Copyright © 1988, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

HIGH PERFORMANCE PROGRAMMABLE
DSP ARCHITECTURES

by

Mordechay Toma Ilovich

Memorandum No. UCB/ERL M88/31

20 May 1988

HIGH PERFORMANCE PROGRAMMABLE
DSP ARCHITECTURES

by

Mordechay Toma Ilovich

Memorandum No. UCB/ERL M88/31

20 May 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

HIGH PERFORMANCE PROGRAMMABLE
DSP ARCHITECTURES

by

Mordechay Toma Ilovich

Memorandum No. UCB/ERL M88/31

20 May 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley
94720

High Performance Programmable DSP architectures

Mordechay Toma Ilovich

ABSTRACT

The large increase in the complexity of computations and the processing speed
requirements of digital signal processing applications require us to implement high-
throughput processing elements (PEs) which can also be used to implement high perfor-

mance multiprocessing systems.

In this thesis we propose and explore many of the design aspects of a new PE
architecture that is suitable for inclusion in multiprocessing systems. It incorporates on
the same chip a processing unit (PU) and an autonomous interprocessor communication
unit (AIO). Concurrently with the PU that executes the task’s computations, the AIO
handles and controls the data transfer between the PEs. The AIO operates as 1) an inter-
face between the PU and the network and 2) an intermediate network switch to transfer
data between PEs. To avoid network congestion and to achieve a high {hroughput, the
use of virtual-cut-through (VCT) switching and an acknowledgement handshaking pro-
tocol is proposed. Four /O links enables the PE to be embedded in any network with a
.topology consistent with this number of links, and provides the capability to expand to
large multiprocessing configurations. The proposed PE might be build as catalog parts
for building multiprocessor signal processing systems. Alternatively, the basic AIO
unit might be designed as a macrocell to be incorporated into ASIC (Application
Specific IC) implementations. Each AIO can be coupled with a different PU design to
yield heterogeneous multiprocessor systems. Further, the communication configuration
of the AIO can be parameterized in the macrocell and configured to suit each potential

application.

Although DSPs that possess special signal processing features are fabricated in
small feature size technologies, their throughput is limited by clock skew problems,
limiting their usefulness for some real time applications. To overcome thls clock skew-
) ing problem, an asynchronous processor architecture is proposed. In an asynchronous
processor, no clock is required since the functional blocks are built of asynchronous cir-
cuits that communicate through asynchronous interconnection handshake blocks. In the
asynchronous processor, the execution time of each instruction is data and instruction

dependent, and therefore the "average" throughput will also increase.

When clock skewing is insignificant but the throughput of a synchronous proces-
sor is limited because of a large variation in instruction execution time due to data
dependency, we propose a GSLA (Globally Synchronous Locally Asynchronous) archi-
tecture. This architecture incorporates a clock with a variable duty-cycle. The func-
tional blocks signal the control unit upon the completion of their task and the control
unit varies the clock’s duty cycle to start a new task. The design principles developed
in this thesis should be useful for the development of many general-purpose and

special-purpose multiprocessor architectures in the future.

(Do et

David G. Messerschmitt

Chairman of committee

ACKNOWLEDGEMENT

I would like to express my appreciation to my advisor Prof. D.G. Messerschmitt
for his guidance, help and support throughout my study. Special thanks and apprecia-
tion to Prof. J. Walrand who advised and helped me all the time and was a member of
my committee. I wish also to extend my appreciation to Prof. C. Stone, a member of
my committee, Prof. R. Katz, a member of my committee, and to Prof. E.A. Lee for

some interesting discussions.

Many thanks to my fellow graduate students, T. Meng, K.K. Parhi, V.K. Madisetti
and W.H. Ho for the interesting discussions. Special thanks to my friend T.M. Chen for
reading and commenting my draft and for our interesting discussions.

This dissertation is dedicated with all my love to my wife Hana and our children
Yaron, Yuval and Yoav. Their love, help, encouragement, support, persistence and

understanding were indispensable. Their role in my studies are as great as my own.

I also like to thank my parents Mr. and Mrs. Ilovich, my parents in law Mr. and
Mrs. Melinarzevitz, my brother Mr. E. Ilovich and his family and our close friend Dr.

B. Landkof and his family for their overseas help and encouragement.

This research was supported by grants from NSF and SRC.

Table of Contents

Abstract ceeseresaesaesanetesateste sttt er st ea s e se s st stons st sesesasesanesaanes ceeetenesntnssasenseseas
Acknowledgementcccceerecreseneancenesnaaanenes ceesesseesassesasesaessssassassanes ceeenees

Table of Contents .. tettteesesssarrecssssssnrsaesesssssnsennnsane

CHAPTER 1: Introduction cessaeebesbee s et esasets ettt esestsatesnasastasasanas
CHAPTER 2: Multiprocessing DSP erertesnesaesresbesbae st absebaesa b et st s e s snsesssentas
2.1 Introduction crteesressnsosasesssesanasens ceesseseetsesnasaann

2.2 Multiprocessor interconNECtiono.eecereesesecrnessenees cerevaees ceseessnreessanens

2.2.1 Butterfly Parallel Processor s esssssameme s ee e

2.2.2 Cm* multi-microprocessor ceereeesasstssasesatesasearasaasanan

2.2.3 The Connection Machine ceressstesnttssstssesensansansessnnasanns ceveeaees

2.2.4 Transputer eeeessssemmmmsees s eseseen cessessasertesateate st e ssssasennaannans

2.2.5 NCUBEctreeererenerencresenens cesetssststearanneesaesatessresnaesns

2.2.6 SuMMATYcccerrvrereenereerererenenes ettt sasssssessasnas ceeeesssanene
2.3 Proposed Processing Element (PE) ceeeeneens
2.3.1 Design approach tetersesatesessnisnesnaesannnaas reesttesanesatessaeansaasasans
2.3.2 Data tra£13fer between PEscceeeeenee.. creeraesansaaesaassnsasaesnans
2.4 Summary of PE’s properties creesseesseneenressnassaesnnens cetresasrennenes
Referencecuue..... cereeresrienntssssatesaaaenns etteenateesssentessesnsananas rrerseneaenas

CHAPTER 3: Communication and protocols

3.1 Introduction eeeerererersssesssssansssrene

10
11
11
12
12
12
19
23
24
29

29

3.2 Data transfer techniques

ooo

3.2.1 CommUNiCAtiON MOMAEScoorveereecneessecrsecssacsreeeseassssesssssssessssessae

3.2.2 Data transfer techniques ceeeseesstessessnenasansesaseesaenes

3.2.3 Clock SYNChIONIZAtIONccceuerererenerensesnersseresessonenescsssssssssssssses

3.2.4 Virtual-cut-through SWitChingcceeeerererernrerereresnessnsseseacccene

3.2.5 Data broadcast ..

3.2.6 Design choice ...

ooo

ooooo 0003¢00000000

3.3 Interconnection protocolseceeererrneens creesressesttesstessssesanassnassnanerarane

3.3.1 Introduction

ooo

3.3.2.1 Data transfer PrinCiplesceerverersesererecrnerescaesesseseas

3.3.2.2 Data transfer ProtoColceeeeresesesrsenssesersesesenesesesessss

3.3.3 AIO-PU COMMUNICAIONeeerereerrecrseeessncessasessnsesssesssssessssessssnns

3.3.4 ProtoCOl VETIfICAOMN ..c.eocvreceeerereaeeseecseecsseessesssesossossssessssssnssossnssns

3.3.5 Fault tolerance ..
3.3.6 Flow control

3.4 Protocol formats

3.4.1 Message formats

3.4.2 Short header

3.5 I/O configurations

ooo

ooo

ooo

..

ooo

ooo

3.5.1 NUMDET Of I/O TINKS ..veeeveeeneeeneerceeererecsnesessecsssssesssssesssssessssesssssnes

3.5.2 I/O CONIGUIALIONScceceeeeereerrereresseraeseessesseseesessesessessossossssensonees

3.5.3 Configuration I ..

3.5.4 Configuration II

ooo

...

31
31
31
36
39
47
50
51
51
52
52
52
58
60
66
68
68
69
75
76
76
77

77

82

iv

3.5.5 Configuration III ceesesstsntssnsassstssstsasesstesssssassstesaressanane 85

3.5.6 Summary of J/O link configurationsccccceceeeerereenernerenneneaenne 87
REFETENCEnerirircriiiciitntntiicnessesssesssssnsssnsssssessssesssesessensasessasensssosesense 88
CHAPTER 4: Hardware implementation and performanceoeeeererecrercncncs 91
4.1 General deSCTIPHONcccueecrererererenereseresssesesesssasssesene ceverssasessesassssstenaas 91
4.2 PE’s buffers reeeeretes st sssassasesssnases ettt sae e e ssaenes 96
4.2.1 Buffer implementationceeceeeveeessescseeseseesesessossssssessossenences 96

4.2.2 Buffer size analysis ceeresnesteestsnetesste s esat s st e st seasensssesesananne 100

4.3 Buffer control & bookkeeping ceenesesstssase s testas e saes e sesaes e sessessesasen " 105
4.4 CommuniCation CONMIONccovvueeesrererrerersesenessssseassesssesesssesssssnssessasssnns 110
4.4.1 Input packets under process (IPUP)ceeeeeeenereneeneeesecessnsenns 113

4.4.2 Priority & routing tablescccevereeeereuererersesesesssesesesssssesnsnnenss 113
BA3FIFOS ..u.eoeecrircricrssssssaensesssssnssssssssssssssssssssesssssssssssssssesesssssssens 115

4.4.4 Control and tming UNItcceerereiereceeeiereeseeeeesesessessesssessessenens 118

4.5 ASIC PTOPETHES ...ucvucueeerusessenscssensssssssssassesnssessssessssessossssssassesesnessssanssesses 122
4.6 I/O link’s UHHZAONcoceerrrerrrrenrrresnsssssessessssssssssosscnsesemsessnsessssssssssans 123
4.7 PE’S PETOIMANCEc.ccvevvrereeerrrcrencencessssesesessessensassssssenns eeverneeennenenens 125
4.7.1 Multiprocessor PETfOrMANCEecvcuereresseeesonensemensessessaseenns 125

4.7.2 Motorola S6000ccruvererernrrreererseresneesesessensmenecssnsessssssenesns 128

4.7.3 TIanSPULETccceveererererereeeeneessencne ceesaeesseesstesaassessesanesaneensaannsann 134

4.7.4 PropoSed PEccccviorneninsiesnrnssesnesesssesssssssssssesesssssnsesessssnsnns 135

4.7.5 Performance COMPATISONceverseeenmeeneseeensesesssssesssesssesenens 137

4.8 PE’S PrOPETHEs = SUMMIATYcceeernrseeenenerssseessecesasnsnsnssssesesssssssssesseosees 138

REFEICIICEeeureieriieeieretietesecteeseeeeseseesesessessessesssessmmeeeemseom e e sees e e sess e 139

CHAPTER 5: Asynchronous Processor’s Concepts & Analysiscceererererernnees 141
5.1 INOQUCHON ...ceueinieeeeeiececcenssnssnsesssssssasesssssssssasessssssssesesessssessassassnsasnes 141
5.2 Asynchronous design approachccccceeceeecceserensesesesssessesessssesssesens 142
5.3 Data path cycle time COMPATISONccceerreeesersseseseseresassssesesessesensassreneseses 147

5.3.1 INOAUCHON «.cceunenenracncnssssssssssassssasanssssaanssassssassssssssessasssssnsans 147
5.3.2 Data path timing modelccccceeerererererereeserereressessnssassesesesesens 147
5.3.3 Synchronous & asynchronous cycle time models 149
5.3.4 Worst case cycle time analysisc.cceerererererererereersseseresssseseseses 154
5.3.5 Average cycle time analysisccceerererneresesrereeesesessesesesseseonens 157
5.4 CONCIUSIONS ..cuvevireeccsncsosensessnsnsnsscesssseseesssssssssasesssessrsssssessssssssessssesess 163
RELETENCE ettt ssnsesssse e e e ssssssssetesssasssessssssssssessasases 164

CHAPTER 6: Asynchronous Processor ATChitECtUTEScueereererrereeseesevesesssaees 167

6.1 Asynchronous pipeling architeCturecceeeeereerereeresseseseesnseesesensnns 167
6.1.1 Introductioncccceveuenene eetestesaisssessssesasssasaseaas 167

6.1.2 Design approach & princCiplesceeeereeserereresesssseesessesesenes 168
6.1.2.1 Fetch INStIUCHONcccoceererrrerencnsaeraresessssaserenessesesensssasans 174

6.1.2.2 DECOMETecveererrernrrresnnsnsssssssssssssssesesssssssessssessssesssssssenes 176

6.1.2.3 MUItIDHET ...ccuoverirriicencnicnnsnsnensensenecesnsscnesasassesssasssssnane 184

6.1.2.4 ALU ..ucuuiviiiiiintinnsencsenessessesessssassssnssassnssesssssssessassaseas 185

6.1.2.5 Data MEMOTY ACCESScceerreeerrereesersassasseaeasassasssssseanassases 186

6.1.2.6 FEEADACKcccovruieiniirurnnniniienssnnensasassssassnssessssassasassssene 189

6.2.1 TATOQUCHON vovevvrssessrssssesessmsssesessessssssesssssssssnssesssssesssensen 191

6.2.2 Methods Of OPETAtioNcccccuemerenecsssesssasseresssssesesssassesansesessannes 192
6.2.2.1 "Hybrid" - "RISC" type architecturecccecerereerennees 193

6.2.2.2 "Hybrid" - modified pipeline architecture 195

6.3 Common bus asynchronous architeCtureeceeereeeeeerernererecscssencacsens 206
6.3.1 INTOAUCHON ...uviririvieresaennrnrsnnssssesesenssassssasesesesesesesnsssasssssnsaes 206

6.3.2 Asynchronous common-bus design approachcceereeuencn. 208

6.3.3 Asynchronous common-bus implementationccveverenencne. 209

© 6.3.3.1 "NOFT" design approacheeeeeseeessuecseseesnsseseses 210

6.3.3.2 Bypass design approachcccceeeeeeeeresereseseceneeescssenes 211

6.3.3.3 RESUILS ...cucviuieiriuincerecernnncncncesessssssesssssssensasesesessssosssessases 215

REFETENCE ...ttt seststes s senssssesesss e e s s s sssssssssssssssssassssesssnns 216

7.1 IAUOGUCHON <evvvvrrorvereeeeesssssnesessseeseesesseseesssessesssesseesssesessseseeseseeee 217
7.2 Clock skew delay’s reduction methodscoceveererereeremeneerensessesesesnnns 218
7.3 GSLA impIementationc.eeeueeuereerecsemncseecsessssssssesesnensessssssssssssssnssons 219
7.4 GSLA timing analySisc.cceeeeeuererrrereseuseseesecesesssesessessessesnessesssnsessssssnns 222
7.5 CONCIUSIONS ..cccvverererneceaerereresssesesesemssssscsssssssessmsssasssssnsssssessnssesessssssnes 226
CHAPTER 8: CONCIUSIONScoverrerrrrernernerierernnsecsensssesesnensesesssssssssssesssnesssssssssmssnsases 227
8.1 MultiproCessing PEcocoeeeeruernencrinireresecesensesscssssaseeesesssssssssssssssssssenes 227
8.2 ASYNCHIONOUS PEuouoveeeeertticeceieceeeeeseeseneesesessessesnssssesesessssssess s 228

8.3 FUIThET TESEATCRcvieeieieeeeeieeeeeeeceeeere e e eeeeneseesme e e e e e 230

CHAPTER 1

Introduction

1. Introduction

Digital signal processing algorithms are used in a large variety of applications,
including image processing, speech processing, sonar and radar systems, biomedical
and geophysical (seismic) systems, artificial intelligence, and weather prediction. These
applications involve a a large amount of data and computations and require fast compu-

tation and high throughput (computation rate).

Most signal processing algorithms are repetitive and allow a high degree of paral-
lelism. These algorithms include complex computations such as transform techniques,
convolution/correlation filtering and matrix operations. Transform type techniques
include DFT (discrete fourier'transform), FFT (fast fourier transform), discrete cosine
transform, Karhunen-Loeve transform, Walsh-Hadamard transform, and so on. Filter-
ing types include FIR, IIR, 1-D and 2-D convolution and correlation, 1-D and 2-D inter-
polation and resampling, linear phase filters: low-pass high-pass and band-pass, Wiener
and Kalman filtering, adaptive filtering, window filtering (rectangular, Gaussian, Ham-
ming), differential filtering (gradient, Laplacian), etc.. Matrix operations include matrix
multiplication, matrix triangularization (QR decomposition), matrix inversion, singular
value decomposition (SVD), eigenvalue computation, solution of Toeplitz linear sys-

tems, etc..

The large increase in the complexity of computations, processing speed require-

ments and the volume of data handled in these applications makes it important to

Chapter 1 -2-

implement architectures that will increase the computation rate of real-time digital sig-
nal processing. The availability of low-cost, high-density, high-speed very large scale
integration (VLSI) devices and the emerging of computer-aided design (CAD) facilities
enable us to design fast processing elements and high performance multiprocessing sys-
tems. This dissertation’s main objective is to propose new architéctures for processing
elements that increase the throughput of a single DSP (digital signal processor) and
allow highly concurrent processing systems. The dissertation contains two themes. The
first theme investigates and describes an architecture of a processing element which
increases the throughput of a multiprocessing systems. The second theme investigates
and describes various asynchronous -processor architectures which overcome clock

skewing problems.

The large degree of parallelism inherent in digital signal processing algorithms
and the large amount of data and computations involved in them, suggests the partition-
ing of computations onto a large number of processing elements. Such multiprocessing
architectures typically waste computation time on interprocessor communication, which
limits the speedup and the thrpughput obtained by N processors operating concurrently

and transferring data among themselves.

To overcome the communication latencies and the wasted computational time, a
processing element (PE) which incorporates on the same chip a processing unit (PU)
and an autonomous interprocessor communication unit (AIO) is proposed. Concurrently
with the PU that executes the task’s computations, the AIO handles and controls the
data transfer between the PEs. The AIO operates as 1) an interface between the PU and
the network and 2) an intermediate network switch to transfer data between PEs.
Operating as an intermediate network switch enables the PE to be embedded in any

multiprocessing configuration.

Chapter two describes different existing multiprocessing systems, the proposed

Chapter 1 -3-

PE, and its operation. Chapter three describes the techniques and modes of PE-PE com-
munication, the interconnection protocols and the different I/O configurations. Chapter
four has a detailed description of the hardware implementation, including a multipro-
cessor performance analysis and a performance comparison between the proposed PE

and existing DSPs.

Current DSPs possess special features which make them very effective for digital
signal processing. Among them are:

e multiplier which can also multiply and accumulate in one cycle.

e ALU with pre- and post-shifting capabilities useful for scaling operands and

results.

e address computation unit which allow to pipelining of address calculations

with data path operations.

e A Harvard architecture, which means separate memories for data, program

and coefficients, and facilitates parallel prefetching of data and instructions.
e multiple buses to increase the bandwidth of data/instruction transfers.

Although the existing DSPs, fabricated in a small feature size technologies (0.8-2
micron), possess these special features, their throughput is limited by clock skewing
problems and they are not adequate to be embedded effectively in a multiprocessing

system implementation.

To overcome the clock skewing problem an asynchronous processor architecture
is proposed. In designing and implementing an asynchronous processor architecture, no
clock is required since the functional blocks are built of asynchronous circuits that com-
municate through interconnection handshaking blocks. The communication is done by
handshaking at the completion of each task. Such an synchronous design eliminates
limitations on the throughput imposed by use of a clock, the throughput should there-

fore increase as the logic speed increases. In the asynchronous processor, the execution

Chapter 1 -4-

time of the circuit implementation is data and instruction dependent, and therefore the

"average" throughput of an asynchronous processor will also increase.

Chapter five introduces the design of an asynchronous processor. A timing
analysis is performed to obtain the conditions on handshaking and clock skew delays
such that the asynchronous architecture yields a higher throughput. Chapter six pro-

poses different asynchronous architectures and their implementation.

If and when the clock skewing problems due to IC design and fabrication are
solved, the major advantage of the asynchronous architecture diminishes. However, the
large variation in the execution time due to data dependency still exists. To overcome
this problem in the synchronous processor implementation,. a new architecture named
GSLA (Globally Synchronous Locally Asynchronous) is proposed in chapter seven.
This architecture incorporates a clock with a duty-cycle that can be varied by the con-
trol unit. Functional blocks, which due to data dependency have a large execution time
variation, signal the control unit upon completion of their task. The completion signals
allow the control unit to vary the clock’s duty cycle, thus allowing the initiation of a

new task.

The last chapter (chapter eight) has conclusions and suggestions for further work

and research.

CHAPTER 2

Multiprocessing DSP

2.1. Introduction

Algorithms and programs for real-time signal processing (e.g., tracking radar,
sonar systems, image processing and multi-sensor navigation systems), artificial intelli-
gence, weather prediction, biomedical and geophysical applications [1] inherently have
a large degree of parallelism. They usually involve a large amount of data and compu-
tations (e.g., matrix manipulations - multiplications, inverse, correlations and convolu-
tions) and require fast computation and high throughput (high computation rate). One
way to implement this class of algorithms is with a multiprocessor architecture
[2,3,4,5,6,7,8]. But multiprocessor architectures have computation latencies which
limit the maximum speedup and throughput obtained by N processors operating con-
currently with data transfer between them. The speedup and the throughput are limited
by:

1) Idle time due to imperfect processor load balancing.

2) Communication latencies:

e Waiting time caused by long routes and contention for links - data has to pass

along too many links from the source processor to the destination processor.
e Time required to handle and control the data transfer.
3) Processor’s computation time wasted on interprocessor communication.

Effective exploitation of the algorithmic parallelism, as well as short paths for data

Chapter 2 -6-

transfer are essential to achieve a large computational speed-ﬁp. Effective use of mul-
tiprocessor system depends upon intelligent schedulers and compilers which either par-
tition the algorithm according to the number of PEs and their interconnection topology,
or partition the algorithm and determine the number of the PEs and their interconnec-
tion topology [9, 10]. Partitioning the algorithm into many tasks and assigning them to

different processors should attempt to:

e Minimize the number of the interprocessor data transfer communications.
e Keep the communications localized (short routes).
e Reduce the delays of data transfer between the PEs.

e Improve the processors load balance to reduce the idle times of the proces-

SOrS.

In general, the scheduling problem is NP complete; the scheduling algorithms
therefore use heuristics which do not necessarily yield an optimal partitioning with
respect to localization and minimal interprocessor communication. Even more,
depending on the algorithm, sometimes optimal partitioning may not be good enough,
therefore, the interprocessor communication hardware and protocols are vital for
achieving a high computing throughput.

An independent interprocessor communication unit designed to handle and control
the data transfer between processors, in parallel and concurrently with the computa-

tions, relieves the processor from wasting time on interprocessor communication and

reduces the time required for data transfers.

Depending on the algorithm and the number of processors, there are two ways to
implement the data transfer interconnections between the processors of a multiproces-
sor system. One implementation is the shared memory used in the CM*[11, 12] and in
the BBN [13, 14], and the other implementation is the packet switching used in the con-

nection machine[15] and in the NCUBE[16]. The shared memory interconnections are

Chapter 2 -7-

composed of either a large common memory or a set of local memories of the procés-
sors. Each sample of data is accessed by translating a virtual address to a physical
address. Data is transferred to and from the shared memory in one of the following
ways:

e Closely coupled through interface controllers.

e Multiple buses or networks (hierarchical clusters).

[CMt switching for direct data transfer.

e Intermediate circuits for store and forward.

e DMA channels.

In the packet network interconnection, a single byte or data packet is transferred

| among the processors in one of the following ways:
e Bidirectional buses.

e Shared interface routers.

e DMA channels.

e Hand-shaking.

Interconnection networks which reduce the communication delays and are well
suited for general purpose and parallel processing applications
[12,11,17,18, 19,20, 15,21, 22, 23,24, 16, 25, 26, 27] have been investigated by several
researchers. Studies have shown that for multiprocessor systems containing more than
50 processors, the shared memory interconnection has long delays due to bus conten-
tion while the network interconnection which is simpler to implement, reduces com-

munication delays compared to the shared memory and has a good tradeoff between

‘_012072‘;81 and performance of the system. Bus and ring interconnection topologies are

cheap to implement but have a limited bandwidth. Mesh and cross-bar interconnection

topologies have a high bandwidth but are expensive to implement. The packet network

Chapter 2 -8-

interconnection combines the advantages of both. It is a closely coupled store-and-
forward network that route messages in the form of packets with information about the
source, destination and the size of the message. Information (packets) passes through

intermediate switches to the destination [28, 29, 30, 31].

The following chapters describe a way to design a Digital Signal Processor (PE),
suitable for multiprocessor systems, which incorporates a Processing Unit (PU) and an
autonomous interprocessor communication unit (AIO) on the same chip. The process-
ing unit performs the task’s computations while the autonomous interprocessor com-
munication unit (ATO) handles the switching circuit and the data transfer between two
PEs. Both units operate concurrently and thus eliminate the waste of processing time
~ for handling and controlling data transfer. Data transfer between the PEs is executed
through I/O links that have a high rate data transfer capabiliiy (= 10-20 Mbits/sec) at
the cost of some hardware and software overhead. Data transfer between the PU and
the AIO is through dual port memory which can be accessed concurrently by the PU

and the AIO, thus preventing any interference between the two units.

2.2. Multiprocessor interconnection - background

Many multiprocessor systems like the Cm*[12, 11], The Connection Machine[15],
BBN[14], NCUBE[32, 16], Intel iPSC[32] and the Transputer[33, 34, 35, 36] have dif-
ferent interprocessor communication methods for data transfer and protocols.

Here are a few examples of how interprocessor communication is handled in multipro-

Cessor systems:

2.2.1. Butterfly Parallel Processor

The Butterfly Parallel Processor is an MIMD machine composed of processors
with memory and a high performance switch interconnecting the processors. The

memory of all the Processor Nodes forms the shared memory which is tightly coupled

Chapter 2 -9.

and can be accessed by each Processor Node. The Processor Node consist of a
microprocessor for computations, a Processor Node Controller (PNC) for transmitting
and receiving messages, a memory, an I/O bus and an interface to the interconnection

switch.

The PNC initiates all messages transmitted over the switch and processes all mes-
sages received from the switch. Using memory management, it translates the virtual
memory address used by the computing microprocessor into a physical memory
address. Thus, the memory of all Processor Nodes appears as a single large global
memory to the user. The PNC also provides efficient communication and synchroniza-
tion between tasks by executing queuing operations in a way similar to the switch

operation of a packet switching network.

2.2.2. Cm* multi-microprocessor

The Cm* is a multiprocessor system with a shared memory. The shared memory is
not separated from the PEs. Each PE and its local memory are closely coupled; a net-
work of buses give every PE an access to each non-local memory. The system uses
hierarchical packet switching structure. An address and/or a data from a PE is always
latched into a switching node of the hierarchical buses structure, and the buses are allo-
cated only for the time interval it takes to transfer the address or the data. The architec-
ture of the system combines several PEs into a "cluster" which provides a shared
address mapping and routing processor for handling the intercluster communication.
The routing of a PE’s reference to target memory is transparent to the user and is per-
formed by special levels of addressing mapping mechanisms and buses. The sender will
always receive back an acknowledgement or "Return" message containing the data.
Addressing within a cluster is translated by one level of mapping mechanism while
addressing between clusters is translated by two levels of mapping mechanism. An

intercluster message consist of one to eight words. The sender message consists of the

Chapter 2 -10-

following information: source ID, destination ID, control instruction, address of the
data and the data (1-8 words). The returned message consists of destination ID, control
instruction and the data. Reading/writing data from/to the non-local target memory is
done through DMA by the routing processor. For concurrent operation, the routing pro-

cessors have queues to store messages and to interface between their hierarchical levels.

2.2.3. The Connection Machine

The Connection Machine architecture provides a very large number of PEs
(processor/memory units) connected by a programmable switching packet communica-
tion network, that can connect all PEs in any arbitrary pattern. The key component is a
VLSI chip which contains 16 PEs and a router unit of the packet switch communication
network. The PEs on the chip are connected in an array of 4 x 4. The router is responsi-
ble for routing messages between chips and delivering them to the destination specified
by the address. The router communicates with the routers of other chips through an
hypercube topology of bidirectional lines. The router can transmit new messages into
the network, forward messages between chips and receive and deliver messages to the
appropriate PE. The PEs on the chip communicate directly with their four neighbors
without the interference of the router. The communication with the router is done by
handshaking on the FCFS (first come first serve) basis. A PE initiates a message by
sending a packet to its router consisting of an address followed by a "1" followed by the
data followed by the parity check. The router accepts messages only if its buffers are
not full. This information is then transmitted back to the PE via the router acknowledge
flag. The messages will be transferred from the router by FIFO policy, i.e., the message
which is at the node the longest time will have highest priority for transmission. When
the message reaches its final chip, the local router will deliver it to the appropriate PE

-

by writting it into its memory and notifying the PE that there is a new valid data.

Chapter 2 -11-

2.2.4. Transputer

The transputer is a 32 bit microcomputer with on-chip RAM memory and four
standard communication links. Communication between different transputers is point-
to-point synchronized and unbuffered. Data transfer is executed only if both transputers
are ready. Each link comprises two unidirectional signal lines that carry data and con-
trol information. A message is transmitted as a sequence of single bytes. Each link
controller has a data transfer overhead that consists of accepting a pointer to the
memory, number of bytes to be transferred and the link identity. Data fetch at the
sender and data store at the receiver is done by DMA. The data transfer on the link is
independent of the processor. The sending transputer initiates transfer by transmitting a
byte of data on the output line. The sender then waits for acknowledgement, which is
sent through the input line and which signifies that the receiver is able to receive
another byte. No other data will be sent before the arrival of an acknowledgement. Each
data packet is 11 bits long including 2 bits of header, 8 bit of data, and one END bit.

Acknowledgement packets consist of two bits.

2.2.5. NCUBE

The NCUBE computer is a multiprocessor that incorporates 2V PEs intercon-
nected as an N-dimensional binary hypercube. Each PE has its own local memory, and
N direct communication links with its neighbors. Communication with other PEs is per-
formed via asynchronous DMA operations over N pairs of bidirectional lines. Two
registers are associated with each link. One is the address register for the message
buffer location in the memory and the other is a count register indicating the number of
bytes left to send or receive. There is also a "ready" flag and an "interrupt enable" flag
for each link. A data transfer is initiated by the processor after checking its flags and
setting the appropriate registers. A message consists of a file of data with four associ-

ated fields of control information: source, destination, length of data file (up to 64

Chapter 2 -12-

Kbytes) and type of data. Some hypercube systems transfer the whole message at once
while others (e.g. Intel’s iPSC) partition it into smaller packets that are transmitted
sequentially. A new message or packet will be transferred only after the receipt of an
"acknowledgement" of previous packet from the receiver. After initiation the processor
continues with other operations while the link controller completes the transfer opera-
tion via DMA. When the link controller is ready for a new operation (after finishing
execution of the previous operation) it will set the appropriate flags and will notify the

processor by an interrupt.

2.2.6. Summary

The aboved survey shows that there are lots of alternatives to transfer data
between the PEs. All the alternatives are dedicated for increasing the performance of
the particular multiprocessor system. Shared memory used for data transfer between the
PEs is not a single large memory but consists of the PE’s local memories. Access to the
local memories require a network and switches as in Cm* and BBN. The Connection-
Machine uses a complicated programmable switching network for data transfer, while
the NCUBE and the transputer use their I/O link as part of the interconnection network.
Even though these multiprocessor systems use packet switching, DMA channels and
complicated special purpose switches, data transfer in these systems require the proces-

sor to lose some computation time and/or memory access time.

2.3. Proposed Processing Element (PE)
2.3.1. Design approach

In a multiprocessor system which incorporates a large number of processors (on
the order of fifty or more), transferring data through a network interconnection is

simpler and more economical to implement than through a shared memory interconnec-

tion.

Chapter 2 -13-

As was mentioned before, the speedup obtained by N processors, depicted in
figure 2.1 which operate concurrently in a multiprocessing system and transfer data

between them through any network topology is limited by:
1) Idle time due to imperfect processor load balancing.
2) Waiting time caused by communication latencies in the links and in forward-
ing data.

3) Processor time dedicated to process data messages and to forward them.

Figure 2.1 - Multiprocessor system

Appropriate processor load balancing with minimal data transfers has to be solved
by the scheduler, which partitions the algorithm into tasks and assigns them to different
processors so that the transfers are localized and their number minimized. But since the
known methods of scheduling do not necessarily yield an optimal partitioning with
respect to localization and minimal interprocessor communication, the interprocessor
communication hardware and protocols are vital for reducing: 1) The waiting time

caused by communication latencies, 2) The processor’s time wasted on data transfer

Chapter 2 -14-

and communication.

Therefore, the hardware of a multiprocessing system that achieves a computation

speedup and a higher throughput must have the following features:

e Minimum processor involvement in controlling and handling interprocessor
communication, and thus increasing the processor time dedicated to compu-

tations.

e Fast and independent interprocessor data transfer which does not interfere
with the task computations and is transparent to the user (separation of pro-

cessing and communication).

Figure 2.2 depicts a multiprocessing system designed with processing elements that

have the above features.

O

O O
O

Figure 2.2 - Multiprocessor system with proposed PE

The Processing Element (PE) used in the multiprocessor system of figure 2.2 is

depicted in figure 2.3. It incorporates two separate units: the digital signal processing

Chapter 2 -15-

unit denoted PU (Processing Unit) and the interprocessor communication unit denoted

AIO (Autonomous I/O).
L THEH
"1 conversion

Dual port !
1 memgl?y | !
‘ I/0

| Packet
Processing

: buffer
- . Single port >
1 unit T-. m%mogyo |

1 link
I | 1 |

[PU control '—'|— :
AIO control -1 /O
| link [~

PU | AIO

Figure 2.3 - Proposed PE

The processing unit (PU) and the communication unit (AIO) operate indepen-
dently and concurrently in a way that the data transfer inside the PE between the PU
and the AIO and outside the PE between the PEs is transparent to the user. The PU
executes the computational part of the task, while the AIO operates either as an auto-
nomous interface for data transfer between the PU and the network or as a network
switching node for data transfer between PEs. Handling all the data transfer from the
source to the destination by the AIO releases the PU to execute only the computational
part of the task. The PE incorporates four pairs of unidirectional I/O links controlled by
the AIO which can be used as input and output ports, thus enabling the PE to be embed-

ded in different interconnect topologies of multiprocessor systtm. When two PEs

Chapter 2 -16 -

require a higher communication BW it is possible to connect them with up to four inter-
connection links. In such case the ATIO will automatically transfer the packet through
any free link between the two. When two of the links are input links and two are output
links the PE through the AIO control can execute the switch functions in any intercon-
nection network topology such as delta, banyan, cross-bar, mesh, torus, omega, multi-
bus, 4-cube (N-cube) etc. [37, 38, 39,40, 41]. When in addition the processing power is
necessary, the PE could be part of a systolic array processor or of a N-Cube multipro-

cessing configuration.

The interconnection between the PEs through the I/O links can be done in several
ways: half duplex, full duplex or hand-shake. Data transfer can be serial through one
line or parallel through many lines, and thus depending on the application, the data bus

can be parametrized during the chip fabrication.

