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ABSTRACT The design of stabilizing compensators for linear, time invariant feedback systems, by
means of semi-infinite optimization algorithms, requires a stability test in the form of a finite or infinite
set of differentiable inequalities. In a recent paper, Polak and Wuu have presented a set of easily solv
able, differentiable inequalities, which are related to the classical Nyquist stability criterion, and which
constitute a necessary and sufficient condition of stability for finite dimensional systems. In this paper it
is shown that a similar set of easily solvable inequalities can be used to design finite dimensional stabil
izing compensators for a class of infinite dimensional feedback systems. Computational aspects of the
new stability test are discussed.

1. INTRODUCTION

Exponential stability is the most fundamental requirement in control system design and hence,

over the years, a considerable amount of effort has been expended in developing efficient techniques for

the design of stabilizing controllers. At present, the advent of computer-aided design is necessitating

the development of new approaches. Thus, although the Nyquist stability criterion [Nyq.l] has served

for many years as a principal "manual" tool in the design of stabilizing compensators for linear time-

invariant systems, it cannot be used in conjunction with computer-aided design techniques which make

use of semi-infinite optimization [Pol.l]. This is due to the fact that the Nyquist criterion defines an

integer valued encirclement function, while semi-infinite optimization requires, at a minimum, that con

straint and cost functions be locally Lipschitz continuous. Similarly, because eigenvalues are not

differentiable at points of multiplicity and because they can be extremely sensitive to design parameter

changes elsewhere, the use of inequalities involving closed loop system eigenvalues is also not a good

The research reported herein was sponsored in part by the National Science Foundation under grant ECS-8121149, the
Air Force Office of Scientific Research grant AFOSR-83-0361, the Office of Naval Research under grant N00014-83-K-0602, the
State of CaliforniaMICRO Program, and the GeneralElectricCo.



idea.

The first attempt to produce a frequency domain stability test which is compatible with the

requirements of semi-infinite optimization, was presented in [Pol.l], in the form of a differentiable

semi-infinite, frequency-domain inequality which constitutes a sufficient condition of stability for finite-

dimensional, linear, time-invariant systems. A significant improvement was presented in [Pol.2] where

an alternate differentiable semi-infinite inequality was proposed which constitutes a necessary and

sufficient condition of stability for finite dimensional, linear time invariant systems.

The design technique proposed in [Pol.2] is based on the following observation. Suppose that %(s)

o

is a characteristic polynomial. Then all the zeros of %(s) are in €_ if and only if there exists a polyno-

mial d(s), of the same degree as %(s) and whose zeros are in CL, such that

Re ftO'co) / d(j<o)] > 0, V cos (-00 , 00). (1.1)

o

The proof of this result is simple. If all the zeros of %(s) are in CL, then set d(s) = %(s) and hence (1.1)

holds. Alternatively, if (1.1) holds then the origin is not encircled by the locus of %(/a>) / d(j(&) and

hence the conclusion holds as for the Nyquist stability criterion. When used in design, the characteristic

polynomial is also a differentiable function of compensator designable parameters xeR", and has the

form x(.x'sY* and the normalizing polynomial d(s) is written in a factored form, such as

o

d(s,q) aa npf (s2 + ajs + bj), which makes it simple to ensure that the zeros of d(s) are in C_ (q is a

vector whose components are the ar bj).

In this paper we extend the computational stability criterion presented in [Pol.2], to a form that

can be used in the design of finite dimensional controllers for a class of feedback systems with infinite

dimensional plants, to be described in Sec. 2. Since in this case the characteristic function is not a poly

nomial, there is no simple way to define a normalizing polynomial (of finite degree) for a test of the

form (1.1). Hence approximation theory has to be brought into play as well as some aspects of semi

group theory as it applies to partial differential equations.

In Section 2, we will describe a class of feedback systems with infinite dimensional plants and

define their exponential stability in terms of the properties of a semigroup function. Then we will



establish the relation between exponential stability of the closed-loop system and its spectrum. We will

define the characteristic function of the closed-loop system in Sec. 3, which will be seen to be of the

same form as for the finite dimensional case. Finally, a necessary and sufficient computational stability

criterion will be presented, in the form of a tractable semi-infinite inequality, which can be used in the

design of stabilizing controllers for flexible structures.

