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Abstract

This report describes a system to generate CMOS data paths for a variety of
applications demanding high performance, such as image and speech processing. The goal
of the project was to arrive at a consistent and well defined methodology for creating data
paths for many different applications. The major issue which was addressed was how to
avoid the duplication of circuit design and layout effort for each new application while still
meeting high performance requirements. To this end a large CMOS cell library was designed
and tested, and a CAD tool, called the DPC (Data Path Compiler) was written to generate
the layout from a structural description of the data path. This tool was integrated with
the Design Manager, a silicon assembler. This report gives a detailed description of the
motivation behind this system, description of the strategies used for placement and routing
of bit slice data paths, the details of the software, the description of the various functional
blocks currently provided in the system library and some examples where this system has

been used. Also included are the user manuals for the tools described in this report.

This research was supported by Defense Advanced Research Projects Agency, Contract N00039-
87-C-0182.
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Chapter 1

Introduction

This report describes a system to design high performance data paths for cus-
tom VLSIs for a variety of applications like audio signal processing, image processing and
robot control. High performance data path design is becoming an increasingly important
problem in VLSI design particularly because of the increasing importance of Application
Specific Integrated Circuits (ASICs) in the market place. ASICs aim at providing dedicated
custom hardware based solutions for a variety of applications and high performance data
paths play an important role in these applications. Further, the turn around time is of crit-
ical importance in the current industrial situation. Therefore, a system to systematically
generate high performance dedicated data paths with a fast turn around time can play a
very important role in decreasing the overall design time. This is true partly because unlike
other circuit blocks in a typical VLSI, the high performance data paths are not implemented
suitably by structured layout synthesis techniques like PLAs for which a variety of tools are
available.

The system described in this report is basically a data path assembly system
which generates the layout of a data path starting from a description of the data path as
an interconnection of high level functional blocks. This tool is embedded in the Design
Manager environment which is a system for hierarchical assembly of integrated circuits (see

[3]). Design Manager provides extensive functional simulation support for the data paths
designed using the system.



1.1 Drawbacks of Existing Approaches for Data Path De-

sign

A major problem in the design of high performance data paths is the circuit
design and layout effort which is required every time a new data path is designed. The
reason for this is that conventional automated layout approaches, such as standard cells and
conventional gate array layout often do not meet the performance and area requirements.
This is because these techniques are general purpose techniques and do not try to exploit the
special nature of signal flow in the data paths. As a result of the failure of these techniques
in meeting the performance requirements, most designers of high performance data paths
still use the approach of completely designing each new data path.

Obvious disadvantages of this approach are the inflexibility of the design to even
minor alterations and the long turn around time. The second factor is particularly im-
portant in the current and future commercial scenarios with the increasing dominance of
the ASICs. Further, the inflexibility of this approach forces the designer to decide on the
functional and logic design before the layout can begin. Trying out various competing de-
signs at the transistor layout level is not feasible. Another drawback is the duplication of
design effort. Most of the data paths usually consist of the same basic blocks connected
in different configurations. The conventional approach of designing from scratch does not
take advantage of work already done by somebody else.

In view of these drawbacks, an approach which allows flexibility of design, fast
turn around time and reusability of existing designs, but still meets the high performance
requirements is desired. The design flexibility and fast turn around time requirement suggest
a CAD tool based system. There exist layout synthesis tools which use a structured layout
style such as PLA and Gate Matrix. The PLA style is good for combinational logic but
quite unsuitable for data paths where we have a mix of latches and combinational logic.
Further, despite techniques like PLA folding, these structured designs do not meet the high
performance requirements. The Gate Matrix style allows mixing combinatorial logic and
latches but still falls short on performance because of long polysilicon interconnects which
result in high node capacitances. In short, structured layout strategies just do not seem
to meet the high performance requirements. This points to a paradigm based on a well
designed cell library where the individual cells are well designed and optimized. Such a cell
library based approach naturally satisfies the requirement of reusability of existing designs.



Further, non-critical cells can be designed using a structured approach like Gate Matrix
while the critical cells, like adders, shifters, can be designed and optimized manually.
Standard Cell based designs seem to meet the requirements. However, it is a
general purpose technique and is unsuitable in the data path applications because it does
not take advantage of the way the signals flow in most data paths. This makes this design
style unsuitable in terms of area and to some extent performance. For example, in most
data paths the directions of flow of the data signals and the control signals are mutually
perpendicular. This orthogonal flow of signals, however, does not fit well with the Standard

Cell style where all the terminals come out either at the top edge or the bottom edge of the
cell.

1.2 Desired Features in the Data Path Design System

As discussed in the previous section, none of the current macrocell design tech-
niques meet the special requirements for dedicated data paths. However, before designing
a system to generate data paths, it is important to figure out the features desired in a good
system. As already mentioned, this system was meant to be integrated with the silicon
assembly environment provided by the Design Manager [3]. This placed an important com-
patibility requirement. However, more important was the fact that this system was meant
to be used extensively within our research group for a variety of applications. This meant
that the system had to use a strategy which satisfied most of the designers. In order to do
this, manual design of a data path, specifically the Lager AUIOINC data path, was under-
taken in order to study the various design issues. During the course of this manual design
effort and by extensive consultation with other data path designers, a design strategy was
arrived at which was reasonably close to the design practices prevalent among the designers
in our research group and was automatable. Some important issues tackled at this stage
were routing of power and clock signals and orientation of wells in the CMOS technology.
Also, a suitable set of primitive functional blocks which met most of our requirements was
determined.

One important consideration while deciding the overall strategy was that the sys-
tem should be able to use the already existing leafcells with minimal changes and the cell

design style used should be flexible enough so that the cell designers do not feel unduly
constrained.



Another desired feature was parameterizability. This was considered important so
as to avoid having to redesign similar data paths. One prime example of this is the width of
the data path. To facilitate this paramterization all the data paths were designed in a bit
sliced fashion. This also had the side effect of making the routing and placement problem
easy.

A powerful user interface which provided features to support parameterizability
and support flexible extension of the system library was also essential. Considerable time
was devoted for this and the resulting syntax went on to become the core for the Structural

Description Language used by the Design Manager.

1.3 Outline of the Report

This report is divided into 7 chapters. Chapter 2 gives a description of the sys-
tem in terms of the overall strategy used. Chapter 3 deals with the algorithms used and
the software details. Chapter 4 basically documents the current status of the system li-
braries. Chapter 5 describes the problem associated with generating the interface circuitry
between the data path and the rest of the world (controller, i/o) and discusses a tool called
eqn2sdl created for this purpose. Chapter 6 gives some example data paths with the input
decks and the resulting layout along with the execution time. Finally, chapter 7 concludes
the report by discussing the advantages and disadvantages of this system and suggestions
for improvement. The software listing and the library documentation are included in the

appendices.



Chapter 2

Description of the Data Path

Generation System

This chapter describes the data path design system and the methodology used.
The topics discussed include the floorplanning and routing strategy, the user input and the
overall library organization. Also discussed are the various constraints placed on the leafcell
designers.

As already mentioned in the previous chapter, the main goal behind the design of
this system was to arrive at a systematic and automated technique for designing a variety
of data paths in a flexible manner with maximum utilization of the design effort already put
into previous designs. Further, parametrization was also a much desired goal so as to have
a mechanism for customizing a data path for different situations. All this was to be done
under the constraint that the leafcell designers continue to have as much design freedom as
possible. These facts guided the various design choices made at the various stages of the
system.

2.1 Minimization of Layout Effort

The first problem which was tackled was the minimization of layout effort. There
are two possible ways for doing this, namely layout synthesis and using a cell library. The
layout synthesis techniques work very well for structured layouts like PLAs. However, PLAs
are meant for combinational logic only. Data paths have a variety of latches and flipflops

which are not implementable in a PLA design style. However, in recent years general
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purpose structured layout techniques, like Gate Matrix, have been proposed. These layout
styles give fairly dense layouts and are not restricted to combinational logic alone. The
second way to minimize the layout effort is by using a library of cells. In this case the
layout effort has to be done once at the beginning and then the same cells can be used
again later on.

The first approach (layout synthesis) would be the ideal one since there would be no
layout effort required at all. Also, since the layout is being synthesized, transitions from one
set of design rules to another would only require rewriting a technology file. Therefore, the
first approach tried was the Gate Matrix style [10] which seemed to be the most suitable for
our application. Unfortunately, there was no tool available to us which could synthesize such
layouts. However, since our main interest was in making an evaluation of this design style,
it was decided to use a symbolic input style which retained the design rule independence
of this approach. Also, the layout was very structured so that the cell design time was less
than that for random layout style. The generic LAGER data path was designed using this
style as a test case. It was observed that high node capacitances are a problem with this
layout style. The reason for this was that the gate matrix style prohibits usage of metal2
layer. Therefore, the two routing layers available to the user were metall and polysilicon.
Unfortunately, polysilicon is not a good routing layer and running long lines in that layer
severely affects the performance. Furthermore, the cell designers in our research group felt
that the restriction placed on using metal2 was unreasonable. A more detailed description
and evaluation of the various structured layout techniques can be found in [11).

As a result of the problems descrii)ed in the previous paragraph, it was decided
to use the second approach, namely a cell library based approach. This approach requires
some initjal cell design effort. Also, it has the drawback that a change in design rules will
require redesigning the whole cell library, unless the technology itself is scalable, like the
SCMOS technology from MOSIS (see [12]). However, it has the advantage that the cells
can be optimized since the leafcell designer has full control over the layout.

Actually, the final approach which was taken was to have a library of cells, with
the provision that any restrictions placed by the router on the leafcell layout should be such
that they can easily be satisfied by structured layout styles like Gate Matrix. This is a
compromise between the two approaches listed above and allows the users of this system to
have a design rule independent cell library using the symbolic Gate Matrix style (described

in [11]), if they so wish and provided the performance is satisfactory.
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2.2 Bit Slice Data Paths

The second major issue was parameterization of the data paths. The users wanted
to have the capability of customizing the data paths depending upon certain parameters
provided at the layout time. One can essentially have two types of parameters. The first
type are those which affect the net list of the data path. For example, a certain net may
or may not exist depending upon a certain parameter. Such parameters, however, do not
affect the floorplanning or the routing schemes. The second parameter is the capability of
customizing the number of bits in the data path. If one is to follow a generalized macrocell
placement type technique, this customization of the number of bits will not be a problem.
However, we decided to take advantage of the customization of number of bits and use a
specialized placement and routing scheme which is closer to the style used by most data

path designers. Specifically, we adopted the bit slice strategy for laying out the data paths.

The bit slice strategy involves visualizing the data path to be made up of a number
of slices where each slice corresponds to the data flow for one particular bit position. This
however assumes that the data flow has the same width (number of bits) at all points.
The advantage is that the data path can now be visualized as a linear array of blocks.
However, one should note that one cannot express data paths with variable bit widths with
this scheme. For example, if certain registers are say 12 bits wide and some others are 16
bits wide, then it is not possible to put them in a bit slice fashion. From the experience
of the data path designers in our group it seemed that this is not a drawback and by
suitably partitioning a variable word width data path into several data paths of constant
word width (bit slice) data paths, one can handle any data path. Further, most of the data
paths designed by the designers in the group were already in a bit slice fashion.

