

Copyright © 1988, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission.

AUTOMATIC GENERATION OF CMOS

DATAPATHS IN LAGER FRAMEWORK

by

Mani B. Srivastava

Memorandum No. UCB/ER^ M88/40

3 June 1988

AUTOMATIC GENERATION OF CMOS

DATAPATHS IN LAGER FRAMEWORK

by

Mani B. Srivastava

Memorandum No. UCB/ERL M88/40

3 June 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

AUTOMATIC GENERATION OF CMOS

DATAPATHS IN LAGER FRAMEWORK

by

Mani B. Srivastava

Memorandum No. UCB/ERL M88/40

3 June 1988

ELECTRONICS RESEARCH LABORATORY

College of Engineering
University of California, Berkeley

94720

Abstract

This report describes a system to generate CMOS data paths for a variety of
applications demanding high performance, such as image and speech processing. The goal
ofthe project was to arrive at a consistent and well defined methodology for creating data
paths for many different applications. The major issue which was addressed was how to

avoid the duplication ofcircuit design and layout effort for each new application while still
meeting high performance requirements. To this end a large CMOS cell library was designed
and tested, and a CAD tool, called the DPC (Data PathCompiler) was written to generate
the layout from a structural description of the data path. This tool was integrated with
the Design Manager, a silicon assembler. This report gives a detailed description of the
motivation behind this system, description ofthe strategies used for placement and routing
of bit slice data paths, the details of the software, the description of the various functional

blocks currently provided in the system library and some examples where this system has
been used. Also included are the user manuals for the tools described in this report.

This research was supported by Defense Advanced Research Projects Agency, Contract N00039-
87-C-0182.

Contents

Table of Contents 2

List of Figures 4

1 Introduction 5
1.1 Drawbacks of Existing Approaches for Data Path Design 6
1.2 Desired Features in the Data Path Design System 7
1.3 Outline of the Report 8

2 Description of the Data Path Generation System 9
2.1 Minimization of Layout Effort 9
2.2 Bit Slice Data Paths H
2.3 Routing Strategy 13
2.4 Constraints on the leafcells 16
2.5 User's View of the System 19

3 Algorithms Used and Software Organization 22
3.1 Choice of LISP and Object Oriented Programming 22
3.2 Organization of the program 23
3.3 Algorithm used for routing 24
3.4 Interface with Design Manager 27

4 Cell and Block Libraries 29
4.1 Block Library 29
4.2 Leafcell Library 33

5 Control Interface Circuitry for Data Paths 37
5.1 Unsuitability of bit slicestrategy for control interface 37
5.2 Use of Standard Cells for control interface 38
5.3 Generation of macrocell using Design Manager and Wolfe 39
5.4 Structural description too cumbersome: need for a better way 40
5.5 Tool for generating structural description ofinterface logic from its functional

description 40
5.6 Software organization of eqn2sdl 44

6 Test Data Paths 48
6.1 Example 1: A Simple Data Path to do Addition 48
6.2 Example 2: Lager AUIOINC Data Path 50
6.3 Example 3: Projection Collector Data Path 61
6.4 Example 4: Data Path for a Robot Controller 61
6.5 Benchmarking for execution time 61

7 Conclusion gg
7.1 Suggestions for Future Work 70

Bibliography 71

A Manual Page for DPC 73

B Manual Page for eqn2sdl 80

C Circuit Diagrams of the Cells in the Library 85

D Magic Layouts of the Cells used in the Lager AUIOINC Data Path 98

List of Figures

2.1 Floorplan of a Bit Slice Data Path 12
2.2 Example of channel routing 15
2.3 Example of a completely routed data path 17
2.4 Detailed view of the channel routing 18
2.5 Overview of the Data Path Generation System 21

4.1 Structure of the Ripple Carry Adder 32
4.2 Layout of the cell adder_even 36

5.1 Input to eqnsdl for Interface Logic for AUIOINC Data Path 42
5.2 Gate Level Description of Interface Logic for AUIOINC Data Path 43
5.3 Interface Logic for AUIOINC Data Path 45

6.1 sdl files for the blocks used in data path example 1 49
6.2 Block diagram of the data path in example 1 51
6.3 sdl file for data path in example 1 52
6.4 Layout of the data path in example 1 53
6.5 Block diagram of Lager data path AUIOINC 54
6.6 Floorplan of Lager data path AUIOINC 55
6.7 Input file for AUIOINC data path generated by DPC 56
6.8 Layout of AUIOINC data path generated by DPC 57
6.9 Circuits for some of the cells used in Lager AUIOINC data path 58
6.10 Circuit for the ripple carry adder used in Lager AUIOINC data path 59
6.11 Circuit for the barrel shifter used in Lager AUIOINC data path 60
6.12 Block diagram and the floorplan of the Contour Image Generator Data Path 62
6.13 Layout of the Contour Image Generator Data Path generated by the DPC . 63
6.14 Block diagram of the Data Path for the Robot Controller 64
6.15 Layout of the Data Path for the Robot Controller 65

Chapter 1

Introduction

This report describes a system to design high performance data paths for cus

tom VLSIs for a variety of applications like audio signal processing, image processing and

robot control. High performance data path design is becoming an increasingly important

problem in VLSI design particularly because of the increasing importance of Application

Specific Integrated Circuits (ASICs) in the market place. ASICs aimat providing dedicated

custom hardware based solutions for a variety of applications and high performance data

paths play an important role in these applications. Further, the turn around time is of crit

ical importance in the current industrial situation. Therefore, a system to systematically

generate high performance dedicated data paths with a fast turn around time can play a

very important rolein decreasing the overall design time. This is true partly because unlike

other circuit blocks in a typical VLSI, the high performance data paths are not implemented

suitablyby structured layout synthesis techniques likePLAs for which a variety of tools are
available.

The system described in this report is basically a data path assembly system

which generates the layout of a data path starting from a description of the data path as
an interconnection of high level functional blocks. This tool is embedded in the Design

Manager environment which is asystem for hierarchical assembly ofintegrated circuits (see
[3]). Design Manager provides extensive functional simulation support for the data paths
designed using the system.

1.1 Drawbacks of Existing Approaches for Data Path De

sign

A major problem in the design of high performance data paths is the circuit

design and layout effort which is required every time a new data path is designed. The
reason for this is that conventional automatedlayoutapproaches, such as standard cells and

conventional gate array layout often do not meet the performance and area requirements.

This is because these techniques are general purpose techniques anddonot try to exploit the

special nature of signal flow in the data paths. As a result of the failure of these techniques

in meeting the performance requirements, most designers of high performance data paths

still use the approach of completely designing each new data path.

Obvious disadvantages of this approach are the inflexibility of the design to even

minor alterations and the long turn around time. The second factor is particularly im

portant in the current and future commercial scenarios with the increasing dominance of

the ASICs. Further, the inflexibility of this approach forces the designer to decide on the

functional and logic design before the layout can begin. Trying out various competing de
signs at the transistor layout level is not feasible. Another drawback is the duplication of

design effort. Most of the data paths usually consist of the same basic blocks connected

in different configurations. The conventional approach of designing from scratch does not
take advantage of work already done by somebody else.

In view of these drawbacks, an approach which allows flexibility of design, fast
turn around time and reusability of existing designs, but still meets the high performance

requirements is desired. The design flexibility and fast turn around time requirement suggest
a CAD tool based system. There exist layout synthesis tools which use a structured layout
style such as PLA and Gate Matrix. The PLA style is good for combinational logic but
quite unsuitable for data paths where we have a mix of latches and combinational logic.
Further, despite techniques like PLA folding, these structured designs do not meet the high
performance requirements. The Gate Matrix style allows mixing combinatorial logic and
latches but still falls short on performance because of long polysilicon interconnects which
result in high node capacitances. In short, structured layout strategies just do not seem
to meet the high performance requirements. This points to a paradigm based on a well

designed cell library where the individual cells are well designed and optimized. Such a cell
library based approach naturally satisfies the requirement ofreusability ofexisting designs.

Further, non-critical cells can be designed using a structured approach like Gate Matrix

while the critical cells, like adders, shifters, can be designed and optimized manually.

Standard Cell based designs seem to meet the requirements. However, it is a

general purpose technique and is unsuitable in the data path applications because it does

not take advantage of the way the signals flow in most data paths. This makes this design
style unsuitable in terms of area and to some extent performance. For example, in most

data paths the directions of flow of the data signals and the control signals are mutually

perpendicular. This orthogonal flow of signals, however, does not fit well with the Standard

Cell stylewhere all the terminals come out either at the top edge orthe bottom edge of the
cell.

1.2 Desired Features in the Data Path Design System

As discussed in the previous section, none of the current macrocell design tech

niques meet the special requirements for dedicated data paths. However, before designing
a system to generate data paths, it is important to figure out the features desired in a good

system. As already mentioned, this system was meant to be integrated with the silicon

assembly environment provided by the Design Manager [3]. This placed an importantcom

patibility requirement. However, more important was the fact that this system was meant

to be used extensively within our research group for a variety of applications. This meant

that the system had to use a strategy which satisfied most of the designers. In order to do

this, manual design of a data path, specifically the Lager AUIOINC data path, was under

taken in order to study the various design issues. During the course of this manual design
effort and by extensive consultation with other data path designers, a design strategy was

arrived at which was reasonably close to thedesign practices prevalent among the designers
in our research group and was automatable. Some important issues tackled at this stage
were routing of power and clock signals and orientation of wells in the CMOS technology.

Also, a suitable set of primitive functional blocks which met most of our requirements was
determined.

Oneimportant consideration while deciding the overall strategy was that the sys

tem should be able to use the already existing leafcells with minimal changes and the cell
design style used should be flexible enough so that the cell designers do not feel unduly
constrained.

8

Another desired feature was parameterizability. This was considered important so

as to avoid having to redesign similar data paths. One primeexampleof this is the width of

the data path. To facilitate this paramterization all the data paths were designed in a bit

sliced fashion. This also had the side effect of making the routing and placement problem
easy.

A powerful user interface which provided features to support parameterizability

and support flexible extension of the system library was also essential. Considerable time

was devoted for this and the resulting syntax went on to become the core for the Structural

Description Language used by the Design Manager.

1.3 Outline of the Report

This report is divided into 7 chapters. Chapter 2 gives a description of the sys

tem in terms of the overall strategy used. Chapter 3 deals with the algorithms used and

the software details. Chapter 4 basically documents the current status of the system li

braries. Chapter 5 describes the problem associated with generating the interface circuitry
between the data pathand the rest of the world (controller, i/o) and discusses a tool called

eqn2sdl created for this purpose. Chapter 6 gives some example data paths with the input

decks and the resulting layout along with the execution time. Finally, chapter 7 concludes

the report by discussing the advantages and disadvantages of this system and suggestions
for improvement. The software listing and the library documentation are included in the
appendices.

Chapter 2

Description of the Data Path

Generation System

This chapter describes the data path design system and the methodology used.

The topics discussed include the floorplanning and routingstrategy, the user input and the

overalllibrary organization. Also discussed are the variousconstraints placed on the leafcell

designers.

As already mentioned in the previous chapter, the main goal behind the design of

this system was to arrive at a systematic and automated technique for designing a variety

of data pathsin a flexible manner with maximumutilization of the design effort already put

into previous designs. Further, parametrization was also a much desired goal so as to have

a mechanism for customizing a data path for different situations. All this was to be done

under the constraint that the leafcell designers continue to have as muchdesign freedom as

possible. These facts guided the various design choices made at the various stages of the
system.

2.1 Minimization of Layout Effort

The first problem which was tackled was the minimization of layout effort. There

are two possible ways for doing this, namely layout synthesis and using a cell library. The

layout synthesis techniques work verywell for structured layouts likePLAs. However, PLAs

are meant for combinational logic only. Data paths have a variety of latches and flipflops

which are not implementable in a PLA design style. However, in recent years general

10

purpose structured layout techniques, like Gate Matrix, have been proposed. These layout

styles give fairly dense layouts and are not restricted to combinational logic alone. The

second way to minimize the layout effort is by using a library of cells. In this case the

layout effort has to be done once at the beginning and then the same cells can be used
again later on.

The first approach (layout synthesis) would be the ideal onesince therewould be no

layout effort required at all. Also, since the layout is being synthesized, transitions from one

set of design rules to another would only require rewriting a technology file. Therefore, the

first approach tried was the Gate Matrix style [10] which seemed to be the most suitable for

ourapplication. Unfortunately, therewas notoolavailable to uswhich could synthesize such

layouts. However, since our main interest was in making an evaluation of this design style,
it was decided to use a symbolic input style which retained the design rule independence
of this approach. Also, the layout was very structured so that the cell design time was less
than that for random layout style. The generic LAGER data path was designed using this
style as a test case. It was observed that high node capacitances are a problem with this

layout style. The reason for this was that the gate matrix style prohibits usage of metal2
layer. Therefore, the two routing layers available to the user were metall and polysilicon.
Unfortunately, polysilicon is not a good routing layer and running long lines in that layer
severely affects the performance. Furthermore, the cell designers in our research group felt
that the restriction placed on using metal2 was unreasonable. A more detailed description
and evaluation of the various structured layout techniques can be found in [11].

As a result of the problems described in the previous paragraph, it was decided

to use the second approach, namely a cell library based approach. This approach requires
some initial cell design effort. Also, it has the drawback that a change in design rules will
require redesigning the whole cell library, unless the technology itself is scalable, like the
SCMOS technology from MOSIS (see [12]). However, it has the advantage that the cells
can be optimized since the leafcell designer has full control over the layout.

Actually, the final approach which was taken was to have a library of cells, with
the provision that any restrictions placed by therouter on theleafcell layout should besuch
that they can easily be satisfied by structured layout styles like Gate Matrix. This is a
compromise between the two approaches listed above and allows the users of this system to
have adesign rule independent cell library using the symbolic Gate Matrix style (described
in I11])? if they so wish and provided the performance is satisfactory.

11

2.2 Bit Slice Data Paths

The secondmajor issuewasparameterizationof the data paths. The users wanted

to have the capability of customizing the data paths depending upon certain parameters

provided at the layout time. One can essentially have two types of parameters. The first

type are those which affect the net list of the data path. For example, a certain net may

or may not exist depending upon a certain parameter. Such parameters, however, do not

affect the floorplanning or the routing schemes. The second parameter is the capability of
customizing the number ofbits in the data path. If oneis to follow a generalized macrocell

placement type technique, this customization of the number ofbits will not be a problem.
However, we decided to take advantage of the customization of number of bits and use a

specialized placement and routing scheme which is closer to the style used by most data
path designers. Specifically, we adopted the bit slice strategy for laying out the data paths.

