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ABSTRACT

The IC fabrication process contains several testing stages. Because of the high cost of

packaging, the testing stage prior to packaging, called wafer probe, is key in reducing

overall manufacturing cost Typically in this stage, specification tests are performed. Even

though specification tests can certainly distinguish a good circuit from all faulty ones, they

are expensive and many types of faulty behavior can be detected by simpler tests. Hence

the construction of a set of measurements which detects many faulty circuits before

specification testing is described. Bounds on these measurements are specified, and an

algorithm for test selection is presented An example of a possible simple test is a test of

DC voltages (i.e. parametric tests). This type of test is defined rigorously, and the

effectiveness of it in detecting faulty circuits is evaluated.

1. Introduction

The advent of integrated circuit technology has necessitated new approaches to testing of analog

circuits. Because of the element density made possible by integrated circuit technology, fault detection

can only be done by tests at a limited number of output connections. Furthermore since most elements

are inaccessibly embedded within chips, it is no longer possible to repair or replace them. Conse

quently faulty circuits are simply discarded and testing procedures do not need to diagnose faulty ele

ments or even determine the location of faults. It is simply necessary to be able to distinguish a faulty



circuit from a good one.

Specifications of analog circuits are typically based on the dynamic behavior of a circuit For

example, it may be required that the AC gain over a range of frequencies or the phase margin be

bounded. It is possible to distinguish between a good and a faulty circuit by testing all of a circuit's

specifications. This is done typically in practice in two stages in the fabrication process (Figure 1):

wafer probe and final test

Final tests consist of a complete set of specification tests. Since specifications bound both

dynamic and DC behavior of a circuit specification tests are typically categorized as either parametric

or functional tests. Functional tests are those which measure a circuit's dynamic behavior and

parametric tests measure DC voltages and currents. Because packaging and final test are more expen

sive man all other manufacturing steps [1], the additional testing stage before packaging, called wafer

probe, is added.

Wafer probe also consists of specification tests, with the exception of high frequency measure

ments for which the high capacitance of the probes make it impossible to obtain accurate results. Per

forming a complete set of specification tests in the wafer probe stage is still very costly and many cir

cuits have specifications which require expensive testing procedures. It is hence desirable to precede

specification tests by simpler tests in wafer probe, particularly if they detect many faulty circuits. For

example, a test of DC voltages (that is, additional parametric tests) could be such a test

The idea of adding additional tests in wafer probe is not original. In some fabrication lines, addi

tional parametric tests are included to discard obviously faulty circuits[l] and furthermore in [1] such an

approach is formalized. In [1] the problem of determining bounds on each of the parametric measure

ments is posed as a statistical optimization problem, where manufacturing profit is maximized. The

algorithm can be broken down into three parts:

1. For a sample of possible upper and lower bounds on parametric measurements, estimate wafer

probe yield and final test yield, and compute profit from the yield estimates. The estimates of

yield can either be done by a Monte Carlo analysis, requiring multiple circuit simulations to

determine if the chip passes wafer probe and final tests, or they can be determined by taking
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measurements from the fabrication process. In the latter case, many circuits will need to be

tested with less than optimal bounds on measurements before a large enough sample is builtup to

obtain a set of good tests.

2. Approximate profitby an analytical function by computing regression coefficients.

3. Maximize the analytical function which approximates profit to determine the optimal lower and

upper bounds on measurements.

Obviously, both methods proposed to compute profit in step 1 are nontriviaL Multiple circuit simula

tions are computationally very expensive, and the alternative of computing yield from the fabrication

process requires the assembly and testing of a large sample of chips. This second method can be

efficient if a very large number of chips need to be tested and if the correct parametric tests are chosen.

The paper, however, assumes that we know which parametric tests to use and does not present a way of

choosing them.

In this paper, like in [1], we aim to prove that adding additional tests in wafer probe can be

efficient and effective. However, we go one step beyond [1] by discovering which types of faulty

behavior are detectable by these tests and which ones are not. In addition, the work to be presented

here exceeds that in [IJ by presenting an algorithm to choose the tests to be used. This becomes possi

ble because we do not aim to optimize manufacturing yield to determine bounds on measurements but

rather we make reasonable choices of these bounds based on tolerances on process parameters (e.g.,

oxide thickness and substrate doping) which are typically specified by process engineers. By doing so

we cut down the computational cost enormously. Ourcomputation requires n+1 circuit simulations for

each measurement with typical simulators where n is the number of independent process parameters.

Hence, to compute bounds on measurements, our algorithm involves the following steps:

1. Determine a tolerance box containing process parameters. Typically this is specified by process

engineers. However if we desire to optimize manufacturing profit the regression techniques men

tioned in [1] can be used here to determine the optimal size of the tolerance box, but this is not

computationally cheap.
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2. Map the tolerance box by the sensitivity matrix of the good circuit into the measurement space,

each axis corresponding to a measurement to be introduced before specification testing in wafer

probe. These measurements may be, but are not restricted to parametric tests and the resulting

region specifies the good signature. It is a polytope[2] and is slightly more complex than die

parallelepiped constructed by [1].

The problem of choosing an optimal set of tests which distinguishes between the good circuit and

likely faulty ones is similar in formulation to the one of diagnosis, with the simplification that it is only

necessary to diagnose the good circuit. Tins is because choosing an optimal set of tests is equivalent to

finding a set of measurements for which the good circuit can be diagnosed (distinguished from all faulty

ones). In the fault diagnosis literature our approach can be categorized as a simulation-before-test tech

nique. Such an approach is reasonable for our application because it has been observed that for analog

circuits, simulation during design is cheaper than testing time during production.

Much of the work in the area of diagnosis has been done for linear circuits. Among those tech

niques which deal with nonlinear circuits, typically one evaluates:

y=F/(p°)

for each fault, where y and J3° are vectors of measurements and parameters respectively, and F,( ) is

the faulty circuit equation. The parameters, p°, are at their nominal values. This vector, y, is stored in

a dictionary as the fault signature. If we wish to diagnose a fault a measurement of the circuit being

tested is compared with measurements in the dictionary. The fault is identified by determining the

closest (e.g. Euclidean norm) simulated fault signature. If our aim is simply to identify the good cir

cuit then a circuit is determined to be good if its response is close (by some arbitrary measure) to the

simulated response of the good circuit with parameters at nominal values [3].

This approach is not robust because good parameters do not lie exactly at their nominal values

but are often guaranteed to vary within some prescribed tolerance. Consequently it is unlikely that

measurements will have values exactly equal to those stored in the fault dictionary. Furthermore

because of tolerance, some faults may have measurements equal to those of the good circuit when their

parameters are within tolerance. These faults belong to the same ambiguity group as the good circuit
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and cannot be detected by the given set of measurements. An algorithm which rigorously determines

ambiguity groups, solves the diagnosis problem and can be used to find a set of measurements for

which the good circuit can be distinguished from all faulty ones.