Modularity, parametrizibility and expansibilty of the PU and the AIO, dedicated
PU implementation according to the application, simple interface between the PU and
the AIO and the use of similar protocols for different communication configuration, are
the major properties that makes the proposed PE suitable as a macro-cell for many
ASICs (Application Specific IC).

The proposed communication between the PEs is established by a bidirectional

handshake protocol illustrated in figure 2.4.

When a source PE must transfer data to another PE, its AIO unit will initiate by
handshaking a connection with the AIO of the adjacent PE (intermediate node’s PE or
destination’s PE). The initiation is done by formating a control message according to
the protocol and sending it through the communication link. When the AIO of the
receiving PE is ready to receive the data, it will signal back and the source will send the
data packet. Upon completion of the transfer, the receiver’s AIO returns another control

message signalling the success/failure of the data transfer. A control message which is

Chapter 2 ‘ -17 -

] r Request to transfer data
Request check
Reply to request
v —_—
t
Data transfer
Data check
Reply to data

Figure 2.4 - Handshake communication
much smaller than a data packet contains the following fields: synchronization bits,
control instruction, source ID, destination ID, length of data, error detection code and
end of message (END). Error detection code like parity words or CRC might not be
necessary when the data packets are relatively short (about 2Kbits), and the PEs are

close to one another in a free EMI (Electro-Magnetic-Interference) environment.

Speeding up the data transfer can be achieved by using virtual-cut-through (VCT)
switching, which is a combination of circuit switching and store-and-forward packet
switching. The AIO of each intermediate switching network node checks by handshak-
ing, according to the destination’s ID, whether the next node in the path toward the des-
tination is free to receive the data. If the next node (toward the destination) is free, the
data is forwarded before it has been received and stored completely in the buffers. This

switching scheme requires extra processing power from the AIO as will be described

Chapter 2 -18-

later.

Each packet of data from the source to the destination is routed in a minimal
number of hops through specific nodes predetermined and assigned by the scheduler

[The scheduler may have as an input a given network topology or may output a pre-

ferred one).

Storing the data in the packet buffer is necessary for retransmission in case it

arrives at the next PE with errors or is lost (according to a fault tolerance policy

explained later).

When there are many packets to handle, the ATIO will provide preferential service
according to priority tables based upon the algorithm’s partition and the tasks assigned
to each PE by the scheduler.

Two types of buffers are incorporated in the processing element. One buffer is the
data buffer for interfacing data transfer between the PU and the network when the PE
is a source or destination of the data and the AIO operates as an interface between the
PU and the network. The other buffer is the packet buffer for data transfer between
PEs when the AIO operates as switching node of the network. The data buffer is imple-
mented by a dual port memory, which may be accessed by the PU and the AIO con-
currently, thus enabling both units to operate independently without any interference.
This dual port memory is in the addressing space of the PU and therefore it is accessed
by the PU like any other data in the memory. The other part of the memory which is
accessed only by the PU is a regular single port memory. The packet buffer is accessed
only by the AIO. This buffer is a temporary storage for data transfer between the PEs.
An acknowledgement from the next PE enables the AIO to reuse the storage for new
data transfer. The buffer can be implemented by shift registers or single port memories

(as will be described later).

Data received by the AIO of the destination PE is stored in predetermined loca-

Chapter 2 -19-

tions of the dual port memory buffers. Upon successful reception, the AIO will inter-
rupt the PU to notify, through flags/semaphores, that valid data has arrived. When the
PE operates as a switching node of the network, received data is stored temporarily in

the packet buffers of the output link through which it must be forwarded to the next PE.

2.3.2. .Data transfer between PEs

Communication latencies of data transfer are due to: 1) long routes, 2) time to han-
dle message transfers, and 3) waiting time because of the FCFS (firsts-come first-serve)
policy that handles and transfers messages in the arrival order and not according to their

priority defined by the scheduler.
To decrease these latencies the data transfer procedure is based upon:

1) handshaking protocols.

2) priority of service.

3) routing in minimum number of hops through a virtual- cut-through switching

network.

Priority of service and the routes for transferring data in a minimal number of hops

are determined by the scheduler during the compilation and the partition of the pro-

gram.

A handshaking procedure decreases the communication latencies because:

e Data is transferred only when it can be handled by the receiving PE, i.e.,
there is enough buffer space and data has the priority to be handled, thus free-

ing the link for transferring the necessary data.

e Saving time in forwarding data to the next PE when the receiving PE
operates as a network node by using virtual-cut-through (VCT) switching
technique. The receiving PE replies to the sender and at the same time checks

whether the next PE is ready to receive the data. If the next PE is ready the

Chapter 2

receiving PE operates in VCT mode.

-20-

Figure 2.5 depicts the underlying operations executed by a PE in transmitting data

according to a data transfer protocol based upon handshaking procedures.

SEND REQUEST TO
TRANSFER DATA

:

WAIT FOR DATA

CONTINUE BY

Figure 2.5 - Transmitting PE’s operations

The handshaking procedure for data transfer between PEs is always initiated by

the sender PE which requests a data transfer and waits for a reply from the receiving

PE. If the reply does not arrive during a predetermined time interval or the receiving

Chapter 2 -21-

PE is not ready to receive the data, the sender PE repeats the request or tries to transfer
another message according to the detailed protocol described later. If the receiving PE
is ready to receive data, the sender PE fetches data from the buffer, sends it and waits
for an acknowledgement. When an acknowledgement is not returned during a time
interval or the receiving PE replies that errors were detected in the transferred data, the
sender PE retransmits the data or continues according to the protocol described later.
When a response from the receiving PE verifies that the data has been received without

errors, the sender PE can start a new data transfer.

Figure 2.6 depicts the underlying operations of a receiving PE during a data
transfer.

Upon receiving a request to transfer data, the receiving PE (next PE) checks
whether it has: 1) enough buffer space available to store the data, and 2) the priority to
handle data for a specific destination and whether to receive it if multiple messages
arrive from different I/O links. If the data to a specific destination has the priority to be
handled and there is enough buffer space available, the AIO of the receiving PE replies
back to the AIO of the sender PE that it is ready to receive the data. If the receiving PE
does not have the priority to handle the data and/or its buffers are full, its AIO will

notify the sender that it is not ready to receive the data.

When the receiving PE notifies the sender PE that it is ready to receive data it sets

a time-out watch-dog and waits for the data arrival.

In case the receiving PE is not the final destination of the message, i.e., operates as
a network switching node that forwards data to the next PE, the receiving PE initiates

the handshaking procedure with the next PE at the same time as it replies to the sender

PE that it is ready to receive the data.

The receiving PE operates in one of two modes. If the data can be forwarded to

the next PE, the receiving PE operates in a virtual-cut-through mode, i.e., it forwards

Chapter 2 -22-

CONTINUB BY
PROTOCOL
REPLY TO
SENDER NOT READY
vEs
TARGET P8 NO GPERATION
l NO
WAIT FOR DATA REQUEST TO VCT

TIMBOUT NO REPLY
STOP PROCESS W

]

STORB DATA

) 4
REPLY TO SENDER No TRANSFER
ERR" oK.?
YES
REPLY TO SENDER

ACK®

Figure 2.6 - Receiving PE’s operations
data before it has been received and stored entirely. If the data cannot be forwarded to
the next PE, the receiving PE operates in the usual store-and-forward mode. In both
modes, because of the fault tolerance policy, the received data is always stored in the
packet buffers. At the end of the data transfer the receiving PE replies to the sender PE
with an acknowledgéfnent (ACK) if no errors have been detected in the data, or with an
ERR if errors have been detected. If the data has not arrived during the time interval of

the watch-dog it replies to the sender PE with an error message.

Chapter 2 -23-

As was mentioned before, data of higher priority will be handled first. Failing to
establish an interprocessor connection between two adjacent PEs or to transfer datg
between them results in later attempts (up to two more attempts) to try the transfer. Try-
ing to overcome failures in the system, if an interconnection link malfunctions or a data
transfer fails, the sender PE will try an alternative route and if that also fails it will
return the message back to its sender. Any attempt that results in three failures will
result in notification to an operating system or to a human operator. A full detailed

description of the protocol is described later in chapter 3. .

Acknowledgements are used to avoid unnecessary repetitions of data transfers.
There are two types of acknowledgements: hop-by-hop and end-to-end. Hop by hop
acknowledgement is part of the handshaking procedure between PEs connected by an
J/O link. This acknowledgement is to notify the sender PE, connected through an I/O
link, that data has been received without errors. Upon receiving a hop-by-hop ack-
nowledgement, the sender PE operates differently if it is a source PE or a switching net-
work node PE. If the sender PE is an intermediate network switching node, it discards
the packet after forwarding it in order to use the buffers for another data transfer. If the
sender is the source PE of the data it cannot discard it until an end-to-end acknowledge-
ment arrives. An end-to-end acknowledgement is a message from the destination PE to
the source PE notifying that the data have been received without errors. Upon receiving
this acknowledgement, the source PE discards the data and frees this buffer space for
other data. End-to-end acknowledgement is also timed out by another watch-dog dedi-

cated to this purpose (detailed explanation and implementation appear in chapters 3 and
4).

2.4. Summary of PE’s properties

The proposed PE has the following properties:

Chapter 2 -24 -

1) Sepérate units for computation (PU) and for communication (AIO).

2) Independent and concurrent computation and communication.

3) Fast data transfer by employing virtual-cut-through switching and minimum
number of hops.

4) Variable interconnection band-width between brocessing elements.

5) Macro-cell for "ASIC" implementation:
- Modular and parametrizable.
- PU s adjustable to the application.
- Processor interconnection configuration is adjustable to the application.

6) Independent of network topology - PE can be embedded in any network topology.

7) Simple interface between the PU and the AIO.

8) Different buffers for data transfer between the PU and the AIO and for data
transfer between the PEs.

References

1. J.L. Baer, *‘A survey of some theoretical aspects of multiprocessing,’’ Computing
Surveys, pp. 31-80, March 1973. .

2. Hockney and Jesshope, in Parallel Computers, Adam Hilger, 1981.

3. D.J. Kuck, ‘A survey of parallel machine organization and programming,”” Com-
puting Surveys, pp. 29-59, March 1977.

4. P.H. Enslow, ‘‘Multiprocessor organization- A survey,’””> Computing Surveys, vol.
9, no. 1, pp. 103-129, Mrach 1977.

5. Y.Parker, in Multi-microprocessor sytems, Academic Press, 1983.

6. H.H. Mashbum, ‘“The C.mmp/Hydra project: An architectural overview,”’ in

Comuter structures: Principles and Examples, pp. 350-370, International student

Chapter 2 -25-

10.

11.

12,

13.

14.

15.

16.

edition.
L. Snyder, ‘‘Introduction to the configurable highly parallel computer,”’ Com-
puter, pp. 47-56, January 1982.

S.Y. Kung, S.C. Lo, S.N. Jean, and J.N. Hwang, ‘“Wavefront array processors-
Concept to implementation,”” Computer, pp. 18-32, July 1987.

M.C. Chen, “A design methodology for synthesizing parallel algorithms and

architectures,” Journal of parallel processing and distributed computing, pp.
461-491, 1986.

M. Thaler, C. Loeffler, and G.S. Moschytz, ‘‘Programming, analysis and synthesis
of parallel signal processing,” Inst. for signal and information processing, p. 4,
1987.

R.J. Swan, S.H. Fuller, and D.P. Siewiorek, ‘‘Cm* A modular multiprocessor,”’
AFIPS conference proceedings, pp. 637-644, 1979.

R.J. Swan, A. Bechtolsheim, K.W. Lai, and J.K. Ousterhout, ‘“The implementation

of the Cm* multi-microprocessor,”” AFIPS conference proceedings, pp. 645-655,
1979.

B. Lin and P.S. Tzeng, ‘‘Benchmarking multiprocessors: A performance analysis
of the BBN Butterfly and the Sequent Balance 8000,”> ERL-EECS Depart. UCB,
p. 30, Berkeley, California, May 1986.

BBN Laboratories Inc., ‘“‘BUTTERFLY parallel processor overview,”> BBN report
no. 6148, March, 1986.

W.D. Hillis, ‘“The Connection Machine,”” in Ph.D Dissertation, MIT, Cambridge,

Massachusetts, June, 1985.

J.P. Hayes, T.N. Mudge, QF. Stout, S. Colley, and J. Palmer, *‘Architecture of a

Hypercube Supercomputer,”” International coneference of parallel processing, pp.

Chapter 2 -26-

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

653-660, 1986.

M.A. Franklin, D.F. Wann, and W.J. Thomas, *‘Pin limitation and partitioning of
VLSI interconnection networks,’’ IEEE tarns. on computers, vol. C-31, no. 11, pp.
1109-1116, November 1982.

H.J.Siegel, RJ. McMillen, and P.T. Mueller, ““A survey of interconnection

methods for parallel processing systems,”” AFIPS conference proceedings, pp.
529-542, 1979.

H.J. Siegel and R.J. McMillen, ‘‘The multistage cube: A versatile interconnection

network,’’ Computer, pp. 65-76, December 1981.

K.M. Nichols, ‘“Traffic-Specific interconnection topologies for multiprocessors,”’

in Ph.D. thesis, Department of EECS, University of California , Bekeley, 1984.

C.D. Thompson, ‘‘Generalized connection metworks for parallel processor inter-

connetion,’” IEEE Transactions on Computers, vol. C-27, no. 12, pp. 1119-1125,
December 1978.

T.Y. Feng, ‘A survey of interconnection networks,”” Computer, pp. 12-27,
December 1981.

G.H. Barnes and S.F. Lundstrom, ‘‘Design and validation of a connection network

for many-processor multiprocessor systems,”” Computer, pp. 31-41, December

1981.

L.M. Chen and J. Skalansky, ‘‘A parallel multiprocessor architecture for image

rocessing,’” Proceedings of ,the internatinal conference of parallel processing,
P g 8.

pp. 185-192, 1984.

CH. Sequin, ‘‘Message switching for multi-microprocessors,’”” proceedings

COMPCON spring 80, pp. 131-137, february 1980.

T.N. Mudge, J.P. Hayes, G.D. Buzzard, and D.C. Winsor, “‘Analysis of multiple-

Chapter 2 -27-

27.

28.

29,

30.

31.

32.

33.

34,

35.

36.

37.

38.

bus interconnection networks,’’ Journal of parallel and distributed computing,

vol. 3, pp. 328-343, 1986.

W. Stallings, in Data and computer communications, Macmillan publishing com-
pany, New York, 1985.

A.S. Tanenbaum, in Computer networks, Prentice-Hall, Inc., Englewood Cliffs,
NJ., 1981.

L. Kleinrock, ‘‘Principles and lessons in packet communications,”” Proceedings of

the IEEE, vol. 66, no. 11, pp. 1320-1329, November 1978.

L.G. Roberts, ‘“The evolution of packet switching,”’ Proceedings of the IEEE, vol.
66, no. 11, pp. 1307-1313, November 1978.

D.M. Dias and J.R. Jump, ‘‘Packet switching interconnection networks for modu-

lar systems,’’ Computer, pp. 43-53, December 1981.

G.B. Doshi and E.V. Munson, ‘‘Benchmarking the Cubes,’”” UCB project report,
Spring 1987.

C. Whitby-Strevens, Whitefriars, and L. Mead, ‘““The trasputer,”’ International
symp. on computer architecture, pp. 292-300, 1985.

L. Barron, P. Cavill, and D. May, “Transputer does 5 or more MIPS even when not

used in parallel,”” Electronics, pp. 109-115, November 17, 1983.
INMOS, in IMS T414 - Product Data, Colorado Springs, December 1986.
INMOS, in IMS T800 - Product Data, Colorado Springs, February 1987.

A. Gottlieb and J.T. Schwartz, ‘“Networks and algorithms for very large scale
parallel computation,”* Computer, pp. 27-36, January 1982.

B.W. Arden and R. Ginosar, ‘A multi-microcomputer interconnector,”’ Proceed-

ings of the international conference of parallel processing, pp. 353-355, 1984.

Chapter 2 -28-

39.

40.

41.

M.R. Samatham and D.K. Pradhan, ‘A multiprocessor network suitable for single
chip vlsi implementation,’” Proceeding of the international conference of parallel

processing, pp. 328-337, 1984.

K.M. Kavi, E.W. Banios, and B.D. Shriver, ‘‘Message repository facility: An
architectural model for interprocess communication,’’ Proceedings of the interna-

tional conference on parallel processing, pp. 271-278, 1984.

D.A. Reed and D.C. Grunwald, ‘‘The performance of multicomputer interconnec-

tion networks,’’ Computer, pp. 63-73, June 1987.

-29.

CHAPTER 3

Communication and protocols

3.1. Introduction -

Our interest is in multiprocessor systems containing a large number of PEs which
are connected through any arbitrary network. In such systems, the communication
methods and the protocol used for data transfer between the PEs are vital to achieve a
high throughput. This chapter describes different design alternatives of PE-PE com-
munication and the baseline design choices made for implementing a multiprocessor
network systems with the proposed PE. Depending on the application the PE can incor-
porate different I/O link configurations and/or processing units. Therefore, a particular
data transfer mode or technique sometimes is chosen because it has a clear advantage

and sometimes is chosen arbitrarily depending on the application, scheduling etc..

Section 3.2 begins with a tutorial of data transfer modes (simplex, half-duplex,
full-duplex) and data transfer techniques (handshake, synchronous, asynchronous). A
multiprocessing systems containing a large number of PEs, where each PE is limited
with the number of its I/O links implies that on the average a certain number of hops is
required for data transfer between the PEs. For simple and reliable data transfer in any
arbitrary multiprocessor system configuration a synchronous data transfer technique is
chosen. To synchronize the clocks of the PEs involved in the data transfer three clock
synchronization methods are described. The choice of one of them is arbitrary and
depends upon the EMI environment. Fast data transfer with a minimum delay is neces-

sary to obtain a high throughput. Store-and-forward switching and virtual-cut-through

Chapter 3 -30-

(VCT) switching in which an intermediate node of the network forwards data to the
next one before it has been received entirely, are compared and analyzed. The com-
parison and the analysis show clearly that the VCT is faster anci therefore this method is
chosen. Broadcasting data in a multiprocessing system which transfers data by
handshaking is difficult to implement. Three methods of data broadcasting are
described. Choosing any one of them is arbitrary and depends upon the network
configuration and the application.

The type and the formats of exchanging messages between the PEs are very
important for correct, complete and simple interaction among them. Section 3.3
describes the chosen protocol and its advantages. To decrease communication latencies
a VCT switching mode and an acknowledgement handshaking protocol is chosen. Flow
control in the network is obtained by executing the data transfer only if the next PE in
the predetermined route can receive it. To avoid network congestion and to detect
errors in data transfers an hop-by-hop and end-to-end acknowledgement policy is
chosen. Searching analysis is used to verify that the chosen protocol is free of

deadlocks, unspecified receptions, non executable interactions and ambiguities.

The message formats described in section 3.4 are based upon the basic format of
synchronous data transfer technique described in section 3.2 and upon the chosen proto-
col described in section 3.3. To increase the message transfer rate some ways of
decreasing the message header’s overhead are described. Short ID for identifying the
source and the destination PEs is one example and the error detection code is another

one.

Section 3.5 includes the reasons for choosing four 1/O links and a description of
three different I/O configurations. The I/O configurations are parametrizable and adapt-
able to different data transfer techniques, system applications and architecture imple-

mentations. The protocols designed in section 3.3 are adjusted to the I/O configuration

Chapter 3 -31-

and implementation.

3.2. Data fransfer techniques

Computer architecture and communication books[1,2, 3, 4, 5, 6] describe the basic
common ways of communication and data transfer techniques between computers
themselves and between computers and I/O devices. The next two paragraphs introduce

and explain briefly these communication modes and data transfer techniques.

3.2.1. Communication modes

The communication between two processing elements connected through I/O links

can be done in one of the following modes: simplex, half duplex, or full duplex.

A simplex link transfers information in one direction only. This mode is seldom
used in data communications because the receiver cannot communicate with the

transmitter to indicate the occurrence of errors.

Half-duplex transmission system is one that is capable of transmitting in both
directions but the data can be transmitted in only one direction at a time. In this mode a

pair of wires (signal and ground) is required for proper operation.

Full-duplex transmission can send and receive data in both directions simultane-
ously. This can be achieved by a four-wire link, where a different pair of wires is dedi-
cated to transmission in each direction. A common wire used by both processors
reduces the number of the required wires to three. Alternatively, a two-wire circuit can
support full-duplex communication if the frequency spectrum is subdivided into two

nonoverlapping frequency bands, one for transmit channel and the other for receive

channel.

3.2.2. Data transfer techniques

In each of the communication modes data transfer between the processing ele-

ments can be done in one of the following methods: handshaking, synchronous or

Chapter 3 -32-

Link
PE1 PE2

Figure 3.1 - /O link

asynchronous.
Handshaking data transfer technique

The basic two-wire handshaking method depicted in figures 3.2 and 3.3, incor-
porates two control wires and one data bus (contains any number of lines). One control
line is in the same direction as the data flow in the bus from source PE to destination
PE. This line informs the destination PE whether there is valid data on the bus. The
other control line is in the direction from destination PE to source PE and informs the
source PE whether it can accept a new sample of data. The control sequence during the

transfer depends on the unit that initiates the transfer.

Figure 3.2 shows the data transfer procedure when it is initiated by the source PE.
The source initiates the transfer by placing a sample of data on the data bus and activat-
ing the "data valid" signal. "Data received" signal is activated by the destination after it
has received the data. This signal deactivates the "data valid" signal which deactivates

the "data received" signal and sets the data bus to be idle and ready for a new sample of
data.

Figure 3.3 shows the data transfer procedure when it is initiated by the destination
PE. The destination initiates the transfer by activating the "ready for data" signal.
Detecting this signal the source places the data on the data bus and activates the "data

valid" signal. After the destination has received the data it deactivates its "ready for

Chapter 3 -33-

Data bus
>
Data valid
PE1 | PE2
Data received

Data bus

Data valid

Data received \—)

Figure 3.2 - Handshaking initiated by the source

data” signal which deactivates the "valid data" signal and sets the data bus to be idle

and ready for a new sample of data.

Asynchronous data transfer technique

The serial asynchronous data transfer technique employs special bits inserted at
the beginning and the end of the data. In this technique, each character (word) depicted

in figure 3.4 consists of three parts: a start bit, the data bits, and the stop bits.

The receiver knows the transfer rate and the number of information bits to expect.
When there is no data transmitted the link is idle in the "1" state. The receiver detects
the "start” bit when the link goes from "1" to "0" and synchronizes the time intervals for

receiving the data. After they have been transferred one or two "stop" bits always in the

Chapter 3 -34-

Data bus
>
Data valid
PE1 D PE2
Ready for data
)

Ready for data

Data valid

Data bus \—-)I

Figure 3.3 - Handshaking initiated by the destination

IDLE

Figure 3.4 - Asynchronous data transfer

"1" state are added and the link goes to the idle state.
The asynchronous data transfer technique has the following properties:

e Larger overhead in message protocols. Each transfer of an eight bit character

has an overhead of 3 bits (start and stop bits).

e Synchronization at the beginning of each character transfer.

Chapter 3 -35-

More complicated hardware.

No timing problems between the transmitter and the receiver.

Synchronous data transfer

The serial synchronous data transfer technique transmits blocks of data without

"start" and "stop" bits. To prevent timing drifts between the transmitter and the receiver,

their clocks are synchronized through synchronization information (control bits)

embedded in the message. Each block of data begins and ends with control information

as depicted in figure 3.5.

SYN SOH HEADER STD DATA BOD EDB EOT

Figure 3.5 - Synchronous data transfer

The control information at the beginning of the message is the preamble which contains

the following data:

SYN - Establishes and maintains synchronization on the link.
SOH - Start of header - beginning of message.

Header - Information about the source, destination, block size, message’s ID

etc..

STD - Start of data text.

The control information at the end of the message is the postamble which contains the

following data:

EOD - End of data text.
EDB - Error detection bits.

EOT - End of message.

Chapter 3 -36-

The receiver detects the SYN bits and synchrénizes its clock to read the message
properly. The preamble and the postamble control bits, which have a unique bit pattern,
provide the receiver with information about the data and enable the receiver to check its
correctness. To distinguish between data and control bits, bit stuffing is necessary in the
data information whenever it contains the same bit patterns as the control bits.

The synchronous data transfer technique has the following properties:

e Less overhead in transfer of large data blocks.

e Simpler to implement and requires less complicated hardware.

e Requires synchronization information.

3.2.3. Clock synchronization

In the asynchronous data transfer technique the clocks of the processors are very
close. In this mode the phase between the clocks is synchronized by the start bit. There-
fore, the following question must be asked: What is the allowable drift between the
clocks of the transmitter and the receiver ? To answer this question it is required to
check how many bits is it possible to transfer until the clocks have a phase delay of 180

degrees.

Assume there is a drift of A f between the clock frequency f; of PE; and the clock fre-
quency f 2 of PE, which is measured by x in [ppm] (parts per million), i.e., A f =f -
f2, or fa=f1(1+x107) .

The difference in the cycle time AT is given by:

AT=L_1_1 1 ___ x10°6
J1 F2 F1 f1(1+x10%) (1+x 1075,

And the number of bits to be transferred without a clock synchronization error is:

T 1
7 7P 08
AT x10-6 2x10-%
(1+x 16 a)fl

Chapter 3 -37-

I/O link
PE1 PE2

Clockl Clock2
[f1] [f2)

Clockl

Clock2

Figure 3.6 - Clock synchronization
Examples

For x=100 [ppm] = 0.0001 => n=$:3901 _5000 [bits]
For x=500 [ppm] = 0.0005 => n=149005-1000 vits]
For x=1000 [ppm] = 0.001 => n={f8%;-=soo [bits]
As might be expected, these examples illustrate that more bits can be transferred

without an error when the drift between the clocks is smaller.

In the synchronous data transfer technique, the clocks of the processor involved in
the data transfer have to be synchronized. The "SYN" control bits enable the receiver to
synchronize its clock to the transmitter clock, thus enabling the transfer of a large block

of data. There are many ways to synchronize the two clocks: PLL (phased lock loop),

Chapter 3 -38-

bit synchronizer and high frequency shift register.

The PLL (phased lock loop) depicted in figure 3.7 is a feedback loop comprised of

three basic blocks: a phase comparator, low pass filter and voltage controlled oscillator

(VCO).

INPUT PHASE
- | LPF
SIGNAL COMPARATOR
A
yco <
v
OPERATING CLOCK

Figure 3.7 - Phased Lock Loop system

The phase comparator compares the phase and the frequency of the input signal
with the VCO frequency and generates an error voltage. The error voltage is fed back to
the VCO which synchronizes and locks its frequency to the input signal. Once it is
locked, the VCO’s frequency is the same as the input frequency except for a phase

difference.

The bit synchronizer is a free running oscillator which constantly detects transi-
tions in the input signal and synchronizes its frequency to them. Synchronization takes
place after detecting a fixed number of transitions. This circuit also contains a PLL and

is very efficient for low signal-to-noise (S/N) ratio signals.

A high frequency shift register is a circuit that samples and latches the input signal
with a high frequency input clock (more than ten times the operating clock frequency)
into a shift register and checks the number of "1"’s and the number of "0"’s during each
operating clock cycle. When a transition occurs in the input signal and there is a differ-
ence in the number of "1" and "0", it is a synchronization error. This error is fed back to

a VCO for correcting and synchronizing the receiver’s clock.

Chapter 3 -39-

If the input clocks to the PEs are crystal oscillators with high frequency and their
operating frequencies are sufficiently close, the use of shift registers for synchronization
is adequate. If the input frequency is not much higher than the operating frequency, the
PLL system is required. The bit synchronizer is required only in very noisy environ-

ments or in systems with low input data frequency.

3.2.4. Virtual - cut - through switching

In chapter 2 and in section 3.1 it was mentioned that it is possible to enhance the
data transfer between the source and the destination if the AIO forwards the message to
the next node in the path before it has been received completely. In principle this
switching system operates as a combination of circuit switching and store-and-forward
packet switching. When a control message arrives to a network switching node the AIO
decodes the address, looks up in tables for the next link to be used for forwarding the
message (preassigned path) and checks if buffer space is available and if the forwarding
link is free. If the forwarding link is free, while reponding to the sender PE that it is
ready to receive a packet, the AIO tries to establish a connection with the next PE by
forwarding the control message to it. If the connection is granted the AIO will begin to
forward the data message to next node before it has been received completely. If the
connection is not granted the message is not transferred. In both cases, due to fault

tolerance and acknowledgement policy the data is always buffered like in any packet

switching system.

Figures 3.8a and 3.8b depict the delay procured in transferring fixed size data
packets between two network nodes of a packet switching system and a virtual-cut-

through switching system. The packets arrival rates depicted in figure 3.8b is higher
than the rate depicted in figure 3.8a.

In both cases, whether the packet arrival rate is high or low, the network node of a

virtual-cut-through network transfers all the packets with a smaller delay equal to the

Chapter 3 -40-

INPUT PACKETS E 3 I
2 |
- —
s N —— -

-~y

Figure 3.8b - Transfer delay - high rate fixed size packet arrival

time required to transfer the data of one packet.

Figure 3.9 depicts the delays in transferring different sized data packets with dif-

ferent arrival rates in both switching systems.

As before, the virtual-cut-through switching system yields a smaller transfer delay

equal to the time required to transfer the data of the largest size packet.

Chapter 3 -41-

FiH 3 |
R INPUT PACKETS
EEH ! |
packeTswrrcanG R 1 BHH 2> HH 3
EH 1 B : B 3 ver :

e

S 2| INPUT PACKETS

Figure 3.9 - Transfer delays - variable sized packets
If there are no transfer errors and the links are free to transfer data ("best case"),
the decrease in the delay to transfer packets between two nodes of of the virtual-cut-
through switching system increases linearly with the number of network nodes that the
packets of an information message have to pass from the source PE to the destination
PE. Figure 3.10 depicts the difference in the time that it takes for a message, consisting

of three packets, to travel from the source PE, through two network nodes up to the des-

tination PE.

It is possible to compare the "best case" throughput and the network delay of the
virtual-cut-through switching system and the store-and-forward packet switching sys-
tem for packets of the same length.

Denoting
*T - time required to transfer packet of data.

* t - time required to transfer the message header.

Chapter 3 -42-

1

STORB & FORWARD PACKET SWITCHING

I

Figure 3.10 - Transfer delays between source and destination
* n - number of packets in a message.
* m - number hops between source and destination.
* T+t - time required to transfer data packet and a header.
Packet switching
Throughput=-TT_;_—t
Delay=(n+m-1)T+(n+m-1)t

Virtual cut through switching

Throughput=-TT_;_—t
Delay=nT+(n+m-1)t

This comparison shows that in the "best case", when there are no errors in data
transfer and no queueing delays (each PE is always ready to receive and forward mes-
sages), transferring a message of n packets through a virtual-cut-through switching sys-
tem has a smaller delay (higher throughput) when routing the message from the source
PE to the destination PE requires more hops (m is large). The decrease in the average

delay of the "best case" is (m-1)T.

Using the proposed handshaking protocol described in section 3.3 enables the

receiving PE to establish a connection with the next PE while replying to the sender PE

Chapter 3 -43 -

that it is ready to receive the data. Therefore, less data is stored before it is started to be

forwarded and the delay time is smaller. Figure 3.11 depicts this property.

[

[&/

—}-¢— REQUEST
READY

e DATA

a1,

WY W

¥

1 2 4 1 2 3 4
STORE & FORWARD vcCT

Figure 3.11 - Handshaking data transfer

Kermani and Kleinrock in[7] and Hammond and O’Reilly in[6] analyzed the vir-
tual cut through switching system by using M/M/1 queueing theory models and the fol-

lowing assumptions:

Chapter 3 -44 -

Poisson distribution of message arrival.
Exponentially distribution of message length.
Infinite buffer size.

Deterministic routing.

Balanced network utilization.

Negligible propagation delay.

No errors due to noise.

They showed that the average delay to send a message through a balanced network is:

Where:

Averagedelay = """_’_'p— 1 T +t)-(m-1)(1-p)T (3.1)

n - number of packets of the message
m - average number of hops

T - time to transfer data of a packet

t - time to transfer header of a packet

p - utilization of each link (equal to all links)

The first term of the average delay is due to average packet switching delay while the

second term is the improvement of the average delay due to the virtual-cut-through

feature. This result agrees with the result shown before but it also takes into account

the probability (1-p) that the outgoing link is free. In a noisy environment, the probabil-

ity that the outgoing link is free has to be multiplied by (1-P.), where P, is the proba-

bility that an error occurred.

The result above implies the following conclusions (relative to the packet switch-

ing):

1) When the average number of hops increases, the average number of forwarding

Chapter 3 . -45-

messages without buffering also increases, which means that the average delay

decreases.

2) More localized data transfer between adjacent PEs and less data transfer between

non adjacent PEs yields more messages transfer without buffering.

3) VCT switching systems have smaller average network delay than store-and-

forward packet switching.

DELAY
A

>

|
I
l
|
l
l
|
|
I
I
|
|
|
|
|
:
1 LINK LOAD

Figure 3.12 - Delay vs. link load

4) For the same network delay, the virtual cut through switching system can transfer

more packets than the packet switching system and the difference is greater when

the network is lightly loaded.

Chapter 3 . - 46 -

5)

6)

7

THROUGHPUT
A

vCr

PACKET

LINK LOAD

Figure 3.13 - Throughput vs. link load
VCT switching systems require less buffer storage than packet switching store and

forward systems.
VCT decreases the buffer size required in each node.
VCT implementation is more complicated and requires more processing power.

As will be explained here the assumptions made earlier in the section for the

virtual-cut-through network analysis match the requirements of a multiprocessor system

derived in chapter 2.

Finite buffer size has small effect on the calculated average delay as was shown in
[71.
Deterministic routing which is used for transferring messages in a minimum

number of hops is also one of the analysis assumptions.

Balanced network utilization and PE load, as well as minimizing data transfer
imposed on the scheduler (which partitions the algorithm and assigns the tasks to

different PEs) are essential for obtaining a large reduction in the average data

Chapter 3 - 47 -

transfer delays.

o Low utilization of the links is equivalent to the demand of localized data transfer
between the PEs imposed on the scheduler. Minimizing the number of hops
reduces the advantage of the VCT (since the reduction in the average delay of the

data transfer is relative to the number of hops) but localizes the data transfers.

The protocol’s characteristics and properties required to implement the processing ele-

ment (PE), described later in this chapter (3.4.1) and in chapter 4, also correspond to

these assumptions.

3.2.5. Data broadcast

In many applications of multiprocessor systems, it is necessary to broadcast data
to many processing elements (e.g. image processing, biomedical, etc.). A multiproces-
sor system based upon point-to-point interconnection network is not the best way to
implement a broadcast feature because the data and the acknowledgement have to rip-
ple through the processing elements. The acknowledgement is needed for the following
reasons: 1) to make sure that all the PEs received the data correctly, and 2) to use the
same protocol. A more efficient way to implement a broadcast capability is to connect
the processing elements to a common bus through which messages and their ack-
nowledgement are transferred. In such an implementation a message is broadcast in
parallel to all the receiving PEs but their acknowledgement response is returned to the

sender PE in serial. One way to implement it is depicted in figure 3.14.

