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Abstract The composite functions which appear in various optimal feedback system design prob
lems, as well as in open loop optimal control problems, can lead to severely ill-conditioned
minimax problems. This ill-conditioning can cause first-order minimax algorithms to converge
very slowly. We propose a variable metric technique which substantially mitigates this ill-
conditioning. The technique does not require the evaluation of second derivatives and can be
used to speed the convergence of any first-order minimax algorithm which produces estimates of
the optimal multipliers. Numerical experiments are presentedwhich show that the variable metric
technique increases the speed of two algorithms.
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1. Introduction

The term variable metric method is commonly used to describe a number of algorithms, such as

those discussed in Refs. 1 and 2, which emulate the behavior of the Newton method. The term can be

applied to any optimization algorithm which uses a sequence of linear transformations of the variables

to convert the original optimization problem into a sequence of equivalent problems, to each of which it

applies one iteration of a "standard" method and uses a transformed result as a starting point for the

iteration on the next problem. Variable metric methods are effective when there is a linear transforma

tion which transforms an optimization problem into a better conditioned form. Since the desired

transformation is not known a priori,an approximating sequence of transformations is constructed as the

computation progresses.

In the past, variable metric techniques were used as a means of improving the conditioning of an

optimization problem with respect with respect to a particular algorithm. For example, the Armijo-

Newton method (Ref. 3) can be viewed as a combination of a sequence of transformations with the

Armijo gradient method. Consider the problem

min fix). da)
X6R' v '

where fJEL* -> R is strictly convex and twice Lipschitz continuously differentiable. Given an estimate

Xi of the solution x, at iteration i, the Armijo-Newton method uses the transformation x = F(xjf*y to

construct the equivalent problem

min AF(x>T*y), (lb)
ye It" v '

to which it applies one iteration of the Armijo gradient method. Thus, (i) it computes the search direc

tion1 di =-Vy</(/;'(xi)""%yi), in the new coordinates, (ii) then it transforms this search direction back to

the original space by the formula hi = F(xif^di = -FCti)""1V/fo), and (iii) computes the step size, which

is unity near the solution, using a suitably transformed Armijo step size rule (see Ref. 3) completing the

construction of xi+i. As is well known, the result is a quadratically converging algorithm. Similarly, it

1lit is interesting toobserve that the Newton search direction h{ is the solution of the problem

min <V/Cxp.AVvilAl|w,
*6 R* *



Theorem 2.1: (Refs. 13 and 9) Ifx isa solution to (3), then there exists a £ e Ip such that

Vx/(r,0)= ZfW£) =0, (5a)
/6£

S^^-max/^] = 0. (5b)

Now suppose that the functions/A;) are strictly convex. Then it follows from (5a) and the con

vexity of /(•,£) that, if x is a solution to (3), then it must also be a minimizer of the function

<>*(•) ^ /(*»£)• Now, as we have seen in the Section 1, the conditioning ofthe problem min n„ <j>A(x)
U, X G MS. „

can be improved by a linear domain transformation based on the Hessian of 4>Q. Our method ori

ginated in the conjecture that this transformation would also improve the conditioning of problem (3).

Han used this matrix as the basis for a variable metric method for problem (3) in Ref 10.

We now return to problem (2). The Lagrangian for problem (2) is given by

'(*.M) =S/6 a& '(^j*)- Hence its Hessian with respect to x is given by

L(x.\i) = J \t/AJG(Ajx)Aj , _

where G'O) denotes the second derivative matrix of g^Q. In many engineering optimization problems,

such as those mentioned in the introduction, the functions gJQ) do not contribute to the ill-conditioning

of the matrix I(x,£), at a solution. Furthermore, their Hessians may be very difficult to compute.

Hence we propose to replace the Hessian matrices GiApcd in (6) by lj x lj identity matrices. Thus, for

any \x e Z^,, let

We will show that a sequential transformation method based onthe matrix RQi) can compensate for the

ill-conditioning introduced by the matrices Ar

To ensure that a sequential domain transformation method does not destroy the convergence pro

perties of the algorithm which it uses, there must be both an upper bound and a strictly positive lower

bound on the eigenvalues of the domain transformation matrices. However, the minimum positive



In this paper, we present a sequential linear transformation technique2, which is intended to miti

gate the ill-conditioning caused by the matrices Aj. Our technique was inspired by the observation that

when all the functions gf(-) in (2) are convex, any solution x to (2) is an unconstrained minimizer of the

corresponding Lagrangian, 1(x,(l) =£;e £\t/g\AjX)t where the j2 are optimal multipliers. Although the

Hessian of this Lagrangian is usually singular, a restriction to a suitable subspace can be used to recon

dition the problem minj(e]RM/(x,jx). Since, in many engineering applications, only the matrices Aj

cause ill-conditioning and since second order derivatives of the g'O can be very costly to compute, we

replace the Hessians of the g'O by identity matrices and use linear transformations to improve the con

ditioning of approximations to the matrix J^e VjAJAj. The resulting sequential linear transformation

technique can be used in conjunction with any first-order minimax algorithm which produces estimates

of the optimal multipliers. Our variable metric technique is developed in Section 2. In Sections 3 and

4, we present theoretical results which show that our variable metric technique can improve the speed

of convergence of the Pshenichnyi method (Ref. 11). In Section 5, we present numerical experiments

which show that our variable metric technique reconditions problems with respect to both the Pshenich

nyi method and a new interior point method (Ref. 12).

