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ABSTRACT

Fermi acceleration is considered as an underlying mechanism for electron heating in r.f. dis

charges, in which the heating arises from the reflection of electrons from moving sheaths. By

examining the dynamics of the electron collisions with the sheaths, the map that describes

the electron motion is derived. For high frequency discharges (lj/2tt > 50 MHz), theelectron

motion is shown to be stochastic. By combining these dynamics with collisional effects in the

bulk plasma and incorporating self-consistent physical constraints, a self-consistent model

of the discharge is developed. The model is used to calculate physically interesting quan

tities, such as the electron temperature and average lifetime, and to predict the minimum

pressure necessary to sustain the plasma. The distribution of electron energies is shown to

be non-Maxwellian. These results can be applied to experimentally interesting parallel plate

r.f. plasma discharges to predict the operating conditions necessary for stochasticheating to

occur.



1. Introduction

In this paper we consider the heating of electrons in a radio frequency discharge by

high-field, oscillating sheaths. This mechanism, which can be more important than energy

transfer in the bulk plasma, has been explored by Godyak and colleagues [1-5], and by

Akhiezer and Bakai [6,7]. In these treatments the underlying mechanism for the heating is

Fermi acceleration, with the energy change arising from the reflection of the electron from a

moving sheath [8-11].

It is well known [9-11] that the Fermi acceleration mechanism does not always produce

continuous heating, but may, depending on the parameters, lead either to regular oscillations

or to stochastic heating. The transition between the two constitutes an energy barrier to the

heating of particles. For the purpose of calculating heating rates, Godyak et al and Akhiezer

and Bakai assumed the heating to be stochastic. Furthermore, the sheath was treated in

its simplest approximation as an impulsive reflector. As will be seen, the detailed sheath

dynamics plays a profound role in determining the heating rates and the boundary between

stochastic and regular motion.

The Fermi acceleration dynamics cannot be considered independently of the bulk plasma

properties. The interaction between sheath and bulk plasma can be quite complicated and

depends strongly on the background gas pressure. If the discharge can be operated at

sufficiently low pressure that the electrons experience many sheath reflections before suffering

an effective ninety degree collision, then the effects of ohmic heating in the plasma are

negligible, and the primary effects of the collisional processes are the elastic scattering of

electrons into the perpendicular directions and the ionization and exitation of neutrals.



In contrast, Godyak [2] treats both sheath and bulk heating, assuming that the collisional

processes in the bulk plasma generate the usual ohmic heating and are additive to the sheath

heating process.

The preceding effects can be treated in terms of a test particle interacting with known

regular and statistical forces. The results are statistically summed over a distribution of test

particles. In addition, there are a number of self-consistency conditions that must be met

for an r.f. discharge. In particular, charge must be conserved, which sets the d.c. sheath

potential and a minimum pressure required to sustain the discharge. The Bohm sheath

condition and the Child-Langmuir law determine the sheath thickness. These constraints

have been applied in the calculations of Godyak [2] to a more complicated geometry than

the one dimensional system which is considered here. Godyak and Ganna [3] also introduce

more plasma detail, such as plasma nonuniformities. However, the full complexity of the

plasma-sheath combination, investigated in d.c. discharges [12], is not employed. In experi

mental investigations Popov and Godyak [5] show the general correctness of the notion that

the interaction of the electrons with the plasma sheath can serve as the main source of en

ergy transfer at low pressures, and Godyak and Oks [13] measure non-Maxwellian electron

distributions in high frequency discharges. In these studies the simplified assumptions of the

mechanism of sheath energy transfer were used, and the distribution of electron energy was

not determined analytically.

The regime of interest is where the chaotic dynamics dominate the electron motion,

which is the range of pressures in the near-collisionless regime where electrons experience

many interactions with the sheaths before suffering collisions with neutrals. That is, the

regime where t6 < rc, where r6 is the typical bounce time and r. is the mean time for electron



elastic coUisions with neutrals. With this time ordering the electron motion is adequately

described by the single particle dynamics. Additionally, if the electron lifetime, 77, and the

effective time for energy losses due to ionization and excitation, rz, are large compared to

these times, the electron velocity distribution will be isotropic and the ionization, while

sufficient to maintain the discharge, will not result in significant electron energy loss. Thus,

we are interested in the range of pressure where

rb < rc < r, < tz. (1)

In this pressure rangethe main effects of collisions arephase randomization and an isotropiza-

tion of the electron velocity distribution due to elastic scattering.