The major effect of adopting the bit slice data path strategy is in the floorplanning.
The individual slices can be placed and routed independently and then one can abut them
by using a one-dimensional tiler to get the complete data path. This tiling requires that
the terminals at the edge where two slices abut should pitch match. Therefore, the leafcells
need be designed keeping this on mind and the individual slices need be routed accordingly.
Figure 2.1 shows the floorplan of a bit slice data path. As shown in the figure, the bit slice
layout approach allows one to naturally exploit the orthogonality in the flow of the data
signal and the control signals. What is meant by this is that the flow of the data signals is

within a particular bit slice and is more or less replicated in the other bit positions. On the
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other hand, signals like the control lines, power and ground lines and clocks run across the
bit slices and are common to all the cells at the same position. For example, the same control
signal is used in a multiplexor at all bit positions. This orthogonality can be exploited at
the layout level such that the control signals, power and ground lines and the clocks run
orthogonal to the data flow direction. This style is the most common style used by the data
path designers. When doing an automatic generation of the data paths, this style helps
in simplifying the task. In particular, since the control signals, power and ground lines
and clocks run across the slices, their routing is automatically taken care of by abutment.
This requires that the leafcells be designed such that their control, power, ground and clock
terminals abut with the corresponding terminals for the cell in the adjacent bit position.
Throughout this report it is assumed that the data flow is in the horizontal direction and
the control flow is in the vertical direction. Thus, the individual slices are formed by a linear
placement and routing of leafcells in the horizontal direction. The slices are then abutted
in the vertical direction.

2.3 Routing Strategy

As mentioned in the previous section, the bit slice approach reduces the problem
to one of linear placement and routing. Linear placement is an easy task, although in the
current system it has not been automated. The user has to specify the placement. The
routing within the slice involves only the data signals. To ease the routing task, it was
decided that the leafcells should be such that all the data signals come out on the left or
the right side. The control, power, ground and clock terminals come out at the top and
bottom and are extended to the top and the bottom edges of the slice so that they abut
with the corresponding terminals in the adjacent slices.

The routing consists of two distinct type of nets. First are those which connect
terminals of adjacent cells which are simple to handle. The second type are those nets which
connect terminals on non-adjacent cells. This requires routing over the intermediate cells.
To handle this routing, one approach is to make the cells transparent to a routing layer and
then use that layer to route over a cell. The three routing layers available are polysilicon,
metall and metal2. However, one cannot design cells without using polysilicon. Further,
only metall can directly connect to polysilicon and diffusion. This precludes making cells
transparent to metall. Only metal2 is a possibility but this complicated the leafcell design.
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The reason for this was that in the technology available to us (SCMOS from MOSIS [12])
the polysilicon resistance is a rather high 100 ohms per square. This renders polysilicon
useless for routing except over very small distances. Therefore, metal2 was required in the
leafcells because of the effect on performance.

In keeping with the philosophy of tailoring the system according to the design style
used by the users, it was decided to use an alternative scheme for routing over the cells.
Basically, it was decided that the leafcell designer should explicitly provide feedthroughs
in the cells. A feedthrough is a pair of terminals, one on the left side and the other on
the right side of the cell, which are electrically connected and are not used internally in
the cells. They are provided for the express purpose of allowing the router to carry a net
across the cell. A convention was adopted to have the names of these feedthrough terminals
start with the FEED so that the router can recognize them. Further, the leafcell designers
were encouraged to bring out the data terminals of the cells on both sides so that they too
can be used as feedthroughs for nets connected to them. Again, a convention was adopted
that terminals having the same name were considered electrically equivalent. A remaining
issue in doing routing over the cell is how to handle the case when the router runs out of
feedthroughs. To handle this, the router lays out a feedthrough in a global channel above
the leafcell, essentially extending the height of the leafcell. Figure 2.2 shows an example of
this.

The routing is now done by splitting the routing into a number of small channel
routing problems. First, a global pass is made across the slice to assign the various nets
to the feedthroughs or to create feedthroughs in the area above the leafcell if the leafcell
does not have enough feedthroughs. This step together with the fact that the feedthrough
terminals are just like the data terminals reduces the routing problem to the problem of
connecting the terminals of two adjacent cells. This is then done by using a greedy channel
routing algorithm, treating the space between two adjacent leafcells as a channel. The
terminals are on the left and the right side of the channel. Some of the terminals would be
the proper data terminals of the leafcell while the others would be feedthrough terminals
for nets coming from some cell which is farther away.

The overall routing strategy can thus be described as one of divide and conquer
where the total routing problem is reduced to a number of simple channel routing problems.
There are many well established algorithms for channel routing which can then be used. In
this system a greedy algorithm described in the next chapter was used. Figure 2.2 shows
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a channel routing while figure 2.3 shows the plot of a complete data path routed using the

system.

2.4 Constraints on the leafcells

The routing strategy imposes certain constraints on the leafcell design. The con-
straints arise because of the choice of layers. Since polysilicon and metal2 cannot connect
directly to each other and the data terminals can come out in polysilicon, it was decided
to use metall in the vertical direction within the channels between the leafcells. The data
terminals can then come out in either polysilicon or in metal2. Further, since the router
may need to place metal2 feedthroughs above a cell, the control, power, ground and clock
lines which run vertically cannot come out in metal2. Thus, the terminals at the top or
the bottom are constrained to come out in metall or polysilicon. Figure 2.4 illustrates
this clearly. Performance issues usually restrict the choice to metall only. Besides the con-
straints on the layers on which the terminals, there are some spacing constraints and some

conventions adopted for our cell library. These constraints are listed below:

1. Although it is not necessary, one should try to keep the heights of all cells nearly
equal. This results in better area efficiency.

2. The width of cells used to make up a functional block must be the same. For example,
the cells at the even and the odd bit positions of an adder must have equal width.

3. Any layer, including the well can be used inside the cells.

4. All the data terminals must come out at the sides and should be in one of the following
layers: M2, VIA, POLY, POLYCONTACT.

5. The data terminals should be “sufficiently” apart. This is rather vague since the
terminal spacing requirement depends on the net connection to a certain extent. A safe
rule of thumb is to have the terminals at >= 4\ apart and the terminals themselves
4 wide in the SCMOS technology. This will always work but leads to wasted area in
many cases. A better spacing requirement is that the terminals be spaced such that
one should be able to place minimum sized contacts to M1 next to them, such that

all the contacts lie on the same vertical column. Such a situation arises in the left

channel in figure 2.4.
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6. The control terminals, power, ground and clock lines of the cells should come out at the
top and bottom edges in one of the following layers: M1, POLY and POLYCONTACT.
Note that the program does not allow the top and bottom terminals to come out in
DIFFUSION and DIFFUSIONCONTACT. These terminals are extended to meet the
top or bottom edge of the slice. Further, the top terminals of the msb slice and
the bottom terminals of the Isb slice are brought up to vias for compatibility with
the macrocell router FLINT. This requires that the top and bottom terminals of the
cells be sufficiently wide and distant from each other. As a rule of thumb, in MOSIS
SCMOS technology, these terminals should be >= 4\ wide and >= 4\ apart, or 3\
wide and 5 apart, provided no design rules are violated for the particular terminal

layer.

7. To enable better routing performance, one should try to provide “feedthroughs” in the
cells. These are pairs of terminals, one on the left side and the other on the right side
of the cell, which are connected to each other and are NOT connected to anything
inside the cell. A good strategy is to provide these in M2 in order to avoid high
capacitance associated with POLY. The feedthrough pairs should be labelled FEEDn

where n is a positive integer.

8. All the terminals should be labeled, the label being put on the layer on which the
terminal is coming out. The box corresponding to the label denotes the location of
the terminal. There should be no useless labels at the edge of the cells because all
labels at the edge are treated as terminals.

2.5 User’s View of the System

The system encourages the user to think about the data path as an interconnection
of functional blocks, each of which perform some N bit operation. The construction of each
of these functional blocks is hidden from a normal user. In other words, what cell to use at a
particular bit position is hidden, unless the user wants to design a new functional block. The
structure of these functional blocks is described procedurally in a separate file associated
with the functional block. The procedure describes the generation of the functional block
using the leafcells in the library. The generation can be guided by the values of certain
parameters. This is described in detail in section 4.1.
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The overall design cycle consists of making a block diagram of the data path using
functional blocks from a system library. The input is then a net list description of this
block diagram using the sd! syntax, which is a language used to describe the structure of
macrocells in the silicon assembly environment used by the designers in our group. The
details of the input syntax can be found in [3]. Several examples are given later in chapter
6 of this report.

The system is extensible in the sense that advanced users can design their own
leafcells and functional blocks to meet their specific need. Chapter 4 describes in detail the
library organization for using this tool.

Lastly, this tool is interfaced with Design Manager which is a supervisory program
for the integrated CAD environment used in our group (see [3]). This allows this data path
generator to make use of the simulation facilities provided by the Design Manager. In
particular, the user can perform functional simulation of a data path interfaced with other
macro cells in a chip using the same sdl description as is used for layout. Figure 2.5 shows
the block diagram of the overall system interfaced with the Design Manager.
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Chapter 3

Algorithms Used and Software

Organization

This chapter describes the algorithms used in the various part of the program and
the overall organization of the software. A description of the interface with the Design
Manager is also given.

3.1 Choice of LISP and Object Oriented Programming

The program has been implemented using Franz Lisp with the Flavors system (1]
which provides an object-oriented programming environment. This choice was motivated
by several reasons, the foremost being to explore the suitability of Lisp and object-oriented
programming for module generation tools. Conventionally, C has been the language of
choice for such tools, primarily because of the speed advantage. However, as shown later
in the report, the execution time of the program is acceptable for reasonably sized data
paths when compiled Lisp is used. Any speed disadvantages are offset by the ease of code
development offered by the LISP environment, in particular in the area of user interface
and debugging.

The object-oriented programming style under the framework of Flavors provided
an interesting programming paradigm with a much cleaner organization of software. The

advantages of this style were particularly apparent when interfacing with the Design Man-
ager.
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3.2 Organization of the program

The program has been partitioned into three distinct portions corresponding to
three distinct phases in the overall process of data path generation. This partitioning helps
in treating the program as three independent pieces of code and thus results in easier code

maintenance and debugging,.

The first part consists of the code for interfacing with the Design Manager and
for figuring out the way each individual functional block is made using the leafcells. This
part basically handles the extraction of useful information from the flavor objects in the
Design Manager and repacks them into structures used internally by the program. It sets
up structures corresponding to each slice after figuring out which cell to use for a particular
block at a certain bit position. Basically, it converts the netlist in terms of functional blocks
into a set of netlists (one for each bit slice) in terms of leafcells. For doing this mapping, use
is made of the cell mapping methods and terminal mapping methods associated with each
functional block. These methods are defined by the block designer in the corresponding sdl
files. Since the data path generator was written before the Design Manager, this interface is
not the best possible since the internal data structures used by the program were designed
independent of the Design Manager specifications. This part also handles the repackaging
of the output information of the data path generator into the flavor ob jects of the Design
Manager. This output information consists of all the interface information, such as the
bounding box and the terminal locations, which are required by the tools operating at a '
higher level in the layout hierarchy. This portion of code resides in a single file dpc.l and
consists of a single method declaration for the dpc-mixin flavor [2].

The second part of the code takes up the structures set up by the code in the first
part and routes each unique bit slice. This is done by converting the slice routing problem
into a set of channel routing problems which are then handled by the third part of the code.
For doing this division of the overall problem, the code goes through two distinct phases.
In the first phase, nets are allocated to the various terminals. The problem of carrying
a net over a cell is also handled in this phase by allocating such a net to a feedthrough
provided in the cell or laying out a feedthrough line at the top of the cell in a global
channel. After this net allocation process, the problem basically reduces to routing each of
the local channels between the adjacent cells. This is done by making repeated calls to a
channel routing function which constitutes the third part of the code. After completing the
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routing for all slices, this part of code creates the physical layout files in the Magic format
6] taking advantage of the hierarchical layout organization allowed by Magic. Magic format
was chosen because of the wide usage of magic as the layout tool by most layout designers.
However, the code is modular so that switching over to a new format will not be difficult.
In fact, a new version of the tool which uses Oct [16] as the database has been developed.