2. Development of the Variable Metric Technique

We begin by providing a heuristic rationale for our method. Consider the general minimax prob

lem,

min max/'(x), (3)

where the functions /A/) are twice continuously differentiable. We will denote the standard unit sim

plex in R" by Zp k { \l g W I£ye a\s!' =1, \i £ 0 }, and the second derivative matrix of/'(•) by

F'O). We can associate with problem (3) the Lagrangian /:R" x lp -> 1R, defined by

l(x,\i) = 2 |i^(x) . (4)

We recall the following result

2Our technique is related to oneused implicitly by Han in Ref. 10.



Theorem 2.1: (Refs. 13 and 9) Ifx is a solution to (3), then there exists ajle^, such that

Vx/(x.0)= Z0W£) =O. (5a)
/6£

%&[/'&)-maxf*®] = 0. (5b)
/ejzyea

Now suppose that the functions/'(•) are strictly convex. Then it follows from (Sa) and the con

vexity of /(',$) that, if x is a solution to (3), then it must also be a minimizer of the function

$*(') - '(•»£)• Now, as we have seen in the Section 1, the conditioning of the problem min c n„ <|>A(x)

can be improved by a linear domain transformation based on the Hessian of $(')• Our method ori

ginated in the conjecture that this transformation would also improve the conditioning of problem (3).

Han used this matrix as the basis for a variable metric method for problem (3) in Ref. 10.

We now return to problem (2). The Lagrangian for problem (2) is given by

/(x,|i) =J)/6 bMfe '(A/*)* Hence its Hessian with respect to x is given by

L(x.[i) = 2 MlAjO{AjX)Aj , (6)

where (?(•) denotes the second derivative matrix of g '(•). In many engineering optimization problems,

such as those mentioned in the introduction, the functions g'(-) do not contribute to the ill-conditioning

of the matrix L(x,jl), at a solution. Furthermore, their Hessians may be very difficult to compute.

Hence we propose to replace the Hessian matrices &(Ajxd m (6) by lj x lj identity matrices. Thus, for

any (i g Ip, let

*(H) ^ Z WAJAj . ^

We will show thata sequential transformation method based on the matrix tf(jj.) can compensate for the

ill-conditioning introduced by the matrices Aj.

To ensure that a sequential domain transformation method does not destroy the convergence pro

perties of the algorithm which it uses, there must be both an upper bound and a strictly positive lower

bound on the eigenvalues of the domain transformation matrices. However, the minimum positive



eigenvalue of R(\ij) may decrease to zero as n,- -»jl Hence, we propose to modify RQij) by augment

ing the small eigenvalues in its spectral decomposition, as follows. For any \i e L^, let

XiOi) £ A^Qi) £ ... £ Xn(p) be the eigenvalues of /?(ii). Let U^ be any real unitary matrix such that

R(p) = ^diag( Xi(|i),.... Xn(|i) )I/J, and let X/ji) £ max{ /\,/|x)t e }, where £>0 is a small fixed

number. Then we define

GOO £ I/ttdiag( X,(n) X„(n))tfJ. (8)

Proposition 2.1: 77te matrix-valuedfunction Q(-) is well defined and continuousin \l

Proof: We begin by showing that g(p) is well defined even though the selection of the eigenvector

matrix C/R is not unique when R(p.) has multiple eigenvalues. Letting Xo = °°, wedefine

Dip) £ {;'6fll XHdL) >XfiL)= Vi<P) *'' =V./HH<P) >V^QoOi) } , (9)

so that { Xjdi) }j «dW is the set of distinct eigenvalues ofJ?(ji), with multiplicities m,<M). Next, let «y

denote thej'-r/t column of ^,7 € fl. Then,

*(H) = Z W
yeDQi)

£ wy>*-lM/t*-l
ike m,<u)

(10)

is a spectral decomposition of AQi). The matrix J ke ^ M/+*_i$*-i represents a projection operator

which projects onto the eigenspace corresponding to X/ji), and hence it is independent of the selection

of t/u. Since

60x) ^ ^diag(X1(^) XBGi))17j = 2 tyW
y eflQi)

2 «/>*-l"/>*-l
it 6 m,<|i) (ID

we see that it, too, is independent of the selection of Up.