The purpose of this paper is to apply the methods of nonlinear dynamics to the in

teraction of electrons with the localized oscillating electric fields in a plasma sheath and to

calculate the parameter regimes for which the resulting electron motion can be stochastic.

By solving the equations of motion, an exact single particle mapping which can be iter

ated numerically is developed, as is an approximate model which can be used for analytic

calculations. With the addition of the self-consistent treatment of the physical contraints,

the model can be used to calculate physically interesting quantities, such as the electron

temperature and average lifetime, and to predict the minimum pressure necessary to sustain

the plasma. The distribution of electron energies can also be calculated. These results can

be applied to experimentally interesting parallel plate r.f. plasma discharges to predict the

operating conditions necessary for stochastic heating to occur.



2. Hamiltonian Dynamics

We consider is a plane-parallel r.f. plasma discharge operating at frequency a;, and

begin by examining the dynamics in the collisionless limit. The discharge is modeled in one

dimension by treating it as two distinct regions. The first region is the body of the plasma,

of length /, which is taken to be field free. The second is the thin sheath region of thickness

s(t) and mean thickness s0. The sheath thickness and the electric fields in the sheath region

depend on the frequency, the d.c. voltage Vdc and the r.f. voltage ampHtude Vrj between

the plasma and the discharge plates. Using continuity of current and assuming that the

electrons move as a body with respect to the r.f. field, then, if we ignore ion space charge in

the sheath as a first approximation, the sheath electric field is a constant E = Vdc/s0, and

the sheath thickness follows the voltage as

s(t) ~ 50 l + :r^cos(u;i + <£)
Vdc

The equation of motion for an electron in the sheath is, trivially,

m'W

It is convenient to introduce the dimensionless parameters a, /? and e:

_ meu2sl Vrf Sq
TtT ' " ~ t7~' e~~T'

and the dimensionless position 6 and time r:

x

S = —, t = ut.

(2)



In terms of these variables,

d^ =~' <3>

Integrating (3) once gives the velocity of an electron as it moves through the sheath

,z(r) =M(0) - I, (4)
a

where p. = dS/dr is the dimensionless velocity. Integrating again gives the position of an

electron as a function of time in the sheath:

*(t) - *(0) = ~ + /'(OK (5a)

Here 6(0) and 6(t) are the positions of the sheath boundary when the electron enters and

leaves the sheath, that is,

£(0) = -/?cos<£,
(5b)

6(t) = -/3cos{t + <I>).

Equation (5) is a transcendental equation for the electron transit time r for a single pass

through the sheath. Using this value of r in (4) yields the change in velocity due to each

interaction with the sheath. This model will yield a mapping that to lowest order becomes the

simplified Fermi acceleration problem of a ball bouncing between a fixed and an oscillating

wall [8-11].

We consider the motion to occur in two distinct parts, the unperturbed motion through

the bulk plasma, where the electron velocity is constant, and the rapidly varying velocity

region in the sheath. The combination of the two regions constitutes a mapping of the



velocity and phase of the motion between successive entries into the sheath region, labelled

by integers n, n + 1, etc. With //(0) = fin and /z(r) = —/Jn+1, (4) can be rewritten

A«n+i = -P» + -• (6a)

If c -C 1 then the zero order phase advance equation is

1

To lowest order in r, (5) yields

«Wi = <t>n + —-• (6b)
€/*n+l

^2a(/jTO-/3sin<U m
n~ l +a£cos<£n ' V;

• With the substitution of (7) into (6a), the set (6) gives the first order change in velocity

and the zero order change in phase which transforms the velocity and phase just before the

nth entry into the sheath to that just before the (n + l)st entry:

_ 2(Mn-/?sin6,)
""+1 " ""• + l+a/3coS^„ ' (8a)
<t>„+l = <t>n +-p-. (8b)