The sender PE and the receiving PEs are connected through a pair of unidirectional
interconnection links. Request to transfer data as well as data itself is transmitted on
one link in parallel to all the receiving PEs, while their response to the sender is
transmitted on the other link in serial. Every PE can be the sender PE. Response colli-
sions on the bus are avoided by using one of the following schemes:

TDM - Time Division Multiplexer

Chapter 3 -48-

SENDER
PE
v &
1 T1 T3 T3 7]
RECEIVING RECEIVING RECEIVING RECEIVING RECEIVING
PE1 PE2 PE3 PE4A PES

Figure 3.14 - Two bus broadcast implementation
In this scheme each receiving PE responds to the sender PE during a predetennine;l
time slot (A;) relative to the message. Receiving PE number 1 responds during time slot
A, receiving PE number 2 responds during time slot A, and so on. Since the receiving
PEs synchronize their operation to the sender, a response collision is avoided.

Sequential response

In this scheme, which is similar to TDM, each receiving PE responds one after the other
in a predetermined sequence. A receiving PEs "listens" to the bus, checks the IDs of
the responding PEs and responds after the one with the preceding ID number. To avoid
unlimited waiting time, if one of the receiving PEs is malfunctioning, each PE has a

"watch-dog" which times out at the maximum waiting time.

CSMA

In this scheme each receiving PE "listens” to the bus to check if it is free to transfer
data. If it is free, it sets its response on the bus; if not, it waits. If two receiving PEs
respond at exactly the same time, a collision occurs and both responses are corrupted.
Since the receiving PEs can also "listen" to the bus they can detect the collision and

retransmit the response after some predetermined or random time (like in Ethernet).
Another way to implement broadcast messages is depicted in figure 3.15.

Data is transferred in parallel to all the receiving PEs but their response is transferred in

serial from one receiving PE to the successive one through all the receiving PEs up to

Chapter 3 -49 -

SENDER

G| G|, G RECEIVING | RECEIVING
PE1 - PE2 PE3 PE4 PES

Figure 3.15 - Parallel broadcast serial acknowledgement

b

-

4

the sender. Each receiving PE attaches its response (RDY/NRDY or ACK/ERR) to the
response of the others by setting or resetting the corresponding bits in the response mes-
sage. For example, PE¢ sends its response to PE 5 that attaches it to its own response
and sends it to PE 4 and so on up to sender PE. This responding scheme (propagation of
acknowledgement) does not take longer than the previous one but it is simpler to imple-
ment and fits the acknowledgement handshaking protocol better. Once the network con-
nection is set only one specific PE can be the sender PE. A "Watch—dog" system is used
in the sender PE and in the receiving PEs to time out the arrival time of an ack-
nowledgement from the next PE. If an acknowledgement does not arrive during the a
time interval, a receiving PE sends its own acknowledgement to the preceding one and

it propagates up to the sender PE.

Another way to implement broadcast messages is "tree" type, depicted in figure
3.16, in which request to transfer data and data are transferred successively with short
delays from one PE to the PE. When the last successive receiving PE is connected to
the sender PE, both ends of the bus are connected, and a connection similar to a "ring"
type is established. When the last successive receiving PE is not connected to the
sender PE, both ends of the bus are disconnected, and a "tree" type connection is esta-

blished. In both configurations, at each time only one message can use the bus.

This scheme uses the multiprocessor interconnection network described before. When a

PE detects a broadcast message it forwards it immediately to the next PE that belongs

Chapter 3 -50 -

L 4

[

SENDER | RECEIVING
PE | PE1

Figure 3.16 - Tree type transfer

RECEIVING | mwmc‘—*nacmvmc—»
PE2 | - PE3 i. PE4 L.__

to the same group ID. Every PE in this serial transfer receives the data after a delay
which corresponds to the sum of delays of its preceding PEs. These delays are due to
the time that it takes to detect the address ID and to establish a connection between
adjacent PEs. The response to the sender is in serial from one PE to the other as in the
"daisy chain" scheme described above. In both the "tree" and the "ring" configurations

every PE can operate as a sender PE.

This scheme can be modified by establishing a circuit switching connection
between the PEs during the request to transfer data. Circuit switching eliminates the
time delays characteristic of store-and-forward and VCT switching. The response to the
sender is in serial through the receiving PEs as before. Data to the receiving PEs is sent
only after the sender PE receives an acknowledgement that all the PEs are ready (i.e.

constant circuit switching connections have been established).

3.2.6. Design choice

The multiprocessing systems under investigation contain a large number of PEs
connected in any arbitrary network. Transferring data packets of any size from one PE
to the other may require some hops. Therefore, it is simpler and faster to transfer pack-
ets of data in a synchronous technique. Later in section 3.5 it will be shown that
depending on the application and the I/O configuration data may also be transferred in

an asynchronous technique but in an arbitrary multiprocessing network the synchronous

technique is preferable.

The choice of clock synchronization is arbitrary and depends on the EMI (Electro

Magnetiv Interference) environment.

Chapter 3 -51-

The analysis and the comparison show that data transfer in the VCT mode is faster
than in the store-and-forward mode. Since we are interested in high performance real

time system implementations the VCT switching mode is chosen.

Later in section 3.3 it will be shown that the handshaking protocol is chosen. Data
broadcasting in a handshaking protocol environment can be done in any of the methods
described in paragraph 3.3.5. But for a given network configuration or application one

method might be preferable over the others.
3.3. Interconnection protocols

3.3.1. Introduction

A multiprocessor system is a collection of processing elements (PE) connected
through a network which executes multiple tasks in parallel. Such a system helps to
exploit the parallelism inherent in digital signal processing algorithms by dividing a
task into multiple independent sub-tasks and executing them concurrently in different
processing elements. Interconnection network between the processing elements per-
mits: 1) data transfer between them, and 2) sharing of resources by them. To coordinate
data transfer and interactions among the PEs, a communication protocol is needed. A
communication protocol is a set of rules established to: 1) control the operation per-
formed by a PE when it transmits a message or when a message is received from
another PE, and 2) handle and control data transfer and interactions among the process-
ing elements. Type and format of the exchanging messages between the PEs are very
important for correct, complete and simple interaction among the PEs. Some pertinent
functions are required from a protocol: synchronization of PEs for data transfer, PE’s
addressing, different commands for control and handling data transfer, detection of

communication errors and control of data flow among the PEs.

Many methods such as finite automata, petri nets, flow charts, formal grammars

Chapter 3 -52-

| and programming languages have been applied’ by researchers
[8,9,10,11,12,13,6, 14, 15] to model, analyze and synthesize communicgtion proto-
cols. Basically, these methods of modeling and verifying protocols belong to one of
two approaches: transition oriented models and language oriented models. Transition-
oriented models represent protocol status and events as states and changes of states,
respectively. Analyzing the state transition graphs validates the protocol’s properties.
Language-oriented models represent the protocols as an algorithm. The analysis is
done by running the program (algorithm) and checking its output (performance) under

different inputs (parameters).

Each approach has its advantages and disadvantages but the language-oriented
approach is more suitable for complicated protocols and is more flexible to verify

changes of network parameters, type of exchange messages and their formats.

To insure simple implementation of the PE proposed in this thesis for the mul-
tiprocessor system, a simple and well defined protocol will be described in the next
paragraph. This protocol which controls and handles data transfer , operation of a PE
and the interaction between them is based upon synchronous data transfer technique
and VCT switching chosen in section 3.2. To decrease communication latencies, avoid
network congestion and detect errors an acknowledgement handshaking protocol is

chosen. The protocol is described, explained in details and verified by flow charts and

finite state diagrams.

3.3.2. PE-PE communication

3.3.2.1. Data transfer principles

To decrease communication latencies in data transfer the data transfer procedures

are based upon:

1) handshaking protocols.

Chapter 3 -53-

2) priority of service.

3) routing in minimum number of hops through a virtual-cut-through switching

network,

Priority of service and transferring data in a minimal number of hops, determined
by the scheduler during the compilation and the partition of the program, avoids link

congestion and controls the flow as will be explained in section 3.3.6.

Handshaking procedures and protocols decrease the communication latencies
because:

e Data is transferred only when the receiving PE has enough buffer space for it
and the data has the priority to be handled, thus freeing the link for transfer-
ring only the necessary data.

e Saving time in forwarding data to the next PE (when the receiving PE
operates as a network switching node) by using virtual-cut-through switching

connection whenever it’s possible.

The acknowledgement of the handshaking protocol avoids unnecessary repetition
of data transfer and thus reduces the links congestions. Two types of acknowledge-
ments: hop-by-hop and end-to-end have detailed explanation in section 3.3.5. Hop-by-
hop acknowledgement is to notify the sender of iwo adjacent PEs (connected through
an I/O link) that data has been received without errors. When the sender PE is a net-
work switching node it can discard the data and use the buffers for another data
transfer. When the sender PE is the source of the data it cannot discard the data because
it has to wait for an end-to-end acknowledgement. End-to-end acknowledgement is a
message from the destination PE to the source PE notifying that the data have been
received without errors. Upon receiving this acknowledgement, the source PE discards

the data and frees its buffer space for new data.

Chapter 3 -54-

3.3.2.2. Data transfer protocol
Transmitting Data

Figures 3.17a and 3.17b depict the protocol of transmitting data by an AIO of a

processing element (PE).

Data transfer is executed through handshaking and is .always initiated by the
sender PE. To avoid congestion on the I/O links data is transferred only if the receiving
PE is ready to accept it. Therefore, the first step of the sender PE is to establish a con-
nection with the next PE by requesting to transfer data (RDY). If the receiving PE is
ready to accept the data it responds back with RDY; if not, the response is NRDY.
When the response is not ready, or there is no response within a certain time and the
watch-dog system times out, the sender PE will try again two more times to request for
data transfer. If the receiving PE is ready, the sender PE sends the data (DTR) to it and
waits for its response. When the receiving PE responds back with an acknowledgement
(ACK) the data transfer to the next PE has been completed successfully and the sender
PE to its relation with the data transferred. If the sender PE operates as a switching net-
work node which forwards the data it is free to start a new data transfer. If the sender
PE is the source PE of the data it starts an end-to-end watch-dog and can start a new
data transfer while waiting for an acknowledgement from the destination PE. Reception
of an acknowledgement frees the buffers for new data, otherwise the watch-dog times
out and if there were less than three attempts the source PE tries to transfer the data
again. After three failures the PE notifies the operating system or a human operator
about malfunction of the system and the system is stopped. When the receiving PE
detects an error in the data and responds back with an ERR and/or it fails to respond

and the watch-dog system times out the transfer, the sender PE will try two more times

to transfer the data.

Three failures in establishing a connection for data transfer (RTD) or in transfer-

Chapter 3 -55-

RTD - Ragoost to taosfor data START T..-Sunttimoaxt
DTR - Data tranefer STCP T.0. - S$top tomo oue
RTD ALT - Requcst (o tranefer data in altcmetivo rous RDY - Ready
DTR ALT - Data trmisfer i akemative rczo ERR - Eqor

Figure 3.17a - Transmitting data protocol
ting the data itself (DTR) result in choosing an alternative route by the sender PE for
transferring the data. The procedures of transferring the data through the alternative

route are the same as for the main route described before. When the data is transferred

Chapter 3 -56-

START T.O. STOP T.O.
@ Y a Y
STOP T.O.

RTD BACK - Roquest to transfer data back

DTR BACK - Data transfer back

Figure 3.17b - Transmitting data protocol
successfully the sender PE is free to start a new data transfer. When the data transfer
through the alternative link also fails three times the sender PE acts differently if it is a
network switching node which forwards the data or a source PE. If it is a source PE the
sender PE notifies the operating system or a human operator that the system malfunc-
tions and the system will be stopped. If it is a switching network node it will try to

return the data back to the PE that had send it. The procedures of returning back the

Chapter 3 -57-

data are identical to forwarding it. Success in returning the data frees it to start a new
data transfer, while three failures result in notifying the operating system or a human

operator about the malfunction of the system and the system will be stopped.
Receiving Data

Figure 3.18 depicts the protocol and the procedures of receiving data by an AIO of

a processing element (PE).

Upon receiving a request to transfer data (RTD), the receiving PE checks whether
it has the priority to handle this transfer and whether enough buffer space is available.
If it is ready to accept data it responds with RDY; otherwise, it responds with NRDY.
When it is ready in parallel to the RDY response it starts a watch-dog which limits the
time of reservation time of the buffers. If data does not arrive within a certain time the
watch-dog times out and the buffers are free for new data allocation. When data arrives
within the timeout limits the receiving PE checks it for transmission errors. If there are
no errors it responds with hop-by-hop acknowledgement (ACK), if there are errors it
responds with error message (ERR). Since a virtual-cut-through network is used, when
the receiving PE is not the destination PE, while responding to the sender PE that it is
ready to receive the data, the receiving PE tries to establish a connection for forwarding
the data to the next PE. This virtual-cut-through data transfer protocol is identical to
the transmitting data protocol described before. If a VCT connection has been esta-

blished and the receiving PE detects errors in the received data, it will report them to’

the next PE.

Chapter 3 -58-

Check busfer
& priority

<>

Y
o ERROR

ACK @ No operation DIR
- ¥

Message with

errer START T.O.

RTD - Request to transfer messago

RDY - Ready to receive message Y
NRDY - Not ready to receive message @Y

DTR - Data transfer message STOP T.O.

ACK - Data received correctly
ERR - Data received with emor

VCT - Virmal-cut-through switching

Figure 3.18 - Receiving data protocol

3.3.3. AIO-PU communication

The PE contains the AIO and the PU which reside on the same VLSI chip and

Chapter 3 -59-

operate independently, concurrently and synchronously. Incorporation of the AIO in the
PE frees the PU from dealing with the data transfer when the PE operates as source,
destination or switching node. Data to be transmitted from a source PE to another PE
or received by the destination PE from another PE is buffered in predefined locations of
the dual port memory. The use of predefined locations in the dual port memory for
specific sources and destinations simplifies the communication between the AIO and

the PU.

Dual port memory has duplicate address and data latches as well as two R/W con-
trol lines which enable concurrent reading from two different locations or reading from
one location while writting to another one. Such a configuration enables the AIO and
the PU to access the buffers simultaneously and synchronously without any interfer-
ence.

Since implementation of the dual port memory is more complicated and requires a
larger area, only part of the PE’s memory which is used to buffer data between the AIO
and the PU should be implemented this way. The memory of the PE is built of two
memories: one is a regular one port memory which is the "private” memory of the PU
and contains programs and data and the other is a dual port memory which is the data

transfer buffers between the PU and the AIO.

During the execution of a program, the PU transfers data into the buffers like any
other store instruction. Before storing a new set of data into the buffers of the same des-
tination PE, the PU checks flags to verify whether the previous data has been
transferred completely (i.e. the buffers are empty for new data). When all the data to be
transferred is stored in the buffer, the PU notifies the AIO by an OUT instruction, that
data is ready to be transferred. The QUT instruction contains the address of the desti-

nation PE and the size of data words (memory words) to be transferred.

Chapter 3 -60 -

When the AIO has transferred the data successfully and an end-to-end ack-
nowledgement has been received from the destination PE, it interrupts the PU and

reports by a flag/semaphore about the completion of the data transfer.

When the PE is the destination of a data transfer, the ATIO of the PE checks
whether enough buffer space is available to allocate for the receiving data. If there is
enough buffer space the AIO receives the data, arranges it in the right format and and
stores it in predetermined locations in the dual port memory buffer. While receiving

the data the AIO checks it for errors.

If there were no errors, the AIO sends back to the sender (preceding node) an
"ACK" message, sets flags/semaphores in a status word in the memory, and interrupts

the PU to notify it that there is new valid data. [The PU will reset the flags/semaphores

after using the data].

If there is an error, the AIO sends back to the sender (preceding node) an "ERR"

message, frees the buffer space and does not interrupt the PU.

3.3.4. Protocol verification

An error-free protocol is essential to reliable communication. Many methods can
be applied to detect errors in protocols and to verify their correctness[9, 16, 10,17, 12].
Simple protocols that involve a small number of states can be verified by state diagram
representation and reachability analysis. More complicated protocols may be verified
by petri nets or other high language methods. The type of errors handled are: state
deadlocks, unspecified receptions, nonexecutable interactions and state ambiguities. A
state deadlock occurs when there is no way to exit a state or when a set of states are in
an infinite loop without any exit (a process has no alternative but to remain indefinitely
in the same state or in to loop in a set of states). An unspecified reception occurs when a

correct message can take place but it is not specified in the protocol (e.g. a missing arc

Chapter 3 -61 -

in state diagram representation). Nonexecutable interaction means that a defined mes-
sage can never occur and thus a state can never be reached.
The protocol of the multiprocessor system described in this dissertation is simple

and can be represented by state diagram. Figure 3.19 depicts the state diagram of a

sender PE.
0
' =0 0—00—"00"—00"—"0_0—0.20—000-_"0
- - - - O .
@, - - - ~ - _ - _
-c O=Q P=Q O=Q P=Q 0=0 0=0 00
@, @ O @ O O O @, O
O,))))) O, Q, Q,

Figure 3.19 - Sender’s protocol state diagram

For better understanding and simpler analysis this state diagram is divided into
three parts: main route depicted in figure 3.20, alternative route depicted in figure 3.21

and backward route depicted in figure 3.22.

Chapter 3

“o

RTD
ERR RTID ERR RTD ERR
[[) [\
TO. TO. 0.
RDY DY RDY
DIR DIR DIR

:
O
:
O
2
T

To. m TO. ! ERR TO.

‘g.’

A
TO. | ERR To. m TO.

E

.5.’

T.O. ERR TO. ERR T.0.
q ry

Figure 3.20 - Main route protocol’s state diagram

°P_

Chapter 3 -63-

RTDA ERR RTDA ERR RTDA ERR
A / 2\ A
O TO. T.O.
RDY RDY RDY

R

OO
:
O~C

=
a
=
A
=

(=)

R
O~C
VR

:
)

R
O+C

5

P IE—
g
B

p —
8
o]
o

P I—
:

8

O+C

B

O+C

B
o=

g

B
(==

g

(D=
» R

g

Figure 3.21 - Alternative route protocol’s state diagram

Chapter 3 . - 64 -

RIDB ERR RTDB ERR RTDB ERR
A 3\)
O. TO. TO.
RDY RDY RDY

:
-
:

:
O
;
O
;
O

T.O.

g
B
8
()
A
O~0O=
5 ~— %

B

<
g
B

PR
g
B

<)
g

8

OC

U750

-y
o
> S
-
-
<)
> ENE

A
OO+C
A

Figure 3.22 - Backward route protocol’s state diagram

To check the correctness of the protocol, reachability analysis can be used.
Reachability analysis is based upon exploring all the possible transitions due to arriving
messages and time-outs. In the above state transition diagrams, arcs which correspond
to illegal messages or undefined control commands are not described because they are
not causing any state transition and the AIO ignores them and anticipates the time-out

mechanism to exit from the current state.

Chapter 3 _ -65-

Applying reachability analysis to the state transition diagrams of the sender PE
shows that from every state it is possible to exit to another state and there are no sets of
states which make an infinite loop. Legal control commands transfer from one state to
another with no ambiguity. Any illegal control command does not cause any transition
until a time-out occurs. The only state which does not have any exit is state "S" which
indicates that the system is malfunctioning and requires the interference of an operating
system or a human operator because a sender PE cannot forward a message to the next
PE or backward it to its predecessor PE. Any sequence of legal control commands

transfer the sender through a correct set of states starting and ending in the initial "1"

state.

The state transition diagram of the receiving PE depicted in figure 3.23 consist of
the receiving states (1 through 4) and the first transmitting states (5 though 8) used for
virtual-cut-through switching.

Applying the reachability analysis to the state transition diagram of the receiving
PE shows that there are no deadlocks and/or infinite state loop. As before, any illegal
control command does not cause any state transition. As required by the protocol, since

data transfer is always initiated by the sender PE, a time-out in the receiving PE always

transfers it to its initial starting state.

Chapter 3 . -66 -

ACK

1,2,3,4 - Receiver states
5,6,7,8 - VCT states
8 - Wait state in VCT

Figure 3.23 - Receiver’s protocol state diagram

3.3.5. Fault tolerance

The fault tolerance policy depends very much on the 1) error rate in data transfer
due to environment conditions (electromagnetic interference, signal-to-noise ratio), and

2) failure probability of I/O links, AIO and PU.

The error probability in data transfer can be expressed as a function of SNR and
noise statistics. Different transmission media have different noise characteristics and

bandwidth limitations. In multiprocessing systems the distance between the PEs is

Chapter 3 - 67 -

short and therefore the probability of an error in data transfer is smaller. A rule of
thumb shows that implementing the network with correctly designed fiber-optic links
results in error rates around 10~? to 10~12. Implementing the network with coaxial links

results in error rates around 10-5 to 10~7.

The failure rate of integrated circuits is measured by MTBF (mean time between
failures), and in today’s technologies is a couple of thousand hours that corresponds to a
couple of years. Therefore, the failure rate of integrated circuits is very small and negli-

gible for defining a fault tolerance policy.

To cover different media and environments the fault tolerance policy incorporates:
1) an error detection character in every message, 2) hop-by-hop and end-to-end ack-

nowledgement, and 3) repetition of transmission in case of errors.

The error detection character can be a simple parity bit, a LRC parity character or
a cyclic redundancy code (CRC). Choosing any of them depends on the transfer media.

The error detection can be simpler for higher SNR.

As was mentioned briefly in section 2.3 hop-by-hop acknowledgement is neces-
sary to decide whether data has to be retransmitted again or can be discarded if the PE
operates as a switching network node, and end-to-end acknowledgement is necessary to
ensure that data has reached its destination and was not: 1) forwarded to another desti-
nation due to an error in defining the route, 2) lost in a node which received the data but

did not forward it due to temporary malfunctioning, and 3) stuck in an endless loop.

In the event of an incorrect data transfer or a time-out the sender PE will try to
retransfer the data through the same predetermined route two more times. If the transfer
fails three successive times, the sender PE will try to send the data through a predeter-
mined alternative route three times. If there are also three failures in data transfer
through the alternative route, there are two ways to continue depending on the sender. If

the sender PE operates as an intermediate node, it will transfer the data backward to the

Chapter 3 - 68 -

previous PE. If the sender PE is the source PE, it signals a system malfunction. Any
data transfer resulting in three successive failures will be reported by the sender PE to

the operating system or to the human operator for further action.

3.3.6. Flow control

The handshaking protocol (send/acknowledge) adopted in this multiprocessor sys-
tem provides a natural flow control mechanism. Data is transmitted over the link only if
the receiving PE has the enough buffer space available for the data and it has the prior-
ity to handle the data. Retransmission of data occurs if 1) the receiving PE replied that
errors were detected in the received data or 2) the time out system indicated that some-

thing is wrong with the data transfer (malfunction of the link or of the receiving PE).

Using the fault tolerance principles of predetermined main route or alternative
route for data transfer in a limited number of attempts contributes to the flow control.
The sender PE tries to transfer data to the next PE through a predetermined main route.
If it fails three times it tries to transfer the data to the receiving PE through a predeter-
mined alternative route. If again, it fails three times it notifies the operating system
and/or human operator. When a sender PE which operates as a network node also fails
to forward the data in the alternative route it tries to return it to the previous sender PE.

If it fails to return it the operating system halts the operation of the system.

Send/acknowledge protocols, which control the flow and prevent congestion on
the links, also help to avoid deadlocks in the system by enabling data transfer only
when it can be accepted. Using different buffers dedicated to special links and
send/acknowledge protocol might slow down the transfer but avoids deadlocks by regu-

lating the available buffer space.

3.4. Protocol formats

The message formats designed in this section are based upon synchronous data

Chapter 3 -69 -

transfer technique, VCT switching and acknowledgement handshaking protocol
designed in the previous sections of this chapter. Some ways to decrease the message
header’s overhead (short ID) are described in paragraph 3.4.2. The implementation of
short ID are described chapter 4.

3.4.1, Message formats

Data transfer between adjacent PEs is executed by a handshaking procedure. The
AIO of the sender PE initiates the data transfer by sending a request message with the

following format:

SYN | RTDRTSD | PACKETID | SOURCE | DESTINATION | LENGTH/DATA

m‘m'

e SYN - Control character establishes and maintains synchronization between the

AlIO of the sending and receiving PEs.
e RTD - Command code for request to transfer a block of data.

.® RTSD - Command code for request to transfer a sample of immediate data. The
LENGTH/DATA field contains the immediate data.

e PACKET ID - Serial number of the packet to be transferred (necessary for fault

tolerance).
e SOURCE - ID of the PE which is the source of the data information.
e DESTINATION - ID of the PE where the data information is to be delivered.

e LENGTH - If the command (instruction) code is RTD, defines the length of the

data block (number of bits, bytes, words etc.).
e DATA - If the command code is RTSD, this field contains the immediate data.

e CKS - A character for detecting errors in the transmission.

Chapter 3 -70-

e END - A character which indicates the end of the message.

If the buffers of the receiving PE (network switching node or destination) are
empty and the receiver has the priority to handle this data, the receiver will send back a

control word "RDY" indicating that it is ready to receive the data. This control word

has the following format:

PACKETID | SOURCE | DESTINATION | CKS

SYN‘RDY

END'

e RDY - Command code indicating that the receiver is ready to receive the data

related to the RTD control command sent by the PE sender.

If the receiver’s buffers are full and/or the receiver is busy and cannot handle the
data, it will respond with the control word "NRDY" indicating that it is not ready to

receive the data. This control word has the following format:

SYN [NRDY | PACKETID | SOURCE | DESTINATION | CKS

e NRDY - Command code indicating that the receiving PE is not ready to receive
the data.

Upon receiving a ready response ("RDY") from the receiving PE, the sender PE
will send the data information serially in a synchronous mode with the control word

"DTR" (Data Transfer). The data will be sent in a packet of the following format:

SYN | DTR | PACKETID | SOURCE | DESTINATION | LENGTH | DATA | CKS

'

e DTR - Command code indicating data transfer.

Chapter 3 -71-

e DATA - The actual block of data information.

Upon completion of the transfer the receiver will send back a control word which
will either be "ACK" to notify the sender that the transfer has been executed success-
fully or "ERR" to notify the sender that the transfer failed and was not completed suc-
cessfully. The format of this control word will be:

ACK/ERR | PACKETID | SOURCE | DESTINATION

'

CKS'B‘ID'

e ACK - Data received without errors. A response for immediate data transfer

(RTSD) or block data transfer (DTR).
e ERR - Errors in the received data.

When a failure occurs in transferring some data, the sender PE will attempt‘to
retransfer it up to two more times. If there is still a transfer failure, the sender PE will
try to transfer the data through an alternative route (which has also been predetermined
by the scheduler). Since the cause for failure could have been a hardware failure on the
link through which the receiving PE responds, it is important to distinguish between
transferring data through the prime route and transferring it through an alternative
route. [Such distinction is required for discarding repeated data which has already been
received correctly]l. Therefore, the messages of request to transfer data and data
transfer for the alternative route will have different control commands codes in the

same formats as before:

SYN | RTDA/RTSDA PACKETID | SOURCE | DESTINATION | LENGTH/DATA

' '

e RTDA - Command code of request to transfer a block of data through an alterna-

tive route,

Chapter 3 -72-

e RTSDA - Command code of request to transfer a sample of immediate data

through an alternative route.

PACKETID | SOURCE | DESTINATION | LENGTH | DATA

SYNlDTRA

=]~

e DTRA - Command code indicating data transfer through an alternative route.

If the sender PE also fails to transfer the data through the alternative route, there
are two cases to consider. If the sender is the source, the multiprocessor system cannot
operate properly and the interference of an operating system or a human operator is
required. If the sender PE is an intermediate network node, it will try to return the data
back to the PE which had forwarded it to him. In both cases the sender PE has to notify
an operating system or a human operator about the failure of the interconnection. The
formats of returned data are the same as before except for the control commands codes

which are different as shown below:

SYN | RTDRRTSDR | PACKETID | SOURCE | DESTINATION | LENGTH/DATA

miml

e RTDR - Command code of request to transfer backward a returned block of data.

e RTSDA - Command code of request to transfer backward a sample of returned

immediate data.

SYN | DTRR | PACKETID | SOURCE | DESTINATION | LENGTH | DATA

mlml

e DTRR - Command code indicating backward returned data transfer.

To decrease communication latencies, a virtual-cut-through switching system is

Chapter 3 ‘ -73-

used. In such a system a network switching node can forward data before it has been
received entirely; thus the data is forwarded before errors could have been detected.
Therefore, if while forwarding a message an eiror is detected at the end of receiving it,

the forwarding PE notifies the next receiving PE by a control word with the following

format:

SYN | PSE | PACKETID | SOURCE | DESTINATION | LENGTH

CKS‘ENDI

e PSE - Command code which indicates that data described by this message was

sent with errors.

Data transfer requires an acknowledgment policy. The policy that have been
chosen for the multiprocessor system is a combination of hop-by-hop and end-to-end
acknowledgements. Hop by hop means that each data transfer between adjacent PEs has
to be acknowledged by the receiver. Once the receiver PE has acknowledged the data
transfer, the sender PE if it operates as an intermediate network node can discard the
data and free the buffer for another data transfer. The source PE cannot discard the data
until it receives an end-to-end acknowledgement from the destination PE. This end-to-
end acknowledgement is necessary to ensure that the data has been delivered to the
correct destination without being lost or routed in an endless loop. Data can be lost or
routed in an endless loop if an I/O link or a PE malfunctions. The format of end-to-end

acknowledgement is the following:

PACKETID | SOURCE | DESTINATION | LENGTH

SYN l EEACK

mlml

e EEACK - Command code which indicates end to end acknowledgement.

Chapter 3 -74 -

Many multiprocessor systeﬂl application require broadcast data to many process-
ing elements (e.g. image processing, biomedical, etc.). Several ways of implementing
data broadcast were introduced in section 3.2.5. Broadcasting in a multiprocessor sys-
tem based upon an interconnection network requires the data and the acknowledgement
to propagate through the processing elements. In a common bus multiprocessor system,
data and acknowledgement are transferred through the buses and do not have to pro-
pagate through the processing elements. But in both types of implementations it is still
possible to use an acknowledgement handshaking protocol similar to the one described
before except that the destination address refers to a group of PEs. Such a message

would have the format;

SYN | COMMAND | PACKETID | SOURCE | GROUP | LENGTH

CKS'ENDl

e COMMAND - Indicates any of the following control commands:
e RTDG - Request to transfer a block of data to multiple PEs.

e RTSDG - Request to transfer immediate data to multiple PEs.

e DTRG - Data transfer to multiple PEs.

e GROUP - Address of the destination PEs.

It is important to notice that in all the broadcast implementations described in section
3.2.5, the response of the receiving PEs are returned to the sender PE serially, one after
the other, and cannot returned concurrently. Therefore, the receiving PEs must have the
capability of responding in the correct timing and checking that its response is not col-

liding with other responses.

Chapter 3 -75-

3.4.2. Short header

To implement an effective multiprocessor system for real time applications it is
very important to reduce the message’s overhead (i.e., percentage of the control bits

used in a message). Many fields in the message header can be reduced by using special

hardware or some restrictions.

If all the PEs of the multiprocessor system use a same global clock, the SYN field
which synchronizes between the PEs can be eliminated.

Instead of having a header with a source and destination IDs that require 2log,N

bits, where N is the number of PEs in the system (e.g., for 500 PEs each ID requires 9
bits), it is possible to use only a short ID of numbers like : 1,2, 3 up t6 the max-
- imum paths passing through the link. Each short ID defines for its output link a specific
path between the source PE and the destination PE that was predetermined by the
scheduler during the partition of the algorithm and the assignment of the tasks to dif-
ferent PEs. Thus, the AIO at each node has a lookup table which according to the input
link translates the short ID into either a source PE ID and a destination PE ID, or to a
short ID for the output link that has to be used for forwarding the message. The use of

translation look-up tables shortens the header and reduces the decoding time.

Another way to reduce the header is by defining the length of the data as multiples
of some figure, e.g. a multiple of 256 bits (characters or words) — 512, 768, 1024 etc.
By limiting the maximum length to 1024 bits (characters or words) the length field will
require only 4 bits instead of 10 bits that would have been required for any block size of

data up to 1024 bits (characters or words).

In a multiprocessor system the distance between the PEs is short and the EMI
(Electromagnetic interference) is low, which corresponds to a large signal to noise ratio.
Therefore, the probability of transmission errors is low , and instead of having compli-

cated error detection/correction codes like CRC or LRC it is sufficient to have a simple

Chapter 3 -76 -

parity check of only one bit. Simple parity check results in reducing the number of the
bits in the CKS field of the header and in increasing the speed of detection and response

to the sender.

3.5. /O configurations
3.5.1. Number of I/O links

The optimal number of /O links per switching node was evaluated through analyt-

ical models and simulation by Fujimoto [18]. The number of interconnections pins to

chips periphery is limited. Given N pins for p /O ports, there are % pins per port.
Thus, I/O bandwidth per port is proportional to %’- (i.e. more ports means less I/O

bandwidth per port). Average "end-to-end" delay and total network bandwidth were
used as performance measurements. Analytical models based upon queueing theory
[19,20,21,22,7] showed that for a given total I/O bandwidth N, 3-5 I/O links yield the
least delay and the most I/O bandwidth per link. Simulation studies which included
Barnwell filter programs, block /O filter programs, FFT programs and LU decomposi-
tion have supported the analytic results. Therefore choosing four I/O links for each PE

yields a short delay and enables the PE to be embedded in many different network topo-
logies.

The number of lines in each I/O link is parametrizable and can be any number. In
the synchronous and the asynchronous techniques, the data is transferred serially and
therefore the data bus is one line. In the handshake technique, words of data are
transferred in parallel and therefore the data bus contains many lines according to the

word length. The number of lines per I/O link depends on the [/O configuration as will

be described in the next section.

Chapter 3 -77 -

3.5.2. /O Configurations

The proposed PE incorporates four I/O links through which data is transferred
between the PE and its neighbors. The AIO of the PE handles and controls the data
transfer without involving the PU. Data transfer is initiated by handshaking and is exe-
cuted through a "virtual-cut-through" switching system. A handshaking procedure
avoids data transfer when buffer space is not available in the receiving PE. It also
enables the receiving PE, if it operates as a network switching node, to establish, if it is
possible, a connection for data transfer with its next PE before the data has been
received completely (virtual- cut-through switching). Three different configurations of

the I/O communication links are depicted in figure 3.24.

le— caDiat. ‘ F(._ aapi | L_ a
¢e—— Di
c
f— |,
|—> Co l.—3p Co&Do —3 Do
Configuration I Configuration II Configuration IIT

Figure 3.24 - /O configurations

Using anyone of these configurations depends on the application and the network
topology of the multiprocessor system. The I/O link configurations and their
corresponding protocols were investigated and are described and explained in the fol-

lowing paragraphs.

3.5.3. Configuration I

Configuration I of the interconneétion link depicted in figure 3.24 incorporates one
bidirectional data bus and two unidirectional control lines. The data bus can be
extended from one line which transfers the data in serial to any number of lines that
transfer the data in parallel. Data transfer is half-duplex handshaking, each time the data

bus is available to transfer data in one direction. The AIO which controls a data bus of

Chapter 3 -78 -

one line is almost identical to the AIO which controls a data lines that contains many
lines. The only difference is that in the first case each bit of data is transferred in serial

while in the second case sets of bits are transferred in serial.

This configuration can operate in two different modes. In the first mode control
lines C; and C, carry only logical levels or pulses for controlling and synchronizing the
information transfer on the C&D data bus which carries either data information or con-
trol words. Information on the C&D data bus can be transferred either in a synchronous

mode or in an asynchronous mode.

