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1

Collector and Source Sheaths of

a Finite Ion Temperature Plasma

The region between a MaxweUian plasma source and an absorbing surface is modeled

with an electrostatic particle simulation and with a kinetic plasma-sheath model. In

the kinetic model, Poisson's equation and Vlasov equations govern the velocity

distribution of the ions and electrons. Our numerical and theoretical results for

collector potential and plasma transport agree with the bounded model of Em-

mert et al. but differ somewhat from those using traditional Bohm sheath analysis.

The plasma source injects equal fluxes of half-Maxwellian ions and electrons with

specified mass and temperature ratios and is assumed to have a zero electric £eld.

Representing the potential change within a distributed full-MaxweUian source re

gion, the source potential drop depends primarily on temperature ratio and evolves

a few Debye lengths from the source to neutralize the injected plasma. The plasma

Bows to an electrically Eoating collector where the more familiar electron-repelling

collector sheath appears. Profiles of potential, density, drift velocity, temperature,

kinetic energy flux, and heat flux are shown from simulation; all compare very well

with theory.



I. INTRODUCTION

A. Problem description

The sheath region between a plasma and a collector is rich in kinetic behavior,

having non-Maxwellian velocity distributions of the ions and electrons resulting from

large potentials. Time-dependent computer simulations using particles are a prime

tool for examining these non-neutral plasma regions and following the dynamics of

the plasma-sheath-surface interaction. These simulations provide insight for verify

ing and improving the kinetic model for the steady state conditions. Consequently

we develop both kinetic theory and simulation to analyze the plasma-sheath region

and find excellent agreement.

Our numerical and theoretical description is intended to model a bounded

plasma with a source generated spatially (not at an emissive surface). The sheath

formed near the boundary is collisionless. The plasma flow is normal to the surface

and is governed primarily by the self-consistent, internal electrostatic field. This

field affects the transport of ions and electrons and their intrinsic energies from

the plasma source to the collector. Consequently, the heat load on the collector

surface and surface phenomena such secondary electron emission, ion reflection,

and sputtering are also dependent on the self-consistent potential This study is

undertaken to describe the strength of the potential which evolves near exposed

surfaces of a thermonuclear fusion plasma and within the plasma source itself. In

particular, this model may apply to the collisionless plasma flowing to a first wall

limiter or diverted to a collector surface. Our analysis applies generally to the end

walls or exposed surfaces of any plasma device which fits the above description.

The electrostatic potential <j>. varies gradually over the entire regionwhere Max-

wellian ions and electrons are generated at the same rate. This slow variation

is observed experimentally by Tonks and Langmuir1 and is shown analytically by



Emmert et al2 In the region near the collector, a larger potential changeoccursover

a distance comparable to the plasma Debye length. These two regions are shown at

the top of Fig. 1. The central source region is characterized by a potential change

of <f>p from its center to the edge of the source region. With the collector potential

at </>c, the potential change across the collector sheath is </>c—<l>P' The width of the

collector sheath is usually many orders of magnitude smaller than the width of the

source region. We model this long, distributed source region as a planar source at

x = 0. Consequently, the slowly varying change in potential to <f>p occurs over only

a few Debye lengths, as shown in the middle sketch of Fig. 1. Emmert et al. have

shown that the width of the plasma source does not affect this potential change

through the source region. Thus we refer to a "source sheath" which actually

represents the gradual potential change over the entire Maxwellian source region.

The boundary conditions imposed on the model for both theory and simulation

are as follows. Refer to the bottom of Fig. 1. The plasma source injects steady and

equal fluxes of ions and electrons each with half-Maxwellian velocity distributions

toward the collector. The temperature and mass ratios of the injected ions and

electrons are specified. These particles then flow to the collector surface which

becomes charged by the incident particles and floats electrically to ^c-

Electrons, which may be repelled by the internal electrostatic field, return to

the plasma source where they are added to the steady flux and also injected at the

electron source temperature. Illustrated at the bottom of Fig. 1, this "refluxing"

prevents any charge accumulation at the source plane and enforces a zero electric

field at the plasma boundary. Hence at the source plane, we distinguish between

the injected flux and the emitted flux (injected plus refluxed particles). The net

flux (over positive and negative velocities) equals the value of the injected flux.

Consequently at steady state, the magnitude of the velocity distribution of emitted
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FIG. 1. Model and form of the electrostatic potential profile for the non-Maxwell-

ian sheath region between a Maxwellian plasma source and an electrically floating
collector. The top figure indicates the form of the potential profile for a distributed
source. The source region is many orders of magnitude longer than the collector
sheath region. The middle shows the assumed potential profile for a planar source.
The bottom diagrams the flow of particles between the source plane and collector.



electrons increases self-consistently with </>c- The zero field boundary condition

with refluxing is similar to that required for a plasma source which drives an ion

propulsion system for space travel.3 In a one-dimensional simulation of this engine,

excess electrons are required to be supplied by the source to cause the ions to travel

in straight lines away from the source.

The large potential drops near the source and collector, sketched in the middle

of Fig. 1, are formed in the following way. With half-Maxwellian sources of equal

fluxes of ions and electrons having comparable temperatures and disparate masses,

the net plasma charge density is not zero at the source. Consequently a potential

drop occurs which returns some electrons to the source and reduces the net electron

drift. The source sheath evolves which serves to neutralize the emitted plasma

within a few Debye lengths. Thus beyond the source sheath in the neutral region,

ion and electron densities equate. However, in this neutral region, both species

have non-Maxwellian velocity distributions because of the potential drop from the

source. At the floating collector, electrons initially charge the surface and a second

electron-repelling sheath evolves which is the traditional collector sheath. Hence,

non-neutral source and collector sheaths with acentral, neutral region are expected;

all are observed numerically and predicted theoretically.

Our bounded, electrostatic particle simulation utilizes the particle-in-cell meth

od for one dimension in space x and velocity v. The time-evolution of the initially

empty system is monitored until a steady-state configuration is observed. The

transient response and plasma oscillations of the collective behavior are measured.

Because the simulation provides the velocity distribution of the ions and electrons

in time and space, profiles and histories of various energy and particle fluxes are

calculated.

The steady state configuration of the region is analyzed with a plasma-sheath



equation. The full kinetic description of both ions and electrons determines the

exact dependence of density on the potential profile. The boundary conditions of

zero electric field at the source and zero total current at the collector are applied as

above. The electric field is assumed to be zero at the inflection point in potential

which occurs in the central region separating the source and collector sheaths by

many Debye lengths. With Poisson's equation and the above assumptions and

conditions, the values of potential at the neutral region (inflection point) and at the

collector are calculated as a function of mass and temperature ratios. With the full

kinetic description, various energy and particle fluxes are derived as a function of

potential at any spatial location. Details of the above kinetic analysis are provided

later in Sec. II. The numerical simulation model and results are presented in Sec. III.

A comparison of our theretical and simulation results will be discussed in Sec. IV.

The difference between our kinetic model and previous sheath studies which are

summarized below is detailed in Sec. V. Conclusions are in Sec. VI.