To insure measure preservation for the Hamiltonian mapping (8), the change in phase must

also be determined to first order. Furthermore, the variables ft and <j> axe not canonically

conjugate in a Hamiltonian sense [11]. For the surface of section at a constant position,

the electron energy E and the crossing time t are canonically conjugate; the equivalent

normalized variables are S = y? and <f> = u>t. The Hamiltonian mapping is area preserving

in these canonically conjugate variables. Assuming a small energy change, £n+1 —Sn <C £n,



expanding (8a) for small a, and determining the first order change in phase in the usual

manner [11] to insure area preservation, (8) becomes

£n+i = £» - 4/?y/S^sin <f>n +4a/?£n+1 cos <£n, (9a)

<t>n+1 =</>n +-L- +̂ ^+4a0 sin*.. (9b)

Over most of the phase space the last term on the right of (9a) is small and can be dropped,

along with its area preserving counterpart, the last term in (9b). In this approximation the

change in velocity in one pass through the sheath is just

V.
Av = vn+i - »» = -2w50tj- sin </>n, (10)

Vdc

which is the impulse approximation of the Fermi acceleration mapping [8]. This approxima

tion has also been used by Godyak and associates [1-5], together with the assumption that

<t>n is a random variable, to treat the sheath heating without employing mapping theory.

From the map (9) the main features of the dynamics can be deduced. The change

in energy is proportional to w, with the energy dependence A£ oc y/£. Electrons moving

according to these dynamics will experience regular or chaotic motion in different regions

of the parameter space. It is possible to estimate the particle energies for which transitions

from regular to stochastic motion will occur. Through the appropriate change of variables,

this map can be put in the form of the Chirikov standard map [11,14]

As is well known, chaotic motion occurs in this map for K > 1. Thus knowing the value of

K gives a measure of the stochasticity in the system.

8



To get a local approximation of the stochasticity parameter for the mapping (9), expand

about a fixed point (£k, 4>k) of (9), £n = £k + A£n and </>n = 4>k + A</>n, to obtain

A£n+1 =A£„ +4:/3y/Fk sin A<f>n1

1 +J2e£3k/2 ^/2j
A^n+1.

With the substitution

n+1 " 2e£3k/2 "+X'

this takes the form of the standard map. Thus, using e<l, the approximate stochasticity

parameter describing (9) is, in terms of the dimensional electron energy, E,

K =
eE '

As can be seen, K decreases with increasing energy, so the system is less stochastic at higher

energies. This occurs because as the energy increases, the phase shift across the plasma

decreases, and phase correlations between successive collisions with the sheaths reduce the

stochasticity. The condition for stochasticmotion in physical variables is

E< meo;25o/-^. (11)
Vdc

Using some values for a high frequency r.f. discharge: / = 10 cm, s0 = 0.025 cm, Vrf =

100 volts, Vdc = 110 volts and w/2x = 100 MHz, thecondition for stochasticity is E < 50 eV.

The easiest way to visualize the dynamics is to plot a surface of section of the phase

space. By plotting the electron energy versus the phase of the r.f. field each time an electron

leaves the sheath, a picture of the dynamics is developed. Figure 1 shows this surface of

section for the dynamics given by (9). The parameters of the map are representative of



r.f. discharges. The low energy portion of the phase space is entirely stochastic, and the

stochasticity decreases with increasing energy, as predicted by (11). This results in a barrier

to heating, which for the parameters chosen occurs at E ~ 150 eV. In a physical discharge,

electrons will escape through the sheath when they reach an energy

E>Vde(l-0co84>). (12)

Since electrons must always be able to escape in a physical system, at some phases this

energy must lie below the heating barrier, and the phase space will be chaotic; a typical

escape energy is shown as the solid curve. Thus electrons will be heated by the stochastic

dynamics until they reach the escape curve; in numerical simulations of the discharge, such

electrons are removed from the simulation and replaced by low energy electrons, modeling

the ionization process.