In the synchronous data transfer mode the sender initiates the data transfer by set-
ting clock pulses on its C, control line (C; control line of the receiver). When the
sender PE detects that its C; control line from the receiver PE is "high" it transfers data

on the C&D data bus which is synchronized with clock pulses send on the C, control
line. Figure 3.25 depicts this mode.

Ci

Co

C & D - Data information : : : : :

Figure 3.25 - Synchronous data transfer.

In the asynchronous data transfer mode, handshake data transfer is initiated by the

sender as explained in section 3.2 and depicted below in figure 3.26.

This mode of operation (synchronous or asynchronous) is fast and efficient for
transfers of short, fixed sized data blocks between adjacent PEs like the "wave-front"
multiprocessor architecture. In the synchronous and asynchronous modes, the PE

which initiates the data transfer determines the direction of the data transfer by becom-

Chapter 3 -79 -

C&D

Co —3 Ci

Ci K Co

PE1 PE2

C&D

Co

Ci

Figure 3.26 - Asynchronous data transfer

ing the sender while the other becomes the receiver PE.

In the second mode, the C&D bus carries only data information while the C; and
the C, lines carry the control words information (not control pulses or levels). But
unlike the first mode, data transfer is not limited to short blocks of information. Data
information and control information is transferred in serial, either in a synchronous
mode or in an asynchronous mode as was explained before in chapter 2. This mode of
operation utilizes separation between control information and data information.
Depending on the data transfer protocol, data information might not use a preamble but
only data and a postamble. When data information doesn’t have a preamble it must

immediately follow the control information to avoid confusions.

Chapter 3 -80-

The data transfer protocol of this configuration is explained by using the second
mode of operation which utilizes separate data and control information lines. When the
data bus is not busy the sender initiates the handshaking data transfer procedure by set-
ting on its output control line (C,) the control word "RTD" (Request to Transfer Data)

or "RTSD" (Request to Transfer Short Data) which has the following format:

SYC | RTDRTSD | PACKETID | SOURCE | DESTINATION { LENGTH/WORD

m|m|

The LENGTH/WORD field in the RTD instruction denotes the number of data words in

the message, while in the RTSD instruction it is the actual data which is transferred.

If the destination buffers are empty and available, and the receiver’s AIO is ready
and has the priority to handle the data it will respond with "RDY™. If the buffers are full
or the receiver doesn’t have the priority to handle the data, it will respond with
"NRDY". The response will be done by setting on the control line (C;) the control

word "RDY" (Ready to receive) / "NRDY" (Not Ready to receive) which has the fol-

lowing format:

PACKETID | SOURCE | DESTINATION

SYN I RDY/NRDY

e

Upon receiving a "RDY" signal when the bus is not busy the sender will send on its out-
put control line (C,) a control word "DTR" (Data Transfer) which indicates that the bus

is occupied for its data transfer. The control word will have the following information

and format:

Chapter 3 -81-

SYN | DTR | PACKETID | SOURCE | DESTINATION | LENGTH | CKS

m‘

Following the "DTR" control word the sender will send the data serially in a synchro-
nous mode on the data line (C&D bus). The data will be sent in a packet of the follow-

ing format:

SYN | START | DATA

mlm‘

Upon proper completion of the transfer, the receiver will send back on its output control
line (C; of the sender) an "ACK" (ackhowledge) to indicate that the transfer has been
executed properly.

If the transfer has not been completed properly the receiver will send back on its output
control line an "ERR" (Not Complete Transfer) to notify the sender that the transfer has

not been executed properly.

The format of the response will be:

SYN | ACK/ERR | PACKETID | SOURCE | DESTINATION

m}ml

By default, if the sender doesn’t receive any signal from the receiver, the transfer was
not completed successfully. The sender and the receiver will have "watch-dog" time-out

systems that will:

e Notify the receiver that the transfer is wrong if data doesn’t follow the "RDY" sig-
nal

e Notify the sender if "ACK" or "ERR" doesn’t follow the completion of the data

Chapter 3 -82-

transfer.
Summary of properties
e Operates in either synchronous or asynchronous mode.
e Separate lines for data information and control information.

e Control is full duplex.

e Data is half duplex.

e Data can also be sent in a short protocol which only contains the preamble and the

"SYN" of the preamble.

e In the short protocol data has immediately to follow the control words to match

data with the destination address.

e Control lines are not utilized 100%.

3.5.4. Configuration I1

Configuration II of the interconnection link depicted in figure 3.24 incorporates
two unidirectional buses for transferring data and control information. The buses can
be extended from one line in which one bit of information is transferred in serial to any
number of lines in which bytes or words of information is transferred in serial. The con-
trol in both cases will be the same with adaptation to the number of lines in the bus.
Unlike the system in configuration I, this system does not have different lines (buses)
for control information and for data information, i.e., control and data information share
the same bus. Data transfer is similar to full-duplex, because there are two unidirec-
tional lines for sending and receiving data in both directions simultaneously. When no
information is being transferred the buses are "idle". As in the second mode of
configuration I (section 3.5.3), data transfer is not limited to short blocks of information

and the data is transferred in either synchronous mode or asynchronous mode as was

explained before in chapter 2.

Chapter 3 ' -83-

Data transfer protocol between adjacent PEs is as follows. The AIO of the sender
PE initiates the data transfer by sending a control word requesting to transfer data. The
control word contains addresses of the source and destination, packet ID, number of

words - data length and "RTD" / "RTSD" -control bits for request to send data.

The format of this control word is:

SYN | RTDRTSD | PACKETID | SOURCE | DESTINATION | LENGTH/DATA

CKS\END,

LENGTH in the RTD instruction denotes the number of data words in the message

while DATA is the actual data which is transferred in the RTSD instruction.

If the buffers of the receiving PE (network switching node or destination) are
empty and the receiver has the priority to handle this data the receiver will send back a

control word "RDY" (Ready To receive) which has the following format:

PACKETID | SOURCE | DESTINATION | CKS

SYNIRDY

m'

If the receiver’s buffers are full and/or the receiver is busy and can not handle the data
it will respond with the control word "NRDY" (Not Ready to receive) which has the

following format:

SYN | NRDY | PACKETID | SOURCE | DESTINATION | CKS

o]

Upon receiving a ready response ("RDY") from the receiver, the sender will send the

data information serially in a synchronous mode with the control word "DTR" (Data

Chapter 3 ' -84-

Transfer). The data will be sent in a packet of the following format:

PACKETID | SOURCE | DESTINATION | LENGTH | DATA

l '

CKS'END’

Upon completion of the transfer the receiver will send back a control word which will
either be "ACK" to notify the sender that the transfer has been executed successfully or

"ERR" to notify the sender that the transfer failed and was not completed successfully.
The format of this control word will be:

SYN | ACK/ERR | PACKETID | SOURCE | DESTINATION

By default, if at the end of the transfer the sender doesn’t receive any signal from the
receiver the sender assumes that the transfer was not completed successfully.

Both the sender and the receiver will have "watch-dog" timeout systems that will :

® Notify the receiver that the transfer is improper if data doesn’t follow "RDY" sig-
nal.

® Notify the sender if "ACK" or "ERR" doesn’t follow the completion of data

transfer.
Summary of properties
e Operates in either synchronous or asynchronous data transfer mode.
e Efficient for transfer of large blocks of data information.
¢ Handshaking is done through messages (not control pulses or levels).

e Adequate for systolic array hardware implementation when the same clock is used

for all PEs.

Chapter 3 . -85-

e Higher utilization of the I/O links because data and control use the same link.

3.5.5. Configuration ITI

Configuration III of the interconnection link depicted in figure 3.24 incorporates
two unidirectional data bus and two unidirectional control lines. This configuration is a
combination of the previous two configurations and has separate data and control lines
with the property of full-duplex data and control transfer. Data bus can be extended
from one serial line to any number of lines that transfer sets of data bits in serial. The
control for one serial data line or a bus of many parallel data lines will be the same.
This configuration is the most flexible one. It can handle synchronous or asynchronous
data transfers by either control pulses or levels or by control messages. Thus,
configuration III is suitable for short data blocks of information as well as large blocks

of data information in different control modes.

The protocol used for data transfer is similar to the protocols of configurations I
and II. The sender initiates a data transfer by setting on its output control line (C,) a

control word "RTD" (Request to Transfer Data) or "RTSD" (Request to Transfer Short

Data) which has the following format:

SYN | RTD/RTSD | PACKETID | SOURCE | DESTINATION | LENGTH/DATA | CKS

’

LENGTH is the number of data words to be transferred later and DATA is the actual
data in the "RTSD".

If the buffer of the next PE (network switching node or destination) is available and the
receiver’s AIO has the priority to handle the data it will respond by setting the control

word "RDY" (Ready to receive) on its output control line which has the following for-

mat:

Chapter 3 . - 86 -

PACKETID | SOURCE | DESTINATION

SYNlRDY

m’m|

If the buffer is full and/or the receiver does not have the priority to handle the data it
will respond by setting the control word "NRDY" (Not Ready to receive) on the control
line which has the following format:

leN'NRDY

Following the receiver’s "RDY" signal, the sender will send on its control line a "DTR"

PACKETID | SOURCE | DESTINATION | CKS

’

control word indicating that data is to be transferred on the data line. The control word

will have the following format:

SYN | DTR | PACKETID | SOURCE | DESTINATION | LENGTH | CKS | END

Following the "DTR" control word, data will be sent serially in a synchronous mode on

the data line (D,). The data will be sent in a packet of the following format:

DATA

SYN ‘ START

CKS'END}

Upon completion of the transfer the receiver will send back on the control line a control
word which will either be "ACK" (acknowledge) to notify the sender that the transfer
has been completed properly, or "ERR" to notify the sender that the transfer has not

been completed successfully. The format of this control word will be:

Chapter 3 . -87-

SYN PACKETID | SOURCE | DESTINATION

ACK/ERR

=]~

By default, if the sender doesn’t receive any signal from the receiver the transfer was

incorrect. Both the sender and the receiver will have "watch-dog" time out systems that

will:

notify the receiver that the transfer is wrong if data doesn’t follow the "RDY" sig-
nal.

notify the sender if "ACK" or "ERR" doesn’t follow the completion of the data

transfer.

Summary of properties

Configuration III is a combination of configurations I and II.

Require four unidirectional lines (buses).

Efficient transfer of short data blocks as well as large data blocks.

Controls data transfer by either control pulses and levels or by control messages.
Data transfer can be synchronous or asynchronous.

Adequate for "wavefront" multiprocessor implementation and for "systolic array"

implementation.

3.5.6. Summary of I/O link configurations

The underline pfoperties of the three configurations are summarized in the follow-

ing table:

Chapter 3

e ONfguration L

3 links

2 links

4 links

1 bidirectional data link

& 2 unidirectional con-

1 pair of unidirec-

tional data and con-

2 unidirectional data

links & 2 unidirec-

trol links trol links tional control link
separate lines for data | same line for data | separate lines for data
and control and control and control
synchronous or asynchro- | synchronous or asyn- | synchronous or asyn-
nous data transfer chronous data | chronous data
transfer transfer
half duplex data full duplex data full duplex data

full duplex control

efficient for short blocks

of data information

full duplex control

full duplex control

efficient for large

blocks of data infor-

mation

efficient for any
block size of data

information

control by signals or

messages

control by messages

only

control by signals or

messages

"Wavefront" architecture

systolic array

any architecture

Table 3.1 - Summary of I/O link configurations

References

1.

N.J., 1982.

McGraw-Hill, New York, 1982.

pany, New York, 1985.

-88-

M. Mano, in Computer system architecture, Prentice-Hall Inc., Englewood Cliffs,

V. Ahuja, in Design and Analysis of Computer Communication Networks,

W. Stallings, in Data and computer communications, Macmillan publishing com-

Chapter 3 -89 -

10.

11.

12.

13.

14.

A.S. Tanenbaum, in Computer networks, Prentice-Hall, Inc., Englewood Cliffs,
N.J.,, 1981.

M. Schwartz, in Telecommunication networks, Addison-Wesley publishing com-
pany, Menlo Park, California, 1987 .

J.L. Hammond and P.J.P. O'Reilly, in Performance analysis of local computer
networks, Addison-Wesley publishing company, Reading, Massechusetts, 1986.

P. Kermani and L. Kleinrock, ‘‘Virtual Cut-Through: A new computer communi-

cation switching technique,’” Computer Networks, vol. 3, pp. 267-286, 1979.

S.T. Dong, in The modeling, analysis and synthesis of communication protocols,

Ph.D. dissertation in EECS, Berkeley, Berkeley, California, 1983.

G.V. Bochmann and C.A. Sunshine, ‘‘Formal methods in communication protocol
design,”” IEEE Transactions on Communications, vol. COM-28, no. 4, pp. 624-
642, April, 1980. ‘

P. Zafiropulo, C.H. West, H. Rudin, D.D. Cowan, and D. Brand, ‘‘Towards

analyzing and synthesizing protocols,”” IEEE Transactions on Communications,

vol. COM-28, no. 4, pp. 651-660, April, 1980.

S. Joshi and V. Iyer, ‘‘Protocols and network-control chips: a symbiotic relation-

ship,”” Electronics, pp. 169-175, January 12, 1984.

P.M. Merlin, ‘A methodology for the design and implementation of communica-

tion protocols,”” IEEE Transactions on Communications, vol. COM-24, no. 6, Pp-

614-621, june 1976.

T.P. Blumer and D.P. Sidhu, ‘‘Mechanical verification and automatic implementa-
tion of commun. protocols,”” IEEE transactions on software engineering, vol. SE-

12, no. 8, pp. 827-843, August, 1986.

G.V. Bochmann, ‘‘Finite state description of communication protocols,”” Com-

Chapter 3 -90 -

15.

16.

17.

18.

19.

20.

21.

22.

puter networks, vol. 2, no. 4/5, pp. 361-372, September/October, 1978.

D. Brand and W_.H. Joyner, ‘“Verification of protocols using symbolic execution,”’
Computer networks, vol. 2, no. 4/5, pp. 351-360, September/October, 1978.

A.A.S. Danthine, ‘‘Protocol representation with finite state models,’’ IEEE tran-
saction on communications, vol. COM-28, no. 4, pp. 632-642, April, 1980.

G.V. Bochmann, ‘“A general transition model for protocols and communication
services,”” IEEE Transactions on Communications, vol. COM-28, no. 4, pp. 643-

650, April, 1980.

R.M. Fujimoto, ‘‘VLSI communication components for multicomputer net-

works,’” in Ph.D. thesis, Department of EECS, University of California , Berkeley,
1983.

L. Kleinrock, in Queueing systems, John Wiley & Sons, New York, 1975.

R.B. Cooper, in Introduction to queueing theory, The Macmillan company, New

York, 1972.

T.N. Mudge, J.P. Hayes, G.D. Buzzard, and D.C. Winsor, ‘‘Analysis of multiple-
bus interconnection networks,”” Journal of parallel and distributed computing,

vol. 3, pp. 328-343, 1986.

D. Gross and C.M. Harris, in Fundamentals of queueing theory, John Wiley &
Sons, New York, 1974.

-91-

CHAPTER 4

Hardware implementation and performance

4.1. General description

The operation of the processing element (PE) that incorporates a processing unit
PU) and an autonomous I/O unit (AIO) that operate concurrently and independently
was shortly described in chapter 2.3. Implementation of a PU that executes the compu-
tational part of a task depends on the target applications. But, the implementation of the
AIO which 1) handles and controls data transfer between PEs and 2) operates as an

interface between the PU and the network is similar for different I/O configurations and

their protocols.

The purpose of this chapter is to describe the hardware design and implementation

of an AIO unit fitted to handle its tasks.

The AIO unit consist of data and packet buffers, buffer control and bookkeeping,
routing & priority tables, communication control between PU and AIO and communi-

cation & data transfer control between PEs. Figure 4.1 depicts a detailed block diagram
of the AIO with one I/O link.

Chapter 4

Receiver operation

Figure 4.1 - AIO - block diagram

. -
RECEIVER TRANSMITTER
L 3
2.
DEMUX MUX
‘ PACKET
BUFFER
p—
DECODER
A 4 Control
INFO.
BUFFER
warcil,_| | comMuNICATION b— conTROL &
DOG CONTROL BOOKKEEPING
DATA
CONVERSION
ROUTING| [PRIORITY| 1
TABLE | | TABLE
ADDRESS |
_.L DATA BUFFER
Conversion |1 swrren
e :L
PU
— DUAL PORT MEMORY

-92-

A message received on the input I/O link from another PE is transferred through a

demultiplexer to the decoder. Depending on the decoded command of the message the

Chapter 4 -93-

communication control evaluates what should be done next. If the instruction is a
request to transfer data, the communication control checks the routing and the priority
look-up tables for the destination of the message and its priority to be handled. This
information is transferred to the buffer control and bookkeeping unit of either the
appropriate I/O link if the AIO operates as an intermediate network node, or to the data
buffer controller (dual port memory) if the AIO operates as an interface between the PU
and the network. The buffer control and bookkeeping unit checks the availability of
buffer space according to the packet size and the number of packets already queued for
service, and responds back to the sender PE through the communication control unit.
Depending on the address of the destination PE, an arriving data packet is stored by the
communication control unit either in the packet buffer or in the data buffer. When the
PE is a network node that has to forward the packet to another PE, the packet is stored
as is in the packet buffer. When the PE is the destination, the packet is converted to the
appropriate word format and is stored in the data buffer (dual-port-memory). Whether a |
virtual-cut-through connection has been established or not a packet to be forwarded is
always stored in the packet buffer (the buffer implementation is described in paragraph
4.2). Checking for errors in the data is executed by this unit before a response is

returned to the sender PE.
Transmitter operation

A message (packet) to be transferred to another PE is handled by the communica-
tion control unit. This unit concatenates the control fields of the messages (command,
source ID, destination ID, packet ID, length of data, check sum, end of message), and
establishes the handshaking connection by the protocols described before. Data transfer
is always initiated by the AIO depending on the priority and the availability of the /O
link. The communication control unit, according to the protocol, controls the number
of attempts and the route (I/O link) to be used. When the PE is the source of the infor-

mation, the AIO fetches the data from the dual-port-memory, converts it to the proper

Chapter 4 -94 -

format and concatenates it with the control fields of the message. When the PE is a
switching node the AIO fetches the data from the packet buffer, concatenates it with the

control fields and transmits it to the next PE.
AIO-PU Communication

The AIO operates as an interface for data transfers between the PU and the net-
work (figure 2.3). Data to be transmitted from the current PE (source) to another one or
received by the current PE (destination) from another one is buffered in predefined
memory locations of a dual-port-memory. The use of predefined locations in the dual-
port-memory as data buffers for specific source or destination, simplifies the communi-

cation between the AIO and the PU.

The PU executes a program and during its execution transfers data into the buffers
as in any other store instruction. When all the data to be transferred is stored in the
buffer the PU notifies the AIO by an OUT instruction and initiates the data transfer to
another PE as described below:

e PU issues an OUT instruction that notifies the AIO the destination PE’s address
and the size of data (memory words) needed to be transferred.

e AIO executes the following operation:
- decodes the destination PE,
- sets a pointer with the address location of the first data word,
- sets a counter with the number of data words needed to be transferred.
- checks in the lookup tables which link to use and what’s the priority of the
transfer.
- establishes the connection with the next PE according to the predetermined route
to the destination.
- transfers the data to the next PE.

- interrupts the PU and notifies it by a flag/semaphore about the completion of the

Chapter 4 -95-

data transfer.

Before storing a new set of data into the buffers of the same destination PE, the

PU checks whether the previous data has been transferred completely.

When the destination is the current PE, the AIO checks in the dual-port-memory

whether there is enough space for receiving the data. If the space is available the AIO

receives the data, arranges it in the right format and stores it in predefined locations of

the dual-port-memory buffer. While receiving the data, the ATO checks if the data

packet was transferred without errors.

- If there was no error in the received packet, the AIO sends back to sender PE an
"ACK" message, sets flags/semaphores in a status word in the memory and inter-
rupts the PU to notify it that there is new valid data. [The PU will reset the
flags/semaphores after using the data).

- If there is an error the ATO sends back to sender PE an "ERR" message, the data
is disregarded and the AIO does not interrupts the PU.

Two types of buffers are included: one is the data buffer and the other is the packet
buffer.

The data buffer is used to store data when the current PE is the destination and to
fetch data for transmission when the current PE is the source. This buffer is the
dual-port-memory accessed by the PU and the AIO which allows data to be

transferred between them without any conflict.

The packet buffers are the buffers used by the 1/O links when the current PE
operates as an intermediate network node. These buffers, which are described in
section 4.2 in more detail, employ two type of buffers: private buffers and shared
buffers. The private buffer is a fixed size buffer accessed and used only by a
specific I/O link. The shared buffer is additional buffer space accessed and used
by all I/O links. Depending upon the frequency that a link is used and the buffer

Chapter 4 -96 -

capacity that it needs, each I/O link has a different dedicated buffer space within
the shared buffer. The packet buffer can be implemented by a set of memories

organized in nx1 (n words of 1 bit), FIFO or any other implementation.

4.2. PE’s buffers

4.2.1. Buffer implementation

The PE incorporates two type of buffers: data buffers and packet buffers. Data
buffers are used for data transfer between the PU and the AIO when the AIO operates
as an interface unit between the processing unit and the network. Packet buffers are
used for temporary storage for forwarding data between PEs when the PE operates as a

switching node of the network.

Data buffers are implemented by a dual-port-memory, depicted in figure 4.2,
which provides two independent ports with separate address, data and control lines that

permits the AIO and the PU independent, concurrent and asynchronous access to any

location.

DATAo DATAL

I

DUAL-PORT

MEMORY

1

ADDRESS0 ADDRESS1

Figure 4.2 - Data buffer - Dual port memory implementation

These buffers reside in the memory space of the PU. Since implementation of a

dual-port-memory is more complicated and requires more area, the memory of the PU

Chapter 4 -97-

is divided into two types. One type is a single port memory which is the "private"
memory containing instructions and data, and the other type is a dual port memory for

bidirectional data transfer between the PE and other PEs of the multiprocessor system .

Packet buffers can be implemented in several ways: dual-port-memory, a set of

shift registers, or a set of interleaved memories organized in nx1 (n words of one bit).

A dual-port-memory implementation incorporates two independent ports with
separate address, data and control lines. It allows concurrent data input to the PE (write
to the memory) and data output from the PE (read from the memory). Thus, whenever it

is possible a virtual-cut-through data transfer can be employed.

Implementation by a set of shift registers incorporates two types of shift registers
as depicted in figure 4.3. One type is a FIFO which allows data to be written and/or
read from it at independent data rates by utilizing separate synchronous data clocks.
The other type is a regular serial shift register with one clock to control the writting or
reading of data. The FIFO allows a virtual-cut-through (VCT) data transfer whenever it
is possible. When a VCT occurs, data from the FIFO’s output which is transmitted
through the output link to the next PE, is also stored into a shift register until the receiv- .
ing PE acknowledges the acceptance of correct data. If a VCT data transfer cannot be
executed, the data in the FIFO is transferred to the regular shift register for later
transfer. To enable input of data concurrently from three adjacent PEs the input I/O
links can be connected to either the FIFO or the shift registers. Since there is only one

output link to the next PE, one FIFO per link is sufficient for virtual-cut-through data

transfer.

Chapter 4 -98 -

OUTPUT LINK
'
DMUX
A -~ A A
FIFO SR SR - en ea» e SR
T T T 1
DMUX DMUX DMUX
- 3 -~
MUX MUX MUX
T T T T A A A +T T T
INPUT LINK INPUT LINK INPUT LINK

Figure 4.3 - Packet buffers - Shift register implementation

Interleaved memories is another way to implement packet buffers for virtual-cut-
through switching. Since each buffer associated with an output link can receive data
from the other three I/O links and can transmit data to the next PE, at least four inter-

leaved memories are required. Figure 4.4 depicts a set of four interleaved memories.

Chapter 4

1
MUX
T
MEMI MEM2 MEM4
I
DMUX DMUX DMUX
—% x
1
FE PE PE

Figure 4.4 - Packet buffers - Interleaved memories implementation

-99.-

Successive input data words are stored in different memories in a four way inter-

leaved mode, i.e. word 4i is always stored in memory I (MEM1), word 4i+1 is always

stored in memory II (MEM2), word 4i+2 is always stored in memory IIT (MEM3), and

word 4i+3 is always stored in memory IV (MEM4). Providing that no two /O links

require the use of the same memory, this scheme allows each of the three I/O links to

store simultaneously a word into the buffer while the output link reads a word from it.

Since only one link can be granted access to a particular memory, additional registers

are required to temporarily buffer the receiving data until it can be stored. Therefore,

after the initial synchronization, as many as four concurrent memory accesses occur on

Chapter 4 - 100 -

each cycle, and each link is able to access a different memory on each cycle. Accessing

the appropriate memory is controlled simply by decoding the two least significant bits
(Isb) of the address.

4.2.2. Buffer size analysis

The size of the packet buffers allocated to an output link has a large influence on
flow control and the avoidance of deadlocks. Larger buffers reduce the congestion on
the 1/O links, as well as the probability of deadlocks, by reducing the possibility of
buffer overflow. In our design the handshaking protocol precludes deadlocks but the

larger is the buffer size the smaller is the probability of communication latency.

Input data to a packet buffer allocated to an output link arrive from the input links
corresponding to the other three I/O links of the PE as depicted in figure 4.5.

o1

P1

BUFFER

PE

o3

Figure 4.5 - Data input to a packet buffer

Let A denote the total arrival rate of messages to output link I/O 4. A fraction P 1

Chapter 4 -101 -

of these arrivals are from link I/O 1, a fraction P, are from link 1/O 2 and a fraction Pj
are from link 1/O 3 (P +P2+P3=1). Figure 4.6 depicts a queueing model of an output

link with a total combined arrival rate A and service rate L.

BUFFER

DATAIN DATA OUT

SERVER

Figure 4.6 - Queueing model of an output link

Assuming that the arrival of messages is a Poisson process and the messages have
variable lengths that are exponentially distributed, a M/M/1 queueing model can be
used to estimate the buffer size k. The Poisson arrival time and the exponentially distri-
' buted message length assumptions allow the use of M/M/1 queues that can be easily
solved. As shown in [1], relaxing each of these assumptions results in G/M/1 and
M/G/1 queues respectively that are difficult to solve for large, complex multicomputer
networks discussed in this dissertation. Furthermore, simulation studies of filters, FFT
and LU decomposition programs [2] have shown that relaxation of these assumptions

yield different performance but the conclusions drawn from the models are the same.

From queueing theory analysis [1, 3,4, 5], the probability of having n (n < k) mes-
sages in a buffer for the case of a finite M/M/1/k queue with a link utilization factor of

p=%- is given by:

pr=qfere” @1

Chapter 4 -102 -

Therefore, the probability of blocking new incoming messages (pg) equals to the pro-

bability that the queue is full (px, where k is the maximum number of messages in the
buffer).

Po=pi=ySBerp* 42

The blocking probability pp depicted in table 4.1 is an appropriate measurement
for defining the buffer length k. As expected a larger link utilization factor (p) implies

a larger buffer space.

p | k=1 | k=2 k= k=4 k=5 k=10
09 [047 [030 [021 [0.16 | 0.2 | 0.05
08 [044 [026 | 014 |012 |009 | 002
0.7 | 041 | 0.22 0.13 0.09 0.06 0.01
06038 [018 [01I0 [006 | 003 | 24E3
05033]014 [007 |o003 |o001 0.5E-3
041029 [010 | 004 | 002 | 60E3 | 6.0E5
03]023[006 | 002 |S56E3 | 1.4E-3 | 3.4E6
0.2 | 0.16 [0.03 | 64E-3 | 1.3E-3 | 0.2E-3 | 2.0E-8
0.1 [0.09 [0.9E-3 | 9.0E-4 | 9.0E5 | 9.0E-6 | 1.0E-11

Table 4.1 - Blocking probabilities for different buffer size

The next table (table 4.2) shows the upper bound of the average buffer size,

obtained from analyzing a M/M/1 queue with an infinite buffer size.

Chapter 4

p | k=
09 {90
08 | 4.0
07 | 23
06 | 15
05 1] 1.0
04 | 0.66
03 | 043
02 | 025
0.1 | 0.11

Table 4.2 - Upper bound of the average buffer size

- 103 -

Even though the upper bound on the average buffer size for different p is small, to

avoid repetition of data transfer due to full buffers, the buffer size should only be deter-

mined from the blocking probability according to the link utilization and the required

throughput y=A(1-Pp (where A is the average number of message arrivals and APp is

the number of blocked messages).

Since a sender PE has to wait for an end-to-end acknowledgement before a packet

can be discarded, the buffer size analysis of the data buffer is different than the buffer

size analysis of the packet buffer. The analysis is based on M/M/1 queueing model with

the following assumptions:

e Poisson distribution of the arriving messages.

e D - average time to send a message and to get back an end-to-end ack-

nowledgement from the destination PE when the processing time per hop and

the average number of hops is given by the scheduler.

Chapter 4 -104 -

e Data is transferred immediately (VCT) - no delays in intermediate network
nodes.

Denoting:
_messages _ .
1) ’“‘mfa‘ arrival rate of messages from the PU.
2) U - service rate of a node.
3) S - average service time of a node.

=1
S=1 4.3)

4) W - average waiting time in a queue.

p
=T_PT 4.4)
5) D - average time to route message to destination PE and an acknowledge-

ment back to the source PE.
6) T - average time in system (including the average waiting time, the average
service time and the average routing time between two network nodes).
- - 1
T=D+W+S=D +Fk_ 4.5)

7) P, (T) - probability that exactly n messages arrived in a time interval T:

P.(T)=£7~_T%‘i 4.6)

To determine the buffer length of the source PE lets assume that the average time
interval between receiving a message to the buffer and discarding it after end-to-end
acknowledgement is T. During this time interval (while message is in the system) there
is a possibility that new messages arrive to the buffer. Lets assume that o is the proba-

bility that n or more arrivals occurred in a time interval T :

Pp (T Y+P, 1 (T Py o(T)+...=01 4.7)

Chapter 4 - 105 -

Therefore, the probability that less then n messages have arrived during the average

time interval in the system (T) is given by:
Po(THP (T)+......4Pp 1 (T)=1-c1 4.8)

If o equals to the blocking probability (Pp), then for the case when only one mes-
sage is in the buffer during the average time interval T, the minimum length of the
buffer (n) to achieve Pp can be obtained from equation 4.9 by substituting equation 4.6

into equation 4.8 :
e-%Tg ATH i —o=1-Pg (4.9)

This assumes the "best" case when the arriving message finds no other previous
messages waiting a head of it (i.e. only one message is waiting in the buffer). If on the
average there are n(previous messages waiting, then the minimum buffer size must be

n found in (4.9) in addition to n ¢ the number of previous messages.

Depending on the scheduling of a program, when the traffic is low (p=0.1-0.2 as in
table 4.1) it is possible to assume that on the average only one message is waiting in the

queue.

Since the sender PE has to wait for an end-to-end acknowledgement the data

buffer size is larger than the pa.cket buffer size.

4.3. Buffer control & bookkeeping

As stated before, to avoid delays in data transfer as well as deadlocks the buffer
for each link should be large. One major problem regarding the packet buffer is how to
‘partition and allocate it optimally for the different I/O links. There are several ways to
solve this problem: 1) separate buffers for each link, 2) one common buffer "pool”
accessed by every link where the buffer allocation for each link changes dynamically

and 3) combination of the two, ie. separate buffers for each link ("private" buffer)

Chapter 4 - 106 -

extended if necessary with part of the common buffer "pool" (if space is available).
The first option of separate buffer for each link is inefficient because most of the large
"private” buffer space is unused most of the time. The second option, one common
buffer, could end up to be large with the possibility that links with low traffic might be
left with no buffer space because the links with high traffic have occupied all the space.
The third option, depicted in figure 4.7, each link has a "private" buffer which can be
extended by a restricted part of the common buffer. This option provides minimal
buffer space for low traffic links and larger buffer space for high traffic links and aver-
ages fluctuations in buffer space demand. [Equivalently, each link has a minimum allo-
cation of buffers ("private" buffer) which, depending on the buffers allocation to the
other links, can be extended by part of the common buffer "pool"].

YOLINK
A
C- COMMON BUFFER P- "PRIVATE" BUFFER
P
VOLINK ¢ P c P » VOLINK
P
v
WOLINK

Figure 4.7 - "Private" and common buffer allocation

Irland in his paper [6] evaluated packets blocking probabilities using different

shared buffer management techniques. His conclusions were that using a shared buffer

of size V%’ where N is the total number of basic packet size and P is the number of

Chapter 4 - 107 -

links yields a throughput close to the optimal sharing.

In our case, the total buffer size of each link ("private" buffer and part of the com-
mon buffer) was evaluated in table 4.1. To decrease the size of the common buffer, the

square-root rule mentioned above is one way to properly estimate the size of the com-

mon buffer.

Since the buffer size of each link is limited, a buffer control and bookkeeping unit
is needed. This unit has two tasks: 1) locate free buffer to store each new arriving

packet, 2) locate next packet to be forwardéd through the output link.

Figure 4.8 depicts data and control paths of the packet buffer when the PE

operates as a network switching node.

Input data arriving from the other three I/O links is stored in either the "private"
buffer of the link, or in the common buffer "pool" depending -upon the available
storage. Two counter registers are involved in inputing data (receiving mode) or output-
ting data (transmitting mode). One is an address counter which loads the first address
and increments it after each buffer access. The other is a block counter which loads the
size of the block to be transferred and is decremented after each buffer access. When
the block size buffer is zero the data transfer has been completed. One bit, denoted P/C

(figure 4.8), of the address register selects the buffer to be accessed and controls also

the data output multiplexer.

Chapter 4 : - 108 -

§

Figure 4.8 - Data & control paths in packet buffers

The control and the bookkeeping of the unit is depicted in figure 4.9.

Chapter 4 -109 -

I K L 4 . |
S R (. N
| ~ | {

L\ |

: __/ :
: v |
| Y)
- sz I

Lo o)

Figure 4.9 - Control & bookkeeping unit

The buffer control unit contains two subunits dedicated for the I/O link and one
subunit, of the common buffer, used by all I/O links. Each subunit contains an adder, a
register and a comparator. One of the dedicated subunits is used to check whether there
is any available space in the link’s buffer, and the other to check whether there is avail-
able space in the "private" buffer of the link. When there is a request to transfer a data
packet, its block size is added concurrently in the two dedicated subunits to determine
whether it can be stored in the "private" buffer or in the common buffer. If the "private"
buffer has enough space the output of the corresponding adder is loaded to the address
counter of the buffer. If the “private" buffer is full, and more space is still available in
the common buffer, the block size of the incoming packet is added in the common
buffer subunit to determine whether there is any space available in the common buffer.
When there is available space in the common buffer the first address generated by this

subunit is loaded to the address counter of the buffer. This checking is necessary

Chapter 4 -110-

because the size of the common buffer is smaller than the sum of the buffer space
allowed for all the I/O links. To save bits in the message’s header and to simplify the
buffer bookkeeping, packet lengths should be limited to multiples of a basic size like
256,512,768,etc..

Since the space of the common packet buffer is limited, a policy for fair utilization
of the common space is required. A policy that guarantees a minimum buffer allocation
n in the common buffer "pool” that may be extended, if space is available, up to 7 is
described below. Given that the common buffer can accommodate N packets of the
basic packet size (e.g. 256 bits) and m is the number of I/O links, the buffer space boun-
daries for each I/O link in the common space is given by:

n21/O link’s space in common buffer 2n
where the lower boundary » is given by:

nzﬂ
= m

and the upper boundary 7 is given by:

=~_N-n
nS T

For practical realization and implementation # and n should be integer multiples

of the basic data packet length.