Attempts have been made to aggregate faults into ambiguity groups. In [4] this aggregation is

left to the intuition of the test designer. This is obviously not robust since the aggregation is not

rigorously justified in terms of the variations of parameters. Consider the plot of good and faulty nomi

nal voltages at two outputs of an op amp, shown in Figure 2. Some faults that we will later determine

to be detectable by these two voltage measurements have nominal voltages that are very close to those

of the good circuit In addition, some faults which we will later find to be undetectable have nominal

voltages far from those of the good circuit These undetectable faults have node voltages that are

highly sensitive to process parametervariations. It is consequently impossible to identify detectable cir

cuits by just knowing die nominal voltages, and intuition is not sufficient to aggregate ambiguity

groups.

Very few results exist which aggregate faults by attempting to approximate the signature of good

and faulty circuits, confining parameters withia a tolerance box, rather than restricting them to their

nominal values. The problem of determining signatures for linear circuits is approached rigorously in

[5]. For nonlinear circuits, one possible solution is variational analysis[6]. In variational analysis, each

measurement is considered independently, and for parameters within tolerance, upper and lower bounds

on each measurement are computed. In our approach, which we have outlined earlier, we consider all

measurements simultaneously. This paper is actually the multi-dimensional extension of die work in

[7,8], where the problem of aggregation is analyzed for nonlinear circuits for the special case of two

measurements considered simultaneously. After computing signatures for good and faulty circuits

accounting for tolerance, aggregating faults into ambiguity groups can be rigorously justified and it is

possible to determine an optimal set of measurements. This is also computationally feasible because

the diagnosis problem has been simplified to one of diagnosing only the good circuit

To illustrate our results, we have studied the special case of adding DC voltage measurements to

wafer probe testing. Specifications obviously do not prescribe bounds on these DC voltage tests. Con-



sequently, first bounds aredetermined on these measurements by the algorithm outlined above. That is,

we compute the good signature. Then we present algorithms which will be used to determine an

optimal set of tests. This is done essentially by determining signatures for all faulty circuits on a fault

list finding the ambiguity group containing the good circuit and constructing a set of measurements for

which this ambiguity group contains no faults. Finally the effectiveness of DC voltage tests in distin

guishing faulty circuits from good one is evaluated. Case studies will show that certain types of faults

can be detected by DC voltage measurements.

This paper is organized as follows. In the next section, we describe how to compute the good

signature. This specifies a set of measurements for which die circuit passes tests. Obviously, the com

plement of this set of measurements is a set of measurements for which the circuitis discarded in wafer

probe. We then define criteria for detectability, that is, a condition for which the good circuit and a

faulty circuit are guaranteed not to be in the same ambiguity group, and algorithms are presented for

test selection. So far the algorithm is completely general, and functional tests as well as parametric

tests could be used for testing. In Section 3 die special case of DC voltage measurements (parametric

tests) is considered and its effectiveness in detecting faulty circuits is evaluated. To do so, we first dis

cuss the problem of fault modeling. Then we present some examples to determine the fault types

which are detectable by DC voltage measurements. In the last section we conclude by summarizing our

results.

We close this section with a list of our notation:

(...) : a set
[-1,1] : the closed interval on the real line between -1 and 1
<x,y> : the inner product of x and y
co : convex hull

aff : affine hull
span A : the subspace spanned by the elements of the set A
dim : dimension

N : the set {1,2,. . . ,n}
R : the set of real numbers

R" : the set of real n-tuples
Ic : the complement of the index set / in N
Q : thenumber of subsets of cardinality m in a set of cardinality n

. 1+1 if jc^O
s*n x ' 1-1 if *<0



2. Specification of the Test

2d. Problem Formulation

For a given set of measurements to be added in wafer probe, our aim in this section is to deter

mine a set of bounds for these measurements. Measurements made on a good circuit should be within

these bounds. As outlined before, computing these bounds essentially involves:

1. Determine a tolerance box (specifying allowed variations of parameters).

2. Map the tolerance box by a sensitivity matrix into the measurement space, defined by the set of

tests which are added in wafer probe.

To define the tolerance box, suppose we have a set of n parameters: ft,... ,pa. These parame

ters may be process parameters as for example, oxide thickness and substrate doping; or they may be

process disturbances if a statistical process simulator like FABRICSII, coupled to a circuit simulator is

available [9]. At any rate, they should have minimal statistical dependence and should be constant

across a chip. They can include any variable that is not controlled exactly because of fluctuations dur

ing production.

Given eue2,... ,en, a collection of linearly independent vectors in R", the tolerance box, C, is

then defined to be:

f, P* ], /=!,... ,n Vc =\i:ft* ift e ea
[/»i

where the interval [ pf, ft/* ] contains the nominal value p? of p;.

Suppose we are given an input waveform or DC input voltages, consider the nonlinear circuit

equation:

>=F(P)

where y e R"1 is a vector of m measurements and Pe R" is a vector of n parameters. Then if the

parameters are within tolerance, the set of possible measurements for a good circuit is

R =F(C)

This region is the good signature and we will approximate it
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Since the tolerance box is a small region around nominal parameter values, P°, we linearize F

about P° and approximate R by

Jf=r+F(P°)

where

Y = AC

and

5p

F(p°) is a vector of m nominal measurements for nominal process parameters. A is a sensitivity matrix

and Y is a centro-symmetric polytope. This mapping is illustrated in Figure 3, where a true signature is

compared with its approximation.

In the next subsection we will demonstrate how to define die intervals [ ftLt ft" ] which contain

the parameters ft for specified statistical distributions. In the following subsection we will present and

prove our algorithm for constructing the centro-symmetric polytope, Y. By doing this we have defined

the signature and the test If a measurement is made which is outside of R then the circuit is definitely

faulty and is discarded. On the other hand, a measurement inside R does not necessarily guarantee a

good circuit because faulty circuits contained in die ambiguity group of the good circuit may have

measurements in R. However, we will show that if measurements are carefully chosen, many faulty

circuits can be distinguished from the good one by DC voltage measurements. Hence the ambiguity

group of the good circuit can be made to be small. To do so, in the last subsection we define criteria

for which a good circuit is distinguishable from a faulty one for a pregiven set of measurements and we

present algorithms which will be used to choose an optimal set of measurements.

22. Definition of the Tolerance Box

As mentioned in the last subsection, the tolerance box, C, is defined to be

C=jtft* Ift e[ff. ft'l. '=1 nI
where P is a vector of n parameters. If the parameters have statistical distributions which are truncated,

the tolerance box can be defined to contain all possible combinations of parameters. Then the choice of



P/* and P/* is obvious. However for typical distributions, parameters may vary from -oo to +00 (e.g.

the normal distribution). In this case ftL and p" are specified so that C contains a probability, /><1,

usually split equally among parameters. This probability should be close to one (e.g. 0.9). Rigorously

p could be chosen to maximize manufacturing profit which was maximized in [1], but this is beyond

the scope of this paper.