B. Historical review

In 1929 Tonks and Langmuir1 developed a model of the plasma-sheath region

for a cold ion, warm electron plasma source. Using Poisson's equation, they tied

the plasma solution, V2^ « 0, for a distributed source up to the collector, to the

plasma-sheath solution which conserves flux in the collisionless, thin sheath. Their

plasma equation is solved with a series solution.

Twenty years later Bohm4 described the evolution of a stable, static potential

profile for a plasma of cold ions and warm electrons. Bohm found that, prior to

entering the.sheath region, the cold ions must acquire a kinetic energy M(V?)/2

of at least 0.5Xse, where M is the ion mass, (V^2) is the second velocity moment,

and Tse is the electron source temperature (measured in energy units). (Hereafter

we use {y) to denote the velocity average of the quantity y over all velocities in



the direction normal to the collector surface.) Bohm ascribed this acceleration to

small forces evolving over long distances in the plasma outside of the sheath region.

Subsequently many similar papers have been written on the stability of the sheath in

terms of the ion velocity required to generate the monotonically decreasing potential

profile required by the Bohm theory.

Harrison and Thompson5 solved analytically the model of Tonks and Langmuir

ten years after Bohm. A stable sheath criterion is evaluated which is dependent

on the moment (Vf2) of ions entering the collector sheath region. This generalized

Bohm criterion applies to any velocity distribution of the ions entering the sheath,

rather than to only the monoenergetic distribution as assumed by Bohm. However,

it is most important to note that they assume the ions have a negligible thermal

spread at their source.

A few years laterHall6 discussed the restrictions of the analysis of Harrison and

Thompson to the arbitrary velocity distribution of ions entering the sheath. Hall

claims that their results are valid only when few lowvelocity ions exist at the sheath

edge; this allows astable sheath to evolve, so that, for almost all situations, (V~~2)~l

will be nearly equal to (V?). Because thesmall potential drop caused by the plasma

field outside the sheath region, as described by Bohm, is large compared with ion

energies, low energy ions do not appear at the sheath edge. Hall concludes that

Bohm's simpler model should then be used because nothing qualitative is gained in

using the generalized Bohm criterion of Harrison and Thompson.

Recently Stangeby7 has applied the generalized Bohm criterion to warmsource

ions. The iondistribution entering the sheath isapproximated as a drifting Maxwell

ian with source temperature Tsi (measured in energy units). Treating the sheath

edge as a Mach-1 surface, Stangeby assumes isothermal flow so that the incident



ions enter with drift velocity Cs, where

Cs=[(Tsi+TSt)/M]1/\

at the same point where ion and electron densities are equal.

Using particle simulation of ions and electrons entering the sheath region,

Chodura8 derives the collector potentialby varying the drift velocity Vb of Maxwell

ian ions until formation of a potential profile which is not oscillating in space. In a

second paper, Chodura9 uses these values of collector potential for Tsi <C Tse and

Tsi = Tse to derive the mean ion energy at the collector. Hence ions with an as

sumed adiabatic flow (specific heat ratio for ions of 5/3) enter the sheath region

with Vo = Cs where

\!/2C* =(jT* +TSeJ A/"1/2.

Unlike the authors following Bohm, Emmert et al.2 have extended the sym

metric discharge analysis of Tonks and Langmuir to include the effect of warm ions

in the plasma source without assuming that the ions have a particular drift veloc

ity. They tie the solution to the plasma equation for a plasma source with finite

ion temperature to the plasma-sheath equation in an infinitely thin sheath. The ef

fect of a warm source which is distributed over a region less than the system length

is analyzed. Most interesting is that they observe a flat potential in the sourceless

region.

More recently Bissell and Johnson10 have solved the plasma equation for warm

ions but have used the generalized Bohm criterion as a boundary condition. Their

analysis produces an infinite electric field at the sheath edge, which compares well

with fluid theory but not with the kinetic theory of Emmert et al2. All of the above



studies, except that of Chodura8'9, assume electron densities related to potential

by a Boltzmann factor.

In a different approach with a more global model, Kuhn11 studies the axially

symmetric, single-ended Q-machine. An emitting plate generates a half-Maxwell-

ian source of plasma with equal ion and electron temperatures. Kuhn varies the

ratio of emitted densities at the plate and varies the potential bias applied across

the system. A fully kineticmodeldescribes the ions andelectrons (non-Boltzmann).

The use of truncated ion and electron distributions in a collisionless plasma

beganwith the work of those such as Auer and Mclntyre. Auer12 applies this tech

nique to a plane diode model of a low pressure thermionic convertor but does not

provide numerical solutions. In the thermionic convertor, a hot cathode partially

ionizes the contained neutral gas and furnishes a plasma which flows to a cold an

ode. As the applied voltage across the diode and the ratio a of the emitted densities

of ions to electrons is varied, a large class of stable and unstable potential profiles

is generated. Mclntyre13'14 provides a rigorous charaterization of the profile types

possible. Burger15 utilizes particle simulation to understand the strong oscillations

observed experimentally in thermionic convertors operated with ion rich emission.

Experimenting with a cesium plasma diode, Ott16 confirms the collisionless theory

for many of the potential configurations. Rynn17 applies the plane diode model

of the thermionic convertor to sheaths in the end columns of a Q-machine. The

plasma side of the potential profile away from the emission plate of the Q-machine

is assumed by Rynn to have a zero electric field. Kuhn11 applies the same collision

less model to the single-ended Q-machine to investigate and categorize the strong

instabilities observed experimentally.

The above authors apply the kinetic theory to the collisionless plasma region

between the source created at the hot emissive surface and the cold collector. We
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apply the same theory to a plasma source created in space not at a surface. Hence,

the neutralization parameter a (the ratio ofemitted ion to electron densities) is not

fixed but is dependent on the floating collector potential. (This dependence will

be shown later in Sec. II.) With these particular boundary conditions, we extend

the kinetic model of Kuhn and those before him to allow unequal ion and electron

temperatures.

II. THEORY

A. Model and assumptions

The time-independent behavior of the source and collector sheaths character

izing a bounded, symmetric plasma is modeled as shown in the middle of Fig. 1

over the distance from x > 0 to the collector at x = L. The plasma source at x = 0

injects temporally constant and equal fluxes of ions and electrons, each with a half-

Maxwellian distribution of velocity. The ratio of electron to ion mass, \i = m/M,

is a fixed parameter as well as the ratio of ion to electron source temperatures,

T=Tsi/Tse. (The parameters \i and r are consistent with the notations of Kuhn11

and Emmert et al.2, respectively.)

The plane x = 0 is at the reference potential of zero. The electric field is zero

at x = 0 because no surface charge is allowed to exist at x = 0. The collector at

x=L electrically floats to potential <j>c, absorbs all incident particles which charge

the collector, and emits nothing. Net electric current at the collector is zero as the

collector is not electrically connected to the external world. Thus the ion and

electron fluxes to the collector are equal. The value of potential at the neutral

or inflection point, where V2<j> = 0, between the source and collector sheaths is

designated <j>p. The electric field —V^ at <j>p, which by definition is a constant, is

chosen to be zero when the source and collector sheaths are many Debye lengths
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apart. Thus with the zero source field, the total charge enclosed from 0 < <j> < <f>p

is zero.