The third part of the code handles the channel routing problem. This function
basically takes a list of terminals along the two sides of a vertical channel and routes the
channel. It makes the channel as wide and as tall as required to complete the routing.
The routing is guaranteed to be completed as long as the cell terminals meet the spacing
requirements and come out on the proper layers. The algorithm used is Rivest-Fidducia’s
Greedy Algorithm which, though not optimal, works adequately because of the small size of
routing channels. The modularity of the code permits the current routing algorithm to be
replaced easily by a better algorithm in future. This part of the code is spread over several
files (ch_route.l, ch_merge.l, ch_newtrack.l and ch_suitable.l) and is organized as a function
route which does the complete routing by making calls to functions createtrack, try.to_merge,
join_tracks and suitable which handle specialized sub-jobs related to the routing process.
The algorithm used for the channel routing is described in more detail in the next section.

Fina.lly, the code makes use of flavor objects defined by the Design Manager and
also uses the various utilities provided by the Design Manager environment. In other words,
this program uses the Design Manager as a front-end and is meant to be used within the

Design Manager framework.

3.3 Algorithm used for routing

The overall algorithm followed by the program consists of the following major
steps:

1. Read in the input files in the sdl syntax (this is done by the Design Manager) and
convert into the flavor objects according to the Design Manager convention. Send the
layout generation message to the data path object at the appropriate time with the

proper parameters

2. Using the block level netlist and the mappings associated with each block, determine
the netlists in terms of the leafcells for each slice
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3. Make a list of the unique slices

4. For each unique slice, first do the net allocation and then do all the channel routings
5. Output physical layout files corresponding to each unique slice

6. Generate geometry associated with the external terminals of the data path

7. Output the physical layout file for the complete data path using instances of the
layouts of the slices

8. Put the information about the interface (bounding box, terminal locations) in the
data path object and output the hdl file for use by module generators like Flint (4]
and PadRouter [5]

The steps dealing with the front-end Design Manager and the output format are
straightforward and not of much interest. The core of the whole process is the method used

for placement and routing. Following is the algorithm used for this in a pseudo-C syntax:

CHANNEL_ROUTE(leftlist, rightlist)

{
commonlist=merge(leftlist,rightlist);

for each terminal in commonlist find the terminals which may
create vertical violations; /*at most two such terminals on the

opposite sidex/

PREVTERM=nil;
EMPTYTRACKLIST=nil;
SPLITLIST=nil;
TRACKLIST=nil;

/*visualize the channel to be verticalx/
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for (termptr=commonlist; termptr!=nil; termptr=termptr->next)

{
CURRTERM=termptr;
NEXTTERM=termptr->next;
CURRNET=net (CURRTERM) ;
CURRTRACKLIST=whichtracks (CURRNET) ;
CURRTRACK=nil;
SPLIT=no;
if (CURRTRACKLIST!=nil) /*there are tracks carrying the net#/
then

{

/*there are tracks carrying the net*/

CURRTRACK=findtrack(CURRTERM, CURRTRACKLIST) ;

if (CURRTRACK==nil) then SPLIT=yes;

}
if (CURRTRACK==nil) /*there are no suitable tracks carrying the

net*/

then

if (EMPTYTRACKLIST!=nil)

then

/*there are empty tracks*/

CURRTRACK=findtrack(CURRTERM, EMPTYTRACKLIST) ;
if (CURRTRACK==nil) /*no suitable empty tracks*/
CURRTRACK=newtrack (CURRTERM) ;

else

/*no empty tracks*/
CURRTRACK=newtrack (CURRTERM) ;
if (SPLIT) then addsplitlist(CURRNET,CURRTRACK) ;
mergesplitnets(); /*try merging some of the split nets and put
freed tracks in the EMPTYTRACKLIST
*/

jognets(); /*try jogging some of the nets*/
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freetracks(); /*free the tracks whose nets are done with and
add those tracks to the EMPTYTRACKLIST
*/
}
/*now we are done with channel route but there may be split nets
remaining
*/
mergeallsplitnets();

3

As already mentioned, the greedy algorithm used for the channel routing is a very
simple one and better results will be obtained by using a more sophisticated router. This is
one possible area of improvement. Another drawback in the current algorithm is the lack

of automatic placement.

3.4 Interface with Design Manager

This tool was interfaced with the Design Manager which is the supervisory pro-
gram for the integrated CAD environment used by our research group. The Design Manager
provides a clean interface for new module generators to be integrated into the CAD envi-
ronment. It supports an object oriented paradigm based on Franz Lisp Flavors package.
Basically, the Design Manager provides all the front end processing and passes all the in-
formation to the module generators in form of various objects. The tools can access the
desired information by sending appropriate messages to the various ob jects.

Interfacing with Design Manager, however, requires that the module generators
follow certain conventions. For easy interfacing as well as for fully exploiting the facilities
provided by the Design Manager, it is better for the module generator itself to be in Lisp.
This was a major reason for choosing Lisp as the language of implementation. Although it
is definitely possible for a program in a language like C to be interfaced with the Design
Manager, it is somewhat inefficient because of the complex foreign function support in Lisp.

A full documentation of the Design Manager interface can be found in the Lager
III Programmer’s Manual [2]. Basically, there are three types of ob jects seen by the tool:
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cell, net and terminal. The tool itself is called by sending a layout generation message to
the cell object corresponding to the data path (or, some other macrocell for other tools).

The various information about the various objects can be accessed by sending
suitable messages. For example, by sending a message named :instance-net-list to the cell
object, one can get a list of all the net objects attached to the cell.

The DPC has been fully interfaced with the Design Manager using the interface
provided. This interfacing has resulted in several advantages. First, the tool is now part
of the silicon assembly process supported by the Design Manager so that DPC can now
be used to generate automatically various macrocells in a complete design hierarchy. This
required the output layout to be compatible with the requirements of tools like Flint and
Mosaico which are used for macrocell placement and routing. Secondly, the tool uses the
Design Manager as the front end so that the user input is in the same syntax as used by the
other tools in the design environment, namely the sdl syntax. Thirdly, and probably most
important, the Design Manager provides extensive functional simulation support for the
data paths designed using this system. There are functional simulation models associated
with every functional block used in data paths. These models are basically lisp functions.
The simulation works on the sdl input file so that the user need not generate the layout in
order to be able to do the simulation.

All the software associated with this interface is in the file dpc.l However, since
DPC was written before the Design Manager interface came into existence, the internal data
structures used in DPC are different from the objects provided by the Design Manager. As
a result, translation is required in the interface software.



Chapter 4

Cell and Block Libraries

This chapter describes the leafcell and functional block libraries used by the tool.
The main purpose is to document the current status of the libraries. A description of the
various cells and blocks along with their intended use, the various associated files, the layout

and circuit diagram and timing diagrams if any are given.

4.1 Block Library

As already mentioned in the earlier chapters, the basic entity used by the data path
designer is a functional block. Although the user can use his own functional blocks, a system
library of such functional blocks has been designed which can be used by the user directly.
At the time of writing this report, the library had a large number of functional blocks
which have been used in many varied applications including 2 DSP for a Robot Controller,
an image processor for doing Radon Transform and in the generic Lager processor. The
library has been designed through the joint effort of a number of people and appears to be
sufficient for almost all the data path design needs encountered by the various users in our
research group.

This library basically consists of a sdl file associated with each functional block.
However, there is no netlist description in the sdl file. Instead the sdl file describes the
block by specifying what leafcell is to be used at a particular bit position. The mapping
from the block terminals to the leafcell terminals at each bit position is also specified in
this file. These mappings are given as lisp functions and using the parameter mechanism of

the sdl syntax and the control flow constructs provided by lisp, one can have fairly complex
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programmability. To ease the job of writing these mappings, some lisp macros have been
defined which should be used in order to have a friendly syntax.

An example sdl file of an ripple carry adder block (see figure 4.1) is given below:

(parent-cell adder (parameters version type))

(lisp-function

(deftermmap adder

(if (and (equal terminal "CIN") (= 0 i))

then (useterm "cin")
elseif (and (equal terminal
then (useterm “cininv")
elseif (and (equal terminal
then (useterm "cout")
elseif (and (equal terminal
then (useterm "coutinv")
elseif (and (equal terminal
then (useterm "cininv")
elseif (and (equal terminal
then (useterm "A1")
elseif (and (equal terminal
then (useterm "AO")
elseif (and (equal terminal
then (useterm "Bi")
elseif (and (equal terminal

then (useterm "BO")

"CIN*") (= 0 i))

"COUTn") (= i msb))

"COUTn*") (= i msb))

"COUTn-1%") (= i msb))

"Ain") (oddp i))

"Ain") (evenp i))

"Bin") (oddp i))

"Bin") (evenp i))

elseif (equal terminal "SUM")

then (useterm "sum")
else (useterm terminal)

)

(defcellmap adder
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(if (= msb i) then (usecell "adder_msb")
elseif (evenp i) then (usecell "adder_even")

else (usecell “"adder_odd"))

The first line in the above example defines the name of the parent cell and its
parameters. In this case, the name is adder and there are two parameters, version and
type. Next, the terminal mapping and the cell mapping are given. These two are given as
arguments to a specially defined lisp function called lisp-function, which is a keyword in
the sdl syntax. The terminal mapping is primarily used as a translation mechanism so that
leafcells with different terminal names may be used within the same block. This mapping
is defined using the special lisp macro deftermmap. This is to be used as a lisp function,
the first argument to which is the name of the block and the second argument is a lisp
expression which preforms the mapping. In the example, lisp control flow function if ...
then ... elseif ... then ... else... has been used to define the mapping. The first clause in
the statement says that if the block terminal name is CIN and the bit position is the least
significant bit then the leafcell terminal cin is used. The remaining else clauses define the
mapping for the other terminals. The more interesting mapping is the cell mapping which
describes which leafcell is to be used at a particular bit position. In the example above we
have a very simple cell mapping which says that the cell adder_msb is to be used in the
most significant bit position, the cell adder_even is to be used in the even bit positions and
the cell adder_odd is to be used in the odd bit positions. This mapping is done using the
lisp macro defcellmap.

At the current time, the block library consists of the following functional blocks:

domino dynamic latch with non-inverting output

one-phase dynamic latch with inverting output

two-phase dynamic latch with inverting output

e scanpath one phase dynamic latch with inverting and non-inverting outputs

clocked inverter with non-inverting output
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o clocked inverter with inverting output
¢ 2-to-1 multiplexor with inverting output
¢ 2-to-1 multiplexor with non-inverting output

® 2-to-1 multiplexor with invering output and control signal to force the output to be

zero
¢ 4-to-1 multiplexor with inverting output

e constant register with value zero

e binary up-counter with parallel load

e ripple carry adder

e single-port static register

e single-port static register for use in scan path

o dual-port static register

o barrel shifter which shifts upto 6-bits one way and 1-bit the other way
o one-phase accumulator for Lager processor

o two-phase accumulator for Lager processor

¢ memory IO block for Lager processor

¢ miscellaneous random logic

The library has proven to be sufficient for many applications involving fixed-point

arithmetic. It is however continuously being enhanced by the various users.