2. PRELIMINARY RESULTS

Consider the feedback system S(P,/Q, with m inputs and n0 outputs in Fig. 1. We assume that the

plant is described by

xp=ApXp + Bpe2

yz = Cpxp + Dpe2,

where xpeE, is a Hilbert space, e&'R*'* ^elR"". The operators Bp.'TR**-* E , Cp:E->1RHo and

Dp:TR*{ -> JRn° are assumed to be bounded, while Ap may be an unbounded operator from E to Et with

its domain dense in E.

Let a > 0 be a given positive constant We define a stability region in the complex plane by

C/_a ^ [se € IRefr) < -a}. Let t£« = {se C IRe(s) £ -a), dU-a = {se C IRe(j) = -a) and

C/fg = [se C IRe(s) > -a). Let a(Ap) be the spectrum of Ap and let p(Ap) be the resolvent set of Ap

which is the complement set of a(Ap) in €. We will denote the domain and the range of Ap by D(Ap)

and R(Ap), respectively. The notation used in this paper is that found in [Bal.l] and [Kat.l].

Assumption 1: (i) Ap is a closed operator which generates an analytic semigroup, (ii) The spec

trum of Ap is a subset of {/_<, andsup(Re(a(A/,))) < -a. •

The transfer function of the plant isgiven by Gp(s) = Cp(s - Ap)~lBp + Dp. We assume that

lim Gp(s)->DP.
w -• - p p (2.2)

The convergence in (2.2) is understood to be componentwise.

The compensator is assumed to be finite dimensional, as follows:



xe = AcXe + B^i

yi = CcXe + D& ,
(23)

where xce IR c, ^e IR"0, v}€ R"1' and Ac> Bct Cc and De are matrices of appropriate dimension. The com

pensator transfer function is Ge(s) = Ce(s - A^flBe + Dc. To ensure well-posedness, we assume that

dQt(IH+Dpp)^0.

We define a Hilbert space H - ExR*' with inner product

xp zp
xc zc

\. J v J

(2.4)

Since e{ = ux -y2- d0- ds and e2 = y\ + u2, we obtain the following state equations for the closed

loop system

• " » « "l

xp
= A

xp

Xe
to «

+ B
«2

» «

f ^

• *

"l

= C XP
Xe

+ D
«2

z2 V. J

I "J

where

A =

B =

C =

D =

VB^a+^/g-1^ Bfi*DJ>J*Cc

BPcil+DpOcT1 Bpil+DJlpT1 -Bpc{l+DpcTl -BpDcil+DpDcT*
^Be(l+Dperl -B^l+Dfi^Dp -Bc(l+DpeTl -Bc{\+DpcTl

' -il+DpD^Cp -(l+DpD^DpCc
-D^UDficT'C, {UDJ)J*CC

Q*DftJ*C, Dp(l+DppTlCe

(l+Dj^cT1 -il+DpDcT'Dp -(1+DpDcT1 -il+DpDcT1
DJLl+DfiJ* (l+D^pT1 -Dc{\+DpeTl -De(l+DpcTl

ppc(i+Dpcrl dp{\+dj>py1 (i+z>A)_1 -Dpc{i+Dperx)

The domain D(A) = D(/L)xRBe c #; the operators B, C and D are easily seen to be bounded.

(2.5a)

(2.5b)

(2.6a)

(2.6b)

(2.6c)

(2.6d)



Because the operator Ap generates ananalytic semigroup, sodoes the operator A:

Proposition 1: The operator A generates an analytic semigroup, T(-).