Now, suppose that the sequence (ft)£0 c £p converges to some p e 5^as i ->«> . Foreach ji,-,

let ty = [ u\j,..., u„j ] be a unitary matrix of eigenvectors of /?(n,> so that

COO = Z *i<W 2 «/t*-U "/**-!,
ft e m.-Oi,)

(12)

The sequences { g(n^ }£b and { £/,- }£o are bounded, since the eigenvalues are continuous and the

•5-



matrices Ut are unitary. Therefore, there exists an infinite subset K c N, and matrices Q and

— _ _ *
U = [«i,...,^J, such that g(Mt) -> fi and Ui~*U as /-»«>. Because C/.-C/J" = /, for all i e IN,

U(F-I. Since [r?(n»)-X,<|ii)/]tty =0, for je a, and since the eigenvalues, X/-)» are continuous,

[R(P) - X0)I]u~j =0 for; € a. Thus, tf is a unitary matrix of eigenvectors for R(ff). The matrix Q(nj)

can also be written in the form

S V*-l(W«y>*-U My+*-l^600= S
y«D<P)

Taking limits in (13) as i -» », i e AT, yields

;'e£>(fD
S V*-l(fD «M-l«>ft-i

ye0<p)
£ «>Hb-l5£*-l

Jfce mfp)
= cod.

(13)

(14)

Since the sequence { QQij) )%q is bounded and any accumulation point of this sequence equals g(J0, it

follows that lim ,.». Q(y$ = j2(p), and hence fi(-) is continuous. •

We now provide an algorithm model which shows how to combine our variable metric technique

with any one-step, first-order minimax algorithm which produces multiplier estimates. To simplify nota

tion, we rewrite problem (2) as

mmx6R-V(*). (15)

where

V(x)kmzXjGSLgi{AjX). (16)

Now consider any first-order minimax algorithm for solving (15) which generates estimates of the

optimal multipliers at each iteration. We can associate with the algorithm a y-dependent, set-valued

iteration map Mv:Rn -> Rn x2^ such that, if{(x^ )Z\ is asequence generated by the algorithi
the problem minx6 Rn y(x), then

lm on

for all / e N.

(17)



For any v e 2^,, let 5(v) £ Q(v)~*. Then the function v(S(v)y) can be written in the alternative

form (v*5)(y), which leads to the notation M^^ for the iteration map defined for the problem

transformed by 5(v). Hence a variable metric algorithm for solving problem (2), basedon the the itera

tion mapMy andthe transformation matrix 5(v) has the form

Variable Metric Algorithm Model 2.1:

Data: xb e R",p_ie Zp , i = 0.

Step 1: Set yt = SQid"lxt,

Step 2: Compute (yM ,n*i) e M y.^ (yd ,

Step 3: Setxw = S(Hi)yw.

Step 4: Replace i by i+l and go to Step 1. •

Note that the multiplier vectors do not require transformation because, for any invertible matrix 5,

(x,$) € 1R* x Zp satisfies equations (5a, 5b) with respect to problem (2) if and only if (S~lx,\i) satisfies

these equations with respect to problem min R. y(Sy).

3. Rate of Convergence of the Pshenichnyi Algorithm

We will now summarize a number of results, established in Refs. 9 and 14, for a version of the

Pshenichnyi minimax algorithm (Ref. 11) which usesan exact minimizing line search. When applied to

problem (2), with y(>) defined in (16), this algorithm has the following form:

Algorithm 3.1: (see Algorithm 5.2 and Corollary 5.1 in Ref. 9)

Data: xn; Y>0.

Step 0: Set i = 0.

Step 1: Compute the search direction

hi = arg min max gJ(AjXj) +<ATVgi(AjXi).h)+ Vfcyl/j|2 . /18n

Step 2: Compute a minimizing step size, X, € arg min xe r Y(*i + ^i) •



Step 3: Set Xi +i = Xi + \ihh replace i by i + 1 and go to Step 1. •

Theorem 3.1: (Ref. 9) If thefunctions #'(•) in problem (2) are continuously differentiable, then any

accumulation point xofa sequence U,)to constructed by Algorithm 3.1 satisfies thefirst-order optimal-

ity conditions (5a, 5b). •

To show that the algorithm converges linearly, we need to introduce more restrictive assump

tions. Let the set of minimizers for problem (2) be denoted by S ^ arg min ze RR V(x). By analogy

with nonlinear programming convention, we say that strict complementary slackness holds at x e 8 if,

for every fie Zp such that the pair (x,£) satisfies (5a, 5b), we have #>0 if and only if

g\A$ = y&).

Hypothesis 3.1: Suppose that

(i) the functions g '(•) are twice continuously differentiable,

(ii) there exist 0 < / £ L < «> such that, for all j e p,

/ I/O2<S {h,(P(z) h^LVil2 . V 2,h e R*>, (19)

(Hi) strict complementary slackness holdsfor all x e 8. •

It follows from Hypothesis 3.1 that (i) for any xe 6 there is aunique optimal multiplier $L e Zp

satisfying equations (5a, 5b), (ii) the set of optimal multipliers, associated with the set of optimal solu-

tions, G, is a singleton, {\i}, and (iii) the set of indices of functions maximal at x,

J = Ue &\gJ(Afi) =\j^x) }, isindependent ofxe 8(seeRef. 13).

