and ns are zero-mean filtered white noise processes with spectral densities

Sne(f ) = Sn,(f) = Norecttf ,W/2). (186)

The input to the slicer is Y = x2 +x2. Note that if there were no shot noise, then

Y =x2+x2

= ak2I2cos2ty(t) + ak2I2sm2<b(t)
= akI2. (187)

Thus without the shot noise, the receiver recovers the signal exactly. The fact that there
is shot noise, however, complicates the matter, causing Y to be a non-Gaussian random
variable. It has some n-cioss-n terms, ^-cross-n terms, and its mean and variance
depend on the transmitted symbol.

To obtain a numerical BER, make two approximations:

• Y is nearly Gaussian

-Pe =2(P),

where

P= —--r- (188)
gx + g0

mx= E[Y\one] (189)

m0= E\Y\zero] (190)

G2= vai[Y\0NE] (191)
Go- var[rizERo] (192)

The second approximation made above was discussed in section 2.4, and is valid for
large I2/(N0W)~M. For the sake of brevity, the derivations of the conditional means
andvariances of Y are relegated to appendix D. The results are

mx= I2 +2N0W (193)
m0 = 2N0W (194)

of = 4I2NQW+4N$W2 (195)
G0 = 4N$W2. (196)
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Computing the SNR defined in (188),

P =

where

m-i —mi

Gj + Gq

^4I2N0W +4N$W2 +2N0W

±M
a

v —M + 1 + 1
a

ai
W_
R

(197)

(198)

is the normalized bandwidth of H(f). The bandwidth must be large enough so that
akIcos$(t) and akIsinfy(t) are passed undistorted. The larger Av is, the larger W must
be. An expression for W in terms of Av is difficult to obtain; a slight modification of a
result by Kazovsky [22] yields

W = R^l + 1613(Av/R)2, (199)
so that

a = ^l + 161.3(Av/R)2. (200)
Notice that for Av = 0, a = 1, which corresponds to a matched filter (W = R). Com
bining equations (197) and (200), the BER for a homodyne phase-diversity receiver is

M

Pe=Q
Vl +161.3(Av//Q2

v 1 +
2M

^l +161.3(Av/rt)2
+ 1

(201)

The BER curves from this result are plotted in figure 38. Note that for the special case of
Av = 0, then a = 1 and the BER reduces to

M
Pe = Q

V2M + 1 + 1
(202)

Furthermore, for large peak received power M,

Pe =Q M (203)

Thus even under ideal conditions (Av = 0, large M), the phase-diversity homodyne ASK
receiver performs 3 dB worse than homodyne synchronous ASK, and 6 dB worse than
the quantum limit. Nevertheless, phase diversity techniques may be important in multi-
gigabit applications [28]. In this regime, the IF bandwidth needed for a heterodyne
receiver makes homodyne systems more attractive. And unlike most homodyne
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BER Floors Due To Phase Noise for 2-Port Homodyne Receiver

\ \V\ Av/R = °-°

— \ \ \3rvv Av/R = °*2
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101og10A/
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Figure 38. BER curves for 2-port ASK homodyne receiver (figure 37). The
parameter is Av/R, where Av is the average laser linewidth, and R is the bit
rate. For Av = 0, the performance of this receiver is 3 dB worse than the
homodyne synchronous receiver under shot-noise-limited conditions.

schemes, the phase diversity receiver does not need to track phase.

From inspection of the BER curves in figure 38, we see that nonzero linewidth
results in a power penalty- not a BER floor- for the homodyne phase diversity receiver.
This is an indirectresult of the increased bandwidth necessary to accommodate the signal
contaminated by phase noise.
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6. Discussion

The analysis of optical receivers in the preceding text had two major themes: the
computation of the BER under shot-noise-limited conditions for various receivers, and
the effects of laser phase noise on receiver performance.

The BER computations yielded a complete set of equations for various heterodyne,
homodyne, synchronous, and asynchronous receivers. These equations were derived
assuming all noises were negligible with respect to the shot noise, and thus represent a
lower bound on the BER. The results are tabulated in table 1. In practice, laser phase
noise [4] [22], intersymbol interference, chromatic and polarization dispersion, imper
fect modulation [2], dark current and thermalnoise [6] will all degrade performance.

Modulation

Format Receiver Type BER Sensitivity

PSK

PSK

IMyDD

DPSK

ASK

FSK

FSK

ASK

ASK

homodyne

heterodyne-synchronous

(Quantum Limit)

delay-demodulation

homodyne

heterodyne-synchronous

heterodyne-asynchronous

heterodyne-synchronous

heterodyne-asynchronous

K
K
qUm]

qUm]
1 -M/2

q\WJ2]
1 -MIA

9

18

20

20

36

36

40

72

80

Table 1. BERs and sensitivities of various shot-noise-limited receivers.