If the probability is split equally among n parameters, then the probability of the /* parameter

being in the i'h interval is

Pi -P

C is centered at nominal parameter values, p°. We define Aft tobe the solution to the following equa

tion:

/»(P?-Aft£ft<;p? +Aft )=;,;

Then

ft? =p? +Aft and Pf=p?-AF

We will henceforth assume that the tolerance box has been normalized to a hypercube, centered

at the origin with its vertices at various combinations of ± 1. The normalized variables will then be

defined as

The sensitivity matrix, A must consequently also be defined for normalized variables:

5F
A = 8P(0)

For illustration, consider the example of a common-emitter amplifier with emitter degeneration

shown in Figure 4. Suppose px = R1 and ft* = ^2- Then* nominal values are 7.5k and Ik respectively.

If p=0.9, then pl=p,/*=0.95. If both parameters have normal distributions, then Ap,- is the solution to

If O;
: J—7=r f e C| dt =p;

o"0where a,- is the standard deviation of p(- and p" is its mean value. For p;=0.95, we find that
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Aft=1.94o4-. Suppose that O!=0.75* and C2=0.1*. Then AP,=1.455Jfc and AP2=0.194*. The normal

ized variables are therefore

H1 1.455* w 0.194*

23. Computing the Good Signature

In this section we will compute the good signature using the approximation

R=Y +F(P°).

Essentially die problem is one of computing the centro-symmetric polytope Y which in mathematical

terms is die image of a parallelepiped (C) under a linear transformation (A). In otherwords,

F=AC

where the parallelepiped (the tolerance box)

={ift*
is mappedby the linear transformation (the sensitivity matrix)

A =

to obtain Y.

In the following subsections, we will present and prove an efficient algorithm which determines

the image of a parallelepiped under a linear transformation. The results presented here are a generaliza

tion of the work in [7,8] where the authors considered the specific case when the range of the linear

transformation is a plane. Following the presentation and proofof ouralgorithm, we will conclude this

section with a discussion of the algorithms computational complexity and an example.

23.1. Introduction

Geometrically, the problem of determining Y can be described in the following way. Consider a

hypercube, C, in R" centered at the origin, with the coordinates of its vertices, v,-, i = 1,. . . X> being

±1. Under a matrix transformation A, from R" to R"1, the hypercube becomes a centro-symmetric

polytope Y, and the problem is to determine Y. It is easy to show that Y is the convex hull[2] of the

images of the v,- 's, i.e.,

5P w
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= co i Av,-,i = 1,... XY

Thus r* can be completely characterized by calculating each of the Av,'s; this however is clearly

impractical A more reasonable approach would be to directly identify either the set of vertices of Y,

which is a subset of the set described in (1.1), or its boundaryhyperplanes.

For any algorithm which computes Yt there are some minor technical problems when the number

of rows of A is greater than die rank of A. These are resolved by suitably modifying A and restricting

the analysis to its range space. Hence our entire analysis will be based on the linear map A, which is

defined as the restriction of A to its range space. Formally,

AdR" -*Rm=AI R(A)

and,

Y = AC c Rm (1.2)

Note that m is less than or equal to n.

A possible approach to determining the vertices of Y is die random search method. This method

is based on the observation that for any direction d in Rm, the maximum projection of Y on that direc

tion is achieved at a vertex. Further, this vertex of Y can be calculated by mapping into Rm die vertex

of the hypercube whose components have the same sign as the corresponding elements of dTA (the

superscript T denotes transpose). Thus, by using randomly generated search directions, the vertices of

Y can be accumulated. The drawback of this method is that unless die number of vertices of Y is

known a priori, there is no stopping criterion. Further, it has been observed that[10] even if the total

number of vertices of Y is known, some of them may be hard to find since they may manifest them

selves only for a narrow choice of search directions.

The two problems mentioned above, that of deciding on a search direction and knowing when to

stop, are solved in what we call the directed search method [11], for the price of iteratively refining the

convex hull of the vertices as they are determined. In this method, the vertices of Y that have the max

imum projection in the positive and negative coordinate directions in Rm are identified first Next, the

convex hull of these vertices is formed and more vertices are determined by searching in the directions

that are orthogonal to each of the boundary hyperplanes. The list of vertices is then updated and the

(1.1)



-12-

new boundary hyperplanes are determined. The process continues until there is an entire iteration in

which no boundary hyperplanes are broken. The lists now contain the vertices and the boundary hyper

planes of7.

With efficient updating techniques, the complexity of this algorithm is proportional to that of

solving the problem in just one cycle. Thus, if vy is the number of vertices of Y and fj the number of

boundary hyperplanes, die computational complexity of die directed search method can be determined

by analyzing die cost of the following procedure:

1. Determine the vY vertices of Y by searching in appropriate directions.

2. Determine the convex hull of the vertices of 7, i.e., determine the normals to the fY boundary

hyperplanes of Y.

3. Search along each of the fY directions determined in step 2, to verify that all die vertices and

boundary hyperplanes have been determined.

Since a search costs mn multiplications, the complexity of steps 1 and 3 is1 OQnniyy +/y)).

The convex hull problem of step 2 can be solved by the "gift-wrapping"[12] approach[13][14]. There is

some doubt as to its precise worst-case complexity for general polytopes[14]. Swart[14] conjectures

that it is 0(/ymm+*log vy). He also shows that the algorithm works best -- in

Oimvyfy + J»3/rl°S/r) time —when the convex hull is simplicial As will be obvious shortly, the

polytope Y is not simplicial — however, we will not further pursue the question of the complexity of

Swart's algorithm, since even if we assumed the simplicial complexity for step 2, the directed search

method is inferior to our algorithm.

The algorithm that we propose is superiorto the one above, since we direcdy determine the boun

dary hyperplanes of Y (by operating on the columns of the matrix A), without worrying about any of its

lower dimensional faces. In order to give a geometric description of the algorithm, we initially limit

our description to the case m =3. For this situation, each of the columns of A is a vector in R3.

Every pair of linearly independent columns defines a plane and there can be a maximum of n(n-l)/2 of

1 We use thenotation O ( f (jl) ) in the usual sensc[12], withrespect to thenumber of arithmetic operations.
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them, this being the case when each pair of columns defines a unique plane. For each of these planes,

P;, we flip the columns of A that are not on the plane onto one side of it and add them up to get the

point pi. The planes passing through /?,- and -pi and parallel to /*,, are boundary hyperplanes of Y.

Further, there are no other boundary hyperplanes than die ones just described.

For higher values of m the intuitive explanation is essentially the same, except of course that the

planes P; described above generalize to (m-l)-dimensional hyperplanes that are determined by sets of

(m-1) columns of A. Since m is always less than or equal to n, the algorithm is valid for arbitrary

linear transformations between arbitrary (finite!) dimensions.

