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ABSTRACT

A prototype framework which can automatically synthesize integrated circuits from

behavioral descriptions has been developed. The system is characterized by the use of optimiza

tion tools at every level of the synthesis process to enhance the quality of the designs. The system

proceeds through the various steps of hardware allocation, control specification, state assignment

and combinational logic synthesis to produce optimized gate-level specifications. Formal

verification and test strategies have been incorporated into the system.

Given a data flow specification, simulated-annealing-based algorithms which find a globally

optimal placement of micro-instructions, thus producing an optimal datapath configuration, have

been developed Algorithms for state assignment of finite state machines targeted toward multi

level logic implementations have been proposed. A connection between multi-level and multiple-

valued Boolean minimization has been established. Algorithms for Boolean decomposition, based

on multiple-valued Boolean minimization, have been developed which decompose a PLA into a

set of smaller interconnected PLAs such that the overall area of the resulting logic network is

minimized. An efficient algorithm has been proposed for the verification of the equivalence of

two sequential circuit descriptions at the same or differing levels of abstraction, namely at the

register-transfer (RT) level, the State Transition Graph level or the logic level. An efficient deter

ministic sequential test pattern generation algorithm, effective for mid-sized sequential circuits, has

been developed. This algorithm can be used in conjunction with an Incomplete Scan Design

approach to test generation for large sequential circuits. Finally, the relationship between sequen

tial logic synthesis has been explored and a connection between state assignment and the testabil

ity of a sequential machine has been established.
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CHAPTER 1

Introduction

A considerable research effort has focused on automating the integrated circuit (IC)

design process over the past few years (e.g. [1] [2] [3] [4]). A variety of Computer-Aided

Design (CAD) tools for the logic [5] [6] and physical design [7] of integrated circuits have

been developed. It is clear that an integrated set of computer design aids coupled with an

unified approach to data management is essential for VLSI design. To this end, research has

focused on IC synthesis systems [8] i.e. systems which can automatically generate mask-level

layout of integrated circuit chips from high-level, programming-language-like specifications.

In this chapter, the necessity for, and the characteristics and requirements of, synthesis systems

are presented and previous work in this area is reviewed.

1.1 Need for Synthesis Systems

There are integrated circuit applications, such as speech synthesis, bandwidth compression and

recognition, modems and digital data transmission and digital control systems, where in order

to achieve a complete and efficient integration of the system functions, it is necessary to

design special-purpose chips which are to perform only a single task. Unfortunately, even

though this can yield enormous savings in the size of the system and its power consumption,

the design cost in both time and money can often be prohibitive. In addition, there are not

many designers who have the expertise to design these system chips, which often require

knowledge in both analog and digital circuit design as well as digital signal processing and

computer architecture.



Semi-custom design techniques such as gate-arrays [9] and standard cells [10] offer an

environment where faster turnaround can be guaranteed by design tools which can place and

route complex functions in a short time. However, the task of logic design, i.e. specifying the

gates and the interconnections which implement a certain behavior of the system, may still

consume a large amount of design time.

Application-Specific Integrated Circuit (ASIC) synthesis systems have been proposed as

a solution to the problem of automatic integrated circuit generation from a high-level

behavioral or algorithmic description of the functions of the system to be implemented (e.g.

[11] [12] [13] [8]). The demand for and use of ASIC synthesis systems is increasing at a

rapid rate in the IC industry today.

1.2 The Level of the Input Description

The level of the input description to these synthesis systems varies - some systems require a

relatively low register-transfer level description of the design, where information about

required hardware resources (e.g. buses, arithmetic units) is explicitly available. For example,

if the design in question is a pipelined datapath of a computer, the pipeline schedule has to be

explicit in the input description. The overall structure of the circuit, ie. the interconnection of

the various modules can thus be inferred in a straightforward way from the description.

Several silicon compilers have been developed (e.g. MACPITTS [13]), which automatically

generate mask layout beginning from a register-transfer (RT) description of a datapath or a

finite state machine (FSM) controller. These silicon compilers typically proceed through

phases involving logic extraction, optimization and layout synthesis.

Behavioral synthesis systemsy like the CMU-DA system [14] [1], begin from higher level

algorithmic specifications where the behavior rather than the structure of the design is

specified. The task of a behavioral synthesis system is thus more complicated than the typical

silicon compiler task - a phase which allocates hardware resources and decides their spatial

and temporal delineation (Section 1.3.1), thus specifying the structure of the design, precedes



the logic design and physical design phases. Complete synthesis systems also incorporate

vitally important verification and test strategies. For example, synthesis and verification share

a common methodology in the USC Design Automation System [15] [16].

It is important to note that the same language can be used in the context of specifying

an input to a synthesis system at either of these two levels. For example, languages like ISPS

[17] and BDS [18] are used for the functional specification (behavior) of a design or the

register-transfer level specification of a design. Constructs in these languages are interpreted

differently depending on the level of specification - e.g. variables in the language may be

interpreted as existing registers or values which are to be stored and allocated in registers.

13 Inputs to Behavioral Synthesis Systems

Given that the input description specifies the behavior of the IC, different kinds of inputs to a

synthesis system are possible. Possible inputs are purely architectural descriptions of the

instruction sets of a general-purpose computers (with no information about the implementa

tion). Another possibility would be software programs describing algorithms which are to be

implementedin hardware. In either of these two cases, the task confronting the synthesis sys

tem is the same - datapaths executing these descriptions optimally, with associated control,

have to be synthesized. However, the complexity in performing these tasks varies

significantly, especially in the hardware resource allocation phase.

General-purpose computer descriptions are typically very detailed and and involve

extensive bit manipulations. The instruction fetch-decode-execute loop takes only a few

cycles and is usually constrained to be highly sequential. A lot of attention to detail must be

paid in synthesizing from these descriptions and they tend to be uninteresting from a global

optimization point of view. The decisions that can be taken during hardware allocation are

tightly constrained by the input description - e.g. given the instruction set of a 1-8080 micro

processor, there is virtually no parallelism between arithmetic operations and a second ALU in

a hardware implementation would be useless. Control logic, on the other hand, is quite



complicated in large general-purpose computers.

One can also synthesize specialized processors which are designed to execute a given

software description. For example, given a string hash table procedure or a MOSFET model

evaluation routine, the goal would be to synthesize a datapath which would execute this pro

gram optimally. These descriptions are typically less detailed, less structured and not as con

strained as compared to general-purpose sequential computer descriptions. Also, the associ

ated control for these special-purpose machines is usually quite simple. Since parallelism in

these programs is usually not explicitly specified, it must be extracted. A lot of potential for

global optimization exists in synthesizing from these specifications - the allocation step (Sec

tion 1.3.1) involves many decisions and trade-offs. For example, the datapath executing a typ

ical MOSFET model evaluation routine can use one to four ALUs. Depending on the execu

tion speed and chip area constraints the optimal number of ALUs can be found during the

resource allocation process.

1.3.1 Constraint Specification

Aside from the behavioral specification, the synthesis system is generally given constraints by

the user which the final circuit implementation must satisfy. These constraints are typically

constraints on the chip area (physical constraints) or on execution speed (delay constraints) of

the resulting datapath, but may involve more complex considerations.

Depending on the needs of the user,.the system may receive constraints of varying

degrees and the effect of these constraints may be felt in different phases of the synthesis pro

cess. For example, a specific constraint on the number of ALUs or registers that the datapath

can use affects the hardware allocation phase. Broader constraints, such as a constraint on the

final chip area or a constraint on the clock period, are passed downward through all phases of

design.

The specification of these constraints has traditionally been separated from the

behavioral description. Constraints are typically tacked onto descriptions just before synthesis



and are rarely formalized. A unified framework allowing constraint-driven synthesis (pro

pagating constraints across all synthesis tools) necessitates the development of a language sup

porting constraint specification across different levels of abstraction, namely behavioral,

register-transfer and logic levels. Research, focusing on the development of such a language,

is currently underway in various places, including Berkeley.

1.4 Phases in Behavioral Synthesis Systems

1.4.1 Hardware Allocation

The hardware allocation phase in behavioral synthesis, first described in [14], generates a data

path which can implement all the data transfers required by the original specification. This

step involves many decisions. For example, in a bus-style design, decisions involving both

the number and the interconnection of buses, arithmetic units and registers have to be made.

In the synthesis of pipelined computer datapaths, pipeline schedules satisfying required execu

tion speed constraints must be found. A pipeline synthesis procedure was first published in

[19].

A wide variety of tradeoffs between execution speed and hardware resource cost of the

synthesized datapath have to be explored in the allocation phase. Serial and parallel imple

mentations of input data flow descriptions can result in vastly different datapath

configurations. For example, a datapath, A, might be twice as fast as datapath B, but it might

occupy three times the area.

1.4.2 Control Synthesis

After the hardware resource decisions have been taken and a datapath which implements the

required data transfers has been synthesized, the associated control which, in conjunction with

the datapath can execute the behavioral specification must be synthesized. Control can take

the form of micro-code to be stored in ROM or RAM, a sequencer, or a FSM controller [20].



The specification of the control logic is easily derived given the original specification

and the synthesized datapath. In some synthesis systems (e.g. [14]), micro-instruction schedul

ing decisions may be made at this stage, i.e. after datapath synthesis/hardware allocation. In

other allocators like EMUCS [21], control specification is regarded as a by-product of data

path synthesis and no major decisions are taken.

Optimization of control logic, be it in the form of a micro-coded ROM or PLA-based

FSM, is a critical and difficult task. Micro-code compaction algorithms (e.g. [22]), logic

optimization (see [23] for references), state assignment (e.g. [24] [25] [26]), input and output

encoding algorithms (e.g. [26] [27] [28]) are necessary in synthesis systems for optimal con

trol synthesis.

1.43 Verification

It is important in this kind of environment to be able to verify that the optimization tools have

not introduced any design errors during the synthesis process. The goal would be to formally

verify that the generated layout implements the behavioral specification and satisfies the

imposed constraints.

After the hardware allocation phase, logic verification tools (e.g. [29] [30]) can be used

to verify equivalence of machine descriptions down to the gate/flip-flop level. This problem is

NP-complete but a few algorithms have been shown to be practical even for large designs [29]

[31] [32] [33]. Circuit and function extraction tools can be used to re-extract these gate/flip-

flop descriptions from the synthesized layout to feed the logic verification tools. Timing



verifiers (e.g. [34]) can check that the constraints on the delay of the chip have been satisfied.

1.4.4 Testing

After chip fabrication, a test strategy is required to ascertain functionality correctness. Testing

can be a difficult task especially for unstructured sequential designs - combinational designs

are easier to test The testing task can be alleviated by using built in self-test (BIST) [35]

techniques or using a constrained design style like Scan Design [36]. BIST involves adding

extra logic to the various modules, in an effort to make the design easily testable. Scan

Design, which has been widely adopted, makes all the sequential elements observable and

controllable from the outside and transforms the sequential testing problem into a combina

tional logic testing problem.

Unfortunately, both these procedures have a substantial area penalty associated with

them - a design using BIST or Scan Design may be 10-20% larger than the same design not

using either [37]. Efficient test generation algorithms for sequential circuits are thus very

attractive. Some algorithms have been proposed for sequential test generation in the past (e.g.

[38] [39]).

1.5 Related Work

Several synthesis systems operating from behavioral specifications have been developed in

recent years. The CMU-DA [14] [1], Arsenic [40], Flamel [41] [42] and the USC Design

automation project [IS] [16] are typical examples and are reviewed here.

1.5.1 The CMU-DA System

One of the earliest behavioral synthesis systems was the CMU-DA system [14], which began

from the CMU RT-CAD project [43]. This system has evolved over the years and incor

porates many computer-aided design tools for synthesizing circuits from high-level

specifications [1] [21] [44] [45] [46] [47]. The basic design methodology underlying the

CMU-DA system is shown in Figure 1.1.
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The design methodology is hierarchical. Complexity is handled by describing a design

at higher levels of abstraction which eliminates unnecessary detail, particularly during early

phases of a design. In addition to taking a hierarchical approach, this methodology employs

the concept of a design space. Given a set of metrics which characterize the quality of a

design, the design space is defined as a Euclidean space whose coordinate axes correspond to

the metrics. Alternative designs are represented by points in the design space. Through the

study of a design space, the designer can efficiently direct his use of the design aids to pro

duce better designs.

The design process begins with a behavioral specification of the digital system of to be

designed in a hardware description language ISPS [48] [17]. Transformation heuristics similar

to those used in compiler design are used to optimize the original description.

The next step in the design process is synthesizing from the behavioral description a

structure in terms of physical modules which will implement the required behavior. This step

is partitioned into datapath and control synthesis.

Datapath synthesis is further separated into an allocation and a module binding step.

Many datapath allocators have been developed, employing various algorithms (e.g. [49] [50]

[51] [52] [21] [46]). for generating the register-transfer structure. Different design styles can

be employed, e.g. distributed, bus and pipeline style.

Control synthesis involves control allocation which produces an control engine evoking

the datapath devices in an order consistent with the behavioral description and module binding

which results in an implementation of the control engine which can be a ROM or a PLA.

While the ISP language is useful for describing the desired behavior of a system, such a

description implies a certain data flow, through the use of assignment constraints, and a cer

tain control flow, through the use of loops, conditionals and procedures. These flows can

impact the resultant cost/performance characteristics of the design. .In order to remove the

bias which is inherent in an ISP description, the ISP description is transformed into an



alternative representation called the Value Trace or VT [53] [54]. A Value Trace is a con

nected graph made up of a series of blocks called VT-bodies [54], Each VT-body represents

a control environment in the ISP description which has a single entry point. The datapath and

control allocators use the VT as their input rather than the ISP description.