Thebit slice strategy involves visualizing thedata path to bemade upofa number
ofslices where each slice corresponds to the data flow for one particular bit position. This
however assumes that the data flow has the same width (number of bits) at all points.
The advantage is that the data path can now be visualized as a linear array of blocks.
However, one should note that one cannot express data paths with variable bit widths with

this scheme. For example, if certain registers are say 12 bits wide and some others are 16

bits wide, then it is not possible to put them in a bit slice fashion. From the experience
of the data path designers in our group it seemed that this is not a drawback and by
suitably partitioning a variable word width data path into several data paths of constant
word width (bit slice) data paths, one can handle anydata path. Further, most ofthe data
paths designed by the designers in the group were already in a bit slice fashion.

The major effect of adopting the bit slice data path strategy is in the floorplanning.
Theindividual slices can be placed and routed independently and then one can abut them
by using a one-dimensional tiler to get the complete data path. This tiling requires that
the terminals at the edge where two slices abut should pitch match. Therefore, the leafcells
need be designed keeping this on mind and the individual slices need be routed accordingly.
Figure 2.1 shows the floorplan ofa bitslice data path. As shown in thefigure, the bit slice
layout approach allows one to naturally exploit the orthogonality in the flow of the data
signal and the control signals. What is meant by this is that the flow ofthe data signals is
within a particular bit slice and is more or less replicated in the other bit positions. On the

DATA $ V

4

CONTROL

StGNALS

Iz
SLICEn

»

o

o

o

o

o

o

SUCE2

SLICE 1

SUCEO

STATUS

SIGNALS

/fK

W
A
.V

Figure 2.1: Floorplan of a Bit Slice Data Path

12

DATA

13

other hand, signals like the control lines, power and ground lines and clocks run across the

bit slices andarecommonto allthe cells at the sameposition. For example, the samecontrol

signal is used in a multiplexor at all bit positions. This orthogonality can be exploited at

the layout level such that the control signals, power and ground lines and the clocks run

orthogonal to the data flow direction. This styleis the most common style used by the data

path designers. When doing an automatic generation of the data paths, this style helps

in simplifying the task. In particular, since the control signals, power and ground lines

and clocks run across the slices, their routing is automatically taken care of by abutment.

This requires that the leafceUs be designed such that their control, power, ground and clock

terminals abut with the corresponding terminals for the cell in the adjacent bit position.

Throughout this report it is assumed that the data flow is in the horizontal direction and

the control flow is in the vertical direction. Thus, the individual slices are formed by a linear

placement and routing of leafceUs in the horizontal direction. The sUces are then abutted

in the vertical direction.

2.3 Routing Strategy

As mentioned in the previous section, the bit sUce approach reduces the problem

to one of linear placement and routing. Linear placement is an easy task, although in the
current system it has not been automated. The user has to specify the placement. The

routing within the slice involves only the data signals. To ease the routing task, it was
decided that the leafceUs should be such that all the data signals come out on the left or

the right side. The control, power, ground and clock terminals come out at the top and
bottom and are extended to the top and the bottom edges of the sHce so that they abut
with the corresponding terminals in the adjacent sHces.

The routing consists of two distinct type of nets. First are those which connect

terminals of adjacent cells which are simple to handle. The second type are those nets which

connect terminals on non-adjacent cells. This requires routing over the intermediate cells.

To handle this routing, one approach is tomake the ceUs transparent to arouting layer and
then use that layer to route over a ceU. The three routing layers available are polysUicon,
metall and metal2. However, one cannot design ceUs without using polysUicon. Further,
only metall can directly connect to polysUicon and diffusion. This precludes making cells
transparent to metall. Only metal2 is a possibUity but this compUcated the leafceU design.

14

The reason for this was that in the technology avaUable to us (SCMOS from MOSIS [12])
the polysUicon resistance is a rather high 100 ohms per square. This renders polysilicon
useless for routing except over very small distances. Therefore, metal2 was required in the
leafceUs because of the effect on performance.

Inkeeping with the philosophy oftailoring thesystem according to the design style
used by the users, it was decided to use an alternative scheme for routing over the cells.
BasicaUy, it was decided that the leafceU designer should expUcitly provide feedthroughs
in the cells. A feedthrough is a pair of terminals, one on the left side and the other on

the right side of the ceU, which are electricaUy connected and are not used internaUy in
the cells. They are provided for the express purpose of allowing the router to carry a net
across theceU. A convention was adopted to have the names of these feedthrough terminals
start with the FEED so that the router can recognize them. Further, the leafceU designers
were encouraged to bring out the data terminals of the cells on both sides so that they too

can be used as feedthroughs for nets connected to them. Again, a convention was adopted
that terminals having the same name were considered electricaUy equivalent. A remaining
issue in doing routing over the ceU is how to handle the case when the router runs out of

feedthroughs. To handle this, the router lays out a feedthrough in a global channel above
the leafceU, essentially extending the height ofthe leafceU. Figure 2.2 shows an example of
this.

The routing is now done by spUtting the routing into a number of small channel

routing problems. First, a global pass is made across the sUce to assign the various nets
to the feedthroughs or to create feedthroughs in the area above the leafceU if the leafceU

does not have enough feedthroughs. This step together with the fact that the feedthrough
terminals are just Uke the data terminals reduces the routing problem to the problem of
connecting the terminals of two adjacent cells. This is then done by using a greedy channel
routing algorithm, treating the space between two adjacent leafceUs as a channel. The

terminals are on the left and the right side of the channel. Some of the terminals would be

the proper data terminals of the leafceU while the others would be feedthrough terminals
for nets coming from some ceU which is farther away.

The overall routing strategy can thus be described as one of divide and conquer
where the total routing problem is reduced to anumber ofsimple channel routing problems.
There are many weU established algorithms for channel routing which can then be used. In
this system a greedy algorithm described in the next chapter was used. Figure 2.2 shows

251

im

fcbft

Figure 2.2: Example of channel routing

16

a channel routing whUe figure 2.3 shows the plot of a complete data path routed using the
system.

2.4 Constraints on the leafceUs

The routing strategy imposes certain constraints on the leafceU design. The con

straints arise because of the choice of layers. Since polysUicon and metal2 cannot connect

directly to each other and the data terminals can come out in polysUicon, it was decided

to use metall in the vertical direction within the channels between the leafceUs. The data

terminals can then come out in either polysUicon or in metal2. Further, since the router

may need to place metal2 feedthroughs above a ceU, the control, power, ground and clock

lines which run vertically cannot come out in metal2. Thus, the terminals at the top or
the bottom are constrained to come out in metall or polysUicon. Figure 2.4 Ulustrates
this clearly. Performance issues usually restrict the choice to metall only. Besides the con

straints on the layers on which the terminals, there are some spacing constraints and some

conventions adopted for our ceU Ubrary. These constraints are listed below:

1. Although it is not necessary, one should try to keep the heights of all cells nearly
equal. This results in better area efficiency.

2. The widthof cells used to make upa functional block must be the same. For example,
the cells at the even and the odd bit positions of an adder must have equal width.

3. Any layer, including the weU can be used inside the cells.

4. AU thedata terminals must come outat thesides and should bein one of the foUowing
layers: M2, VIA, POLY, POLYCONTACT.

5. The data terminals should be "sufficiently" apart. This is rather vague since the

terminal spacing requirement depends on the net connection to a certain extent. A safe

rule of thumb is to have the terminals at >= 4A apart and the terminals themselves

4A widein the SCMOS technology. This wiU always work but leads to wasted area in

many cases. A better spacing requirement is that the terminals be spaced such that

one should be able to place minimum sized contacts to Ml next to them, such that

all the contacts Ue on the same vertical column. Such a situation arises in the left

channel in figure 2.4.

Figure 2.3: Example of acompletely routed data path

3-lembdm minimum

needed here

Figure 2.4: Detailed view of the channel routing

Data Terminal

in MetaE

18

19

6. The control terminals, power, ground and clockUnes of the cells should come out at the

top and bottom edgesin oneof the foUowing layers: Ml, POLY and POLYCONTACT.

Note that the program does not allow the top and bottom terminals to come out in

DIFFUSION and DIFFUSIONCONTACT. These terminals are extended to meet the

top or bottom edge of the sUce. Further, the top terminals of the msb sUce and

the bottom terminals of the lsb sUce are brought up to vias for compatibUity with

the macroceU router FLINT. This requires that the top and bottom terminals of the

cells be sufficiently wide and distant from each other. As a rule of thumb, in MOSIS

SCMOS technology, these terminals should be >= 4A wide and >= 4A apart, or 3A

wide and 5A apart, provided no design rules are violated for the particular terminal
layer.

7. Toenable better routing performance, one should try to provide "feedthroughs" in the
cells. These are pairs of terminals, one ontheleft side and theother on the right side
of the ceU, which are connected to each other and are NOT connected to anything
inside the ceU. A good strategy is to provide these in M2 in order to avoid high
capacitance associated with POLY. The feedthrough pairs should be labeUed FEEDn

where n is a positive integer.

8. AU the terminals should be labeled, the label being put on the layer on which the

terminal is coming out. The box corresponding to the label denotes the location of

the terminal. There should be no useless labels at the edge of the cells because aU
labels at the edge are treated as terminals.

2.5 User's View of the System

The system encourages the user to think about the data path as an interconnection

of functional blocks, each of which perform some N bit operation. The construction of each

of these functional blocks ishidden from anormal user. Inother words, what ceU to use at a

particular bit position is hidden, unless theuser wants to design a newfunctional block. The
structure of these functional blocks is described procedurally in a separate file associated

with the functional block. The procedure describes the generation of the functional block

using the leafceUs in the Ubrary. The generation can be guided by the values of certain
parameters. This is described in detail in section 4.1.

20

The overall design cycle consists of making a blockdiagram of the data path using

functional blocks from a system Ubrary. The input is then a net list description of this

block diagram using the sdl syntax, which is a language used to describe the structure of

macrocells in the sUicon assembly environment used by the designers in our group. The

details of the input syntax can be found in [3]. Several examples are given later in chapter
6 of this report.

The system is extensible in the sense that advanced users can design their own

leafceUs and functional blocks to meet their specific need. Chapter 4 describes in detail the

Ubrary organization for using this tool.

Lastly, this toolis interfaced with Design Manager which is a supervisory program

for the integrated CAD environment used in our group (see [3]). This allows this data path
generator to make use of the simulation faculties provided by the Design Manager. In

particular, the user can perform functional simulation of a data path interfaced with other

macro cells in a chip using the same sdl description as is used for layout. Figure 2.5 shows

the block diagram of the overall system interfaced with the Design Manager.

FLAVORS

Description

of Data Path

Structure

Data Path sdl File

from User

DESIGN

MANAGER

DPC

Layout Files

(MAGIC Format)

Data Path

Bounding Box

and Terminal

Positions

sdl Files for

Functional Blocks

Leafcell

Description

Figure 2.5: Overview of the Data Path Generation System

21

Chapter 3

Algorithms Used and Software

Organization

This chapter describes the algorithms used in the various part of the program and

the overall organization of the software. A description of the interface with the Design
Manager is also given.

3.1 Choice of LISP and Object Oriented Programming

The program has been implemented using Franz Lisp with the Flavors system [1]
which provides an object-oriented programming environment. This choice was motivated

by several reasons, the foremost being to explore the suitabUity of Lisp and object-oriented
programming for module generation tools. Conventionally, C has been the language of

choice for such tools, primarUy because of the speed advantage. However, as shown later

in the report, the execution time of the program is acceptable for reasonably sized data
paths when compUed Lisp is used. Any speed disadvantages are offset by the ease of code
development offered by the LISP environment, in particular in the area of user interface
and debugging.

The object-oriented programming styleunder the framework of Flavors provided

an interesting programming paradigm with a much cleaner organization of software. The

advantages of this style were particularly apparent when interfacing with the Design Man
ager.

22

23

3.2 Organization of the program

The program has been partitioned into three distinct portions corresponding to
three distinct phases in the overall process ofdata path generation. This partitioning helps
in treating the program as three independent pieces of code and thus results in easier code

maintenance and debugging.

The first part consists of the code for interfacing with the Design Manager and
for figuring out the way each individual functional block is made using the leafceUs. This

part basically handles the extraction of useful information from the flavor objects in the

Design Manager and repacks them into structures used internally by the program. It sets
up structures corresponding to each sUce after figuring out which ceU to use for a particular

block at a certainbit position. BasicaUy, it converts the netlist in terms of functional blocks

into a set ofnetUsts (one for each bit slice) in terms ofleafceUs. For doing this mapping, use
is made of the ceU mapping methods and terminal mapping methods associated with each

functional block. These methods are defined by the block designer in the corresponding sdl
files. Since the data path generator was written before the Design Manager, this interface is
not thebest possible since theinternal data structures used by the program were designed
independent of the Design Manager specifications. This part also handles the repackaging
of the output information of the data path generator into the flavor objects of the Design
Manager. This output information consists of aU the interface information, such as the

bounding box and the terminal locations, which are required by the tools operating at a
higher level in the layout hierarchy. This portion of code resides in a single file dpc.l and
consists of a single method declaration for the dpc-mixin flavor [2].

The second partof the code takes up the structures set up by the code in the first

part and routes each unique bit sUce. This is done by converting the sUce routing problem
intoa set ofchannel routing problems which are then handled by the third part of the code.
For doing this division of the overall problem, the code goes through two distinct phases.
In the first phase, nets are allocated to the various terminals. The problem of carrying
a net over a ceU is also handled in this phase by allocating such a net to a feedthrough
provided in the ceU or laying out a feedthrough Une at the top of the ceU in a global
channel. After this net allocation process, the problem basically reduces to routing each of
the local channels between the adjacent cells. This is done by making repeated calls to a
channel routing function which constitutes the third part ofthe code. After completing the

24

routing for all sUces, this part of code creates the physical layout files in the Magic format
[6] taking advantage ofthe hierarchical layout organization allowed byMagic. Magic format
was chosen because ofthe wide usage ofmagic as the layout tool by most layout designers.
However, the code is modular so that switching over to a new format wiU not be difficult.