In order to present our algorithm, a few definitions are first necessary. The primary tool that we

need is the normal to a hyperplane H in Rm. To this end, let L be the subspace of Rm which is paral

lel to H and has the m-1 basis vectors: Vj,... ,ym_j. From these basis vectors, we can compute die

normal, 9, in die following way[15] (w e Rm is arbitrary):

y\

<w^> = det

w

The function det as defined above is an m-tensor on Rm. However, the computation can be done by

calculating the more familiar determinant of a matrix obtained by setting die yt 's and w as its columns,

ie.,

<w,q> =det ^0*2 .••ym-iW J
The correctness of die computation is easily verified by noting that if w is any linear combination of

the y,- 's the determinant of the resulting matrix is zero. Further, the m components of the vector q are

the m cofactors of the column w. Thus, to determine q> we compute the m cofactors of the column

w. If each of these cofactors is zero, then the b;'s are linearly dependent This computation therefore,

automatically verifies if a given set of m-1 vectors is linearly independent and if so it gives the normal

to die linear subspace spanned by them.

Let A denote the set of columns of A, i.e.,
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=jat =AetA = « a{ = Afi; I i = 1, ... ,i» >•

Then Q, the set of nonzero normals defined by A. Formally,

Q=Jq e R1" I<w,?> =<fef [ay] ... aJmJw], a}{ e A, /=1,... jn-1; we Rm I— ]° f

We now present our algorithm for computing die polytope Y as the intersection of a set of half-

spaces.

Algorithm Y:

INPUTA

Determine Q
For each q e Q

n

o* =^isgn<ai^q>r<ai^i>

OUTPUT the half spaces: <y,q> £ c^ and <y^> £ -a,
End for

The algorithm constructs two boundary hyperplanes of Y orthogonal to each q e Q, one which

contains the point

n

P* = X (sgn<aitq>) a;
i=i

and another which contains the point -pq. In Section 2.3.3 we will prove the correctness of our algo

rithm with the aidof three principal lemmas.2 In Lemma 2 we establish that everyboundary hyperplane

of Y is orthogonal to some q e Qt while in Lemma 4 we prove that Y has exactly two boundary

hyperplanes orthogonal to each q e Q. The algorithm therefore enumerates 2\Q\ (1(2 I is the cardi

nality of Q) hyperplanes in Rm and we prove in Lemma 5, that each of these hyperplanes is a boun

dary hyperplane of Y. We thus establish that our algorithm does indeed determine the polytope Y.

The next two subsections of this paper are concerned with the formal presentation of the problem

and the proof of the above algorithm. In the next subsection we set up the definitions that we require

for our mathematical analysis, and Section 2.3.3 contains the proof of our algorithm. We continue in

Section 2.3.4 with a discussion of the computational complexity of the algorithm and the numerical

issues that arise in its implementation. Finally in Section 2.3.5 we compute Y for the common-emitter

2 When m = 1, Q is not defined, henceour approach is inapplicable. However in this case it is a trivial task to
determine Y.
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amplifier with emitter degeneration and we compare the true signature R with its approximation R.

23.2. Preliminaries

Problem Statement: Given e^e2,.. . ,e„, a collection of linearly independent vectors in R" and

a linear map AJR"-»R"\ determine the set

7=AC =jAx \xeC
where C is the parallelepiped defined as follows:

where

Hift«
l 4=1

I p 6 [-1,1], /eN V (2.1)
Lial J

Note that

C=coV (22)

V=Jfptet I bt e {-1,1},/ e N V (2.3)

is the set of vertices of C.

Formally, let A denote the set of images of the e{ 's under A, i.e.,

A —< a,- = Ae\ I i = 1,... ,n Y

We then have the crucial definition of the set of nonzero normals defined by A.

Definition 1: We denote by Q clm, the set of nonzero normals defined by A, i.e.,

Q=i q e Rm I<w,q> - det[aJi... ajmlw], a}i e A, / =1,... ,m-l; we Rm I- \ 0 \

Definition 2: For each q € g, we define an index set corresponding to q as follows:

Jq - \ i € NI<fl/,?> =0 >•

Definition 3: Given /, a /:-dimensional face of C (k e N) which may be described as:

/ =j Z fte,- + Z **«/ Ift e [-U1»" e // 1
[,e// «'6'/ J

where for all i e //, 6/ £ {-1,1}, the set // which is a subset of N of cardinality &, is called the
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index set corresponding tof.

Definition 4: A normal q e Q (with index set Jq) and a face f of C (with index set //) are said to

correspond to each other ifJq= If.

Definition 5: Given / vertices of C,

v; =£ bhi j =1 /
lol

where for all i and j, bj e {-1,1}, the minimal face containing {v/, j = 1,...,/} is die unique face

of C which contains {v,-, j =1,...,/} and whose index set / is given by

,...,/}[/ = <i € N I bj*bKj*k e {1

We conclude this section with the following obvious fact which is important for the development of our

results.

Fact 1: The indices corresponding to any (m-1) linearly independent fl,'s are a subset of some Jq.

Consequently, for any q e Q, the set

.{.Aq = <at e A I i e Jq

has exactiy (m-1) linearly independent vectors.

233. The Proof

As mentioned before, our algorithm constructs two boundary hyperplanes of Y orthogonal to each

q 6 Q, one which contains the point

Pq= £ (sgn<aiyq>)ai
i eJ$

and another which contains the point -pq. The proof of ouralgorithm essentially consists of two parts

—one which establishes that each of the hyperplanes is indeed a boundary hyperplane of Y (Lemma5),

and another which proves that there are no other boundary hyperplanes of Y (Lemmas 2 and 4). This

section culminates in a single theorem which sums up these results, verifying that our algorithm

correctly determines the polytope Y.

Lemma 1: Y is an m-dimensional polytope and each of its vertices is the image under A of a vertex of
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C.

Proof: By (1.2),(2.2), and (23),

-co \ .Y = co i Av I v G V Y

Thus Y is a polytope and each of its vertices is the image under A of a vertex of C. Further, due to

(2.1),

such that

Li=o
I ft e [-1,1] i 6 N Y

Therefore,

aff Y = span A

Since the i, 's are linearly independent and m is defined as the dimension of the range space of A, it

follows that

dim ( span A ) = m

and hence Y is m-dimensional. •

Lemma 2: Every boundary hyperplane of 7 is orthogonal to some q e Q.