This system operates from a module data base which is created using logic and layout

optimization tools. Verification and test strategies are currently not incorporated into the sys

tem - however some of the optimizing transformations used in the system have been proved

Beh avioral Description

ISP

Value Trace

0pLiini7.at.ion

L_

Da(.a/Memory
Allocator

DModule Hinder -^*

Control

Allocator

Module Hinder
<~

Module

Database

Fig. 1.1 CMU-DA design methodology
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to preserve behavioral equivalence [55].

1.5.2 Arsenic

Synthesis in Arsenic, was originally developed at the University of Illinois [40] and continued

at the University of California, Irvine [56], uses three steps across four levels of design,

namely, algorithmic, register-transfer, abstract-cell and layout levels.

Arsenic begins synthesis with control step allocation, dividing the input specification

into micro-instructions (Mis) at first, tentatively, so as to obtain maximum parallelism. The

allocation of hardware is done for one MI at a time simultaneously with control step alloca

tion.

The model of the control unit consists of a ROM and a sequencer.

1.53 Flamel

Flamel [41] [42] is a high-level hardware compiler which produces a hardware implementation

of a given program minimizing the execution time of the implementation while meeting a user

supplied constraint on the area of the hardware implementation. An overall picture of its

operation is shown in Figure 1.2.

Flamel produces a datapath and a finite state machine controller, targeted for a bit-slice

architecture. It performs a set of local block-level transforms on the input description in order

to obtain maximum parallelism while meeting a resource (rather than a cost) bound. Depend

ing on the user supplied area constraint, different kinds of time/area tradeoffs can be achieved.

1.5.4 The USC Design Automation Project

ADAM is a design automation system developed at USC, first described in [16], incorporating

custom layout tools, and expert system for the design of testable circuits and a knowledge-

based expert synthesis subsystem.
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The custom layout tools include a CMOS silicon compiler. The synthesis subsystem

incorporates a clocking scheme and pipeline synthesizer [57] [19] and a datapath synthesis

program [58].

Synthesis and verification share a common methodology in this system [15].

Verification is performed by verifying parts of the design which have been specified and syn

thesizing the missing elements.

1.6 Summary

In this chapter, provided an introduction to the problem of synthesizing integrated circuit chips

from behavioral descriptions has been provided and some previous work in this area has been

reviewed. In the next chapter, an overview of the behavioral synthesis system developed as

part of this research will be presented. In the following chapters, a detailed description of the

algorithms used in each phase of synthesis as well as the verification and test strategies incor

porated into the synthesis system will be givea
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CHAPTER 2

Overview

The behavioral synthesis system described in this chapter is the focus of this disserta

tion. A prototype framework which can synthesize automatically integrated circuits from

behavioral descriptions has been developed and is illustrated in Figure 2.1. A number of tools

for datapath and control synthesis have been developed - they have been incorporated into

this system. Efficient verification algorithms have been developed to verify across the optimi

zation tools in the synthesis pipeline. A strategy for testing the synthesized circuit has been

developed. The relationship between logic synthesis and testability has been explored and a

synthesis procedure to ensure fully testable sequential machines has been developed.

At this time, this system can be used for the synthesis of general-purpose computers,

given instruction set specifications, or for the synthesis of specialized processors executing

given algorithmic descriptions. Test cases described in this dissertation include a MOSFET

model evaluation co-processor for a hardware simulation engine and digital signal processors.

The system is characterized by the use of optimization tools at every level of the synthesis

process to enhance the quality of the designs. These tools give the designer the ability to

explore the complex tradeoffs in the design space and can be used to synthesize in different

design styles. Rather than using a fixed library and incorporating module binding steps in

synthesis, all logic blocks (ALUs, random logic and control) are assumed custom-designed

using existing logic synthesis tools [6] [23] and existing layout generators [59] [60] [61] [62].

These blocks would then be placed and routed using a macro-cell layout system [63].

The input description, the tools developed for the datapath and control synthesis phases

and some of the custom layout tools that have been used to complete the prototype system are
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described below. The verification and test strategies that have been developed and incor-
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porated into the system are also described,

2.1 Input Description

General-purpose computers have traditionally been specified in hardware description languages

like AHPL [64], DDL [65] ISPS [17] and BDS [18], which are specifically designed for this

purpose. More recently, a language called VHDL has become popular and appears to be an

important new direction [66]. On the other hand, tasks like string hash table lookups are very

easily written in programming languages like C [67] or PASCAL [68]. The input description

to the system described here can be in either of these two forms - a BDS description of a

computer or a C program implementing an algorithm.

This input description is translated into a intermediate textual description which consists

of two parts. The first part is a data-flow description which specifies all the required data

transfers between the program values. Some of these data transfers may be mutually

exclusive due to conditional clauses in the input description. These relationships are specified

in the data-flow description, but the control signals associated with these relationships are not.

The second part of the description, which represents the control function, has this informatioa

The partitioning of the description into separate control and data-flow is a common approach

to the problem. The CMU-DA system was one of the first to take such an approach [14].

The translation to the intermediate description incorporates some optimizing transforma

tions like dead code elimination and loop unwinding.

2.2 Datapath Synthesis

Given the intermediate description which specifies all the data transfers required, all pre

cedence constraints between the various operations are extracted. Parallelism and sequentiality
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is explicitly introduced into the description following this analysis.

2.2.1 Hardware Allocation

The hardware allocation step in datapath synthesis can be formulated as a two-dimensional

placement problem of micro-instructions in space and time.. The problem solved is to syn

thesize a datapath corresponding to the input data-flow specification such that a given, arbi

trary function, flj, O of execution time T and hardware cost C, is minimized. The hardware

costs are the sum total of the costs associated with registers, arithmetic units, buses and links

in the datapath, based on required layout areas for placement and wiring. A given placement

of micro-instructions corresponds to a unique datapath with a certain hardware cost and execu

tion speed. Optimal conditional resource sharing is achieved by solving a constrained place

ment problem where disjoint instructions are allowed to occupy the same spatial and temporal

location. Given a data-flow specification, simulated-annealing-based [69] algorithms have

been developed, which find a globally optimal placement of micro-instructions, thus producing

an optimal datapath configuration [70] [71].

Tradeoffs between execution speed and hardware cost of resulting datapaths are

achieved by specifying different cost functions to the synthesis program. Thus, a variety of

datapaths can be synthesized for any given input, with different time/area tradeoffs.

There are three main differences between this approach and others taken in the past [21]

[58] [72] [41]. First, all the allocation subproblems, namely, arithmetic unit, register and

interconnect allocation are tackled simultaneously, rather than sequentially or iteratively.

Second, the optimization is completely global in nature, the entire sequence is optimized, and

therefore the entire datapath. Third, I have used a probabilistic hill-climbing algorithm [73],
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simulated annealing, which can avoid the traps of locally-minimum solutions.

2.2.2 Pipeline Synthesis

Pipeline synthesis entails both placement of the micro-instruction sequence as well as parti

tioning the sequence into phases. Hardware resources, like arithmetic units, cannot be shared

across phases in a pipeline. The number of phases in a pipeline thus affects both the

throughput and the hardware resources required.

The algorithms used in hardware allocation have been extended to handle pipelines. A

partition of micro-instructions across phases and a placement of micro-instructions within each

phase is found so as to minimize J{T> C), introduced earlier. Pipelining versus parallelism

tradeoffs in the design space can be explored by varying the number of phases/partitions in

order to vary throughput and hardware cost

During synthesis, based on die required execution speed of the data path, decisions are

made as to what the delay specifications of the different operations/micro-instructions should

be. These specifications later become delay constraints on the logic synthesis and layout tools

in the module generation subsystem.

2.3 Control Specification and Synthesis

In this system, control specification is a by-product of the datapath synthesis step. After the

hardware allocation step produces the placement of micro-instructions, sequences of values for

the different control signals to the ALUs and registers can be easily found. Mutually

exclusive operations will be executed based on the values of some control signal, usually the

status bits of an ALU. A controller is synthesized as a PLA based FSM or using multi-level

combinational logic and flip-flops.

Optimal control logic synthesis is a difficult task necessitating the use of powerful

optimization algorithms. The FSM controller is typically implemented using combinational

logic and feedback registers. The combinational logic can be implemented as a microcoded
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ROM, PLA or as a multi-level logic network. Efficient state assignment algorithms can sub

stantially reduce controller area. After state encoding, the resulting combinational logic

specification is optimized in different ways depending on the targeted implementation. The

goal of the state assignment step is to find an encoding of internal states of the FSM so as to

minimize the final area of the machine after combinational logic optimization.

23.1 State Assignment

All previous techniques for optimal state assignment have been targeted toward two-level

logic or PLA implementations [26] [28]. Algorithms for state assignment of finite state

machines targeted toward multi-level logic implementations [74] [75] have been developed.

These algorithms find a state assignment of a FSM which minimizes an estimate of the area

used by a multi-level implementation of the combinational logic. The estimate considered here

is consistent with the estimate used by multi-level logic optimization algorithms [76] [77] [6] :

the number of literals in a factored form of the logic. The algorithms heuristicaUy minimize

the number of literals in the resulting combinational logic network after multi-level logic

optimization.

Multi-level logic optimization programs like MIS [6] and SOCRATES [77] primarily

use algebraic techniques for factorizing and decomposing the Boolean equations by identifying

common sub-expressions. Heuristics have been proposed based on maximizing the number

and size of common sub-expressions and minimizing the number of literals which exist in the

Boolean equations that describe the combinational logic part of the FSM after the states have

been encoded but before logic optimization. The state assignment algorithms find pairs or

clusters of states which, if kept minimally distant in the Booleanspace representing the encod

ing, result in a large number of common sub-expressions in the Boolean network.

Literal counts averaging 20-40% less than other state assignment techniques have been

obtained.
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A good encoding of input and output signals in the controller can substantially reduce

its area. For example, depending on the codes assigned to different ALU operations, the con

troller would require different areas after logic optimization. Input and output encoding algo

rithms for two-level [28] and multi-level logic [74] implementations are used in this system.

2.32 Multi-Level Logic Optimization

Research done over the past 30 years has resulted in to efficient methods for implementing

combinational logic in optimal two-level form using Programmable Logic Arrays (PLAs).

However, many logic blocks are inappropriate for this kind of implementation. For example,

mere exist functions whose minimum two-level representation has 2n - 1 product terms, where

n is the number of primary inputs. In addition, even if a two-level representation contains a

reasonable number of product terms, there are many cases in which a multi-level representa

tion can be implemented in less area and generally as a much faster circuit.

Two basic methodologies have evolved for multi-level logic synthesis: 1) global re

structuring, where the logic functions are "factored" into an optimal multi-level form with lit

tle consideration of the form of the original description (e.g. [6] [78]; 2) peephole optimiza

tion, where local transformations are applied to the user-specified (or globally-optimized) logic

function (e.g. [79] [80]).

Global re-structuring procedures have been shown to be crucially necessary in producing

optimal designs. Factoring algorithms have been proposed [76] [6] which are effective in par

titioning complex logic functions.

The factoring algorithms proposed in [76] [6] are primarily based on algebraic tech

niques. Boolean factoring/division techniques can achieve superior results. However, tech

niques proposed so far for Boolean factoring and multi-level Boolean minimization (e.g [81])

require very large amounts of CPU time.

Multi-level logic networks can be realized by standard cell or gate array implementa

tions. For small-medium (< 50 product terms) sized two-level representations the PLA is a



19

very compact structure whose size is comparable (if not smaller) than a corresponding multi

level implementation. Topological optimization techniques like folding [82] can further

reduce PLA area. A set of interconnected PLAs can thus exploit the layout compactness of

PLAs without being constrained by the relative inflexibility of two-level logic structures.

A PLA can be decomposed into a set of interconnected PLAs which feed into one

another. To perform this decomposition, factoring algorithms are required. Algorithms for

Boolean decomposition have been developed, which decompose a PLA into a set of smaller

interconnected PLAs such that the overall area of the resulting logic network, deemed to be

the sum of the areas of the constituent PLAs, is minimized [83] [84].

The proposed algorithms are based on multiple-valued minimization. Given a PLA, a

subset of inputs to the PLA is selected. This selection step incorporates a new algorithm

which selects a set of inputs such that the cardinality of the multiple-valued cover, produced

by representing all combinations of these inputs as different values of a single multiple-valued

variable, is much smaller than the original binary cover cardinality. A relatively small size

for the multiple-valued cover implies that the number of good Boolean factors contained in

mis subset of inputs is large. The different cube combinations given by this subset of inputs

are re-encoded to satisfy the constraints given in the multiple-valued cover, thus producing a

binary cover for the original PLA whose cardinality equals the multiple-valued cover cardinal

ity. The re-encoding process incorporates a new encoding algorithm which minimizes the

number of bits required to satisfy all or a subset of the constraints produced by multiple-

valued minimization.

These algorithms have produced excellent results over a wide range of examples. Total

delays and/or areas of resulting PLAs after Boolean decomposition are invariably smaller than

the original PLAs. This approach exploits the layout compactness of PLA structures to pro

duce small, fast multi-level logic implementations. Large PLAs have been reduced by factors
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of 2-3 in size and delay [83].