Proof: We can decompose the matrix A in Eq. (2.6a) as follows:

A=F+Q

where, for XceIR arbitrary

F =

Ap 0

0 Xjne . fi =

-Bpc{In0 +Dp^Cp Bp(IHi +DppTlCc
-B^ +Dp^Cp Ac-BMn. +Dp^DpCc-Wn,

It is easy to see that F generates an analytic semigroup

7X0 =
2X0 0

0 i**Im

(2.7a)

(2.7b)

(2.7c)

Note that Q is a bounded operator. By applying the perturbation theorem [Paz.l, p.80], we conclude

that A generates an analytic semigroup. •

From Proposition 1 and [Tri.l], we obtain

Proposition 2: The operator A satisfies the spectrum determined growth assumption, i.e.,

sup(tfe(a(A))) = lim^ffl
f-»oo t

From Proposition 2, we obtain the following result [Tri.l]:

Proposition 3: Given any P > sup(Re(a(A))) , there exists an M > 0 such that

H7X0l!tf<Af-ep', v r^O. •

Let x = [xL jd]r. Then the formula"7>~c

x(t) = 2X0*<> + J2'(r - x)Bu(t)rfi

(2.8)

(2.9)

(2.10)

defines a mild, strong or classical solution of Eq. (2.$a), depending on the initial state xq and input u(t)

[Paz.l]. Therefore we can define the exponential stability of the feedback system S(P,K) in terms of

the semigroup 2X0.



Definition 1: The feedback system S(P , K) is a-stable if and only if there exists M > 0 such that

\\T(i)\\H<M-e-<u. V t>0. m (2.11)

Propositions 2 and 3 yield the following result

Proposition 4: The system S(P, K) is a-stable if and only if

sup(Re(o~(A))) <-a. • (2.12)

Remark 2.1: It follows from Proposition 4 and Assumption 1, that the plant is a-stable. •

3. A COMPUTATIONAL STABLITY CRITERION

We define the characteristic function %: C -» C, of the closed-loop system S(P,K), by

%(s) £ det(tfnc - Ac)det(/„, +Gc(s)Gp(s)), (3.1)

and, for any function/: C -> C, we define Z(fl») ^ {se C l/fr) = 0}.

Theorem 1: The system S(P,K) is a-stable if and only if Z(x(j))cC/_a.

Proof: We have to use the Weinstein-Aronszajn (W-A) formula in this proof. The W-A formula and

the all related definitions and notations which we use can be found in Appendix 1 or [Katl].

We begin by decomposing the matrix A as in (2.7a), (2.7b) with Re(A,c)<-a. Therefore

(F-si) is invertible for seUZ& and Q is an F-degenerate operator because it is bounded. Consider

seC/faCp(Ap). Since (F- sl)~l exists and is bounded, we can define V(s) as follows

V(s) = Q(F - sly1

-Bpc(In0 +Dpe)-lCp(Ap - sl)~l B,(/B/ +DP^CJLK - sTl
-bc(/Bo+Dpcricp(Ap - sir1 (ac-bc(/„o+DperiDpcc - v«;^c - *r!

(3.2)

Let B0 ^ R(Bp)xRne and let VBo(s) denote the restriction of V(s) to B0. Then

det(2 + V(s)) 4 det(/i,0 +VBJ is well defined (see Appendix 1). We will show that det(//?0 + VB<) =%(s)

and then apply the W-A formula.

Let bj kBpCj, j = 1,2,.,.,/ii, where {ejflLx is the standard unit basis in IR"''. Suppose that n£ «,- is

the largest positive interger such that, without loss of generality, {ty}j=i is a linearly independent subset



in the Hilbert space H. Now we take {fy}jLi as abasis for R(BP). Under this basis, the linear operator

Bp assumes the form Bp =(/^\Bp)e RBXn'" where the i-th column of Bp is obtained by expressing

bjv in terms of the basis {fy}jLi. Let B £ (&i,&2,...,&„). Then it is easy to show that

VBo(s) =

\-li-Bpc(Jn<> +Dpe)-lCp(Ap - sITlB BpQ*. +DpprlCe(Xrsrx
-Bc(/B +Dp^CpiAp - sirlB (Ae - Bc(/B +DpcrlDpCe - \Jn)<X: - *)