In summary, the boundary conditions necessary to solye Poisson's equation for

the potential values of <j>c and </>p are as follows. The zero reference potential is at

s=0 where the electric field is zero. The electric field is also zero at <j>p. These two

conditions of zero field applied to the first integral of Poisson's equation and the

neutrality condition at <j>p provide two equations with three unknowns: </>c, <t>p,

and the ratio of emitted densities.

In the plane diode model discussed in Sec. I B, the ratio a of emitted ion to

electron densities is specified. Fora potential profile that monotonically decreases,

assuming that the electric field is zero at 0=0 overspecifies the problem when only

</>C and <f>p axe unknown. In our model, the source density of emitted electrons

depends on (j>c as caused by the refluxing of repelled electrons at <f> = 0. This

dependence of a on <j>c is found with the third expression which equates the ion

and electron currents at <j>=<j>c. Hence, requiring a zero source field with refluxing
does not overspecify the problem.

B. Derivation of velocity distributions

The distribution functions /(x, v) for the ions and electrons each satisfy the

Vlasov equation. Over the region modeled, the mean free path for collisions is

assumed to be much greater than the Debye length of the plasma source. The force

applied to each ion or electron is determined with the electric field, E(x) = -V^(x),
derived with Poisson's equation: V2<j>{x) = -47rp(z), where p(x) is the net charge
density. In time *, the velocity vofeach particle of mass mand charge qis governed
by the force balance

dv dd>

dt Hdx
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Multiplying both sides of this equation by v and rearranging terms provides that

^(imv2+g,K*))=0.
Thus expressing each distribution function f(x,v) as a function of this constant

of motion, mv2/2+ q<f>(x), satisfies the Vlasov equation. (This proof is found in

Nicholson18.) The velocity distribution functions at any position are then explicitly

functions of <f>(x) and the specification of f(v) at a location where <j> is given.

The electrostatic potential is assumed to be monotonically decreasing with

position. Consequently, the velocity distribution of the ions is an accelerated half-

Maxwellian governed by conservation of energy; all ions reach the collector. The

potential drops near the source and collector repel most of the electrons; only the

fastest electrons reach the collector. Hence, the electron velocity distribution is a

truncated, decelerated full-Maxweflian following energy conservation. Because all

ions injectedinto the sheathregion strike the collector, the slowest ionstarting from

rest has velocity Vm{(x) given by

VMi(x) = {-2e<l>(x)/M)1/2

where e is unsigned charge of an electron and an ion (singly charged). At any x,

the fastest returned electron (which just misses reaching the collector) fixes the

minimum velocity Vmc(^) given by

VMe(x) = -
11/22

—(e</>(x) - e<t>c)

Hence, the velocity distribution of the ions, /;, for a given value of potential is

/,(*,„) =jv5,(_JL-) <xp(-±-fit»*)e(v-vmw). (i)
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Similarly the electron velocity distribution function /e is

/.(*, v) =NSc (5^) «P (* "A«2)e(r -V*.(tf)). (2)
For Eqs. (1) and (2) Nsi and Nse axe the ion and electron densities of the full-

Maxwellian source (x<0); ip is the normalized potential e(j>/Tse; Pi is M/(2tTs<.)
and j3e is m/(2Tse); ©is the Heaviside step function. Hence, for any given value of
potential, the shape of the distribution function in the collisionless region is known

and its magnitude depends on the source density.

C. Derivation of moments

1. Definitions

Determining the first several moments for each species of particles using the

distribution functions in Eqs. (1) and (2) provides the potential dependence of each

moment. These moments are derived below. The examples shown are for the ions

but the same expressions apply for the electrons with obvious changes. Variables

for the ions and electrons are named respectively JV,- and Ne for particle density, F{
and Fe for particle flux, (V-) and (Ve) for drift velocity, Tt- and Tc for temperature,

Qi and Qe for kinetic energy or total energy flux, and Hi and fTc for heat or

thermal energy flux. These equations are denned by the following expressions for
one dimension.

NiW= H M+,v)do. (3)

*!W= / vfi(i>,v)du. (4)

(ViW) = FiW/NiW). (5)
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TiW =M((v - (ViW))2)

=ir (v2-(Vi(n2)fi(1>,v)dv. (6)

M t°°
Qm = -r v*M,v)dv. (7)

=t r (v* - w»^+WW)8)/* *>. (8)
For electrons, the lower limit of integration is Vi/e* a negative value. Additional

energy fluxes are defined in detail by Shkarofsky et al.19

2. Densities and particle fluxes

An evaluation of the first velocity moments with Eq. (4) for ions and electrons

shows that Fi and Fe are spatially constant. With no creation or annihilation of

particles along 0 < x < L then conservation of particles requires that

—+ V-F = 0.

In our one-dimensional system, when the loss rate at the collector equals the in

jection rate at the source then dN/dt = 0 so that F is spatially constant for each

species.

The fluxes injected from the sourceare assumed temporally constant and equal

for both species; hence we may equate the net fluxes to the injected flux with

i7i(^) = .Fte(^)=.F. Evaluating Eq. (4) from Vm(x) to oo for the ions and electrons

gives the net fluxes as

*=Msir (9)
and
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*--y*(Sr),/S«p*?- w
Hence, the presence of refluxed electrons increases the source density Nse (and the

magnitude of /c(x, v)) by a factor of exp(—*0c)- Equivalently, the flux of electrons

emitted from the source (only v > 0) equals Fe exp(—*0c)« The ion source density

(and magnitude of fc(x, v)) is unaffected by ipc because all ions reach the collector

and so do not return with information about the downstream potential.

Equating Eq. (9) with Eq. (10) satisfies the zero current condition at the col

lector for the open-circuited system and fixes the ion to electron density ratio of the

source (not at t/>=0) so that

^5,V^Se = (/xr)-1/2exp^c.

The ratio of Nsi/Nse also equals the ratio of outgoing densities (with v > 0) emit

ted from the source which includes the refluxed contribution. This ratio equals the

neutralization parameter a for our particular boundary conditions. As discussed in

Sec. I B, the neutralization parameter is used by previous authors11""17 in charac

terizing the emission from the hot cathode of a thermionic emitter or Q-machine.

Our value of a is usually greater than one, which suggests an "ion rich" source of

emission. This terms implies that the potential curvature, V2^, at x=0 is negative

even though the electric field, -V<£, at x = 0 is zero.

The integrals of Eq. (3) are evaluated next to obtain ion and electron densities

with the dependence on injected flux F from Eqs. (9) and (10). The resulting

densities, which depend on the potential profile, can be now expressed as

/ -kM \1/2
NiW =F\*rWj eM-1>Meric(-1>Ml/2 (11)

and
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NtW=F(S:) "rt* •M I1+^ ~̂c)1/1• (12)
At first reading, this form for Ne(i/>) appears different from the simple Boltz-

mann factor for electron density. This difference occurs because our model uses a

constant injected particle flux; other models use a constant background density. If

the electrons are assumed to have a full-Maxwellian distribution, then —Vmc—•co,

which occurs as M/m —• oo. Applying Eq. (3) to these electrons expresses the

Boltzmann electron density Ns(tp) as

(o \ 1/2
^J exp(^ - +c) (13)

or with Eq. (10),

NbW = Ns* exp(V»).