In fact, a new version of the tool which uses Oct [16] as the database has been developed.

The third part of the code handles the channel routing problem. This function
basically takes a list of terminals along the two sides of a vertical channel and routes the

channel. It makes the channel as wide and as taU as required to complete the routing.
The routing is guaranteed to be completed as long as the ceU terminals meet the spacing
requirements and come out on the proper layers. The algorithm used is Rivest-Fidducia's

Greedy Algorithm which, though not optimal, works adequately because of the small sizeof

routing channels. The modularity of thecode permits the current routing algorithm to be
replaced easUy by a betteralgorithm in future. This part of the code is spread over several
files (chjroute.l, chjmerge.l, chjnewtrack.l and chjsuitable.l) and is organized as a function
route which does thecomplete routing bymaking calls to functions createtrack, tryJojmerge,
joinjtracks and suitable which handle specialized sub-jobs related to the routing process.
The algorithm used for the channel routing is described in more detaU in the next section.

FinaUy, the code makes use of flavor objects defined by the Design Manager and
also uses the various utUities provided bythe Design Manager environment. In other words,
this program uses the Design Manager as a front-end and is meant to be used within the
Design Manager framework.

3.3 Algorithm used for routing

The overaU algorithm foUowed by the program consists of the foUowing major
steps:

1. Read in the input files in the sdl syntax (this is done by the Design Manager) and
convert into the flavor objects according to the Design Manager convention. Send the

layout generation message to the data path object at the appropriate time with the
proper parameters

2. Using the block level netUst and the mappings associated with each block, determine
the netUsts in terms of the leafceUs for each sUce

25

3. Make a Ust of the unique sUces

4. For each unique sUce, first do the net aUocation and then do all the channel routings

5. Output physical layout files corresponding to each unique sUce

6. Generate geometry associated with the external terminals of the data path

7. Output the physical layout file for the complete data path using instances of the
layouts of the sUces

8. Put the information about the interface (bounding box, terminal locations) in the
data path object and output the hdl file for use by module generators Uke FUnt [4]
and PadRouter [5]

The steps dealing with the front-end Design Manager and the output format are

straightforward and not of muchinterest. The core of the whole process is the method used

for placement and routing. FoUowing is the algorithm used for this in a pseudo-C syntax:

CHANNEL_ROUTE(leftlist, rightlist)

{

commonlist=merge(leftlist,rightlist) ;

for each terminal in commonlist find the terminals which may

create vertical violations; /*at most two such terminals on the

opposite side*/

PREVTERM=nil;

EMPTYTRACKLIST=nil;

SPLITLIST=nil;

TRACKLIST=nil;

/♦visualize the channel to be vertical*/

26

for (termptr=commonlist; termptr!=nil; termptr=termptr->next)

{

CURRTERM=termptr;

NEXTTERM=termptr->next;

CURRNET=net(CURRTERM);

CURRTRACKLIST=whichtracks(CURRNET);

CURRTRACK=nil;

SPLIT=no;

if (CURRTRACKLIST!=nil) /*there are tracks carrying the net*/

then

/♦there are tracks carrying the net*/

CURRTRACK=findtrack(CURRTERM,CURRTRACKLIST);

if (CURRTRACK==nil) then SPLIT=yes;

}

if (CURRTRACK==nil) /*there are no suitable tracks carrying the
net*/

then

if (EMPTYTRACKLIST!=nil)

then

/♦there are empty tracks*/

CURRTRACK=findtrack(CURRTERM, EMPTYTRACKLIST);

if (CURRTRACK==nil) /*no suitable empty tracks*/

CURRTRACK=newtrack(CURRTERM);

else

/♦no empty tracks*/

CURRTRACK=newtrack(CURRTERM);

if (SPLIT) then addsplitlist(CURRNET,CURRTRACK) ;

mergesplitnetsO; /*try merging some of the split nets and put

freed tracks in the EMPTYTRACKLIST

*/

jognetsQ; /*try jogging some of the nets*/

freetracksO; /*free the tracks whose nets are done with and

add those tracks to the EMPTYTRACKLIST

♦/

>

/♦now we are done with channel route but there may be split nets

remaining

♦/

mergeallsplitnets();

}

27

As already mentioned, the greedy algorithm used for the channel routing is a very
simple one and better results wiU be obtained by using a more sophisticated router. This is

one possible area of improvement. Another drawback in the current algorithm is the lack
of automatic placement.

3.4 Interface with Design Manager

This tool was interfaced with the Design Manager which is the supervisory pro
gram for the integrated CAD environment used byour research group. The Design Manager
provides a clean interface for new module generators to be integrated into the CAD envi

ronment. It supports an object oriented paradigm based on Franz Lisp Flavors package.
BasicaUy, the Design Manager provides all the front end processing and passes all the in
formation to the module generators in form of various objects. The tools can access the
desired information by sending appropriate messages to the various objects.

Interfacing with Design Manager, however, requires that the module generators
foUow certain conventions. For easy interfacing as weU as for fuUy exploiting the faciUties
provided by the Design Manager, it is better for themodule generator itself to be in Lisp.
This was a major reason for choosing Lisp as the language ofimplementation. Although it
is definitely possible for a program in a language Uke C to be interfaced with the Design
Manager, it is somewhat inefficient because ofthe complex foreign function support inLisp.

A fuU documentation of the Design Manager interface can be found in the Lager
III Programmer's Manual [2]. BasicaUy, there are three types of objects seen by the tool:

28

ceU, net and terminal. The tool itself is called by sending a layout generation message to
the ceU object corresponding to the data path (or, some other macroceU for other tools).

The various information about the various objects can be accessed by sending
suitable messages. For example, by sending a message named :instance-net-list to the ceU
object, one can get a Ust of all the net objects attached to the ceU.

The DPC has been fuUy interfaced with the Design Manager using the interface
provided. This interfacing has resulted in several advantages. First, the tool is now part
of the sUicon assembly process supported by the Design Manager so that DPC can now
be used to generate automatically various macroceUs in a complete design hierarchy. This
required the output layout to be compatible with the requirements of tools Uke Flint and

Mosaico which are used for macroceU placement and routing. Secondly, the tool uses the
Design Manager as the front end so that the user input is in thesame syntax as used bythe
other tools in the design environment, namely the sdl syntax. Thirdly, and probably most
important, the Design Manager provides extensive functional simulation support for the
data paths designed using this system. There are functional simulation models associated

with every functional block used in data paths. These models are basically Usp functions.
The simulation works on the sdl input file so that the user need not generate the layout in
order to be able to do the simulation.

AU the software associated with this interface is in the file dpc.L However, since
DPC was written before theDesign Manager interface came intoexistence, theinternal data
structures used in DPC are different from theobjects provided by the Design Manager. As
a result, translation is required in the interface software.

Chapter 4

Cell and Block Libraries

This chapterdescribes the leafceU and functional block Ubraries used by the tool.

The main purpose is to document the current status of the Ubraries. A description of the
various cells and blocks along with theirintended use, the various associated files, the layout
and circuit diagram and timing diagrams if any are given.

4.1 Block Library

Asalreadymentioned in the earUer chapters, the basic entity usedby the data path

designer is a functional block. Although the user canuse his own functional blocks, a system
Ubrary ofsuch functional blocks has been designed which can be used by theuser directly.
At the time of writing this report, the Ubrary had a large number of functional blocks

which have been used in many varied appUcations including a DSP for a Robot ControUer,
an image processor for doing Radon Transform and in the generic Lager processor. The

Ubrary has been designed through thejoint effort ofa number ofpeople and appears to be
sufficient for almost all the data path design needs encountered by the various users in our
research group.

This Ubrary basically consists of a sdl file associated with each functional block.

However, there is no netUst description in the sdl file. Instead the sdl file describes the

block by specifying what leafceU is to be used at a particular bit position. The mapping
from the block terminals to the leafceU terminals at each bit position is also specified in

this file. These mappings are given as Usp functions and using the parameter mechanism of
thesdl syntax and thecontrol flow constructs provided byUsp, one can have fairly complex

29

30

programmabUity. To ease the job of writing these mappings, some lisp macros have been

defined which should be used in order to havea friendly syntax.

An example sdl file of an ripple carry adder block (see figure 4.1) is given below:

(parent-cell adder (parameters version type))

(lisp-function

(deftermmap adder

(if (and (equal terminal "CIN") (= 0 i))

then (useterm "cin")

elseif (and (equal terminal "CIN+") (= 0 i))

then (useterm "cininv")

elseif (and (equal terminal "COUTn") (= i msb))

then (useterm "cout")

elseif (and (equal terminal "C0UTn+") (= i msb))

then (useterm "coutinv")

elseif (and (equal terminal "COUTh-l*") (= i msb))

then (useterm "cininv")

elseif (and (equal terminal "Ain") (oddp i))

then (useterm "Al")

elseif (and (equal terminal "Ain") (evenp i))

then (useterm "AO")

elseif (and (equal terminal "Bin") (oddp i))

then (useterm "Bl")

elseif (and (equal terminal "Bin") (evenp i))

then (useterm "BO")

elseif (equal terminal "SUM")

then (useterm "sum")

else (useterm terminal)

)

(defcellmap adder

31

(if (= msb i) then (usecell "adder_msb")

elseif (evenp i) then (usecell "adder.even")

else (usecell "adder_odd"))

)

)

The first line in the above example defines the name of the parent ceU and its

parameters. In this case, the name is adder and there are two parameters, version and

type. Next, the terminal mapping and the ceU mapping are given. These two are given as

arguments to a specially defined lisp function called lisp-Junction, which is a keyword in

the sdl syntax. The terminal mapping is primarUy used as a translation mechanism so that

leafceUs with different terminal names maybe used within the same block. This mapping

is defined using the special Usp macro deftermmap. This is to be used as a lisp function,

the first argument to which is the name of the block and the second argument is a Usp

expression which preforms the mapping. In the example, lisp control flow function if...

then ... elseif... then ... else... has been used to define the mapping. The first clause in

the statement says that if the blockterminal nameis CIN and the bit position is the least

significant bit then the leafceU terminal cin is used. The remaining else clauses define the

mapping for the other terminals. The more interesting mapping is the ceU mapping which

describes which leafceU is to be used at a particular bit position. In the example above we

have a very simple ceU mapping which says that the ceU adderjmsb is to be used in the

most significant bit position, the ceU adder.evenis to be used in the even bit positions and

the ceU adder.odd is to be used in the odd bit positions. This mapping is done using the
Usp macro defcellmap.

At the current time, the block Ubrary consists of the foUowing functional blocks:

• domino dynamic latch with non-inverting output

• one-phase dynamic latch with inverting output

• two-phase dynamic latch with inverting output

• scanpath one phase dynamic latch with inverting and non-inverting outputs

• clocked inverter with non-inverting output

CARRY OUr

. \

n A
Ain /

/
D

n
0 /

/

E

n

Bin /
R/

USER'S VIEW

AJn-11

Bln-lJ

API

em

m

m

BfO)

adder_msb

O

o

o

o

o

o

adder even

adder odd

adderjaven

A

ACTUAL STRUCTURE

Figure 4.1: Structure of the Ripple Carry Adder

32

suKd-i]

-• 8UM(2J

"♦ SUM(1)

-> 8UM[0]

33

clocked inverter with inverting output

2-to-l multiplexor with inverting output

2-to-l multiplexor with non-inverting output

2-to-l multiplexor with invering output and control signal to force the output to be
zero

4-to-l multiplexor with inverting output

constant register with value zero

binary up-counter with parallel load

ripple carry adder

single-port static register

single-port static register for use in scan path

dual-port static register

barrel shifter which shifts upto 6-bits one way and 1-bit the other way

one-phase accumulator for Lager processor

two-phase accumulator for Lager processor

memory 10 block for Lager processor

misceUaneous random logic

The Ubrary has proven to besufficient for many appUcations involving fixed-point
arithmetic. It is however continuously being enhanced by the various users.

4.2 Leafcell Library

The leafceU Ubrary consists of all the leafceUs required to support the functional
blocks in the block Ubrary. Note that many functional blocks use more than one leafceUs
and that the same leafceU may be used in more than one block. The leafceUs have to

34

foUow certain layout restrictions which were outUned in section 2.4. At present the layout

files are accepted only in the magic format (see [6]). Associated with each layout file is a

cell descriptor file (known as the cd file) which gives the interface view of the ceU, i.e. it

gives the bounding boxcoordinates, the terminal positions and layer and the feedthroughs.
This information is automatically extracted from the magic file by the tool and a cd file

is created, so that the next time the ceU is used the tool has to do less work. The tool

compares the modification dates of the layout file and the ceU descriptor file and a new ceU

descriptor file is created if the layout file had been recently modified. These ceU descriptor

files can however be created using the command makecd which can be used from Unix.

These files also happen to form a good documentation of the cells. FoUowing is an example
ceU descriptor file for a leafceU used in an adder:

cell adder.even -2 -63 210 -18

left A0 -38 -34 polycontact

left BO -24 -20 polycontact

bot cin 111 114 metall

equivalent (bot cininv 185 188 metall) (top cininv 66 70 metall)

top cout 185 188 metall

top coutinv 111 114 metall

feedthru (left feedl -30 -27 metal2) (right feedl -39 -36 metal2)

feedthru (left feed2 -53 -50 metal2) (right feed2 -53 -50 metal2)

equivalent (bot gnd 44 47 metall) (top gnd 44 47 metall)

(top gnd 171 174 metall) (bot gnd 171 174 metall)

right sum -26 -23 metal2

equivalent (top vdd 17 20 metall) (bot vdd 17 20 metall)

(bot vdd 89 92 metall) (bot vdd 119 122 metall) (top vdd 119 122 metall)

(bot vdd 204 207 metall) (top vdd 204 207 metall) (top vdd 89 92 metall)

In the example above, cell, left, bot, top, right, equivalent and feedthru are keywords

which are part of the syntax of the ceU descriptor files. The first line of the file should

always begin with the keyword cell and defines the name of the ceU and the coordinates

of its bounding box. The remaining Unes give the names, positions and the layers of the
various terminals. The terminals which are electrically equivalent are grouped using the
keyword equivalent. However, electrically equivalent pairs of terminals meant to be used as

35

feed-throughs are grouped using the keyword feedthru. Figure 4.2 shows the layout of the
above ceU.

adder.even (45A x 212A)

Figure 4.2: Layout of the ceU adder_even

Chapter 5

Control Interface Circuitry for

Data Paths

In this chapter the problem of generating theinterface logic between the data path
and the rest of the chip is discussed. This interface logic typically deals with decoding the
control microword (coming from the control ROM or PLA) into the signals needed by the
data path control points. This decoding usuaUy is not just plain combinational decoding
but also involves quaUfication of the control signals by the various clock phases. This is
needed in order to properly schedule the various suboperations in a clock cycle. Another

use ofthis interface logic is inimplementing conditional data operations wherein the signals
from the controUer are gated with some conditional flags coming out of the data path.
Besides the pure logic operations, the interface block also carries out buffering operations.
As we showin the foUowing section, this interface logic does not fit into the bit sUce scheme

and therefore a separate methodology is required. A standard ceU approach was used
for this and a frontend tool called eqn2sdl was written which allows the specification of
this interface circuitry as a set ofUsp expressions. The interface circuit generated by this
approach together with the bit sUce macroceU generated by the data path generator forms
the complete data path.