The equations are expressed in terms of M = i\PsT/(h v), the number of photons per one
bit. It should be emphasized that M is the peak power per bit. Some European authors
prefer to talk in terms of the average power per bit. To compare their results with those
of table 1, one must realize that for ASK and IM/DD, M is twice the average power per
bit/

From the equations in table 1, one can compute receiver sensitivity: the number of
photons M required for a BER of 10"~9. The sensitivity of each receiver considered is
included in table 1. Here we see that homodyne PSK is the most sensitive. As was dis
cussed in section 4.7, and as the tabulated results verify, heterodyne reception is 3 dB
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less sensitive than homodyne. Another advantage of homodyne systems is the reduced
IF bandwidth needed, thus easing the electrical processing requirements. The fact that
homodyne receivers generally need to track the phase of the incoming signal is a major
disadvantage. One possible solution, discussed in section 5.3, is a phase-diversity
receiver.

Figure 12 shows a plot of the BER versus M, using the expressions in table 1. From
this plot, or from table 1, it is evident that the asynchronous receivers incur an additional
penalty of ~ 0.5 dB with respect to their synchronous counterparts. This penalty is often
seen as a reasonable compromise between receiver performance and complexity, espe
cially since asynchronous receivers are in general less sensitive to laser phase noise [23]
[22] [24].

Also included in table 1 is the BER for the ideal IM/DD receiver, and the accom
panyingsensitivity (called the quantumlimit) of 20 photons per one bit. In section2.4 it
was demonstrated that extraneous noises such as thermal noise and dark current in a real
istic IM/DD receiver caused a 26 dB penalty with respect to the quantum limit. In an
attempt to overcome these extraneous noises, typical IM/DD receivers use APDs.
Although these sensitive photodetectors improve receiver sensitivity somewhat, detailed
analysis [7] reveals that IM/DD receivers still require anywhere from 800-2000 photons
per one bit This corresponds to a 16-20 dB power penalty with respect to the quantum
limit

In section 4.8, laser phase noise was characterized as a Wiener process. Section 5
thenwent on to analyze the effect of this phase noise on FSK,DPSK,andASK receivers.
The resulting analysis revealed a BER floor for the angle-modulation schemes, namely
FSK and DPSK. The expressions for these floors (equations (167) and (177)) were
derived assuming that the power of the received signal was sufficient torecover the phase
unambiguously. It should be clear that if the received power Ps were small, then the
thermal and shot noises would ineffect alter the phase, resulting inreduced sensitivity.

Comparing the BER floor plots in figure 34, we see that MSK (h = 0.5) requires
the narrowest laser linewidth: toobtain a floor of 10"9, the average laser linewidth of the
transmitter and LO must be less than 0.55% of the bit rate. In contrast, wide deviation
FSK (h = 3)can achieve this BER floor with an average linewidth as high as 20% of the
bit rate. For even larger deviation FSK (h > 3), the linewidth requirements are even less
stringent [22]. This cannot be inferred from (167) directly, because when the separation
between one and zero frequencies gets very large, the shot noise admitted by the
widened IF bandwidth results in a power penalty. This secondary effect is not reflected
in (167). And although (167) is still a lower bound on the BER for (h > 3), it is no
longer a very tight bound. Again from figure 34, it is seen thatDPSKis is almost as sen
sitive to phase noise as MSK. A DPSK receiver requires an average linewidth of no
more than 0.82% of the bit rate to obtain a BER of 10 .

The analysis of the phase diversity receiver resulted in figure 38, which shows the
power penalties for nonzero laser linewidths. The derivation of the expression used for
this plot (equation (201)) required numerous approximations. This is because both phase
noise and shot noise were accounted for, significantly complicating the analysis.
Nevertheless, the results imply the possibility of a homodyne, phase insensitive coherent
receiver- an intriguing combination. Recent experiments verify the feasibility of the
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phase-diversity receiver [29] [30].

7. Conclusion

An analysis of coherent optical fiber receivers was presented. A review of direct
detection techniques was provided, and the quantum limit for an ideal IM/DD receiver
was found to be 20 photons per one bit The photodetector current was shown to be con
taminated by shot noise. Whenthe optical powerincident to the detector is largeenough,
the resulting shot noise process can be approximated as a Gaussian white noise process,
thus simplifying analysis. Because of extraneous noises such as dark current and thermal
noise, a practical IM/DD receiver using a PIN diode was shown to be 26 dB less sensitive
than the quantum limit. Coherent techniques were shown to alleviate these extraneous
noise effects by maintaining a high local oscillator power. This high power can cause the
shot noise to dominate all other noise, a condition referred to as shot-noise-limited opera
tion.