Let j\ <... <jb be the indices comprising/, then we define the matrix A2* 4 [AJJ,...,A£] . Let

a = Rank( A ) and let Z be an n x a matrix, the columns of which form an orthonormal basis for

Ranged). Then we have the following result

Theorem 3.2: (Ref. 14) Suppose that Hypothesis 3.1 holds with respect to problem (2) and, in addition,

(iv) Iand Lare chosen sothat the scaling parameter, y, in Algorithm 3.1 satisfies



/a+[ 2 \JtA]AjL < y < Lmax XZTA]AjZ\ , (20)
je £ y«£ * '

w/tctc o*[X] denotes the minimum positive eigenvalue of the symmetric matrix X. IfAlgorithm 3.1 con

structs an infinite sequence {xf}£o, then, (a) x,- -> x <w / -> <» with x e 8, and tf>) either there exists an

i'o e Nsuch thatx,- = xfor all i^ioor

Vfofi) - Vlim ^ -Il*ii_L £ p § (21)

where

L inax IZTAjA21
ye*

P^l-T -r^r/- • (22)

Following Ref. 6, we refer to the quantity lim sup (y(xM) - y)/0p(Xj) - y) as the convergence

ra/fo of the sequence { \j/(x/) }£o- The quantity p in (21) bounds the convergence ratio of any sequence

constructed by Algorithm 3.1 in solving any problem in the class defined by (2) and the assumptions

stated.

4. Rate of Convergence of Variable-Metric-Pshenichnyi Algorithm

We will refer to the algorithm obtained by combining our sequential transformation method with

the iteration map of Algorithm 3.1, in the manner stated in Algorithm Model 2.1, as the Variable-

Metric-Pshenichnyi Algorithm. We will now show that the Variable-Metric-Pshenichnyi Algorithm

converges faster on problems of the form (2) than Algorithm 3.1.

For the transformed problem

min,6R-V(5(v)y) , (23)

given a pointy = 5(v)_1x anda v e ZP, the search direction computation (18) has the form

d(y,v) k arg min max gW(v)y) +{(A£(y))TVg W(v)y),d>+ VfcyMl2. (24)

The result can be transformed back to the original space using the formula

-9-



n(x.v) A S(y)d(y,v) . (25)

Equivalently, h(x,\L) can be computed directly using the variable metric defined by S(v), as follows:

n(x,v) =arg min max $'(A*) +lAJVg'iAx), h)- \|/(x) + lAylh,Q(y)h). njs\
heR*J*B v '

Since the max function in (26) is strictly convex in h, h(x,v) is unique, and hence it also follows that

/i(v) is continuous.

Problem (26) can be solved by converting it to dual form as follows. Let 8(x,v) denote the

minimum value in (26). Then for any x e R" and v 6 S^, the search direction problem can be written

in the following equivalent forms:

0(x,v) £ min max g>(AjX) +(AJVgJ(AjX), h)- \j/(x) +1AyVi.Q(v)h)

= min max J ji/ [^(A/c) +v4jV(A/c), «>- y(x) ]+^<h,Q(v)h), (27)

By an extension of von Neumann's Minimax Theorem (Ref. 9), the max and min in (27) can be inter

changed. Hence,

9(x,v) b max min £n>[gJ(Ajx) + <AJVg'(AjX), h)- y(x) ]+V4y</i,fi(v)A>
|ie2^AaR«y6£

= max 2 vl \g»<Afc) - v(x)] - ^-1S nW«*Wftr* • (28)

where the last expression is obtained by solving the inner minimization problem3. Since the solution to

(28) is usually notunique, we denote the solution setby

U(x,v) Aarg max £ ^ tfCA/t) - vCfl - £l£ m/aJV*>(A^)I ' . (29)
M-6 2^ y e £ ^ ye £

The set-valued function £/(*,•) has the following properties: (i) it is upper semi-continuous in the sense

of Berge (Ref. 21); (ii) for any minimizer x of (1) and any v e Zp, t/(x,v) is the set of multiplier vec

tors which, together with x, satisfy equations (5a) and (5b), (iii) under Hypothesis 3.1,

U(G,Zp) = {£ }, a singleton, (iv) any multiplier vector \i e U(x,v) yields the unique solution to the

Several methods exist (see, for example, Refs. 15-20) for solving the positive semi-definite quadratic program (28).

•10-



primal problem (26), according to the formula

h(x,v) =- ^(v)"1 £ v/AjVgS(Ajx). (30)
T >6£

Steps 2 and 3 of the Variable Metric Algorithm 2.1, using the iteration map of Algorithm 3.1, can

alsobe performed in the original space without affecting the sequence of iterates produced. We there

fore present it in this form to simplify proofs.