4.4. Communication control

The communication control of the AIO, depicted in figure 4.10, establishes and
handles according to the protocols the handshaking interconnection and the data

transfer from and to the PE. Its basic major components are the following:

e Control and timing unit decodes the command field of the arriving messages and
controls the required operations with the correct timing. The clock of the AIO syn-
chronizes its operation to the "syn" field of the arriving messages. A "watch dog"

system times out a transmitting operation when there is no response from the

Chapter 4 -111-

receiving PE or a receiving operation when the data is not being transferred by the

sender PE.

e Three FIFOs corresponding to three priority levels store the control information
and the communication status of messages involved in handshaking interconnec-

tion establishment and data transfer.

e Priority and routing tables used for translating, according to the incoming input
link, the arriving message’s short ID into: 1) the priority of handling the message,
2) which output link to use for forwarding the message, and 3) what is its new

short ID.

e Input packets under process is a temporary storage used for distinguishing between
new arriving messages and messages under process whose control information and

status is already stored in the appropriate FIFO.

Chapter 4

| oo epcn e e
_____ L -, | —
= | mis
==
WATCH l ¢
o il L
I T = e
;::m cLocx 1| wrosmvaroumee
— 3 ‘ TABLES
s 1T
R
[e |
) | ——
I baax]
l] }
— | —
I | wr |
L mfmm |
| po—
} ! [
I } —

Figure 4.10 - AIO - Communication control unit

-112 -

Chapter 4 -113-

4.4.1. Input packets under process

The command field of arriving messages separates them into two types: transmis-
sion messages and response messages. RTD (request to transfer data) and DTR (data
transfer) are examples of the transmission type, while RDY (ready to receive data) and
ERR (error) are examples of the response type. An arriving message might be a
transmission message, a response message or a false message that does not belong to
either of them (e.g. response when there was no request, unidentified command code,
data transfer without initial request etc.). The "Input Packets Under Process" unit
(IPUP), depicted in figure 4.10, is used for checking, according to the ID, whether the
arriving message is a new one, an illegal one or one which is a part of a handshaking
data transfer which is in process. Packet ID and short ID fields of new requests to
transfer data messages (RTD/RTSD) either initiated and sent by the current PE or
received from another PE, are stored in the IPUP. The IDs of a received request mes-
sage are stored only if there is enough buffer space available for the data. When a mes-
sage arrives, its packet and short IDs are compared with the ones in the IPUP. If the
comparison is positive, the arriving message is a continuation of a handshaking data
transfer already initiated, the translation of the priority and routing lookup table is not
necessary and the control unit can immediately check for the message’s status in the
FIFO. If the arriving message is a new one its short ID and the input link are first
translated into service priority and routing path which later with other status bits are
stored in the FIFO. When a data transfer has been completed (received or forwarded

successfully) its packet and short IDs are removed from the IPUP.

4.4.2. Priority & routing table

To decrease the number of header bits of a message, a short ID is used to define
the source and the destination IDs. For appropriate control and message processing the

short ID needs to be decoded into message’s service priority, source PE and destination

Chapter 4 -114 -

PE IDs, output link to be used if the message has to be forwarded or transferred and a
new short ID for the next transfer. The priority and routing lookup table depicted

below in figure 4.11 executes this translation.

INPUTLINK SHORT D

!

PRIORITY & ROUTING

TABLB

—_— |

Y ; \ 4 1 Y
oUTPUT SOURCB DESTINATION SHORT
LINK D D D FRIORITY

Figure 4.11 - Priority & routing table’s output

Its content is determined and defined by the scheduler during the partition of the
algorithm and the task allocation to the different PEs. The message’s short ID and the
input link number through which it arrived are the inputs to the table, and its outputs are
the priority of handling the message, the source and destination IDs, the output link for

transferring the message, and a new short ID.

Actually, two priority and routing tables are required, one when the PE operates as
an intermediate network node that forwards messages and the other when the PE is the
source of a message. In both cases, the input is transferred into the output data depicted
in figure 4.11. When the PE operates as a network node a lookup table translates,
according to the input link, a short ID of an arriving message into the corresponding
output data. When the PE is a source PE a lookup table translates a PE’s destination ID

fetched from the data buffer into the corresponding output data.

Chapter 4 -115-

4.4.3. FIFOs

Handling and processing messages according to their priorities assigned by the
scheduler synchronizes the operation of the PEs, reduces the probability of deadlocks
and controls the data flow in the network. Fairness in handling messages might lead to
different priority policy: 1) FCFS - first come first serve, 2) Descending order of prior-
ity service - messages of higher priority are always served first, 3) Service according to
some predefined priority sequence - service is given according to some priority
sequence defined by the scheduler (e.g. LLILLLIILLILII etc.).

Since the priorities of handling the messages are determined and defined by the
scheduler during the partition of the algorithm and the task allocation to different PEs, a
highest or a sequential priority service policy is an appropriate one to use.

To control and handle the message transfer between the PEs according to the pro-
tocol developed before, the status of the messages which are in the process of intercon-
nection establishment or information transfer has to stored. The three FIFOs, depicted
in figure 4.10, stores the status information of different data transfers which are being
under process. Each FIFO stores the .status information of the messages with the
corresponding priority level, i.e. FIFO I stores the information about messages with
priority I, FIFO II stores the information about messages with priority II and so on. The
FIFOs can be implemented by circular shift registers or associative memories. An attri-
bute in the FIFO is cleared upon success of data transfer or returning the data to the PE
from where it had arrived. Each status word contains 16 attributes of control informa-
tion. Figure 4.12 below shows the information about the data necessary for handling its

transfer such as: IDs, buffers, location of the data and its length.

Chapter 4

ol I Rl [
y 4 | _
DATA BUFFER !l {
DUAL PORT MEMORY
| COMPARATCR I N
¥ ¥ — ¥
lmmm I B PRICRITY &
— I
TABLE [w&yr | SHoRT D | SoURCeE I an I moa;-nr |
Ime-’ m:n-rl | FrOCONT.
v y v L l

I

[|[om ([| [] [o=
I

!

{

}

] D=] |
I

!

PACKET SHORT
D D

DATA
LENGTH

Figure 4.12 - Information of data for handling its transfer

from the priority and routing table is defined by the scheduler.

-116 -

Link number is the output link to be used for forwarding the data. The link fetched

Packet and short IDs are header fields of the messages transmitted to the next PE.

The packet ID defined by a counter is .necessary to distinguish messages

transferred between the same source and destination PEs. The short ID fetched

from the priority and routing table saves header bits in the message and defines the

IDs of the source and destination PEs.

short ID of an arriving message.

transferred and from where to fetch them.

Source and destination IDs translated by the priority and routing table from the

Buffer type, buffer address and data length define how words of data have to be

Chapter 4 -117 -

Figure 4.13 contains the status information for controlling the handshake interconnec-

tion and the data transfer according to the protocol.

‘TRIAL CONTROL & FLAG UNIT TIMING UNIT

TRIAL DATA HOP-BY-HOP END-TO-END
FORWARD ALTERN. BACKWARD HS.

Figure 4.13 - Control information for data transfers

‘e Trial number indicates the number of attempts to establish an interconnection or to

transfer data. This data is fetched from a modulo 3 counter.

o Forward, alternative and backward flags show the stage of the transaction. At any
time only one of the flag is set. The flag status and the trial number information
allow the control unit to determine the next steps to be taken, according to the pro-

tocol, if the transaction fails.

e HS. (hand-shake) and data transfer flags show whether the transaction is in the

interconnection establishment state or in the data transfer state.

e Hop-by-hop acknowledgement is the time information latched from a free running
counter, that shows when the message was transferred to the next PE. Comparing
this count with the updated count of the free running counter is the "watch-dog"
operation that times out transactions if and when there was no response from the

next PE.

e End-to-end acknowledgement is the time information latched from a free running
counter, that shows when the message started its route to the destination PE. Com-
paring this count with the updated count of the free running counter is the "watch-

dog" operation that times out transactions if and when there was no response from

Chapter 4 -118 -

the destination PE.

As mentioned previously, the status data is important and necessary to define the
header of the message and to control the transaction’s steps defined by the protocol.
Any response or lack of response from the receiving PE is followed by moving to the
next stéte of the protocol, updating of the appropriate flags, and retransmission of the

message again. A status word is aborted from the FIFO in the following cases:

1) Data packet has been received successfully by the destination PE if the

current PE is the source.

2) Data packet has been received successfully by the next PE if the current PE is

a switching network node.

3) Due to failure in forwarding a data packet, it has been returned to the preced-

ing PE which has forwarded it to the current one.

4.4.4. Control and timing unit

The control and timing unit depicted in figure 4.10 incorporates a command
decoder, a CKS (check sum) decoder, a sequencer, a clock, a "'watch-dog" and a trial

controller.

The command decoder decodes the command field of the arriving messages. If the
command is legal, its output is transferred to the sequencer for continuing the process.

When an illegal command code arrives the decoder aborts the whole message.

The CKS decoder checks for errors in the arriving messages. Its output is fed to
the sequencer for determining the next operations. Depending on the environment (S/N
ratio) and the implementation, the CKS decoder might execute a simple one bit parity
check, a LRC check sum (several column’s parity check sum) or a CRC (cyclic redun-
dancy code) check. The first two parity sums are simple to implement (T flip-flop and

random logic) and can be done while the messages arrive thus, saving time. The CRC

Chapter 4 -119-

check is more complicated to implement and its execution requires an additional time

after the message has arrived.

The sequencer implemented by a PLA or random logic receives at its input the
decoded command and the parity check’s result. It fetches the status word from the
FIFO and provides sequentially the appropriate controls lines required for the next
operations. Updating the flags and transition to the next state according to the protocol

is executed during these operations.

Receiving sequence

In the receiving mode of a PE the sequence of operations executed by the AIO
depends upon the type of the arriving message. The operations for the different types is

summarized in the following table:

sync clock
input message
decode command
check errors (CKS)
"RID" | 'DIR" Control
- check IPUP check IPUP | check IPUP |

P & R table check W.D. P & R table
fetch FIFO P & R table check FIFO
check buffer fetch FIFO
store IPUP store buffer
assign buffer store FIFO
store FIFO
set W.D.

Table 4.3 - Receiving mode - sequence of operations

Chapter 4 -120-

Transmitting sequence
In the transmitting mode of a PE the sequence of operations executed by the AIO

depends upon the type of the transmitted message. The operations for the different

types is summarized in the following table:

choose FIFO
fetch FIFO
reset "CKS"
%nml message-ﬁata packet
.output message output header
start W.D. fetch data & output
update flags output tail
store FIFO start W.D.
update flags
store FIFO

- Table 4.4 - Transmitting mode - sequence of operations

The trial controller depicted in figure 4.14 updates the state of the message transfer
according to the response from the receiving PE. Its operation is based upon a modulo
three counter. Initially the counter and the flags are reset. The first attempt to transfer a
message (handshaking interconnection establishment or data transfer) results in incre-
menting the counter and setting the forward flag. If the message was not transferred
successfully after three attempts the operation mode is transferred from one state to the

next one, e.g. forward -> alternative -> backward. A successful message transfer results

in resetting the counter and the flags.

Chapter 4 -121-

g

-}
]
]

FORWARD ALTERNATB

=

slg

Figure 4.14 - Trial controller unit

A "Watch-dog" unit depicted in figure 4.15 is implemented with a counter trig-
gered by the main clock (time stamp counter), an ALU and a comparator. The unit
determines whether to time out the transaction or not according to the current time
stamp and the time stamp of the message indicating when it was sent. Such an imple-
mentation avoids multiple dedicated counters for each message which is under transac-

tion, and allows the same system to be used for "watch-dog" time out.

Main clock is a quartz free running clock which can synchronize its phase and fre-

quency to the "SYN" field of arriving messages. Chapter 3.2 describes the ways to

implement this feature.

Chapter 4 -122-

CLOCK MUX —
FIFO CONT.
Y l v
V
TIMB STAMP ADDER
COUNTER

COMPARATOR

T1 - HOPBY HOP TIMB OUT INTERVAL

T2 - END TO END TIME OUT INTERVAL

Figure 4.15 - "Watch-dog" system

To enable concurrent message transfers through the separate unidirectional output
and input lines of an I/O link, the control register which latches the FIFO’s output has
to be duplicated. One control register should be dedicated for the status of a receiving
message and the other for the status of a transmitted message. By doing so the control

unit saves frequent searches in the FIFOs and the implementation is simplified.

4.5. ASIC properties

Advance in uP VLSI design and fabrication makes it feasible to implement on the
same chip a processing element (PE) that contains a processing unit (PU) and an auto-
nomous I/O unit (AIO). Independent and concurrent operations of the PU and the AIO
without the involvement of the PU in the network message’s transfer are very suitable
for ASIC (Application Specific IC) implementations. The simple and standardized
interface between the PU and the AIO and similar protocols for different communica-

tion configurations yield the following advantages:

e Depending on the application, every PE can accommodate a different computing

Chapter 4 -123 -

4.6.

unit and a different communication configuration that are mostly suitable and

proper for the particular application.

Simple implementation of "heterogenous" systems where different PEs incor-

porate different processing units.

Modularity - A multiprocessor system can have PEs which accommodate different

types of processing units and/or different communication configurations.

Parametrizable - The number of lines in an I/O link of each communication

configuration can be extended from one serial line to any number of parallel lines.

Extensible - Four I/O links enables the PE to be employed in any network and pro-

vide simple expansion to a large multiprocessor configuration.

Higher B.W. (bandwidth) - Up to four I/O links can interconnect two adjacent
PEs.

Y0 link’s utilization

Chapter 3.9 describes three 1/O link configurations. Configuration I incorporates

two unidirectional control lines and one bidirectional data line. Configuration II incor-

porates two unidirectional control and data lines. Finally, configuration III incorporates

two pairs of unidirectional lines, one for control and the other for data. One major issue

to consider is how to execute message transfers with maximum J/O link utilization. Fig-

ure 4.16 addresses this issue. Assume that two PEs connected through an I/O link want

to transfer a packet of data between them. For each configuration, two cases of control-

ling data transfer are investigated. In the first case (the upper part of each configuration

in figure 4.16) both PEs simultaneously initiate a data transfer (RTD { and RTD) from

one to the other, and in the second case (lower part of each configuration in figure 4.16)

the second PE initiates its data transfer (RTD) only after responding to the initiation of
the first PE (RDY).

Chapter 4 -124-

a | RTDL lkm'zl 'Acle
czlmm|nnn| |Acml
D L DTR1 X DTR2 '
I T 1
c1 |RID1 RDY2 | ACK2 |
c l RDY1 | RTD2 | | ACK1 |
D I DTRI X DTR2 ,
I 1 1
Configuration I
c&D1 | RTD1 , RDY2 , DTRI | ACK2 ,
I] |] !
c&D2 | RTD2 , RDY1 , DTR2 L ACK1 |
I] 1] 1
c&D1 | RTD1 DTR1 RDY2 ACK2
i | t i 1 "
cam RDY! , RTD2 L ACK1 | DTR2 .
- [) 1
Configuration II
c1 RIDl , RDY2 | ACK2 |
D1 ;_ DTR1 _i
czlmmlnnnl 'ACKII
a lm'm' lm:ovz| lAcle
D1 | DTR1 ,
2 | RDY1 | RTD2 l | ACK1 |
Configuration III

Figure 4.16 - 1/O configurations - Link utilization

It is clear from figure 4.16 that configuration III, the configuration with the largest
bandwidth, will yield in both cases the higher data transfer rate, while configuration I
which has only one line to transfer data will yield in both cases the lowest data transfer
rate. But, if the control system of the AIO initiates first its own data transfers before

responding to initiations from other PEs (first case), the data transfer rate of

Chapter 4 -125-

configuration II will be as high as that of configuration III. For such cases the
bandwidth of configuration II is better utilized. Therefore, to achieve a higher data rate
transfer the scheduler and the sequencer implementation must first initiate its own data

transfer before responding to initiations from other PEs.

4.7. PE’s performance
4.7.1. Multiprocessor performance

Comparing the running time of a program on a multiprocessor system with its run-
ning time on a single processor is a good measurement of the performance improve-
ment obtained by the multiprocessor system. To do an appropriate comparison, a stan-
dard task unit (a standard program unit) is defined. Assuming that the computation time
of the standard task on a single processor is P time units, and the communication over-

head time incurred by data transfers with other PEs during the execution time is C, the
ratio %— is a measure of how much communication overhead is incurred per computa-

tion of a standard task. The potential of obtaining a higher performance with a mul-

tiprocessor system increases as the ratio -}C,- is higher.

Performance analysis of multiprocessor systems based upon the analysis in[7]

shows that the execution time of a program consisting of M units of standard task which

is partitioned into two PEs is given by:

Execution time=P -Max {M—k k }+C (M -k)k (4.10)

The first term is the longest execution time between the two PEs when k units of
standard task is assigned to one processor and M-k to the other. The second term is a
pairwise communication overhead (not overlapped with the computation time) that

must take place as a function of how the tasks are partitioned to the processors.

Equation 4.10 can be extended to the case where the same program consisting of

M units of standard tasks is partitioned and allocated to N PEs. Allocating k; standard

Chapter 4 - 126 -

task units to the corresponding i** processor yields the following execution time for a

fully connected multiprocessor system:

Execution time =P -Max (k; }+—%—'§i’ki M-k;) @.11)

1=
When the multiprocessor system is load balanced the tasks are equally divided
between the N processors thus, the tasks are equal i.e. k; =%— and the execution time of

the program is given by:

Execution time=P M.+ S m2-MZ) @.12)

The speed up attributable to parallel execution of a multiprocessor system is
defined by the ratio of the execution time of the program on one processor over the exe-
cution time of the program in a multiprocessor system with N processors operating con-

currently. Evaluating the ratio for a load balanced PE multiprocessing system yields:
PM

PM , C pp2_M2

~ T WM

In our proposed implementation, the multiprocessor system is not fully connected

Speedup = 4.13)

and therefore it is necessary to add the number of hops in the second term of equation

4.11.
Execution time=P Max (k;)+-§_"2'ki ’i:’kj I (4.14)
i= ﬁ;
where [;; is the number of hops from PE; to PE i
When the multiprocessor system is load balanced, the tasks are equally divided

between the N processors thus, the tasks are equal to k,-=7%!-, and when the communica-

tion requires an average number of hops ;=K , the execution time of the program is
q' g PS Ljj progr

given by:

. . p M, C a2 M2 =
Execution time=P 'N'+T(M T\I—)K 4.15)

Chapter 4 -127 -

The second term of the execution time (equation 4.15) is due to the additional
communication overhead. There are two important factors, C and K. When C and/or K
are small, the communication overhead is reduced abd therefore the system’s
throughput is increased. C is small when the data transfer is independent and parallel to

the computations, and X is small when the average number of hops is small.
The speedup defined as before is given by:
PM
AT
Equations 4.15 and 4.16 clearly show the expected result that high throughput ofa

Speedup = 4.16)

multiprocessor system is achieved if:

e The algorithm contains high degree of parallelism (large N corresponds to

smaller processing time P%—).

e Balanced load PE - The program is partitioned into same length tasks for the
different PEs (k; =-%—).

e Communication overhead time compared to the execution time of the task is

negligible (C is small).
¢ Minimum number of hops (I? is small).

Since partitioning and scheduling is an NP complete problem, it is very difficult to
partition a program and schedule it perfectly with load balanced PE’s and minimum
communication among PEs. Therefore, partitioning a processing element (PE) into two
units operating concurrently and independently, one that executes the computational
tasks and the other that executes the interprocessor communication, reduces the com-

munication overhead and improves the multiprocessor throughput.

To illustrate the reduction of the communication overload on the computational

task, an analysis of interprocessor data transfer will now be made between the PE

Chapter 4 - 128 -

developed in this dissertation and two commercial signal processing processors:
Motorola’s DSP-56000 and INMOS’s Transputer. The analysis compares the time, in
clock cycles, it takes to transfer data packets between two processors and the communi-

cation overload imposed on the computational part.

The data transfer comparison is based upon the handshaking protocol developed in
the previous chapters. Similar subroutines are used for comparing the different process-
ing elements. A control message is assumed to be 32 bits and a data packet including
the header is assumed to be 1 Kbit. Data is transferred through a serial output link at a

rate of one bit per clock cycle.

4.7.2. Motorola 56000

4.7.2.1. Hand shake subroutines

The handshaking data transfer is initiated by the sender PE with the following sub-

routine:

Operation clock cycles
Move M->A 2
Move A->SCI 2
Message transfer 24
Interrupt 1
Move M->A 2
Move A->SCI 2
RTI 4
Decode 8

“Total 45

The receiving PE responds with "ready” or "not ready" after the message have

Chapter 4 -129 -

been detected by him. Detection starts while the message is received but there is still a

non-overlapping detection time of 5 clock cycles - the last 3 instructions in the follow-

ing subroutine:

Operation clock cycles
Data transfer 24
Interrupt 1
Move SCI->A 2
Move A->M 2
RTI 4
Decode 8
Interrupt 1
Move SCI->A 2
Move A->M 2

“Total a5

Since there is a non-overlap of 5 clock cycles between the sender and the receiv-
ing PEs the hand-shake interconnection establishment is executed in 45+5+45+5=100

clock cycles.

4.7.2.2. Data transfer subroutines

DSP-56000 is a 24 bit processor which implies that a packet of 1Kbit data resides

in 42 memory locations. The following is the sender’s PE subroutine:

Operation clock cycles comments
Do loop 6
Move M->A 2

Move A->SCI 2

Chapter 4 -130 -

Jec 4 jump if loop done
RTI 4

Interrupt 1

Jmp 4 jump to do loop
Data transfer 1000

To 172

The total execution time of the subroutine is: 17 non-overlapping clock cycles for

receiving it).
Do 6
Loop 17x42=714
Data transfer 1000
Total 1720

The receiving PE’s subroutine is similar but involves only the loop for inputing

the data:

Operation clock cycles
Do loop "6
Move SCI->A 2
Move A->M 2
Jec 4
RTI 4
Interrupt 1
Jmp 4

“Total 720

Chapter 4 -131-

The total count includes 714 clock cycles of the loop and 6 clock cycles of the

"DO" loop instruction.

These subroutines show that transferring 1 Kbits of data requires 1737 clock
cycles (1720 for data transmitted + 17 non-overlapping clock cycles for receiving it).

The total data transfer without decoding is executed in 1837 clock cycles as follows:

Handshaking 100
Transfer data 1720
Receive data 17
Acknowledgement 50
Total 1887

For an average of two clock cycles per instruction, both PEs, the sender and the
receiver, waste the equivalent of about 900 instructions for decoding the message’s con-
trol fields, checking the buffer space availability and transferring the data.

4.7.2.3. Control fields

Preparing headers

Operation clock cycles comments

CLRA 2

ORI Syn1111
Move A->M
CLR A

ORI 1111END
Move A->M

Move M->A read destination

NN N NN NN

Rotate

Chapter 4

'ANDM

Move A->M
Move M->A
Rotate
ANDM
Move A->M
Move M->A
Rotate
ANDM
Move A->M
Move M->A
ANDIO0
Move M->A
Do

Rotate

INC

ORI 1

NOP

Move M->A
Do

Rotate

JNC

ORI 1

NOP

Rotate
Move A->M
Move M->A

N N NN N RN AN NN AN DN DN DN NN DD DD DN DD DN NN

-132 -

read Packet ID

read length

read 24 msb of header

24 repetitions

jump if not carry
M)+1

read 8 Isb of header

8 repetitions

Jump if not carry
M)+1

check sum

add check sum

Chapter 4

-133-

ORM 2
Move A->M 2
Total 386
Checking buffer space
Operation clock cycles
Move M->A 2
ANDI 2
Move A->R 2
JMP 4
Move M->A 2
CMP 2
Header 386
Total 400
Checking CKS
Operation clock cycles comments
Do 6 42 times
XOR M+ 4
Do 6 24 times
Rotate 2
INC 4 jump if not carry
ORI 1 2 1+(M)
NOP 2
Total 420

Chapter 4 -134 -

4.7.2.4. Data transfer time

The above subroutines yield an approximate estimate of the time that it takes to

transfer a data on the Motorola 56000 DSP.

Operation Clock cycles
RTD 436
RDY/NRDY 450
DTR 2106
ACK 403
CKS X 420
Total 3815

4.7.3. Transputer

4.7.3.1. Subroutine’s execution time

The transputer is a 32 bit processor with a separate I/O which fetches data from
the memory through DMA and handles the data transfer between processors. Each byte
of data which is transferred with additional overhead bits must be acknowledged by the
receiving PE.

Using the instruction’s execution time defined in the data-sheet the handshaking is
established in:

Operation clock cycles
RTD 13%4+4x5=72
RDY/NRDY 72

Total 144

Chapter 4 -135-

Data transfer is obtained by similar calculations. DTR - is executed in 72 clock
cycles , fetch 1 Kbits from memory and output them to the next is executed in:

125x13+125x5=2250 clock cycles, and data acknowledgement in 72 clock cycles.

Using the same subroutines for preparing the control fields of a message yields the
following execution times:
Header preparation - 624 clock cycles.
Buffer space availability check - 24 clock cycles.
Check sum - 750 clock cycles.

4.7.3.2. Data transfer time

The total time that it takes to execute the whole data transfer including the control

fields preparation and check is summarized in the following table:

Operation clock cycles
RTD 696
RDY/NRDY 720
DTR 2250
ACK 676
CKS 756
Total 50

4.7.4. Proposed PE

Partitioning the processor element (PE) into a processing unit (PU) and auto-
nomous I/O (AIO) unit that operate independently and concurrently provides the
separation between the computation and the communication tasks. Such an implemen-
tation eliminates wasted computation time on interprocessor communication and data
transfer. Hardware implementation for check sum, routing paths and buffer control

reduces the time required to transfer messages or data between PEs.

Chapter 4 -136 -

The operation executed in transferring a packet of data are as follows:

e PU notifies the AIO by an OUT instruction that data is ready and available

to be transferred.

e AJO accesses the dual-port-memory and fetches from two successive loca-

tions the destination’s address and the data block size.

e The destination address is translated by tables to output link number, short ID

and priority level.

e The output link number, short ID and priority level is transferred to the buffer

management and control unit for further evaluation.
The above operations are executed in 5 clock cycles.

Buffer management and control unit issues a control message composed by the

following program (using the same timing as Motorola 56000):

Operation clock cycles

Move priority->A 2
Move A->Pointer
Jump relative to P
Move link’s status to A
ANDI priority mask
Jump if priority

Jump if no priority

OR part of header

N NN AN DN AN

OR part of header

w
N

Transfer control message

Total 52

The parity check sum adds one clock delay because it is executed by a simple

Chapter 4 -137 -

hardware (counter/counters with random logic) on the fly while data is received.

Before the receiving PE responds with ready or not ready it must first check the
availability of buffer space. As before the header which is translated by tables is
transferred to the buffer management and control unit for further evaluation. Therefore

responding back "RDY"/"NRDY" is executed in 52+2+1=55 clock cycles.

Transferring a data packet of 1 Kbits will take 1010 clock cycles where 1000 clock
cycles is for the actual data transfer and 10 clock cycles is for the control fields (IDs,
CKS, etc.).

The total time that it takes to execute a data transfer including the handshaking

interconnection is:

Operation clock cycles
Transmitter hand-shake 57
Receiver hand-shake 55
Data transfer 1010
Acknowledge data 55

“Total 1167

4.7.5. Performance comparison
The results obtained above show that the proposed PE executes data transfer three

to four times faster than the commercial DSPs analyzed in the previous paragraphs. But
there is a bigger advantage because there is no wasted computation time by the PU, e.g.
one wasted clock cycle in the proposed PE compared to thirty eight houndreds in the

commercial DSPs. Table 4.5 depicted below summarizes these results:

Chapter 4 -138 -

Communication CKS Data transfer | PU wasted time
Processor
[clock cycles] [clock cycles] | [clock cycles] [clock cycles]
PE 1166 1 1167 1
Motorola 56000 3395 420 3815 3815
Transputer 4342 756 5098 3798

Table 4.5 - Performance comparison

Comparing the results of table 4.5 with equations 4.15 and 4.16, clearly show the
advantages of implementing a multiprocessor system with the proposed PE. Since the
communication overhead time (C in equations 4.15 and 4.16) of the proposed PE is
much smaller than that of the commercial DSPs, the throughput and the speedup
obtained by using the proposed PE is higher. But, since data transfer is executed
independently and in parallel to the computations, the communication overhead time
wasted by the processing unit is negligible (C — 0 in equations 4.15 and 4.16) and

therefore the throughput and the speedup achieved by using the proposed PE is even
higher. ’

4.8. PE’s properties - summary
The PE proposed in this dissertation has many properties that makes it appropriate

for a variety of different multiprocessor systems:

1) Independent and concurrent computation and communication.
2) No involvement of computation unit in communication.

3) Macrocell for "ASIC" implementations:

- Modular and parametrizable.

Chapter 4 -139-

- Processing unit (PU) adjustable to the application.

- Communication configuration adjustable to the application.

4) Similar and simple protocols for different communication configurations.

5) Extensible to large multiprocessor configuration.

6) Adaptable to wide variety of applications.

7) Fast communication between PEs - Virtual-cut-through (VCT) switching with
minimal number of hops.

8) Interconnection is established by handshaking.

9) Independent of network topology - four 1/O links enable the PE to be embedded in
any network topology.

10) Increased communication BW - up to four interconnection I/O links can be con-
nected between PEs.

11) Two types of buffers, one is dual port memory for simple uninterfered interface
and data transfer between PU and AIO and the other is for interprocessor com-
munication.

References

1. L. Kleinrock, in Queueing systems, John Wiley & Sons, New York, 1975.

2. R.M. Fujimoto, .“VLSI communication components for multicomputer net-
works,’’ in Ph.D. thesis, Department of EECS, University of California , Berkeley,
1983.

3. JF. Hayes, in Modeling and analysis of computer communication networks, Ple-
num Press, New York, 1984,

4,

D. Gross and C.M. Harris, in Fundamentals of queueing theory, John Wiley &
Sons, New York, 1974.

Chapter 4 - 140 -

5. R.B. Cooper, in Introduction to queueing theory, The Macmillan company, New
York, 1972.

6. ML Irland, ‘‘Buffer management in a packet switch,” IEEE Transactions on

Communications, vol. COM-26, no. 3, March, 1978.

7. H.S. Stone, in High performance compiiter architecture, Addison-Wesley publish-

ing company, Reading, Massachusetts, 1987,

-141-

CHAPTER 5

Asynchronous Processor’s Concepts & Analysis

5.1. Introduction

Down scaling of the feature sizes in integrated circuits increases the speed of the
switching circuits. In 3 micron technology the gate propagation delay is 2 nsec, while in
1.25 micron technology (General Electric) and 0.8 micron technology (Bell Labs) the
gate propagation delay decreases to 0.5 nsec and 0.16 nsec, respectively. Although
there is an increase in the logic speeds of the switching circuits due to the down scaling,
the achievable data processing throughput has not been increasing at the same rate.
Researchers observed that the major limitation is due to the global synchronization and
the clock skew in multi-phase clocked control[1], and to the basic problem of driving a
large capacitive load on the clock line which can vary due to fabrication gradients.
Architectures based on local properties like globally-asynchronous locally-synchronous
systems[2, 3, 4], as well as carefully designed disuibuﬁon of the global clock [5] were
proposed to increase the computation speed, but the throughput rate has not increased to

the extent expected from the scaling rules.

To overcome the clock skewing problem, which substantially reduces the
throughput of any synchronous processor, much research is being done on methods to
design reliable asynchronous circuits that communicate through handshaking at the
completion of each task[6,7,8]. In the past, the use of asynchronous processors was
less extensively used due to difficulties in designing simple circuits which overcome

hazard and race conditions embedded in asynchronous logic circuits design and due to

Chapter 5 -142 -

substantial overhead in area size and propagation delay. A hazard is a transient state
where an output of a combinational network is temporarily in error. A race occurs in
sequential networks where more than one input signals changing at the same time

causes a steady-state incorrect output.
However, in the last few years much research work has been done in:

e Designing reliable asynchronous logic circuits such as: control units[9, 10],
sequential machines[11, 12,13,14], FIFO[7], feedback networks[15] and
arbiters[16, 17, 18].

e Developing automatic design tools (CAD tools) which synthesize the asynchro-

nous logic circuits from a high-level functional description [6, 19,20], and elim-

inate the unfavorable properties of the such circuit design.

In designing and implementing an asynchronous processor architecture, no clock is
required since the functional blocks are built of asynchronous circuits and the intercon-
nection among them is done by handshaking. Such asynchronous processors eliminate
the limitation on throughput imposed by the use of a clock and therefore the throughput

should theoretically increase at the same rate as the logic circuit speed. In the asyn-

chronous processor, the execution time (propagation delay) of the circuit implementa-
tion is data and instruction dependent and therefore the "average" throughput of the

asynchronous processor will increase.

5.2. Asynchronous design approach

The use of automatic synthesis CAD tools enables the separate design of the func-
tional computing blocks and the interconnection data transfer blocks. The asynchro-
nous implementation of the computing and the interconnection blocks is based upon
reliable asynchronous circuits with minimal area overhead and response time. Data
transfer between computation blocks is done by handshaking through interconnection

blocks. There are different types of interconnection blocks such as multiplexer (MUX),

Chapter § -143 -

demultiplexer (DMUX), fork (FORK), merge (MERGE), full hand-shake (FHS) etc.
Figure 5.1 depicts a simple processor architecture which incorporates computation
blocks such as MUL, SHIFT, ALU etc. and interconnection blocks such as FORK,
MUX, DMUX and FHS.

s Sl v

NN

L

w4 %77
vd
v

L o]

Figure 5.1 - Asynchronous processor

The design of interconnection circuits which perform the handshaking between the
computation blocks [6] is based upon self-timed circuits[21,22] which are delay-
insensitive, i.e., their behavior do not depend on the speed of the elements or on the
relative communication delays among them. Self-timed logic is a method for managing
the complexity of the asynchronous connections between the system elements. Its
correct operation is based on a request-acknowledgement protocol which guarantees'
that a module remains inactive until its input is available, and that the input remains
available for as long as it is required. The request-acknowledgement cycle is similar to

a two phase clock of a synchronous implementation. The design of the interconnection

Chapter 5 - 144 -

blocks is decoupled from the design of the computation blocks and can be done by
specifying their functionality and using the algorithm developed in{6].

Since there are no clocks for timing each operation, a completion signal must be
generated once a computation block finishes its task. Implementation of the computa-
tion. blocks by circuits of the DCVSL logic family ("Differential Cascode Voltage
Switch Logic") described in [23,24,25] allows simple generation of the completion

signal. The schematic diagram in figure 5.2 depicts the generation of the completion
signal.

T

"Request”
| [|
T T | [

out

out

Completion
Data Inputs Signal
>
5 COMPUTATION
BLOCK
=

Figure 5.2 - "Completion signal" generation

When the "Request” line is low, both complementary output data lines (out and
our) are precharged to high thus causing the completion signal to be low. When the

“Request” line goes high, the computing unit starts to evaluate the data on the input

Chapter 5 - 145 -

lines. The evaluation is completed when one of the complementary output lines
switches to low and the other remains high thus causing the completion signal to go
high. Switching of the completion signal to high indicates to the next computational

block that output data is valid, stable and ready to be transferred.
The data transfer interconnection between the computational blocks utilizes the
four-phase hand-shake protocol described in [2,26]. In this four-phase hand-shake pro-

tocol, the completion signal acts as an input request signal R;,, from computation block

A 1o the interconnection block depicted in figure 5.3.