For our model, as tfic changes with the mass and temperature ratios of the

plasma source and for the same injected particle flux, the value of Nb(0) will change

according to Eq. (13). Previous analyses4'7-9 assume that ion and electron source

densities are equal and fixed which causes F to be the variable parameter. However,

an investigation of the temporal evolution of the system to some equilibrium state

suggests that the injection flux be fixed and the source density be determined self-

consistently.

3. Temperature

Using the definition of drift velocity in Eq. (5) and the above derivations in

Eqs. (11) and (12) for density, one observes that the drift velocity is dependent on

source temperature but independent of injected flux. With this drift velocity and

the second velocity moment, the "effective" temperature is derived. The concept
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of temperature is usually applied to collisional plasmas with full Gaussian distribu

tions. For our model of the collisionless sheath, we use temperature as the mean

square deviation given in Eq. (6). Evaluating Eq. (6) gives the ion and electron

temperature dependence on potential as

TjW _l-(2M1/2M^2(rTs,r3/2G(Pi,VMiW)
tTs* erfc(-V/r)1/2

2exp(2^/r)

and

where

ir\er£c(-rl>/Ty/2

Teffl = l +(2/x)1/2m3/2T5-3/2G(^e,yMe(^))
T-5e l +erf(V>-tfc)1/2-

_ 2exp(2^c-2^)

7r[l +erf(^-^c)1/2]

G(P, y)= f v2 exp (- 0v2) dv.
Jo

(14)

(15)

The above normalized temperatures, independent of source temperatures Tse

and rTse, depend only on t/>, rpc, fa and r. Note that at the collector Te(ipc) =

^5c(l —2/7r) and at ip =0(just within the collisionless source sheath region) Xj(0) =
tTsc(1 —2/?r). This sharp jump down inTi(0) occurs because at x=0, temperature

indicates the mean square deviation in the half-Maxwellian velocity distribution;

whereas, the ion source temperature tTSc indicates that of the full-Maxwellian

velocity distribution.

The temperature expressions in Eqs. (14) and (15) are written so that the first

terms are equal to M(V?)/tTSc and m{V2)/Tse and the second terms are equal to

M{Vi)2/rTS€ and m(Ve)2/TSe- The values obtained for (V?) and (V*)2 (normalized
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to V2i) at the locations of ipc and ij>p for y. =1/1836 are listed in Table I. (These

expressions for ipc and ipp will be discussed in Sec. IID.) Using 16significant digits

of accuracy for the terms in Eq. (14), we find that these expressions can be evaluated

for | il>c/r\< 30 which corresponds to 1/9400 < \ir < 1. Smaller values of fir, such

as ^ = 1/1836 and r = 0.1, require 32 significant digits to evaluate (V2) and (V*)2

accurately. Table I is presented primarily to compare our results on the ion drift

velocity entering the collector sheath with the conclusions from other authors. This

comparison will be discussed in detail in Sec. V.

4. Energy flux

Evaluating Eq. (7) to obtain the third moment of the velocity distributions

produces the kinetic energy fluxes as

Qi(rl>) = rFTSe(l-il>M (16)

and

QeW = FTSe(l + 1> - Vc). (17)

Note that while each energy flux varies with distance, the sum of Qi(i/>) and Qe(il>)

is independent of position. Even when particles have a full-Maxwellian velocity

distribution in the other two dimensions, this spatial dependence holds true for the

total kinetic flux along x.

The kinetic energy flux divided by the particle flux is denned as the mean

kinetic energy.9 Thus the ions arrive at the collector with a mean kinetic energy of

rTse(l —il>clT) and the electrons arrive with a mean kinetic energy of Tse. Note

that the mean kinetic energy of the incident stream is not the same as the stream

temperature which indicates the spread about the drift velocity.

Lastly the heat flux of each species is evaluated. As expressed in Eq. (8), heat

flux indicates the thermal flow of thermal energy which contributes in part to the
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TABLE I. Ion kinetic energy and drift energy from our theory and previous analyses
at various locations with M/m = 1836. Energies are normalized to the square of
the ion thermal velocity Vt2 at the source. The following are the expressions used
in the previous analyses to derive the limits shown below. Bohm4: {V2)V^2 > r"1.
Stangeby7: (Vi)2VtJ2 >t^+1. Chodura9: (VifV^^T^+^/Z.

Temperature Ratio, r=Tsi/Tse

Theory r=0.1 r=l r = 10

Our Analysis

Location: X p T bxc xP xc xP *c

Potential: —^(x,r) 0.85 3.38 0.34 2.86 0.05 1.91

WttWu2 18.9 69.6 2.14 7.52 1.09 1.76

(ViW)2vtj2 • 18.9 69.6 1.92 7.43 0.74 1.51

Previous Analyses

Location: Entering the collector sheath edge (presumably between xp and xc)>

Bohm: (V?)VtJ2 > 10.0 >1.0 >0.1

Stangeby: (K)2VtJ2 >11.0 >2.0 >1.1

Chodura: (Vi)2VtJ2 >11.7 >2.7 >1.8

a Position xp is where V2^>p = 0 and —V^p = 0.

b Position xc is where ip=tpc a-t the electrically floating collector.
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kinetic energyflux. The heat flux H is evaluated exactly in terms of the previously

derived profiles for the ions as

ZiW = QiW - 3FTiW/2 - FM(ViW)2/2 (18)

and for the electrons as

#eW = QeW - 3^(^0/2 - Fm{Vt{$))2/2. (19)

D. Derivation of collector potential and source sheath potential drop

In a fully kinetic model of the axially symmetric Q-machine, Kuhn11 evaluates

values of potential at extrema and inflection points along the region modeled for

equal source fluxes and temperatures. When Nsi/Nse, our neutralization param

eter, is plotted against ifrc with r = 1 for various fi in Fig. 4 of Kuhn's paper, the

results lie on the boundary (curve C) which separates the "one-maximum" and

"monotonically decreasing" types of potential profiles. The zero field condition at

the source places the one-maximum point in the potential at x = 0. This gives our

model with r = 1 the attributes of both profile types. We next extend the model

of Kuhn for our boundary conditions to allow for source temperature ratios other

than unity.

With reference to the middle sketch of Fig. 1, the potential is characterized by

V2tj?p = 0 somewhere between the source and collector sheaths. Hence setting the

net chargedensity to zero finds this inflection point. Equating Ni(tpp) and Ne(ipp)

from Eqs. (11) and (12), derives the neutrality expression whichrelates ipc and i/?p:

-J_exp(=Jp) «fi{^) =«rf** ~+c)[l +«*(*p -1>c)l/2\• (20)
Recall that the assumption of zero net electric current (floating collector) has been

included in the solution for these densities.



21

A second equation relating ipc and i/>p results from imposing the zero electric

field condition at the inflection point ij)p. Integrating Poisson's equation, V2^> =

47re2Ts*(Ne—Ni), once from ^=0 to ^=^p and applying the two field boundary

conditions is equivalent to integrating Eq. (20). The resulting expression can be

written in separate terms of the normalized integral densities T for ions and electrons

which are respectively,

*-£h(=?w=?r—m
1/2'

and

J, =exptyp -+c) [l +«f(*p" fc)1'2] +^(-M1/2
- *(^P_^,)i/» _«pHte)[l +erf(-*c)1/a].