Algorithm 4.1:

Data: xb; y> 0 , ^ e Zp , z > 0, i = 0.

Step 1: Compute the multiplier vector, ji, e £/(*,•,ji^).

Step 2: Compute hx - h(Xi,\i^{) using (30).

Step 3: Compute the minimizing step size, X,- = arg min xen Yfe+ M*d •

Step 4: Set xi+l = xt + Xihit replace i by / + 1 and go to Step 1. •

We will now establish several properties of Algorithm 4.1.

Theorem 4.1: If the functions g *(;) inproblem (2) are continuously differentiable, then any accumula

tion point x of a sequence { x* }%o generated by Algorithm 4.1 satisfies the necessary conditions (5a,

5b).

Proof: This follows from the proof of convergence for Algorithm 3.1 in Ref. 9 and the fact that the

scaling matrices S(|!m) are uniformly bounded, i.e. - that for all v e Zp,

(max IAjA,l)-* l/tl2 £ I5(v)/il2 «S eT* Itt2. (31)
ye£

•

Next we will show, under assumptions of convexity and complementary slackness, that the

sequence of iterates, {x,}£o, constructed by Algorithm 4.1 converges to the solution set G and that the

corresponding sequence of multiplier vectors, {ji,}Z-i converges to ft, the unique optimal multiplier

associated with the solution set G. We will use the notation z, -» Z to represent the convergence of a

sequence { zt }£o c R" to a setZ c R", i.e. - lim ,_»., min >ez b;- yl = 0.

•11-



Theorem 4.2: Suppose that Hypothesis 3.1 holds and that Algorithm 4.1 generates sequences of iterates

{ Xi)Zo and of multiplier vectors {Ji,- }£o- Then,

(a) there exists an open setWz> Gsuch that \j/ = Ofor every j4J and all |X e U(W,Zp),

(b) there exists x e 8 such that x,—* xas i -» <»,

(c) there exists i0 € IN such that Xi e x+Ranged) for all i £ io.

(d) \ii| -» ft as i -» oo.

Proof: (a) Since AC.*) defined in (25) and 6(v) defined in (27) are uniformly continuous in (x,v) on

compact sets in R" x Zpt and since both functions are zero on the set 8 x Zp, (a) follows from the same

argument as Proposition 52 in Ref. 14.

(b) Let AT & [A[....,Aj]. Equation (30) and the fact that Range(AT) is invariant under S(y) for all

v e Zp imply that the sequence of search directions {hi }£o is contained in therange of A7*. Therefore,

the sequence of iterates { x, )Zo is contained in the set

V k (xo +RangeiA^ni xe R" I\j/(x) £ v(xq) }. (32)

The set V is compact by the same argument as in the proof of Theorem 5.1 in Ref. 14, and therefore

the set {Xi )Zo converges to the set of its accumulation points. By Theorem 4.1, these must satisfy the

optimality condition (5a, 5b). Since y(-) is convex, these necessary conditions are sufficient for

optimality, implying that x§ -» 8.

From part (a) of this theorem, h(x,v) g Ranged?) for all x€ Wand all ve 2^,. Because

x,-» G, there exists iQ e N such that x, e Wforalli> i0. Hence, {x,-}~- *„ e x^ +Ranged), and

x,- -» (x,o +Range(AF))r\Q.

We show that this limit set is a singleton. Suppose X! ,x2 e (x^ +Range$) )<~>8. Then, since

V(0 is convex, the entire line segment between xi and x2, [x^xj, is contained in this set Now,

UQxi.xA.IJ = {£} and Q! >0 for all j e 7. Hence, H^y*) =y(x) =$ for all xe [x^xj and all

y6 J, by equation (5b). Since the functions g'(•) are stricdy convex, this implies that Afa - x^ =0

-12-



for all j g J. Since xi - x2 g Range@F), this implies that xx - x2 g Range(^)^Null(A) ={0 }, i.e. -

that xi =xi. Thus, 8^(xlo +RangeQ?)) ={x }for some x.

(c) From the proof of (b), jq g x^ +Range@F) =x+Ranged) , for all i £ /'q.

(d) The set-valued map C/(v) defined in (29) is upper semicontinuous in the sense of Berge (Ref. 21),

uniformly on compact sets in R" x Zp. Since x,- -> xg 8 by (b) and U(&,Zp) ={ji }, this implies that

M»->£ •

We define the function p : R*01 -» R by

P(5) =' _I max &!?AJAfZI ' (33)
ye £

Note that p in equation (22) equals p(/), where / is the n x n identity matrix.