Proof: Let fY be an (m-l)-dimensional face of 7. Since fY is a polytope and each of its vertices is a

vertex of 7, due to Lemma 1, there exist vertices of C,

/=i

fY=co < Av;-, j = 1,. ..,/ V

Let If be the index set of the minimal face containing {v;-, y=l,...,/}, i.e.,

/v=co f £ d/a,..y =l,...,/ 1+y
Ve'' J

where

y = X ^-fl/
i e //

with



18

b/ = b? = b; for all i s //, jjk 6 {1,...,/}

Now note that the polytope

3V - J 2 ft* 'ft e [-U] l+f (3.1)J Z ft*
V6//

which is the image of die minimal face containing {v/, j =1,...,/}, contains all the vertices of fY,

hence

fY cYf czY

and since /y is (m-l)-dimensional

dimYf* (m-1) (3.2)

Let,

H :<y,f> = y

denote die boundary hyperplane which is the affine hull of /v. Since fY is a face, 7^ lies in a closed

half-spacebounded by H and without loss of generality

<y ,r> £ <w,r> = y, /or a// y e Yftw e fY

Thus, for arbitrary £ 6 {1,...,/}

< Z P/«y+y»'> ^ < S bfa+yj^ forallfy e [-1,1],/ e If
j * *f J 6 //

Since,

it follows that

which implies that

P; 6 [-1,11 / 6 If j Bjf j 6 jy

£ (^-^n(<a;,f>^0
; 6 lf

2 [**^n(<fly,r>)-l][(5^n<fl;,f>)<a;-,/>] 2> 0
j 6 //

Since for all j, the first term (in square brackets) is always less than or equal to zero, and since

k e {1,. ..,/} was arbitrary, the above inequality can be satisfied only by an equality and that too

onlyif for each j e If the product of the two terms is zero, i.e., either

bf =sgn<ajtt> for all k - 1,. . . ,/



19

or

<aJtt> = 0

However, bythe definition of the minimal face, for any j e If> the bf's cannot be equal, hence

<fly-,f> = 0 for all j e If (33)

Now from (3.1), aff Yf is parallel to span [ aj \ j e If } and from (3.2) and (3.3),

dim Yf sb (m-1), and

affYf=afffY=H

Finally, since there are exactly (m-1) linearly independent vectors in the set

{ aj I j 6 If )

by Fact 1, there exists q e Q, such that H is orthogonal to q. •

Lemma 3: Given ? e 2, any face of C corresponding to q maps into an (m-l)-dimensional polytope

that is orthogonal to q.

Proof:

/= E ft<?; + Z M,- I ft e [-1,1], i e /, [, bt e {-1,1}

is a face of C corresponding to q. The image of/ under A is

-1,1], i e /, 1 bt e {-1,1]

P == a/ =J 2 ft*/ + £ M; I ft e [-1,1] 1, d(- g {-1,1}1,1] 1 d(- e {-1,1]
/ 6/|

P is a polytope since it is the image of a polytope and it is (m-l)-dimensional and orthogonal to q

since it is parallel to

span <at I i e Jq Y

which by Fact 1 is (m-l)-dimensional. •

Lemma 4: 7 has exactiy two boundary hyperplanes orthogonal to each q e Q.

Proof: Since 7 is an m-dimensional polytope in Rm it has a nonempty interior[2]. Hence there are

exacdy two distinct hyperplanes H+ and//", orthogonal to each q that support 7. Without loss of gen

erality we will consider only H+. H+ must contain vY a vertex of 7. Let vc be a vertex of C that

maps into vY. Since the e-t 's are linearly independent, there is exactly one face, fc corresponding to q
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(index set Jq) that contains vc. ByLemma 3, fc maps into fY an (m-l>dimensional polytope diat is

orthogonal to q. Further since vY € fY%

afffY=H+

i.e., H* is a boundary hyperplane of 7.

Lemma 5: Each of the hyperplanes <y^> =a9 and <y,?>== -a, determined by the algorithm is a

boundary hyperplane of 7.

Proof: Consider the face of C,

/,= f 2 ft*,- + E *«*« !Pe l-wi-' e 7*1

corresponding to an arbitrary q e g, where for all / e /|

&^ =sgn<anq>

Note that,

Vf =J E ft*.- + E V' Ift e [-1*1]* **Ji\
\teJ1 *«JJ J

Consider w e A/? and note from the definition of a, in die algorithm that

<w4> = aq

By Lemma 3, Afq is an (m-l)-dimensional polytope, hence

affAfq=Hq (3.4)

where Hq is the hyperplane

<y,<?>= ct?

Now consider an arbitrary

ye7 =AC =jE ft*/ + E ft*' I ft e C-1.1]. *s N1
•<?

and note from the definition of/? and &?f that

<y.<7>= E ft<a»^>+ E ft«*/.<7>£ E bqi<at4> = aq (3.5)
* ? Y

If follows from (3.4) and (3.5) that Hq is a boundary hyperplane of 7. We can similarly establish that

the hyperplane defined by
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<y,?> = -a,

is also a boundary hyperplane. •

Theorem: 7 is precisely the polytope defined as die intersection of the half-spaces outputted by die

algorithm.

Proof: Due to Lemmas 2, 4 and 5, the boundary hyperplanes of 7 are precisely the ones described in

Lemma 5. Further the direction of the inequalities in die algorithm are correct since 7 contains the ori

gin in Rm (it being the image of the origin in R" which belongs to C). •

23.4. Computational Complexityand Implementational Issues

To begin our computation we first need to determine A, for which one circuit simulation is

required if the simulator outputs derivatives of voltages with respect to parameters. Odierwise we

require n+l simulations, where n is the number of parameters. In this case, A is computed by pertur

bation:

P/-P;
jy is a vector ofparameters with its jth component perturbed from nominal to py, i.e.,

p' 1ft if/=;
py - p° is the amount ofthe pertubation and Apy is the solution to the probability equation mentioned

in Section 22:

In our current implementation, we computed derivative by pertubation and we have observed that the

computation required to determine 7 is dominated by the circuit simulations necessary to obtain A.

Given A, our implementation of the algorithm to compute 7 assumes that m=m, i.e., A=A. This

is typically what happens in practice. The set A inputted to the program is therefore merely the set of

columns of the matrix A that correspond to the choice of the e,- 's as the basis of Rm.

The principal computation is in determining the set Q. Recall from its definition that we wish to

determine q such that
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<*,*>=det ^ah...aJm^w ]
Since the m components of the vector q are the m cofactors of die column w, in our initial implemen

tation, we calculate each of these m cofactors by computing die determinant of the appropriate

(m-l)x(m-l) submatrix of [aj ... fly ,]. This is done by first computing the LU decomposition and

then multiplying the diagonal elements. However, q can be computed more efficiendy by solving an

mxm system of linear equations. Thus the complexity of determining each q is 0(m3).