5.1 Unsuitability of bit slice strategy for control interface

TraditionaUy, the data path designers tended to include this interface circuitry as
a sUce in the bit sUce configuration. Such a sUce is usually referred to as the control sUce

37

38

of the data path. However, we realized that this interface logic is very much appUcation

dependent. For example, the data processing part of the data path may be the same but

the interface logic can be different depending on the way the microwords are encoded.

Consequently, if we were to associate the interface logic with each of the functional blocks

in our data path, we would need to have a very large number of functional blocks which

havethe samedata processing function but different interface logic. To make matter worse,

this interface logic is very much appUcation dependent so that our phUosophy of having a

reusable set of functional blocks would be rendered useless. To study the implementation

issues in detaU, the interface logic for the Lager AUIOINC data path was manually designed

asacontrol sUce using a set of cells associated with the functional blocks. The disadvantages

were apparent very quickly. Besides the issues raised above, it also became apparent that

this strategy is not good in terms of area also. The reason is that there usually is very

Uttle correlation between the complexity of the data processing carried by a block and the

complexityof its interface logic. Consequently, it turns out that some very simple functional

blocks have quitecomplex interface logic associated with them. This results in empty space

in the control sUce. Note that in the traditional manual design, this problem does not occur

because the whole control sUce is designed as a single ceU.

This unsuitabUity of the bit sUce strategy for the interface logic prompted us to

study an alternative strategy. Instead of considering the interface logic as part of the data

path macroceU, it is treated as a separate macro ceU and the complete data path consists

of the two macroceUs, one generated by the data path generator program discussed in the

previous chapters and the other consisting of the interface logic. This partitioning simplifies

the task and the functional blocks now consist of only the data processing functions which
are appUcation independent most of the time and can therefore be used as primitives for a

variety of data paths. However, to ease the design of the macroceU for the interface logic,
one needs some sort of automation of the task. The approach used for this is discussed in
the next section.

5.2 Use of Standard Cells for control interface

Thestrategy chosen for theautomated generation of theinterface logic is based on
the same idea that has been used for the data processing part. Basically, the interface logic is
made up of reusable primitives. Since the interface logic is just a coUection of miscellaneous

39

logic functions, latches and flip-flops with no particular regularity in the signal flow, it was

decided to use a general purpose scheme Uke the standard cells. This approach has been

used in a number of designs in the recent years and its main advantage Ues in that it is

equaUy easy to have both combinational logic and latches or flip-flops. This is unlike the

array structures such as PLAs where it is rather difficult to incorporate random latches and

flip-flops. The design style consists of using a ceU Ubrary where all the cells have the same

height. The cells are then placed in one or more horizontal rows and then routed using
the channels between the rows. By having a weU designed ceU Ubrary, one can reuse it for

a very large number of appUcations. These features plus the fact that a large number of

very efficient design aids already exist for standard ceU design style were the reasons behind

choosing this style for implementing the interface logic. Another factor which was taken

into consideration was the availabUity ofavery extensive standard ceU Ubrary. Further, the
abiUty of the Design Manager to use different module generators at different points in the
design hierarchy made this strategy viable without much effort.

5.3 Generation ofmacrocell using Design Manager and Wolfe

Design Managers abiUty to handle a variety of module generators using the same
input syntax converts the problem of generating the interface logic macroceU to one of
writing the sdl file with the appropriate layout generator whichin this case is stdcell Thus

the complete data path consists oftwo macrocells, one ofwhich is generated using the layout
generatordpcand the other using stdcell These two are then interconnected with eachother

and may be to other macrocells at a level above in the design hierarchy using a module
generator which does macroceU placement and routing, for example Flint or Mosaico, both
of which are now supported by the Design Manager.

The standard ceU placement and routing are done by the Design Manager using a
tool called Wolfe [13] whichis a tool provided under the environment of the Oct database

[16]. The Design Manager basicaUy converts its internal netlist representation into the
proper Oct representation or facet and then fires up Wolfe. Wolfe in turn uses a simulated-

annealing based tool called Timberwolf [14]. The output of Wolfe, which is another Oct
facet, is then read back by the Design Manager.

40

5.4 Structural description too cumbersome: need for a bet

ter way

The sdl input can be quite large for moderately complex blocks of logic. For
example, the interface logic for the AUIOINC data path uses nearly fifty standard cells

which results in a fairly large sdl file. Also, the net Ust description does not give a feel
for the functionality of the logic. What is required is some sort of functional or behavioral

description of the interface logic. Behavioral description in an absolutely general case is a

very tough problem and is an area of current research. However, what is needed here is

some behavioral representation which works for thisrestricted domain of expressing the data

path interface logic and some tool to translate the description into a structural description

in the sdl syntax. Although there exist powerful representations Uke bdsyn [15] which can

be used to express combinational logic, they are not compatible with the Design Manager

environment. Also, bdsyn can handle combinational logic only. It is not possible to specify

latches, which are usuaUy an essential part of interface logic. Therefore, it was decided to

write a simple front-end tool which takes the description of the interface logic and converts

it to a sdl description. This is a short-term solution only. A version of bdsyn which is

compatible with the Design Manager environment and has appropriate enhancements to

handle latches wiU be a better long-term solution. The tool is described in the foUowing
sections.

5.5 Tool for generating structural description of interface

logic from its functional description

The tool is called eqn2sdl, which stands for equation to sdl translation. It takes

in a description of the interface logic as a Usp program using some predefined functions

and converts it to a sdl input file for the Design Manager. The input syntax for this tool

is nothing but enhanced Usp. A set of predefined functions is provided to the user and

the user writes Usp expressions using them. These predefined functions map to one or a

group of standard cells which is hidden from the user. The user can define his own new

functions based on these predefined functions orcan define his own primitive function based

on a new ceU. The program treats the input as a program and generates thecorresponding
net Ust in the sdl syntax. The only optimization which is currently done is sub-expression

41

elimination and using multiple output cells. The program can handle recursive expressions

also, allowing the user to express asynchronous or feedback logic.

AU the Usp functions defined by the tool are distinguished by an exclamationsign

(!) at the end. These functions are used to express the logic of the macroceU as a set

of expressions. The arguments to these functions are other such expressions or variables

declared by the user. The variables are oftwomain types: formalvariables which correspond

to the parent terminals in the sdl output and local variables which are meant for convenience

in writing the expressions. The formal variables are declared using the parent! command

and the local variables are declared using the var! command. These variables can either

be scalar or one-dimensional vector. The expressions (parent! x (y 10)) (var! (a 10) b)
declare a scalar formal variable x, a vector formal variable y ofdimension 10, a vector local
variable a of dimension 10 and a scalar local variable 6. A third type of variable is the
parameter variable which is declared using the parameter! command. These are used to

provide parameterizabiUty and are interactively input at the beginning. The function set!
is provided to assign the value returned by an expression to a formal or local variable. The

remaining functions provided by the tool are functions providing some logic or arithmetic

functionaUty. Most commonly used functions Uke or, and, nand, nor, not, sum, carry, delay,
multiplex, decode etc. have been provided. Many functions implementing complex logic
expressions and flip-flops are also included in the package. Please refer to the manual page
for the tool (see appendix B) for an exhaustiveUst of the functions.

Theinputis given asa Usp program. Thecontrol flow provided byUsp in conjunc
tion with the parameter faciUty provides a mechanism for taUoring the specification of the
interface logic according to some parameters. It is important to note that the Usp control
flow functions should not be used todescribe the control flow behavior of the interface logic.
The logic is generated from the expressions using the logic functions provided by the tool.
The description is treated as a program and therefore the order ofexpressions may matter.

Figure 5.1 shows theinput file to the eqn2sdl tool describing the interface logic of
theLager AUIOINC datapath and figure 5.2 gives the corresponding gate level description.
As we see, the syntax allows the user to express the functionality of the logic without
worrying about how it is implemented and is extremely straightforward to write given the
logic diagram. Besides the convenience ofdescription, it also separates the functionaUty
from the implementation so that the same input file can be used if a different standard ceU

Ubrary or, for that matter, an entirely new implementation style is used.

/declare the variables corresponding to the external terminals
(parent! ZEROB* MEMB* ACCB* XMIT-ACC* XMIT-MOR* ZEROB MEMB

ACCB XMIT-ACC XMIT-MOR XMIT-ACCbar XMIT-MORbar WEN WEN.PHI1
WRITELATCH WLATCH.PHI2 WLATCH.PHl2bar SHIFT* SHIFT LOAD C0EF1
ZER0A1 C0EF2 ZER0A2 ZER0A3 QUOT ZEROA SOR* INV1 INV2 INV PHI1
PHI2 A1P A1P.PHI2 AlP.PHl2bar SIGN* NOFbar SIGN POF CO CIN*
ACC1IN ACC2IN SO SI S2 BSO BSl BS2 BS3 BS4 BS5 BS6 BS7)

/declare the local variables defined for ease of writing
(var! tempi temp2 A4P A2P tempSO tempSl tempS2)

/declare some useful functions
(defun delli (x) (del! x PHI1))
(defun del2! (x) (del! x PHI2))

/describe the logic
(set

(set
(set
(set

(set
(set

(set

(set
(set

(set

(set

(set

(set

(set

(set
(set

(set

(set

(set

(set

(set

(set

(set
(set

(set
(set

(set

ZEROB (not! (del2! ZEROB*)))
MEMB (not! (del2! MEMB*)))
ACCB (not! (del2! ACCB*)))
XMIT-ACC (not! (del2! XMIT-ACC*)))
SHIFT (not! (del2! SHIFT*)))
XMIT-ACCbar (not! XMIT-ACC))
LOAD (not! SHIFT))
XMIT-MOR (not! (del2! XMIT-MOR*)))
XMIT-MORbar (not! XMIT-MOR))
WEN.PHI1 (and! PHI1 (del2! WEN)))
WLATCH.PHl2bar (nand! WRITELATCH PHI2))
WLATCH. PHI2 (not! WLATCH. PHI2bar))
ZEROA (not! (del2! (xnor! ZER0A3

(and/nor2_2! C0EF1 ZER0A1 C0EF2 ZER0A2)))))
INV (not! (del2! (xnor! INV2 (or! SOR* INV1)))))
A4P (not! (del2! A1P)))
A2P (dell! A4P))

AlP.PHI2bar (or/nand2_l! PHI2 A2P ACC1IN))
A1P.PHI2 (not! AlP.PHl2bar))
SIGN (not! SIGN*))
tempi (del! (not! (del2! SOR*)) (and! PHI1 A4P)))
temp2 (nor! A2P ACC2IN))
QUOT (xor! tempi temp2))
POF (nor! (dell! CO) (dell! CIN*)))
NOFbar (nand! (dell! CO) (dell! CIN*)))
tempSO (not! (del2! SO)))
tempSl (not! (del2! SI)))
tempS2 (not! (del2! S2)))

(vset! (BSO BSl BS2 BS3 BS4 BS5 BS6 BS7) (dec3to8! tempSO tempSl tempS2))

Figure 5.1: Input to v.qnsdl for Tiil.rrfn.ro Logic for AUIOINC Data Path

{=

^O-^^^"^"0"" ""D>""

fcj>-

--oo>H
lEMx-

-qh>^

0-0°

3Hoa

OECOOER

Figure 5.2: Gate Level Description of Interface Logic for AUIOINC Data Path

43

44

The input file is used to generate a sdl file using the eqn2sdl tool. The layout
corresponding to the sdl file is generated using Wolfe and is shown in Figure 5.3.

5.6 Software organization of eqn2sdl

This tool is also written in Franz Lisp and utiUzes the Flavors package. Thecode is
partitioned intoseveral functions spread over several files. The main phUosophy of the tool
is based on enhancing the Lisp by defining functions which the user can utUize to express
the logic as a set of Lisp expressions. In order to avoid confusion with the standard Usp
functions for doing logic, aconvention was adopted tohave an exclamation mark (!) at the
end of the newly defined functions. Some of these functions are primitive functions in the

sense that they directly map to a single standard ceU. The other predefined functions are

Uke macros defined in terms of theprimitive functions. For example, the function or! which
forms the logical-OR. of any number of arguments is in fact defined in terms of primitive
functions or2!, or3! and or4! which correspond to ORing oftwo, three and four arguments
respectively. These primitive functions or2!, or3! and or4! are mapped to actual standard
cells.

Although a fairly extensive set of functions has been provided which takes fuU

advantage of all the standard cells existing in the MSU standard ceU Ubrary, the tool has
been designed tobe extensible such that the user can define his own new primitive functions
(which map to some standard ceU he has designed) or new utiUty functions which act as
macros. These can be defined either as part ofthe input file (which is just aLisp program)
or in a default file called .eqn2sdl in the current directory or the home directory. In the
Lager example given before, the user has defined functions dell! and del2! which are used

as macros. A special Lisp function called newfun has been provided which lets the user

define a primitive function, the ceU it maps to and the terminal information. For example,
the commands

(newfun sum! 1850 (nonpermutable 1A IB 2CIN) (SUM CO) 1)

(newfun carry! 1850 (nonpermutable 1A IB 2CIN) (SUM CO) 2)

declare two functions, sum! and carry!, both of which take three arguments and
both map to the same standard ceU number 1850. The difference Ues in that the function

sum! utUizes the SUM output of the ceU whereas the function carry! utiUzes the CO

GjpfflSffiGipNDQKLGNDSlG
™t-AC '̂gHIT-SG^barj r|WLAXCH.PlAlg>ri(g| tt=POPj

Figure 5.3: Interface Logic for AUIOINC Data Path

WEN.PHIl'

BSl"

46

output of the ceU. Further, the declaration says that for both of these functions the inputs

are nonpermutable. Note that this is only partly truesince the first twoinputs are mutuaUy

permutable but this feature has not been implemented yet. At present, the tool can take

advantage of permutable inputs only if all theinputs are permutable. The function newfun
is in fact a Lisp macro which translates the given information into a large Lisp function for

each such declaration. The Lisp function so created is then executed when the user uses it

in the input file.