Theorem 43: Suppose that Hypothesis 3.1 holds and, in addition, (iv) I and L are chosen so that the

scaling parameter, y, satisfies

/a+[ 2 (t!S(foAJAjS(to\ < y < Lmax X#S($)TA]A£($)n . (34a)
y<3£ye£

If { Xi }£o is an infinite sequence generated by Algorithm 4.1, then, either there exists an i0 g IN and

x g G such that xt - xfor all i ^ *o» or

lim sup V(**l)~¥ <J p(S(ji)) . (34b)

Proof: By Theorem 4.1(b), the sequence of iterates has a limit pointxe G. Assume that x* * x for all

( g IN. Hypothesis 3.1 and assumption (iv) of this theorem ensure that the assumptions of Theorem 3.2

are met for the transformed problem,

min v(5(fey). (35)

Since the range of A7* is invariant under S(ji), the columns of Z form a basis for the range of S(ji)A .

This fact and assumption (iv) of this theorem imply that assumption (iv) of Theorem 3.2 holds with
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respect to problem (35). This and Hypothesis 3.1 ensure that the assumptions of Theorem 3.2 are

satisfied with respect to problem (35). The following result, slightly stronger than Theorem 3.2, but

valid under the same assumptions, is stated in Theorem 5.1 of Ref. 14:

limsup min * S(i^***T#» )~Y*pfflft) ,
XeOt

v( stfby) - v <36>
ye RangcCfi

where y £ S($)~lx for an arbitrary x g 8. Using the substitution y =Sfli)""^ and the fact that

h(S($)y,$) = S($)d(y,\L), (36) can be rephrased as follows. For any 5 >0, there exists a set

V c x + Range(Z), which is open in the affine space x +Range(Z), such that

nun «*+Mfr.ft)-f *(1 +fl^ , (37)

for all x g V, x * x. Since v(«) is strongly convex, the min over R in (37) and in Step 3 of Algorithm

4.1 can be replaced by a min over a closed interval C. With this modification, the left hand side of

(37) is continuous in (x,n), since h(,-) is continuous. This implies that there exists a neighborhood of

HD dZp, such that

•* rt»+Mfr.fl>-f s(1 +7S)p(m , (3g)
y(x) - y

for all x g V and ii g D. Of course, since 6 was arbitrary,

limsup min ^x +U^)) ~V <; p(S(g)) .
V(x)-\|f (39)x-»x

x»*x

x e x + Range@)

By Theorem 4.2(c), X* g x+Ranged) =x+Range(Z) for large j. Then, since x,- -» x, n* -» £ and

\|/(x,- + Mi) = min x6 c yfo + Xhd, (34b) holds. •

The following comparison of the two convergence ratio bounds, p given by (22) and p(S(jl))

given by (33), suggests that our variable metric technique results in a faster algorithm than the original
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Pshenichnyi Algorithm 3.1.

Proposition 4.1: Ifo+[R(fo] > c, then p(7) £ p(5(fi)) .

Proof: Consider a spectral decomposition R(fi) = UAUT, where U is unitary,

A A diag(Xx($) X„(M))andA k diag{Xx($) Xn<$) ). Wehave that

2 ff 5(0)r AjAj S($) =5(0)T/?(a) 5(0) (40)
y«£

= tf A*44 UT( U A tfr) 17/V44 tfr

= £/ A-1 A UT.

Since o*[r?(ji)] >e, we have that, for each yea, either X/fl) = X/tf) or X/ft) =0. Hence,

ZJSp\i!S(foTAfAjS<& = Udiag(l l,0,...,0)U, which implies that

o+Ey« £&StBfJjAfiOto = 1, and

p(5(M)) ^ 1-t
max UfStfifAjAjStfiyn (41)
y'6£

Now,

.^Tc/^T.r. <v>s^ <y,ZTS(pfAJAjS($)Zy)IZT5(M.fAjA^(0)ZI = max -^ —^

\A£($Zy\2
= max

>6k» lylz

= max ,
y6Sf IZylz

\A£($)Zy\7 (42)

since the orthonormality of the columns of Z implies that XLy\ = lyl for the Euclidean norm. Making

the substitution z = S($)Zy yields

&S<StfAjAS(&a = max —^—

U*l2
= max
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\Ajzf
= max *

Substituting (43) into (41) yields

p(S($)) £ 1- -J- min ±M&\jeILt2eRange<Z)
•A/rl2 I

By inspection, p(S(£)) is never greater than

p(7) =1- j- min fr-flflfl|j
U^l2

e p. , y,ze Range(Z) , lyl = Izl = 1

The difference between p(7) and p(5(£)) can be quite significant, as the following example shows.

Example 3.1: Suppose that a minimax problem involves two scaling matrices,

1 0
0 10"2

1<T2 0
0 10

(43)

(44)

(45)

(46)

and that ]il =p2 = xh and / =L - 1. The rate constant for the unsealed Algorithm 3.1 is p(7) =0.995,

whereas, under reseating, it is p(5(ft) =0.5. This suggests that |"tog 10"1 / log p(7) 1 =460 iterations

of the Pshenichnyi Algorithm 3.1 would be required to achieve a ten-fold reduction in \j/(x) - $ near

the solution, while only flog 10"1 / log p(5(fo) 1=4 iterations of the Variable-Metric Pshenichnyi

Algorithm 4.1 would be required. •

5. Results of Numerical Experiments

Since rate of convergence results are indicative only of the terminal behavior of an algorithm, we

performed a number of numerical experiments to evaluate the overall behavior of the variable metric

technique. We compare the performance of the Pshenichnyi Algorithm 3.1 with that of the Variable-

Metric-Pshenichnyi Algorithm 4.1 and with Han's method (Ref. 10), which uses full second order infor

mation. In addition, we compared the performance of the barrier function minimax algorithm in Ref.