Thus the zero electric field condition at tjjp is that the normalized integral densities

sum to zero,

£+£ = 0. (21)

Together, Eqs. (20) and(21) define thesource sheath drop tpp andcollector potential

t/>c in terms of the mass and temperature ratios.

For the special case of cold ions, i.e., r=0, (with noinitial drift velocity) these

two equations are satisfied as both ipc and ipp go to —oo. To satisfy the zero total

current condition when r = 0,. the ion density at the source must be infinite which

generates an infinitely large potential drop across the source sheath.

The form of the dependence of ^c on i/?p from Eqs. (20) and (21) is the same

for most values of fi and r. In Fig. 2 we plot a typical curve from each equation for

fi = 1/1836 and r = 1, which Kuhn's results also yield. The simultaneous solution
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FIG. 2. Solutions of V>c vs. ij)p for the neutral charge density p expression in
Eq. (20) and the zero field condition in Eq. (21) using M/m=1836 and Tsi/Tse = l
at the source. The potentials are normalized as i/> = e(j>/Tse*
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for these equations exists at two points. The first occurs where dific/dipp = 0 for

Eq. (21). Differentiating Eq. (21) expresses dific/ityp hi the form of

Mtcrfp)^ +NMc^p) -Nityp) =0.
This equation is satisfied when Ni = Ne and dtpc/d^p=0. We find that our particle

simulations always evolve to solutions matching the first type of intersection point.

Kuhn20 also solves for i/>c from this first intersection point in characterizing the

boundary between the monotonically decreasing and the one-maximum profiles.

The second pointof solution occurs where ijtp =0 for both equations. Although

ipc is fixed by Eq. (20) when ipp =0, anyvalue of^c satifies Eq. (21) when i/>P = 0. It

would seem that sheathanalyses whichneglect the "presheath" potential drop would

encompass this type of solution. However, values for ipc from these analyses are

actually much less in magnitude than x/>c from our solution with ^p=0. Although

this second intersection point is a solution to both equations, it may not provide a

temporally stable profile when the plasma is perturbed.20

The simultaneous solutions of Eqs. (20) and (21) are represented by plots of

i/>c and Tpp as a function of mass ratio for three temperature ratios, r = 0.1, 1,

and 10 in Fig. 3(a). With the same technique for the particular mass ratio of a

hydrogen plasma, the dependence of tpc and tfrp on temperature ratio is shown in

Fig. 3(b). Both plots are obtained from solutions of the first type of intersection

point mentioned above. Observe that the potential drop through the source sheath

varies primarily with r (seen in Fig. 3(b)) but very little with mass ratio (seen in

Fig. 3(a)). This method of solution realistically models a wide range of mass and

temperature ratios. For fi = 0.1 and r = 10, i.e., equal ion and electron thermal

velocities, the potential profile is flat, occuring whenever fir = 1. Analyses which

assume a Boltzmann electron density show erroneously that ipc > 0 for fir = 1, as

will be discussed in Sec. IV B.
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400 1000 1836

FIG. 3(a). Potential at various locations as a function of mass ratio, 1/fa for three
source temperature ratios r = Tsi/Tse- Collector potential ij>c{T) (solid curves) and
source sheath potential drop ^p(r) (dashed curves) are from our kinetic theory.
Resultsof Emmert et al.2 for iPc(t) (dot-dashed lines) are derived with the values of
V>i(r) at the collector sheath edge shown in Fig. 3(b). Also plotted is the solutionby
Stangeby7 (triple-dot dashed lines) for thecollector sheath drop, ^/=0.5 ln(27r/i(l-{-
r)). Simulation data points of ^c(f) (circles) and i/>p(t) (triangles) are measured
at x=0.5L and L, respectively. Bars indicate oscillation amplitudes of ijj.
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^si/TSe

FIG. 3(b). Potentials at various locations as a function of temperature ratio,
Tsi/Tset a,t M/m = 1836. Collector potential ipci?) and source sheath poten
tial drop rpp(r) (solid curves) are from our kinetic theory. Potential at the collector
sheath edge, ^i(r), (dashed line) is that from Emmert et al.2
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m. PARTICLE SIMULATIONS

A. Simulation description and fixed parameters

Aparticle-in-cell computer simulation for ions andelectrons isused to studythe

region between a Maxwellian plasma source and a purely absorbing collector. The

Lorentz equation of motion is integrated twice to move the particles. The electric

fields are obtained self-consistently on a fixed mesh by solving Poisson's equation

for potential in each time step. The simulation region of 0 < x < L, shown at the

bottom of Fig. 1, is initially empty. Particle electrons and ions with an inverse mass

ratio fi of 1/40 or 1/100 are injected with equal and temporally constant fluxes.

(Because computation time increases with mass ratio and our allocation of Cray

computation time is limited, mass ratios for a- hydrogen plasma are not utilized in

these simulations.)

Both ions and electrons enter the region with a half-Maxwellian velocity dis

tribution with temperature ratios r of 0.1, 1, or 10. Electrons which return to the

source at x = 0 are "refluxed", i.e. re-inserted as injected particles with a veloc

ity characteristic of the electron source temperature. Consequently the net electron

emission rate (those with v> 0 at x =0) exceeds that of the ions. Because of this

refluxing, no charge accumulation is allowed at the source plane; hence, the elec

tric field at x= 0 is zero. At x= L, incident particles are absorbed and charge the

collector which is electrically floating.

B. Variable parameters

Spatial profiles are presented for the velocity scatter, electrostatic potential,

and various moments of the velocity distribution. The profiles are evaluated after

the average number ofparticles in the system becomes approximately constant with

time. These moments arediscussed earlier in Sec. IIC 1and defined inEqs. (3)-(8).
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Particles are linearly weighted to each grid where the velocity distributions and

moments are evaluated. Maximum velocity values injected at the source are six

times the thermal velocity. Methods used are described in Birdsall and Langdon's

book21. The code used here is fundamentally PDW1 composed by Lawson,22 with

transport evaluation added.

Relevant simulation parameters are described below. Systems studied are from

20 to 50 Debye lengths (A^) long and are resolved with about 6 grid points per

Ajp. A density of at least 400 particle electrons in IXd is required for reduction of

potential fluctuations to within ±10%. Time steps are typically 0.05/a;p, where up

is the spatially averaged plasma frequency.

C. Transient behavior of the collector potential with various tempera

ture ratios

The temporal behavior of the collector potential with r = 0.1, 1, and 10 is

displayed with the time history plots shown in Fig. 4. Typically r/>c fluctuates with

frequency wp which depends on the time-dependent iVc in the system. For each

case, the calculated value of ten plasma periods Tpe is indicated by double arrows.

In this figure, the collector potential begins at zero and then dips to 4-8 times

the final, averaged value of $c- The most negative value of tpc occurs when the

electrons, with a velocity of1.5-2.0 Vte where Vte = (Tse/m)1/2, reach the collector.