4.2 Leafcell Library

The leafcell library consists of all the leafcells required to support the functional
blocks in the block library. Note that many functional blocks use more than one leafcells
and that the same leafcell may be used in more than one block. The leafcells have to
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follow certain layout restrictions which were outlined in section 2.4. At present the layout
files are accepted only in the magic format (see [6]). Associated with each layout file is a
cell descriptor file (known as the cd file) which gives the interface view of the cell, i.e. it
gives the bounding box coordinates, the terminal positions and layer and the feedthroughs.
This information is automatically extracted from the magijc file by the tool and a cd file
is created, so that the next time the cell is used the tool has to do less work. The tool
compares the modification dates of the layout file and the cell descriptor file and a new cell
descriptor file is created if the layout file had been recently modified. These cell descriptor
files can however be created using the command makecd which can be used from Unix.
These files also happen to form a good documentation of the cells. Following is an example
cell descriptor file for a leafcell used in an adder:

cell adder_even -2 -63 210 -18

left A0 -38 -34 polycontact

left BO -24 -20 polycontact

bot cin 111 114 metall

equivalent (bot cininv 185 188 metall) (top cininv 66 70 metall)

top cout 185 188 metall

top coutinv 111 114 metall

feedthru (left feedl -30 -27 metal2) (right feedi -39 -36 metal2)
feedthru (left feed2 -53 -50 metal2) (right feed2 -53 -50 metal2)
equivalent (bot gnd 44 47 metall) (top gnd 44 47 metall)

(top gnd 171 174 metall) (bot gnd 171 174 metall)

right sum -26 -23 metal2

equivalent (top vdd 17 20 metall) (bot vdd 17 20 metalil)

(bot vdd 89 92 metall) (bot vdd 119 122 metali) (top vdd 119 122 metall)
(bot vdd 204 207 metall) (top vdd 204 207 metall) (top vdd 89 92 metall)

In the example above, cell, left, bot, top, right, equivalent and feedthru are keywords
which are part of the syntax of the cell descriptor files. The first line of the file should
always begin with the keyword cell and defines the name of the cell and the coordinates
of its bounding box. The remaining lines give the names, positions and the layers of the
various terminals. The terminals which are electrically equivalent are grouped using the

keyword equivalent. However, electrically equivalent pairs of terminals meant to be used as
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feed-throughs are grouped using the keyword feedthru. Figure 4.2 shows the layout of the
above cell.
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Chapter 5

Control Interface Circuitry for
Data Paths

In this chapter the problem of generating the interface logic between the data path
and the rest of the chip is discussed. This interface logic typically deals with decoding the
control microword (coming from the control ROM or PLA) into the signals needed by the
data path control points. This decoding usually is not just plain combinational decoding
but also involves qualification of the control signals by the various clock phases. This is
needed in order to properly schedule the various suboperations in a clock cycle. Another
use of this interface logic is in implementing conditional data operations wherein the signals
from the controller are gated with some conditional flags coming out of the data path.
Besides the pure logic operations, the interface block also carries out buffering operations.
As we show in the following section, this interface logic does not fit into the bit slice scheme
and therefore a separate methodology is required. A standard cell approach was used
for this and a frontend tool called eqn2sdl was written which allows the specification of
this interface circuitry as a set of lisp expressions. The interface circuit generated by this
approach together with the bit slice macrocell generated by the data path generator forms
the complete data path.

5.1 Unsuitability of bit slice strategy for control interface

Traditionally, the data path designers tended to include this interface circuitry as

a slice in the bit slice configuration. Such a slice is usually referred to as the control slice
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of the data path. However, we realized that this interface logic is very much application
dependent. For example, the data processing part of the data path may be the same but
the interface logic can be different depending on the way the microwords are encoded.
Consequently, if we were to associate the interface logic with each of the functional blocks
in our data path, we would need to have a very large number of functional blocks which
have the same data processing function but different interface logic. To make matter worse,
this interface logic is very much application dependent so that our philosophy of having a
reusable set of functional blocks would be rendered useless. To study the implementation
issues in detail, the interface logic for the Lager AUIOINC data path was manually designed
as a control slice using a set of cells associated with the functional blocks. The disadvantages
were apparent very quickly. Besides the issues raised above, it also became apparent that
this strategy is not good in terms of area also. The reason is that there usually is very
little correlation between the complexity of the data processing carried by a block and the
complexity of its interface logic. Consequently, it turns out that some very simple functional
blocks have quite complex interface logic associated with them. This results in empty space
in the control slice. Note that in the traditional manual design, this problem does not occur
because the whole control slice is designed as a single cell.

This unsuitability of the bit slice strategy for the interface logic prompted us to
study an alternative strategy. Instead of considering the interface logic as part of the data
path macrocell, it is treated as a separate macro cell and the complete data path consists
of the two macrocells, one generated by the data path generator program discussed in the
previous chapters and the other consisting of the interface logic. This partitioning simplifies
the task and the functional blocks now consist of only the data processing functions which
are application independent most of the time and can therefore be used as primitives for a
variety of data paths. However, to ease the design of the macrocell for the interface logic,

one needs some sort of automation of the task. The approach used for this is discussed in
the next section.

5.2 Use of Standard Cells for control interface

The strategy chosen for the automated generation of the interface logic is based on
the same idea that has been used for the data processing part. Basically, the interface logic is

made up of reusable primitives. Since the interface logic is just a collection of miscellaneous
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logic functions, latches and flip-flops with no particular regularity in the signal flow, it was
decided to use a general purpose scheme like the standard cells. This approach has been
used in a number of designs in the recent years and its main advantage lies in that it is
equally easy to have both combinational logic and latches or flip-flops. This is unlike the
array structures such as PLAs where it is rather difficult to incorporate random latches and
flip-flops. The design style consists of using a cell library where all the cells have the same
height. The cells are then placed in one or more horizontal rows and then routed using
the channels between the rows. By having a well designed cell library, one can reuse it for
a very large number of applications. These features plus the fact that a large number of
very efficient design aids already exist for standard cell design style were the reasons behind
choosing this style for implementing the interface logic. Another factor which was taken
into consideration was the availability of a very extensive standard cell library. Further, the
ability of the Design Manager to use different module generators at different points in the
design hierarchy made this strategy viable without much effort.

5.3 Generation of macrocell using Design Manager and Wolfe

Design Managers ability to handle a variety of module generators using the same
input syntax converts the problem of generating the interface logic macrocell to one of
writing the sdl file with the appropriate layout generator which in this case is stdcell. Thus
the complete data path consists of two macrocells, one of which is generated using the layout
generator dpc and the other using stdcell. These two are then interconnected with each other
and may be to other macrocells at a level above in the design hierarchy using a module
generator which does macrocell placement and routing, for example Flint or Mosaico, both

of which are now supported by the Design Manager.

The standard cell placement and routing are done by the Design Manager using a
tool called Wolfe [13] which is a tool provided under the environment of the Oct database
[16]. The Design Manager basically converts its internal netlist representation into the
proper Oct representation or facet and then fires up Wolfe. Wolfe in turn uses a simulated-
annealing based tool called Timberwolf [14]. The output of Wolfe, which is another Oct
facet, is then read back by the Design Manager.
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5.4 Structural description too cumbersome: need for a bet-

ter way

The sdl input can be quite large for moderately complex blocks of logic. For
example, the interface logic for the AUIOINC data path uses nearly fifty standard cells
which results in a fairly large sdl file. Also, the net list description does not give a feel
for the functionality of the logic. What is required is some sort of functional or behavioral
description of the interface logic. Behavioral description in an absolutely general case is a
very tough problem and is an area of current research. However, what is needed here is
some behavioral representation which works for this restricted domain of expressing the data
path interface logic and some tool to translate the description into a structural description
in the sdl syntax. Although there exist powerful representations like bdsyn [15] which can
be used to express combinational logic, they are not compatible with the Design Manager
environment. Also, bdsyn can handle combinational logic only. It is not possible to specify
latches, which are usually an essential part of interface logic. Therefore, it was decided to
write a simple front-end tool which takes the description of the interface logic and converts
it to a sdl description. This is a short-term solution only. A version of bdsyn which is
compatible with the Design Manager environment and has appropriate enhancements to

handle latches will be a better long-term solution. The tool is described in the following
sections.

5.5 Tool for generating structural description of interface

logic from its functional description

The tool is called egn2sdl, which stands for equation to sdl translation. It takes
in a description of the interface logic as a lisp program using some predefined functions
and converts it to a sdl input file for the Design Manager. The input syntax for this tool
is nothing but enhanced lisp. A set of predefined functions is provided to the user and
the user writes lisp expressions using them. These predefined functions map to one or a
group of standard cells which is hidden from the user. The user can define his own new
functions based on these predefined functions or can define his own primitive function based
on a new cell. The program treats the input as a program and generates the corresponding

net list in the sdl syntax. The only optimization which is currently done is sub-expression



41

elimination and using multiple output cells. The program can handle recursive expressions
also, allowing the user to express asynchronous or feedback logic.

All the lisp functions defined by the tool are distinguished by an exclamation sign
(") at the end. These functions are used to express the logic of the macrocell as a set
of expressions. The arguments to these functions are other such expressions or variables
declared by the user. The variables are of two main types: formal variables which correspond
to the parent terminals in the sdl output and local variables which are meant for convenience
in writing the expressions. The formal variables are declared using the parent! command
and the local variables are declared using the var! command. These variables can either
be scalar or one-dimensional vector. The expressions (parent! z (y 10)) (var! (a 10) b)
declare a scalar formal variable z, a vector formal variable y of dimension 10, a vector local
variable a of dimension 10 and a scalar local variable b. A third type of variable is the
parameter variable which is declared using the parameter! command. These are used to
provide parameterizability and are interactively input at the beginning. The function set!
is provided to assign the value returned by an expression to a formal or local variable. The
remaining functions provided by the tool are functions providing some logic or arithmetic
functionality. Most commonly used functions like or, and, nand, nor, not, sum, carry, delay,
multiplex, decode etc. have been provided. Many functions implementing complex logic
expressions and flip-flops are also included in the package. Please refer to the manual page
for the tool (see appendix B) for an exhaustive list of the functions.

The input is given as a lisp program. The control flow provided by lisp in conjunc-
tion with the parameter facility provides a mechanism for tailoring the specification of the
interface logic according to some parameters. It is important to note that the lisp control
flow functions should not be used to describe the control flow behavior of the interface logic.
The logic is generated from the expressions using the logic functions provided by the tool.
The description is treated as a program and therefore the order of expressions may matter.

Figure 5.1 shows the input file to the eqn2sdl tool describing the interface logic of
the Lager AUIOINC data path and figure 5.2 gives the corresponding gate level description.
As we see, the syntax allows the user to express the functionality of the logic without
worrying about how it is implemented and is extremely straightforward to write given the
logic diagram. Besides the convenience of description, it also separates the functionality
from the implementation so that the same input file can be used if a different standard cell

library or, for that matter, an entirely new implementation style is used.



sdeclare the variables corresponding to the external terminals
(parent! ZEROB* MEMB* ACCB* XMIT-ACC* XMIT-MOR* ZEROB MEMB
ACCB XMIT-ACC XMIT-MOR XMIT-ACCbar XMIT~MORbar WEN WEN.PHI1
WRITELATCH WLATCH.PHI2 WLATCH.PHIZ2bar SHIFT* SHIFT LOAD COEF1
ZEROAl COEF2 ZEROA2 ZEROA3 QUOT ZEROA SOR* INV1 INV2 INV PHII
PHI2 AlP AlP.PHI2 AlP.PHI2?bar SIGN* NOFbar SIGN POF CO CIN*
ACC1IN ACC2IN S0 S1 S2 BSO BS1 BS2 BS3 BS4 BS5 BS6 BS7)

;declare the local variables defined for ease of writing
(var! templ temp2 A4P A2P tempS0 tempSl tempS2)

sdeclare some useful functions
(defun dell! (x) (del! x PHI1l))
(defun del2! (x) (del! x PHI2))

sdescribe the logic
(set! ZEROB (not! (del2! ZEROB*)))
(set! MEMB (not! (del2! MEMB* )))
(set! ACCB (not! (del2! ACCB* )))
(set! XMIT-ACC (not! (del2! XMIT-ACC*)))
(set! SHIFT (not! (del2! SHIFT*)))
(set! XMIT-ACCbar (not! XMIT-ACC))
(set! LOAD (not! SHIFT))
(set! XMIT-MOR (not! (del2! XMIT-MOR*)))
(set! XMIT-MORbar (not! XMIT-MOR))
(set! WEN.PHI1 (and! PHI1 (del2! WEN)))
(set! WLATCH.PHI2bar (nand! WRITELATCH PHIZ2))
(set! WLATCH.PHI2 (not! WLATCH.PHIZ2bar))
(set! ZEROA (not! (del2! (xnor! ZEROA3
(and/nor2_ 2! COEF1 ZEROA1l COEF2 ZEROA2)))))
(set! INV (not! (del2! (xnor! INV2 (or! SOR* INV1)))))
(set! A4P (not! (del2! AlP)))
(set! A2P (dell! A4P))
(set! AlP.PHI2bar (or/nand2_1! PHI2 A2P ACClIN))
(set! AIP.PHI2 (not! AlP.PHI2bar))
(set! SIGN (not! SIGN*))
(set! templ (del! (not! (del2! SOR*)) (and! PHI1 A4P)))
(set! temp2 (nor! A2P ACC2IN))
(set! QUOT (xor! templ temp2))
{set! POF (nor! (dell! CO) (dell! CIN*)))
(set! NOFbar (nand! (dell! CO) (dell! CIN*)))
(set! tempSO0 (not! (del2! $0)))
(set! tempS1l (not! (del2! §1)))
(set! tempS2 (not! (del2! S2)))
(vset! (BS0 BS1 BS2 BS3 BS4 BS5 BS6 BS7) (dec3to8! tempS0 tempS1 tempS2})

Figure 5.1: Tnput to eqnsdl for Tuterface Logie for AUTOINC Data Path
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The input file is used to generate a sdl file using the eqn2sdl tool. The layout
corresponding to the sdl file is generated using Wolfe and is shown in Figure 5.3.