The tool works by first loading the internal (predefined) functions and then ex
ecuting the user input file as a Lisp program. As the user input program is executed, a
network of interconnected objects is created. There are twotypes of objects: net and mod
ule. Each module has several net objects attached as its inputs and one net as its output.
WhUe executing the user input, the tool automatically tries to do common subexpression
eUmination so that there are no redundant modules. During this eUmination, the tool tries

to take advantage of the permutabiUty of the inputs of a function in order to minimize the

number of modules. The sequence in which the user has given the expressions matters in
logic having feedback. The basic phUosophy adopted is that if any argument of a function
has not yetbeen assigned a value then it is tagged as unassigned and as soon as a later step
assigns a value to it, that value is used. This mechanism enables the user to give recursive
definitions also, resulting in circuits having feedback. A special function merge! has been
provided to merge two variables so that the outputs of two expressions can be forced to be
identical to each other.

After the user program has been executed, a network of the two types of objects
has been setup. Now, post processing is done on this network to eUminate redundant objects
and then output the sdl file.

One advantage of the above scheme is that by appropriately redefining the func
tions, the user input file can berun ina loop as a Lisp program to provide logic simulation.
This extension would require local memory to be associated with each object to take care
of the latency aspects. However, this type ofsimulation is not very efficient as compared to
the standard event driven simulators. A disadvantage of treating the user input as a Lisp
program is that the tool loses the capabiUty of doing extensive error diagnostics since the
control is lost to the Lisp interpreter.

Some interesting extensions to this tool are also possible, including the extension
to handle complete data path descriptions as a set of Lisp expressions so as to provide a

47

somewhat higher level interface for the data path description than is provided by the sdl
syntax.

Chapter 6

Test Data Paths

This chapter contains some examples of data paths designed using the system
described in the previous chapters. After that, some benchmarkresults about the execution
time is given.

6.1 Example 1: A Simple Data Path to do Addition

This data path is a simple example chosen to Ulustrate the various steps involved
in designing a data path using this tool. The goal was to design a data path which takes

two inputs and outputs their sum. The data path is to be pipeUned with latches present
at the input and the output. The first step in the design is to construct a block diagram
of the data path using the standard blocks available in the system Ubrary. In this case,
we decide to use the blocks called adder and latch-phl. The adder block is a ripple carry
adder. It has two carry chains for enhanced speed and is implemented using three types of
leafceUs. However, the user need not worry about these details. The mechanism to generate
an n-bit version of this adder is encoded in the file adder.sdl in the system Ubrary. This

file also has information about the terminal names. Similarly, to implement the input and
output latches of the data path it was decided to use the block called latch-phl from the

system Ubrary which is a dynamic, negative logic transparent latch, i.e. the output foUows
the negation of the input when the clock is high and retains the old value when the clock

is low. Since it is dynamic, the output does not retain its value for long once the clock is
low. The information about this block is encoded in the file latch.phl.sdl. The sdl files for
the two types of blocks used in this data path are shown in figure 6.1.

48

sdl FILE FOR ADDER BLOCK:

(parent-cell adder)
(lisp-function

/the terminal mapping
(deftermmap adder
(if (and (equal terminal "CIN") (= 0 i))
then (useterm "CIN")
elseif (and (equal terminal "CININV") f= 0 i))
then (useterm "CININV")
elseif (and (equal terminal "COUT") (=• i msb))
then (useterm "COUT")
elseif (and (equal terminal "COUTINV") (= .: msb))
then (useterm "COUTINV")
elseif (and (equal terminal "C0UTN-1INV") (*• i msb))
then (useterm "CININV")
elseif (and (equal terminal "INI") (oddp i))
then (useterm "INI")
elseif (and (equal terminal "INI") (evenp i))
then (useterm "INI")
elseif (and (equal terminal "IN2") (oddp i))
then (useterm "IN2")
elseif (and (equal terminal "IN2") (evenp i))
then (useterm "IN2")
elseif (equal terminal "OUT") then (useterm "OUT")
))

/the cell mapping
(defcellmap adder
(if (and (oddp i) (** i msb)) then (usecell "adder_odd_tapd")
elseif (evenp i) then (usecell "adder_even")
else (usecell "adder odd"))))

sdl FILE FOR latch_phl BLOCK:

(parent-cell latch_phl)
(lisp-function

/the cell mapping
(defcellmap latchjphl (usecell "latch_phl"))

/the terminal mapping
(deftermmap latch_phl
(if (equal terminal "IN") then (useterm "IN")
elseif (equal terminal "OUTINV") then (useterm "OUTINV")
elseif (and (equal i msb) (equal terminal "PHIA")) then (useterm "PHIA")
elseif (and (equal i msb) (equal terminal "PHIAINV")) then (useterm "PHIAINV")

Figure 6.1: sdl files for the blocks used in data path example 1

50

Figure 6.2 shows the block diagram of the data path.

The next step is to write the netUst description of the desired data path. This

is done using the sdl syntax. Using the block diagram for guidance, the sdl description is

written easUy and is shown in figure 6.3. The description consists of three main things:
the Ust of blocks or sub-cells used, the netlist and the constraints on terminal location.

The data path is parameterized by the number of bits N and this is declared in the first

line of file. The various sub-cells are given instance names. Thus, the block adder has the

instance nameADDER. The twoinput latches are of the same blocktype but have different

instance names, INPUTREGl and INPUTREG2. The net Ust consists of a Ust of nets and

the terminals connected to each of them. There are two types of nets: the data nets and

the control nets. Only the data nets are routed. The control nets are just extended to the
top and bottom of the data path.

Finally, theDesign Manager is run with thedata path sdl file as input. TheDesign
Manager calls the DPC which generates the data path. An 8-bit version of the data path
was generated and had an area of 646A by 516A. The layout is shown in figure 6.4.

6.2 Example 2: Lager AUIOinc Data Path

Thisdata path is the generic data path used in the processors designed using Lager
SUicon CompUer [18]. The data path is a simple pipeUned data path with an adder and a
barrel shifter. It has three registers, two ofwhich are pipeline registers. The data path has
been used in a lot of appUcations involving multiply and accumulate type operations. The
block diagram of the data path is given in figure 6.5. The corresponding floorplan in terms
of the functional blocks existing in the system Ubrary is given in figure 6.6.

The sdl file input for the data path is shown in figure 6.7 and the final layout is
given in figure 6.8. The logic diagrams for the the cells used in the design of this data path
are shown in the figures 6.9, 6.10 and 6.11. The layouts of the cells used in this data path
are given in the appendix.

The data path shown is 4 bits wide and has an area of 370A by 1410A. This data

path has been submitted for fabrication to MOSIS. An earUer 20-bit hand-routed version of

this data path using the same leafceUs has been fabricated in a3 micron CMOS technology
and tested upto 8MHz approximately as part of a complete Lager processor. The layout
area for the20-bit hand-routed data path was 1260A by926A, which corresponds to an area

NCUXK1 ncukci* maooct

H
outclock outdoor

4 k

>' >'

«t

ADDER

our

ouiwnna

m oumtf

our

«r
(kttjui)

^~~3 k T i

CMWVW CARRVM

Figure 6.2: Block diagram of the data path in example 1

51

(layout-generator dpc)
(parent-cell exampledp (parameters N))
(sub-cells

(adder ADDER (parameters (N N)))
(latch__phl INPUTREGl (parameters (N N)))
(latch_phl INPUTREG2 (parameters (N N)))
(latch_phl OUTPUTREG (parameters (N N)))

/data nets
(net DATAO

(net DATAl
(net DATA2

(net DATA3
(net DATA4

(net DATA5

((parent Ain*) (INPUTREGl IN)))
((parent Bin*) (INPUTREG2 IN)))
((parent OUT*) (OUTPUTREG OUTINV)))
((INPUTREGl OUTINV) (ADDER INI)))
((INPUTREG2 OUTINV) (ADDER IN2)))
((ADDER OUT) (OUTPUTREG IN)))

/control nets

(net CNTLO (
(net CNTL1 (
(net CNTL2 (
(net CNTL3 (
(net CNTL4 (
(net CNTL5 (
(net CNTL6 (
(net CNTL7 (

(parent CARRYIN) (ADDER CIN)))
(parent CARRYIN*) (ADDER CININV)))
(parent INCL0CK1) (INPUTREGl PHIA)))
(parent INCL0CK1*) (INPUTREGl PHIAINV)))
(parent INCL0CK2) (INPUTREG2 PHIA)))
(parent INCL0CK2*) (INPUTREG2 PHIAINV)))
(parent OUTCLOCK) (OUTPUTREG PHIA)))
(parent OUTCLOCK*) (OUTPUTREG PHIAINV)))

/constraints on parent terminal positions
(geometric-constraint-list
(terminal

(side left))
(side right))
(side right))

)

(Ain*
(Bin*
(OUT*

)

Figure 6.3: sdl file for data path in example 1

52

CD
i i l 1 I E 3 1 i in i ii ™l!1| |! i [1 Li: ! -

fbp |
ft h

T n rm—a hwit tti! _j—» _;__:_

s ;p 9 « fi '--"Hfl j|][C j
fli^I ^j1 h

•sS

:3C

UaM

3 IS
: " Ml litis i irfKJ
H f 5

^1 • tin
J-| -n

HJ ±

:

jtefl
r \i f it flH • 1 ac '

nlf ^njjjTBE

:S!
IX fc

t
fiHiffils

Smtil «sfeiSH|2Si:~t!Ij *T1*t" ! :'"•fl

Si t S* ™*U i[!
fiNm •fiffj

:

MtjjH g•i'jji1'"iMiii rrnTTTfi iattm iiraLacm

j
l9 T

•[<5«
liSlfi

m H ^HTH?? ' 1 W .. fi"

.3 li-C 1 ~ . . _

:
ilk y__J|j! a bi TiU'Biit. na; Hl

.«"=-

Si
• Iw" -1 «I|§

tP IT fe—ij! - •'til '*t» f °MH J ll « gaSfctn
_ •• • wMrL J t I : 1[^,™™, ™u

li^ipffll
k| EoM^Mmus 19 Stn

FflrirH "•

Sail §Mjj. k&J J
119

Jg|m ||l ! 14

:9E5 -11 ft imnf< j |J =j&S3jHlifl$

1 i
, u i 1 ti i i ill 1 D ' 1 Ii*1'! 1a iti

Figure 6.4: Layout of the data path in example 1

MBUS

(Inter-ProctMor

•9

•?

MEMORY DATA BUS

K>

BLOCK

MOR

REGISTER

r<

±—± ±— -Jk ±__±

\X
ADDER

ACCUMULATOR

REGISTER

BARREL

SHIFTER

SOR

REGtSTSER

Figure 6.5: Block diagram of Lager data path AUIOINC

54

DATA

RAM
nn/TBiocK

1
MM

J
KUXA

J
SHFTER

L
soa (AOOOVUNIOOC ACO£R •

rni 1 r
t-r— tCCUUUTOA i—I

Figure 6.6: Floorplan of Lager data path AUIOINC

If

(layout-generator tipc)
(parent-cell lagerau (parameters N))
(sub-cells

(LGinputstage INPUTBLOCK)
(latch MOR (parameters (type dynamic) (logic negative)))
(mux MUXA (parameters (type 2tol) (logic negative)))
(barrelshifter SHIFTER (parameters (type R6L1)))
(latch SOR (parameters (type dynamic) (logic negative)))
(complementzero ADDERAINLOGIC)
(adder ADDER)

(mux MUXB (parameters (type 2tolzero) (logic negative)))
(accumulator ACCUMULATOR (parameters (type LAGER)))
(buffer ACCBUFFER (parameters (type trlstate) (logic negative)))
(buffer MORBUFFER (parameters (type trlstate) (logic negative)))

/data nets

(net DATAOO ((parent RAMLINE) (INPUTBLOCK RAMIO) (MOR IN)))
(net DATA01 ((parent MBUS) (INPUTBLOCK MBUSIN) (ACCBUFFER OUT*)
(MORBUFFER OUT*)))

(net DATA02 ((MOR OUT*) (MUXA Ain) (MUXB Ain) (MORBUFFER IN)))
(net DATA03 ((MUXA OUT*) (SHIFTER IN)))
(net DATA04 ((SHIFTER OUT) (SOR IN)))
(net DATA05 ((SOR OUT*) (MUXA Bin) (ADDERAINLOGIC IN)))
(net DATA06 ((ADDERAINLOGIC OUT) (ADDER Ain)))
(net DATA07 ((MUXB OUT*) (ADDER Bin)))
(net DATA08 ((ADDER SUM) (ACCUMULATOR IN)))
(net DATA09 ((MUXB Bin) (ACCUMULATOR OUT) (ACCBUFFER IN)))