While these sections are useful to illustrate the mapping dynamics, they are not the

most useful description of the physical system. Since fast electrons interact more frequently

with the sheaths than slow electrons during a given time interval, maps taken at a constant

surface in space cannot be used directly to predict physical quantities. By iterating each

electron for an equal time instead of between successive sheath interactions, an alternative

surface of section can be developed. The proper canonical variables for this surface are the

electron velocity and the physical position of the electron in the plasma; this is shown in

Figure 2 for the same parameters as in Figure 1, but instead of looking at the system after

each collision with the sheath, a "snapshot" of the electrons is taken at equal time intervals.

If these intervals are multiples of the r.f. period then this procedure gives a proper surface of

10



section, and the corresponding maps can be used to make physically significant predictions,

such as the energy dependence of the electron distribution.

3. Fokker-Planck Calculation

Electrons moving under stochastic dynamics will diffuse in energy and phase throughout

the available phase space. In the general case, if we have a two dimensional equal time

mapping in velocity v and position a;, and we are in a stochastic region of phase space,

then by making the random phase approximation we can describe the system in terms of a

distribution function in v alone. The evolution of this distribution function f(v,t) is given

by [11]

D(v) ddf(vA) d d
n ';=-7r:(i?W/M)) +dt dvK v /JK ' " dv

Since time is the physically relevant independent variable for the distribution function, the

local diffusion coefficient D(v) and frictional coefficient B(v) are determined from the equal

time mapping. Once /(u, t) is known, wecan calculate quantities suchas the average electron

energy and the rate of ionization.

Since we are interested in the regime where the stochastic heating dominates, collisions

lead to phase randomization and isotropization but not dissipation, and we calculate the

distribution function from (13) with B(v) = 0. The quasi-linear diffusion coefficient is given

by

/ dx(AvT(v,x))2
D(v) =

dx

11

I

2 dv /(M) (13)



where AvT is the Hamiltonian velocity change for the period T, and the integral is over all

x possible for the mapping period T.

To calculate D(v) analytically, we use the constant position map and make the appro

priate transformation. If we assume a time step of length T, and neglect the time spent in

the. sheath compared to the transit time across the body of the plasma, then the number of

bounces in time T for an electron with velocity v is just N = Tv/l. Then if we know the

velocity change Av(v, x) for one bounce, the diffusion coefficient will be

/ dx(Av(v,x))2
D(v) =jl - ,

jdx
where the integral is over all x and Av(v, x) is the velocity change for a single bounce. Using

x = v</>/(jj and writing D(v) in terms of jlj, the normalized velocity, gives

2jtDW =£? J0'W*^*))
These transformations allow the use of the constant position map (9) to calculate D(fi).

To lowest order, the one dimensional normalized velocity change is

A/x(jz, <j>) = —2/3 sin$.

Thus, we obtain

D(fi) = 2e/?V (14)

Since we axe looking for a steady-state solution, we set df/dt = 0 and integrate over \i. In

the physical system, there will be a particle flux; electrons are born at low energy through

12



ionization and escape through the sheath at high energy. Thus, in the steady state, (13)

becomes

T= ^ j-/(aO =constant, (15)

where T is the electron flux through the system. This can be integrated and f(fi) can be

found by applying the appropriate boundary conditions. The boundary at \i = 0 is perfectly

reflecting, so the boundary conditions there are f(fi) ^ 0 and T = 0. We postulate a source

at fj, = fi0 to model the creation of electrons through ionization, so T = 0 for \i < fi0 and

T ^ 0 for fi, > fj,Q. If we model the escape surface in phase space as a constant velocity

fi = fimi then the boundary conditions at ft = \im are f(fim) = 0 and T ^ 0. Substituting

(14) into (15), we obtain

/M«m —

in the region [iQ < fi < /zro. In the region 0 < \i < /jl0, f(fi) = constant. In terms of energy

£ = /j2, we have the scaling f(fi)dfi = f(£)d£, such that for fi0 < \i < /Jm,

/(£)cc^£l. (16)
Figure 3 compares the distribution function obtained by iterating the exact area pre

serving map to the analytic distribution of the same average energy. The solid line is the

numerical distribution, and the dashed fine is the distribution predicted by (16). Both dis

tributions axe normalized so that J f(E)dE = 1. To determine the numerical distribution,

an ensemble of 4000 electrons was started with energies between 0.05 and 0.15 eV and was

allowed to accelerate under the chaotic dynamics. Electrons were removed from the distri

bution according to (12) and new electrons were injected at low energy (between 0.05 and

0.15 eV).