Datain Data out Datain Data out
—>
A 4
L / L
A / A
Rin Rout T
— T / 3 —
BLOCK A C BLOCK B
C / H
H /
Aout Ain
Handshake

Circuit
Figure 5.3 - Four phase hand-shake circuit

The interconnection block checks the feedback acknowledge signal A;, which
indicates whether the computation block B has completed its task and is ready for the
next sample of data. If signals R;, and A;, satisfy the conditions for data transfer
between the computation blocks, the interconnection block sets the output request Ry,
which controls the transfer and the latching of the data into the input buffer of computa-

tion block B. Signal A,,, of the interconnection block notifies computation block A if

Chapter 5 - 146 -

block B is ready for a new sample of data and whether the data transfer was completed.
The completion signal generation and the four-phase hand-shake protocol assure the

proper operation of the asynchronous processor implementation.

In an asynchronous pipelined architecture each stage of the pipeline is a comput-
ing block. Data transfer between computing blocks (pipeline stages) is initiated by the
preceding stage and "ripples” forward in the direction of the data flow from the first
stage to the last while the beginning of task execution within the stages starts from the
last stage and "ripples” backward against the direction of the flow to the first stage.
Since the handshaking protocol is fast compared to the execution time of the pipeline

stages the stages operate concurrently as in the synchronous architecture.

As mentioned previously, since the execution time of the computation blocks is
data-dependent and instruction-dependent, the "average" throughput of the asynchro-

nous processor will increase, but there are still more underlying questions to be asked

_and explored:

e In a pipeline architecture implemented asynchronously, will there also be a
throughput increase in the "worst-case” performance for real-time digital signal
processing applications ?

e How do we design an asynchronous processor and what are the additional delays

and circuitry overheads ?

e What features and properties should be incorporated to make the asynchronous

implementation more effective ?

e What are the characteristics, properties and limitations of other asynchronous pro-

cessor architectures ?

e If there are no clock restrictions, is it possible to implement a synchronous proces-

sor with higher "average" throughput by exploiting data and instruction dependen-

cies ?

Chapter § -147 -
The answers to these questions will be given in the following chapters.

5.3. Data path cycle time comparison
5.3.1. Introduction

As previously mentioned , due to clock skew the achievable data processing
throughput has not increased at the same rate as the logic speeds of the switching cir-
cuits. Designing an asynchronous processor which does not require any clocks will
increase the data processing throughput. But, it is still necessary to find out the timing
conditions under which the asynchronous processor implementation will yield a higher
throughput than the synchronous implementation. This can be studied through a cycle
time analysis of the same processor architecture when it is implemented either by asyn-
chronous circuits or by synchronous circuits. Serial and sequential nature of the data
transfer between computation blocks in a processor with an asynchronous architecture
and the assumption that data transfer through the interconnection blocks is much faster
than the execution time of a task in the computation blocks suggests that we perform
the timing analysis on a pipelined processor architecture in which all the stages operate

concurrently.

5.3.2. Data path timing models

The data path of the pipeline architecture for comparing the throughput of the

asynchronous and the synchronous implementation is depicted in figure 5.4.

Data dependency and branch conflicts are "bad" properties of a pipeline architec-
ture that reduce the throughput but do not depend on whether the implementation is
synchronous or asynchronous. Thus ignoring these conflicts does not affect the

throughput analysis.

Chapter 5§ -148 -

FETCH INSTRUCTION

L

DECODER

//%//A

FETCH OPERAND

- _
L us. _~] I/!-LS.{/l
N

MULTIPLIER

4

I/Es /1I/ns
Y7
— us.

v

SHIFTER

T he T
Y

WRITE

ANNGEANN

Figure 5.4 - Asynchronous architecture - Data path

The propagation delays of the data between the various pipeline stages can be
modeled similarly to the models of data propagation delay between the nodes of the
synchronous and asynchronous multiprocessor network systems described in[1, 5, 27].

These multiprocessor network models assume that in the synchronous case, due to

Chapter § - 149 -

different path length of clock distribution, line capacitance and fabrication process, the
clock skew delay should be added to the propagation delay of the data between the
nodes of the network. In the as-ynchronous case, the delay of the hand-shake should be
added to the propagation delay of the data between the nodes of the network.

Using similar arguments, additive timing models based upon the data propagation
delays will be used for determining the cycle time in a pipeline architecture . In the
synchronous case, the clock skew delay will be added to the propagation delay of the
data through a pipeline stage (execution time of a task in the stage). In the asynchro-
nous case the hand-shake delay will be added to the propagation delay of the data
through a pipeline stage (execution time of a task in the stage). For concurrent opera-
tion of the pipeline stages, the synchronous and the asynchronous implementations have

data buffers between the stages thus imposing an additional latch delay.

5.3.3. Synchronous & Asynchronous cycle time models

The general assumption is that the execution time of each stage of the pipeline
architecture is data dependent. Therefore, the execution time of each pipeline stage also
varies (not worst case all the time) and on average the asynchronous implementation

should have a higher throughput for the same application.

Asynchronous circuit implementation is different from the synchronous one in that
it involves hardware overhead and processing delays for completion signal generation
and interconnection circuitry within the pipeline stage (computing unit). Thus, the exe-
cution time of an asynchronous pipeline stage could possibly be larger than the syn-
chronous one. For simplifying the timing analysis, the delay of the completion signal
generation is neglected, thus assuming that execution time of the different pipeline
stages is identical in both asynchronous and synchronous implementations. Therefore,
the results of this analysis would be the theoretical upper bounds for achieving a

throughput improvement.

Chapter § - 150 -

Depending on the data, the execution time of each pipeline stage varies between a

minimum execution time denoted min.; to a maximum execution time denoted

max.tyy. For the cycle time anaiysis of the synchronous and the asynchronous imple-

mentations we can define the following times:

t=max{max.t;;} - denotes the upper limit of the maximum execution time of all
the stages.
where max.z, is the worst case data dependent execution time of a stage.

t1=max{min.t;; } - denotes the upper limit of the minimum execution time of all

the stages.

=71 - denotes the ratio between the variation limits of all stage’s execution time.

f; - denotes the time (delay) to latch the data in the buffers between the pipeline
stages (input buffers of the following pipeline stage) - propagation delay of the
data from the buffer’s input to its output.

Ics - denotes the maximum clock skew delay between the stages of the pipeline
architecture in the synchronous implementation.

ths - denotes the maximum handshaking delay between the stages of the pipeline

architecture in the asynchronous implementation.

The worst case cycle time T for the two implementation are as follows:

In the synchronous architecture, there is a global clock and no hand-shaking is

necessary. Figure 5.5 depicts the time delays for evaluating the worst-case cycle

time.

Chapter 5§ - 151 -

BLOCK A LATCH BLOCK B
Da Db
—7 > > —

(max. tsd) (t) (max. tsd)
T — o T
1
dl d2
~N r
CLOCK
CLOCK
a1
I
|
Q2 I
——

IlZCS

LATCH (tH

']

|

BLOCK B | t=(max. tsd)
f
L CYCLE TIME J

Figure 5.5 - Synchronous architecture - clock cycle

The clock skew is the time difference between the triggering of the clock at block
B and at block A (d2-d1). Therefore, the worst case cycle time will be the sum of:
the longest propagation delay of the data through any of the pipeline stages (e.g.,
block B in figure 5.5), the longest time delay due to the clock skewing (d2-d1),

and the time to latch the data in the buffers of the pipeline.

Toy=t+tes+y (5.1

Chapter 5 -152-

e In the asynchronous architecture there is no global clock, and therefore there is no
clock skew delay, but it is necessary to add the delay due to handshaking circuits

and procedure. Figure 5.6 depicts the timing dela);s for evaluating the worst case

cycle time.
/] V] /|
DR TR E
- BLOCK —ué—uﬁ —qé—h BLOCK —aé—u: —Nusf— BLock [
A L g / B / i / c
, 1V iy
) w4
1 I L
I ths
mra{l t
|
I
o ths
|
Bwsls max. tsd
|
m ! ths
L CYCLE TIME J

Figure 5.6 - Asynchronous processor - cycle time

It is important to note that three handshake delays are involved in the cycle time
calculation. A computation block can receive a new input sample only after
transferring its output data to the next computation block. This transfer involves

one handshake delay. Latching data from the preceding computation block

Chapter 5 -153-

involves one handshake delay and the propagation delay in the latch(z;). To make
sure that input data and the corresponding control signal have been latched and are
valid, the latch must generate a completion signal, which by handshaking signals
the computation block to start its computation. Thus, the worst case will be the
sum of: the longest propagation delay of the data through any of the pipeline
stages (e.g., block B in figure 5.6), the time to latch the input data from the preced-
ing stage into the input buffer, and three times the time that it takes to perform the
hand-shake.

Tosy=t+3t)+Y 5.2)

e In the asynchronous architecture it is also possible to evaluate an average cycle
time. This average cycle time is due to the data dependent variations in the execu-

tion time of the pipeline stages. Assuming that the execution time is symmetrically
distributed, then instead of using the largest execution time among all the blocks

t=max{max.z;, }, an average of the maximum largest execution time and the max-
. . . t+t,
imum shortest execution time should be used: —5 - When the handshake and the

latch delays have negligible variations, but the execution time does not, the aver-

age cycle time will be the sum :
Tavg.asy =t7+tl+3tm +1; =-l"2'£t+3t;,s +1; ' 5.3)
Remark

Digital signal processing algorithms are based upon a fixed input data sample rate.

When the sample rate is fixed and proportional to the inverse average cycle time

(-TL—), the architecture should incorporate input and output queue buffers to handle
avg.asy .

variations of the execution time (cycle time). Input buffers are necessary for storing
input data samples when the execution time is larger than the average cycle time. Out-

put buffers are necessary for storing output data samples when the execution time is

Chapter 5 -154 -

smaller than the average cycle time.

It is impossible to determine the exact length of the queues and once it has been
determined the architecture will operate in the average cycle time Tgyp45 only for a

specific set of applications and input sample rates.

5.3.4. Worst case cycle time analysis

To decide when to use an asynchronous implementation it is necessary to evaluate
the conditions under which this implementation yields a higher throughput compared to
the synchronous one. When T,y < Ty, the asynchronous implementation has a shorter
cycle time which corresponds to a higher throughput than the synchronous implementa-
tion. Thus the necessary condition that the asynchronous implementation will have a

higher throughput is:

z,,s<£§*'_ (5.4)
Using equations (5.1) & (5.2) and defining the cycle time improvement factor to be

=P [% [q<1], where P is the percentage cycle time improvement, the ratio between

the cycle times is:

Tasy _t+3ths+ts _

1—q . (5.5)

Since the throughput is the inverse of the cycle time, the throughput improvement fac-

tor can be derived from equation 5.5 as follows:

(Throughput)asy _ Tsy 1 _ 3 ey
Throughpit)s,~Tay ~T—g 110>+ =3.q" (5.6)
(Throughput) os,=(Throughput)y (1+q+q2+q3+...) (5.6b)

Equation 5.6b shows that for a given cycle time, the improvement factor q of the asyn-

chronous cycle time yields an asynchronous throughput improvement which is greater

Chapter 5 -155-

than q.

From equation (35.5) it is possible to derive the conditions for the different delays
which will yield a throughput improvement factor higher than q for the asynchronous
implementation. The handshake delay #,; as a function of the improvement factor and

the synchronous delays will be:

fho= (1—q)tcss"q (+1) .7

This equation is the exact expression of #,;. Equation 5.4 that required ¢ < %"— is the
special case derived from 5.7 when the two implementations have the same cycle time.

Feasible realizations requires #,; >0, therefore the expression in the numerator of equa-

tion 5.7 must be positive and that yields the lower bound of the clock skew delay #.; :

tcs>T27(z,+:) (5.8)

If the clock skew delay is less than (5.8), the asynchronous implementation will not

yield the required throughput improvement q - i.e., there is no minimal handshake delay
which will yield the required q.

Equation 5.5 also yields the bound on the improvement factor for the worst case

propagation delays of the synchronous and asynchronous implementations:

- tCS—SthS

=L (-9)

The conclusion from equation 5.9 is that for larger clock skew delay relative to the
other delays, the asynchronous implementation has a higher throughput (by at least a

factor of q) compared to the synchronous implementation.

Results

e An asynchronous processor implementation which yields a higher throughput by

the improvement factor q is feasible (t,s >0) only if the clock skew delay

Chapter § - 156 -

satisfies equation 5.8.
. 4
e The asynchronous implementation yields a higher throughput only if #;; < %’f—

e For handshake and clock skew delays that satisfy equation (4), the deeper the pipe-
line architecture (i.e., more pipeline stages which corresponds to shorter execu-
tion time and t smaller) , the larger the relative importance of clock skew delay z.
on the cycle time, and the more likely the asynchronous implementation will have

a higher improvement factor q.

e For any given technology (gate propagation delay) and pipeline architecture
when 2,:>>31t;5 and 1; is negligible, there exists an approximate upper bound on

the throughput improvement factor:

~ s
q~m (5. 10)

The upper bound of the throughput improvement depicted in the following table and
figure 5.7 show that as the clock skew increases relative to the stage execution time and

the handshake delay, the throughput of the asynchronous implementation will increase.

q(%] | s

10% | 0.11t
20% | 0.25t
30% | 0.43t
40% | 0.66t
50% | 1.00t

Table 5.1 - Clock cycle improvement factor vs. clock skew delay.

Chapter § - 157 -

05 .
0.4]
03
0.2

0.1

v ' v v v r r v r =t
0.1 02 03 04 0.5 0.6 0.7 0.8 09 1.0

Figure 5.7 - Clock cycle improvement factor

5.3.5. Average cycle time analysis
5.3.5.1. Average cycle time analysis

The bounds on the clock-skew and hand-shake delays of the average asynchronous
cycle time when the architecture has I/O queues and the propagation delay variations of

the pipeline stages (k) are given, can be derived from equation 5.3:

Tavgasy=(k+1)2-+3ths+;
From the above cycle time equation and the cycle time equation of the synchro-

nous case Ty, =t+f.s+t , we can derive the ratio:

t
Toveasy (k+1)-f+3ths+t1 _
Tsy [+t 4 11
which yields:
tns = [(A-g~K)r+(1-q)15~ 5.12
hs =13 [(5—=q =) +(1-q)tes—qu] (5.12)

As before, a feasible asynchronous implementation which yields the throughput

improvement factor q, requires ,,>0. It follows that the expression in the brackets

Chapter 5 - 158 -

should be positive which yields the lower bound of the clock skew delay for the average
case analysis:
1 k
qtr~(5—q—»)
tcs 2 -21-_ q -2- (5' 13)

As before, from equation (5.11) one can derive the upper bound of the improvement

factor as a function of the propagation delays:

- (-%——-g-)t+tc,—3t;“
s T+

(5.14)

This equation (5.14) shows that even for small values of z.,, large variations in the exe-
cution time of the pipeline stages, which correspond to k<<1, yields a higher improve-

ment factor of the asynchronous average throughput compared to the synchronous
throughput.

5.3.5.2. Handshake delay variations

Equation 5.12 shows that the handshaking delay is a function of three variables:
the clock skew delay, the cycle time improvement factor and the execution time varia-

tions. Rewriting equation 5.12 of #,; as a function of the execution time variations k we

get:

- t=g [(F-)rHIg res—qnl-k (5.15)
Figure 5.8 depicts the handshaking delay as a function of the execution time variations,

when the clock skew delay and the improvement factors are given.

Chapter 5§ -159 -

,hsu

ql<qg2<...<gn

/“

>
>

1 k

Figure 5.8 - Handshake delays vs. execution time variations

Thus, 1, is linearly dependent on k. Larger variations in the execution time of the pipe-
line stages (corresponds to smaller k) imply that larger handshake delays can achieve
the same cycle time improvement. ‘
For an architecture with a given variations of the stages execution time, smaller

handshaking delays mean a greater cycle time improvement.
If we rewrite #,; as a function of ¢,; we get:

the= (g~ Eyr—gu 1+ A58, (5.16)
Figure 5.9 depicts the handshaking delays as a function of of the clock skew when the

execution time variations and the improvement factor are given.

Chapter § - 160 -

W

kil<k2<...<kn
q=constant

}
1 tcs

v

Figure 5.9 - Handshake delay vs. clock skew delay

Iis is linearly dependent on .. Larger clock skew delays allow larger hand-shaking
delays in order to achieve the same cycle time improvement. Also, as before, larger
variations in the stages execution time allow larger handshaking delays in order to

obtain the same cycle time improvement (q).

Rewriting the equation of #, as a function of q the cycle time improvement factor

we get:

1+,
b= (= +e - g (5.17)
Figure 5.10 depicts the handshaking delay as a function of the cycle time improvement

factor when the clock skew and the execution time variations are given.

Chapter 5 -161-

kl<k2<..<kn

7

v

1 q

Figure 5.10 - Handshake delay vs. cycle time improvement factor

Iys is linearly dependent on q. For larger improvement of the cycle time , the hand-

shaking propagation delay should be smaller.

5.3.5.3. Average cycle time analysis results

Analyzing the bound of the improvement factor q in equation (5.14) yields the

following conclusions: | |

e Larger the variations in the execution time of the pipeline stages (smaller k) imply
greater throughput improvement in the average asynchronous case.

e t>>1; and t>>1., which implies that t>>1,; correspond to an architecture with a
small number of pipeline stages. In such an architecture the clock skew, handshake
and latch delays are negligible, thus yielding an upper bound of the improvement

factor to be q<lE£. This result shows that when the additive delays are negligible

compared to the execution time, the maximum achievable average throughput

improvement could only be 50%.

e If z. is not negligible compared to the execution time, the throughput improve-

ment factor (q) of the average asynchronous case could be above 50%.

Chapter §

-162 -

k=1 corresponds to the timing of the worst-case asynchronous case. In this case,
if the clock skew delay is very small (z.;=0) the asynchronous implementation will
not be advantageous.
Assuming as before that the hand-shake and latch delays are negligible compared
to the clock skew delay, i.e., 2,s>>31,s and 7,;>>1; , but the clock skew delay ., is
not negligible compared to the stages execution time, the approximate throughput
improvement upper bound is:

_ -%-(l—k M+t s

K v .
Under these conditions, the throughput improvement factor q is depicted in the

(5.18)

following table and in figure 5.11:

q[%]
_I 1) _
k=0 =T = k-Z' k=1
Ies

Max variations, 75% variations in 50% variations in 25% variations in Worst case, no

100% variations t t t variations in

int
0.00t 50% 37.5% 75% 12.5% 0%
0.11t 55% 43.7% 32.5% 21% 10%
0.25t 60% 50% 40% 30% 20%
0.43t 65% 56.3% 47.5% 38.8% 30%
0.66t 70% 62.3% 55% 47.3% 40%
1.00t 75% 68.7% 62.5% 56.2% 50%

Table 5.2 - Throughput improvement factor

Chapter 5 -163 -

q[%]
L3
804
k=0
701 k=0.25
P k=0.5
k=0.75
50 . k=1
40 L
3ol
201
101

>

0.1 02 03 0.4 0.5 0.6 0.7 0.8 0.9 1.0 tesly

Figure 5.11 - Throughput improvement factor vs. clock skew

e Larger variations in the stages execution time (k<<1) increase the average

throughput improvement factor.
e For the same variations in the stages execution time, when f.; is not negligible
(equation 5.17), the average throughput improvement factor will be larger.

e The larger the clock skew delay compared to the stages execution time
(corresponds to "deeper” pipeline) the larger will be the throughput improvement

factor of the average asynchronous case compared to the synchronous one.

5.4. Conclusions

e As before, for an architecture with a small number of pipeline stages (¢, is negli-
gible, corresponds to the first row in table 5.2) the average improvement

throughput factor will be approximately q =-%-(1—k).

Chapter 5 - 164 -

To achieve a higher throughput factor q in the asynchronous implementation, the
clock skew delay (z.s) and the hand-shake delay (¢5s) must fulfill the conditions of
equations 5.12 and 5.13.

When the handshaking delay (z,5=0 and the latch delay (f;) are negligible com-
pared to the execution time (t) but the clock skew delay (7.) is not negligible, a
greater clock skew delay implies a greater improvement in throughput in the asyn-

chronous implementation.

In a deep pipeline architecture (an architecture with a large number of pipeline
stages) the clock skew delay z.; has a greater effect on the throughput improve-

ment factor (q) of the asynchronous implementation.

References

1.

S.Y. Kung and R.J. Gal-Ezer, “‘Synchronous vs. Asynchronous computation in

very large scale integration (VLSI) array processors,’’ SPIE vol. 341 Real Time
Signal Processing, pp. 53-65, 1982.

C. Mead and L. Conway, in Chap. 7, Introduction to VLSI systems, Addison-
Wesley publishing company, 1980.

Daniel M. Chapiro, Globally-Asynchronous Locally-Synchronous Systems, pp. 1-
123, Ph.D Dissertation Stanford University, October 1984.

S.Y. Kung, K.S. Arun, R.J. Gal-Ezer, and D.V. BhaskarRao, ‘‘Wavefront array
processor:Language, Architecture and Applicatons,”’ IEEE trans. on computers,

vol. C-31, no. 11, November 1982.

Donald F. Wann and Mark A. Franklin, ‘‘Asynchronous and Clocked Control
Structure for VLSI Based Interconnection Networks,”’ IEEE Trans. on Comput-

ers, vol. C-32, No. 3, pp. 284-293, March, 1983.

Chapter 5 - 165 -

10.

11.

12.

13.

14.

15.

16.

17.

T.H.Y. Meng, R.W. Brodersen, and D.G. Messerschmitt, ‘‘Automatic synthesis
asynchronous circuits from high level specifications,’” IEEE ICCAD 87 Digest of
Technical Papers, November 1987.

T.A. Chu, CK.C. Leung, and T.S. Wanuya, ‘A design methodology for con-
current VLSI systems,’’ ICPP 85, pp. 407-410, 1985.

T.A. Chu, ““On the models for designing VLSI asynchronous digital systems,”’
North-Holland INTEGRATION, no. 4, pp. 99-113, 1986.

J.R. jump , ““Asynchronous control arrays,’’ IEEE trans. on computers, vol. C-23,
no. 10, pp. 1020-1029, October 1974.

L.A. Hollar, *‘Direct implementation of asynchronous control units,”’ IEEE trans.
on computers, vol. C-31, pp. 1133-1141, December 1982.

D.A. Huffman, C.A. Rey, and J. Vaucher, ‘‘Self synchronized asynchronous
sequential machines,’’ IEEE trans. on computers, pp. 1306-1311, December 1974.
G. Mago, ‘‘Realization methods for asynchronous sequential circuits,”” IEEE

trans. on computers, vol. C-20, no. 3, pp. 290-297, March 1971.

D.B. Armstrong , A.D. Friedman, and P.R. Manon, ‘‘Design of asynchronous cir-
cuits assuming unbounded gate delay,”’ IEEE trans. on computers, vol. C-18,

December 1969.

R.B. Keller, ‘“Towards a theory of universal speed independent modules,’’ JEEE
trans. on computers, vol. C-23, no. 1, pp. 21-33, January 1974.

D. Hammel , ‘“Ideas on asynchronous feedback networks,’” Proc. 5th ann. Symp.

on Switching Circuit Theory and Logic Design, pp. 4-11, November 1964.

W. Plummer, ‘‘Asynchronous arbiters,’’ IEEE trans. on computers, vol. C-21, no.

1, January 1972.

J.C. Calvo, J.I. Acha, and M. Valencia, ‘‘Asynchronous modular arbiter,”’ JEEE

Chapter § - 166 -

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

trans. om computers, vol. C-35, no. 1, January 1986.
J.C. Barros and B.W. Johnson, ‘‘Equivalence of the arbiter, the synchronizer, the
latch, and the inertial delay,’” IEEE trans. on computers , vol. C-32, July 1983.

T.A. Chu; “‘Synthesis of self timed control circuits from graphs: an example,”’
Proceedings IEEE ICCD, pp. 565-571, October 1986.

D.L.Dill and E.M. Clarke, ‘‘Automatic verification of asynchronous circuits using
temporal logic,”” Proceedings 1985 Chapel Hill Conference on Very Large Scale
Integration, pp. 127-143, 1985.

C.L. Seitz, “‘Self timed VLSI systems,”’ Proc. of the Cal Tech. Conference on
VLSI, January 1979.

S.H. Unger, in Asynchronous sequential switching circuits, Wiley-Interscience,

New-York, 1969.

L.G. Heller and W.R. Gﬁfﬁn, ““Cascode voltage switch logic: A differential
CMOS logic family,”” ISSCC Digest of Technical Papers, February 1984.

G. Jacobs and R.W. Brodersen, “‘Circuit techniques for realization of self-timed
DSPs,”’ To be submitted to IEEE trans. on JSSC.

T.E. Williams, M. Horovitz, R.L. Alverson, and T.S. Yang, *‘A self-timed chip for
division,”> Advanced Research in VLSI, Proceedings of 1987 Stanford conference,
pp. 75-96, March 1987.

R.E. Miller, in Switching theory, John Wiley & Sons, Inc. New-York, 1965.

H.V. Jagadish, ““Techniques for the design of parallel and pipelined VLSI systems

for numerical computation,”’ in Ph.D. Dissertation, December 1985.

- 167 -

- CHAPTER 6

Asynchronous Processor Architectures

6.1. Asynchronous pipeline architecture
6.1.1. Introduction

This chapter describes the fundamental concepts and the principles involved in the
development and the design of asynchronous pipeline processor architectures. An asyn-
chronous processor design does not require global synchronization and thus the clock
skewing problems such as appropriate clock distribution and timing verifications are
eliminated. The design approach discussed here is based upon the use of asynchronous
interconnection library blocks already developed by [1] which are basically self-timed
handshake circuits, and upon additional interconnection blocks such as conditioned
handshake circuits, which are requiréd for proper design and implementation of an
asynchronous architecture. The circuit design of the pipeline stages (computation
blocks) is based upon DCVSL logic ("Differential Cascode Voltage Switch
Logic")[2,3] and is being done in parallel by another group at Berkeley. Since the pro-
cessing time in the computation blocks is instruction and data-dependent, the design
methodology should take it into consideration. The processor’s architectural
configuration and the way that the instructions are utilized and executed will determine
the data dependency and the branch constraints imposed on the programmer. The
design of the computation blocks and the interconnection blocks is decoupled and can
be done independently. The inevitable hardware overhead and processing delays of the

various interconnection circuits, within the computation blocks and between them, will

Chapter 6 - 168 -
be explained later.

6.1.2. Design Approach & Principles

A general block diagram of the basic asynchronous pipeline architecture is dep-
icted in figure 6.1. Each pipeline stage consist of a computation block (e.g. Multiplier,
ALU) plus latching and handshake circuits. Since there is no global clock, data
transfers between the computation blocks are controlled and executed by handshaking

interconnection blocks.

The maximum number of instructions that can be executed concurrently in the
pipeline architecture is limited by the number of the stages in the pipeline. In an asyn-
chronous architecture, there is no global clock to synchronize the operations and there-
fore conflicts in sharing the same resources are possible. To avoid such problems, it is

essential to define and determine the appropriate timing and operations required to:

e Execute non-data path instructions such as: NOP, STORE accumulator to
memory, OUTPUT data to external I/O device, SET FLAGS, BRANCH, etc.

e Discard instructions from the pipe when a BRANCH instruction has to be exe-

cuted.

e Minimize or avoid the addition of control handshaking delays to the existing data
path delays.

The handshaking interconnection blocks, control and execute the data transfer
between the computation blocks. As depicted in figure 5.3, request to transfer data
between computation blocks (pipeline stages) is initiated by the "end of operation” sig-
nal of the preceding stage through R;, of the interconnection block. Data is transferred
to a successive stage only if the successive stage has transferred its own output data to
its next stage and is ready to receive and operate on a new sample of input data. Since
the pipeline stages (computation blocks) are connected in serial, each pipeline stage can

transfers its data to the next one only if all the successive stages have completed their

Chapter 6 - 169 -

—— ;1;-/_1//1

FETCH INSTRUCTION

DECODER

//ri}.//ﬂ

FETCH OPERAND

e =
N
¥

00>

AANGANN

— H;s ——

WRITE

Figure 6.1 - Asynchronous pipeline architecture
data transfer. Therefore, data transfer and the beginning of task execution in the pipe-
line stages can be considered as if it starts in the last stage and "ripples" backward to the
first one (opposite to the direction of the data flow). The following examples based on

the pipeline architecture configuration depicted in figure 6.1 will illustrate this back-

Chapter 6 -170 -

ward "ripple” of start of execution in the pipeline stages.

Assume, as depicted in the figure 6.2 below, that all the pipeline stages except the
last one ("write" stage) have finished their execution and are ready to transfer their out-

put data.

fetch operand l | /J l

I —)
w [l X

(>t

shifter

<S
wie Id

Figure 6.2 - Operation of an asynchronous processor (example 1)

Since the "write" stage is still busy with its task, the shifter stage can’t transfer its out-
put data to the "write" stage and therefore it cannot receive a new sample of input data
from the ALU stage. Thus, the ALU cannot transfer its output data to the shifter, the
multiplier cannot transfer its output data to the ALU and so on. Therefore, these stages
cannot receive a new sample of input data to operate on and they are idle. Only when
the "write" stage finishes its task, the shifter stage can transfer its output data to it and
receive a new sample of input data from the ALU stage to operate on it. Once the
shifter receives the output data of the ALU stage it frees the ALU to receive a new sam-

ple of input data from the multiplier stage to operate on it and so on.

Assume, as depicted in the figure 6.3 below, that all the pipeline stages except the
“fetch operand” stages have finished their execution and are ready to transfer their out-

put data to the next stage.

Chapter 6 -171 -

fetch operand L I l I |

‘ »t
multiplier I A S n_J >t
o L o
B s N ars S))

* An arrow from the end of execution time indicates handshake initiation

» An amrow from the begining of the execution time indicates end of data transfer

Figure 6.3 - Operation of an asynchronous processor (example 2)

In this case the ALU, shifter and "write" stages will transfer their output data to the next
stage, receive a new sample of input data from the preceding stage and start to operate
on it. The multiplier stage will transfer its output data to the ALU but it has to be idle
until the "fetch operand” stage finishes its task and is ready to transfer its output data to
the multiplier. When the "fetch operand" stage is ready to transfer its output data, it ini-
tiates the handshaking procedure with the multiplier stage. The multiplier stage latchs
the new sample of input data, begins to operate on it and frees the "fetch operand" stage
to execute its next task. If while the multiplier stage executes its task on the new sample
of input data, all the successive stages have finished their execution the ALU, the shifter
and the "write" stages will transfer their output data to their next stage but only the
"write" and the shifter stages can start a new operation, the ALU has to wait for the

multiplier to finish its current task.

These examples illustrate that each pipeline stage can start to execute a new task

only if:

Chapter 6 -172 -

1) TIts successive stages have transferred their output data and are ready to receive a

new sample of input data to operate on it.
2) TIts preceding stage finished its task and is ready to transfer its output data to it.

Although this handshaking protocol and the serial data transfer causes the pipeline
stages to begin the execution of a new task sequentially one after the other, all the pipe-
line stages operate concurrently if the handshaking protocol and data transfer are fast

compared to the execution time of the stages.

The handshake interconnection between the computation blocks (depicted in
figure 6.1), is a four-phase full handshake (FHS). Internally within the computation
blocks there are more non-pipeline handshake interconnections which guarantee that
the operation of the block starts only after all the operands and the control data lines
have been latched and are valid. A non-pipeline interconnection block between two
computation blocks A and B, handles the data transfer between them and enables block
A to accept a new sample of input data only after block B has completed its task on the
output data of block A. Therefore, all internal data transfers between computation
blocks incorporated in a pipeline stage are executed through non-pipeline interconnec-
tion blocks. As previously explained (see paragraph 5.3.3), it is important to implement
a latch register which generates an "EOP" (End of operation) signal only after the data

at its output becomes valid.

A general example of a computing block is depicted in figure 6.4.

Chapter 6 -173 -

;
NANIANCANNAN

~

1
ANNNNANT

b

I
SAANNN

SANAN ﬁi\'\ ~
$

ZZI

[commmem |

£
SN S /]
LY

Figure 6.4 - Non-pipeline "merger"

The "merger" depicted in figure 6.4 is a non-pipeline handshake interconnection block
that enables the computation in block B to begin only after the data from the preceding
block (block A) and the control data from the controller are latched and valid. Compu-
tation block B will latch a new sample of input data only after block B has completed
its task and has transferred its output data to the next stage. 'fhe non-pipeline "merger"
block is not necessarily the only additional internal handshaking interconnection.
Depending on the computation block’s task and the architecture configuration, there
might be other internal non-pipeline interconnection blocks which increase the area and
the execution time overhead of the computation block. The pipeline architecture block
diagram depicted in figure 6.1 can be partitioned into two parts: 1) Control path which
includes the fetch instruction and the decoder stages of the pipeline that execute the
fetch cycle of an instruction. 2) Data path which includes the fetch operands, multi-
plier, ALU, shifter and write data to memory stages that perform the execution cycle of

an instruction.

This partition enables us to describe the pipeline architecture as two parallel paths

Chapter 6 -174 -

which are connected by control lines and status lines between the control path and the

data path stages.

What follows is a more detailed description of the design of various pipeline

stages of an asynchronous processor.

6.1.2.1. Fetch Instruction

The "fetch instruction” block depicted in figure 6.5 incorporates a program counter
(PC), an address arithmetic unit (AAU), and a read only instruction memory (ROM).
Only two of the handshake interconnections are pipeline interconnections between
stages: one is the FHS (full handshake) which handles the transfer of instructions from
the memory to the instruction register of the decoder, and the other is the multiplexer
(MUX) which selects the memory address according to the control lines from the
decoder. All other handshake interconnection blocks are internal and are therefore
non-pipeline. These non-pipeline interconnections allow the "fetch operand" block (PC
plus AAU) to be incremented and latched back to the PC while fetching an instruction
from the memory. "MAR" is a memory address register that latches the address of the
instruction to be fetched and allows the concurrency of fetching an instruction with
incrementing the PC. When a BRANCH instruction is executed a control line will
select the branching address from " BRANCH ADDRESS" register and the sequence

continues as before.