5.6 Software organization of eqn2sdl

This tool is also written in Franz Lisp and utilizes the Flavors package. The code is
partitioned into several functions spread over several files. The main philosophy of the tool
is based on enhancing the Lisp by defining functions which the user can utilize to express
the logic as a set of Lisp expressions. In order to avoid confusion with the standard lisp
functions for doing logic, a convention was adopted to have an exclamation mark (1) at the
end of the newly defined functions. Some of these functions are primitive functions in the
sense that they directly map to a single standard cell. The other predefined functions are
like macros defined in terms of the primitive functions. For example, the function or! which
forms the logical-OR of any number of arguments is in fact defined in terms of primitive
functions or2!, or3! and or4! which correspond to ORing of two, three and four arguments
respectively. These primitive functions or2!, or3! and or4! are mapped to actual standard
cells,

Although a fairly extensive set of functions has been provided which takes full
advantage of all the standard cells existing in the MSU standard cell library, the tool has
been designed to be extensible such that the user can define his own new primitive functions
(which map to some standard cell he has designed) or new utility functions which act as
macros. These can be defined either as part of the input file (which is just a Lisp program)
or in a default file called .egn2sd! in the current directory or the home directory. In the
Lager example given before, the user has defined functions del1! and del2! which are used
as macros. A special Lisp function called newfun has been provided which lets the user

define a primitive function, the cell it maps to and the terminal information. For example,

the commands

(newfun sum! 1850 (nonpermutable 1A 1B 2CIN) (SUM CO) 1)
(newfun carry! 1850 (nonpermutable 1A 1B 2CIN) (SUM CO) 2)

declare two functions, sum! and carry!, both of which take three arguments and
both map to the same standard cell number 1850. The difference lies in that the function
sum! utilizes the SUM output of the cell whereas the function carry! utilizes the CO
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output of the cell. Further, the declaration says that for both of these functions the inputs
are nonpermutable. Note that this is only partly true since the first two inputs are mutually
permutable but this feature has not been implemented yet. At present, the tool can take
advantage of permutable inputs only if all the inputs are permutable. The function newfun
is in fact a Lisp macro which translates the given information into a large Lisp function for
each such declaration. The Lisp function so created is then executed when the user uses it
in the input file.

The tool works by first loading the internal (predefined) functions and then ex-
ecuting the user input file as a Lisp program. As the user input program is executed, a
network of interconnected objects is created. There are two types of objects: net and mod-
ule. Each module has several net objects attached as its inputs and one net as its output.
While executing the user input, the tool automatically tries to do common subexpression
elimination so that there are no redundant modules. During this elimination, the tool tries
to take advantage of the permutability of the inputs of a function in order to minimize the
number of modules. The sequence in which the user has given the expressions matters in
logic having feedback. The basic philosophy adopted is that if any argument of a function
has not yet been assigned a value then it is tagged as unassigned and as soon as a later step
assigns a value to it, that value is used. This mechanism enables the user to give recursive
definitions also, resulting in circuits having feedback. A special function merge! has been
provided to merge two variables so that the outputs of two expressions can be forced to be
identical to each other. |

After the user program has been executed, a network of the two types of ob jects
has been setup. Now, post processing is done on this network to eliminate redundant ob jects
and then output the sdl file.

One advantage of the above scheme is that by appropriately redefining the func-
tions, the user input file can be run in a loop as a Lisp program to provide logic simulation.
This extension would require local memory to be associated with each object to take care
of the latency aspects. However, this type of simulation is not very efficient as compared to
the standard event driven simulators. A disadvantage of treating the user input as a Lisp
program is that the tool loses the capability of doing extensive error diagnostics since the
control is lost to the Lisp interpreter.

Some interesting extensions to this tool are also possible, including the extension

to handle complete data path descriptions as a set of Lisp expressions so as to provide a
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somewhat higher level interface for the data path description than is provided by the sdl
syntax.



Chapter 6

Test Data Paths

This chapter contains some examples of data paths designed using the system

described in the previous chapters. After that, some benchmark results about the execution

time is given.

6.1 Example 1: A Simple Data Path to do Addition

This data path is a simple example chosen to illustrate the various steps involved
in designing a data path using this tool. The goal was to design a data path which takes
two inputs and outputs their sum. The data path is to be pipelined with latches present
at the input and the output. The first step in the design is to construct a block diagram
of the data path using the standard blocks available in the system library. In this case,
we decide to use the blocks called adder and latch_phi. The adder block is a ripple carry
adder. It has two carry chains for enhanced speed and is implemented using three types of
leafcells. However, the user need not worry about these details. The mechanism to generate
an n-bit version of this adder is encoded in the file adder.sdl in the system library. This
file also has information about the terminal names. Similarly, to implement the input and
output latches of the data path it was decided to use the block called latch_phl from the
system library which is a dynamic, negative logic transparent latch, i.e. the output follows
the negation of the input when the clock is high and retains the old value when the clock
is low. Since it is dynamic, the output does not retain its value for long once the clock is
low. The information about this block is encoded in the file latch_phi.sdl. The sdl files for
the two types of blocks used in this data path are shown in figure 6.1.
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sdl FILE FOR ADDER BLOCK:

(parent-cell adder)
(lisp-function

;the terminal mapping

(deftermmap adder

(if (and (equal terminal "CIN") (= 0 i))

then (useterm "CIN")

elseif (and (equal terminal "CININV") (= 0 i))
then (useterm "CININV")

elseif (and (equal terminal "COUT") (= i msb))
then (useterm "COUT")

elseif (and (equal terminal "COUTINV") (= i msb))
then (useterm "COUTINV")

elseif (and (equal terminal "COUTN-1INV") (= i msb))
then (useterm "CININV")

elseif (and (equal terminal "IN1") (oddp i))
then (useterm "IN1")

elseif (and (equal terminal "IN1") (evenp i))
then (useterm "IN1")

elseif (and (equal terminal "IN2") (oddp i))
then (useterm "IN2")

elseif (and (equal terminal "IN2") (evenp i))
then (useterm "IN2")

elseif (equal terminal "OUT") then (useterm "OUT")
)) :

sthe cell mapping

(defcellmap adder

(1f (and (oddp i) (= i msb)) then (usecell "adder_odd_tapd")
elseif (evenp i) then (usecell "adder_even")

else (usecell "adder_odd"))))

sdl FILE FOR latch_phl BLOCK:

(parent-cell latch_phl)
(lisp~function

sthe cell mapping N
(defcellmap latch_phl (usecell "latch_phl”))

sthe terminal mapping

(deftermmap latch_phl

(if (equal terminal "IN") then (useterm "IN")

elseif (equal terminal "OUTINV") then (useterm "OUTINV")

elseif (and (equal i msb) (equal terminal "PHIA")) then (useterm "PHIA")
elseif (and (equal i msb) (equal terminal "PHIAINV")) then (useterm "PHIAINV")
)

Figure 6.1: sdl files for the blocks used in data path example 1
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Figure 6.2 shows the block diagram of the data path.

The next step is to write the netlist description of the desired data path. This
is done using the sdl syntax. Using the block diagram for guidance, the sdl description is
written easily and is shown in figure 6.3. The description consists of three main things:
the list of blocks or sub-cells used, the netlist and the constraints on terminal location.
The data path is parameterized by the number of bits N and this is declared in the first
line of file. The various sub-cells are given instance names. Thus, the block adder has the
instance name ADDER. The two input latches are of the same block type but have different
instance names, INPUTREG1 and INPUTREG?2. The net list consists of a list of nets and
the terminals connected to each of them. There are two types of nets: the data nets and
the control nets. Ounly the data nets are routed. The control nets are just extended to the
top and bottom of the data path.

Finally, the Design Manager is run with the data path sdl file as input. The Design
Manager calls the DPC which generates the data path. An 8-bit version of the data path
was generated and had an area of 646\ by 516). The layout is shown in figure 6.4.

6.2 Example 2: Lager AUIONc Data Path

This data path is the generic data path used in the processors designed using Lager
Silicon Compiler [18]. The data path is a simple pipelined data path with an adder and a
barrel shifter. It has three registers, two of which are pipeline registers. The data path has
been used in a lot of applications involving multiply and accumulate type operations. The
block diagram of the data path is given in figure 6.5. The corresponding floorplan in terms
of the functional blocks existing in the system library is given in figure 6.6.

The sdl file input for the data path is shown in figure 6.7 and the final layout is
given in figure 6.8. The logic diagrams for the the cells used in the design of this data path
are shown in the figures 6.9, 6.10 and 6.11. The layouts of the cells used in this data path
are given in the appendix.