As incoming ionsbeginto neutralize the large initial negative chargeat the collector,

then tj?c increases to the equilibrium value in 3-4 transit times of an ion traveling

with velocity Vu((2/tt) + (-2^c/r))1/2 where Vti = {rTse/Mfl2. By this time

of potential equilibration, the ion and electron fluxes are spatially equal; however,

the fluxes themselves are not yet constant in space. The fluxes become spatially

constant in 15-20 times L(—^c)-1^2^1. At this same time, by conservation of

particles (discussed in Sec. II C 2), the total number of system particles becomes
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FIG. 4. History of collector potential from simulation for M/m = 40 and three
source temperature ratios r = Tsi/Tse- For r = 0.1 and 1, the system length
L = 22A.n and for r = 10, L = 15A#. Double arrows indicate the calculated value

of ten plasma periods Tpe, determined from the length-averaged electron density.
Normalized potential, *l>c = e<t>c/Tsei is measured at x = L.
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temporally constant. All plots shown hereafter are obtained at a time after particle

equilibration.

D. Simulation results with a temperature ratio of unity at steady state

1. Potential profiles and velocity distributions

The family of spatial profiles shownin Figs. 5(a)-5(h) are generated via particle

simulation using /x = l/40, r = l, and a length of 44Ad- The phase spaces (scatter

plots) of ions and electrons along x are shown in Figs. 5(a) and 5(b); also included

are the velocity distribution functions f(v) for both species at four values of x as

obtained and smoothed from the scatter plots. The ions are accelerated throughout

the region and all reach the collector. Only the fastest electrons reach the collector;

the remaining slower electrons are repelled by the source and collector potential

drops. A distinct cut-off electron velocity Vjifefa) is observed. We observe no

collisional or collective processes whichscatter particle electrons beyond Vmc(x) to

fill in the "missing tail" during the time of our simulations. These processes are

hypothesized to explain the Langmuir paradox.23

The potential profile which evolved with these velocity distributions is pre

sented in Fig. 5(c). Both the potential profile and scatter plots are snapshots at

the last time step of the simulation. The spatial lengths of the source and collector

sheaths are approximately 4A#. The potential profile is quite flat (i.e., —VV>«0)

between the sheaths when we use at least Nd = 400 particle electrons in one Ad

where Nd —NeXD averaged along x in one dimension. Smaller values of Nd pro

duce a small positive electric field between both sheaths. With a positive curvature

in potential at the plasma edge of the source sheath and a negative curvature en

tering the collector sheath, an inflection point in potential occurs between the two

sheaths. (With the zero field condition imposed at the source, potential curva

ture there is negative. Thus another inflection points occurs midway in the source
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FIG. 5. Spatial profiles from simulation with M/m=40, Tsi/Tsc = 1, and L=44Ap
of (a) ion and (b) electron velocity scatter plots with f(v) from four locations,
(c) normalized potential, and, for both species, normalized profiles of (d) density,
(e) drift velocity, (f) temperature, (g) kinetic energy flux, and (h) heat flux. (Ts is
equivalent to Tse.)
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sheath.) Hence our earlier descriptions of V2\j>p = 0 and —V^p = 0 are valid. The

spatial ripples in potential are roughly 1A^ in length and areassociated with small

oscillations and waves with the plasma frequency up.

To understand theeffect ofrefluxing inour simulations, we model the following

test case. No refluxing is allowed so that the surface at x=0 is charged or discharged

by incident or emitted particles. As derived in Sec. n C 2, the electron flux emitted

from the source is jPexp(-^c) for our original boundary conditions. Consequently,

theratio ofthe flux ofemitted ions to electrons is set to atemporally constant value

ofexp(^c)- This value of tpc is found from Fig. 3(a) for the mass and temperature

ratios of the simulation. All other conditions in the test case are identical to those

of the original. This test case is observed to produce the same potential profile

and level of fluctuations as generated with the original conditions with refluxing.
Hence our refluxing mechanismallows this excessive electron emission to occurself-

consistently without causing additional, artificial fluctuations.

2. Profiles of velocity moments

The spatial profiles of each species for density, drift velocity, temperature,
kinetic energy flux, and heat flux are discussed next. Shown in Figs. 5(d)-5(h), all
of these profiles are time-averaged over aplasma period prior to the last time step.
The ion and electron density profiles inFig. 5(d) are each normalized to their central

density at x/L=0.5. The collector sheath and region of the source sheath adjacent
to the source are characterized by N{ > Ne. Over the central region between the
sheaths, JV,-«iVc.

The ion and electron profiles of drift velocity, each normalized to the electron

thermal velocity Vte, are shown in Fig. 5(e). In these profiles, (Vc) >(VJ) in the ion
rich region ofboth sheaths, as described above. Multiplying densities from Fig. 5(d)
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with velocities from Fig. 5(e), it appears that particle flux, F=N{V), is conserved
and equal for both species.

Effectiveion and electron temperature profiles normalized to the electronsource

temperature Tse are shown in Fig. 5(f). The ion temperature T,- decreases along

x because the decreasing potential accelerates and thus cools (reduces the velocity

spread about the mean) the velocity distribution as seen in Fig. 5(a). At x= 0,

Ti drops abruptly from rTse due to the discontinuity between the assumed full-

Maxwellian at x<0 and the injected half-MaxweUian at s =0, both with the same

exp(-v2/(2Vt2)) distribution. The electron temperature Te(x) decreases from TSt,
because the magnitude ofthe cut-off velocity decreases with x as seen in Fig. 5(b).

At x =0, Te drops abruptly from Ts* because /e(0, v) is not quite a full Maxwell

ian distribution. As shown in Sec. IIC3, for r =l, Te(^c) =Ti(0) =0.36 which is

verified with Fig. 5(f).

The ion and electron profiles ofkinetic energy flux are plotted inFig. 5(g). The

value of total kinetic energy flux at the collector, normalized by TseF, is sometimes

referred to as 6t, the energy or power transmission factor7 where

ft = (QiWc) + Qc(1>c))/(TSeF).

Using Q/F as mean kinetic energy9, the curves in Fig. 5(g), multiplied by TSe,

yield profiles of mean kinetic energy. This figure shows that ions deposit twice as

much total energy at the collector as do electrons. More generally from Eqs. (16)

and (17) at thecollector, Qi/Q6-r -^c. This ratio is 2.04 for ^ =1/40 and r=l;

for a Maxwellian distribution, this ratio is 2.

The last velocity moment is heat flux, i.e., the thermal flow of thermal energy.

These profiles, also normalized by TscF, are shown for each species in Fig. 5(h).

The heat flux at the collector due to ions is less than that due to electrons because



33

the ions have less thermal spread and so less thermal energy to transfer. The heat

flux profiles can be determined from the profiles in Figs. 5(e)-5(g) using Eqs. (18)

and (19). Both kinetic energy flux and heat flux are plotted in Figs. 5(g) and 5(h)

to point out their difference; occasionally authors define the third velocity moment

and then inappropriately refer to it as heat flux.

E. Simulation results with various temperature ratios at steady state

The effect of temperature ratio r on potential and on ion drift velocity profiles

are evaluated briefly. With the electron source temperature fixed, increasing the

ion source temperature decreases the magnitude of potential drop across the region.