13



The agreement is quite good over the energy range between the injection energy and

the energy at which electrons axe lost. The numerical distribution falls off more slowly at

high energy because electrons escape over a range of energies, not at a single E = Em. At

low energies the bump in the distribution reflects the electron source at 0.1 eV.

The calculation of the electron distribution must be modified for a three dimensional

system. Since only the parallel velocity is affected by the sheath interaction, we have, in

terms of the normalized velocity y, —(ftxi fj,y,ftz),

where A/zz = —2/3 sin <j>.

By the ordering (1), collisions with neutrals act to scatter the electrons on a time

scale which is long compared to the typical bounce time but short compared to the electron

lifetime, resulting in an isotropic distribution. To model the scattering we write the mapping

as a function of the magnitude of the velocity, |/i|, only:

where

AH = V|m|2 + 2m,A|i, + (A|i,)» - ImI-

By writing fjtz = \fi\ cosf and integrating over angles, we obtain

AM-**,

and the three dimensional diffusion coefficient is then

14



The three dimensional distribution function g(fjb) satisfies the equation

v„(5Mv^.))-o.
Since the electron distribution is isotropic and the diffusion coefficient is independent of

angle, the distribution function will be a function of \fi\ only, so in the steady state

,2t,_ ....20(H) dH r=-M ——5j7T0(M) =constant,

which leads to the distribution

9(M) «

where, as before, |/im| is the escape velocity of the electrons. In three dimensions we have

the scaling g(y)d3/i = g(£)d£, so

g{£)xVe(l-±-). (is)
Figure 4 compares this distribution with a three dimensional Maxwellian distribution of the

same average energy. The normalization for both is J g(v)<Pv = 1. The distribution given

by equation (18) contains more electrons at both high and low energies than the Maxwellian;

this behavior is representative of this distribution, and is independent of the average energy

of the distributions. Godyak and Oks [13] have measured a quahtatively similar distribution

for high frequency, low pressure r.f. discharges.

4. Self-Consistent Model

Thus far the dynamics of a single particle has been examined using a set of arbitrary

15



parameters. By adding physical constraints to the single particle dynamics we obtain a self-

consistent model of the discharge. It is assumed that Vrj, u>, p0l and M, the ion mass, are

the control parameters, and the model will be used to determine Vdc1 Te, s0 and ne.

One self-consistency condition is that the rate of ionization must equal the rate of ion

loss out of the plasma; that is,

<**)j =0.606uB, (19)

where

(„*) =_2g_ fg(E)<T'(E)VEdE,

aj ~ 3 x 10"16 cm2, Ez = 15.76 eV,

and the ions axe assumed to enter the sheath with a density 0.606 times the central density

and with the Bohm velocity uB —y/TJM. Thus (19) relates the electron temperature Te

to p0/, where Te = (2/Z)(Ee) for a three dimensional distribution, Te = 2(Ee) for a one

dimensional distribution, and (Ee) is the average electron energy.

A second self-consistency condition is the relationship between the r.f. and d.c. electric

fields in the sheath, that is, the connection between Vrj and Vdc. Equating the electron and

ion loss rates, we have, approximately [15]

Vdc = Vrf + CTe, (20)

where C ~ In y/M/me. This gives an estimate of Vdc which can be used in the analytic

model. However, in order to calculate those quantities which depend on the electron escape

energy, such as the electron flux, it is necessary to know the difference between V^c and Vrj

16



more precisely. In the next section a procedure to obtain a more precise estimate from a

numerical simulation of the discharge is given.

A third self-consistency condition is the Child-Langmuir law for ions

rf-0.606nA--^j —^5—, (21)

which relates s0 to Te and ne.