For each q e Q, we also have to compute

n

<*? = E (**» <*! 4 >) <at >Q >
/si

This requires mn multiplication. Finally, it is obvious from the definition of Q that it can have at most

(m" j) elements: thus the algorithm requires 0((m3 +w»Xm"i)) multiplication and divisions.3

Note that in the worst case of (m-1) = n/2, this complexity is exponential in n. It appears how

ever, that this exponential complexity is unavoidable since in this situation die number of boundary

hyperplanes of 7 is indeed exponential in n. What is important is that for fixed m and varying n, the

complexity is polynomial in n ( 0(nm+1\ where m= min ( m-1, /i-m+1 ) ). This is an important

feature since in our application, the quantity m (the number of test points) is within our control while n

(the number of process parameters) is not

It is also important to note that we do not need to do the computations for each subset of A of

cardinality (m-1). For each q that we determine, we also immediately determine the ax 's orthogonal to

it (represented by the set Jq of Definition 2). All subsets of cardinality m-1 of this set are then not

considered as possible generators of anew q. The quantity 0((m3 +mn)(mn_{)) is therefore, the worst

case complexity of the algorithm.

One important strength of the algorithm that we have not developed formally is the fact that it is

robust in the face of numerical errors. The polytope 7 varies continuously with variations in the a{*s,

q 's and aq's. This is true even to the extent of a set of at 's being computed as being linearly indepen

dent when in fact, in exact arithmetic they are not. Thus, even if we do not compute the "true" set Q

3 For thecase m —2 some simplifications to this algorithm result in one thatis linear in 71 [8].
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(both in terms of the number of elements and their values), the computed Q is approximately the same

as die "true" Q, and the resulting polytope 7 will be approximately the same as the "true" 7.

The above observation is one that we wish to exploit as we enhance our implementation. Our

initial experience has been that we do get a fairly large number of normals q. A possible way to

reduce the number of q 's and at die same time reduce the computational cost, is to generate only those

that correspond to a judiciously chosen subset of the a,- 's. Such a subset could consist of the a/ 's diat

when normalized have the maximum projection in a predetermined set of directions that uniformly fill

Rm. For example, if m=2, these directions may be along the coordinate axes and 45 degrees from

each. The resulting set of q 's will then be a subset of Q. Then if an a, is determined as before —

with the original set of at *s —the resulting set of hyperplanes is a subset of the set of boundary hyper

planes of 7. Consequently the resulting polytope will encompass the "true" 7. Further, the larger die

subset of Q used, die closer the computed 7 comes to the "true" 7. This process suggests a trade-off

between the computational cost and the accuracy of approximating 7. In this context it is relevant that

for our application, the results developed in this paper represent a linearization of a nonlinear problem

and hence even the exact 7 is only an approximation of the physical problem.

233. An Example

In Section 2.2 we defined the tolerance box for a common-emitter amplifier with emitter degen

eration (Figure 4), and normalized it to a hypercube centered at the origin. Suppose we consider DC

voltage measurements at Vi and V2. For our choice of parameters^ i and Rx), the sensitivity matrix is:

•r [-0.42 0.20 1
A" L-0.011 0.04 J

and A is its column vectors. Then we have the normals:

„ _ fO.01 I . n _ [-0.041
*»- [-0.42 J and <**- LO.20 J

It turns out that c^ =0.015 for both vectors, q\ and q2. Therefore 7 has the following boundary

hyperplanes:

Q.011yl-0A2y2Z 0.015

-0.011y! + 0.42y2^ 0.015

-0.04yl + Q.20y2£ 0.015

0.04yl-0.20y2£ 0.015
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The resulting centro-symmetric polytope, 7, is illustrated in Figure 5.

The approximation of the signature is them

Jf =7+F(P°)

That is, R is 7 centered at nominal measurements:

'<?> =[om]
Consequently J? has the following boundary hyperplanes:

0.011V! - 0.42V2 £ -0.10

-0.011^+0.42^2^0.13

-0.04V! + 0.20V2 * -0.015

0.04Vi - O.2OV2 * 0.045

R is shown in Figure 3 together with the true signature R =F(C). From this figure we see that a

linear mapis sufficient to approximate the signature since R and R are almost indistinguishable.

2.4. The Choice of Measurements

2.4 J.. Conditions for Detectability

A set of measurements used to compute 7 can be DC voltages made at different nodes of a cir

cuit or at a single node for different DC input voltages; they may be measurements made at several fre

quencies; or they could be measurements a various time points of a voltage waveform. A combination

of all of these measurements could also be used. As mentioned in the introduction, to determine if a

particular faulty circuit, say the i,h faulty circuit, is detectable by a given set of measurements, it is not

sufficient to compute the nominal faulty measurements for that circuit To account for tolerance in

good parameters, bounds on a set of possible measurements for the faulty circuit must be found. This

set will be called the fault signature. If the circuit equation for the /* fault is

y =F,(P)

then the i,h fault signature is

Rt=F;(C)

where p e R" is the vector of n parameters and C is the tolerance box. Again, since the tolerance

box is a small region around nominal parameters, a linear map is a sufficient approximation of F,( ).
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We therefore have die approximation:

Jl,«7l+F,(P)

where

Yt=A:C

and

A' =

The fault signatures can be computed by the same algorithm which we used to compute the good signa

ture. But incidently, we have observed that some of the fault signatures have null interiors in Rm. To

determine 7, it then becomes necessary to begin our computation by determining the rank of A Tins

has been done by computing singular values. Since A is defined as

A s= A 1R(A)

the set A is die columns of A, expressed in terms of e-, 's, the basis vectors of R (A).

After computing signatures of a good circuit and the i"1 faulty one, if die signatures are disjoint,

i.e.,

Rt n^o = <l>

where Rs is die /* fault signature and R0 is the good signature, then the ith fault is detectable by the

given set of measurements, and they are not in the same ambiguity group.

2.4.2. The Algorithm for Test Selection

Based on the above criteria for detectability, a optimal set of tests will be determined. Suppose

we have a list of faults. In the next section we will discuss the construction of such a list Our aim is

now to determine a minimal set of measurements that is able to distinguish as many faulty circuits as

possible from the good circuit In other words, we wish to minimize the ambiguity set which contains

the good signature. To this end we will present two algorithms, and iterate between them to determine

this optimal set of tests.

The first algorithm begins with a set of tests, T, and an ambiguity set, £2. The ambiguity set con

tains a list of faults that have not yet been shown to be detectable. Initially this set will contain the
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entire fault list Signatures are constructed for the good circuit and each of the faulty circuits in die

ambiguity set If the Ith fault signature does not intersect die good signature, then the i* fault is

removed from die ambiguity set This test is done for each fault in the ambiguity set and die resulting

ambiguity set will contain only faults that are not detectable by the measurements in the list of tests.