~lM Bp(Ini +DcDprlCe(kc-sr1
-Bc(/B +DpD^Af (Ac - Bc(/„o +DpcrlDpCe - V^)Oe - *)_1

-b^/. +DperiM Bp(in +Dj>prxce(ke-s)

\-i
(3.3a)

(3.3b)

where M4[r1,r2,....r^e Rn<,xif with r,- 4CpiAp-sI)'1^, 1£ i:£ K It is clear that

Gp(s) o -(Cp(Ap - sTT^p) + Dp = -M-Bp + Dp. Because each element in (3.3b) is in matrix form, it is

easy to show that

deK/*0 + VBq(s)) = de«tfBc - A^det^ +Ge(s)Gp(s))

= X(*) •
(3.4)

Now we make use of the W-A formula. Let A = t/^a+e), where 8 > 0 and, by Assumption 1,

can be chosen small enough to ensure that Ui(a+E) still belongs to the resolvent set of Ap. Let F be

defined as in (2.7). From the W-A formula, we have that

{seUiia +e)\ sec(A)} = [se JJi^ +e) IseZ(x(s))) . (3.5)

If the system S(P,K) is exponentially stable, sup(Re(a(A))) < a, by Proposition 3, i.e.,

a(A) c U-a. Therefore, from (3.5), with e = 0, [seUia I seZ(x(s))) is an empty set i.e., ZOc^cCLo.

On the other hand, if Z(x(s))c:U-a, then sup(Re(o(A))) £ -a by (3.5) with 6 = 0. Suppose

sup(te(c(A))) = -a. Then, from (3.5), there exists a sequence [Sifei such that s,-e ££«, +e), V /eN,

Re(^ -> -a, and %(sj) - 0. Since det(j/B - Ae) is a polynomial of finite order and

hm„s c det(/ + Ge(s)Gp(s)) = det(/ + AA>) * 0, U)£o is a bounded set Hence there exists a subse-

quence [snk) such that sBjl -» s0 and rtefro) =-a. We will prove that %(s) is analytic on £/!&+£> in

Appendix n. Consequently %(s) is continuous at so. Therefore, xteo) = 0, i.e. saeZ(x(s)). This contrad

icts Z0c(^))cC/_a. Hence sup (Re(a(A))) <-a and the system is a-stable. This completes the proof. •



Theorem 2: Z(x(s))cU-a <=> there exists Nn > 0 and polynomials drfs) and no(s) with degrees of

N* = Nn+ne and Nnt respectively, such that

(0 Z(do(s))czU^ , Z{n^s))<dU^ ; (3.6a)

X(.s)no(s)
00 Re

Ms)
>0 V sedU^. (3.6b)

Proof: (<=) This is clear from the Nyquist Criterion.

(=>) Since %(s) is analytic on t/^0+e), by a straightforward generalization of an approximation result

in [Sal.l, p.30], we can find a rational function dQ(s)tno(s) with all zeros of n0(^)cC/_ot for any 5 > 0

such that

Ms) - do(s)/no(s)\\ £ sup fc(s) - do(j)/«o(j)l <8 . (3.7)
*edt/_0

Because the degree of det(j/„c - A^ is nc, limw_JxC0/sBc1 = loW +DJDp)\. We conclude that the

degree of do(s) must exceed the degree of nrfs) by ne. Also inf^gy lx(s)l = c0 > 0 must hold. Suppose

that it does not Then inf^gyjx^)! = 0. Since ty(s)\ -> °°as \s\ -> °° , there exists a bounded sequence

[Si) such that 5,-e C£(a +e)» Re(sd -> -a and x($) -» 0. Since {^} is bounded, there exists a subsequence

[sik] and an * such that sik -> *. From the continuity of %(s) on U% +e)t it follows that %(s) =0.

This contradicts the assumption that 2Xx(s))cELo. Therefore l/x(s) is analytic on l/fg and continuous

on dU-a and \\V%(s)\\ = l/c0. So lx(*)l ^ c0 > 0, for all se Ul^. Hence Z(Ms))<=U^ if 8 is chosen less

than c0. Otherwise, say, there exists s^e Uia such that dofco) = 0- Since IxteoMoteoVfloCsb)! < 8, we

have that Ixfao)' < 5 < c0. This results in a contradiction.