Chapter 6 -175-

VYoe e

-4
PC BRANCH ADDRESS

. 2 Y)
7 7%] 7 Je—
7 T 7 7]

ey 7 7

MEMORY ~

INANAN
[

+//Hi}///

v

Figure 6.5 - Fetch instruction unit

Chapter 6 -176 -

6.1.2.2. Decoder (Control Unit)
Control problems

In a synchronous pipeline architecture, the control unit uses the global clock to
synchronize the operations and to avoid conflicts in demands for the same resources.
Unlike the synchronous architecture, the control unit of the asynchronous architecture
has to synchronize the operations and avoid resource contentions through handshaking
signals and status flags. Controlling data path instructions (e.g. ADD, MLT, LOAD
ACC, etc.) which propagate through the data path stages is simple to handle with the
handshake protocols and circuitry. But even for this type of instruction there is the
question of how to execute instructions which for example do not require a multiplica-
tion: should the controller transfer the operand through the multiplier by multiplying it
by one, or should there be another mechanism which bypasses the multiplier’s opera-
tion (e.g. bypass path) and still assures the proper handshake operation ? The same
question arises about instructions which do not have to execute any ALU operation:
should the data be transferred through the ALU by adding it with zero, or should there
be another mechanism which bypasses the ALU’s operation and still assures the proper
handshake operation ? Bypassing the block’s operation is faster but the control is more
complicated because then there is no "EOP" signal from the computation block, and an
"EOP" signal must be generated from additional circuitry. Multiplying by one in the
multiplier and adding to zero in the ALU is simpler because an "EOP" signal is then
generated by the computation block, but unfortunately it consumes time to go through
the computation blocks. Since pipeline dominated by worst case may not be a problem,
controlling non-data path instructions such as: STORE ACC, BRANCH, SET FLAGS,
1/0 instructions, etc., is made more complicated by the lack a clock. The controller has
to determine the correct timing to execute the instruction and how to assure proper exe-
cution and propagation of other instructions in the pipe. Another problem is how to dis-

card from the pipe instructions already being executed when a BRANCH instruction has

Chapter 6 -177 -

to be executed.
PLA decoder

There are two mechanisms to control a synchronous pipeline architecture, one is
time-stationary and the other is data-stationary. In both mechanisms the control source
outputs control signals divided into fields where each field is dedicated for a particular
stage. A time-stationary control mechanism provides the route and control and function
select signals for the entire pipeline stages from one source. At each time interval, each
field of the control source contains the control signals of the different instructions that
are executed in the corresponding pipeline stages. In a data-stationary control mechan-
ism the control signal "follow" the data through the pipeline providing the control sig-
nals at each stage as needed. The control source outputs all the control signals required
to control the execution of one instruction during its propagation through the pipeline
stages [4]. In a synchronous pipelined architecture, the use of time stationary control
unit allows concurrent execution of different instructions in different stages. One way
to control a pipeline architecture is to use a PLA (Programmable Logic Array - a ROM
which only contains cells that are used) decodes the instructions and outputs data sta-
tionary control lines that are organized in separate fields. As explained above each field
of the control lines controls the operation of a single stage of the pipeline. Delaying the
different control fields through an appropriate number of shift register stages to match
the pipeline stages, provides a mechanism in which the control signals of an instruction
“follow" the propagation of its data in the pipeline stages. This way data stationary

mechanism is converted into time stationary control [4].

Designing the control of the asynchronous pipelined architecture in a similar way,
i.e., using a PLA to decode an instruction and converting its data stationary output con-

trol to time stationary control has the following advantages:

® Avoids adding any additional control delays to the existing delays of the data path.

Chapter 6 -178 -

e Enables simple timing and control of instructions that do not involve all or some

of the data path stages.

e Enables instructions to be discarded simply during the execution of a conditional

branch.

The asynchronous pipeline architecture depicted in figure 6.1 has a data stationary
PLA control system which decodes an instruction and outputs the appropriate control
word. Each control word is fully decoded, i.e., each bit is a control line, in order to
avoid additional internal non-pipeline handshaking interconnection circuitry and time
overhead. The control lines are organized into separate control fields where each field
controls the operation of a single pipeline stage (computation block). Each control field
propagates to its corresponding computation block through an appropriate number of
pipeline stages of an asynchronous shift register as depicted in figure 6.6. The number
of the shift register stages is designed to synchronize between the propagation of the
data and the control field which controls the operation to be executed on it in the pipe-
line stage. In other words, the asynchronous pipelined shift register converts a data sta-
tionary control unit (PLA) into a time stationary control unit (PLA + shift registers) that
allows the concurrent execution of different instructions in the stages of the data path.
These asynchronous pipelined shift registers also assure that the number of handshaking
stages that an "acknowledge" signal has to propaéate from each pipeline stage of the
data path (computation block) to the decoder stage (PLA) is the same whether it pro-
pagates through it’s own control shift register stages or through any of the preceding
data path stages and their control shift register stages. Therefore, each control field and
the data necessary for executing an instruction have to propagate through the same
number of handshaking delays until they reach the corresponding pipeline stage where
the task related to the control field data can start its execution on the data. For this rea-

son there are no additional handshaking delays imposed by the control unit.

Chapter 6 -179 -

/S
ZL

Fetch inst.

Z//J{//

DECODER

777777

C2 C3

e

C3

— STAGE1 —il/ STAGE2 (—3{

?

—3) STAGE 3

/ —

Figure 6.6 - Asynchronous data stationary control unit

AN

\}\

As in any pipeline architecture, some instructions required that their related data
propagates through some stages of the data path without changing it’s value, e.g.
LOAD ACC, STORE ACC etc. The LOAD ACC instruction causes an operand to be

fetched from the memory and stored in the accumulator. In this instruction, the operand

Chapter 6 - 180 -

has to propagate through the MULTIPLIER and the ALU without changing its value.

As was mentioned before, data can propagate in one of the two following ways:
One way is to transfer the data through the multiplier by multiplying it by 1 and through
the ALU by adding it with 0. Another way is to bypass the multiplier and the ALU, i.e.,
the data is transferred directly by handshaking from the input buffer of the multiplier or
ALU block to the input buffer of the next computation block without passing through
the multiplier or the ALU.

The first implementation executes the instruction in a regular asynchronous mode.
Certain control fields of the decoded LOAD instruction control the multiplication of the
operand by one in the multiplier and the addition of the operand with zero in the ALU.
The appearance of the operand at the output of each computing block generates an
"EOP" signal that initiates the handshaking circuit and protocol which transfers it to the
next computing stage. This implementation might affect the processor’s throughput

because the computation delays in the multiplier and the ALU might be significant.

The second implementation requires a "NOFT" (no operation & data feed through)
in the control fields of the multiplier and the ALU. "NOFT" instructs the computation
block to transfer the data directly from its input buffer to its output without executing
any manipulation on it. The data transfer is accomplished through a pass gate (uni-
directional switch) path parallel to the combinational logic while the combinational
logic of the block is idle. Since no manipulation is executed on the data an "EOP" sig-
nal is not generated by the combinational logic of the block and the data won’t be
transferred to next computation block. To overcome this problem, a control line of the
"NOFT" control field will enable a special circuit in the computation block to generate
an "EOP" signal after the incoming data has been latched properly in the input buffer.
Meanwhile, this control line will cause the data to bypass the computation block

through the pass gates. A parallel control line will disable the writting of the data into

Chapter 6 -181-

the input buffer of the next computation stage while it is still operating on its previous
data. The processor’s throughput is not affected by this implementation because the
data is fed through without any computation delays. But, there is a cost in overhead due
to the additional control lines, the feed-through pass gates and the special "EOP" signal
generation circuitry.

There are other instructions such as OUTPUT accumulator to an external I/O dev-
ice, BRANCH, SET FLAG, RESET FLAG, PUSH STACK, POP STACK, ENABLE
INTERRUPT, CHECK STATUS, etc., which are control instructions that do not require
any data transfer or any operation in the pipeline stages. For such instructions the com-
binational logic of the computation blocks (pipeline stages of the data path) are not
active during the execution phase of the instruction and therefore they do not generate
any "EOP" signals. Since there is no need to execute any operation in the data path
stages of the pipeline or to transfer data through them, the control fields of these stages
will have "NOP"s (no operation and no data transfer). A "NOP" causes the combina-
tional logic to be idle, disables the feed-thrpugh pass gates (unidirectional switch) and
initiates a special circuit to generate the "EOP" signal. The use of "NOP"s insures the
correct timing of executing such instructions by keeping the sequence of executing the
instructions in the same order that they were fetched from the memory. (The sequential

order of executing instructions is important for the correct flow of the program).

Another problem typical in the pipeline architecture is how to execute branch
instructions with a minimum number of "bubbles". In addition, the asynchronous pipe-
line architecture must also discard instructions which are already in the pipe when a

branch is encountered and executed.

It is important to distinguish between unconditional branch instructions and condi-
tional branch instructions. An unconditional branch instruction preferably executes

immediately after decoding (during the "fetch operand” stage), thus minimizing the

Chapter 6 -182-

instructions following the branch that have to be discarded from the pipe. In the archi-
tecture depicted in figure 6.1, the execution of an unconditional branch involves dis-
carding of two instructions from the pipe (one in the "fetch operand" stage and the other
in the "decoder” stage). A conditional branch instruction preferably executes only after
the condition was evaluated. Doing so avoids the restoration of the data and the status

prior to the branch and the discarding of the instructions following it.

In both cases, it is possible to avoid the need to discard instructions from the pipe
by inserting an appropriate number of "NOP" (no operation) instructions in the program
after the branch or the conditional branch instructions. However using this technique
wastes max;y instruction cycles in the conditional branch case. These wasted instruc- _
tion cycles due to the insertion of "NOP" instructions after a conditional branch can be
avoided by using some prediction policy and being able to discard instructions from the

pipe. Two basic prediction modes are described below.

One mode predicts that the branch is not going to be executed and the processor
continues to fetch and execute the instructions which follow the conditional branch. At
the appropriate time, the condition is evaluated. If the prediction was correct, the pro-
cessor continues it’s operation without any interruption. If the prediction was wrong,
the processor has to discard all the instructions which are already in the pipe, restore its
status and data prior to the branch instruction, load the program counter with the

branching address and continue from there.

The other mode predicts that the branch is going to be executed. In this case, the
processor discards from the pipe the two instructions which have been already fetched,
updates the program counter and stores it for restoration (if it will be necessary), loads
the program counter with branching address and continues to fetch and execute instruc-
tions from there. At the appropriate time, the condition is evaluated. If the prediction

was correct, the processor continues it’s operation without any interruption. If the pred-

Chapter 6 -183-

iction was wrong, the processor has to discard all the instructions which are already in
the pipe, restore its status, data and the program counter prior to the branch instruction,

and continue from there.

It is obvious that the first prediction policy is simpler to implement and requires

less overhead.

In the case of an unconditional branch it is possible to avoid the "bubbles” due to
diséarding the two following instructions only if a delayed branch technique is used,
i.e., the compiler inserts the branch instruction two instructions ahead so that its execu-
tion is synchronized with the program flow. |

Discarding instructions is done by inserting, in the appropriate stages of the pipe-

lined shift registers, "NOP"s instead of the decoded control fields of these instructions.

Summary of control concepts

In summary, it has been shown that the control unit of the asynchronous architec-
ture is not more complicated than that of the synchronous architecture. Using the
appropriate handshaking technique and circuits makes it feasible to design. The major

concepts of the control unit are:
e No additional handshake delays due to the asynchronous control unit.

e Simple decoder based upon a PLA provides fully decoded "wide" data stationafy

control word, and saves additional handshaking circuit and delays overhead.

® The control word is divided into fields, each controlling a single computation
block (pipeline stage).

® Propagation of data through a computation block (pipeline stage) by bypassing it
is controlled and executed by "NOFT" (no operation & data feed through) in the

control field.

e "NOP" (no operation) in the control field causes a computation block to be idle.

Chapter 6 - 184 -

e Control lines of "NOP" and "NOFT" initiates the generation of "EOP" signal even

though the computation block is idle.

e Pipelined shift registers convert data stationary control words into time stationary

control words.

e Pipelined shift registers enable instructions to be discarded from the pipe by insert-
ing "NOP"s in the appropriate stages.

6.1.2.3. Multiplier

The multiplier depicted in figure 6.7 consists of the combinational logic of the
multiplier, pass gates for data feed through, a register for the control field and two data

input registers.

ACC MEMORY ACC MEMORY

01,1 l l 01,1

:
T

g

:
™~

AN

I

]
\”}i\

A 4

&
<
A 4

Figure 6.7 - Multiplier

Four of the handshake interconnections are pipelined: two input multiplexers and the
two FHS (full handshake interconnection). One FHS transfers the control field from the
shift register of the control unit and the other FHS transfers the output of the computa-

tion block to the next block. The other handshake interconnection (MULTIPLIER

Chapter 6 -185-

MERGER) is non-pipeline. According to the instruction, the input multiplexers select
data from: data memory, accumulator (feedback data), constant 1, constant 0, constant
-1 and data from an I/O device. Thus, this configuration permits multiplication of two
operands from the memory. The merger is required to insure the validity of the input

data and the control field before the combinational logic executes its task.

As mentioned before, the multiplier is also bypassed when no multiplication is

required.

6.1.24. ALU

The ALU depicted in figure 6.8 consist of the combinational logic of the arith-
metic and logic unit, pass gates for data feed through, two data input registers, an accu-
mulator and a register for the control field. As in the multiplier, only four handshake
interconnections are pipelined: two input multiplexers and two FHS (full handshake
interconnection). One FHS transfers the control field from the shift register of the con-
trol unit and the other FHS transfers the accumulator to the next block. All other
handshake interconnections are non-pipeline. Data from the memory is selected to this
unit indirectly through the multiplier. Therefore this configuration permits an ALU
operation to be executed on only one operand from the memory. The merger is
required to guarantee the validity of the input data and the control field before the com-

binational logic executes its task.

Chapter 6 - 186 -

O#+l,-1 MLT. 01,1

S

==
AR

\ 4

N
N
N

. '4/./

L : 4[/

Figure 6.8 - ALU

6.1.2.5. Data memory access

Any pipeline architecture containing separate stages that access the same resource
have the possibility of contention for accessing the resource. In figure 6.1 "fetch
operand” and "write" stages require simultaneous access to the same data memory, thus
resulting in an access conflict between the two. In the synchronous implementation this
contention (resource conflict) can be solved in a number of ways. One way is to divide
the basic clock cycle into subcycles (time slots). By assigning different non overlapping
subcycles to different stages the conflict is solved because the memory is accessed

twice in different time slots during the same basic cycle.

Another way is by eliminating the "write" stage and attaching the write operation

Chapter 6 -187 -

to the "fetch operanci" stage, creating a new stage which is "fetch/ write operand”. The '
new stage which follows the "decoder" either fetches operands from the memory or
stores results in the memory. Therefore, during one cycle the resource is accessed only
once, solving the problem of contention (conflict in accessing the same resource). This
solution requires precaution by the programmer or the compiler since the execution of a
store instruction is done before the result is ready and valid (pipelined data depen-
dency). Placing such instructions in the right location in the program solves the prob-

lem, but it puts constraints on the programmer.

In the asynchronous pipeline implementation, there is no basic clock that can be
divided into time slots and therefore it is not possible to use such solutions. The other
solution which provides a new stage of "fetch/write operand" is implemented as dep-
icted in figure 6.9. The selection between the "fetch operand" (read from the memory)
and "write result” (write to the memory) is done by one bit in the control field. Again
as in the synchronous implementation, such a solution puts constraints on the program-

mer because of the data dependency problem described above.

Nevertheless, it is still possible to implement an asynchronous pipeline architec-

ture with two separate stages for "fetch operand" and "write result”.

One simple way is to use an asynchronous dual port memory. Such a memory
configuration has two separate address, data and control inputs, and also requires
separate completion signals: EOP,,,;, and EOPf ;. Two separate "EOP" signals allow
us to use the memory as an external device accessed by the "fetch operand" stage and
the "write" stage without any conflicts or restrictions. Conflicts in simultaneously
accessing the same location by both stages is solved as in the synchronous dual port

memory, and there is no preference for either stage to access the memory first.

Another way is to impose a temporary dependency between the two stages by the

control of the handshaking. Temporary dependency means that the "fetch operand"”

Chapter 6

- 188 -

stage will access the memory only after it has been accessed by the "wnte stage. If no

write operation is required, the "write" stage executes a "NOP" thus keeping the order

of accessing the memory. Figure 6.9 depicts a way to implement such memory access.

PLA

/@%{T

ALU

/w//g

NoOP

2

DATA, ADDRESS
& CONTROL REG.

"EOP" RIW l

"
L

1
e »f e
* =
L

_{I'As)l(i/ '

MLT

Figure 6.9 -

Memory access

Chapter 6 -189 -

Memory’s input multiplexer is controlled by lines from the control fields of the "write"
and the "fetch operand” stages. These lines will indicate to the handshake interconnec-
tion whether accessing the memory is required by both stages, one of the stages or none
of them. If both stages require an access to the memory, the handshake interconnection
will first allocate the memory to the "write" stage and afterwards to the "fetch operand"
stage. When only the "write" requires access to the memory, it will get the service and
the "fetch operand” will execute a "NOP". When only the "fetch operand" requires
access to the memory, it will get the service immediately and the "write" stage will exe-

cute a "NOP".

Since the PLA decoder is a data stationary controller and the instruction’s execu-
tion order is kept by "NOP"s, the memory during one execution "cycle" can be accessed

only once by "write" and "fetch operands" stages.

6.1.2.6. Feedback

Any processor requires feedback loops for adding or multiplying input data with
the content of the accumulator. The control of the feedback in a pipeline synchronous
processor is simple because all stages are synchronized by the same clock. In the asyn-
chronous implementation it is also possible to implement a feedback loop but it is
necessary to add one more latch in the feedback loop. The added latch, depicted in
figure 6.10, operates as a temporary buffer and is accessed by full handshake intercon-
nection. To prevent deadlocks it is very important to synthesize the feedback loop
components with the right initial conditions as described in [5]. As in any pipeline
architecture, more pipeline stages in the forward loop mean a longer delay for the loop
[i.e, data has to propagate through more stages before it can be used as a feedback,
larger latency]. Unlike the LOAD instruction, the execution of control instructions do
not require data propagation through the pipeline stages and therefore the control lines

that generate "EOP" signals are not needed. But, since the implementation is asynchro-

Chapter 6 -190 -

nous and control fields of the control instructions are "NOP"s, all the preceding instruc-
tions in the pipe and all the succeeding ones will continue to be executed properly, in

the right sequence, and with the correct timing,

(R VT
. //wl///

COMPUTATION BLOCK

T 77 WZZA77

Figure 6.10 - Feedback

6.1.2.7. ASIC - Application Specific Integrated Circuits

In designing an architecture for a specific application (ASIC), it is possible to
achieve a better performance. In the ASIC case, the program is compiled ahead and the
PLA decoder is not required. The control is time stationary and each computation block
(pipeline stage) has its own ROM controller which controls its operation. Synchroniz-
ing the various computational blocks is realized by using conditioned handshaking
between them and between their ROM controllers, and thus avoiding the use of the
"NOP" technique. A simple example is the control instruction Clear flag. Inserting this

instruction only in the ROM controller of the pipeline’s last stage causes the processor

Chapter 6 -191-

to execute it with the right timing without needing to propagate the instruction through
the preceding stages. In this implementation, the control ROMs of different stages will
have a different number of control words. Therefore, different computation blocks will
operate more times than others but the overall synchronization of the program is pro-
vided by the conditioned handshaking technique between the interconnection blocks. If
the execution time of a "NOP" is short relative to the execution times of other computa-
tion blocks, the throughput of the processor is not increased by eliminating the use of
"NOP".

6.2. Hybrid pipeline architecture

6.2.1. Introduction

Another configuration of an asynchronous pipeline architecture is the "hybrid"
pipeline architecture depicted in figure 6.11. Unlike the regular pipeline architecture
where the data path stages are connected in serial, in this architecture the data path
stage are connected in parallel between two buses. The architecture can be partitioned
into two parts: control path and data path. The control path executes the "fetch” cycle
of an instruction and consist of 3 serial pipeline stages: "fetch operand”, "decode" and
"fetch operand”. The data path performs the "execution” cycle of an instruction and is
the fourth pipeline stage. It consist of 4 parallel computation blocks : "MAC" (multi-
plier and accumulate), "ALU", "shifter" and an execution block for control instructioné.
Parallel data path stages allows the processor to be operated either as a "RISC"
(Reduced Instruction Set Computer) type processor or as a modified pipeline processor.
The advantages and disadvantages of each of these two types is described in the follow-

ing sections.

Chapter 6 -192 -

MAC - Mulriplicr & scoxnulear DMUX - Decxitiplexer
NPHS. . Noo pipciine haodshaks HS. . Handshiako
MUX - Multiplczer

Figure 6.11 - Hybrid pipeline architecture

6.2.2. Methods of operation

As mentioned above, the "hybrid" pipeline architecture can operate either as a

"RISC" type processor or as a modified pipeline processor.

Chapter 6 -193 -

6.2.2.1. Hybrid - RISC type architecture

In the "RISC" type operation only one of the parallel data path computation blocks
operates in each time interval (e.g. multiplier or ALU or shifter). Therefore, this type of
architecture handles and executes only instructions with one data path operation.
Instructions which require multiple data path operations such as "multiply and shift"
can’t be executed. Such multiple data path operations are performed by executing two
consecutive instructions: "multiply" and "shift". The operation and the control unit of
the "RISC" type configuration is simple because there is no resource conflict between
successive instructions. Non-data path instructions such as: BRANCH, SET FLAG,
STORE ACC, OUT etc., are executed during the forth time interval which is the time
interval in which a data path instruction is executed (fourth pipeline stage). To do so,
the control unit inserts "NOP"s during the "fetch operand” stage of the execution of
these instructions. This implementation of executing all the instructions only during the
interval of the data path stage eliminates data and branch dependency problems and
doesn’t impose any restrictions on the programmer. Data is always ready for the next
instruction, as in the case of STORE ACC which is executed after the result of previous
computations is already ready in the accumulator. In the conditional branch case, the
condition flags are ready for evaluation before the following instructions have made any
new changes in the data path. The throughput of this "RISC" type "hybrid" architecture
is the same as the throughput of the regular sequential pipeline architecture. The reser-
vation tables (table 6.1 and table 6.2) of the regular and the "hybrid" architectures illus-
trate this fact. A reservation table is a two dimensional representation used to describe

and analyze concurrent activities within the different stages of a pipeline type architec-

ture,

Assume that the following four instructions have to executed by the two architec-
tures. The first instruction (1) is multioperation that requires three operations (e.g. mul-

tiplication, ALU operation and shift) in the data path. The other three instructions

Chapter 6 -194 -

(2,3,4) are singlé operations requiring only one operation (multiplication or ALU opera-
tion or shift) in the data path. A reservation table of the regular pipeline architecture

shows that the execution of these four instructions requires nine time intervals (9A).

stage Ay [B2 | A3 | A | As | Ag | A7 | Ag | A

[Fetchinst. | 1 | 2 | 3 | 4 | - | - | - | - | -
Decode - 1 2 3 4 - - - -
Fetch ope. - - 1 2 3 4 - - -
MLT - - - 112 (3] 4] - -
ALU - - - - 1 2 3 4 -
Shifter -1 -1-1-1-11]127137] 4
Control exc. || - - - - - - - - R

Table 6.1 - Reservation table - Regular pipeline architecture

In the RISC type "hybrid" architecture instructions containing multiple operations
cannot be executed, therefore instruction (1) in table 6.1 which is a multioperation
instruction, is partitioned into 3 single operation instructions: 1, (multiplication), 1,
(ALU operation), and 1, (shift), depicted in table 6.2. Because of this partition the
"hybrid" architecture needs to execute seven single operation instructions. A reserva-
tion table of "hybrid" pipeline architecture shows that the execution of these seven sin-

gle operation instructions requires also only nine time intervals (9A).

For a sequence containing many multi-operation instructions, the regular pipeline
architecture achieves a higher throughput than the "hybrid" RISC type architecture. But,
it is very unlikely to have a program with a sequence of multi-operation instructions
which are data-independent. Hence, if the instructions are data dependent, the regular

pipeline architecture requires "NOP" instructions between them which is equivalent to

Chapter 6 -195 -

the partition of the multi-operation instruction into a sequence of single operation
instructions. And therefore, even for such sequences the throughput is likely to be

almost the same.

Deleting instructions from the pipeline stages when a branch prediction is wrong is
executed as in the regular asynchronous pipeline architecture. But since there is no
branch or data dependency, there is no need to restore status flag or registers of the data

path.

stage A [A2 | A3 | &g | Bs | Bs | A7 | Bs | Ao
Fetch inst. 10 | 1, | 1. 2 3 4 - - -
Decode -1l 1 1] 2 3 4 - -
Fetch ope. - - 1o | 1 | 1. 2 3 4 -
MLT - - -1 1] - - 2 | - -
ALU - - - - 1p - - 3 -
Shifter - - - - - 1. - - 4
Control exc. || - - - - - - - - -

Table 6.2 - Reservation table - "Hybrid" RISC type architecture

6.2.2.2. Hybrid - modified pipeline architecture

General Description

This architecture is a modification (parallel data path stages) of the regular pipe-
line architecture (serial data path stages). As later will be explained and illustrated with
examples, using conditional handshake interconnections allows the parallel data path
stages to operate concurrently if necessary. Therefore it is also possible to execute

instructions which require multiple data path operations. Controlling this architecture is

Chapter 6 - 196 -

more complicated because it is necessary to solve resource conflicts and data and

branch dependency problems.

Since during the execution time different instructions might use a different number
of data path stages, resource conflicts could occur. Resource conflicts occur because
different instructions do not use the same number of data path stages during their exe-
cution cycle. A resource conflict occurs when two successive instructions require the
same computation block during the same execution time interval. For example, when a .
- multiple operation instruction requires the use of two or more consecutive computation
blocks in the data path during its execution time intervals, is followed by a single or
multi-operation instruction that during its execution time interval (which coincides with
that of the multi-operation instruction) requires the same computation block as required

by the first one, there will be a resource conflict (examples 1,2 and 3 described later

illustrate this fact).

Resource conflict problems can be solved by using a FFFS priority policy and
employing priority conditional handshake interconnection blocks. FFFS stands for "first
fetched first served”, which means that an instruction which has been fetched first has
the priority of accessing and using a data path stage over an instruction which has been
fetched later. This policy is utilized by employing priority conditional handshake inter-
connection. A stage of the data path can be accessed by handshake only if the previous
instruction does not require it. If the previous instruction requires it, the control unit
delays the access by the new instruction and the resource conflict is prevented. By
doing so, the control unit imposes a delay of one stage’s execution time to the instruc-

tion that was denied access and to all the instructions following it.

But this architecture has the problems of data and branch dependency which exist
in the regular pipeline architecture. Data dependency means that some instructions

might require data for their execution from a previous instruction which is not com-

Chapter 6 -197 -

pleted yet. Control dependency means that a conditional branch instruction cannot be

executed because the flags are not ready yet for evaluation.

As in the regular pipeline architecture, data dependency and branch dependency
put constraints on the programmer. Inserting "NOP" instructions whenever necessary
solves the problem but reduces the throughput. Careful programming may avoid some
of the dependency problems but requires the programs to be written in assembly
language.

For most programs the throughput of the modified pipelined asynchronous archi-
tecture should be higher than that of the regular pipelined asynchronous architecture.
The throughput is the same only if the program consists of multi-operation instructions
because in the existence of resource conflicts, the "hybrid" modified pipeline architec-
ture operates as a regular pipeline architecture. When there are no resource conflicts the
instructions are executed faster because the instructions pass only through the required

data path stages and they are executed concurrently.
The following simple examples illustrates the throughput comparison.
Example 1

Assume that four instructions have to be executed in both architectures. Instruction
1 and 2 are multi-operation instructions and instructions 3 and 4 are single operation
instructions. Execution of instructions 1 and 2 require only the multiplier and the ALU.

Instruction 3 is executed in the shifter while instruction 4 is executed in the ALU.

In the regular pipeline architecture, the execution of these instructions require eight

time-intervals (8A) as shown in table 6.3 below.

Chapter 6 | - 198 -

stage Ay | Ay | A3 | As | As | Ag | A7 | Ag | A
Fetch inst. 1 2 3 4 - - - - -
Decode - 1 2 |3]| 4 - - - -
| Fetch ope. - - 1 2 3 4 - - -
MLT - - - 1] 2 - - - -
ALU " - - - - 1 2 - 4 -
Shifter " - - - - - - - 3 -
Control exc. " - - - - . - - - -

Table 6.3 - Reservation table - Regular pipeline architecture

In the "hybrid" modified pipeline architecture the execution of these instructions require
only seven time-intervals (7A)-because there is no resource conflict. shown in table 6.4

below.

stage IrAl A [A3 | Ay | As | As | A7 | As | Ag

[Fetch inst. " 1234 -1-1-1-71-
Decode - 1 2 3 4 - - - -
Fetch ope. - - 1 2 3 4 - - -
MI;T - - - 1 2 - - - -
ALU - - - - 1 [2] 41 - -
Shifter - - - - - 3 - - -
Control exc. || - - - - - - - - -

Table 6.4 - Reservation table - Modified pipeline architecture - No conflict

Example 2

Assume that four instructions has to be executed in both architectures. Instruction

Chapter 6 -199 -

1 and 2 are multi-operation instructions and instructions 3 and 4 are single operation.
Execution of instruction 1 requires the multiplier, ALU and shifter, while execution of
instruction 2 requires only the multiplier and the ALU. Instruction 3 is executed in the

shifter while instruction 4 is executed in the ALU.

In the regular pipeline architecture the execution of these instructions require eight

time-intervals (8A) as previously shown in table 6.3.

In the "hybrid" modified pipeline architecture the execution of these instructions also
require eight time-intervals (8A) because of a resource conflict. During the sixth time
interval (Ag), instruction 3 has a resource conflict and its execution is delayed by one

"time interval. These results are shown in table 6.5 below.

stage Ay | A | A3 | Ay | As | Ag | A7 | A3 | A9
Fetch inst. 1 2 3| 4 - - - - -
Decode - 1 2 3 4 - - - -
Fetch ope. - - 1 2 3 - 4 - -
MLT - - - 1 2 - - - -
ALU - - - - 1 2 - 4 R
Shifter - - - - - 1 3 - -
Control exc. || - - - - - - - - -

Table 6.5 - Reservation table - Modified pipeline architecture - With conflict

Example 3

Assume that four instructions has to be executed in both architectures. Instruction
1,3 and 4 are multi-operation instructions and instructions 2 is single operation. Execu-
tion of instruction 1 requires the multiplier, ALU and shifter, while execution of

instructions 3 and 4 requires only the multiplier and the ALU. Instruction 2 is only exe-

Chapter 6 , -200-

cuted in the ALU.

In the regular pipeline architecture the execution of these instructions require eight

time-intervals (8A) as previously shown in table 6.3.

In the "hybrid" modified pipeline architecture the execution of these instruction requires
nine time-intervals (8A) because of a resource conflict. During the fifth time interval
(As), instruction 2 has a resource conflict and its execution, as well as the execution of

the following instructions, is delayed by one time interval. These results are shown in

table 6.6 below.

stage Ay | A2 | A3 [Ag [As [Ag | A7 [Ag | A
Fetch inst. 1 2 3 4 - - - - -
Decode - 1 2 3 - 4 - - -
Fetch ope. - - 1 2 - 3 4 - -
MLT - - - 1 - - - 3 4
ALU - - - - 1 2 - 3 4
Shifter " - - - - - 1 - - -
Control exc. " - - - - - N - - -

Table 6.6 - Reservation table - Modified pipeline architecture - With conflict

Configuration’s Constraint

This scheme of operation imposes a constraint on the execution of consecutive instruc-
tions. When two instructions A and B require the same resource C, preference is given
to A, the first instruction which was fetched from the memory. Instruction B will use
the same resource C only after A has finished its task and its result was transferred to
the next computation stage as required. Therefore, this configuration is limited in its

efficiency for single operation instructions or for special cases of multi-operation and

Chapter 6 -201-

single-operation instructions.

Control unit of the hybrid architecture

The control unit of the asynchronous "hybrid" modified pipeline architecture is
more complicated than that of the asynchronous regular pipeline architecture. The
sequence of executing an instruction in the data path is still "fetch operand" -> "multi-
plier" ->"ALU" -> "shifter". But this architecture has the capability to bypass computa-
tion blocks which are not required for the execution of an instruction and to process
data only in the required computation blocks. This bypassing feature avoids the use of
"NOP"s in the control field and in some cases will speed up the execution of the instruc-
tion. As in the asynchronous regular pipeline architecture, the PLA decoder of this
architecture outputs a fully decoded data stationary control word which is divided intg
the following fields:

Fetchinst. | Decode | Fetchope. | Exec.1 | Exec.2 I Exec. 3| Control exec.l

The first 3 corﬁrol fields control the fetch cycle of the instruction while the last 4 control
fields control the execution cycle of the instruction. Data path instructions are executed
sequentially with the bypassing feature in the data path computation stages: multiplier,
ALU, shifter. Control instructions are executed in the control execution block. To exe-
cute instructions concurrently and to synchronize their execution, the control fields pro-
pagate through an appropriate number of shift registers. Unlike the decoder of the regu-
lar asynchrdnous pipeline architecture, the "Exec. " control fields of the data path in this
architecture are not dedicated for a specific computation block. Control field "Exec. 1"
is dedicated to control the first operation on the data. According to the decoded instruc-
tion it controls the operation in the multiplier or the ALU or the shifter. Control field

"Exec. 2" is dedicated to control the second operation on the data. According to the

Chapter 6 -202 -

decoded instruction, it controls the operation in the ALU or the shifter. Control field
"Exec. 3" is dedicated to control the third operation on the data, and it controls the
operation in the shifter. Partitioning the control fields as explained above allows the
bypass of unnecessary computation blocks. The use of shift registers at the output of
the decoder converts the control fields to time stationary and maintains the sequence of
operations as originally defined. Each "Exec. " control field is divided into two
subfields: one controls the operation of the required computation block and the other
(P1-P3) controls the DMUX and the MUX interconnection blocks of the data path’s
computation blocks. In each "Exec. " control field only one of the control lines P1-P3

may be active. If no operation is required none of these control lines will be active.

Figure 6.12 depicts the sub fields of "Exec. 1" - "Exec. 3", and the way that they

control the interconnection blocks:

Exec. 1 Exec. 2 Exec. 3
Operation 1 PP Operation 2 PP Operation 3 P1

e /a{/
1

Operation2 | 1 | P2 Operation3 | n

/vf//ha mv/*»f’//h; L7 7R 7N

MULTIPLIER ALU SHIFTER

Figure 6.12 - Control fields and interconnections

Chapter 6 -203 -

Principles of operation |

The multiplexers (MUX) of the computation blocks are merged-conditioned-
multiplexers. The multiplexers are merged, because they start to operate only after
handshake has been established with all their priorities controls. The multiplexers are
conditioned, because they operate like arbiters with predetermined "daisy chain" prior-
ity policy (a detailed explanation appears later in this section). Priority control inputs
P1-P3 determine the sequence of transferring the corresponding operation control field
and data to the computation block, where P1 has the highest priority and P3 has the
lowest (P1 > P2 > P3). When one of the priority control lines is inactive, the multi-
plexer skips to the next one. "A," signal (of the four phase handshaking depicted in
figure 5.3), which indicates that the multiplexer is ready to transfer a new set of data
and controls, is activated only after the current sequence of data and control has been

transferred and executed in the corresponding computation block.

| Conflicts between consecutive instructions requiring the same computation block
are solved by the conditioned multiplexers that operate as sequential arbiters which
transfer data and control to the computation block in a predetermined "daisy chain”
priority policy. A new set of data and control w111 be transferred only at the end of the
transferring and executing the current set in the computation block. Continued conflicts
between instructions can cause the "hybrid" modified pipeline configuration to have the

same throughput as that of a regular pipeline architecture. When conflicts are infrequent
the throughput will be better.