/control nets

(net CNTLOO ((parent NLATCH.PHI2) (INPUTBLOCK NENMBUS)))
(net CNTLOl ((parent ULATCH.PHI2bar) (INPUTBLOCK NENMBUS*)))
(net CNTL02 ((parent LOAD) (MUXA SELA)))
(net CNTL03 ((parent SHIFT) (MUXA SELB)))
(net CNTL04 ((parent BSO) (SHIFTER SHFT-1)))
(net CNTLOS ((parent BSl) (SHIFTER SHFTO)))
(net CNTL06 ((parent BS2) (SHIFTER SHFT1)))
(net CNTL07 ((parent BS3) (SHIFTER SHFT2)))
(net CNTLOB ((parent BS4) (SHIFTER SHFT3)))
(net CNTLOB ((parent BSS) (SHIFTER SHFT4)))
(net CNTL10 ((parent BS6) (SHIFTER SHFTS)))
(net CNTL11 ((parent BS7) (SHIFTER SHFT6)))
(net CNTL12 ((parent SORbar) (SOR INV OUT)))
(net CNTL13 ((parent ZEROA) (ADDERAINLOGIC ZERO)))
(net CNTL14 ((parent INV) (ADDERAINLOGIC INV)))
(net CNTL1S ((parent MEMB) (MUXB SELA)))
(net CNTL16 ((parent ZEROB) (MUXB SELZERO)))
(net CNT1.17 ((parent ACCB) (MUXB SEl.B))}
(net CNTL1B ((parent NOFbar) (ACCUMULATOR NOF*)))
(net CNTL19 ((parent POF) (ACCUMULATOR POF)))
(net CNTL20 ((parent A1P.PIII2) (ACCUMULATOR A1P.PHI2)))
(net CNTL21 ((parent AlP.PHI2bar) (ACCUMULATOR A1P.P1II2')))
(net CNTL22 ((parent XMIT-ACC) (ACCBUFFER CNTl.)))
(net CNTL23 ((parent XMIT-ACCbar) (ACCBUFFER CNTLlnv)))
(net CNTL24 ((parent XMIT-MOR) (MOR CNTL)))
(net CNTL25 ((parent XMIT-MORbar) (MOR CNTLlnv)))
(net CNTL26 ((parent HEN.PHI1) (INPUTBLOCK SELMBUS)))
(net CNTL27 ((parent PHI2INV) (INPUTBLOCK PRCHRG)))
(net CNTL2B ((parent PHI2INV) (SHIFTER PRCHRG)))
(net CNTL29 ((parent PHII) (ACCUMULATOR CLKl)))
(net CNTL30 ((parent PHIllnv) (ACCUMULATOR CLKlinv)))
(net CNTL31 ((parent CIN) (ADDER CIN)))
(net CNTL32 ((parent CIN*) (ADDER CIN')))
(net CNTL33 ((parent COn) (ADDER COUTn)))
(net CNTL34 ((parent COn*) (ADDER COUTn*)))
(net CNTL35 ((parent COn-1') (ADDER COUTn-1*)))
(net CNTL36 ((parent BSDIN) (SHIFTER DIN)))
(net CNTL37 ((parent SIGN*) (ACCUMULATOR SIGN)))
(net CNTL38 ((parent FLAG1) (ACCUMULATOR OUTA)))
(net CNTL39 ((parent FLAG2) (ACCUMULATOR OUTB)))

/constraints on parent terminal positions
(geometric-constraint-list
(terminal

(RAMLINE (side left))
(MBUS (side right))
)

)

Figure 6.7: Input file for AUIOINC data path generated by DPC

n ffl—ffi • • • •

Ii NI ,;« l|i|} ilmMUllliuiUUinnilill : fiiflfi-ljisa:-ijj[|;.;||||n iHPflllfl"- .HHIJ8 a-"|pg!I||HOii!IHBni" " ™ i ".-"_[r^" I pHsijip j§ InHi:!;::::: Jiffiirillli Hrsiingniiilliliy :||njKin|l| i sssiiii1} ipb
O i»!IHi!!«il lO'Dl^IIirJIIIrt-iil^'KC1vjmmgsmgf

MyfflHffil

•auijEjim ••mum

jiEu
JjkUu.'i™'?l?!tj||!!: TWJI-

A'-V^E- •rrUtf Wm ;-_; l^.Ij IMnotfii

P1-
USI 1 i a:

JJ!
l!l!t:l!l!l
Ililir.iUin Hail n 1 *n Wi

iili iriC:(ia?«i:niiHr:i?riiiiifiiiS palpl4~£T5P£r ^ "!*a fa iiffFTjllHRlliiijlftiJHt

iivTTrri fl:E3'f:i'^5:.r! r~t

iiiliiiililil
•mips
•iibU JrIII il]l!i!j!i!|;|!l!!!l!j! iiiiiiiiil

Hill ,Uil 1 piliiilij[ililiW II

M-fl liil|| 'i^HJf
T'iii»iJ1S

4;mj^3:2

^TTTnFH

ljjja»LS!

iF
l| iiiiii:il;i|ii!

)!<l!i!ljj!l!l!!>l!!> ;l!l!l]l:l1Ilili
illllllBilllWilllll

^Jljjii.jr;

iiiiiiiiil

f^;g:3;=^;s;||fej^:£r
i*S^l:g:^=;;rj^>!

l^jr tSffiIII IBS;m -"-.-*.?•

iiiiiiaiiiiiilMiiiHiiii
igpSfflfll
'•••EHiiHi'iimUli

J^!H/.Viir2 J:l
HinilHHtll yiiTaiiayi Uiilw«hMMiBi««iilHaH:a r ' |||li[iin^'H|||
Hilll jl:-:::i3|| !.«! im * hi it" Hii i '!!! tt iili- ii||nil|||gii;;li!i|||j|!ii!pg:gii||HHHiHii

1

iiliiilllilini^lllllSjlIiiilliiiiiMiiinllSliiiiiililiiil II lliiiiilijlilil liilliii np!jn|fjj^UJ|[|gn|jp||j| pg-iiiHsH!!!^ j:j::j:;:i;j iiiiifl
a M •o tiihl «• •I • ml •• j ••• ••• i a in a

jp_
MM StJ

Figure 6.8: Layout of AUIOINC data path generated by DPC

Complement-aero logic

Dynamic Latch (negative logic)

2-to-1 Multiplexor(negative logic)

HI
SEUBUB II

Memory10 Block for Lager DataPath

Tri-State Buffer (negative logic)

2-to-1 Multiplexor(negative logic)

with control for making the

output zero

-CD

Accumulator for Lager Data Path

PWttW

AccumulatorforLagerDataPath(MSBSlice)

Figure 6.9: Circuits for some of the cells used in Lager AUIOINC data path

58

:=L>

J

?

rntFT ;*^fc?
u.
-4
ri
4

H[

^—*

>

H

iff h

E*w Btl Pnt&kifi

H £

If

OddBRPootton

sir

J

59

V

Figure 6.10: Circuit for the ripple carry adder used in Lager AUIOINC data path

^T^T^TTiTTiT^

on •• an •<

iMfrUSB Partial

fr

nemo T

kjr<>-4J

Figure 6.11: Circuit for the barrel shifter used in Lager AUIOINC data path

60

61

of 315A by 926A for 4-bits. The area of the hand-routed data path is nearly 45the tool. The

critical path for the data path is the carry chain of the adder which is of the ripple carry
type. The carry delay per stage has been found to be about 2.5ns by SPICE simulation
and about the same delay values have been found on some test adders.

6.3 Example 3: Projection Collector Data Path

This data path is part of an image processing chip used for calculating the Radon
Transform and the Inverse Radon Transform of an image. This data path is used for

calculating the contour along which the projection is taken and is known as the Contour

Image Generator data path. It basically calculates which contour does a particular pixel
in an image lies on. For more details about this data path, please refer to [17]. The block
diagram of this data path is shownin figure 6.12.

The final layout is given in figure 6.13. The data path shown is 10 bits wide and

has an areaof 758A by 2520A. This data path has been submitted for fabrication to MO SIS

as part of a complete image processing chip.

6.4 Example 4: Data Path for a Robot Controller

This data path has been designed for use in a processor being designed for robot
control application. The data path is a modified version of the AUIOINC data path de
scribed earlier. Many blocks used in the AUIOINC data path have also been used here and

this demonstrates the flexibility allowed by the DPC in designing the data paths. A block
diagram of the data path is shown in figure 6.14. The layout of a 4-bit version of this data

path is given in figure 6.15 and the area of the data path generated is 370A by 1694A.

6.5 Benchmarking for execution time

One of the major concern while making the choice of LISP as the implementation
language was the speed problem. Initially, interpreted LISP was used but resulted inhope
lessly slow execution times. Later on majority of the code was compiled and that resulted
in substantial improvements. Still, as shown in this section, speed is a problem. Also, since
LISP takes a lot of core memory space, the system configuration can have a major effect

62

f f

<*

> ^

Control

*

register

>

/-\
register/
counter

register/
counter

r A A

_}

X

-» register

—>

Tr- r tJ v

MODLUT

DRAM

1Kx10

>2

-L»

>

\
V

/
t>register

\r

r

Contour

—>

>
f*. V

Barrel

ShHter >

Address

>
f v ?

"On-
1 —<

Figure 6.12: Block diagram and the floorplan of the Contour Image Generator Data Path

Figure 6.13: Layout of the Contour Image Generator Data Path generated by the DPC

AU-ARITHMETIC UNIT

DATA MEMORY

MBUS

Serial out

Figure 6.14: Block diagram of the Data Path for the Robot Controller

64

uV2r
t

oOOo

<
2

+
a

e
i

O
*(4

Q
o2Ii
n

t
H

C
OJ
-l

n
o

fa

66

on the performance.

The data path chosen for the purposeof benchmarking the execution time was the

AUIOINC data path described earlier in this chapter. A 4 bit version was chosen and the

time spent by the program in the various phases of the software was measured. The time

spentin the actual computation versus the time spentin doing the garbage collection (which

is a function of the virtual address space size) was also measure. Finally, the benchmarking

was done on two different machines, a SUN 3/160 workstation and a VAX 8800. The results

obtained are as follow:

Test Data Path: AUIOinc, 4 bits

(I) SUN 3/160, 8 Megabyte Memory

a. Total processor time spent in

the frontend:

b. Total garbage collector time

spent in the front end:

c. Total processor time spent in

placement and routing:

(includes garbage collector time)

d. Total garbage collector time

spent in placement and routing:

(II) VAX 8800, dual CPU, 32 Megabyte Memory

a. Total processor time spent in

the frontend:

b. Total garbage collector time

spent in the front end:

c. Total processor time spent in

placement and routing:

(includes garbage collector time)

d. Total garbage collector time

32.9 seconds

15.0 seconds

181.8 seconds

89.6 seconds

11.7 seconds

5.0 seconds

66.3 seconds

67

spent in placement and routing: 31.7 seconds

As is apparent, nearly half the total time is spent on doing just garbage collection.

Further, VAX 8800 is nearly three times as fast as a SUN 3/160 for doing data path

generation using this tool.

For a 4-bit data path with 11 functional blocks and 10 data nets, it takes nearly

3.5 minutes of CPU time. This is a bit high, although not unbearable. The culprit of course

is LISP which results in very slow programs even when compiled.

Chapter 7

Conclusion

In the previous chapters a system to generate the layout of data paths starting
from a structural description was given. This system is now fully functional and is part of

the Lager silicon assembly system using the Design Manager as a front end. Several data

paths have been designed and have been sent for fabrication. Some examples include the

generic Lager data path, the new Lager data path which would be used in a robot controller

and two data paths being used in a processor used for calculating the projection of images
along an arbitrarily oriented straight line (radon transform).

After talking to some of the active users of this tool some problems have come

to light. Foremost of these is an overall unsatisfactory quality of routing particularly in
the case when there is a potential of doing river routing instead of channel routing. The
inter-slice distance is also large. This problem is related to the well layout problem. The
router does not layout the wells in the routing region and since the well layouts inside the

cells are assumed to be arbitrary, the router is forced to leave a large spacing between
adjacent cells. If this large spacing is not left then there are spurious design rule errors
within Magic, spurious in the sense that if Magic were to expand the wells correctly while
generating the cif files then we do not need to bother about these spurious errors. However,
unfortunately, experience has shown that Magic's well expansion is rather error prone and
that it is safer to leave enough distance between the cells. Substantial area may be saved
by reducing these inter-cell gaps provided the user does a check for these spurious errors.
An alternative solution is to enforce a fixed well layout pattern on the cell designers and
then let the router do the well painting. However, this idea was rejected after talking to
some of the users.

68

69

Besides the area loss resulting because of the wells, there is substantial scope of

improvement in the routing itself. The router used is a very simple one and use of a better

channel router needs to be looked into. The major drawbackwith the current router is that

it is a greedy router and does not try to go back and improve the routing already done.
Using good existing channel routers like YACR is a possibility. However, there are several

issues which need to be looked into. The first requirement is that in our application we
need a router capable ofgridless routing in three layers. The requirement ofgridless router
arises because cases where a grid cannot be defined occur frequently. The capabiHty of
routing in three layers is needed in the current scheme where all the three layers, metall,
metal2 and polysilicon are used. However, by prohibiting the use ofpolysilicon terminals,
the requirement of three levelrouting can be relaxed. The second issue is the mechanism of

interfacing to the router. Using file communication for interfacing to an external router will
result in too many system calls since the DPC requires a large number ofsimple channels to
be routed and this willresult in a large time overhead. A subroutine call based mechanism is

highly desirable toavoid this overhead ofsystem calls. Most ofthe existing routers (YACR,
Mighty) are in C whereas this tool is in Lisp. Fortunately, Lisp provides a mechanism for

calling C procedures from Lisp programs so that using these programs as subroutines is
a definite possibility. Alternatively a channel router based on a better algorithm can be
written in Lisp. Another feature which needs to beprovided in therouter is the capability
ofdoing river routing so as to be able to take advantage of cases where river routing is
the natural way to do the routing. A feature which is midway through implementation is
automatic placement of the blocks. A scheme based on one dimensional mincut placement
is being looked into.

As part of the new version ofthe Lager Silicon Assembly environment, an entirely
new strategy for the data pathgeneration is being explored. The new tool uses a tiling tool
called TimLager and a macro-cell router called Flint to generate the datapaths. There are
many changes in the new environment. The foremost is the fact that now OCT is being
used as the design data base. Also, we have moved away from Lisp as the programming
language in order to avoid portability and speed problems associated with Franz Lisp. The
new tool essentially uses TimLager to generate each individual n-bit wide blocks and then

does global routing to prepare the input for Flint which then does the detailed channel

routing. This tool is still in a development and testing phase but has already shown results
better than or comparable to the older tool.

70

7.1 Suggestions for Future Work

There are several directions in which the current system may be extended. One

thing which needs to be done is to allow the specification of the combined data path and

the interface circuitry in form of expressions like the input description to the eqn2sdl tool.

This would allow a structure independent description which is quite close to a behavioral

description. Initially one might attempt just a one to one translation of this description to
structure but at a later stage this maybe extended by using optimization techniques. The
advantage of such a description would be that the input would be close to the algorithm
description itself. Another area which may be investigated is to try simple optimizations
on the data path automatically, for example the number of registers. This might be a

compromise from the full data path synthesis problem but will provide the user a means

to easily explore the data path design space in order to arrive at a design suitable for the
current application. Finally, one can try solving the complete synthesis problem in which

the user specifies the algorithm in a high level language and the synthesis tool designs the
optimal data path for implementing that algorithm under some area and delay constraints

specified by theuser. The control unit for thedata path would begenerated as a by-product
of the data path synthesis. In this scenario, the current tool can be used to implement the
data path architecture designed bythe synthesis tool, which would generate asdl description
of the data path.