Since

\X(s) - do(s)/no(s)\ <8 , V sedU^ , (3.8)

we obtain that for all se dU-a

[fc<0 - doWnois^doWnoW ]<8l«0(*)/4)(s)l
< S\\no(s)Ws)\\



<1 if8<l/||n0(*)/4)(*)ll. (3.9)

It follows from the above that for all sedU-a

Ws)no(s)/do(s)-l\<l , (3.10)

which implies that

Re[ xtfnMldM ] > 0 , V sedU^a . C3-11)

which completes our proof. •

Remark: Theorem 1 and 2 can also be applied to the case where the plant has a finite number of

unstable poles (counting multiplicities) located in Uta. To prove this, we only have to replace the

definition of the characteristic function %(s) in (3.1) by the following expression:

X(s) =(fl(* - *))detfc/Be - Ac)deu7Bj. +Gc(s)Gp(s)) , (3.12)
»=i

where ta}"i is the set of poles of the plant located in Ui^.

4. NUMERICAL IMPLEMENTATION OF THE STABILITY CRITERION

When used to design stabilizing controllers for the system S(P,K), the test (3.6a) and (3.6b)

becomes only a sufficient condition of stability, because one is forced to choose in advance the degree

Nd of the polynomial do(s). We shall now sketch out the numerical aspects of using the inequalities

(3.6a), (3.6b) in the design of a stabilizing controller for the system S(P,K). We assume that the order

nc of the controller (2.3) has been selected and that the elements of the matrices in (2.3) are continu

ously differentiable in the design parameter vectorpc.

First we will describe a computationally efficient parametrization for do(s) and n0(j) which is

based on the following observation. When j.teR, Z[(s+ol) + a)]cU.a if and only if a > 0, and

Z[(s+a)2 + a(s+a) + b]czU-a if and only if a > 0, b > 0. Hence, assuming that the degree of

do(s) is odd, we set

doisjd) £ ((s+a) +adJJ((s + a)2 +at{s +a) +bd, (4.1)



where qdk [ao,ai,a2, •• • ,bi,b2t • • • .^J^IR2"*1 and Nd =2m+l. The polynomial n^s), which is of

degree Nn = Nd- necan be parametrized similarly, with corresponding parameter vector qR.

It follows from Theorem 2 that a stabilizing controller can be obtained by solving the following

set of inequalities:

<£-e;>0, for/= 1,2, • • • .Afc , (4.2a)

«i-e*0, for/=l,2, ••-.*., (4.2b)

x> rXi-ct+ jto,Pc)no(- a+./co.gJN
Re( tt-a+Jto.^ )-"°' v°e[°'~>' <4-*>

where </ is the ith element of q.

When a minimax type algorithm, such as can be found in [Pol.3], is used to solve the system

(4.2a) - (42c), subject to a box constraint on pc, it must evaluate the characteristic function %(s,pc) and

its partial derivatives with respect to pe for s = a + j(0 for many values of co. Hence one must try to

perform these operations as efficiently as possible.

To evaluate xfoPc). we have to calculate det(s/Be - A^) and deuy^ +Gc(s,pc)Gp(s)). The sim

plest situation occurs when the matrix Ae(pc) is diagonalizable, i.e., there exists a matrix of eigenvectors

V(pc) such that

A(pc) = VtoJ+AJpWpJ , (4-3)

where A(pc) is a diagonal matrix whose diagonal elements are the eigenvalues Xfpc) of the matrix

Ac(pc). In thiscase, considerable computational savings result from the useof the formula

det[tfB - Ac(pe)\ =detfr/. - A(pe)] o Y[[s - \Jpe)]t (4.4a)
M

and of the formula

Ge(s,pc) = Cc(pc)(slne - Ae(pc))-lBc(pc) +De(pe) (4.4b)