The operation of the priority conditioned data path multiplexers and the computa-
tion blocks depicted in figure 6.12 is as follows. Sub fields P1-P3 of "Exec. 1" are con-
nected to the control inputs of the multiplexers of the computation blocks. Since data is
executed in the sequence of multiplier -> ALU -> shifter as mentioned before, P1 is

connected to the first priority input of the multiplier’s multiplexer. P2 is connected to

Chapter 6 -204 -

the second priority input .of the ALU’s multiplexer and P3 is connected to the third
priority input of the shifter’s multiplexer. When P1 of "Exec. 1" is active (P2 and P3
are inactive) the data from "fetch operand” block will be transferred to the multiplier.
When P2 of "Exec.1" is active (P1 and P3 are inactive) data from "fetch operand" block
will be transferred to the ALU and operation will be executed on it only if the preceding
instruction does not require the ALU, i.e. P1 in "Exec. 2" of the preceding instruction is
not active. If P1 in "Exec. 2" of the preceding instruction is active the ALU will first
operate on the preceding instruction’s data and afterwards on the current instruction’s
data. This mechanism allows the operation to by-pass the multiplier and guarantees the
proper sequential operation of the ALU in .case of access conflicts. When P3 of
"Exec.1" is active (P1 and P2 are inactive) data from the "fetch operand” block will be
transferred and executed in the shifter only if it is not required by the two preceding
instructions. If the preceding instructions require the shifter, i.e., P1 of "Exec. 3" and P2
of "Exec. 2" are active, the data from the "fetch operand" stage can be transferred to the
shifter and processed there only after the shifter executed the previous instructions.
Again, as before, this mechanism solves access conflicts and guarantees the proper
sequential execution of the instructions in the shifter. The same principle of operation

applies to other instructions waiting for execution in the computation blocks of the data

path.

Therefore when there is an access conflict to the computation blocks of the data
path the "hybrid" modified pipeline architecture operates as depicted in the following
table. 6.7

Chapter 6

As

stage A | A | A3 | A As | A7 | Ag | A9
[Fetchinst. || 1 | 2 | 3 | 4 | - | - | - | - | -
Decode - 1 2 3 4 - - - -
Fetch ope. - - 1 2 3 - 4 - -
MLT - - - 1 2 - - R -
ALU - - - - 1 2 - 4 -
Shifter - - - - - 1 3 - -
Control exc. - - - - - - -

-205 -

Table 6.7 - Reservation table - Modified pipeline architecture - With conflict

When there is no access conflict to the computation blocks of the data path the

“hybrid" modified pipeline architecture operates as depicted in the following table. 6.8.

stage Ay | A [A3 [Ay | As | Ag | A7 [Ag | A9
Fetch inst. 1 2 3 4 - - - - Z
Decode - 1 2 3 4 - - - -
Fetch ope. - - 1 2 3 4 - - -
MLT " - - - 1 2 - - - -
ALU " - - - - 1 2 4 N R
Shifter " - - - - - 3 - - N
Control exc. " - - - - - - - - R

Table 6.8 - Reservation table - Modified pipeline architecture - No conflict

Conclusions

Two types of the "hybrid" architecture described in this chapter are based upon the

asynchronous concepts and design rules developed before. The control unit of the

"RISC" type is similar to the one employed in the standard asynchronous pipeline

Chapter 6 - 206 -

architecture. The control unit of the "hybrid" ﬁodiﬁed pipeline architecture is more
complicated. The property of by-passing unused computation blocks requires priority
arbiter conditioned interconnection blocks. These interconnection blocks by-pass com-
putation blocks when there is no resource conflict as well as provide proper synchron-
ized sequential execution when there are resource conflicts. These interconnections
speed up the concurrent execution of instructions by avoiding the use of "NOP"s in the
control field of the data path’s computation blocks. Executing non data path instruc-
tions during the time interval of the data path stage eliminates data dependency prob-
lems as well as conditional branch dependency problems. Deleting instructions from the
pipeline stages is executed simply as described before. Throughput of the RISC type
"hybrid" architecture is almost the same as that of the regular pipeline architecture, and
the control unit of the RISC type architecture is simpler. The throughput of the
"hybrid" modified pipeline architecture is better than that of the regular pipeline archi-

tecture,

6.3. Common bus asynchronous architecture

6.3.1. Introduction

As was described before in chapter 5, proper operation of the asynchronous pipe-
line architecture requires handshake interconnection blocks between the computation
blocks. These blocks initiate and control the data transfer between the stages of the
pipeline (computation blocks). The handshake initiation propagates forward, in the
data flow direction, from the first stage to the last, while the start of task execution pro-
pagates successively from the last stage to the first. If the handshake interconnection is

much shorter than the execution times of the different stages, all the stages operate con-

currently.

Since start of task execution in the pipeline stages "ripples” successively from the

last stage to the first one, some questions arise: Is it possible to avoid the

Chapter 6 -207 -

interconnection blocks circuitry overhead and to perform the data transfer between the
stages only through one common interconnection block ? What would be an appropri-

ate processor architecture ?

The answer to these questions leads to an architecture, depicted in figure 6.13
where all the computation blocks are connected in parallel to a common bus. This
architecture is a pipelined architecture where data transfer between the parallel compu-
tation blocks is done through the common bus, which is controlled by only one inter-

connection block, thus saving interconnection circuitry overhead.

BUS

BXBECUTB
FETCH INS. DECODER FETCH OFB. ALU SHIFTER WRITB CONTROL

Figure 6.13 - Common bus configuration

The design of a common bus synchronous processor is simple due to the existence
of a global clock. But in the asynchronous case, there is no clock and therefore the
design is more complicated. This section develops a way to design a common bus

asynchronous processor and gives answers to the following questions:

1) What are the properties and characteristics of an asynchronous common bus pro-

cessor ?
2) How to control the common bus ?
3) How to avoid asynchronous arbiter problems ?

4) Will the common bus save circuitry overhead in the handshaking and the data

transfer between the processor blocks ?

5) What are the advantages, if any, of such a configuration ?

Chapter 6 -208 -

6.3.2. Asynchronous common-bus design approach

The global clock of a synchronous architecture makes it simple to implement a
synchronous common bus architecture. All blocks of the processor are connected to a
bus for data transfer between them. Data transfer between the different blocks is done
in a time division multiplexing mode. According to the decoded instructions, the con-
trol unit determines and assigns the appropriate time slots for data transfer so that all
the units execute their tasks concurrently. Data transfer between the blocks is serial, and
the throughput of such an architecture might be smaller than the throughput of a syn-

chronous pipeline architecture.

Implementation of an asynchronous pipelined architecture with a common bus for
communication between the stages, is more complicated because there is no global
clock to synchronize the data transfer on the bus. Since the data transfer is through a
shared common bus and there is no direct interconnection between consecutive blocks,
the handshake initiation and the data transfer have to be performed differently than in
the asynchronous pipeline architecture. Block (n-1) transfers data to block (n) only
after block (n) has transferred its own data to block (n+1). Therefore, depending on ;he
decoded instructions, it is more appropriate to assign the bus for a complete handshake
interconnection process that includes the handshake initiation as well as the data
transfer between a pair of computation blocks. The complete handshake interconnec-
tion process propagates backward, opposite to the direction of the data flow. Backward
propagation of a complete handshake initiation and data transfer process saves addi-

tional handshaking circuitry in each computation block.

A design problem is how to resolve bus contention created by simultaneous access
to the bus by different computation blocks. Such simultaneous accesses to a common
bus are equivalent to multiple access to an asynchronous arbiter, which can result in a

metastable state where the output of the bus is undefined for a random time period. A

Chapter 6 -209 -

sequential order for bus access determined by the decoded instructions and controlled
by the control unit avoids this problem. Such sequential operation keeps the execution
of the instructions in the order that they were fetched from the memory and allows con-

current operation of the processor blocks.

Sequential access to the bus requires a decision as to how to execute the instruc-
tions in the data path. Should the data propagate in a fixed order through all the compu-
tation blocks, including those that do not perform any operation on it (as in the pipeline
architecture) ? Or should the data propagate in a fixed order only through the computa-
tion blocks which need to perform some operation on it (as in the "hybrid" architecture)
? Execution of the instructions by passing the data through all the computation stages
in a fixed order is simpler to implement but it operates as a pipeline architecture with
reduced throughput. Execution of the instructions in a fixed order but without passing
data through unnecessary computation blocks complicates the control unit but utilizes

the configuration more efficiently.

The design concepts of the common bus asynchronous architecture requires the
control unit to contain a sequencer. The sequencer prevents the arbiter type of prob-
lems of multiple access to the bus. According to the decoded instructions, it deter-
mines, assigns and controls the sequence and the order of data transfer between the
various blocks of the processor. It also insures the execution of the instructions in the

exact order that they have been fetched from the memory.

6.3.3. Asynchronous common-bus implementation

Figure 6.14 depicts a block diagram of a processor with an asynchronous bus
configuration. All of the computation and control blocks of the architecture are con-
nected in parallel to the bus. The common bus is implemented with a multiplexer
(MUX) and a demultiplexer (DEMUX) interconnection blocks. The operation of the

multiplexer corresponds to the tri-state output control of the computation blocks in the

Chapter 6 -210-

synchronous common-bus implementation. And, the operation of the demultiplexer
corresponds to the input control of the computation blocks in the synchronous
common-bus implementation. The control unit consists of a PLA decoder and a
sequencer that control the correct operation and time sharing of the bus, the proper exe-

cution of tasks by the computation blocks, and the simultaneous execution of instruc-

tions.

BUS Ai
M B B o
1
? ; INS. MEMORY
1
//{ — FETCH OPE.
gs DECODER
r_—f ‘ -0 DATA MEMORY SWmL
- — o
SHZ
? ? ALU
1]
? [—
Ao

Figure 6.14 - Asynchronous common bus architecture

6.3.3.1. NOFT design approach

A design approach which utilizes "NOFT"s (No operation, data feed through) in
the control field when an instruction does not require any operation in the correspond-
ing computation block is similar to the design of the asynchronous pipeline architec-

ture. In this design, there is no contention for resources and the data propagates through

Chapter 6 -211-

all the computation stages even if no operation is required on it. Propagation of data
through the computation stages is executed in the regular predetermined sequence, i.e.,
“fetch instruction” — "decode" — “fetch operand" — "multiplier" — "ALU" —
"shifter". Handshaking procedures (including initiation, data transfer and start of opera-
tion in the computation blocks) propagate backward between successive computation
blocks. There is no bypass of any computation block. The sequencer of this implemen-
tation is a simple modulo 6 counter which counts backward for proper assignment of
the bus between two successive computation blocks. Because the sequencer is always
counting six handshaking operations, this implementation yields a throughput lower
than the asynchronous pipeline implementation but reduces the handshaking overhead

circuitry.

6.3.3.2. Bypass design approach

This approach is based upon the principles of the control unit developed for the
"hybrid"-modified pipeline architecture. The interconnection block controller of the bus
incorporates a sequencer and two interconnection blocks: multiplexer and demulti-
plexer. Handshaking and data transfer can be performed between any two blocks of the
configuration. Use of the bus is granted to the various blocks in a reverse order to the
data flow: "shifter" — "ALU" — "multiplier" — "fetch operands" — "decoder” —
“fetch instruction”. When a resource contention is encountered the bus controller sup-
plies sequential service to the decoded instructions on the basis of first-fetched-first-
served (FFFS). As in the "hybrid" modified pipeline configuration, data conflicts might
be arise due to the sequential operation when a resource conflict exists. The sequencer
is a modulo 6 simple counter that counts backwards for proper assignment of the bus
between any two computation blocks. "NOP" is used to decrease the counter and to

enable the sequencer to grant the bus for the next block in the reverse order mentioned

before.

Chapter 6 -212-

The following example illustrates the operation of the asynchronous bus architec-
ture. Assume that five instructions: x,y,z,t and v are to be executed. Table 6.9 shown
below is a resource allocation table which depicts the sequence of the computations

required to execute these instructions.

number stage A | A | A3 [A | As | Ag | A7 | Ag | A
1 Fetch inst. X y z t v - - - -
2 Decode - X y z t v - - -
3 Fetch ope. || - - | x [y [z t v | - -
e
5 ALU - - - - X | yz | - - v
6 Shifter - - - - - x |zt | - -

Table 6.9 - Resource allocation table - Bus architecture

Each column denoted by A; indicates the operations to be executed concurrently on dif-
ferent instructions. In this example, the resource allocation table shows that during
time slot Ag an ALU resource conflict exists between instructions y and z, and during A;

a shifter resource conflict exists between instructions z and t.

The first two blocks of the configuration: "fetch instruction” and "decode” make up
the fetch cycle of an instruction, and therefore are used all the time and cannot be
bypassed. The last four blocks of the configuration perform the execute cycle of an
instruction. Depending on the instruction, some instructions do not require all compu-

tation blocks of the execute cycle and they are bypassed.

From the resource allocation table, it is possible to derive an execution table which
shows the sequence of data transfers and computation blocks required for the execution

of each instruction. Table 6.10 shown below is the execution table derived from the

allocation table for this example.

Chapter 6 -213-

instruction || Exec. 1 | Exec.2 | Exec.3 | Exec.4
v 2-3 3-4 4-5
t 2-3 3-6
z 2-3 3-5 5-6
y 2-3 34 4-5
p 3 || 2-3 34 4-5 5-6

Table 6.10 - Execution table - Bus architecture

Each row in the table corresponds to operations required to execute an instruction.
The row which corresponds to instruction z shows that its execution requires: (1) data
transfer between "decode" and "fetch operand”; (2) execution in the "fetch operand"
block; (3) data transfer between "fetch operand” and "ALU"; (4) execution in the
"ALU" block; (5) data transfer between "ALU" and "shifter"; (6) execution in the

"shifter". Execution of this instruction does not require the multiplier and therefore it is

bypassed.

The execution table is like a data-stationary reservation table. Each entry in the
table shows the computation blocks involved in the data transfer (source-destination)
and the computation block (destination) which has to perform a task on the data. Con-
verting this table into a time-stationary type reservation table provides the data and the
sequentiality required for controlling the bus and the proper execution of the instruc-
tions. As in the regular pipeline architecture, the conversion is done by an appropriate
number of shift registers for each execution operation. The output of this conversion is

shown in the timing execution table 6.11 shown below.

Chapter 6 -214-

Exec. stage A3 Ay As Ag Aq Ag Ag
Exec. 1 2-3) | 2-3)y | 2-3), | @-3) | (2-3),
Exec. 2 B4 | B4y | 35, | B-6) | (39,
Exec. 3 @4-5) | 4-5)y | (5-6), (4-5),
Exec. 4 (5-6)x

Table 6.11 - Timing execution table - Bus architecture

Each entry in this table is in the form (source —destination)insruction, When the
blocks participating in the data transfer are showed and the computation block (destina-
tion) to operate on it. Data transfer and start of task execution propagate backward,

therefore, the sequence of operations is from Exec. 4 to Exec. 1.

Two columns from this table will illustrate the sequence of operations to be exe-

cuted when there is or is not a resource conflict.

During time interval As, there is no resource conflict. Data transfers are executed
in serial one after the other but the operations in the computation blocks are executed

concurrently as follows:

1) Transfer data from the multiplier to the ALU; start to execute the operation in

the ALU required by instruction x.

2) Transfer data from the "fetch operand” stage to the "multiplier" stage; start to

execute the operation in the multiplier required by instruction y.

3) Transfer data from the "decoder” stage to the "fetch-operand” stage; start to

execute the operation in the "fetch-operand" stage required by instruction z.

During the time interval Ag there is a resource conflict. Data transfer and opera-
tions in the computation blocks are executed as before until there is a resource conflict.
When a resource conflict occurs, the continuation of the data transfer and the operations

in the other computation blocks are delayed until the block of the resource conflict

Chapter 6 -215-

finishes its task and is ready to receive a new set of data. This delay and the operations

involved are as follows:

1) Transfer data from the ALU to the shifter and execute the operation in the
shifter required by instruction x.

2) Transfer data from the multiplier to the ALU and execute the operation in the
ALU required by instruction y.

3) Transfer data from the "fetch-operand” to the ALU and execute the operation

in the ALU required by instruction z.

Because a resource conflict exists in the ALU, this operation is delayed

until the ALU finishes its operation on instruction y

4) Transfer data from the decoder to the "fetch- operand"” and execute the opera-

tion in the fetch operand required by instruction t.

6.3.3.3. Results

Decoding the instructions into control fields of execution stages that are not dedi-
cated to specific computation blocks of the data path and defining in these control fields
the source and the destination of the blocks involved in the data transfer and the block
which executes the operation on the data allows us to bypass unnecessary computation

blocks and provides a sequential control that solves resource conflicts.

The control unit in the asynchronous common bus architecture is more compli-
cated and requires the capability of sequential operation under certain circumstances of
resource conflict. Handshaking circuits between the computation blocks are avoided

and data can be transferred between any pair of computation blocks.

Although the data transfer is executed in serial when there are no resource

conflicts, the computation blocks operate concurrently and the throughput might be

Chapter 6 - -216-

better than the regular asynchronous pipeline architecture. When there are resource

conflicts the throughput might be worse than the regular asynchronous pipeline archi-

tecture because of the serial handshaking procedure.

References

1.

T.H.Y. Meng, R.W. Brodersen, and D.G. Messerschmitt, ‘‘Automatic synthesis
asynchronous circuits from high level specifications,”’ IEEE ICCAD 87 Digest of
Technical Papers, November 1987.

L.G. Heller and W.R. Griffin, ‘“‘Cascode voltage switch logic: A differential
CMOS logic family,”” ISSCC Digest of Technical Papers, February 1984.

G. Jacobs and R.W. Brodersen, “‘Circuit techniques for realization of self-timed
DSPs,’’ To be submitted to IEEE trans. on JSSC.

P.M. Kogge, in The architecture of pipelined computers, McGraw-Hill, 1981.

T.H.Y. Meng, G.M. Jacobs, R.-W. Brodersen, and D.G. Messerschnﬁ&, Asynchro-

nous processor design for digital signal processing, January, 1988.

-217 -

CHAPTER 7

GSLA - Globally Synchronous Locally

Asynchronous Processor

7. GSLA - Globally Synchronous Locally Asynchronous

7.1. Introduction

The timing analysis in chapter 5 (table 5.2) shows that the throughput improve-
ment of the asynchronous pipeline architecture over the synchronous one is a function
of the clock skew deléy and the execution time variations of the stages. Even if the
additional delays due to the internal handshaking interconnections within the stages are
neglected there are still limiting conditions on the clock skew and the handshaking
delays which yield the required improvement. Table 5.2 shows that larger clock skew
delays and larger execution time variations yield greater throughput improvements in
both the worst and the average cases of the asynchronous implementation. But since

most systems operate in a synchronous mode the following questions arise:
1) If the clock skew delay is negligible (t.;=0) compared to the execution time of the
pipeline stages, is it still possible to obtain an average throughput improvement in

the synchronous implementation similar to the asynchronous implementation due

to execution time variations ?
2) How would we implement such a pipelined processor ?

A timing analysis shows that it is possible to improve the average throughput of

the synchronous implementation. This improvement can be achieved by a processor

Chapter 7 -218-

that has a global clock with a variable duty cycle, where the clock synchronizes its out-

put to the end of the execution of the stages that have large execution time variations.

7.2. Clock skew delay’s reduction methods

Digital signal processing algorithms and most of the existing systems operate on a
fixed clock rate. Therefore, in order to increase the processing speed of integrated cir-
cuits researchers have dedicated a substantial efforts to developing design and fabrica-
tion methods that reduce the clock skew delay. Most of these methods are still in the

early stages of research and are not yet utilized in production.
Some methods of reducing the clock skew problems are:
e Careful design and fabrication of clock distribution and local clock buffer.
® Development of special CAD tools for clock paths and distribution design.
e Additional metal layer only for clock distribution and buffer interconnection.
e Clock distribution through waveguide paths.

® Clock distribution through fiberoptic wires with the appropriate transmitters and

receivers.

® Reduction of the distance to the dielectric as much as possible by using new
materials that attack only where the contact is required in the layers and not the

walls themselves.
e New techniques for reducing the area dimension because there is a limit to the
reduction of the dielectric distance dimension d [C =8’%'-'el , where C is the

capacitance, € is the dielectric constant, A is the area and d is the dielectric dis-

tance].

e Wire fabrication with cuprum instead of aluminum to decrease the r((resistance

per meter).

Chapter 7 -219-

e Clock transfer at lower frequency with accurate frequency multipliers near each

block.

e Combination of two technologies on the same chip. A TTL clock driver at each
stage when the clock up to the TTL driver is routed through regular CMOS gates.
The TTL requires larger area but it has a very good current drive, i.e., lower resis-

tance than the CMOS; therefore, the RC (where C is the load) will be smaller.

It is still early to predict which of these methods will make a breakthrough, but
because the clock skew problem limits the throughput when the dimensions are scaled
down, it is important to find a solution to this problem. Once a solution is found, using
a global clock with variable duty cycle enables to achieve in the synchronous imple-
mentation an average throughput similar to that of the asynchronous implementation.
Section 7.3 describes two ways to implement a synchronous processor architecture with

variable data transfer rates between the stages.

7.3. GSLA implementation

The Globally Synchronous Locally Asynchronous (GSLA) architecture is a pipe-
lined processor architecture that opefates synchronously with a fixed high frequency
clock (globally synchronous) but the data transfer rate between the stages varies and
depends on the variable execution time of the stages (locally asynchronous). Since the
execution times \"ary, this architecture requires input and output queues to synchronize
the processor with the data input sample rate. As in the asynchronous implementation,
due to variations in the execution time, the GSLA implementation can achieve a higher

throughput on average.

The implementation is based on enabling data transfer and initiating the operation
of the pipeline stages only after detecting the completion signal(s) of the stage(s) with
the large execution time variations ("critical" stage(s)). Detecting the completion sig-

nals is synchronized with the high frequency clock. But, data transfer between the

Chapter 7 -220-

stages and enabling of the next operation is executed at a varying rate according to the

execution time of tasks in the "critical" stage(s).
Here are two possible implementation:

1) A high frequency clock rate with fine resolution which detects the completion
- signal(s) of the "critical” stage(s). The maximum delay of the detection is of one
clock cycle which relatively is very small compared to stages propagation delays.
Each pipeline stage has a counter which reduces the clock rate to the basic one
required for the proper operation of the stages. As depicted in figure 7.1, the con-

trol unit of the processor detects the completion signal of the "critical" stages and
enables the data transfer between the stages and the start of a new task under the

following conditions:

* The completion signals are detected after the worst case execution time of the

"non-critical" stages.

* Atthe end of the worst case execution time of the "non- critical" stages if the

completion signals were detected before.

* Max. propagation delay
of "nou-crh%ca.l" stages

|
1
|
1
¢ P = = o = o - P »
Propagation variations of "critical” stages :
|

Completion signal of "critical" stage | !

e N

Start new operation of all stages

Completion signal delay

Figure 7.1 - Detection of completion signal by high frequency clock

The relatively small additional delay for detecting the completion signal has small

Chapter 7 -221-

effect on the cycle time thus yielding approximately the same average clock rate as for

the asynchronous architecture.

2) Controlling the various pipeline stages with the appropriate clock rate frequency
and enabling the data transfer and a new task execution upon the detection of the
completion signal(s) .of the "critical" stage(s). Since the clock frequency is ade-
quate for proper operation, the stages do not have to reduce it with a counter.
Each pipeline stage has an input which enables data transfer to the next stage and
initiates execution of the next task. The control unit of the processor detects the
completion signal(s) of the “critical” stages and activates the enable line with the
right timing. Assuming that the stages start to execute their tasks during the high
level of the clock, as depicted in figure 7.2 two cases have to be considered regard-

ing the activation of the enable control line:

* If the detection of the completion signal occurs during the high level of the
clock, the control unit activates the enable control line and expands the high
level by an additional half clock cycle to provide an appropriate timing for

immediate operation.
If the detection of the completion signal occurs during the low level of the

" clock, the control unit activates the enable control line on the following high

level of the clock cycle thereby minimizing the idle time before executing the

next operation.

As before, the activation depends on the time the completion signal is detected relative

to the worst case execution time of the "non-critical” stages.

Chapter 7 -222-

' Bcginn;swopmﬁmin'allmges
|
® |_I Completion signal
""""" Delayed clock
| N
" Begin new operation in all stages

Figure 7.2 - Variable duty cycle of processor’s clock

In both schemes, the completion signal circuitry of all stages except the "critical”
one is also avoided. The difficulties of asynchronous circuitry design and the hand-
shaking circuitry and delays overhead are also avoided. Additional circuitry to detect
the completion signal(s) and to control the clock is required. Bypassing the "critical"
stage(s) when it is not necessary to pass through them can increase the throughput but

will require additional control for initiating the next cycle of the pipeline stages.

7.4. GSLA timing analysis

Analyzing and comparing the cycle time of the GSLA architecture is based on the
same additive timing models, definitions and notations of chapter 5. Assuming that the
latch delay is embedded in the execution time of the stage yields the following cycle

time results:

Synchronous pipeline architecture cycle time:
Toy=t+t 7.1)

Asynchronous pipeline architecture average cycle time:

Chapter 7 -223-

+t |
Tavgasy =t—2—1+3ths+t,=l}'£t+3t,u+t,=l"2'£t (7.2)

GSLA pipeline architecture cycle time:

1+t
Tosta=—ryt+teg=3K 41, (7.3)

Writting the ratio between Tavgasy and Ty, yields the average throughput improvement

factor q of the asynchronous architecture compared to the synchronous architecture,

(1+k)e
Tavg. —_— 7.9

And the approximate upper bound to throughput improvement is:

~-%-(l—k)t+tcs -%-(l—k)tL '
Tagay =gy e it

(7.5)

The results of the average throughput improvement factor of the asynchronous imple-

mentation are depicted in the following table:

q (%]
1 1 _3 -
‘. k=0 =T k--2- k'T k=1

Max variations, | 75% variations in | 50% variations in | 25% variations in | Worst case, no

100% variations | t t t variations in t

int :
0.00t 50% 37.5% 25% 12.5% 0%
0.11t 55% 43.7% 32.5% 21% 10%
0.25t 60% 50% 40% 30% 20%
0.43t 65% 56.3% 47.5% 38.8% 30%
0.66t 70% 62.3% 55% 47.3% 40%
1.00t 75% 68.7% 62.5% 56.2% 50%

Table 7.1 - Asynchronous architecture - average throughput improvement

Chapter 7 -224 -

In the same way, writting the ratio between Tgsr4 and T,y yields the throughput
improvement factor q of the GSLA architecture compared to the synchronous archi-
tecture,

T 14+k)t +o
GSLA _ =1—q

And the approximate upper bound to throughput improvement is:

1
- -2-(1-k »
qGSLA R 7.7

The results of the throughput improvement factor of the the GSLA implementation are

depicted in the following table:
1 s 3
tcs k =0 k =2- k =-2' =T k =1
Max variations, | 75% variations in | 50% variations in | 25% variations in | Worst case, no
100% variations | t t t variations in t
int
0.00t 50% 37.5% 25% 12.5% 0%
0.11t 45% 33.8% 22.5% 11.2% 0%
0.25t 40% 30% 20% 10% 0%
0.43t 35% 26.2% 17.5% 8.7% 0%
0.66t 30% 22.5% 15% 7.5% 0%
1.00t 25% 18.7% - 12.5% 6.2% 0%

Table 7.2 - GSLA -throughput improvement factor

Results

The following results are based upon the assumption that the handshake delay in the

asynchronous architecture is small and negligible compared to the execution time and

Chapter 7 . -225-

the clock skew delay. When the pipeline architecture is deeper, the clock skew delay

has a larger effect on the analysis and is not negligible. The clock skew delay is more

likely to be neglfgible if the architecture incorporates a small number of pipeline stage

(corresponds to larger execution time of the stages). It is obvious that the GSLA archi-

tecture is effective only if the clock skew delay is negligible.

The maximum bound on the throughput improvement factor ggsz4 of the GSLA

architecture is 50% (for 100% execution time variations).

As the clock skew delay (t,) increases the throughput improvement factor ggsy4

of the GSLA architecture decreases.

The throughput improvement factor of the average asynchronous architecture

implementation is larger than the throughput improvement factor of the GSLA

. L
architecture by a term of —=—.
T+

As the clock skew delay (z.s) increases, the average throughput improvement fac-

tOT Gavg.asy Of the asynchronous architecture increases.

The throughput improvement factor of the GSLA architecture is the lower bound
of the average throughput improvement factor achieved by the asynchronous

architecture when the there is no clock skew.

When the clock skew delay is negligible (s,,=0) GSLA architecture yields the
same throughput improvement factor as the asynchronous architecture yields in

the average case (ggsza =Gavg.asy)-

As the clock skew delay (7;) becomes larger the average throughput improvement

factor of the asynchronous architecture becomes larger compared to the GSLA

architecture.

Chapter 7 - 226 -

7.5. Conclusions

e The GSLA architecture yields a throughput improvement factor as the average
throughput improvement factor of the asynchronous architecture only if the clock

skew delay is negligible.

¢ The maximum bound on the throughput improvement factor ggsr4 of the GSLA

architecture is 50% (for 100% execution time variations).

e As the clock skew delay (1) increases, the throughput improvement factor qGsLA
of the GSLA architecture decreases. Larger clock skew delay mean smaller

throughput improvement.

e Larger clock skew delay (f.s) means a larger average throughput improvement of

the asynchronous architecture compared to the GSLA architecture.

e Implementation of the GSLA architecture is feasible.

-227 -

CHAPTER 8

Conclusions

8. Conclusions

Implementation of processing elements and systems for real time signal processing
applications require 1) a fast processing elements with higher throughput and 2)
efficient schedulers to partition the algorithms into different tasks and allocate them
appropriately to the processors. To achieve fast processing elements with higher
throughput for real time signal processing applications, one has to utilize the advances
of uP VLSI design and fabrication with the special features and characteristics of the
signal processing algorithms. Development of improved CAD tools and fabrication

processes makes it feasible to implement the PEs proposed in this dissertation.

8.1. Multiprocessing PE

. Exploitation of the parallelism inherent in digital signal processing implies the
building of computing systems which rely on relatively inexpensive processing ele-
ments that operate in parallel. Parallel computing systems that are not restricted by the

PE’s interconnection topologies and have low communication latencies achieve high

performance and throughput.

An advance in uP VLSI design and fabrication makes it feasible to implement the
proposed PE. This will reduce the communication latencies, allow any interconnection

topology consistent with the number of ports, and increase the multiprocessing system

throughput.

Chapter 8 -228 -

Communication latencies are reduced because of:

1) Independent and concurrent computation and communication achieved by

separating the computation unit (PU) from the communication unit (AIO).

2) Fast data transfer through virtual-cut-through switching, minimum number of
hops, and the variable interconnection band-width between processing ele-

ments.

3) Simple interface (through the AIO) between the processing unit (PU) and the

network.

The proposed PE is suitable for ASIC (Application Specific IC) implementations.
Similar and simple protocols for different communication configurations with the ASIC
property adapt and fit the proposed PE into a variety of different multiprocessor systems
and applications. Each PE can accommodate a different computing unit and a different
communication configuration suitable for a particular application. "Heterogenous" sys-
tems are simple to implement because different PEs can accommodate different types

of processing units and/or different communication configurations.

Four I/O links enable the PE to be employed in many network topologies and pro-

vide a simple expansion to large multiprocessor configurations.

Interconnection band-width (BW) is extensible because the number of lines in an

/O link are parametrizable and up to four I/O links can interconnect two PEs.

8.2. Asynchronous PE

It is clear that an asynchronous PE is preferable to a synchronous PE only if the
clock skew delay is relatively large compared to the maximum execution time of the
functional units of the processor. Good circuits synthesis programs as well as appropri-
ate CAD tools are required for such designs. In general since most of the systems are

synchronous, a synchronous processor is preferable. Development of new methods and

Chapter 8 - 229 -

CAD tools for clock path and distribution design along with careful and tightly con-
trolled fabrication of the clock distribution and the local clock buffers reduces the clock

skew delay effects and favors the synchronous implementation.

As previously seen from the timing analysis, an implementation of an asynchro-
nous processing element yields a higher throughput than the synchronous implementa-
tion only if several conditions on the clock skew delay (z.s) and the handshaking delay
(tns) are fulfilled (equations: 5.4, 5.7, 5.8, 5.12, 5.13).

The maximum throughput improvement of the asynchronous implementation
compared to the synchronous implementation is limited. To achieve in the worst case a
higher throughput compared to the synchronous implementation, a deep pipeline archi-
tecture is required, i.e., an architecture with more pipeline stages which corresponds to

smaller maximum execution time (max.{#,; } is smaller).

The larger the variations in the execution time of the pipeline stages, the larger is
the average throughput improvement of the asynchronous implementation. Achieving a
higher average throughput improvement requires input and output queue buffers. The
length of the queue buffers limits the type of applications that can be executed on such

architecture.

A time-stationary control unit for the asynchronous processor can be simply
implemented with a PLA and shift registers. Such a control unit does not add addi-

tional handshaking delays, and it can discard instructions from the data path stages.

When the clock skew delay is negligible the average throughput of the asynchro-

nous implementation is smaller than 50%.

When the throughput limitation is due to large propagation delays variations of the
pipeline stage(s) and not due to clock skew delay (clock skew delay is negligible), the
GSLA (globally synchronous locally asynchronous) implementation achieves the same

average throughput as the asynchronous implementation. When the clock skew delay is

Chapter 8 -230-

not negligible the GSLA throughput decreases as the clock skew delay increases.

The larger the clock skew delay, the larger is the average throughput improvement
of the asynchronous implementation compared to the synchronous pipeline architecture

and the GSLA architecture.

Asynchronous processing elements can also be implemented in other architectures
such as "Hybrid" pipeline and common bus. Their throughput depend highly on
whether resource conflicts exist or not. If there are no resource conflicts, an asynchro-
nous common bus architecture achieves a higher throughput than the asynchronous
pipeline architecture. The control unit of the asynchronous "Hybrid" and the common

bus architectures is more complicated.

8.3. Further Research

Further research is necessary in developing new techniques, CAD tools and simu-
lation programs for efficient design of high speed synchronous and asynchronous pro-

cessing elements and processing systems for real time applications.

Utilization of the parallelism inherent in signal processing algorithms is very
important in implementing processing systems for real time applications. There are two
ways to do it. One is to develop new signal processing algorithms customized for paral-
lel processing systems. The other is to develop schedulers that partition the algorithms
and effectively allocate the tasks to different PEs. The scheduler should have the capa-
bility to optimize the allocations according to the following requirements: high
throughput, minimum number of PEs, load balanced PEs, minimal number of intercon-

nection, and a given interconnection configuration.

Fabrication of the multiprocessor PE, containing a PU and an AIQ, is necessary to
evaluate the IC’s area, speed of operation, complexity, and the difficulties involved in
the design and implementation of such large VLSI chips. The implementation of the

VCT switching and its efficiency is important and necessary to evaluate.

Chapter 8 -231-

Complete design and development of new interconnection handshaking cells are
mandatory for the implementation of an asynchronous PE for different signal process-
ing applications.

Development of a simulation program to determine the exact length of I/O queue

buffers for obtaining a higher average throughput is needed.

An appropriate interface between an asynchronous processor and synchronous sys-

tems is required. The design of such interface should efficiently utilize the properties of

both systems.

The development of new techniques and CAD tools for designing high speed syn-
chronous PEs is needed. Design and implementation of a GLSA processor with special

emphasis on the design of clock buffers and distribution could be used as a test case.

	Copyright notice1988
	ERL-88-31 (1 of 3)
	ERL-88-31 (2 of 3)
	ERL-88-31 (3 of 3)