2.4 Module Generation

Given the specification of a logic module, which may be an ALU, register file or random

logic, the module generation subsystem generates a custom layout for the module. The logic

synthesis tools used are, ESPRESSO, a two-level logic minimizer [85] and MIS, a multi-level

logic optimization program [6]. Layout is generated after logic optimization in either standard

cell, PLA or Gate Matrix styles. The layout optimization programs include TimberWolf, a

standard cell placement program [61] and GENIE [86] a generalized array optimization pro

gram. Module generators are WOLFE [60], a standard cell place and route system which uses

TimberWolf for placement and YACR [87] for routing, GEM [59] and OCTOPUS [62], Gate

Matrix and PLA generators which use GENIE for topological optimization.

2.5 Place and Route

Placement and routing of the logic modules is performed by the MOSAICO layout system.

MOSAICO [63] is an integrated macro-cell layout system with tools for multi-layer channel

routing [88], power and ground routing, channel definition and ordering, and floor-planning

and placement Tools in MOSAICO run and generate symbolic layout views of the design. A

spacing program takes the results after detailed routing in symbolic form and produces mask

geometries while guaranteeing that design rules are satisfied. The OCT data manager is used

to store the design at each stage of the layout process.

2.6 Verification

It is essential to be able to verify that the synthesized circuit implementation and the register-

transfer level description actually represent the same machine. Several logic verification algo

rithms have been incorporated into the synthesis system for this purpose.

Many formal verification approaches have been taken to prove/disprove the equivalence

of two combinational logic circuits, at the gate level and at differing levels (e.g. [89] [90] [91]
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[92]). Only a few are practical for large circuits. Equivalence of combinational logic descrip

tions can be verified in the system described in this dissertation using the PROTEUS [29]

logic verification package which has successfully verified large designs.

Very little work has gone into verifying sequential designs. An algorithm has been

developed for the verification of the equivalence of two sequential circuit descriptions at the

same or differing levels of abstraction, namely at the register-transfer (RT) level and the logic

level [31]. The descriptions can represent general finite automata at the differing levels - a

finite automaton can be described in an BDS-like language and its equivalence to a logic level

implementation can be verified using my algorithm. Two logic level automata can be simi

larly verified for equivalence.

Previous approaches to sequential circuit verification have been restricted to verifying

relatively simple descriptions with small amounts of memory. A new algorithm has been

developed, which has been shown to be computationally efficient for much more complex cir

cuits. The efficiency of this algorithm lies in the exploitation of don't care information deriv

able from the RTL or logic-level description (e.g invalid input and output sequences) during

the verification process. Using efficient cube enumeration procedures at the logic level, I have

been able to verify the equivalence of finite automata with a large number of states in small

amounts of CPU time.

A two-phase enumeration-simulation algorithm has also been developed for verifying

the equivalence of two logic level finite automata with the same or differing number of

latches, given reset states or transfer sequences for the finite automata. This algorithm is as

efficient as the general approach for verifying sequential machines described at different lev

els, but is much less memory-intensive. Using this algorithm, I have verified the equivalence
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of finite state machines with more than 2500 states.

2.7 Testing

After the circuit has been synthesized, a test strategy is required to check that the chip

satisfies its specification. A set of test sequences has to be found to pinpoint possible faults in

the fabricated circuit, which is typically sequential in nature.

Test generation for sequential circuits is a difficult task. A popular approach to solving

this problem is to make all the memory elements controllable and observable, i.e. Complete

Scan Design [36] [37]. Scan Design approaches have been successfully used to reduce the

complexity of the problem of test generation for sequential circuits by transforming it into one

of combinational test generation, which is considerably less difficult. The design rules of

Scan Designs also constrain the sequential circuits to be synchronous so that the normal opera

tion of die sequential circuit is free of races and hazards. However, there are situations where

the cost in terms of area and performance of Complete Scan Design is unaffordable. In addi

tion, even though the general sequential testing problem is very difficult, there may be cases

where test generation can be effective. Simply making all the memory elements scannable in

a sequential circuit, without even first investigating how difficult the problem of generating

tests for it is, could unduly incur unnecessary area cost

Several approaches [93] [94] [39] [95] [96] [97] have been taken in the past to solve the

problem of test generation for sequential circuits. They are either extensions to the classical

D-Algorithm or based on random techniques [94] [96]. When the number of states of the cir

cuit is large and the tests demand long input sequences, they can be quite ineffective for test

generatioa This is because no a priori knowledge of the length of the test sequence is avail

able. In the extended D-Algorithm methods, a large amount of effort may be wasted in trying

to find short sequence tests for faults that require long ones. Random testing techniques are

based on continuous simulations and grading of test vectors according to simulation results.

They can be very time consuming for difficult faults that have only a few long test sequences.
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The new approach developed to test pattern generation [98] [99] [100] for sequential machines

represents a significant departure from previous methods. First using algorithms based on

state space enumeration and information contained in a partial State Transition Graph (STG)

of the machine, test sequences are generated to detect a large number of faults in the circuit

Then, an algorithm identifies a minimal subset of memory elements which if made scannable

will result in easy detection of all remaining irredundant but difficult-to-detect faults. The

identification of this subset is performed by analyzing the connectivity of the STG of the

machine. Detection of all irredundant faults is guaranteed as in the Complete Scan Design

case, but at much less area and performance cost since much fewer lines, if any, need to be

made observable.

2.8 Relationship between Logic Synthesis and Testing

Hie relationship between combinational logic synthesis and test generation is well known - it

has been comprehensively reviewed in [101] and [102]. In [81], a synthesis procedure which

guaranteed fully testable irredundant combinational logic circuits was proposed. The tests for

all single stuck-at faults in the combinational logic circuit are obtained as a by-product of the

optimization procedure [81]. Equally intimate relationships between the more complicated

problems of sequential circuit synthesis and test generation have been envisioned.

A synthesis and optimization procedure has been developed [103], which beginning

from a State Transition Graph description of a Moore or Mealy finite automaton produces a

100% testable logic-level implementation of the machine. The test sequences for all single

stuck-at faults in the machine can be derived using test generation algorithms on the combina

tional logic blocks of the machine.

I can show that a strong relationship exists between state assignment logic optimization

and testability of a sequential machine. A procedure of constrained state assignment and com

binational logic optimization can ensure 100% testability for both Moore and Mealy finite

state machines. Results obtained on benchmark examples show that the area penalties
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incurred due to the constraints imposed during state coding and logic optimization are small.

The performance of the resulting circuit is usually better than a unconstrained design (This is

because one of the constraints imposed requires combinational logic partitioning in the

machine).

2.9 Limitations and Future Work

While the current system and the optimization tools in the system, described in the previous

sections, represent significant advances and improvements in various areas, some limitations

exist and should be addressed in the future.

A major limitation of datapath synthesis approaches, including the approach developed

in this system, has to do with data-dependent loop exits. When loops are static and the

number of iterations is known in advance, allocation algorithms can find an optimal schedule

of operations that niinimizes the hardware resource cost or a schedule that maximizes execu

tion speed (or a combination of the two). However, allocation algorithms cannot solve the

problem of finding an optimal schedule when the number of iterations in a loop is a variable,

whose value is dependent on data inputs.

The state assignment algorithms presented in this dissertation produce significantly

better results than other techniques, but are restricted in the sense that they model only the

simple multi-level optimization of common cube extraction. Taking into account more com

plicated multi-level optimizations like common kernel extraction could improve the quality of

results obtained. However, early approaches that use a kernel-only optimization strategy [104]

have had limited success.

The algorithms for Boolean decomposition produce high-quality results and execute

within reasonable CPU times for small to medium-sized circuits. Many steps in the algo

rithms have worst-case exponential time complexities. For large circuits, the CPU time

requirements can become exorbitant. Also, the algorithms are presently restricted to begin

from a two-level representation of a logic function. Developing fast algorithms for Boolean
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decomposition, generalized to operate on multi-level circuits, represents a major challenge in

combinational logic synthesis.

The deterministic sequential test generation algorithm developed [99] is considerably

faster than algorithms proposed in the past. For datapaths, which are sequential circuits with a

large number of latches, a State Transition Graph description is too large to store/generate and

too cumbersome to manipulate. Different representations mat are less memory intensive and

which facilitate efficient state justification can speed up the test generation process.

The synthesis procedure of constrained state assignment that ensures fully and easily

testable sequential machines is the first of its kind. Optimal combinational logic synthesis can

ensure irredundant circuits without any area penalty. Optimal sequential synthesis procedures

for fully testable non-scan sequential machines have not been proposed, at the time of this

writing. Developing such procedures, represents a major theoretical challenge in this area.

2.10 Organization of this Dissertation

This dissertation is organized as follows. In Chapter 3, algorithms for hardware allocation for

automatic datapath synthesis from behavioral descriptions are described. Problems of pipe

lined datapath synthesis are addressed. Control synthesis is the subject of Chapter 4 and 5.

State assignment techniques for finite state machine controllers targeted toward multi-level

logic implementations are described in Chapter 4. New algorithms for Boolean decomposition

in multi-level logic optimization are described in Chapter 5. The verification and test subsys

tems in the behavioral synthesis system are described in Chapters 6 and 7 respectively. In

Chapter 8, an optimization procedure which begins from a State Transition Graph description

of a finite state machine and synthesizes a fully testable logic-level sequential machine is

presented.
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CHAPTER 3

Automated Datapath Synthesis

3.1 Introduction

The goal of the datapath synthesis step in a behavioral synthesis system is to produce

register-transfer (RT) level hardware designs from an architectural description of a computer

or to produce an RT design which implements a given program described in a high-level

language in hardware. Significant effort has gone into the development of techniques for

automated datapath synthesis (e.g. [21] [41] [58] ) in recent years. However, even now,

effective and versatile procedures are not available.

Initial work to tackle this problem included the development of a mathematical model

for the datapath [49] to describe the conditions and relationships to be satisfied. Mixed

integer-linear programming techniques were used. Unfortunately, even for very small

specifications, the cost of generating a design exploded rapidly.

The expert system approach was taken in the DAA [45] [46] system. Design rules were

collected, and based on these design rules, a rule-based data memory allocator was developed.

As is the case with most rule-based techniques, only local optimization was possible and

extensive changes could not be made to the input description to attain a globally optimal solu

tion. Similar problems afflicted the allocators described and implemented in [47] [44]. Glo

bal optimization steps have been introduced into the expert system approach [105], but DAA

has been used mainly to synthesize general-purpose computer datapaths where very little

parallelism exists, and therefore little room for optimization during allocation.

A more global algorithmic approach to the allocation problem was first taken in [50]

[52]. facet is a automatic datapath synthesis program which minimizes the number of storage
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elements, data operators and interconnection units. However, facet performs these steps

sequentially and independently of the following task(s). It thus does not provide for flexible

area/time tradeoffs during allocation.

The USC MAHA system [58] uses critical path determination to perform hardware allo

cation. The heuristics used to guide scheduling are based on the concept of thefreedom of an

operation. A force-directed scheduling approach to hardware allocation has been taken in

[72]. The optimization step is global and uses heuristics based on predecessor and successor

forces on an operation. The different heuristics used in both these scheduling algorithms [58]

[72] may result in locally-minimum solutions.

Synthesizing from arbitrary software descriptions (e.g. a MOSFET model evaluator in a

circuit simulator) rather than the instruction-set specification of general-purpose computers

offers considerably more room for optimization. As mentioned earlier, general-purpose com

puters tend to be rather uninteresting from an optimization point of view. Other than

Trickey's work [41] [42] and synthesis of digital signal processor datapaths [19] [58], very lit

tle attention has been paid to the specialized processor synthesis problem.

In [42], the problem of extracting parallelism from a program and providing a maximal

schedule of the operations in the program, while meeting a user-specified bound on each kind

of processing unit(s), was addressed. In this chapter, I am concerned with the more general

problem of hardware allocation, where the decisions on the number of processing units,

storage elements and their interconnections are made; the scheduling problem is only a small

part of the overall hardware allocation process.

In this chapter, new algorithms for the simultaneous cost/resource constrained allocation

of registers, arithmetic units and^ interconnect in a datapath are presented. These algorithms

operate under a wide variety of user-specified constraints on hardware resources and costs.

There are three main differences between this approach and others taken in the past (e.g. [21]

[58] [41]). First all the allocation subproblems, namely, arithmetic unit, register and intercon-
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nect allocation are tackled simultaneously, rather than sequentially or iteratively. Second, the

optimization is global in nature, rather man the local optimizations of some previous

approaches (e.g. [21]). The entire sequence is optimized and therefore the entire datapath.

Third, a probabilistic hill-climbing algorithm [73], simulated annealing, which can avoid the

traps of locaUy-minimum solutions, has been used. While simulated annealing is a general

approach to combinatorial optimization, the key to its successful use in solving the hardware

allocation problem has been the development of a multivariate formulation of this problem,

along with a robust cost function, annealing schedule and an appropriate move set.

The hardware allocation problem in automatic datapath synthesis can be formulated as a

two-dimensional placement problem of micro-instructions in space and time. The problem

solved is to synthesize a datapath corresponding to the input data flow specification such that

a given, arbitrary function of execution time and hardware cost f(T, C), is minimized. The

hardware costs are die sum total of the costs associated with registers, arithmetic units, buses

and links in the datapath, based on required layout areas for placement and wiring. A given

placement of micro-instructions corresponds to a unique datapath with a certain hardware cost

and execution speed. Optimal conditional resource sharing is achieved by solving a con

strained two-dimensional placementproblem where disjoint instructions are allowed to occupy

the same spatial and temporal location. Given a data flow specification, algorithms are

presented which find an optimal placement of micro-instructions, thus determining the spatial

and temporal delineation of resources and producing an optimal datapath configuration.