Bibliography

[1] Franz Lisp. Reference Manual, Opus 42. Franz Incorporated, September 1985.

[2] Chuen-Shen Shung andRajeev Jain. Lager III Programmer's Manual. U. C. Berkeley,
1987.

[3] Chuen-Shen Shung and Rajeev Jain. Lager III User's Manual. U. C. Berkeley, 1987.

[4] FLINT UserDocumentation. U. C. Berkeley.

[5] Eric Lettang. Pad Router- User Documentation. U. C. Berkeley, 1987.

[6] G. Hamachi R. Mayo J. Ousterhout W. Scott and G. Taylor. Magic(l) and Magic(5)
Berkeley CAD Tools User's Manual, 1986.

[7] J. Rowson and B. Walker. Inside a 2901 Datapath Compiler. VLSI Systems Design,
May 1986.

[8] D. Bursky. Fast silicon compiler optimizes math blocks. Electronic Design, April 1986

[9] P. Ruetz. Data Path Generator. Lager I Documents

[10] A.D. Lopez and HF S.Law. Adense gatematrix layout method forMOS VLSI. IEEE
Transactions on Electron Devices, August 1980

[11] Chi-Min Chu. Evaluation of Array Type Generation for Cell Library Layout. M.S.
Thesis, U.C. Berleley, 1987

[12] MOSIS, Information Sciences Institute, USC. MOSIS scalable and generic CMOS
design rules. MOSIS report, revision 5, September 1986

[13] R. Rudell. Wolfe - Oct Interface tothe TimberWolf Standard Cell Placement Program.
Berkeley CAD Tools User's Manual, 1987

71

72

[14] Carl Sechen and A. Sangiovanni-VincenteUi. The Timberwolf Placement and Routing
Package. IEEE Jornal of Solid-State Circuits, April 1985

[15] R. Rudell and R. Segal, bdsyn - BDS subset translator for describing logic networks.
Berkeley CAD Tools User's Manual, 1987

[16] Peter Moore, David S. Harrison, Rick L. Spickelmier and A. R. Newton. Data Man

agement and Graphics Editing in the Berkeley Design Environment. ICCAD, 1986

[17] W. B. Baringer, B. C. Richards, R. W. Brodersen et. al. A VLSI Implementation of
PPPE for Real-Time Image Processing in Radon Space. Submitted to Workshop on
Computer Architectures for Pattern Analysis and Machine Intelligence, 1987

[18] Stephen P. Pope. Automatic Generation of Signal Processing Integrated Circuits.
Ph.D. Thesis, U. C. Berkeley, 1985

Appendix A

Manual Page for DPC

73

DPC(l) USER COMMANDS DPC(l)

NAME

DPC - bitslice datapath generator version 2

SYNOPSIS

DPC

DESCRIPTION

DPC is a tool to generate magic layouts of bit-sliced data
paths starting from a structural description of the datapath
in terms of interconnection of datapath functional blocks.
The width of the desired datapath (the number of bits) is
fed by the user interactively. Associated with each func
tional block is a lisp function (written •in terms of
some pre-defined macro definitions) describing how the
particular block is assembled from the leafceUs in the
cell library. A normal user need not concern himself with
this and can use the pre-defined blocks only. However, by
writing the appropriate lisp function, the user can
define his own blocks, using leafceUs already there in
the system cell library, or using new leafceUs. Asociated
with each leafcell is a cell-descriptor file which contains
information about the cell bounding-box and the terminal
locations. A utility function ,,mag2cd,, has been provided. If
the cell-descriptor file is not given, the program can
extract the information directly from the magic file of the
leafcell.

The tool can be used from inside the Design Manager (see
DM(1)) or can be used in a stand alone fashion. The syntax
for the various files are identical in the two cases. The
only difference is that when used from inside the Design
Manager, it is expected that the datapath is part of a
design hierarchy and is not the top level mdule. When used
from inside the Design Manager, the program passes the
relevant parameters to the Design Manager whereas when used
as a stand alone tool, it outputs a file giving the various
module parameters.

To use the tool to generate a datapath when generating lay
out using the Design Manager, please refer to the Design
Manager manual for the details. In order to use it as a
stand alone tool, the command to use is

DPC

The program then asks for the datapath name, the number of
bits in the datapath and other parameters. A detailed
description of how to use the program has been provided in
the sections below.

DESIGN RESTRICTIONS ON THE CELLS
The tool imposes certain restrictions on the cell design
style. The restrictions, however, do not seem to hinder the

Sun Release 3.2 Last change: 1/08/87

DPC(l) USER COMMANDS DPC(l)

design style too much. The restrictions and suggested design
styles are:

1. Although it is not necessary, try to keep the
heights of all your cells nearly equal. This results in
better area efficiency.

2. The width of cells used to make up a functional
block MUST be the same. For example, the cells at the
even and the odd bit positions of an adder must have
equal width.

3. Any layer, including the well can be used inside the
cells.

4. All the data terminals MUST come out at the sides
and should be in one of the following layers: M2, VIA,
POLY, POLYCONTACT.

5. The data terminals should be "sufficiently" apart.
This is rather vague since the terminal spacing
requirement depends on the net connection to a certain
extent. A safe thumb rule is to have the terminals at
>=4 lambdas apart and the terminals themselves 4 lamb
das wide in the SCMOS technology. This will ALWAYS
work but leads to wasted area in many cases. A better
spacing requirement is that the terminals be spaced
such that one should be able to place minimum sized
contacts to Ml next to them, such that all the contacts
lie on the same vertical column.

6. The control terminals, power/ground and clock lines
of the cells should come out at the top and bottom
edges in one of the following layers: Ml, POLY and
POLYCONTACT. Please note that this version of the pro
gram does not allow the top and bottom terminals to
come out in DIFFUSIOn and DIFFUSIONCONTACT. These ter
minals are extended to meet the top or bottom edge of
the slice. Further, the top terminals of the msb slice
and the bottom terminals of the lsb slice are brought
up to vias for compatibility with the macrocell router
FLINT (see FLINT(1)). This requires that the top and
bottom terminals of the cells be sufficiently wide and
distant from each other. As a thumb rule, in MOSIS
SCMOS technology, these terminals should be >=4 lambda
wide and >=4 lambda apart, or 3 lambda wide and 5
lambda apart, or 2 lambda wide and 6 lambda apart, pro
vided no design rules are violated for the particular
terminal layer.

7. Since FLINT gives special treatment to the
power/ground and clock nets, a labelling scheme is

Sun Release 3.2 Last change: 1/08/87

DPC(l) USER COMMANDS DPC(l)

suggested for these terminals. The labelling scheme is:
the power terminals should be named by the regular
expression [vV][dD][dD]* (where, [vV] stands for v or
V, and * stands for any string; thus vDD23, Vdd!, VDD
are all valid names), the ground terminals as
[gG][nN][dD]* and the various clock terminals as
[pP] [hH] [il]l[il] [nN] [W]*,
[pP] [hH] [il]2[il] [nN] [W] *, [pP] [hH] [il]l* and
[pP][hH][il]2*. The program brings these terminals to
via at the macrocell edge and labels them as VDD[i],
GND[i], PHIlINV[i], PHl2lNV[i], PHIl[i] and PHl2[i]
where i is an integer >=0.

8. To enable better routing performance, try to provide
"feedthroughs" in the cells. These are pairs of termi
nals, one on the left side and the other on the right
side of the cell, which are connected to each other and
are NOT connected to anything inside the cell. A good
strategy is to provide these in M2 in order to avoid
high capacitance associated with POLY. The feedthrough
pairs should be labelled FEEDn where n is a positive
ineteger.

9. All the terminals should be labelled and there
should be no useless label at the edge of the cells .

USING THE PROGRAM AND AN EXAMPLE

This tool has been fully integrated with the Design Manager
and the input is in the form of the .sdl files. Please refer
to the Design Manager manual (also, see DM(1)) for the
details of the syntax of .sdl files. Most of the features of
the .sdl syntax are accepted. The program takes as input a
.sdl file describing the structure of the datapath, a bunch
of .sdl files for each of the blocks used by the datapath
and .cd (cell descriptor) and/or .mag (magic) files
corresponding to the leafcells used by the blocks.

The datapath is visualized as an interconnection of func
tional blocks (like adder, register, multiplexer) without
worrying about the number of bits. This structural descrip
tion is given in the .sdl file corresponding to the data
path. These functional blocks are referred to as blocks from
now on. Each block has some terminals associated with it.
For example, a n-bit adder has two n-bit inputs (say,
A[0..n-1] and B[0..n-1]), one n-bit output (say, S[0..n-1]),
a carry output (say, COUT) and a carry input (say, CIN). The
block itself is made up of leafcells, with a certain
leafcell being used at a particular bit position. Further,
each terminal of the block corresponds to a certain terminal
of a leafcell. For example, a n-bit adder can be made, say,
by using the cell msbadder at the msb position, evenadder at
the evn bit positions and oddadder at the odd bit positions.

Sun Release 3.2 Last change: 1/08/87

DPC(l) USER COMMANDS DPC(l)

The block terminals are mapped to some leaf cell terminal.
For example, the block terminal COUT maps to the carry out
put of msbadder. Similarly, the block terminal S (a n-bit
terminal) corresponds to the sum output of msbadder at the
msb bit position, to the sum output of evenadder at even bit
positions and to the sum output of oddadder at the odd bit
positions.

The .sdl file corresponding to the datapath must have a
parameter called N in it. A few other restrictions also
apply. For example, the bus-width option of the sdl syntax
should not be used. Also, the control nets should have names
which start with the string CNTL. The control nets should
have only two terminals, one of which should be a terminal
of the datapath and the other should be a control terminal
of a block. Lastly, the only geometric-constraints which are
honoured by the program are the sides of the data terminals
of the datapath. These sides should be either left or right
or can be a parameter. Please refer to the Design Manager
manual to know the details about the sdl syntax.

This description of how a block is made up of the leaf cells
and the terminal mapping is encoded as a lisp function in
the .sdl file associated with the block, using the lisp-
function feature of the sdl syntax. Some lisp macros have
been defined to make the syntax user friendly. Every block
has a .sdl file associated with it. In most cases the .sdl
for a block file is very simple, although potentially one
can utilize the full control flow mechanism of lisp to
describe fairly complex mappings. This encourages reusage of
leafcells in many different blocks.

Besides the .sdl files associated with blocks, the program
also needs the cell descriptor files (.cd files), which are
files associated with each leafcell and describing its
bounding box and terminal locations. These files can be
manually written by the user for each leaf cell. Alterna
tively, the user can just give the .mag files associated
with the leafcells and the program will automatically
extract the relevant information from it. In fact, the way
the program proceeds is as follows: The program first looks
for both the .cd file and the .mag file. If both exist and
the .cd file is newer, then the .cd file is used, else if
the .cd is older, a new .cd is created and used. If only .cd
file exists, it is used and a warning message is given. If
only the .mag file exists, it is used. Finally, if neiether
the .cd file nor the .mag file exists, an error message is
given and the program exits. A note of caution: please
ensure that the directory /tmp is writable by you.

In order to search for the .mag files, the following pro
cedure is adopted: The program first looks for the file

Sun Release 3.2 Last change: 1/08/87

DPC(l) USER COMMANDS DPC(l)

according to the path given in the .lager file in the work
ing directory under the heading DPC.mag (please see the
Design Manager manual for details about the .lager file),
then the program looks for the file according to the path
given in -/.lager under the heading DPC.mag. Next, the pro
gram looks for the file in the current directory and then in
the directory ,/MAGFILES. Finally, the program looks for
the file according to the path given by the UNIX environment
variable MAGPATH.

Similarly, in order to search for the .cd files, the follow
ing procedure is adopted: The program first looks for the
file according to the path given in the .lager file in the
working directory under the heading DPC.cd , then the pro
gram looks for the file according to the path given .in
-/.lager under the heading DPC.cd. Next, the program looks
for the file in the current directory and then in the direc
tory ./CDFILES. Finally, the program looks for the file
according to the path given by the UNIX environment variable
CDPATH.

The output magic files are placed in the directory .^data
path name>_layout where <datapath name, is the name of the
datapath. For example, in the case of the example above, the
output is put in ./lagerau_layout. In case of the stand
alone version, a <datapath name>.hdl file is also created
giving the bounding box and terminal information about the
datapath.

FILES

./.lager
-/.lager
./*.sdl

./MAGFILES/*.mag

./CDFILES/*.cd

./<datapath>_layout/*.mag

./<datapath>.hdl

SEE ALSO

DM(1) Design Manager User's Manual

Following are files for various examples and are located on
SUNs. It is highly recommended that you go through them to
know the syntax of the various files.

Following are the files for Khalid's datapath

~mbs/DM_v2/*. sdl

~mbs/DM_y2/CDFILES/*. cd

Sun Release 3.2 Last change: 1/08/87

DPC(l) USER COMMANDS DPC(l)

~mbs/DM_v2/MAGFILES/*.mag

AUTHOR

Mani B. Srivastava

DIAGNOSTICS

Provides some elementary error messages. Does not detect
spelling mistakes. Needs lots of improvement in this area.

BUGS

Following are some bugs and limitations in the program:

1. This problem is related to wells. At present the
program allows any type of well layout. As a conse
quence of this, the program leaves a worst case gap (9
lamdas in SCMOS) between cells to ensure that there are
no design rule errors. This results in substantial area
loss. One potential solution is to impose some discip
line on the ways the well are placed.

3. Error diagnostic is not good, partly because the
Design Manager itself does not do any error diagnostic.

Sun Release 3.2 Last change: 1/08/87

Appendix B

Manual Page for eqn2sdl

80

eqn2sdl(l) USER COMMANDS eqn2sdl(l)

NAME

eqn2sdl - equation to sdl converter

SYNOPSIS

eqn2sdl

DESCRIPTION

eqn2sdl is a tool to translate a description of logic given
in terms of a high level lisp like syntax to the sdl syntax
used by the Design Manager (see dm(l) and dm(5)). This out
put sdl file can then be used as an input to the Design
Manager to generate the layout. At present the output sdl
file is targeted at using the MSU Standard Cell library
although the syntax is absolutely general and in future the
tool may be enhanced to target at other styles of layout
generation, for example the Data Path Compiler (see DPC(l)).
Also, at present the only type of optimization done is com
mon sub-expression elimination so that at present there is a
fair amount of control over the final structure from the
input. However, this may change when more optimization is
done in the tool. Since the input syntax is a functional
syntax, it is not limited to combinational logic only.