This trend is illustrated with three simulations using r=0.1, 1, and 10 with lengths

of 22 Xd, 22 Xd, and 15 Ap, respectively. Snapshots of the potential profiles from

the last time step are shown in Fig. 6. The potential drops through both the source

sheath and the collector sheath increase as r is reduced (ions cooled). With smaller

r (and equal injected fluxes), Ni(Q)/Ne(0) is greater. This increasing density ratio

generates a steeper potential profile (greater negative curvature in il>(x)) leaving the

source. In the extreme case, as r —• 0, the model with no ion drift velocity away

from the source region (where —V^>(0) = 0) would be difficult to simulate because

lj)p —*• —oo.

The ion drift velocity increases with distance from the source. When r is

reduced, the entire profile of ion drift velocity also increases. Both trends are

illustrated in Fig. 7 which contains profiles of ion drift velocity normalized by the

ion thermal velocity Vu, using results from the same three simulations used in

Fig. 6. These plots of ion drift velocity are time-averaged over a plasma period

prior to the last time step. Note also in Fig. 7, that the value of 0^(0)) for each

r equals Vti(2/7r)1/2 as predicted in the solution obtained bysubstituting Eq. (13)

with ^=0 into Eq. (5).
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FIG. 6. Potential profiles from simulation with M/m = 40 for three temperature
ratios r = Tsi/Ts* at the source. For r = 0.1 and 1, L = 22Ad and for r = 10,
JD = 15Ad. Also indicated are V,i(r) at the plasma-sheath boundary from Emmert et
al.2 The potentials are normalized as ^ —e^/Ts^
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FIG. 7. Profiles of ion drift velocity from simulation with M/m = 40 for three

temperature ratios r = Tsi/Tse at the source. Simulation length L is 22Ad for r=0.1
and 1 and is 15Xd for r=10. Also indicated are minimum ion drift velocity at the

collector sheath entrance as predicted by Stangeby7 where Cs/Vu —(1 + 1/r)1/2.
Drift velocities are normalized by the ion thermal velocity Vti at the source.
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IV. COMPARISON OF THEORETICAL

AND SIMULATION RESULTS

Simulation values of ipp and ific measured at x = 0.5X and L coincide exactly

with the values predicted using the simultaneous solution of Eqs. (19) and (20).

Although two common solutions to Eqs. (19) and (20) do exist, as shown in Fig. 2,

the simulated plasma chooses only the solution with ipp ^ 0. These measured

simulation values of ij)p and ^c> displayed in Fig. 3(a), are generated from four

runs using /j=1/40 with r=0.1,1, and 10 and using j£ = 1/100 with r=l. The bars

on these data points indicate the small amplitude of oscillation of potential which

diminishes as the number of simulation particles used per Xd is increased.

The existence of a self-consistent, time-independent solution does not neces

sarily imply a temporally stable solution, as seen above. Burger14 has observed in

the particle simulation of an ion rich thermionic convertor that the plasma poten

tial profile fluctuates between the self-consistent solution and a temporary "static"

solution. He notes that the transition time between potential configurations is com

parable to the ionic transit time of the convertor. In our simulation with a com

putation time that is six times an ionic transit time, the plasma potential profile

evolves to only one configuration.

The spatial profiles derived analytically for all three values of r fit very well on

the profiles generated by simulation for the density, drift velocity, temperature, ki

netic energy flux, and heat flux of both species. Recall that these moments (derived

earlier in Eqs. (5), (9)-(12), and (14)-(19)) depend on the potential tp. To illustrate

this good fit, the theoretical profiles for temperature are plotted on the simulation

results in Fig. 5(g). These theoretical temperatures are calculated with the poten

tial profile in Fig. 5(c). This choice is justified because tpp and ipc obtained from

simulation agree with theory.
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An interesting question might be, how accurate is the electron density Nb

obtained from using a Boltzmann factor? The answer is that Nb, as calculated

from simulation values for tj) substituted into Eq. (13), yields a good approximation

for /zt<1 except within the collector sheath. When dividing Eq. (13) by Eq. (12),

one finds that

Nb(J>)/N.M =2[l +erf(* - 1>c)l/2]"*.
This expression shows that as i/>(x)-+ipc then Nb —• 2JVC. For x < L the Boltz

mann approximation assumes a full-Maxwellian velocity distribution. At x = L,

fc(?l>c,v) suddenly becomes half-Maxwellian (The collector absorbs all electrons

and emits none.) Thus electron density at the collector is half that predicted with

a Boltzmann factor so that iVs(^c)/2 = iVe(V>c). With our kinetic evaluation, the

electrons evolve gradually from nearly full-Maxwellian to half-Maxwellian as they

pass through the collector sheath to the collector surface.

V. COMPARISON OF OUR THEORY TO PREVIOUS ANALYSES

A. Cold ions

Agreement also can be shown between our results for cool ions (r = 0.1) and

models with cold ions r = 0. For a cold ion, warm electron plasma, Tonks and

Langmuir1 found that potential at the edge of the neutral region (V2^>«0) occurs

at ^i = —0.854. Indicated on Fig. 3(b), their value for fa, which is independent of

fa occurs in the limit for the plasma neutrality approximation and when the electric

field, located between the neutral and the collector sheath region, goes to infinity.

For M/m = 1836 and r = 0.1, our theory shows that ^p = -0.850, as plotted in

Fig. 3(b). Hence, our results agree in the limits of largemass ratio and of cold ions.

The minimum ion energy at the sheath edge, as used by three other authors,

is compared in Table I to our analytical results for the second velocity moment
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(kinetic energy) and the square of the first velocity moment (drift energy) at ^p

and ipc for a hydrogen plasma (/* = 1/1836). The first comparison in Table I shows

the Bohm criterion 4 for minimum kinetic energy of cold ions at the sheath edge.

This criterion, which can be written in normalized units as

{vhvt72 > r~\

compares the best among the other authors to our results with r = 0.1, 1, and 10

not only for (V2) but also for (Vi). Note that although this criterion describes our

results, the equality relation does not predict the ion kinetic energy at the edge of

the collector sheath.

B. Various temperature ratios

We find some differences when a broad range of r is considered for analyses

suchas those ofStangeby7, Chodura8'9, and Bissell and Johnson10 who use the gen

eralized Bohm criterion of Harrison and Thompson5. (Refer to remarks in Sec. I B,

regarding the limit of validity of the generalized Bohm criterion.)

Stangeby7 requires that ions enter the sheath region, where Ni& Ne, with a

drift velocity (VJ) ofat least the ion acoustic velocity Cs using Cs/Vtf^l+l/r)1/2;

these limits are marked in Fig. 7. For fi = 1/40, this limit is achieved for | ij)\ < \i/>p\

when r = 0.1 and 1; this value is never reached for r = 10. However, for fi= 1/1836

in Table I, this minimum for (Vi) is attained beforereaching the collector for all three

temperature ratios. With this limit on (Vi), Stangeby obtains the potential drop ij)p

between the sheath edge and the collector expressed as: ^p = (1/2) ln(27r/x(l + r)).