The datapath synthesis problem is formulated here as one of two-dimensional placement

of micro-instructions and modifications to incorporate conditional resource sharing are

presented. Given this formulation, a simulated-annealing-based approach to solve the alloca

tion problem is presented in Section 3.3. These algorithms are extended to handle looping

constructs present in general software programs in Section 3.4. Results and illustrative exam

ples, including the synthesis of a specialized processor datapath for MOSFET model evalua-
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tion, are presented in Section 3.5. Extensions to synthesize some forms of pipelined datapaths

are described in Section 3.6.

3.2 The Hardware Allocation Problem

In this section, the algorithms used in the allocation process are described. These algorithms

take the architectural description of the machine or a software program and automatically syn

thesize the datapath corresponding to that description under specified hardware constraints and

costs. In Section 3.2.1, some definitions are given. The input description used is described in

Section 3.2.2. Basic allocation problems are described in Section 3.23, and the formulation

of the datapath synthesis problem as a placement problem is presented in Sections 3.2.4-5.

The cost function for this placement problem is described in Section 3.2.6. In Section 3.2.7,

die placement formulation is extended to incorporate conditional resource sharing.

3.2.1 Basic Definitions

A micro-instruction is deemed to have two coordinates, a spatial coordinate and a temporal

coordinate. The spatial coordinate corresponds to the arithmetic unit that the micro

instruction is executed on. The temporal coordinate corresponds to the clock cycle that the

micro-instruction begins to be executed. A space-time slot corresponds to a spatial and tem

poral coordinate pair. A time slot corresponds to a temporal coordinate and all spatial coordi

nates. A space slot corresponds to a spatial coordinate and all temporal coordinates. Note

that a micro-instruction may take multiple clock cycles to execute. It will be assumed for the

purposes of this section that a micro-instruction executes in one clock cycle. However, this

constraint will be relaxed in Section 3.4.

Conditional clauses may exist in the input description. Conditional clauses specify

mutual exclusion relationships between micro-instructions. If during a pass through a code

sequence, the execution of micro-instruction A implies that micro-instruction B will not be

executed in the same pass, then A and B are deemed to be mutually exclusive. Two micro-
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instructions can occupy the same space-time slot if and only if they are mutually exclusive.

A two-dimensional placement of instructions specifies spatial and temporal coordinates

for each micro-instruction.

The datapath that is synthesized is a clocked sequential circuit with an associated finite

state machine controller. It is assumed that all ALU ports are latched.

3.2.2 Input Description

The behavioral description to be synthesized firom can be a description of the instruction set of

a computer or the description of an algorithm in a subset of C. In either case, the description

is converted into a code sequence where parallelism, sequentiality and mutual exclusion are

explicitly stated. During this transformation, various compiler-like optimization techniques

(e.g. dead code elimination, constant folding) are used. The code sequence produced only has

information about the data transfers required between program values. The control signals

which initiate these data transfers are not explicitly stated. This control signal information is

used only when the specification of the state machine controller for the datapath has to be

derived.

The serial blocks are due to the dependences associated with any description. Mutual

exclusion is a result of the conditional clauses in the input description. An example of an

input sequence is shown in Figure 3.1, with serial, parallel and disjoint blocks, which are the

means of representing sequentiality, parallelism and mutual exclusion respectively. Each

operation is represented in a lisp-like syntax given by (op operl oper2 .. operN result), where

op is any arithmetic or Boolean operator. An additional kind of block is the implic block.

Parallelism or sequentiality are not explicitly stated in the implic block - they are automati

cally derived by checking for data dependences prior to hardware allocation.

The INITIAL and FINAL declarations imply that the following variables are live in the

beginning and the end of the sequence respectively. The SYMMETRIC declaration



(serial
(parallel

(add xl yl zl)
(add x2 y2 z2)

)
(parallel

(mult zl y3 z3)
(minus z2 y4 z4)

)
(disjoint

(divide z3 x3 z5)
(divide z4 x4 z5)

)
)
INITIAL xl x2 yl y2
FINAL z5

SYMMETRIC mult add

Fig. 3.1 Input Description

31

enumerates all the operations whose operands are interchangeable.

3.2.3 Basic Allocation Problems

The hardware allocation process consists of a variety of subproblems. Register allocation

deals with allocating variables in the given description to a minimum number of registers.

Arithmetic unit allocation entails scheduling operations on a minimum number of ALUs,

meeting a cost or an execution time constraint During the allocation, an optimal grouping of

arithmetic operators within each ALU is also found. For instance, one might have two ALUs,

one performing arithmetic operations and the other performing Boolean operations. Typically,

one would like each of the ALUs to perform disjoint sets of operations, but this is not always

possible. Lastiy, interconnect allocation deals with implementing the sets of data transfers

required in each time frame and allocating buses and links or multiplexor and de-multiplexor

connections in the datapath.
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The basic tradeoff in hardware allocation is between serial and parallel implementations

of data flow descriptions. Given an input code sequence, one can synthesize a maximally

parallel datapath which is expensive in terms of hardware resource cost and uses a large

number of registers and arithmetic units. On the other hand, one can synthesize a cheap,

serial datapath with a single ALU, which is likely to take a lot longer to execute the same

task. Hardware resource cost used in this context generally represents the layout area required

to implement the different modules in the datapath after placement and wiring issues have

been taken into account Depending on the user's objective function, the optimal datapath

configuration will lie somewhere between these two extremes. Thus, the allocation process

must trade off hardware resource cost against the execution time of the code sequence in an

effort to find an optimal solution.

32A A subproblem

First, a subproblem in the allocation process is defined and solved.

Given a code sequence with singly-assigned variables and precedence constraints

between operations, assign the code operations to M ALUs so a given, arbitrary function of

die number of registers required, Nn and the execution time, T,fiJ", Nr), is minimized.

Since the datapath is a clocked sequential circuit a maximally parallel description

would use lots of registers, but would execute the fastest. A completely serial description

would require a minimal number of registers, but would be slow. An algorithm based on

clique partitioning presented in [50], optimizes the number of registers with a fixed code

sequence schedule, while the goal here is to find the optimal sequence exploiting the extra

degree offreedom of being able to change the schedule.

Given a code sequence the lifetimes of all the variables can be calculated. The lifetime

of a singly assigned variable is the duration between its assignment and last use. The number

of registers required would be proportional to the overlap of the live periods of the singly-

assigned variables, or to put it differently, the number of registers required is the maximal
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density of variable lifetimes across the entire sequence. This is illustrated in Figure 3.2.

Disjoint variables are those whose lifetimes do not overlap. The allocation of registers

to singly-assigned variables entails finding the best possible grouping of disjoint variables in

sets so as to minimize the number of sets.

There is freedom in the ordering of the code operations as long the precedence con

straints are not violated and the constraint on the number of processing units is satisfied.

Given a code sequence exploiting this freedom can result in a smaller set of registers being

required. This is illustrated in Figure 3.3. In Figure 3.3(a), an example code sequence being

executed on a single ALU is shown. 'Without changing the order of the operations in the code

sequence, the minimum number of registers required is 4, as shown in Figure 3.3(b). Allow

ing re-ordering of operations within the sequence produces a 3 register solution in Figure

33(c).

Finding the optimal ordering of operations within a sequence, so as to allocate a

minimum set of registers, reduces to the pla multiple folding problem. The goal is to try to

find an ordering of the rows (which correspond to the code operations) under certain ordering

constraints (constraints due to dependences and processors) such that the maximum number of

disjoint columns (each column corresponds to the lifetime of a variable) can be coalesced (the

(add vl v2 v3)

(mult v3 vl v4)

(minus v2 vo v6)

(inc v4 vl)

(dec v6 v2)

(divide vl v2 v5)

Variable Lifetimes

vl v2 v3 v4 v5 v6

Fig. 3.2 Densities of Variable Lifetimes



vl = v2 + v3

v4 = v2 - v3

v5 = vl * v2

v6 = v4 and v3

v7 = v5 or v6

(a) Code sequence

Rl = R2 + R3

R4 = R2 - R3

Rl = Rl * R2

R4 = R4 and R3

R4 = Rl or R4

(b) Register allocation without re-ordering

Rl = R2 + R3

Rl = Rl * R2

R2 = R2-R3

R2 = R2 and R3

R3 = Rl or R2

(c) Register allocation with re-ordering
Fig. 33
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maximal number of variables can be merged). As mentioned earlier, there is a tradeoff

between minimizing the execution time (the number of rows) and minimizing the number of

registers (the number of columns). Therefore, in the general case of minimizing a function of

execution time, T, and the number of registers, N„ i.e. f(T, Nr), an attempt is made to find an

optimal aspect ratio of the PLA.

The pla folding problem has been effectively solved using graph heuristics [106], simu

lated annealing [86] and exact branch and bound techniques [107]. These techniques can be

used to solve the problem of register allocation as well. However, this formulation is merely

representative of one part of the entire datapath synthesisprocess. An extended formulation is



35

now presented.

3.2.5 Formulation of the Entire Data Path Synthesis problem

The approach to synthesize a datapath described here is to give a general procedure which

minimizes a given, arbitrary function of execution time and hardware cost The entire cost of

a datapath can be represented as:

C =/>l * (AU) +P2 * (Tmc) +p3 * (N^) +p4 * (Nbtu)

where A^, Nreg and JV^ are the number of arithmetic units, registers and buses used in the

design, respectively, and rczee is die time required by the implementation to execute the given

code sequence. The costs of the ALUs, registers and interconnect given by the parameters pi

through pA, can be estimated taking into account layout area, placement and wiring issues. A

procedure which nunimizes C under constraints would synthesize an optimal datapath.

This problem can now be formulated as a placement problem of code operations in two

dimensions, that of space and time. A given spatial and temporal placement of code opera

tions represents a datapath and has a unique cost C. A two-dimensional grid where each vert

ical slice corresponds to a processing unit/ALU and each horizontal slice corresponds to a

time slot is constructed, as shown in Figure 3.4. Code operations are placed in grid locations

corresponding to a ALU and a time slot, under precedence constraints, due to the dependences

associated between them. Nets connect the occurrences of variables in the code operation and

also connect variables to arithmetic units in corresponding slots. The internal position of the

variable in the code operation is also specified, e.g. in a binary ADD a variable can be in the

first or second positions for a given configuration.

The execution time is related directly to the number of occupied horizontal time slots.

The horizontal time slots may be of different widths, the widths would be proportional to the

delays corresponding to the code operations occupying that slot The issue of operations hav

ing different associated delays is elaborated on in Section 3.4.



SPACE/TIME ALU1 ALU2 ALU3

TIME1 (add xl yl zl) (mult x2 y2 z2) (equal x3 z3)

TIME2 (minus zl x2 kl) (divide z2 xl k2)

T1ME3 (orkl Z211) (inc k2 12)

Fig. 3.4 2-Dimensional Grid of code operations
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The number of processing units is equal to the number of occupied vertical space slots.

The operations that a given processing unit has to perform depends on the operators occupying

the grid locations in its corresponding vertical space slice. A processing unit may be simply

perform an increment operation, or may be a complex floating point unit capable of multiply,

add and divide operations. Thus, the formulation takes into account the grouping of arith

metic operators into processing units.

The number of registers required to realize the variables is related to the maximum den

sity of nets across the entire grid. This is because the extent of the nets connecting

occurrences of a variable is a representation of the lifetime of the variable. Given a maximum

density of lifetimes M, using the Left Edge Algorithm (used widely in channel routing [108]),

the variables can be coalesced into M registers.

The interconnect relationship to the physical entities of nets and code operations is more

difficult to formulate. Obviously the number of registers and ALUs is related weakly to the

number of interconnections required.' Other measures of interconnect complexity can be

obtained - the number of links required can be related to the stagger of nets in this formula

tion.

The stagger of a net is defined as the number of different space slots that the net con

nects to, minus one. If a variable is used to store input/output data for more than one ALU, it

will exist in more than one space slot and the stagger of the net corresponding to the variable

will be non-zero. The more staggered a net, the more the number of ALUs the variable and
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eventually the register, feeds into. To minimize the number of links, one could minimize the

sum total of the stagger of all the nets. However, groups of variables may be coalesced into

the same register. This register will then need to connect to all the ALUs that any of the vari

ables connected to. Only variables which are disjoint can be coalesced into the same register.

The sum total of net stagger does not model the effect of merged variables accurately. The

stagger of nets between disjoint variables is a better indicator of interconnect complexity

(number of links) at any stage. The net stagger is further refined by the position information

of the variables within the code operation. The position information takes into account the

fact that variables may be feeding into one or both ports of the ALU.

Another good measure of the number of buses required given a schedule is the max

imum number of distinct sources and number of sinks in all the time slots (which is an indica

tor to the number of parallel data transfers required). So, even if all the registers have been

allocated previously, the tradeoffs between execution time and interconnections can be made.

In the general case, execution time can be traded for registers, processing units and intercon

nections.

A cost function must therefore be defined in terms of the above mentioned quantities.

The problem is then to find a global placement of code operations in the space-time slots

under the dependence constraints and a placement of variables within the code operations,

which minimizes cost Then, the variables can be coalesced into registers and the intercon

nections into buses.

Some variables, for instance arrays, are better stored in memory. If they are, accessing

them potentially takes more cycles. There is a tradeoff between reducing the number of regis

ters by allocating variables to memory locations and increasing the execution time. This tra

deoff can be explored if necessary.