The input syntax is basically Franz Lisp enhanced by a set
of functions implementing a lot of common functions used in
describing logic. All these added functions are dis
tinguished by an exclamation sign (!) at the end. A list of
valid functions is provided later in this manual. These
functions are used to express the logic as a set of expres
sions. The arguments to these functions are either another
such expression or variables declared by the user. There
are two types of variables, the first type are the formal
variables of this block (which correspond to the parent ter
minals in the sdl output) and local variables which are
meant for convenience in writing the input. Further, these
variables can either be scalar or one-dimensional vectors. A
word of caution however, the various functions impose res
trictions on the type of their arguments and return a value
of a certain type. It may not be possible to interchange a
scalar and a vector variable. The formal variables are
declared using the function parent! while the local vari
ables are declared using the function var!. The variables
can have names which are valid lisp atoms (i.e., any arbi
trary string of printable characters which may need to be
enclosed within vertical bars (|) if it is an evaluable lisp
expression or number or contains a metacharacter). A vector
variable x of dimension n is declared as (parent! (x n)).

A third type of variable is a parameter variable which are
declared using the function parameter! and are scalar. These
are meant to provide programability and are interactively
input at the beginning and then used within the user input.

Sun Release 3.2 Last change: 4/20/87

eqn2sdl(l) USER COMMANDS eqn2sdl(l)

A simple input would consist of a set of expressions using
the functions provided. However, advanced users can build
their own functions based on these primitives and then use
them. Also, the entire control flow mechanism provided by
lisp can be used to express the input thus allowing a very
flexible and powerful mechanism for programability depending
on input parameters. Note that the logic behaviour itself is
in a functional format and does not use the control mechan
ism of lisp. Thus, for example, the lisp function cond does
not in anyway imply a multiplexer in the logic.

The logic description is treated as a program and therefore
the order of expressions matters. Also, if any argument to
an expression has not yet been assigned a value, then it is
tagged and if at a later stage a value is assigned to it
then the tagged item gets that value. This general scheme
enables recursion and delayed assignments. This sequential
description of the logic behaviour is very useful in many
scenarios.

The basic function provided for assignment of variables is
set!. It can handle both scalar and vector variables. In
particular, if a vector is given a scalar value then all
elements of the vector get that value. Also, if a vector is
given a vector value, then the input value is truncated or
sign-extended to match the length of the vector to which it
is being assigned.

LIST OF FUNCTIONS

Following is list of functions currently avaulable for the
tool (besides, of course the standard lisp functions which
are used for programablity):

(parameter! pari par2 par3)
(var! varl var2 var3)
(parent! varl var2 var3)
(set! varl arg2)
(vset! l_varl l_arg2)
(or! argl arg2 agr3)
(nor! argl arg2 agr3)
(and! argl arg2 agr3)
(nand! argl arg2 agr3)
(xor! argl arg2 agr3)
(xnor! argl arg2 agr3)
(not! arg)
(eql! arg)
(sum! argl arg2 arg3)
(carry! argl arg2 arg3)
(del! argl cnt2)
(mux2tol argl arg2 cnt3)
(zero!)
(one!)

Sun Release 3.2 Last change: 4/20/87

eqn2sdl(l) USER COMMANDS eqn2sdl(l)

(merge! argl arg2 arg3 ..
(AorBinv! argl arg2)
(tristate! argl cnt2)
(dec3to8! argl arg2 arg3)

;0=(or! (and! 1A IB) (and! 2C 2D) (and! 3E 3F))
(and/or3_2 1A IB 2C 2D 3E 3F)

;0=(nand! (or! 1A IB) (or! 2C 2D))
(or/nand2_2! 1A IB 2C 2D)

;0=(nor! (and! 1A IB) (and! 2C 2D))
(and/nor2_2! 1A IB 2C 2D)

;0=(nor! 1A (and! 2B 2C))
(and/nor2_l! 1A 2B 2C)

;0=(nand! 1A (or! 2B 2C))
(or/nand2_l! 1A 2B 2C)

;0=(or! (and! 1A IB) (and! 2C 2D) (and! 3E 3F) (and! 4G 4H))
(and/or4_2! 1A IB 2C 2D 3E 3F 4G 4H)

;0=(or! (and! 1A IB 1C) (and! 2D 2E 2F))
(and/or2_3! 1A IB 1C 2D 2E 2F)

;0=(or! (and! 1A IB) (and! 2C 2D))
(and/or2_2! 1A IB 2C 2D)

;some functions involving flip-flop action

/transparent latch with reset
;works when clock low

;Q = [(Qn-1 * C) + (D * C')] * R
;QB = (not! Q)
(latchlevel! 1DATA 2CLK 3RST)
(latchlevel*! 1DATA 2CLK 3RST)

;nand latch

,-Q = (Qn-1 * R * S) + S'
;QB = (Qn-1' * S * R) + R'
(nandlatch! 1RST 2SET)
(nandlatch*! 1RST 2SET)

;nor latch

;Q = (S * R') + (Qn-1 * S' * R')
;QB = (S' * R) + (Qn-1' * S' * R)
(norlatch! 1RST 2SET)
(norlatch*! 1RST 2SET)

;D flipflop with S and R
/works on high to low edge

Sun Release 3.2 Last change: 4/20/87

eqn2sdl(l) USER COMMANDS eqn2sdl(l)

;Q = [(Qn-1 * C) + (Dn-1 * C)] * R
;QB - (not! Q) + R'

(latchaedge! IDATA 2CLK 3RST 4SET)
(latchaedge*! IDATA 2CLK 3RST 4SET)

;D flipflop with asynchronous R
/works on high to low edge
;Q = [(Qn-1 * C) + (Dn-1 * C)] * R
(latchbedge! IDATA 2CLK 3RST)

;D flipflop with asynchronous R
/works on high to low edge
;Q = [(Qn-1 * C) + (Dn-1 * C)]
;QB = (not! Q)
(latchcedge! IDATA 2CLK 3RST)
(latchcedge*! IDATA 2CLK 3RST)

;D flipflop
/works on high to low edge
;Q = [(Qn-1 * C) + (Dn-1 * C)]
;QB = (not! Q)
(latchdedge! IDATA 2CLK)
(latchdedge*! IDATA 2CLK)

FILES

./.eqn2sdl
~/.eqn2sdl
./input.eqn
./output.sdl

SEE ALSO

DM(1) Design Manager User's Manual

AUTHOR

Mani B. Srivastava

DIAGNOSTICS

Provides reasonable error messages. Errors relating pri
marily to the lisp syntax are taken care of by the built-in
lisp error handler.

Sun Release 3.2 Last change: 4/20/87

Appendix C

Circuit Diagrams of the Cells in
the Library

85

List of Leafcells in the Library

Name of the cell

A. ADDER:

adder_even
adder_odd
adder_odd_tapd

B. COUNTER:

counter_even

counter_odd
countersetgnd
countersetvdd

countersetx

C. LATCHES:

prechrg_latch
latch_phl
latch_ph2
scanlatch_phl

clocked_buffer
clockedinverter

D. MULTIPLEXORS:

inv2tolmux

2tolmux

inv2tolmuxzero

E. RANDOM LOGIC:

inverter

inverter4

invertersense

trist_buffer
nandnor

andnorl

bufferandnorl

bufferbig
buffersmall

dual_buffer
xfer_gate
xornorl

F. REGISTER:

register
scanreglPort
scanreglPortmx
scanreg2Port
scanreg2Portmx

G. ZEROS:

zero

isozero

size

46 x 212

40 x 212

40 x 212

48 x 232

48

48

48

48

232

11

11

11

44 x 50

39 x 52

55 x 71

53 x 100

38 x 48

35 x 45

42 x 53

43 x 69

44 x 61

33 x 31

46 x 38

33 x 31

34

41

51

51

24

24

51

40

56

48

64

96

96

50

46

45

46

75

46 x 105

50 x 147

50 x 147

58 x 147

58 x 147

37 x 19

27 x 49

comment

Ripple-carry adder even slice.
Ripple-carry adder odd slice.
Ripple-carry adder odd slice with CININV also
out top.

Loadable two-phase counter with count enable;
no pass gate XOR in 1/2 adder.
Odd slice of above.

Optional preset for setting IN on counter to gnd.
Optional preset for setting IN on counter to vdd.
Optional preset for setting IN on counter to pass.

Domino dynamic latch with non-inverting output.
Single-phase dynamic latch with inverting output.
Two-phase dynamic latch with inverting output.
Scanpath single phase dynamic latch with inverting
and non inverting outputs. (Scan operation itself
is two phase.)
Clocked inverter with non-inverting output.
Clocked inverter with inverting output.

Inverting 2-to-l MUX.
Non-inverting 2-to-l MUX.
Inverting 2-to-l MUX with zero.

Inverter

Four inverters stacked on top of each other.
Inverter with threshold shifted for sense-amp
operation.

Tristate buffer

Outputs Minl.in2) and also Minl+in2)
Outputs Min.cntll+cntl2)
Outputs (»in.cntll+cntl2)
Buffer

Buffer

Two buffers in one cell
Transfer Gate

Outputs Mcntl2+(cntll xor in))

Single-port static register.
Single-port static register with scan path.
Same as above but mirrored about the X axis.
Two-port static register with scan path.
Same as above but mirrored about the X-axis

Single strong pull-down.
Isolated zero: pass-gate followed by pull-down,

Inl

in2

H fjj"

Inl

In2

HC

HC

•-HC

HC H

Adder even

Adder odd

,f

HC

HC

«~
H

HC

HI

?

HC

HC

HC

rHI

"^ cininvY

jHI

H
H o

Hi H if JH

< '̂ H H~il

£
C

C

<lf
He

H

>

DM

>

cout v

cin

>

Jl°-

>

coutlnv

sum

It-

cininv V

AA

H t

31-

JH

"]P

HC

V rir-

ADDER

c!n>

cininv

Inlnvv

"»* loaT"

HC HI

€.

c

badlnv

1

coutlnv

"TphlBinv

HC 1 H F
HC -J HC 3" HCjhll

outinv

outT T
C 1MW HC

I
cin\3-r<

coutinv >

>HC

^i>
Half-addercarryand sum

Countereven

Half-addercarryand sum

Counter_odd

COUNTER

phiAinv

1 pf
CH -

HC

phiAinv

phiA1

">-n- J-d—•
phiJ I 1f~ TpMB

phiBinv

<JI
cntlinv

HC

outinv

outinv

H I
end

HC HC

i

£
cntlinv

Latch_ph1

Latch_ph2

out

Clocked buffer

HC

HC

outinv

_^. Clockedinverter

i LATCHES

scanin

prchrgj,. I
evalclki

C

c

in

phiAinv phiB I phiBinv ~T~

^—• 1——
pwA —|r

outinv

cntioutinv

phiC

T
phiCinv

Or -
HC

Prechrgjatch

scanout

Scanlatch_phl

V outinv — v out

LATCHES2

-<irs<cnlH

in2>

< V cntl2

inl

c >-<in2

cntH
>

ii
H

Inv2to1mux

H n o—< cntll

in2>

<€ JMcntE

H f
inl

> C 1 in.2

c

cntll

2to1mux

H P—< cntll

zero<

<€

in2i < InP-r<
cnl!2

inl

c j| *in2
lnv2to1muxzero

zero> |f cntll > 1

i"Mi i H-
MUXES

>

inl

>

H I
HC

H I
HC

out

Inverter

outl in2

—> >—

H E"
HC

out2

—>

in3

HC

HC

out3 in4

—> >—

H E"
out

HC Invertersense

f

HC

oeninvIV If-

HC
out

JHC

!i

Trist buffer

HC

out4

—•

InvortoM

RANDOM 1

H FHI
outnand

inl

c

In2 c

H F

HC H F
outnor

Nandnor

,F
?

cntll iF
HC HI

HC
H ?

\

H F
HC

HC H e
outinv

Xornorl

RANDOM2

inl

H f Hf
HC Ml

H f hF
He Md

HC

HC

phiAinv

1
o

phiA

F

HC

in2

out

-> out

Bufferbig

out

Buffersmall

6ut1

hF HC

0Ut2

Dual buffer

Xfer_gate

RANDOM3

cntl2-

cntll

H

F
^c

HC

|o <cntll

outinv

]Hcntl2

11

cntloutl

F

cntE I
> ———Cj F

HC

HCC
cnth

cntlout2

cntll• cnui

|0—<

cntt2]H
H 11

Andnorl

F
outinv

HC

Bufferandnorl

RANDOM4

databus

oeninv

rt 1

shiftin

databus

Register

databus

out

shiftoutinv

1

T
shiftout

Scan regl Port

ScanreglPortmx

Scanreg2Port

Scanreg2Portmx

REGISTERS

databus ^ ^ databus

IL_ Zero

zero

1
«> > Q ! > out

' ^ —IIzeroinv zero |l Isozero

ZEROS

Appendix D

Magic Layouts of the Cells used in
the Lager AUIOmc Data Path

98

HX<
-<

T
-H

o03

3C
J

'T
JSSfcc?

>
0

f'

V
W

i't

<
M

T
—

I

X0
)

>CD
I

0
)

*
V

T
Jcd

H
irf

e
o

:

r
-H

XO
I

uQ>
*

0
T

J

m
m

-r-^
M

l-ir
i.•

irtiv
tv

rv
n

t-
—

a
IX

G
O

C
O

HXCD

43C
O

i
-
Hcd

X
£<

:::!::::::::::;>

X

<
•<

C
O

Soc
j

a0C
J

c
oXo
oC
J

OC
D

a r/
>

/£ CD X

XXsr
HO>

C
NxOCDN

•
i—

«

30C
N

r-H

IT
-

X<
<

L
OC
J

4
J

cd

M<JJHHrr

tristatebuffer (47A x 47A)

	Copyright notice1988
	ERL-88-40 (1 of 2)
	ERL-88-40 (2 of 2)