When diagonalization cannot be used, one can simplify the computation of the required deter

minants by first reducing Ac(pc) to upper Hessenberg form Hc(pe) by means of an orthongonal similarity

transformation:

10



HdPc) = IHpcfAMUipc) , (4.5)

where U(pc) is a Hermitian matrix. This leads to the formula

det[tf„e - Aeip>i\ =det[tf„c - Hip^ (4.6a)

and

Ge(s,Pe) =CMUipJisI^ - Hip^UipcfBM +DM . (4.6b)

Next we need to deal with the evaluation of the plant transfer function Gp(-a +j(o) for many

values of co. The infinite dimensional form (2.1) can be used to evaluate this transfer function if one is

willing to resort to mode truncation. A better way is to go back to the physical plant whose original

describing partial differential equations were transcribed into the form (2.1). For this we must consider

an example.

Consider the planar bending motion of a flexible beam with one end fixed and another end

attached a particle with mass M, as shown in Fig. 2. Note that the x-axis in Figure 2 is the beam unde-

formed centroidal line and the y-axis is the cross section principal axis. The associated control system

is required to damp out vibrations as well as to position the tip of the beam. Without loss of generality,

we assume that the beam is of unit length. Then its bending motion can be described by a partial

differential equation of the form,

"^+"^+Hifc^ -|/»MteA t*0.0Sx*l. (4.7a)
with boundary conditions

„«,.<» =o. 2xftj2L =o. (4.7b)

a/2 dx*dt dx3
(4.7d)

where w(t,x) is the vibration along the y-axis,/(r) is a control force, $(xd) is the influence function of

they-th actuator, which is determined by the location, ^, and the physical characteristics of the actua

tor. The constants in (4.7a) - (4.7d) are as follows: m is the distributed mass per unit length of the

11



beam, c is the material viscous damping coefficient, A is the beam cross sectional area, E is Young's

modulus, EA is the beam extensional stiffness, M is the end mass, / is the beam sectional moment of

inertia with respect to y-axis, EI is the beam flexural stiffness in the direction of y-axis, / is the inertia

of the end mass in the direction of y-axis.

The output sensors can be assumed to be modeled by

1

yti) = k<v,zXr.v)dv , f 2> 0 , 1£ i £ n0t (4.8)

where n0 is the number of the sensors, and k,{v,Zj) is the distribution function of the i-th sensor andz,- is

the location of the t'-th sensor.

Taking the Laplace transforms of the equations (4.7a) - (4.7d) and (4.8) with respect to time, we

obtain, for each value of s = -a +jco, the ordinary differential equation

(els +EI)^W(^ +mstWisjc) =y F>(s)t!(x,A 0£x<S 1, (4.9a)
dxq jbi

with boundary conditions

W(s,0) = 0, ^Z&QL =0. (4.9b)
ax

W+B>£^+j*SB&m0. (4.9c)

(cIs +EI)^W(<S'l) -M^Wis.l) =0, (4.9d)
dxr

and

i

Yi(s) =JKl{v,zdW(s,v)dy/ , 1<: iz n0, (4.10)

where W{s,x), F'(s) and Yfc) are the Laplace transforms of w(t,x),f(.t) and #(*), respectively. It follows

that the (ij)-\h element of Gp(s) can be obtained by setting F'(s) =1and Fk(s) =0 for all other k and

then solving (4.9a) - (4.9d) and (4.10).

Next, we turn to the computation of the partial derivatives of x(s,Pc)- This requires thecalculation

of the partial derivatives of det[s - Ac(pc)] and det[/B| +Gc(pe)Gp(s)]. When the eigenvalues \fp£ of

12



AeiPc) are distinct, they are differentiable [Kat.1] and their partial derivatives are given by

dk/Pc) . dAe(pe)

where vj and Uj are the right and left eigenvectors, respectively, of Acfo), corresponding to the eigen

value Xjipe). In this case, the partial derivatives of det[s/„c - Ac(pc)] can be computed making use of

the following formula [Pol.2]:

dtetisIn-Acipc)] *c dX.<Pc)X i, dh(pe) l

When the eigenvalues of Ac(pc) are not distinct, the computation of its partial derivative requires a more

general formula which can be found in [Pol.2].