To solve this problem, various techniques for solving the placement problem can be

employed. The goal is to find a placement which produces a global minimum for the function
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fij", C). The use of simulated annealing has produced excellent results for integrated circuit

cell placement problems [61], where a complex, non-linear objective function has to be

minimized under constraints. Hence, simulated annealing was chosen to solve this particular

placement problem. This simulated-annealing-based algorithm is described in Section 3.3.

32.6 The Cost Table

The specification of costs is vitally important Given a complex cost function, the simulated-

annealing-based algorithm can find near-optimal solutions, for that cost function, within rea

sonable amounts of CPU time [86]. Ideally, the hardware costs should reflect the exact layout

area of of the datapath. Inaccurate costs can result in a datapath that is sub-optimal in terms

of area, even though the placement produced is optimal for the specified cost function. While

the areas of individual modules (e.g. registers, ALUs) can be estimated exactiy or near-

exactly, estimating routing area is much more difficult In [109], the effects of incorrect esti

mation were presented and shown to be significant in the final result

A cost table (Figure 3.5) specifies the cost of hardware resources and operators. It also

specifies implicitly the parameters pi through p4 in the cost function C (Section 3.2.5). The

parameters pl,p3 and p4 are area parameters, while p2 is an execution time parameter. The

area parameters reflect the layout area of the individual modules. The execution time parame

ter, pi, is a way of specifying whether a fast datapath or a relatively slow one is desired. A

higher pi implies a greater cost for execution time and will result in a faster datapath. These

parameters are not necessarily constants, they are, in general, functions of the number of

ALUs and/or registers and/or buses in the datapath. For the examples tried, this formulation
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appears to work well, as is made clear later.

3.2.6.1 Register Costs

pi is equal to the area of the library register to be used. It is a multiplying factor for the

number of registers in the datapath. In the cost table of Figure 5, p3 is a function of the

number of registers, in an effort to estimate routing area (Section 32.63). The first 5 regis

ters cost 10 units each, the next 5 cost 15 units.

32.62 Costs of ALU operations

The cost of each arithmetic or Boolean operator should reflect the layout area to implement

that operator. A complication arises when attempting to optimally group operators within

ALUs. Given that the ALU is to be implemented using combinational logic, the area required

by a set of operators is generally, not equal to the sum of the areas required to implement

each operator separately. A case in point is an ALU implementing addition and subtraction.

This ALU would be only slighdy larger than an ALU implementing only addition or only sub

traction, not twice the size. Thus, ALU costs cannot be calculated using simple additive rela

tionships.

This problem is alleviated by defining costs not only for each operator for small sets of

operators as well. A multiply operator may have a cost of 100 units, a divide a cost of 200

units, and an ALU performing multiply and divide may be deemed to have a cost of 210 units

depending on library-specific information. Given an arbitrary set of operators, the program

checks to see if costs have been specified for any subset of operators before adding costs up



# cost of different operations in a ALU
ALU

add 50

sub 50

fadd 100

mult 250

add sub 60

# register costs
REGISTER

# starting from register 1, each register has cost 10 units
1 10

# starting from register 5, each register has cost 15 units
5 15

# execution time

EXECUTION

150

50 50

# interconnect buses and links
BUS

1 100

3 150

LINK

15

100 10

Fig. 3.5 Example Cost File
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for the single operators.

3.2.6.3 Estimating Interconnect Area

The areas of the individual modules can be estimated accurately and included in the cost

table. The number of links and buses can be estimated closely, as described he number of

links and buses can be estimated closely as described in the previous section. The area for a

link/bus is to be used as parameter pA. This area is typically a complex function of the

number of registers and ALUs in the datapath. Assuming that pA is a constant i.e. that inter

connect area is a linear function of the number of links/buses can be quite inaccurate [109].
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The approach used relies on empirical estimations of routing area. For example, given a

layout style, the increase in routing area (not total area) due to incremental additions of regis

ters and associated links is evaluated and this cost is added to the link and register costs. The

link and register costs then become piecewise-linear functions. Data points over a range of

numbers of ALUs and registers in a datapath are obtained. The number of data points

required to obtain exact accuracy is, unfortunately, infinite. However, with a reasonable small

number of data points, one can do better than a linear approximation on the number of links.

In the cost table of Figure 3.5, register and interconnect costs are modeled as piecewise-linear

functions and ALU costs are modeled as linear functions.

Accurate estimation of routing area remains largely an unsolved problem [109]. It is

clear that the total area of a datapath is a highly non-linear function of the number of ALUs,

links and registers. Given this complex function, or a good approximation of this function,

the simulated-annealing-based algorithm described in the next section, obtains high-quality

solutions.

3.2.7 Conditional Resource Sharing

Conditional clauses can result in mutually exclusive or disjoint statements. For example, the

statements in the THEN and ELSE clauses of an IF statement are disjoint Disjoint statements

can exist on top of each other on the same space-time slot. The algorithm takes into account

mutual exclusion and finds a optimal schedule for the code sequence with an arbitrary number

of conditional clauses.

Placing operations on the same space-time slot amounts to conditional resource sharing.'

Many forms of conditional resource sharing are possible. The co-existence of two ADD

operations on the same space-time slot implies that the two operations are sharing an adder

since they are mutually exclusive. If two operations sharing a common variable exist on the

same location, a register will be shared by the two disjoint operations, and it will store infor

mation dependent on conditional clauses.
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The problem thus becomes a placement problem with constraints on what statements

that can exist on die same time and space coordinates.

Disjoint blocks may be arbitrarily nested in the code sequence. Initially, before the

optimization, mutual exclusion relationships between each pair of operations in the given code

sequence is found, and this information is exploited. For example, given:

(disjoint
s_l
(disjoint

s_2
s_3

)
)

s_l is deemed to be disjoint from both s_2 and s_3 and s_2 is disjoint from s_3.

33 A Simulated Annealing Based Solution

3.3.1 Introduction

Simulated annealing, proposed by Kirkpatrick et. al [69], has proved to be an effective solu

tion to the cell placement problem in LSI layouts [61]. Its basic feature is that it allows hill

climbing moves [73] in exploring the configuration space of the optimization problem,

specified in such a manner that the minimum of the objective function is to be found. The

probability of accepting these hill climbing moves is controlled by a parameter analogous to

temperature in the physical annealing process and this parameter decreases gradually as the

annealing process proceeds. The simulated annealing algorithm can be used for combinatorial

optimization problems specified by a finite set of states and a cost function defined on all the

states. The algorithm randomly generates a new state or configuration and the new state is

accepted or rejected according to a random acceptance rule governed by the parameter analo

gous to temperature in the physical annealing process. The basic algorithm proceeds as fol-



lows:

r = r0;
X = Starting_Configuration ;
while( "cost is changing" ) {

for( "a certain number of times" ) {
Generate_New_State( j);
if( accept(c(/), c(X), T)) {

}
}
T = update(r);

1
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Whether or not a new state is accepted is determined by the function acceptO:

accept(c(y),c(0»T){
change_in_cost = c( j) - c( i);
if ( change_in_cost < 0 ) retnrn(l);
else {

Y = exp( - change_in_cost/T);
R = random(0, 1);
if(R<Y)retorn(l);
else return(O);

}
}

This basic algorithm forms the core of the new approach. The parameter T is analogous to

the temperature in the physical annealing process. At every temperature point a number of

random moves are generated. The number of moves generated is a parameter which can be

controlled by the user, it affects the quality of the solution profoundly. Theoretical results

exist that simulated annealing asymptotically approaches the global optimum of the

configuration space [73]. This approach has been shown to work well for a variety of com

binatorial optimization problems. However, it provides its best advantage over more conven

tional heuristic approaches when the function it is to minimize is complex and non-linear and

the search space is constrained.

While the probabilistic core is quite straighforward, the two most important things in

any simulated-annealing-based algorithm are the generation of new states (

Generate_New_StateO ) during the annealing process and the cost function ( cQ ) to be
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optimized for. The generation of states and the cost function together determine the quality of

solutions which can be obtained.

These two aspects of the simulated-annealing-based algorithm for the allocation problem

are described in detail below.

3.3.2 Generating New States

For the hardware allocation problem, new states are generated during the annealing process in

three different ways:

(1) Interchanging two code operations.

(2) Displacing a code operation from one location to another.

(3) Interchanging the variables in a symmetric operation (e.g. ADD).

Moves (1) and (2) must satisfy certain constraints, namely that the precedence con

straints between operations cannot be violated by such a move, and operations on the same

space-time slot must be disjoint Examples of interchanges and displacement of operations in

illustrated in Figure 3.6.

The generation of states proceeds as follows:

Generate_New_State_l():

(1) The operations are numbered from 1 to Nop, the number of operations. Two numbers Rt

and Rj are randomly generated, such that 1 £ RLr £ Nop , 1 < Rj < (Nop x RATI), where

RATI is the ratio of displacements to interchanges (typically 5).

(2) If Rj < Nop, an interchange of the two operations Rt and Rj is tried. If the interchange

violates any constraint, and RJRj (in that order) happens to have a symmetric operator,

the variables in RJRj are interchanged.

(3) If Rj > Nop, a new location for the first operation is randomly generated and the opera

tion is displaced to the new location, if the displacement does not violate the before-
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| vl = v2 + v3
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v4 = v2 * v3
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Fig. 3.6 Interchanges and Displacements During Annealing

mentioned constraints.

During the end of the annealing process (at low temperatures), the generation of states

takes a different form so as to generate states which are more likely to be accepted.

Generate_New_State_2():

(1) Identical to Step 1 of Generate_New_State_l().

(2) If Rj < Nop, an interchange between /?, and the operation immediately to the left or right

of R; is tried, in randomly generated order. If one direction fails, the other is tried. If

both fail, a variable interchange in /?, is tried.

(3) If Rj > Nop, a displacement of /?, to the immediate left or right in the same time slot,

immediately ahead or behind in the same space slot is tried in randomly generated

order.
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3.3.3 The Cost Function

The cost function used should be representative of both the hardware and execution time cost

function C (Section 3.2) to be optimized.

The total execution time required for the entire sequence is one part of the cost func

tion. In the general case, the execution time may be weighted by the frequency of code ker

nels within a code sequence. A kernel in a code sequence has the property that no operation

outside the kernel is executed in between operations contained within the kernel. Given a

large code sequence, parts of the sequence (kernels) may have higher execution time weights

associated with them because they are more frequendy used. The weighted spread (the time

of execution of the last operation in the kernel - the time of execution of the first operation)

of kernels can be calculated, given a schedule for the entire code sequence.

The number of registers required in hardware is given by the maximum density of nets

(which connect occurrences of variables) across all the time slots. The number of registers

required is part of the cost function.

For each space slot die sum of the costs of all the distinct operators (or operator sets)

required is found. The sum of all these costs is the processor cost constituent of the cost

function.

Interconnect cost is estimated by estimating the number of links and buses required in

hardware. The stagger of nets between disjoint variables is good indicator of link costs. The

number of buses required is estimated by calculating the maximum number of distinct sources

and number of sinks in all the time slots, since this is a good indication of the number of
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parallel data transfers required.

3.3.4 Hardware Resource Constraints

Hardware resource constraints, (e.g. limits on the number of ALUs or registers) can easily be

incorporated into the simulated-annealing-based algorithm by penalizing configurations which

violate any of these constraints. A penalty is added to the cost of such a intermediate

configuration and is sufficiently high so as to ensure that the final solution satisfies all the con

straints.

33.5 Execution Time Constraints

A bound on the time required by the datapath to execute the code sequence, or parts of the

code sequence, may be given. This constraint is incorporated using a penalty function

approach, as in the case of constraints on hardware resources.

33.6 Stopping And Inner Loop Criteria

The number of states generated per temperature point is a certain integer multiple, MC, of the

number of code operations. This number is user-specified and varies depending upon the

amount of CPU time the user wants to spend. If a higher number of states, MC x Nop, are

generated, it is likely that a better solution will be obtained, but more CPU time will be

expended. It has been experimentally determined that if MC is between 1-10, good results are

obtained within reasonable amounts of CPU time. MC > 10 does not help much in terms of

solution quality, while requiring large amounts of CPU time. MC < 1 usually results in low-

quality solutions.

The temperature is lowered to a fraction (typically 0.90) of its original value after each

temperature point. The annealing process terminates when the cost function has not changed

in value for three temperature points. These numbers have been determined experimentally
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and are consistent over a range of examples in producing good solutions.

3.4 Further Extensions

For the sake of clarity in presentation it has been implicitly assumed thus far that the opera

tions in the input description have equal delays. However, in general, operations in a software

program may have drastically different delays. For example, a 32-bit multiply may take more

than 10 times the time required by an integer increment.

It is not difficult to generalize the formulation of the datapath synthesis problem to han

dle operations with different delays. A generalized two-dimensional placement of operations

is shown in Figure 3.7. The height of each operation is proportional to its delay. For exam

ple, the MULTIPLY has a delay which is 3 times the ADD. The placement now resembles a

set of linked list of operations (one for each ALU), rather than the matrix of operations of

Figure 3.4.

vl = v2 + v3 v8 = v2 + 1

v4 = vl * v2
v9 = vl - v3

v6 = v2 + vfi

v7 = vl3 / v9

Fig. 3.7 Generalized Two-Dimensional Placement
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The simulated-annealing-based algorithm for hardware allocation as described in Section

3.3 made no assumptions about the relative delays of operations. If operations have different

delays, the highest common factor of all the different operation delays in the data flow

description is calculated. This becomes the size of one time frame. Operations can occupy

more than one time frame. During interchanges and displacements of operations in time or

space, the time positions of the successors of the interchanged and displaced operands may

also change. This is illustrated in Figure 3.8.