The BER for various heterodyne, homodyne, synchronous, and asynchronous
receivers was derived for shot-noise-limited conditions. It was found that homodyne
PSK was 3.5 dB more sensitive than the quantum limit, requiring only 9 photons per bit
for a BER of 10"9. The next most sensitive receiver was heterodyne PSK, followed by
DPSK, homodyne ASK, heterodyne synchronous FSK, heterodyne asynchronous FSK,
heterodyne synchronous ASK, and heterodyne-asynchronous ASK. A straightforward
explanation of the 3 dB penalty for heterodyne receivers was presented. Then laser
phase noise was modeled as a Wiener process, and its effect on FSK, DPSK, and ASK
receivers was examined. ABER floor of 10"9 required that the average laser linewidth of
the transmitter and LO be less than 0.55%, 0.82%, and 20% of the bit rate for MSK,
DPSK, and FSK (h = 3), respectively. Finally, the effect of phase noise on a homo
dyne phase-diversity ASK receiver was examined. It was found that nonzero laser
linewidth resulted in a power penalty only, implying that its effect could be reduced by
increasing the transmitted power.
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8. Appendix

Appendix A. Spectrum of a Modulated Random Process.

What follows is a derivation of the spectral density of the product of a stationary
random process with a sinusoid. Suppose n(t) is a zero-mean stationary process, with
autocorrelation function Rn(t) and spectral density function Sn(f). Next let

y(t) = *(O<2cos(G>0f +e)>- (A-1)

The random variable 0 is uniform over [0,27t] and independent of n (t), and is needed to
make y (t) stationary. Then to compute the-spectral density of y (t), first obtain its auto
correlation function:

Ry(z) = E\y(t)y(t+z)] (A-2)

= 4E[n(t)n(t + T)cos(©of + 0)cos(co0r + co0x + 0)] (A-3)

4Rn (x)E[—cosoty + —cos(2co0f + ©0x + 20)] (A-4)

= 2Rn(x) cos(co0x) + E[cos(2co0r + G)0x + 20)] (A-5)

Since 0 is uniform over [0,27c], the expectation over0 is zero:

1 *E[cos(2a)of+g>ox +20)] = TL-Jcos(2coor+coox +20)rf0 (A-6)
2K o

= 0.

Thus

Ry(x) = 2/?n(x)cosco0x. (A-7)

Taking theFouriertransform gives the spectral density ofy (t):

Sy(f) = Sn(f +f0) +Sn(f -f0). (A-8)

Therefore, if n(t) is a white noise process with density Nq, then y (t) will also be a white
noiseprocess, but withdensity 2N0.

Appendix B. The Mean of cos O, where O is a Gaussian random variable.

Suppose <E> is a zero-mean Gaussian random variable with variance G2. First,calcu
late

oo

e[<?7*] =jeJ*p <M) d$ (B-l)

="t--L-e-V-'**"*** (B-2)

=]-J—e-«-i</*a*e«l*fa*d* (B-3)
-oo*2kg^
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This is an integral of a Gaussian probability density function (pdf) along a line at j o2
parallel to the real axis in the complex plane. Since the Gaussian pdf has no poles in the
region bounded by the real axis and a line parallel to it at jG2, its integral on the contour
bounding this region is zero. Therefore the integral at j g2 in one direction is the nega
tive of the integral on the real axis in the other:

=jije-**^ (b-6)
This is just the total integral of the Gaussian pdf, which is one. Thus

E[e^] =e-^. (B-7)
And since - O is also a zero-mean Gaussian random variable withvariance o2, we must
also have

Therefore,

and

n • e~*a. (B-8)

E[cosO] =yE \e 7*1 +-jE \e 7*1 (B-9)
= e"°2/2, (B-10)

E[sinO] =±E [e'*] - yrE [e ~7*] (B-l 1)
= 0. (B-12)

Appendix C. Derivation of variance of p.
From equation (113),

T

P4 Yi]¥f)-¥f-T)]dt (C-l)
O J

and

t

<KO= jku)du, (C-2)
o

where <j>(u) is a zero-mean white Gaussian process with density Si(f) = 4kAv. First,
define the phase difference
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<M')= <Kf)-<t>(f-r)
t t-T

= jty(u)du - j §(u)du
o o

t

- J §(u)du.
t-T

Thus tyr(t) is a zero-mean Gaussian random process with autocorrelation function

R^x) =E|to.(0<Mf+T)]

= E

t (t+T)

j j $(u)$(v)dudv
(t-T)(t+x-T)

t (r+x)