The final condition required to obtain a complete self-consistent set of equations is the

electron energy balance in the plasma. To calculate the power injected into the plasma

electrons through stochastic heating, we first consider the energy transferred to a single

electron by one colHsion with the sheath, AE = Ef —E{. In general, AE is a function of

both the electron velocity, v, and the position of the sheath boundary when the electron

enters the sheath, through the phase variable <j>. AE can be calculated from the velocity

change in the sheath given by equation (10)

AE(v, *) =^-{v} - v*) =^Av(v, t)(Av(v, <f>) +2v),

where Au(u, </>) = Uy —v.

IfT, the period of the equal timemap, is large compared to //v, the transit time across

the plasma, then an electron makes Tv/l bounces during each iteration of the map. To

calculate the average energy change, assume that the electron phase 9 is uniformly distributed

and average over it. Since the sheath boundary is moving, however, the flux of electrons

hitting the sheath is a function of time, and </> is not uniformly distributed. If 0 is the random

phase variable, then <j> is distributed according to

dB =(I-^^ sin (j>)d<t>.
v

17



Thus the average power injected into an electron at a given velocity is

where (27r)_1 J ddAE is the phase average of the energy transfer per collision. The total

power into the plasma is then

P= fP(v)g(v)d3v.

Integrating over the distribution (18) yields

P = 2my^2r„ (22)

where T8 is the electron flux hitting the sheath.

The power into the electrons must be equal to the power carried from the plasma

when electrons escape across the sheaths plus the power the electrons lose to collisions with

neutrals. Thus,

P = TEm+nyieUL, (23)

where V is the electron flux out of the plasma, Em oc Vdc —Vrf is the typical energy of

an escaping electron as it enters the sheath, and the second term represents the power lost

by the electrons due to excitation and ionization. Equations (22) and (23) also relate the

electron density ne to s0 and Te.

The equations (19)-(23) form a self-consistent model of an r.f. discharge. Given the

control parameters Vrj, cj, p0l and M, and the underlying dynamics of the discharge, this

set of equations determines the state of the discharge as characterized by Vdc, Te, s0 and ne.

These results axe shown in Figure 5 for an argon discharge operating at Vrj = 100 volts and

18



u}/2tt = 100 MHz. Figure 5a shows the average electron energy as a function of p0l for this

discharge, while Figure 5b shows the corresponding electron density.

We check that these results over this pressure range axe consistent with condition (1)

on the various timescales of interest. For a discharge of length /, the mean bounce time for

an electron with parallel velocity v^ is given by

rb = fd3vg(v)--.

Since the electron Hfetime must equal the ion Hfetime, by assuming a Bohm velocity for the

ions at the sheath edge rt can be simply estimated as

_ / [m
Tl~~2\!T'

The colHsion times axe the inverse of the coUision frequencies

(v) = n0 / d3vg(v)vcr(v),

where the appropriate cross-section for elastic or inelastic scattering (crc or <rz) is used.

For a typical axgon discharge the time ordering (1) holds in the pressure range 1.0 < p0l <

10.0 mTorr-cm, as shown in Figure 6. In the pressure range pQl < 1.0 mTorr-cm, the electron

lifetime is less than the mean time for elastic colHsions, and the distribution is not isotropized

by elastic coUisions. In this regime, the system is more properly treated as a one dimensional

system, with elastic scattering into the other dimensions modeled as a frictional drag. In the

pressure range p0l > 10.0 mTorr-cm, elastic collisions act to phase randomize the electrons

every bounce, and the single particle dynamics must be modified accordingly. In both cases,

however, stochastic heating still occurs, and we expect the results to be qualitatively the

same.
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5. Many Particle Simulation

As a check on the self-consistent model given by (19)-(23) we compare a one dimensional

self-consistent model with a one dimensional numerical simulation of the discharge. The

one dimensional model is described by equations (19)-(23), with the substitution of the

one dimensional electron distribution (16) for the three dimensional distribution (18). To

simulate the discharge, we begin with an ensemble of low energy (~ 0.1 eV) electrons and

allow them to evolve under the dynamics. As the simulation proceeds, the electrons axe

stochasticaUy heated by the oscillating sheath fields. Electrons reaching a sufficiently high

energy pass completely through the sheath and recombine at the waU. In the simulation

this is done expHcitly by following the electron orbits in the sheath and removing from the

simulation those electrons which transverse the entire sheath. As electrons are removed

from the simulation they axe replaced by low energy electrons, modelling the creation of free

electrons through ionization. Eventually the electron distribution reaches a steady state,

with electrons diffusing from low to high energy.