We present the algorithm below:

Algorithm ft:

INPUT ft and T _
Compute the good signature: R0 = Y0 + F0(p°) (See Algorithm Y for computing 70)
For each i e Q _

Compute die fault signature: /?,- =7/ +F,-(p°) (See Algorithm Y for computing 7,)
If*,- n^o = <l>

£2 = ft- {/}

End if

End for

OUTPUT ft

The input of the second algorithm is the ambiguity set ft, and die set of possible tests, 7*, that

are not in the list of tests to be used, T. This algorithm selects the next measurement to be added to

the list of tests. This is done by a simple heuristic which determines the measurement which deviates

the most from the good measurement for all faults listed in the current ambiguity set First measure

ments are computed for the good circuit Then they are computed for each faulty circuit in the ambi

guity set For the possible test r, Ay/ is the difference between die i'h faulty measurement and the

good measurement We sum Ay/ for each measurement, f, to get st. The sums are suitably weighted to

account for differences in units and the measurement where the sum is largest is chosen as the next test

point We now present the algorithm.

Algorithm T:

INPUT ft, Tc, and parameter £
For each t e Tc

s,-0
For each i e ft

Compute Ay/
= \st+Ay! i/Ay/<e

St ]s, =st +e i/Ay/ £e
End for

End for

OUTPUT tvt - arg max s,

To determine an optimal set of tests, we begin with an ambiguity set ft, that contains all of the
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faults in the fault list and a list of tests which is empty. We initially use Algorithm T to choose the

first test This test is added to the list of tests. Now the list of tests has a single measurement and 1-

dimensional signatures are constructed by Algorithm ft. In this algorithm we determine whether or not

each of the fault signatures intersects with the good one; and if a fault signature and a good signature

are disjoint the fault is dropped from the ambiguity set Algorithm ft determines an ambiguity set

which contains only faults that are not detectable by the first test Then Algorithm T is used to choose

the next test based on the new ambiguity set This measurement is added to the list of tests. Algorithm

ft constructs 2-dimensional signatures and reduces the ambiguity set to contain only faults that are not

detectable by these two tests. The next test is then selected. This process continues until the ambiguity

set is empty or we feel that we have sufficient fault coverage, f<\. Suppose die desired fault coverage

is / *. Then we have the main algorithm:

The Main Algorithm:

INPUT ft and Tc

f ss 0 and T = <t>
Do while/ </*

Choose the next test and add it to T (Algorithm T)
Reduce ft to contain only faults not detected by T (Algorithm ft)
Determine/

End do

2.43. The Example

For illustration, let's return to the example of the common-emitter amplifier with emitter degen

eration. Suppose this circuit has the following specifications:

1. Magnitude of AC gain > 2.5

2. -3dB frequency > 2GHz

3. Small signal output resistance < 7k

Our aim is to show that many faulty circuits can be detected without testing any of these specifications.

Instead measurements of DC voltages will be used. The possible test points are therefore DC measure

ments of Vi and V2.

Suppose we have the following faults:
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1. Gate-drain short

2. W/L=3

3. Drain-source short

4. R2 = 0.5k

For measurements at V! and V2, the 2-dimensional fault signatures of each of these circuits are shown

in Figure 6, together with the good signature. The first test pointto be selected is Vh displayed on the

horizontal axis. To visualize the 1-dimensional signatures, think of these signatures projected along the

horizontal axis. We see that the second and third 1-dimensional fault signatures do not intersect die

good signature and hence these faults can be detected by this test Then V2 is added to the list of tests

and we see that in addition the forth fault can be detected by DC voltage tests. So we have diat three

out of four faults can be detected without preforming any specification tests. In the next section we

will see how general this result is.

3. Fault Coverage of DC Voltage Tests

3d. Fault Modeling

To evaluate our results, in this section we apply our algorithm for test selection to some case stu

dies. For illustration we will limit the set of possible measurements to tests of DC voltages, for a sin

gle DC input voltage.

To be able to judge the effectiveness of DC voltage tests, an accurate fault list is needed. For

analog circuits, faults can be classified into two categories:

1. Catastrophic faults

2. Parametric faults

Catastrophic faults are random defects that cause failures in various components. They may be struc

tural deformations like short and open circuits, or cause large variations in design parameters (e.g., a

change in a single transistor's length-width ratio caused by a dust particle on a photolithographic mask).

Parametric faults are causedby statistical fluctuations in the manufacturing environment To define this

fault type rigorously, consider a set of process parameters (e.g., oxide thickness and substrate doping),
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assumed to be constant across a chip but to vary between chips. If the parameters are modeled by

unbounded statistical distributions, which is typically the case (e.g. normal distribution), they may vary

from -oo to +00 and there will be values of parameters for which circuit specifications are not satisfied.

The acceptability region is defined to be die set of parameters for which the circuit satisfies all

specifications. By definition then, die sets of values of process parameters outside of die acceptability

region cause parametric faults. Among such faults are also faults caused by process gradients which

produce device mismatch. Since design parameters (catastrophic faults) and process parameters

(parametric faults) can take on infinitely many values, there are infinitely many analog faults. We must

consequendy choose a subset which will lead to the best possible fault list

Our case studies involve CMOS processes. One approach to fault modeling for CMOS processes

is suggested in [16]. Based on the observation that for digital circuits, yield losses in CMOS processes

are primarily due to catastrophic faults4 [16,17] and that multiple faults are unlikely, this technique gen

erates single catastrophic defects using statistical data from the fabrication process. These physical

defects are implemented as missing or extra material in a given layer in the layout They are extracted

to the circuit-level and cause shorts and breaks in interconnections, new devices, and changes in the

behavior of existing devices. Because this methodology requires a large sample of defects to create an

accurate fault list and predict fault coverage, for a preliminary study of our applicationwhich requires a

DC simulation for each fault on the fault list, the simulation time may be excessive.

We have therefore chosen to implement an alternative fault list based on empirically observed

circuit-level failures. A possible fault model for CMOS circuits which is suggested in [18] contains

open circuits in the diffusion and metallization layers and short circuits between adjacent diffusions and

metallizations. A more complete model is indicated in [19], where the following table is presented:

4 In [16] it is argued that parametric faults are easily detected and therefore are not primary targets of production
testing, and in [17] it is stated that 83.5% of all chip failures are due to catastrophic faults.
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TABLE 1

Class Device failures Interconnect failures

I. Most

likely
Gate to drain short

Gate to source short

Short between

diffusion lines.

n. Less

likely
Drain contact open.
Source contact open.

Aluminum polysilicon
cross-over broken.

m. Least

likely
Gate to substrate short

Floating gate.
Short between

Aluminum lines.

Unfortunately no indication is given as to the overall likelihood of each of the listed fault types. This

is necessary to approximate accurately fault coverage. In the preliminary test of our algorithm we have

nevertheless chosen to implement the more common device failures listed in Table 1 — gate to drain

short gate to source short drain contact open and source contact open.

It should be noted that all of die previously mentioned studies have restricted fault lists to catas

trophic faults. This is because, as stated in [17], for digital circuits catastrophic faults dominate. There

is some controversy as to whether or not this is the case for analog circuits. In [20], it is claimed that

80-90% of analog faults involve shorted and open resistors, capacitors, diodes and transistors. In [21],

on the other hand, it is argued that this may not necessarily be the case, and instead yield losses in ana

log circuits are caused by multiple phenomena. In particular, yield losses due to catastrophic faults

appear to be insignificant for bipolar IC's [21]. Consequently because of our selection of fault model,

in this study we will first evaluate the detectability of catastrophic faults by DC voltage tests using

some case studies. Then we will discuss the detectability of parametric faults.