= 47tAv J J d(u -y)dudv
(t-T)(t+x-T)

= 4rcAvr tria(x, T) = <

Now equation (C-l) becomes

4tcAv(T-IxI) for Ixl <T

0 /<?rlxl>r

(C-3)

(C-4)

(C-5)

(C-6)

(C-7)

(C-8)

(C-9)

and its variance is

var[p] = E[p2]

P= ±falu)du

= E -Z2Hih(u)far(v)dudv
T o

<T»2

(C-10)

(C-ll)

(C-12)

(C-13)

47tAv
rp2

T

//[r-ltt-vlldudv

4rcAv

T2 i

4rcAv

T2

\w+u-v\du+\\r -u+v\du rfv

rv +-^v2-v2 +T2-Tv - —T2+—v2 +Tv -v2
2 2 2

(C-14)

(C-15)

dv (C-16)



47cAv r

T2 I

4kAv

Tv-v2+±-T2
2

dv

*

1-T3 _ _Lp3 +_1
2 3 2

T3

4-rcAv/tf.
3
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(C-17)

(C-18)

(C-19)

Appendix D. Derivation of Conditional Means and Variances of Y.

From equation (120),

xc(t) = akIcos<b(t) + nc(t) (D-l)

xs(t) = akIsm<b(t) + ns(t) (D-2)

where <|>(0 is a Wiener process, nc(r) and ns(t) are independent zero-mean Gaussian ran
dom processes with an ideal low-pass spectral density

S^V) = Snt(f) = iVorect (f,WI2). (D-3)

Note that for ASK, ake {1,0}. The derivation of the mean and variance of Y, defined
by

Y = x2(t)+x2(t)

requires careful bookkeeping. Proceeding,

Y= \akIcos<b(t) +nc(t)j +[a*/sinc|>(0+ *,(*)]
= ak212cos2<|>(r) +2akInc (t )cos$(t) +n2(t)

+ak2lhm2$(t) +2akIns(t)sm$(t) +n2(t) (D-6)

=akI2+2akI \nc(t)cos$(t)+ns(t)sm$(t) j+n2(t) +n2(t) (D-7)
But nc(t), ns(t), and <(>(f) are all pairwise independent Andsince nc(t) and ns(t) have
zero mean, the expectation of the bracketed term is zero. Furthermore,

E[/ic2(r)] = E[*/(r)] = NQW.
Thus

(D-4)

(D-5)

(D-8)

E[7] = akI2 + 2N0W. (D-9)

Substituting ak = 1 and 0 results in the conditional means of equation (122). To com
pute the variance of Y, first compute its mean-square:
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E[72]=e[[flik/2+2ajfc/[nc(r)cos<t)(0+̂(r)sin(|)(r)]j2
+2\n2(t)+n2(t)jU/2+2^7Lc(r)cos<|>(0+ns(t)sw$(t)

+nc4(t)+2n2(t)ns2(t)+ns4(t)](D-10)

=E[aik/4+4flJk/3|«c(r)cos<()(r)+/i,(r)sin<(>(r)J

+4akI2L?(r)cos2<|>(0+2nc(t)ns(t)cos^(t)sm^(t)+n2(t)sm2^(t)j

+2akI2n2(t)+4akI(kc3(Ocos<|>(0+«c2(f)ns(t)sm<b(t)j
+4akI\nc(t)n2(t)+«/(r)sin<t>(r)]+nc\t)+2n2(t)n2(t)+ns\t)](D-11)

Sincenc(t)andns(t)arezero-meanGaussians,

E[*e(r)]=E[k/(0]=E[/z,(r)]=E[ns3(0]=0.(D-12)
Therefore,

E[F2]=V4+̂/2EL/(r)cos2(|)(0+/i/(Osin2<t)(f)l
+2afc/2E[kc2(0+»/(t)J+E[*c4(r)+»/(r')]+2E\n2(t)n2(t)](D-13)

Butnc(t),ns(t),and<|>(0areallpairwiseindependent,and[3]

E[*c4(r)]=E[n*(t)]=3N§W2.(D-14)
Thus

E[72]=akI4+4akI2N0WEUm2<b(t)+cos2<b(t)]
+2akI2(2N0W)+6N§W2+W^W2(D-15)

=V4+ak%I2NQW+Mfiw2.(D-16)

Therefore,thevarianceofYis

var[7]=E[72]-E[7]2(D-17)

=[a*/4+afc8/2iVoW+8iV^2]-L/4+4atl2N0W+4N02W2)
=^4/^0^+4N(2W2.(D-18)

Substituting1and0forakresultsintheconditionalvariancesofYgiveninequation
(122).
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