The data path shown is 4 bits wide and has an area of 370\ by 1410\. This data
path has been submitted for fabrication to MOSIS. An earlier 20-bit hand-routed version of
this data path using the same leafcells has been fabricated in a 3 micron CMOS technology
and tested upto 8MHz approximately as part of a complete Lager processor. The layout
area for the 20-bit hand-routed data path was 1260\ by 926, which corresponds to an area



51

CARRYOUT

ouTeLoSK cuTcLooe
OUTRITRES
our
- ouraw o
Cakch_ph1)
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(layout-generator dpc)
(parent-cell exampledp (parameters N))

(sub-cells
(adder ADDER (parameters (N N)))

)

(latch phl INPUTREG1 (parameters (N N)))
(.latch_phl INPUTREG2 (parameters (N N)))
(latch phl OUTPUTREG (parameters (N N)))

sdata nets

(net
(net
(net
(net
(net
{net

DATAQ
DATA1
DATAZ2
DATA3
DATA4
DATAS

( (parent
{ (parent
{ (parent

Ain*) (INPUTREG1 IN)))
Bin*) (INPUTREG2 IN)))
OUT*) (OUTPUTREG OUTINV)))

( (INPUTREG1 OUTINV) (ADDER IN1}))
( (INPUTREG2 OUTINV) (ADDER IN2)))
( (ADDER OUT) (OUTPUTREG IN)))

scontrol nets

(net
(net
(net
(net
(net
(net
(net
(net

CNTLO
CNTL1
CNTLZ2
CNTL3
CNTL4
CNTLS
CNTL6
CNTL7

{ (parent
( (parent
( (parent
( (parent
( (parent
( (parent
( (parent
( (parent

CARRYIN) (ADDER CIN)))

CARRYIN*) (ADDER CININV)))
INCLOCK1) (INPUTREG1l PHIA)))
INCLOCK1*) (INPUTREG1l PHIAINV)))
INCLOCK2) (INPUTREG2 PHIA)))
INCLOCK2*) (INPUTREG2 PHIAINV)))
OUTCLOCK) (OUTPUTREG PHIA)))
OUTCLOCK*) (OUTPUTREG PHIAINV)) )

;sconstraints on parent terminal positions

(geometric-constraint-1list

{terminal
(Ain*
(Bin*
(ouT*

)
)

(side left))
(side right))
(side right))

Figure 6.3: sdl file for data path in example 1
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Figure 6.5: Block diagram of Lager data path AUIOINC
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{layout -gencrator dpc)
(parent-cell lagerau (parameters N))
(sub-cells
(LGinputstage INPUTBLOCK)
(latch MOR (parameters (t ypa dynamic) (logic negative)))
(mux MUXA (parameters (type 2tol) (loglc negative)))
(barrelshifter SHIFTER (parameters (type R6L1)))
{latch SOR (parameters {type dynamlic) (logic negative)))
{complementzero ADDERAINLOGIC)
(adder ADDER)
(mux MUXB (parameters (type 2tolzero) (logic negative)))
(accumulator ACCUMULATOR (parameters (t, ype LAGER)})
(buffer ACCBUFFER (parameters ({type tristate) (logic negative)))
(buffer MORBUFFER (parameters (t ype tristate) (logic negative)))
)

sdata nets

(net DATAQO ((parent RAMLINE) (INPUTBLOCK RAMIO) (MOR IN)})
(net DATAOl ((parent MBUS) (INPUTBLOCK MBUSIN) (ACCBUFFER oure+)
{MORBUFFER QUT*))}

(nat DATA02 ((MOR OUT*) (MUXA Aln) (MUXB Ain) (MORBUFFER IN)))
(net DATAO3 ((MUXA OUT*} (SHIFTER IN)))

fnet DATAO04 ((SHIFTER OUT) (SOR IN)))

(net DATAOS ((SOR OUT*) (MUXA Bin) (ADDERAINLOGIC IN)))

(net DATAO6 ((ADDERAINLOGIC OUT) (ADDER Aln)))

(net DATAQ7 ((MUXB OUT*) (ADDER Bin)))

(net DATAO8 ((ADDER SUM) (ACCUMULATOR IN}))

(net DATAOS ((MUXB Bin) (ACCUMULATOR OUT} (ACCBUFFER IN)))

scontrol nets

{net CNTLOO ((parent WLATCH.PHIZ2) (INPUTBLOCK NEWMBUS )))
(net CNTLOl ((parent WLATCH.PHI2bar) (INPUTBLOCK NEWMBUS*)))
(net CNTLO2 (({parent LOAD ) (MUXA SELA }))

(net CNTLO3 ((parent SHIFT) (MUXA SELB )))

(net CNTLO4 ((parent BSO) (SHIFTER SHFT-1 )))

(net CNTLOS5 ((parent BS1) (SHIFTER SHFTO0)))

(net CNTLO6 ((parent BS2) (SHIFTER SHFT1)})

(net CNTLO7 ((parent BS3) (SHIFTER SHFT2) ))

(net CNTLO8 ((parent BS4) (SHIFTER SHFT3)))

{net CNTLOS ((parent BSS) (SHIFTER SHFT4)))

{net CNTL10 ((parent BS6) (SHIFTER SHFTS)))

{net CNTL1l ((parent BS7) (SHIFTER SHFT6) })

(net CNTL12 ((parent SORbar) (SOR INV_OUT)))

(net CNTL13 ((parent Z2EROA) (ADDERAINLOGIC ZERO) ) }

(net CNTL14 ((parent INV) (ADDERAINLOGIC INV)))

(net CNTL1S ((parent MEMB) (MUXB SELA)))

(net CNTL16 ((parent ZEROB) (MUXB SELZERO)) )

(net CNTL17 ((parent ACCB) (MUXB SEILB)))

fpnet CNTL18 ((parent NOFbar) (ACCUMULATOR NOF4)))

{net CNTL19 ((parent POF) (ACCUMULATOR POF)))

{net CNTL20 ((parent AlP.PHI12) (ACCUMULATOR A1P.PlI 2)))
{net CNTL21 ((parent AlP.PHI2bar) (ACCUMULATOR AlP. PiIZY)))
(net CNTL22 ((parent XMIT-ACC) (ACCBUFFER CNTL)))

(net CNTL23 ((parent XMIT-ACChar) (ACCBUFFER CNILinv)})
(net CNTL24 ((parent XMIT-MOR) (MOR CNTL)))

(net CNTL25 ((parent XMIT-MORbar) (MOR CNTLinv) })

(het CNTL26 ((parent WEN,PHI1) (INPUTBLOCK SELMBUS) })
{net CNTL27 ((parent PHIZINV) (INPUTBLOCK PRCHRG) ) )
{net CNTL28 ((parent PHI2INV) (SHIFTER PRCHRG)) )

{net CNTL29 ((parent PHI1) (ACCUMULATOR CLK1)))

(net CNTL30 ((parent PHIlinv) (ACCUMULATOR CLKI fav))j
(net CNTL31 ((parent CIN) (ADDER CIN)))

(net CNTL32 ((parent CIN*) (ADDER CIN*)))

(net CNTL33 ((parent COn) (ADDER COUTn)))

{net CNTL34 ((parent COn*) (ADDER COUTn*)})

(net CNTL35S ((parent COn-1*) (ADDER COUTn-1+*))}

{net CNTL36 ((parent BSDIN) (SHIFTER DIN)))

(net CNTL37 ((parent SIGN*) (ACCUMULATOR SIGN)))

(net CNTL38 ((parent FLAGl) (ACCUMULATOR OUTA)))

{net CNTL39 ((parent FLAG2) (ACCUMULATOR ours}))

;sconstralnts on parent terminal positlions
(geometric-constralnt-~list
({terminal
(RAMLINE (side left))
(MBUS (side right))
)
)

Figure 6.7: Input file for AUIOINC data path gencrated by DPC
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Figure 6.8: Layout of AUIOINC data path generated by DPC
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Figure 6.11: Circuit for the barrel shifter used in Lager AUTOINC data path
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of 315 by 926 for 4-bits. The area of the hand-routed data path is nearly 45the tool. The
critical path for the data path is the carry chain of the adder which is of the ripple carry
type. The carry delay per stage has been found to be about 2.5ns by SPICE simulation

and about the same delay values have been found on some test adders.

6.3 Example 3: Projection Collector Data Path

This data path is part of an image processing chip used for calculating the Radon
Transform and the Inverse Radon Transform of an image. This data path is used for
calculating the contour along which the projection is taken and is known as the Contour
Image Generator data path. It basically calculates which contour does a particular pixel
in an image lies on. For more details about this data path, please refer to [17). The block
diagram of this data path is shown in figure 6.12.

The final layout is given in figure 6.13. The data path shown is 10 bits wide and
has an area of 758\ by 2520A. This data path has been submitted for fabrication to MOSIS

as part of a complete image processing chip.

6.4 Example 4: Data Path for a Robot Controller

This data path has been designed for use in a processor being designed for robot
control application. The data path is a modified version of the AUIOINC data path de-
scribed earlier. Many blocks used in the AUIOINC data path have also been used here and
this demonstrates the flexibility allowed by the DPC in designing the data paths. A block
diagram of the data path is shown in figure 6.14. The layout of a 4-bit version of this data
path is given in figure 6.15 and the area of the data path generated is 370\ by 1694).

6.5 Benchmarking for execution time

One of the major concern while making the choice of LISP as the implementation
language was the speed problem. Initially, interpreted LISP was used but resulted in hope-
lessly slow execution times. Later on majority of the code was compiled and that resulted
in substantial improvements. Still, as shown in this section, speed is a problem. Also, since

LISP takes a lot of core memory space, the system configuration can have a major effect
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-ﬂ.llfllhhllq

i‘:’:‘ﬁ.’b‘ b B

Ln-nmln lq;r& ]
r‘iﬁ? SRR

%

n'r#l-lm"lm

4o
Framon/, e
i N

Figure 6.13: Layout of the Contour Image Generator Data Path generated by the DPC



AU - ARITHMETIC UNIT

DATA MEMORY

Saerlal out

Figure 6.14: Block diagram of the Data Path for the Robot Controller

64



Figure 6.15: Layout of the Data Path for the Robot Controller
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on the performance.

The data path chosen for the purpose of benchmarking the execution time was the
AUIOINC data path described earlier in this chapter. A 4 bit version was chosen and the
time spent by the program in the various phases of the software was measured. The time
spent in the actual computation versus the time spent in doing the garbage collection (which
is a function of the virtual address space size) was also n-1ea,sure. Finally, the benchmarking

was done on two different machines, a SUN 3/160 workstation and a VAX 8800. The results
obtained are as follow:

Test Data Path: AUIOinc, 4 bits
(I) SUN 3/160, 8 Megabyte Memory

a. Total processor time spent in

the frontend: 32.9 seconds
b. Total garbage collector time

spent in the front end: 15.0 seconds
c. Total processor time spent in

placement and routing: 181.8 seconds
(includes garbage collector time)
d. Total garbage collector time

spent in placement and routing: 89.6 seconds
(II) VAX 8800, dual CPU, 32 Megabyte Memory

a. Total processor time spent in

the frontend: 11.7 seconds
b. Total garbage collector time

spent in the front end: 5.0 seconds
c. Total processor time spent in

placement and routing: 66.3 seconds
(includes garbage collector time)

d. Total garbage collector time
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spent in placement and routing: 31.7 seconds

As is apparent, nearly half the total time is spent on doing just garbage collection.
Further, VAX 8800 is nearly three times as fast as a SUN 3/160 for doing data path
generation using this tool.

For a 4-bit data path with 11 functional blocks and 10 data nets, it takes nearly
3.5 minutes of CPU time. This is a bit high, although not unbearable. The culprit of course

is LISP which results in very slow programs even when compiled.



Chapter 7

Conclusion

In the previous chapters a system to generate the layout of data paths starting
from a structural description was given. This system is now fully functional and is part of
the Lager silicon assembly system using the Design Manager as a front end. Several data,
paths have been designed and have been sent for fabrication. Some examples include the
generic Lager data path, the new Lager data path which would be used in a robot controller
and two data paths being used in a processor used for calculating the projection of images
along an arbitrarily oriented straight line (radon transform).