32. Case Studies

We have applied our algorithm for determining an optimal set of test points and evaluating fault

coverage to two CMOS analog subnetworks. The parameters which define the tolerance box are from

the process-oriented CSIM [22] model. They have been assumed to form a statistically independent set

and are constant across a chip. These are:

1. Oxide thickness

2. Substrate doping concentration

3. Surface mobility
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4. Flat-band voltage

5. Lateral junction depth

6. Lithographic offset in poly width

7. Lithographic offset in diffusion line

These parameters have been chosen because of being most sensitive for typical designs[22]. Since they

are independent for n- and p-type material (except for oxide thickness), for a CMOS process we have a

total of 13 process parameters. Limiting the process parameter list to a set with minimal statistical

correlation will lead to more realistic testability results by minimizing the size of die signatures.

It has been assumed that faulty circuits contain a single fault Therefore for each transistor in die

circuit there are four faults in the fault list

1. Gate to drain short

2. Gate to source short

3. Drain contact open

4. Source contact open

The CENTER/ADVICE system [2324] in which the algorithm has been implemented has facilities for

varying parameter values and circuit topology. The fault model has therefore been implemented by

replacing each transistor by a transistor surrounded by switches, as shown in Figure 7. Via CENTER, a

faulty circuit can be obtained from the good one by opening or closing the appropriate switch.

One of the analog subnetworks that was studied was an op amp with 114 faults in the fault list

and 22 nodes. The other was a low-pass filter with 52 faults in the fault list and 9 nodes. Our princi

ple findings are presented in Table 2.
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TABLE2

OP AMP LOW-PASS

Number of faults in the fault list 114 52

Number of circuit nodes 22 9

Number of primary outputs 2 1

Percentage of faults detected by primary outputs 81% 40%

Percentage of faults detected by 20% of the nodes 99% 63%

Percentage of faults detected by all of the nodes 100% 75%

Number of test points needed for maximum fault coverage 7 5

Clearly a high percentage of catastrophic faults can be detected by very few test points. It also

appears that in practice it is best to settle for less than the maximum fault coverage obtainable by DC

voltage tests since a few carefully selected test points detect most faulty circuits. It is also interesting

that in the case of die low-pass filter, DC measurements at all nodes can detect only 75% of the faults.

One reason for this is that the filter has circuit fragments as shown in Figure 8. It turns out that at the

DC operating point die two transistors do not conduct; hence open circuits at the common source and

drain cannot be detected by DC testing. Similarly, capacitors may cause some open circuit faults to be

undetectable by DC voltage tests. This suggests that in most circuits, even though many faults are

detectable by DC tests, some additional dynamic tests are necessary.

33. A Note of the Detectability of Parametric Faults

Since the results of our case studies have been based on a fault list containing only catastrophic

faults, our result is that most catastrophic faults can be detected by DC voltage tests. Intuitively this is

because the circuit's behavior is highly distorted at least at a local point and a test point close to this

point will detect the fault

Suppose the parameters of a particular circuit have truncated statistical distributions and the toler

ance box has been defined to contain 100% of the parameters. Furthermore supposethat the circuit has

been designed to satisfy specifications when the parameters are within the tolerance box. Then there

are no values of parameters for which the circuit is faulty, andhence there are no parametric faults. To

test such a circuit it is sufficient to find a set of tests that detects catastrophic faults.

This is typically not the case. Parameters may vary from -co to +co and there may be values of
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parameters for which the circuit does not satisfy specifications. By definition, parameters outside of die

acceptability region cause parametric faults, and die probability of obtaining parameters in the accepta

bility region is the parametric yield of a circuit The acceptability region does not coincide with the

tolerance box, and hence parametric faults may be caused by parameters inside or outside of the toler

ance box. Parametric faults caused by process parameters outside of the tolerance box will be detected

by the DC tests which we propose to add to wafer probe testing. However, since the tolerance box has

been defined to contain most parameter values (e.g. 90%) and if parametric yields for analog circuits

are significandy less (e.g. 60%), many parameters contained in the tolerance box will not be in die

acceptability region. Since we are mapping the tolerance box into the measurement space to define die

signature, DC voltage measurements for circuits with parameters in the tolerance box and outside of die

acceptability region will be in the good signature. The circuits with such parameters will pass DC vol

tage tests. Consequendy some parametric faults cannot be detected by our DC voltage testing pro

cedure as implemented. It may be difficult to detect these faults by a computationally efficient DC test

ing procedure due to the nonlinear nature of the problem and since these faults tend to cause smaller

deviations in DC voltage measurements.

To illustrate these ideas, let's return to our example of the common-emitter amplifierwith emitter

degeneration. The tolerance box and acceptability region of this circuit are illustrated in Figure 9.

Obviously there are values of parameters contained in the tolerance box and not containedin the accep

tability region. The faults which they cause are not detectable by DC voltage measurements at V! and

It can also easily be determined by a Monte-Carlo analysis that the parametric yield of this circuit

is 75% and that 4.5% of the good circuits fail DC voltage tests because they have parameters outside of

the tolerance box. To reduce the fraction of good circuits failing tests, the tolerance box may be

enlarged to contain a higher percentage of parameters. For example, if we redefined the tolerance box

to contain 95% of all parameters, then 2.0% of the good circuits would fail DC voltage tests. However,

it is not necessary to guarantee that no good circuits fail DC voltage tests. On the contrary, as

explained in [1], since packaging is expensive, if we want to optimize manufacturing profit it is some-
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times better to fail some good circuits in wafer probe if this simplifies packaging and testing.

4. Conclusions

We have proposed a method of constructing a set of simple tests which detects many faulty cir

cuits before specification testing in the wafer probe stage of production. By adding these tests, we

avoid performing expensive specification tests on faulty circuits. In particular we have shownthat sim

ple parametric tests used before wafer probe can be effective in detecting faulty circuits containing

catastrophic faults and it would be wasteful and expensive to subject these chips to complete

specification tests.

To choose the tests to be used, an original algorithm has been presented. This algorithm exceeds

those in the diagnosis literature by exploiting a simplification of the problem. That is, typically the

diagnosis literature aims to find algorithms which identify arbitrary faulty elements, and in this paper,

we have found it necessary just to identify die good circuit With this simplification, we have found it

computationally feasible to compute signatures of good and faulty circuits accounting for tolerance in

process parameters. By doing so, we can rigorously justify our aggregation of ambiguity groups. Then

to choose an optimal set of tests, it is simply necessary to minimize the ambiguity group containing the

good circuit and an algorithm which does this has been applied successfully to several case studies.
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