This equation is plotted in Fig. 3(a) along with our theoretical and simulation

results. For large M/m, Stangeby's tpp compares with our | tpc—^p\ to within 1.3%

for r=1, | rj)F\ falls short of | i/>c—^p\ hy 10% forr =0.1, and | tj)p\ exceeds | i>c^p\
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by 12% for r =10. Hence, Stangeby's expression roughly predicts potential change

across the collector sheath but not the value of collector potential tpc

Chodura8 varies, via simulation, the ratio of emitted ion flux to electron flux

untilthe potential profile decreases monotonically. With thismethod for fi=1/1836,

Chodura obtains rj>F = -2.9 for r = 0 (cold ions), and ij)F = —2.3 for r = 1. The

result for cold ions is 15% greater than ours for r=0.1. For r=l, the result is 9%

less than ours. In a second paper, Chodura9 requires that the ions enter the sheath

region with a minimum drift velocity of Cs using Cs/Vu = (5/Z + 1/r)1/2, which is

slightly larger than that of Stangeby's. (The 5/3 term is the specific heat ratio of

ions with three degrees of freedom.) As shown in the third comparison in Table I,

Chodura's lower limit for (Vi) is attained in oursimulations within x <L for r = 0.1

and 1 but is never reached for r=10.

Chodura9 also studies the mean ion kinetic energy (W) in three velocity di

rections at the collector. By definition this quantity is identical to our value for

Qi(il>c)/F- In three dimensions, motion in the transverse directions contribute

2tTsc to (W). Expressed in one dimension, Chodura's results become (W)/Tse =

4.2 for r =1and 3.4 for r =0 when fi =1/1836. From our analysis (W)/Tse = t-i/>c

which is 3.9 for r = 1 and is 3.5 for r = 0.1. In summary, for r = 1, Chodura's

prediction of (Vi) entering the sheath region leads to a higher value of (W).

Bissell and Johnson10 use the generalized Bohm criterion as the boundary

condition for their kinetic plasma equation. Plotting our values of —tj)p (for fi =

1/1836) inFig. 2oftheir paper, we find that these fall below their values ofpotential

—ifii at the plasma-sheath boundary with the closest agreement at r = 0.1. (In

fact, our values are slightly below their plot of the results of Emmert et al.2 at

-#i.) In Fig. 6 of their paper at r = 1, ipc = -3.2; whereas our results indicate

i>c= —2.9. Bissell and Johnson's method of solution results in an infinite electric
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field at the plasma-sheath edge. From the potential profiles in our Fig. 6, one can

see that —V^ is always finite.

We find close agreement with Emmert et al.2 except at low mass ratio with

high r in their model of a collisionless, finite ion temperature plasma. Analytically,

they solve a plasma equation, tied to a plasma-sheath equation, by modeling the ions

kinetically and the electrons with a Boltzmann factor. The edgeof the quasi-neutral

region where ^ = —0i(t) (independent of fi) can be derived from Eq. (33) of their

paper. Hence we calculate that i/>i(Q.l) = 0.766; ^(1) = 0.404; and ^>(10) = 0.072

which form the curve ip\ plotted in Fig. 3(b). Referring to the general potential

profile in Fig. 1, for each case one expects that —ipi, the edge of the quasi-neutral

region, should be slightlylarger than our -^p, the center of the neutral region. In

Fig. 3(b), this trend occurs for all but the region near r = 0.1. Perhaps when the

potential curvature, V2ifi « 0, in the source sheath is sufficiently large, (as seen in

Fig. 6 with r=l) their quasi-neutral assumption may not be accurate as ifi—nfri.

Emmert et al. also show that the potential drop from the neutral region to

tfii occurs only across the distributed source. Similarly, in our model with a planar

source, the drop to ipp occurs over approximately 4Xd which is a typical distance

over which the plasma can become neutral In addition, they discover from their

analysis that the width of the distributed source has no effect on the value of ipc>

Substituting ^i into their Eq. (35) determines ipc for each r; their values are plotted

in our Fig. 3(a). Their assumption of Boltzmann electrons causes the greatest

difference in results for fi < 1/400 withr=10. For the other values of r (0.1 and 1),

we have excellent agreement among the theory of Emmert et al, our theory, and

simulation for low mass ratio. For fi = 1/1836, we differ from their results at most

by 4% for reasons as yet unknown.
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In the final week of writing this document, a discussion24 with Emmert re

vealed that the basic difference between the models of Emmert et al.2 and Bissel

and Johnson10 is in the shape of the ion source function. Bissel and Johnson use

a source function with the Maxwellian shape of exp(—/3v2) so that the resultant

ion distribution function is strongly peaked near zero velocity. Emmert et al. use

a source function of the form v exp(—0v2) which generates a Maxwellian ion dis

tribution. The Maxwellian source function requires a greater ij)\ to accelerate the

greater population of low energy ions. The source utilized in our theory and simu

lation produces half-Maxwellian source ions, hence, our results for xpp are closer to

ifii from Emmert et al. If our simulation were modified to generate the ion distri

bution function of Bissel and Johnson, then we anticipate results similar to theirs.

Hence, it seems that the resultant potential profile depends somewhat on the par

ticular form of the ion distribution function specified at the source.

VI. CONCLUSIONS

We have presented analysis and simulation determining critical potential values

for a half-Maxwellian source of ions and electrons which flow to an electrically

floating collector. This analysis is verified over a specified range of (mTsi)/(MTse)

from 1 to approximately 10""5. Density, drift velocity, temperature, kinetic energy

flux, and heat flux are derived at values of potential at the collector and across the

source sheath. For all of the above values, excellent agreement exists between our

electrostatic particle simulation and the fully kinetic model for (r,fi) at (10,1/40),

(1,1/40), (1,1/100), and (0.1,1/40). Previous studies, which assume a minimum ion

drift velocity entering the collector sheath region, model roughly only the potential

drop across the collector sheath, i.e. ibc —typ- For the largest range of mass and

temperature ratios, we encounter the closest agreement in ij>c with the model of

Emmert et al. However, even this model, which uses Boltzmann electrons, breaks
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down as fir —• 1. (Experimental plasmas composed of heavy SFjf-Ba+ ions with

fi « 1 do exist.) Consequently our model is the nearest to first principles of the

referenced works on collector sheaths in self-consistently modeling the dynamic

and kinetic behavior of the electrons and ions in the non-neutral, non-Maxwellian

region between a Maxwellian plasma source and collector.
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Variable List

Symbol Name

<t> Electrostatic potential

<t>P Source sheath potential drop . . . .

<f>c Collector potential

x Spatial position

v Velocity

M Ion mass

Tsa Source temperature ,

(^m) n*A velocity moment ,

Cs Ion sound speed . ,

a Ion/electron emitted density ratio . ,

m Electron mass ,

fi Electron/ion mass ratio ,

r Ion/electron source temperature ratio

L System length

fa Velocity distribution function . . .

E Electric field

p Net charge density

Vmo Cut-off velocity

Nsa Source density

45
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i/> Normalized potential

Na Particle density

Fa Particle flux

Ta Temperature

Qa Kinetic energy flux

Ha Heat flux

F Reference particle flux

Nb Boltzmann electron density

Vta Source thermal velocity

St Total energy transmission factor . . ,

The subscript a refers to ions i or electrons e.

The above is a list of only frequently referenced variables.
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