After talking to some of the active users of this tool some problems have come
to light. Foremost of these is an overall unsatisfactory quality of routing particularly in
the case when there is a potential of doing river routing instead of channel routing. The
inter-slice distance is also large. This problem is related to the well layout problem. The
router does not layout the wells in the routing region and since the well layouts inside the
cells are assumed to be arbitrary, the router is forced to leave a large spacing between
adjacent cells. If this large spacing is not left then there are spurious design rule errors
within Magic, spurious in the sense that if Magic were to expand the wells correctly while
generating the cif files then we do not need to bother about these spurious errors. However,
unfortunately, experience has shown that Magic’s well expansion is rather error prone and
that it is safer to leave enough distance between the cells. Substantial area may be saved
by reducing these inter-cell gaps provided the user does a check for these spurious errors.
An alternative solution is to enforce a fixed well layout pattern on the cell designers and

then let the router do the well painting. However, this idea was rejected after talking to
some of the users.
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Besides the area loss resulting because of the wells, there is substantial scope of
improvement in the routing itself. The router used is a very simple one and use of a better
channel router needs to be looked into. The major drawback with the current router is that
it is a greedy router and does not try to go back and improve the routing already done.
Using good existing channel routers like YACR is a possibility. However, there are several
issues which need to be looked into. The first requirement is that in our application we
need a router capable of gridless routing in three layers. The requirement of gridless router
arises because cases where a grid cannot be defined occur frequently. The capability of
routing in three layers is needed in the current scheme where all the three layers, metall,
metal2 and polysilicon are used. However, by prohibiting the use of polysilicon terminals,
the requirement of three level routing can be relaxed. The second issue is the mechanism of
interfacing to the router. Using file communication for interfacing to an external router will
result in too many system calls since the DPC requires a large number of simple channels to
be routed and this will result in a large time overhead. A subroutine call based mechanism is
highly desirable to avoid this overhead of system calls. Most of the existing routers (YACR,
Mighty) are in C whereas this tool is in Lisp. Fortunately, Lisp provides a mechanism for
calling C procedures from Lisp programs so that using these programs as subroutines is
a definite possibility. Alternatively a channel router based on a better algorithm can be
written in Lisp. Another feature which needs to be provided in the router is the capability
of doing river routing so as to be able to take advantage of cases where river routing is
the natural way to do the routing. A feature which is midway through implementation is
automatic placement of the blocks. A scheme based on one dimensional mincut placement
is being looked into.

As part of the new version of the Lager Silicon Assembly environment, an entirely
new strategy for the data path generation is being explored. The new tool uses a tiling tool
called TimLager and a macro-cell router called Flint to generate the data paths. There are
many changes in the new environment. The foremost is the fact that now OCT is being
used as the design data base. Also, we have moved away from Lisp as the programming
language in order to avoid portability and speed problems associated with Franz Lisp. The
new tool essentially uses TimLager to generate each individual n-bit wide blocks and then
does global routing to prepare the input for Flint which then does the detailed channel

routing. This tool is still in a development and testing phase but has already shown results
better than or comparable to the older tool.
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7.1 Suggestions for Future Work

There are several directions in which the current system may be extended. One
thing which needs to be done is to allow the specification of the combined data path and
the interface circuitry in form of expressions like the input description to the eqn2sdl tool.
This would allow a structure independent description which is quite close to a behavioral
description. Initially one might attempt just a one to one translation of this description to
structure but at a later stage this may be extended by using optimization techniques. The
advantage of such a description would be that the input would be close to the algorithm
description itself. Another area which may be investigated is to try simple optimizations
on the data path automatically, for example the number of registers. This might be a
compromise from the full data path synthesis problem but will provide the user a means
to easily explore the data path design space in order to arrive at a design suitable for the
current application. Finally, one can try solving the complete synthesis problem in which
the user specifies the algorithm in a high level language and the synthesis tool designs the
optimal data path for implementing that algorithm under some area and delay constraints
specified by the user. The control unit for the data path would be generated as a by-product
of the data path synthesis. In this scenario, the current tool can be used to implement the

data path architecture designed by the synthesis tool, which would generate a sdl description
of the data path.
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NAME
DPC - bitslice datapath generator version 2

SYNOPSIS
DPC

DESCRIPTION

DPC is a tool to generate magic layouts of bit-sliced data-
paths starting from a structural description of the datapath
in terms of interconnection of datapath functional blocks.
The width of the desired datapath (the number of bits) is
fed by the user interactively. Associated with each func-
tional block is a lisp function (written - in terms of
some pre-defined macro definitions) describing how the
particular block is assembled from the leafcells in the
cell library. A normal user need not concern himself with
this and can use the pre-defined blocks only. However, by
writing the appropriate 1lisp function, the user can
define his own blocks, using leafcells already there in
the system cell library, or using new leafcells. Asociated
with each leafcell is a cell-descriptor file which contains
information about the cell bounding-box and the terminal
locations. A utility function "mag2cd" has been provided. If
the cell-descriptor file is not given, the program can
extract the information directly from the magic file of the
leafcell.

The tool can be used from inside the Design Manager (see
DM(1l)) or can be used in a stand alone fashion. The syntax
for the various files are identical in the two cases. The
only difference is that when used from inside the Design
Manager, it is expected that the datapath is part of a
design hierarchy and is not the top level mdule. When used
from inside the Design Manager, the program passes the
relevant parameters to the Design Manager whereas when used
as a stand alone tool, it outputs a file giving the various
module parameters.

To use the tool to generate a datapath when generating lay-
out using the Design Manager, please refer to the Design
Manager manual for the details. In order to use it as a
stand alone tool, the command to use is

DPC

The program then asks for the datapath name, the number of
bits in the datapath and other parameters. A detailed
description of how to use the program has been provided in
the sections below.

DESIGN RESTRICTIONS ON THE CELLS

The tool imposes certain restrictions on the cell design
style. The restrictions, however, do not seem to hinder the
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design style too much. The restrictions and suggested design
styles are:

1. Although it is not necessary, try to keep the
heights of all your cells nearly equal. This results in
better area efficiency.

2. The width of cells used to make up a functional
block MUST be the same. For example, the cells at the
even and the odd bit positions of an adder must have
equal width.

3. Any layer, including the well can be used inside the
cells.

4. All the data terminals MUST come out at the sides
and should be in one of the following layers: M2, VIA,
POLY, POLYCONTACT.

5. The data terminals should be "sufficiently" apart.
This is rather vague since the terminal spacing
requirement depends on the net connection to a certain
extent. A safe thumb rule is to have the terminals at
>=4 lambdas apart and the terminals themselves 4 lamb-
das wide in the SCMOS technology. This will ALWAYS
work but leads to wasted area in many cases. A better
spacing requirement is that the terminals be spaced
such that one should be able to place minimum sized
contacts to M1l next to them, such that all the contacts
lie on the same vertical column.

6. The control terminals, power/ground and clock lines
of the cells should come out at the top and bottom
edges in one of the following layers: M1, POLY and
POLYCONTACT. Please note that this version of the pro-
gram does not allow the top and bottom terminals to
come out in DIFFUSIOn and DIFFUSIONCONTACT. These ter-
minals are extended to meet the top or bottom edge of
the slice. Further, the top terminals of the msb slice
and the bottom terminals of the 1lsb slice are brought
up to vias for compatibility with the macrocell router
FLINT (see FLINT(1l)). This requires that the top and
bottom terminals of the cells be sufficiently wide and
distant from each other. As a thumb rule, in MOSIS
SCMOS technology, these terminals should be >=4 lambda
wide and >=4 lambda apart, or 3 lambda wide and 5
lambda apart, or 2 lambda wide and 6 lambda apart, pro-
‘vided no design rules are violated for the particular
terminal layer.

7. Since FLINT gives special treatment to the
power/ground and clock nets, a labelling scheme is
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suggested for these terminals. The labelling scheme is:
the power terminals should be named by the regular
expression [vV]({dD][dD]* (where, [vV] stands for v or
V, and * stands for any string; thus vDD23, vdd!, VDD
are all wvalid names), the ground terminals as
[gG] [nN] [dD] * and the various clock terminals as
(PP] [hH] [iI]1([iI] [nN] [vV]*,

[pP] [hH] [iT]2[iI] [nN] [vV]*, [pP] [hH] [iTI]1* and
[pP] [hH] [iI]2*. The program brings these terminals to
via at the macrocell edge and labels them as VDD[i],
GND[i], PHI1INV{i), PHI2INV([i], PHI1[i] and PHI2[i]
where i is an integer >=0.

8. To enable better routing performance, try to provide
"feedthroughs" in the cells. These are pairs of termi-
nals, one on the left side and the other on the right
side of the cell, which are connected to each other and
are NOT connected to anything inside the cell. A good
strategy is to provide these in M2 in order to avoid
high capacitance associated with POLY. The feedthrough

pairs should be 1labelled FEEDn where n is a positive
ineteger.

9. All the terminals should be labelled and there
should be no useless label at the edge of the cells .

USING THE PROGRAM AND AN EXAMPLE

This tool has been fully integrated with the Design Manager
and the input is in the form of the .sdl files. Please refer
to the Design Manager manual (also, see DM(l)) for the
details of the syntax of .sdl files. Most of the features of
the .sdl syntax are accepted. The program takes as input a
.sdl file describing the structure of the datapath, a bunch
of .sdl files for each of the blocks used by the datapath
and .cd (cell descriptor) and/or .mag (magic) files
corresponding to the leafcells used by the blocks.

The datapath is visualized as an interconnection of func-
tional blocks (like adder, register, multiplexer) without
worrying about the number of bits. This structural descrip-
tion is given in the .sdl file corresponding to the data-
path. These functional blocks are referred to as blocks from
now on. Each block has some terminals associated with it.
For example, a n-bit adder has two n-bit inputs (say,
A[0..n-1] and B[0..n-1]), one n-bit output (say, S[0..n-1]),
a carry output (say, COUT) and a carry input (say, CIN). The
block itself is made up of 1leafcells, with a certain
leafcell being used at a particular bit position. Further,
each terminal of the block corresponds to a certain terminal
of a leafcell. For example, a n-bit adder can be made, say,
by using the cell msbadder at the msb position, evenadder at
the evn bit positions and oddadder at the odd bit positions.
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The block terminals are mapped to some leaf cell terminal.
For example, the block terminal COUT maps to the carry out-
put of msbadder. Similarly, the block terminal S (a n-bit
terminal) corresponds to the sum output of msbadder at the
msb bit position, to the sum output of evenadder at even bit

positions and to the sum output of oddadder at the odd bit
positions.

The .sdl file corresponding to the datapath must have a
parameter called N in it. A few other restrictions also
apply. For example, the bus-width option of the sdl syntax
should not be used. Also, the control nets should have names
which start with the string CNTL. The control nets should
have only two terminals, one of which should be a terminal
of the datapath and the other should be a control terminal
of a block. Lastly, the only geometric-constraints which are
honoured by the program are the sides of the data terminals
of the datapath. These sides should be either left or right
or can be a parameter. Please refer to the Design Manager
manual to know the details about the sdl syntax.

This description of how a block is made up of the leaf cells
and the terminal mapping is encoded as a lisp function in
the .sdl file associated with the block, wusing the 1lisp-
function feature of the sdl syntax. Some lisp macros have
been defined to make the syntax user friendly. Every block
has a .sdl file associated with it. In most cases the .sdl
for a block file is very simple, although potentially one
can utilize the full control flow mechanism of lisp to
describe fairly complex mappings. This encourages reusage of
leafcells in many different blocks.

Besides the .sdl files associated with blocks, the program
also needs the cell descriptor files (.cd files), which are
files associated with each leafcell and describing its
bounding box and terminal locations. These files can be
manually written by the user for each leaf cell. Alterna-
tively, the user can just give the .mag files associated
with the 1leafcells and the program will automatically
extract the relevant information from it. In fact, the way
the program proceeds is as follows: The program first looks
for both the .cd file and the .mag file. If both exist and
the .cd file is newer, then the .cd file is wused, else if
the .cd is older, a new .cd is created and used. If only .cd
file exists, it is used and a warning message is given. If
only the .mag file exists, it is used. Finally, if neiether
the .cd file nor the .mag file exists, an error message is
given and the program exits. A note of caution: please
ensure that the directory /tmp is writable by you.

In order to search for the .mag files, the following pro-
cedure is adopted: The program first looks for the file
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according to the path given in the .lager file in the work-
ing directory wunder the heading DPC.mag (please see the
Design Manager manual for details about the .lager file),
then the program looks for the file according to the path
given in ~/.lager under the heading DPC.mag. Next, the pro-
gram looks for the file in the current directory and then in
the directory ./MAGFILES. Finally, the program looks for
the file according to the path given by the UNIX environment
variable MAGPATH.