Loops are a succinct way of representing iteration in programming languages. It is

important that an allocation algorithm be able to provide for loops in the input description.

Current allocation algorithms and the algorithm presented here are restricted to handling loops

whose iteration count can be statically determined. Data-dependent loop exits, which imply

that the number of iterations of a loop is a variable, cannot be handled in an optimal way by

the approach presented here and is a subject for future research.

One method of dealing with loops is to treat each loop as a single operation with delay

equal to the number of iterations times the delay of each iteration. This single operation is

'vl = v2 + v3

- v5 = v2 * v3

v6 = v2 / vl
.v4 ^vl -

vl = v2 + v3

*
v4 = vl - 1

v5 = v2 * v3

;v9 = v4 + v5',

|v9 = v4 + v5;v8 = v5 + v6! v6 = v2 / vl'

v8 = v5 + v6

Fig. 3.8 Before (left) and after interchange
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scheduled just like other basic operations. However, the problem with this approach is that all

the iterations of a loop are always scheduled serially on a single ALU. It may be beneficial to

schedule iterations in parallel on different ALUs.

Another method of dealing with loops in the input description is full unwinding [21]. In

full unwinding, all the iterations in a loop are expanded into a number of operations. The

number of operations after unwinding will be proportional to the number of iterations in the

loop. These operations can be scheduled independently and may be executed in parallel if the

precedence constraints between them are not violated. This method exploits all the degrees of

freedom present in scheduling iterations of loops separately. However, given a loop with a

large number of iterations, full unwinding is not always feasible.

My solution to this problem is what I call dynamic partial unwinding of loops during

the annealing process. Initially, all loops are represented as basic operations and their delays

computed. However, they are tagged. During the annealing, a possible move (other than

displacing tagged or untagged operations) is to split a tagged operation into two or more com

ponents. For example, a 10-iteration loop may be split (unwound) into two 5-iteration com

ponents. These components are also tagged. The components are scheduled separately and

may be executed in parallel if no precedence constraints exist between them. However, this

splitting does not preclude the possibility of the all the iterations of the loop being executed

on the same ALU if that happens to be the best configuration. A possible scenario of loop

splitting during the annealing is shown in Figure 3.9.

The components after splitting are tagged and may be further split up into sub

components. The number of components a loop is split into (the degree of unwinding) and

the level of splitting is specified initially by the user. If the number of components equals the

number of loop iterations, then the result is full unwinding. If splitting is not allowed, then

the loop is being treated as a basic operation.
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vl = v2 + v3 v4 = v2 - v3

for(i=l;i<=9;i++)

x[i] = x[i] + 1

(a) Initial placement

vl = v2 + v3 v4 = v2 - v3

for(i=l;i<=3;i++)
x[i] = x[i] + 1

for(i=3;i<=6;i++)
x[i] = x[i] + 1

for(i=6;i<=9;i++)

x[i] = x[i] + 1

vl = v2 + v3

for(i=l;i<=3;i++)
x[i] = x[i] + 1

(b) Loop splitting

v4 = v2 - v3

for(i=3;i<=6;i++)

x[i] = x[i] + 1

(c) Final placement
Fig. 3.9

for(i=6;i<=9;i++)

x[i] = x[i] + 1

Another extension is trading off delay and cost for single operations. For example,

different adders may exist in the library with varying area costs and delays. A fast adder per-
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forming 32-bit addition in 25ns may cost 10 units, a slower 40ns adder may cost only 5 units.

The choice of the adder which minimizes the objective function, /, can be made during the

annealing. A move during the annealing would be to change a fast adder into a slow one or

vice versa. In general, more than two implementations with different cost-delay tradeoffs can

exist for an operator.

3.5 Examples and Results

The code sequence in [50] is used as a first example to be synthesized, using the techiques

described. The input file is shown in Figure 3.10. The implic block has been used for con

venience, since data dependences betweenoperations are quite complicated.

In the first run, (using the simulated-annealing-based algorithm) the costs of arithmetic

operations were chosen to be > 50 units, each register cost was chosen as 10 units, each link

10 units and execution cost per time slot was fixed at 5 units1. Execution speed was thus

given a low priority in this run. The optimization produced a serial sequence shown in Figure

3.11(a), which needs eight cycles to execute. CPU time required for the simulated annealing

run was 30 seconds on a VAX 11/8650 running ULTRDC The datapath synthesized after bus

allocation is shown in Figure 3.11(b). The minimal number of registers and interconnections

have been used.

Bus allocation is done after the code operation placement using algorithms similar to

[51]. However, during the placement, the amount of interconnect required is calculated at

every stage and minimized as described earlier. It was assumed, while performing bus alloca

tion, that the data transfers for every micro-instruction ( op Va Vb Vc) look as follows:

Va->link->bus->link->ALC/ml
yfe->link->bus->link->ALJ7w2
ALtf0^>hnk->bus->link->Vc

That is, value Va passes via a link, a bus and another link to the first port of an ALU. Similar

1 These numberswere selected only as an example,but reflectmy estimateof implementation cost in a simple



(implic
( add vl v2 v3 )
( minus v3 v4 v5 )
( mult v3 v6 v7 )
( add v3 v5 v8 )
( add vl v7 v9 )
( divide vlO v5 vll )
(equal v3 vl3 )
( equal vl vl2 )
(and vll v8 vl4)
( or vl2 v9 vl5 )
( equal vl4 vl )
( equal vl5 v2 )

)
INITIAL vl v2 v4 v6 vlO

FINAL vl v2 v4 v6 vlO

SYMMETRIC add mult or and

Fig. 3.10 Input File for example from [50]
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transfers are represented by the other two clauses. The two input transfers to the ALU are

required to occur in parallel. If in fact, one is allowed to make the two input transfers to an

ALU in sequence, one can synthesize a datapath for this example with only one bus.

The freedom in being able to arrange symmetric operands in order to minimize intercon

nect has been exploited by the program. If that had not been done more links would have

been required.

The placement of code operations produced by the program given a higher execution

time cost man in the previous case, that of 50 units, is shown, in Figure 3.12(a). The

register/ALU/interconnect cost was unaltered from the previous run. Note that the placement

is such that operations in the two ALUs have no operators in common - an optimal grouping.

The datapath corresponding to the code sequence in Figure 3.12(a) is shown in Figure 3.12(b),

again with a bus-style design. The CPU time required for synthesis was 40 seconds on a

standardcell library [110].



iALU —

(add vl v2 v3) (equal vl vl2)

(minus v3 v4 vll)

(mult v3 v6 v2)

(add v3 vll v3)

(add vl v2 v2)

(divide vlO vll vll)

(and v3 vll vl)

(or vl2 v2 v2)

(a) Code-sequence after 2-D placement
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(b) Synthesized Bus-style Data-Path
Fig. 3.11
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vlO ! Ivl2

VAX 11/8650. For two micro-instructions in the same time slot, all the ALUin transfers are

assumed to occur simultaneously, and all the ALUout transfers together. In the datapath

shown four buses are required. If the constraint of simultaneous input/output transfers to all

ALUs is relaxed, fewer buses will suffice. The finite state machine controller specification for

the datapath is shown in Figure 3.12(c). A single input is required to start computations. The

outputs are the load signals to the different links in the datapath. Some links are controlled

by the same output.

Another small example, this time with conditional clauses in the input description, is

shown in Figure 3.13. The input description is shown in Figure 3.13(a), the two-dimensional

placement in Figure 3.13(b) and a multiplexor-style datapath, which takes 5 or 6 cycles to

execute the description depending on what conditions are asserted, is shown in Figure 3.13(c).
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(add v!2 v2 v2)

(a) Code-sequence after 2-D placement
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(b) Synthesized Bus-Style Data-Path

0 sO sO NOP NOP 00000000000000000000

1 sO si NOP NOP 00000000000000000000

- si s2 AND NOP 01000000100110000010

- s2 s3 SUB MUL 00101100000001100111

- s3 s4 ADD DIV 00001011001000011011

- s4 s5 AND OR 11010100000100001011

- s5 s6 ADD NOP 00010000010100000010

(c) Finite State Machine Controller
Fig. 3.12



(serial
(parallel

(add v2 v3 vl) (divide v2 v3 v4)
)
(disjoint

(add vl v4 v6) (minus vl v4 v6)
)
(disjoint

(mult v6 v3 v7)
(serial (divide v6 v3 v8) (mult v8 v2 v7))

)
(parallel

(and v7 v4 v9) (or v7 vl vlO)
)

)

(a) Input Description

(add v2 v3 vl) (divide v2 v3 v4)
[ (add vl v4 v6)

(minus vl v4 v6) ]

[ (mult v6 v3 v6)
(divide v3 v6 v3) ]

(mult v2 v3 v6)

(and v6 v4 v2) (or v6 vl v3)

(b) 3-Dimensional Placement

(c) Multiplexor-Style Data Path
Fig. 3.13

56



57

A larger example is a MOSFET model evaluation routine implementing the DC part of

the Schichman-Hodges [111] or SPICE level-1 MOSFET model for MNA circuit simulation.

The goal, as before, was to synthesize the datapath of a specialized processor executing the

software description optimally under different cost constraints. The inputs to the processor are

the MOSFET node-to-ground voltages and device model parameters and the outputs are the

currents, equivalent conductances and their derivatives as needed by the companion model.

The datapaths generated in this example could be used as co-processors for model evaluation

in a hardware simulation engine [112].

The software description initially consisted of about 150 lines of C code. This was con

verted into about 300 lines of input to the synthesis program. A total of 228 possible opera

tions existed in the input description (some of them mutually exclusive). The operators used

were all floating point source and target - add, minus, divide, multiply, minimum, maximum,

compare. Using different hardware and execution time costs, three different datapaths were

synthesized.

The first datapath generated was a serial implementation with a single ALU; the second

and third have two ALUs. The execution speeds of the datapaths (normalized to the serial

datapath), the number of registers, buses and links in the datapath, estimated areas of the data

paths (normalized to the serial datapath) and CPU times in minutes for synthesis on an VAX

11/8650 running UL1TUX are summarized in Table 3.1. The ALUs in Datapaths 2 and 3 exe

cute different sets of operations. In Datapath 3, both ALUs perform multiplication/division as

well as addition and subtraction. In Datapath 2, only ALU1 performs multiplication/division.

The datapaths are shown in Figure 3.14. This large example illustrates how the algorithms

described in this chapter can be used to effectively explore tradeoffs in the design space.

MOSFET evaluation entails filling in a matrix of currents and conductances - the matrix

is assumed to be stored in memory. This would be the case if the datapaths are to be used as

co-processors for a hardware simulation engine.



DP execution

time

#reg #bus #link estimated

area

CPU

time

1 1.0 21 2 + 1* 54 1.0 10.1m

2 0.65 21 4 + 1* 66 1.7 9.2m

3 0.54 21 4 + 1* 77 2.5 11.2m

* memory bus
Table 3.1 MOSFET model datapath statistics
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Hie C program implementing the MOSFET model evaluation routine is included as

Appendix A. The intermediate textual description produced from the C program is also

included in Appendix A.

3.6 Synthesizing Pipelined Datapaths

Pipelining is an essential feature of the computers being designed today [113]. Pipelining

implies overlapping of multiple tasks - each computation task is partitioned into subtasks and

each subtask is executed in a clock cycle. Consecutive tasks are initiated at some intervals

called the latency of the pipeline, which are integral multiples of a clock cycle.

Given an input data flow specification, pipeline synthesis involves splitting the data flow

graph into stages (phases or partitions), with constraints on the number of stages and stage

delays, so as to optimize for execution time and/or hardware cost Engineering solutions to

pipeline scheduling given fixed hardware resources have been published [114] [115]. A pipe

line synthesis procedure based on scheduling algorithms was first published in [19].

sehwa [19] generates datapaths from data flow graphs along with a clocking scheme

which overlaps execution of tasks, sehwa estimates the cost of a pipeline based on the

number of processing units of each type and the number of latches required in the hardware

implementation. It has been used to synthesize clocking schemes for general-purpose comput

ers with fetch-decode-execute pipelines [57] and pipelined digital signal processors.
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The goal here is to solve a more general pipeline synthesis problem, where

register/latch, arithmetic operator and interconnect cost is taken into account during the pipe

lining. To this end, the hardware allocation algorithms presented in Sections 3.2-3.4 have

been extended to to able to synthesize pipelines.

3.6.1 Extensions for Pipeline Synthesis

Hardware resources cannot be shared across pipeline stages. For example, given a two-stage

pipeline, after pipeline setup, the micro-operations in both stages will have to be simultane

ously performed on each clock cycle (albeit on different input streams) and will therefore need

distinct computational units.

Pipeline synthesis involves partitioning the input data flow description into a number of

pipeline stages and scheduling micro-operations within each stage meeting a cost or an execu

tion time constraint The problem solved is to synthesize a pipelined datapath, given a con

straint on the maximum delay for each stage, while minimizing a user-specified function of

hardware resource cost, C, and throughput of the pipeline, E, namely, f(E, C).

The following modifications were made to the simulated-annealing-based hardware allo

cation algorithm to synthesize pipelined datapaths.

(1) The algorithm begins with a serial pipeline schedule which does not violate the max

imum stage delay constraint This serial schedule is constructed by scheduling opera

tions serially in a given stage and beginning another stage when the stage delay exceeds

the maximum allowed value. Given a partition, hardware costs are calculated as before,

treating every partition as a separate, two-dimensional placement and adding up all the

hardware costs of each partition. This step is needed because hardware resources cannot

be shared across the phases.