12 with a corresponding variable-metric-barrier-function method which we constructed in accordance
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with the Variable Metric Algorithm Model 2.1. The barrier function method is based on the penalty

function

^ 1
(47)y-6£ a-gJ(Ajx)

which is differentiable at all x for which y(x) < a. An iteration of the barrier method involves an

indefinite number of inner cycles, each of which requires the evaluation of all functions and first order

derivatives. The rate of convergence of this algorithm has not been established and hence we can only

evaluate the effect of our sequential transformation technique on it through numerical experiments. The

five algorithms were applied to the two problems below. An Armijo-like step size rule (Ref. 9),

Xi =max{ p% Iytfxt + Xfikhd - y(xd £ aX£*efo.ii<)} . (48)

with a,p g (0,1), was substituted for the exact minimizing line search in Algorithms 3.1 and 4.1, since

problem (48) can be solved in a finite number of steps. Quadratic interpolation was used to determine a

trial step size X,% In all of the experiments, the algorithm parameters were set to a = 0.7, p = 0.9,

Y = 1.0, and e = 10"10 (in the definition of the matrices Q(p)). Since in engineering applications, gra

dients and Hessians are frequendy computed using finite differences, the evaluation counts in Tables 1

and 2 are tabulated as though the gradients and Hessians of the functions g\-) were evaluated by finite

differences. The evaluation of a single function gJ(z) incurs one function evaluation, and the gradient

Vg y(z) incurs an additional lj evaluations. Thus, the total number of function evaluations required to

obtain the information to compute a search direction for the Pshenichnyi and Variable-Metric-

Pshenichnyi Algorithms is Jy« e. (b + !)• "Hie evaluation of Hessians for use by the Han algorithm

incurs an additional xA{lj + 1) evaluations per function #'(•).

Problem 5.1: Consider the simple problem min x6 R4 max{ g1(Al x) , g 2(A2 x) }, where

«1(y) = y? +yl +(y3-i)2-i . (49a)

g2(y)^yi + yi+(y3+i)2-i. (49b)

and the matrices A}, A2 are given by
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A, o

10 0 0 0

0 10 0 A2 =

P 0 lO"1 0.

102 0 0 0
0 10 0

0 0 10

(49c)

An initial point of (10~3,0,10,0) was used. The minimum value of 0 is achieved on the subspace

spanned by the vector (0,0,0,1). Table 1 shows the work required for the five algorithms to achieve

two given levels of accuracy in the value of y. The units of work listed are number of iterations, the

number of function evaluations and the CPU time. Figure 1 plots the function values { y(x,-) } versus

the numberof function evaluations for the Pshenichnyi andVariable-Metric-Pshenichnyi Algorithms. •

Problem 5.2: (Ref. 22) Consider the problem of designing a controller for the feedback system in Fig

ure 2 with plant,

TO =
1

(a+2)V3)
52+8j+10 3s*+7ff4

2s+2 3?+9j+8 (50)

Since the plant is stable, we can parametrize the controller by C(x) = (/ - R(x,s)P(s)TlR(x,s)

where R(x,s) is a 2 x 2 matrix of rational polynomials in the complex variable s, which are bounded

and analytic for Re(s) £ 0. We chose to shape frequency domain tracking error by solving the problem

min fcmax I #«,„(/©, R(x,j(a)) ll , (51)

where CI consists of six frequency points, equally spaced on a logarithmic scale,

{0.010, 0.029, 0.080, 0.240, 0.693, 2.0 }, and MF denotes the Frobenius norm. For this system,

Ht^ix.s) =/ - P(s)R(x,s). We used the following first order expansion ofR(x,s),

^•[S3]rfi*[55].(*fl0)

The initial point Xq =(0,0,0,0,1,0,0,1) was chosen, and our computations converged to the minimum

value of 0.0255085 at the point

xs [-80.308718709,-4.4337113582.84.132574000,-31.534025985,

9.2348949849,-0.0051528236,-8.9338039187,4.8550280952 J

The work required for the algorithms to achieve two given levels of accuracy is recorded in Table 2.