Since this steady state depends on the electron escape curve [as shown in (12)], and the

escape curve is a function of the difference Vdc —Vr^ Vdc must be determined dynamicaUy

by the simulation. This is done by allowing Vdc to vary in time as the simulation proceeds.

Since the average electron lifetime is controlled by the stochastic heating (as the heating

increases [decreases], the average Hfetime decreases [increases]), the parameter /3 (the ratio

Vrj/Vdc) controls the electron lifetime through the rate of stochastic heating. We therefore

tie the d.c. potential to the mean electron energy through the relation

Vi = V„ + C(Ee).
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The motivation for this equation is as follows: if Vrf = 0, corresponding to /? = 0, then the

confining potential required to make electron and ion losses equal is just some constant C

times the average electron energy. In the presence of the r.f. field, the d.c. field is larger than

the ampHtude of the r.f. field by a similar factor. As the simulation progresses, a steady state

wiU result: if the average energy rises, Vdc wiU increase, resulting in a lower heating rate;

if the average electron energy drops, V^c wiU decrease and the heating wiU increase. The

parameter C controls the relationship between the stochastic heating rate and the height of

the electron escape curve.

AdditionaUy, the electron Hfetime (as determined by the simulation) determines the ion

mass. From quasi-neutrality of the plasma the average lifetime of the ions and electrons

must be the same: (tt) = (te) = (t). By setting the average ion velocity to be v = //2(t),

and assuming a Bohm energy, Et = Te/2, for the ions as they enter the sheath, the ion mass

as a function of the average electron Hfetime and energy can be calculated:

Thus by adjusting C in the simulation, the height of the electron escape curve can be moved

so that a plasma of any desired ion mass can be simulated.

The simulation of the plasma uses Vrj, w, /, s0 and C as input parameters. Exploring

the C-s0 plane corresponds to simulating discharges of differing ion mass and pressure. For a

given choice of C and s0, we begin with an ensemble of low energy electrons and allow them

to evolve under the dynamics. As the simulation progresses, a steady state is reached. From

the average electron lifetime the corresponding ion mass can be calculated. The simulation

also determines the electron distribution and average energy. Using the analytic distribution
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(16) with the same average energy, we calculate the self-consistent pressure from (19). By

varying C and s0 so that the ion mass remains constant, the average energy is found as

a function of p0l. This curve is shown in Figure 7a for an argon discharge operating at

VTf = 100 volts and uj/2tt = 100 MHz. Since the mass is not held exactly constant during

this iterative procedure, the numerical points (shown as crosses) differ sHghtly from the

solution in which the mass is held constant at M = 40Mp (shown as the dotted Hne).

In Figure 7b, the numerically determined density is compared to the analytic density

obtained using (21)-(23). Using the values of Vdc and (Ee) obtained from the simulation,

along with the value of sQ input into the simulation, the numerical value ofne is calculated

from (21). This is shown as the crosses in Figure 7b. The dotted line shows the value of

ne obtained from a completely analytic solution of (19)-(23) in the one dimensional case.

The primary reasons for the differences between the numerical density and the analytic

density are (a) in the exact dynamics of the simulation, electrons can escape through the

sheath over a range of energy, not at a single energy as used in the analytic model; (b) the

constant C varies in the simulation; in Figure 7, C varies between 3.9 and 4.3, while in the

analytic model it is held constant at C —In y/M/me ~ 5.6; (c) the electron distribution

(16) predicted by quasi-Hnear theory differs sHghtly from the actual numerical distribution.