(2) Moves are then generated during the annealing as described in Section 3.3.2, interchang

ing and displacing operations, both within a stage as well as across adjacent stages. The

moves are such that the precedence constraints between operations are not violated.
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However, the maximum stage delay limit may be violated by a move. These violations

are allowed in intermediate solutions but are penalized to ensure that they do not appear

in the final result Operations in the last phase may be displaced to a previously empty

following phase, increasing the number of phases. The number of phases may also

decrease during the annealing.

(3) Any event that prevents a pipeline from operating at the maximum possible rate is

called ^synchronization. It is assumed that each resynchronization delays the next task

until die first initiation clock cycle after the completion of the current task. The

throughput E, of the pipeline is measured using the number of stages, k, the delay of

the stages, dh and the expected resynchronization rate, p, using the equation shown

below, which is similar to those derived in [19].

Ea l/( l + (MAX(di).k-l)p )
i

The tradeoff between delay and cost for single operations (Section 3.4) can also be

made while synthesizing pipelined datapaths.

3.62 Examples

A example of pipelining a data flow specification with is illustrated in Figure 3.15. In Figure

3.15(a), the unpipelined data flow specification is given. The tradeoffs for the adders and

multipliers specified as (cost, delay) number sets are given in Figure 3.15(b). Given these

tradeoffs, along with a maximum stage delay limit of 100 ns, 20 ns latch delay and a latency

of 2, the program was asked to find the cheapest possible schedule with a maximum of 6

stages. The schedule synthesized is shown in Figure 3.15(b). +fdenotes a fast adder and +, a

slow adder (similar subscripts apply to multiply). Both kinds of adders and multipliers have

been used to maximum advantage. Since the latency is 2, resources can be shared across

stages 1 and 2, 3 and 4, 5 and 6 so two +„ one +f, three *, and one *funit(s) are required

adding up to a total cost of 12.5 units. The multiplier in stages 5-6 has to be a *f unit since

a4 has to be computed after computing z4 in stage 6. The CPU time required to synthesize
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this pipeline schedule was 2 minutes on the VAX 11/8650.

The second example is the mosfet model evaluator of Section 3.5. The datapath syn

thesized for a two-stage pipeline with latency 1 is shown in Figure 3.16. The statistics of this

datapath are compared with those of datapaths 1 and 3 (Figure 3.14) in Table 3.2. Datapath 3

vl s xl + x2 v2 = x3 + x4 v3 = x5 * x6 v4 = x7 * x8

wl = vl + x3 w2 = v2 + x2 w3 = v3 + x7 w4 = v4 + x6
yl = wl + v3 y2 = w2 + v4 y3 = w3 + vl y4 = w4 + v2
zl = yl + y3 z2 = yl * y3 z3 = y2 + y4 z4 = y2 * y4
al = zl + x5 a2 = z2 + x6 a3 = z3 + x7 a4 = z4 + x8

(a) Input specification

OPERATOR Cost Delav

+. 1.0 40ns

+' 1.5 25ns
* 2.0 80ns

*f 3.0 50ns

(b) Cost-Delay tradeoffs

1

2

vl = xl +, x2 v3 = x5 *, x6
vl = x3 +, x4

wl = vl +, x3 v4 = x7 *s x8
w2 = v2 +s x2

w3 = v3 *, x7 w4 = v4 *, x6

y4 = w4 +, v2 yl = wl *, v3 y2 = w2 *, v4
y3 = w3 +, vl

zl = yl +fy3 z2 = yl *fy3
z3 = y2 +fy4
al = zl +jx5

a2 = z2 +fx6 zA = y2*fyA
a3 =z3 +fx7
a4 = z4 +f x8

+«. !
S i *

+ ! s^s !

+s 1
— • *s
^S

3 *s j *s

. +s I ' I5 * *
• T S S
I ^S

1 +r i
O ! +r F

i +F !

+F *

6 +F ! F !

(c) Synthesized pipeline schedule
Fig. 3.15
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is a parallel implementation of the mosfet model routine with 2 ALUs, whereas Datapath 4 is

a pipelined implementation with 2 stages (each with a single ALU). Datapath 4 has higher

throughput (assuming no resynchronization) but is slightly larger in area. The links shown in

dotted lines in Figure 16 correspond to data transfers occurring from the registers in the first

DP execution

time

#reg #bus #link estimated

area

CPU

time

1 1.0 21 2 + 1* 54 1.0 10.1m

3 0.54 21 4 + 1* 77 2.5 11.2m

4 0.50** 24 4 + 1* 70 2.6 13.1m

* memory bus
** signifies throughput rather than execution time

Table 3.2 Serial, Parallel and Pipelined datapath statistics

aluj Hi ba I r?n I

.1, J-M 1*1 Lid 4t_i

Fig. 3.16 Datapath 4
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pipeline stage to registers in the second pipeline stage.

3.7 Conclusions

In this chapter, a novel method for synthesizing datapaths from behavioral descriptions has

been presented. The entire allocation process in datapath synthesis has been formulated as a

two-dimensional placement problem of micro-instructions in space and time. This formulation

allows simultaneous cost-constrained allocation of registers, arithmetic units, interconnect

(buses and links) while trading off hardware cost against execution speed. A simulated-

annealing-based solution to the datapath synthesis problem which has achieved excellent

results has been presented. Unlike previous approaches, this approach can operate under a

wide variety of user-specified constraints on hardware resources and costs. Finally, this

simulated-annealing-based approach has been extended to synthesize pipelined datapaths.
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CHAPTER 4

Control Synthesis: State Assignment

4.1 Introduction

The hardware allocation process in datapath synthesis produces a register-transfer level struc

tural specification of the circuit. The registers, arithmetic units and the interconnections

implementing the data transfers between them are now specified. The next step of control syn

thesis is to synthesize a finite state machine (FSM) controller which in conjunction with the

datapath can execute the given behavioral input description.

Control synthesis involves three steps as illustrated by Figure 2.1. First a specification

of the FSM controller is derived from the input description and die datapath specification. In

the behavioral synthesis system described here, the entire control specification is a by-product

of the datapath synthesis step. Given the two-dimensional placement of micro-operations, the

specification of the finite state machine controller is easily derived. This derivation step is

described in Section 4.3 after some basic definitions are given in Section 4.2.

The FSM controller can be implemented using combinational logic and feedback regis

ters as shown in Figure 4.1. The registers store the internal states of the FSM. Traditionally,

the combinational logic has been implemented using micro-coded Read Only Memories

(ROMs) or Programmable Logic Arrays (PLAs). The specification of the PLA or ROM is

dependent upon the encoding of internal states in the FSM. The process of encoding these

states, called state assignment, is the second step in control synthesis. New techniques for

state assignment to produce niinimum-area FSMimplementations are presented in Section 4.4.

More recendy, FSMs have been implemented using multi-level combinational logic.

Multi-level implementations of logic functions can be substantially smaller and faster than
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Fig. 4.1 Finite State Machine Implementation
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corresponding PLA (two-level) implementations. In both cases, complex optimization stra

tegies are required for area-efficient and/or time-efficient implementations. The final step in

control synthesis, logic optimization, incorporates these techniques.

42 Preliminaries

In this section, some basic definitions are given for terms that will be used in the sequel. The

object being defined appears in bold type.

A variable is a symbol representing a single coordinate of the Boolean space (e.g. a).

A literal is a variable or its negation (e.g. a or a). A cube is a set C of literals such that xe C

implies MC (e.g., [a,b,c] is a cube, and [aja] is not a cube). A cube represents the conjunc

tion of its literals. The trivial cubes, written 0 and 1, represent the Boolean functions 0 and 1

respectively. An expression is a set/of cubes. For example, {{a},{d,c}) is an expression

consisting of the two cubes {a} and [b,c]. An expression represents the disjunction of its

cubes.
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A Finite State Machine (FSM) is represented by two equivalent structures:

(1) Its State Transition Graph G(V, E, W(E)) where V is the set of vertices corresponding

to the set of states S, where IISII=N, is the cardinality of the set of states of the FSM, an

edge (v,-, Vj) joins vj to v;- if there is a primary input that causes the FSMto evolve from

state v,- to state Vj, and W(E) is a set of labels attached to each edge, each label carrying

the information of the value of the input that caused that transition and the values of the

primary outputs corresponding to that transition.

(2) Its State Transition Table T(J, S, O) where / is the set of inputs, S is the set of states

as above, and O is the set of outputs. It is assumed that the primary inputs and outputs

of the FSM are in Boolean form. A row of the table corresponds to an edge in the State

Transition Graph. The table has as many rows as edges of State Graph and as many

columns as

Ns + N0 + 2

where N; is the number of bits used to encode the inputs, N0 is the the number of bits

used to encode the outputs, and 2 refers to the present state and the next state. The

matrix has Boolean entries for the inputs and outputs and "symbolic" entries for the

columns corresponding to the present and the next states, carrying the name of the

present state and of the next state respectively. The rows of the matrix are divided into

two fields: the first field contains the input pattern and the names of the present state,

the second field contains the output pattern and the names of the next state. Note that

the input pattern may contain don't care entries.

The number of bits required to encode the Ns states in the machine is denoted A^,

Nb > log(Af,) . The number of encoding bits used varies - using a larger Nb can result is a

smaller logic implementation.
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4.3 Control Specification

The inputs to this phase of synthesis are the structural specification of the datapath and the

two-dimensional placement of operations. The output of this phase is the State Transition

Table of a finite state machine which controls the datapath so as to execute the given

behavioral description.

A FSM can be specified by a State Transition Table or State Transition Graph. Every

time slot in the two-dimensional placement corresponds to a state in the State Transition Table

of the FSM. The FSM is specified as a Mealy machine, whose outputs are a function of the

inputs as well as the internal state of the machine. The outputs of the FSM are the load sig

nals to the different links in the datapath as well as the selection signals to the different

ALUs. Status signals from the ALU are possible inputs to the FSM. External inputs may also

exist Depending on the input combinations, different transitions occur in the FSM

An example of a State Transition Table of a FSM controller is given in Figure 4.2(c).

This specification has been derived from the two-dimensional placement of operations and

datapath derived earlier and shown in Figure 3.13. These figures have been reproduced as

Figure 4.2(a) and (b) below. In this case, the FSM is implemented as a Mealy machine to

establish a one-to-one correspondence between the states of the FSM and the time slots in the

two-dimensional placement The edges in the State Transition Table can then be enumerated.

Each edge asserts the outputs required by the micro-instructions in its time slot. For example,

the first edge in the State Transition Table of Figure 4.2(c) asserts the load signals required for

the execution of the two micro-operations in the first time slot of the two-dimensional place

ment A single external input to start computations was assumed in this case. The selection

signals to the two ALUs have been specified symbolically (e.g. NOP stands for no operation,

ADD for addition, SUB for minus). Binary codes are assigned to both the states and these

symbolic outputs so as to minimize controller area in the next step of synthesis. Since, condi

tional branches existed in the original input description, some of the states have more than one
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fanout edge. For example, two edges with different input and output combinations fan out

from state stl to state st2. The outputs of these edges will cause different micro-operations to

be performed by the datapath. Depending on the input control signal (the 2nd input in this

case) one and only one of the sets of micro-operations will be performed.

4.4 State Assignment

4.4.1 Introduction

Given the State Transition Table of the FSM controller, the machine can be implemented

using combinational logic and feedback registers as shown in Figure 4.1. Binary codes are

assigned to the internal states and symbolic inputs/outputs of the FSM to pxovide a

specification for the combinational logic, which can then be implemented as a PLA or a

multi-level logic network. State assignment and input/output encoding can profoundly affect

controller area. The goal of this step is to find an encoding of states, inputs and outputs of the

FSM such that the area of the FSM after combinational logic optimization is minimized. This

is illustrated in Figure 4.3.

If the FSM is being implemented by a PLA then, after state assignment the PLA is

minimized using two-level logic minimization programs like ESPRESSO [23]. The number of

product terms in the optimized PLA is significantiy affected by the encoding of internal states

in the FSM. This is illustrated in Figures 4.4 and 4.5. An example FSM specification is

shown in Figure 4.4(a). The assignment of codes to the states of the FSM given in Figure

4.4(b) produces a PLA with eight product terms in Figure 4.4(c) after logic minimization. A

different assignment of codes, given in Figure 4.5(a), produces a six product term PLA (Figure
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0-stO stO NOP NOP 000000
1-stO stl ADD DIV 111100

-Ostl st2 ADD NOP 100101

-1 stl st2 ADD NOP 100101

-0st2 st3 NOP DIV 001001

-1 st2 st3 NOP DIV 001001

-st3 st4ANDOR 111101

(c) State Transition Table of FSM Controller
Fig. 42
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FSM —> ENCODE * OPTIMIZE ! —>

Fig. 4.3 Encoding and Logic Optimization



000 stO stO 0101

100 stO stl 0101

010 stO st3 0101

-IstO stO 1010

100 stl stl 0101

0-0 stl stO 0101

110 stl st2 0101

-lstl stO 1010

110 st2 st2 0101

100 st2 stl 0101

(a) Example FSM

stO -> 01 stl -> 10

st2 -> 00 st3 -> 11

b) State Assignment

010 01 10 0000

100-0 10 0000

-1 10 01 1010

-101 01 1010

100 0- 10 0101

0-0 10 01 0101

0-0 01 01 0101

1-0-0 00 0101

(c) Minimized PLA implementation
Fig. 4.4
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stO -> 00 stl -> 01

st2 -> 11 st3 -> 10

(a) State Assignment

010 00 10 0000

110-1 10 0000

-1 0- 00 1010

100 0- 01 0101

0-0 0- 00 0101

1-0-1 010101

(b) Minimized PLA implementation
Fig. 4.5
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4.5(b)).