•18-
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The values of \j/Q are plotted versus the number of function evaluations for the Pshenichnyi and

Variable-Metric-Pshenichnyi Algorithms in Figure 3. •

Theorems 3.1 and 4.2 apply under the same assumptions to versions of Algorithms 3.1 and 4.1

employing an Armijo-like step size rule,except that the convergence ratio boundsare given by

P= 1_C*L max IZ^ • (53)
and

L max YZFS(SfA]AS($)7\
y"6£

Table 3 presents the convergence ratios of the sequences constructed by the algorithms under com

parison on Problems 5.1 and 5.2, as well as the convergence ratio bounds derived above. Table 3

shows that the variable metric technique reduces both quantities. The reduction in computational efifort

corresponding to the decrease in the convergence ratios of the observed sequences is evident from

Tables 1 and 2. The reduction in effort entailed by even the slight reductions in the convergence ratio

bounds is also large. To show this, we have included in Table 3 the number of iterations which the

algorithm convergence ratio bounds suggest would be required to reduce \p(x) - V Dv a factor of 10

near a solution, i.e. - \ log0.1 / log p 1.

If avariable metric Qlfyx) isbased on Rufe) = S ye£ \*!A]G?{Aj>i)Aj, rather than /?0i) as in Sec

tion 2, and if tfl/fotft)] > e, the search direction of Algorithm 4.1 coincides with that of Han's algo

rithm near G. A result similar to Theorem 4.3 holds for this algorithm with

Ph = 1 - min -
<fi.QH(foz) J.

]j e p , zg Range(Z)
<z,AJGi(A$Ajz)

(55)

In general, pH > 0, suggesting that only linear convergence is achieved despite the use of second order

information. This is born out by the strictly positive convergence ratios observed for versions of the

Han algorithm using an exact minimizing line search. While a sequence {X,} constructed by the Han
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algorithm with a fixed step size of 1 converges superlinearly to a minimizer, some iterations may pro

duce an increase in y(-). It is likely that a descent algorithm based on Han's search direction will not

be superlinearly convergent without the use of devices analogous to the feasibility enhancing corrections

of some algorithms for nonlinear programming (see, for example, Refs. 23 and 24).

6. Conclusion

We have introduced a variable metric technique which substantially mitigates the ill-conditioning

produced in the composite minimax problem by the Aj matrices. The technique does not require the

evaluation of secondderivatives andcan be usedas described in Algorithm Model 2.1 to speed the con

vergence of any first-order minimax algorithm which produces estimates of the optimal multipliers. We

have analyzed the effectof the technique on the rate of convergence of the Pshenichnyi minimax algo

rithm. An upper bound on the convergence ratio was obtained for the variable metric version of the

algorithm which can be considerably smaller than for the unsealed version. Numerical experiments ver

ify the improvement suggested by the decrease in the convergence ratio bounds. The variable metric

technique yielded a dramatic acceleration in convergence. The experiments also confirmed that the

technique can speed convergence of another minimax algorithm. The variable metric technique can be

applied without modification to a version of the Pshenchinyi algorithm for solving minimax problems

involving semi-infinite composite max functions (Ref. 9) of the form max <j>(x,y) , where Yc Rr is a

compact, but infinite set The convergence rate analysis extends to this case as well.
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Table 1: Numerical Results for Problem 5.1.

Algorithm
Vi <. $ +10"2 \|fi £ \j/+ 10"4

Iterations Function

evaluations

Time

(sec.)

Iterations Function

evaluations

Time

(sec.)

Pshenichnyi 291 5,246 11.6 397 7,154 15.9

VM-Pshenichnyi 4 80 0.3 6 116 0.4

Han 3 98 0.2 5 152 0.3

Barrier 45 6,806 9.4 48 16,640 22.1

VM-Barrier 40 2,276 4.8 43 2,812 5.7



Table 2: Numerical results for Problem 5.2.

Algorithm
\jfit £ \|f + 1(T2 tft£ $ +10"4

Iterations Function

evaluations

Time

(sec.)

Iterations Function

evaluations

Time

(sec.)

Pshenichnyi 11628 976806 2317.9 11976 100603 2391.9

VM-Pshenichnyi 4 390 10 6 558 2.8

Han 4 1350 2.2 6 1902 3.1

Barrier 15 2314,548 2,788.0 21 10,904,772 13,008.5

VM-Barrier 4 1422 7.1 11 4962 13.2



Table 3: Convergence ratios and bounds for Problems 5.1 and 5.2.

Algorithm
Problem 5.1 Problem 5.2

Convergence
ratio

Convergence
ratio bound

Iterations Convergence
ratio

Convergence
ratio bound

Iterations

Pshenichnyi .83 .999979 109,646 .9969 .999994 383,763

VM-Pshenichnyi .67 .697697 7 .0805 .937000 36

Han .0840 .697697 7 .0805 .937000 36
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Figure 1: Peformance of the Pshenichnyi Algorithm (dashed) and the Variable-
Metric-Pshenichnyi Algorithm (solid) on Problem 5.1.
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Figure 2: A feedback system.
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Figure 3: Peformance of the Pshenichnyi Algorithm (dashed) and the Variable-
Metric-Pshenichnyi Algorithm (solid) on Problem 5.2.
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