However, the good agreement between the numerics and theory verifies the approximations

used in deriving (19)-(23).
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6. Discussion and Conclusions

We have explored a mechanism of plasma heating in an r.f. discharge, that of energy

transfer on reflection from the oscillating sheaths. This mechanism may dominate over bulk

plasma heating over some range of r.f. and plasma parameters. SpecificaUy, there is an

onset of colHsionless plasma heating as the r.f. frequency is raised above a threshold level

which is typicaUy weU above the usual range of r.f. discharge frequencies. For a typical

configuration considered here, this threshold occurs at u/2tt > 50 MHz and in a pressure

range pQl < 10 mTorr-cm. The analysis of this paper only holds in this pressure range,

as only isotropization associated with electron-neutral elastic scattering colhsional processes

have been treated.

Although the coUisionless heating may be strong compared to coUisional heating pro

cesses, the resulting average electron temperature is similar to that occurring at lower fre

quencies with coUisional heating. This result is a consequence of the fact that the electron

temperature is determined by a competition between ion losses, set primarily by the electron

temperature, and ionization, set also by the electron temperature, and thus is independent of

the heating strength. The key difference between the sheath heating mechanism, described

here, and the more usual colhsional heating mechanism is the power law distribution of en

ergy f(E) oc -E"-1/2, rather than the usual MaxwelHan distribution f(E) oc e~E/kT, resulting

in both more slow and more fast moving electrons, as shown in Figure 4, and an increased

ionization efficiency, compared to a MaxwelHan.

In the preceding analysis no attempt has been made to optimize parameters for any

specific purpose. We have chosen rather to demonstrate the generic features of an r.f. dis-
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charge that is heated by colHsionless interaction with the sheath, and have shown that the

discharge parameters can be chosen self-consistently, Thus we can expect that a laboratory

plasma can be created having the basic distributions described in this paper.

We do not, however, consider these results to be a complete study of a high frequency

r.f. plasma dischaxge. In particular, the simplified sheath model presented here is only an

approximation to the highly nonlinear sheath dynamics. From studies of d.c. discharges

[12] it is evident that the sheath conditions used here are overly idealized. More generally,

a self-consistent solution of the dynamics, including the nonHnear osciUation of the sheath

boundary should be employed [16]. Additionally, non-uniformity of the bulk plasma, col

lisional breaking of the invariants at high pressure and low frequency, and the transition

to parameter ranges in which the sheath and bulk heating compete should be considered.

Ultimately, experimental measurement of the distribution function of the electrons would be

a key test of the theoretical predictions.

The preceeding results are also of non-trivial interest for the theory of area preserving

mappings. They indicate that self-consistent numerical solutions to mapping problems can be

generated in which the external parameters driving the dynamics axe continuously adjusted

to satisfy the self-consistency conditions. The procedure is stable and converges to a self-

consistent solution. Thus, while we have used the power of mapping theory to gain insight

into the processes of colHsionless heating in an r.f. dischaxge, we have also shown how mapping

theory can be extended to include self-consistent conditions.

The support for this work provided by National Science Foundation Grant ECS-8517363 and

Department of Energy Grant DE-FG03-87ER13727 is gratefuUy acknowledged.
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Figure Captions

Figure 1. Constant position phase portrait (a = 0.0073, /? = 0.833, e = 0.005). SoHd Hne

shows energy above which electrons transverse the entire sheath and recombine with the

waU.

Figure 2. Equal time phase portrait for same parameters as Figure 1.

Figure 3. Comparison of numerical and analytic one dimensional electron distributions of

the same average energy. Both distributions axe normalized to one.

Figure 4. Compaxison of analytic three dimensional electron distribution with a MaxwelHan

of the same average energy. Both distributions axe normaHzed to one.

Figure 5. Pressure dependence of a three dimensional r.f. discharge, a) Average electron

energy vs pressure (V = 100 Volts, uj/2-k = 100 MHz, M = 40Mp. b) Electron density vs

pressure.

Figure 6. Time ordering for a typical argon discharge.

Figure 7. Pressure dependence of a one dimensional r.f. discharge, a) Average electron

energy vs pressure (V = 100 Volts, u/2ir = 100 MHz, M = 40Mp. b) Electron density vs

pressure. [+ Numerical, • • • Theoretical]
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