The computation of the partial derivatives of det[/B/ +Ge(s,Pc)Gp(s)] can also be carried out by

making use of aformula analogous to (4.12), provided that the matrix [/„. +Ge(s,pe)Gp(s)\ has distinct

eigenvalues.

When the eigenvalues of (/B/ + Gc(s,pJGp(s)) are not distinct, the computation of its partial

derivative becomes considerably more difficult Fortunately, this is not very likely to be the case in

practice.

Remark: It is important to observe that the evaluation of the plant frequency response can be carried

out without resorting to modal truncation. Thus, in the range of critical frequencies, the plant frequency

response can be computed with very high precision, simply by integrating the differential equation

(4.9a) - (4.9d), without incurring the serious problems that are associated with "spill-over" when modal

truncation is used. •

5. CONCLUSION

We have presented a necessary and sufficient computational stability criterion and have shown

how it can be used in the design of stabilizing controllers for infinite dimensional feedback systems. A

major advantage of our approach is that it avoids common "spill-over" effects which result from modal

truncation of partial differential equation models. We expect that our approach will be useful in the
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design of finite dimensional controllers for flexible structures.

APPENDIX I: THE WEINSTEIN-ARONSZAJN FORMULA

The following material was extracted from [KaU]. Let Q and F be operators in the Banach

space X. We say F is a closed operator in X if for any sequence {«,-} c D(F) such that m,- -» u and

Fui -> v, u belongs to D(F) and Fu = v. The operator Q is F-bounded if D(F) c D(Q) and

112*11 £ a\\u\\ + b\\Fu\\, V ueD(F) , (A.1.1)

where a,6 are nonnegative constants. The operator Q is a degenerate operator if /?(0 is finite-

dimensional; Q is F-degenerate if fi is F-bounded and R(Q) is finite-dimensional.

Suppose that Q is F-degenerate. Then Q(F - sl)~l is a degenerate operator if se p(F). Let

R £ R(Q). For any sep(F), the W-A (Weinstein-Aronszajn) determinant

y(s;F,Q) = det(l + Q(F - si)'1) is defined by [KaLl, p.161]

y(^;F,0 = det(/* + 02(F- iO-l)W (A.i-2)

where /j? is the identity operator in /? and (Q{F - sI)~l)\R is the restriction of Q(F - .y/)"1 toR.

Let <{> be a numerical meromorphic function defined on a domain A of the complex plane. By

meromorphic function, we mean a single-valued function having no singularities other than (at most)

poles in the domain in which the function is defined [Kno.l]. We define the multiplicity function v(s;$)

of <j> by

s is a zero of $ of order k,
v(s;<|>) = \-k if s is a pole of <t> of order k, (A.1.3)

for other seA

(k if 5
r;4>)H-* if

I 0 fo

Thus v(s;<jO takes the values 0,±l,±2,...or +<». We define the multiplicity function v (s;F) for a closed

operator F by

f 0 ifsep(F),
(s;F) - -jdim(P) ifs is an isolated point of o(F),

I + oo in all other cases ,
(A.1.4)

where P is the projection associated with an isolated point of a(F) [Kat.1, p.180]. If the isolated point

s is an eigenvalue of F, then dim(F) is finite and equal to the multiplicity of the eigenvalue. Thus
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v(s;F) is defined for all complex numbers s and takes on the values 0,1,2, •• • or +00.

Theorem A.1 (The W-A Formula): Let F be a closed operator in the Banach space X, let Q be a F-

degenerate operator in X and let y(s) = y(s;F,Q) be the associated W-A determinant If A is a domain

of the complex plane consisting of points of p(F) and of isolated eigenvalues of F with finite multiplici

ties, then y(s) is meromorphic in A and, for A = F + Q,

v(s;A) = v(s;F) + v(s;y), se A. • (A. 1.5)

APPENDIX H: ANALYTICITY OF THE CHARACTERISTIC FUNCTION

Theorem A.2: The characteristic function x(s) = detfaf - Ae)det(l + Ge(s)Gp(s)) is an analytic func

tion on cTlf^+e).