Similarly, in order to search for the .cd files, the follow-
ing procedure is adopted: The program first looks for the
file according to the.path given in the .lager file in the
working directory under the heading DPC.cd , then the pro-
gram looks for the file according to the path given . in
~/.lager under the heading DPC.cd. Next, the program looks
for the file in the current directory and then in the direc-
tory ./CDFILES. Finally, the program looks for the file

according to the path given by the UNIX environment variable
CDPATH.

The output magic files are placed in the directory ./<data-
path name>_ layout where <datapath name. is the name of the
datapath. For example, in the case of the example above, the
output is put in ./lagerau_layout. In case of the stand
alone version, a <datapath name>.hdl file is also created

giving the bounding box and terminal information about the
datapath.

FILES
./ .lager
~/.lager
/*.sdl
./MAGFILES/*.mag
./CDFILES/*.cd
./<datapath>_layout/*.mag
./<datapath>.hdl

SEE ALSO
DM(1) Design Manager User’s Manual

Following are files for various examples and are located on

SUNs. It is highly recommended that you go through them to
know the syntax of the various files.

Following are the files for Khalid’s datapath:
~mbs/DM_v2/*,sdl

~mbs/DM_v2/CDFILES/*.cd
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AUTHOR
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~mbs/DM_v2/MAGFILES/*.mag

Mani B. Srivastava

DIAGNOSTICS
Provides some elementary error messages. Does not detect
spelling mistakes. Needs lots of improvement in this area.

BUGS

Following are some bugs and limitations in the program:

l. This problem is related to wells. At present the
program allows any type of well layout. As a conse-
quence of this, the program leaves a worst case gap (9
lamdas in SCMOS) between cells to ensure that there are
no design rule errors. This results in substantial area
loss. One potential solution is to impose some discip-
line on the ways the well are placed.

3. Error diagnostic is not good, partly because the
Design Manager itself does not do any error diagnostic.
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NAME

eqn2sdl - equation to sdl converter

SYNOPSIS

eqn2sdl

DESCRIPTION

egngdl is a tool to translate a description of logic given
in terms of a high level lisp like syntax to the sdl syntax
used by the Design Manager (see dm(l) and dm(5)). This out-
put sdl file can then be used as an input to the Design
Manager to generate the layout At present the output sdl
file is targeted at wusing the MSU Standard Cell library
although the syntax is absolutely general and in future the
tool may be enhanced to target at other styles of layout
generation, for example the Data Path Compiler (see DPC(1l)).
Also, at present the only type of optimization done is com-
mon sub-expression elimination so that at present there is a
fair amount of control over the final structure from the
input. However, this may change when more optimization is
done in the tool. Since the input syntax is a functional
syntax, it is not limited to combinational logic only.

The input syntax is basically Franz Lisp enhanced by a set
of functions implementing a lot of common functions used in
describing logic. All these added functions are dis-
tinguished by an exclamation sign (!) at the end. A list of
valid functions is provided later in this manual. These
functions are used to express the logic as a set of expres-
sions. The arguments to these functions are either another
such expression or variables declared by the user. There
are two types of variables, the first type are the formal
variables of this block (which correspond to the parent ter-
minals in the sdl output) and 1local variables which are
meant for convenience in writing the input. Further, these
variables can either be scalar or one-dimensional vectors. A
word of caution however, the various functions impose res-
trictions on the type of their arguments and return a value
of a certain type. It may not be possible to interchange a
scalar and a vector variable. The formal variables are
declared using the function parent! while the local vari-
ables are declared using the function var! The variables
can have names which are valid lisp atoms (i.e., any arbi-
trary string of printable characters which may need to be
enclosed within vertical bars (|) if it is an evaluable lisp
expression or number or contains a metacharacter). A vector
variable x of dimension n is declared as (parent! (x n)).

A third type of variable is a parameter variable which are
declared using the function parameter! and are scalar. These
are meant to provide programability and are interactively
input at the beginning and then used within the user input.
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LIST

A simple input would consist of a set of expressions using
the functions provided. However, advanced users can build
their own functions based on these primitives and then use
them. Also, the entire control flow mechanism provided by
lisp can be used to express the input thus allowing a very
flexible and powerful mechanism for programability depending
on input parameters. Note that the logic behaviour itself is
in a functional format and does not use the control mechan-
ism of lisp. Thus, for example, the lisp function cond does
not in anyway imply a multiplexer in the logic.

The logic description is treated as a program and therefore
the order of expressions matters. Also, if any argument to
an expression has not yet been assigned a value, then it is
tagged and if at a later stage a value is assigned to it
then the tagged item gets that value. This general scheme
enables recursion and delayed assignments. This sequential
description of the logic behaviour is very useful in many
scenarios.

The basic function provided for assignment of variables is
set!. It can handle both scalar and vector variables. In
particular, if a vector is given a scalar value then all
elements of the vector get that value. Also, if a vector is
given a vector value, then the input value is truncated or
sign-extended to match the length of the vector to which it
is being assigned.

OF FUNCTIONS

Following is list of functions currently avaulable for the
tool (besides, of course the standard lisp functions which
are used for programablity):

(parameter! parl par2 par3 ....)
(var! varl var2 var3 .....)
(parent! varl var2 var3 .....)
(set! varl arg2)

(vset! 1_varl 1_arg2)

(or! argl arg2 agr3 .......)
(nor! argl arg2 agr3 .......)
(and! argl arg2 agr3 .......)
(nand! argl arg2 agr3 .......)
(xor! argl arg2 agr3 .......)
(xnor! argl arg2 agr3 .......)
(not! arqg)

(eql! arqg)

(sum! argl arg2 arg3)
(carry! argl arg2 arg3)
(del! argl cnt2)
(mux2tol argl arg2 cnt3)
(zero!)

(one!)
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(merge! argl arg2 arg3 .....)
(AoxrBinv! argl arg2)
(tristate! argl cnt2)
(dec3to8! argl arg2 arg3)

:0=(or! (and! 1A 1B) (and! 2C 2D) (and! 3E 3F))
(and/or3_2 1A 1B 2C 2D 3E 3F)

;0=(nand! (or! 1A 1B) (or! 2C 2D))
(ox/nand2_2! 1A 1B 2C 2D)

;O0=(nor! (and! 1A 1B) (and! 2C 2D))
(and/nor2_2! 1A 1B 2C 2D)

;O0=(noxr! 1A (and! 2B 2C))
(and/nor2_1! 1A 2B 2C)

;O0=(nand! 1A (or! 2B 2C))
(or/nand2_1! 1A 2B 2C)

;0=(or! (and! 1A 1B) (and! 2C 2D) (and! 3E 3F) (and! 4G 4H))
(and/or4_2! 1A 1B 2C 2D 3E 3F 4G 4H)

:0=(or! (and! 1A 1B 1C) (and! 2D 2E 2F))
(and/ox2_3! 1A 1B 1C 2D 2E 2F)

;O0=(or! (and! 1A 1B) (and! 2C 2D))
(and/or2_2! 1A 1B 2C 2D)

;some functions involving flip-flop action

;transparent latch with reset
;works when clock low

Q= [(Qn-1 * C) + (D * C’)] *R
;OB = (not! Q)

(latchlevel! 1DATA 2CLK 3RST)
(latchlevel*! 1DATA 2CLK 3RST)

;nand latch

M = (Qn-1 * R * S) + §’
;QB = (Qn~-1’ * § * R) + R’
(nandlatch! 1RST 2SET)
(nandlatch*! 1RST 2SET)

;nor latch

Q= (S *R') + (Qn-1 * g’ * R’)
;QB = (S’ * R) + (Qn-1’ * S’ * R)
(norlatch! 1RST 2SET)

(norlatch*! 1RST 2SET)

:D flipflop with S and R
;works on high to low edge
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;Q = [(On-1 * C) + (Dn-1 * C’)] * R
;QB = (not! Q) + R’

(latchaedge! 1DATA 2CLK 3RST 4SET)
(latchaedge*! 1DATA 2CLK 3RST 4SET)’

;D flipflop with asynchronous R
;works on high to low edge

Q= [(On-1 * C) + (Dn-1 * C’)] * R
(latchbedge! 1DATA 2CLK 3RST)

:D flipflop with asynchronous R
;works on high to low edge

Q= [(On-1 * C) + (Dn-1 * C’)]
;QB = (not! Q)

(latchcedge! 1DATA 2CLK 3RST)
(latchcedge*! 1DATA 2CLK 3RST)

:D flipflop

;works on high to low edge
Q= [(Qn=-1 * C) + (Dn-1 * C’)]
;OB = (not! Q)

(latchdedge! 1DATA 2CLK)
(latchdedge*! 1DATA 2CLK)

FILES
./ .eqn2sdl
~/ .eqn2sdl
./input.eqn
./output.sdl

SEE ALSO
DM(1) Design Manager User’s Manual

AUTHOR
Mani B. Srivastava

DIAGNOSTICS
Provides reasonable error messages. Errors

egn2sdl (1)

relating pri-

marily to the lisp syntax are taken care of by the built-in

lisp error handler.
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List of Leafcells in the Library

Name of the cell size comment

A. ADDER:

adder_even 46 x 212 Ripple~carry adder even slice.

adder_odd 40 x 212 Ripple~carry adder odd slice.

adder_odd_tapd 40 x 212 Ripple-carry adder odd slice with CININV also
out top.

B. COUNTER:

counter_even 48 x 232 Loadable two-phase counter with count enable:;
no pass gate XOR in 1/2 adder.

counter_odd 48 x 232 Odd slice of above.

countersetgnd 48 x 11 Optional preset for setting IN on counter to gnd.

countersetvdd 48 x 11 Optional preset for setting IN on counter to vdd.

countersetx 48 x 11 Optional preset for setting IN on counter to pass.

C. LATCHES:

prechrg_latch 44 x S0 Domino dynamic latch with non-inverting output.

latch_phl 39 x 52 Single-phase dynamic latch with inverting output.

latch_ph2 55 x 71 Two-phase dynamic latch with inverting output.

scanlatch_phl 53 x 100 Scanpath single phase dynamic latch with inverting
and non inverting outputs. (Scan operation itself
is two phase.)

clocked buffer 38 x 48 Clocked inverter with non-inverting output.

clockedinverter 35 x 45 Clocked inverter with inverting output.

D. MULTIPLEXORS:

inv2tolmux 42 x 53 Inverting 2-to-1 MUX.

2tolmux 43 x 69 Non-inverting 2-to-1 MUX.

inv2tolmuxzero 44 x 61 Inverting 2-to-1 MUX with zero.

E. RANDOM LOGIC:

inverter 33 x 31 Inverter

inverter4 46 x 38 Four inverters stacked on top of each other.

invertersense 33 x 31 Inverter with threshold shifted for sense-amp
operation.

trist_buffer 34 x 48 Tristate buffer

nandnor 41 x 64 Outputs ‘(inl.in2) and also ‘(inl+in2)

andnorl 51 x 96 Outputs ‘(in.cntll+ecntl2)

bufferandnorl 51 x 96 Outputs (‘in.cntll+cntl2)

bufferbig 24 x 50 Buffer

buffersmall 24 x 46 Buffer

dual_buffer 51 x 45 Two buffers in one cell

xfer_gate 40 x 46 Transfer Gate

xornorl 56 x 75 Outputs ‘{cntl2+{cntll xor in))

F. REGISTER:

register 46 x 105 Single-port static register.

scanreglPort 50 x 147 Single-port static register with scan path.
scanreglPortmx 50 x 147 Same as above but mirrored about the X axis.
scanreg2Port 58 x 147 Two-port static register with scan path.
scanreg2Portmx 58 x 147 Same as above but mirrored about the X-axis
G. ZEROS:

zero 37 x 19 Single strong pull-down.

isozero 27 x 49 Isolated zero: pass-gate followed by pull-down.
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