Proof: (i) First, we will prove that each component of Gp(s) =Cp(s - AprlBp +Dp is an analytic

function over U^a +e). We denote the (i, j)-th component of Gp(s) by Gt/s), Then

Gi/s) = CpjXs - AprlBp,j + DQ , (A.2.1)

where CPii. is the i-th row of Cp , BPt.j is the j-th column of Bp andDq is the ( ij)-th component of Dp.

We will prove that Gi/s) is differentiable by showing that

Gi.{s+As) - GUs) 0lim _2£ ^ >JLL =_C (5 - AP)-2B , (A.2.2)
&s-tO AS p? p,'j

which follows from:

lim I(C»* *A* -V^rt +D*S> ~g^fr- *?%,,+fiy) + _ ,
A*-»0 A5 r+ e r"

(s + As-Aprl-(s-Aprl
H +V"V

'^ ^f« A \-2= limlc,
PS

&s-*0
+ (s-Apy **fi

(s + As-A^-is-AX1 0£ Km IKVD D- ^-^ — +(f - Apr2|| ||Bp .,[|

(s+ As-Aprl-(s-Aprl
££q"~P" " ^5 v° nPJ " ""Z"1

-2ii* Km IICJI l|- ^TT-^ «=- + (J _ A r1| p.,

(s +As-Apr^s-A^-is +As-AAs-Ap)-1
= lini ||Cp|| || 1 J +(s - Ap)"2!! ||Bp||
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lim \\Cp\\ || - (s + As - Ap)-l(s - Af1 + (s- ApT2\\ ||Bp||

=jim||Cp|| IK* +As -Ap)'1 [-(* -Ap) +(s +As -A,)](* -A,)"^ - A,)"4!! ||Bp||

tim IA5l ||Cp|| 11(5 + As - ApT^s - Apr\s - A,)"1!! \\Bp\\

= 0. (A-2-3)

Therefore Gi/s) is an analytic function on C/f&c+e)*

(ii) Let (Dc,Ne) be the left coprime factorization pair for Ge(s)f i.e., Ge(s) = D^isWds), with

Dc(j) and Nc(.y) are analytic in U%,+e). Consider

X(s) = det(j/Bc - Ac)det(/ + Gc(s)Gp(s))

=det(^/Be - AJdetf/ +D:\s)Ne(s)Gp(s))

=det(^/Bc - A,)det(Dc +A^Gp^dW^))

det(tfB -A^

= detPcfr) "P. +HMGJM. (A.2.4)

We can choose De(s) =/„, - Cc(slne ~Ae +FCc)~lF and Wc(s) =Cc(sIKe -Ae +FCeTl(Be - FCe) +Det

where F is such that (sIH -Ae + FCC) has poles over U-a ( We assume the compensator is detectable

and stabilizable). Then

Dc(s) =In.-Ce(!ne + (slnc - A^FQ"V„e - AJ*F

=/B/ - (/„. +Cc(j/Be - AcrlF2TlCc(sIne ~A^FC

=(/„, +Cc(tf - A,)"^)"1 , (A.2.5)

and

det(j/B -Ac)
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= det(s/Be - Ac)det(/B, +Ce(slne - AeTlFJtet(Pc(s) +Ne(s)Gp(s))

= delft/. - Ac)det(/. + (si. - AeTlFcC^^Dc(s) + Ne(s)Gp(s))

= det(s/Be - Ae + FeCe)te\(Pc(s) + Nc(s)Gp(s)). (A.2.6)

Since det(sln - Ae + FeC£ is a polynomial and since each component of De(s) + Nc(s)Gp(s) is analytic

over IF?(p.+e>» it follows that xfc) is analytic over U%+e). •
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Figure 1: The feedback system S(PJC).
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Figure 2: Planar bending motion of a flexible beam.
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