4.42 Need for new techniques of State Assignment

Previous work in automatic FSM state assignment has been directed at the minimization of

the number of product terms in a sum-of-products form of the combinational logic [24] [25]

[116] [117] [26] [118] [28] and, hence, the results obtained are relevant for the cases where

the combinationallogic is implementedusing Programmable Logic Arrays (PLAs). In practice,

most large FSMs cannot be synthesized as a single PLA for performance reasons - multi-level

logic implementations are generally used for smaller delays or smaller areas (or both).

Results using manual state assignment have shown that existing automatic state assignment

techniques are inadequate for producing optimal multi-level logic implementations [119]. This

is illustrated in Figure 4.6-8. Using a state assignment program targeted toward PLA imple

mentations the states of the FSM in Figure 4.6 are given the codes in Figure 4.7(a). This

encoding produces a six product term PLA (Figure 4.7(b)) after two-level logic minimization.

After multi-level logic optimization, the resulting network contains 16 gates and is shown in

Figure 4.7(c). A different assignment of codes (Figure 4.8(a)) produces a larger PLA with

seven product terms (Figure 4.8(b)), but a smaller multi-level logic network with 15 gates

(Figure 4.8(c)). This example illustrates the need for state assignment techniques targeted
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toward a different objective, namely, optimal multi-level implementations of FSM combina

tional logic.

4.43 State Assignment for Multi-level Logic Implementations

In the following sections, a strategy is presented for finding a state assignment of a FSM

which minimizes an estimate of the area used by a multi-level implementation of the combi

national logic2. The estimate considered here is consistent with the estimate used by multi

level logic optimization algorithms [76] [6] [77]: the number of literals in a factored form of

the logic. Algorithms have been developed, which produce a state assignment that heuristi-

cally minimizes the number of literals in the resulting combinational logic network after

multi-level logic optimization.

Multi-level logic optimization programs like MIS [6] and SOCRATES [77] primarily

use algebraic techniques for factorizing and decomposing the Boolean equations by identifying

common sub-expressions. The heuristics developed are based on maximizing the number and

size of common sub-expressions and minimizing the number of literals in the Boolean equa

tions that describe the combinational logic part of the FSM, after the states have been

2 Note that this work does not consider logic delay as an explicit factor in the optimization.
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encoded, but before logic optimization. The state assignment algorithms find pairs or clusters

of states which, if kept rninimally distant in the Boolean space representing the encoding,

result in a large number of common sub-expressions in the Boolean network.

I have obtained results over a wide range of benchmarks which illustrate the efficacy of

these techniques. Literal counts averaging 20-40% less than other state assignment techniques

have been obtained. Some erroneous results using these algorithms, which have been imple-
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mented in the program MUSTANG, have been published in the literature recently [104]. The

errors were later corrected. MUSTANG outperforms random assignment (best of 10 runs) by

27% over a wide range of examples.

In Section 4.4.4, the nature of the problem is described and the basic approach followed

to obtain a good state assignment is presented. In Section 4.4.5, two algorithms are presented.

The embedding algorithm used is described in Section 4.4.6. Results on the benchmark exam

ples are presented in Section 4.4.7.

4.4.4 The Basic Approach

The state assignment problem consists of assigning a string of bits (a code) to each of the

states the machine might take, so that no two states have the same code. After a code has

been assigned, the FSM can be implemented trivially once the storage elements (flip-flops)

have been chosen, with a PLA. For example, assume that the storage elements are D flip-

flops (one per bit). Then, each edge (v.-.y,) of the State Transition Graph or row of the State

Transition Table, corresponds to a product term, with the input part represented by the bits

specified in the label w((yhvj)) for the primary input and the bits forming the code for v; (the

present state), and the output part represented by the bits forming the code for v,- and the bits

specified in w((vhVj)) for the primary outputs. As mentioned earlier, this representation of the

FSM can be optimized using a two-level logic niinimizer as ESPRESSO [23] to reduce the

number of product terms needed to implement the logic function. Of course, different encod

ing of the states yield different logic functions as illustrated by Figure 4.4-5. It is of great

interest to assign codes to states so that the final optimized PLA has as few product terms as

possible. Algorithms have been proposed that solve this problem by using a symbolic optimi

zation step to determine a set of constraints on the encoding to guarantee that certain product

terms could be eliminated in the final implementation [26] [28]. However, in some cases, the

size of the PLA remains too large to satisfy timing or area constraints. In this case, a multi

level implementation of the logic is a better choice. The two-level logic description may be
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then mapped into a multi-level implementation by factoring and decomposing the logic func

tions corresponding to the outputs. According to the particular target technology (e.g. CMOS

standard cells, CMOS static gates laid out in the gate-matrix style or Weinberger arrays), a

decomposition and factorization will be more effective than others.

A number of algorithms have been proposed that perform mis step effectively (e.g. [76]

[6] [77]). These algorithms represent the logic to be implemented as a Boolean network, i.e.,

a directed graph where each node corresponds to a logic function with one output and an arc

is provided between two nodes if the output of one function is an input of the other. Because

the output of each node is unique, a node and an output are in one-to-one correspondence.

In principle, these algorithms should use a cost function that depends on the final imple

mentation technology. However, due to the many different target technologies used, it is very

difficult to identify a single meaningful cost function that could be optimized effectively.

Thus, an estimate for the final area is generally used. An estimate that has been used success

fully in many cases is the number of literals in a factored form of the logic function. Then,

the optimal state assignment problem can be formulated as the problem of assigning codes to

the states so that the total number of literals in the factored form of the logic Junction is

minimized.

It is certainly difficult to devise an exact measure of how many literals a particular state

assignment will yield after multi-level logic optimization has been carried out, because of the

great complexity of the algorithms used for this purpose [6].

The key point in the proposed algorithms for the state assignment problem is the model

used to predict the results obtained by the multi-level logic optimizer after the encoding has

been performed. In this case, I focused on the operations of MIS [6], the Berkeley logic

optimizer.

The algorithms in MIS [6] can be classified in two categories: algebraic and Boolean

methods. It is very difficult to model the optimization achieved by MIS with the use of
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Boolean methods, while it is feasible to predict at least some of the operations that the alge

braic division algorithms use to minimize the logic.

Among the several algebraic optimizationalgorithms used by MIS are:

(1) Factoring of logic equations.

(2) Common sub-expression identification.

(3) Common cube extraction.

These three techniques are illustrated in Rgure 4.9. The latter two techniques are algebraic

division techniques; expressions are divided by common cubes or sub-expressions in order to

produce smaller expressions with new intermediate variables. Common cube extraction is

actually a subset of common sub-expression identification - a sub-expression may be a single

cube.

The algorithm presented in mis dissertation tries to maximize the number of common

cubes that can be found by the logic optimization algorithms in the encoded two-level net

work. Maximizing the number of common cubes results in a large number of good factors

that can be extracted during optimization to produce a reduced literal multi-level

Factoring:
ace + bee + de -> ((a + b) c + d ) e

Common sub-expression identification:
ace + bee + de -> see + de

ade + bde + af -> sde + af

s = a + b

Common cube identification:

ace + bee + de -> rc + «c + de

ade + bde + af -> fd + wd + af

t = be u - ae

Fig. 4.9 Factoring, Common sub-expression
and Common cube identification
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representation.

There are two basic processes behind the influence of state assignment on the number of

common cubes in the encoded State Transition Table (STT), a two-level representation, which

is the starting point for multi-level logic optimization.

To begin, consider the second field (the present state field) in the STT of the machine

shown in Figure 4.6. If the states stO and siZ are assigned codes of distance Nd, then the lines

of the next state stl will have a common cube with Nb - Nd literals (due to edges 3 and 8 in

the STT). Similar relationships exist between othersets of states.

Now consider the third field (the next state field) of distance Nd. In this case, the

present state stl becomes a common cube for Nb- Nd next state lines whatever its code is

(due to edges 5 and 6 in the STT). The number of literals in the common cube is, of course,

Nb. Again, similar relationships exist between other sets of states in the machine.

The input and output spaces (the first and fourth fields) also have an influence on the

number of common cubes after encoding. If two different input combinations, i*i and i2, pro

duce the same next state from different or same present states, then there is a common cube

corresponding to ^ p^ ^ to the input space. Similarly, outputs asserted by different present

states have common cubes corresponding to their intersections.

Given any machine, there are a large set of relationships between state encoding and the

number/size of common cubes in the network prior to logic optimization. The reduction in

literal count or "gains" that can be obtained by coding a given pair of states with close codes,

so single/multiple occurrences of common cubes can be extracted, can be estimated. Given

these gains for each pair of states, one can attempt to find an encoding which maximizes the

overall gain.

There arises a complication in gain estimatioa First, while the number of literals in the

common cubes can be found exactly, the number of occurrences of these cubes in the logic

function depends on the encoding of the next states. In the example above, assume that stO
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was assigned HI and stl was assigned 110. There is a common cube 11 (with 2 literals) for

the next state lines but the number of occurrences of this common cube depends on the

number of l's in the code of stA (which is not known at this time). This problem is alleviated

by treating the gains as relative merits rather than absolute and using an average-case analysis

(see Section 4.4.5.1).

It should be noted that these statically-computed gains interact. Extracting some com

mon cubes can increase the number of logic levels (to the outputs) of other common cubes

and can also decrease the gain in extracting them. For instance, a sequence of two cube

extractions on a two-level network can produce a three or a four-level network. Statically

computing gains and maximizing the numberof common cubes works because, given a partic

ular encoding, the optimal sequence of cube extractions to produce a minimal-literal multi

level network can be found by the logic optimizer. The goal then is to find an encoding that

maximizes the number of common cubes in the initial two-level network.

The approach used is to build a graph G^VyE^WiE^)) where V, the set of nodes in

GM, has a one-to-one correspondence with the states of the finite state machine, EM is a com

plete set of edges, ie., every node is connected to every other node, and W(EM) represents the

gains that can be achieved by coding the states joined by the corresponding arc as close as

possible. These gains are statically and independently computed by enumerating the different

relationships between the input, state and output spaces.

Then, the states are encoded, using this graph to provide the cost of an assignment of a

state to a vertex of the Boolean hypercube.

A critical part of this approach is the generation of W(EM). I have experimented with

two algorithms: one assigns the weights to the edges by taking into consideration the second

and fourth fields of the State Transition Table, and is henceforth called fanout-oriented. The

second algorithm assigns weights to the edges by taking into consideration the first and third

fields and is henceforth called fanin-oriented.
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The fanout-oriented algorithm attempts to maximize the size of the most frequently

occurring common cubes in the encoded machine prior to optimization. The fanin-oriented

algorithm attempts to maximize the number of occurrences of the largest common cubes in the

encoded machine prior to optimization. These two algorithms are based on the two different

processes behind the influence of state assignment on the number of common cubes in the net

work described earlier.

4.4.5 Algorithms for Graph Construction

hi this section, both a fanout-oriented algorithm and a fanin-oriented algorithm are presented,

which define a set of weights for the undirected graph G^(V,E,yP(Ew)), introduced earlier.

The weights represent a set of closeness criteria for the states in the machine which reflect on

the number of common cubes in the encoded machine prior to optimization. Both these algo

rithms have a time and space complexity polynomial in the number of inputs, outputs and

states in the machine to be encoded. In the sequel, the two algorithms are described and

analyzed.

4.4.5.1 A Fanout Oriented Algorithm

This algorithm works on the output and the fanout of each state. Present states which assert

similar outputs and produce similar sets of next states are given high edge weights (and even

tually close codes) so as to maximize the size of common cubes in the output and next state

lines.

The algorithm proceeds as follows:

(1) Construct a complete graph Gm(VJ5m,W(Em)), with the edge weight set, W(EM) empty.

For each output, all the edges, W(E), in the State Transition Graph G, are scanned to

identify the nodes which assert that output. N0 sets of weighted nodes which assert each

output are constructed. If a node asserts the same output more than once it has a

correspondingly larger weight in the set.
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(2) Foreach next state, sets ofpresent states producing that next state are found (Ns sets are

constructed).

The pseudo-code below illustrates these steps of the procedure, nw stores the weight of

the nodes in each of the different sets.

for( / = 1 ; i SV0 ; i = / + 1 ) {
foreach( edges e(vh vt)e G ) {

if ( W(e).outpu$i\ is 1 ) {
OJSETi = OJSET; {J vk ;
nw(0_SETh vk) = nw(OJSETh v*) + 1 ;

}
}

}
foreach( edges e(vh v,) e G ) {

NS_SETi-NS_SET,\j vk ;
nw(NSJSETh v*) = nw(NS SETh v*) + 1 ;

}

(3) Using these N0 OJSET and Ns NSJSET sets of nodes, W(E^) is constructed. The edge

weight, we, is equal to the multiplication of the weights of the two nodes corresponding

to the edge across all the sets. The weights corresponding to the next state sets have a

multiplicative factor equal to the half the number of encoding bits, NJ2. The reasoning

behind the use of a multiplicative factor is given at the end of the section The

pseudo-code for the calculation of we is shown below.

foreach( (vh v,) e GM ) {
for( i - 1 ; i <NS; i - i + 1 )

weie^v^,)) = weie^v^)) + nw(NSJSETh vk) * nw(NS_SETit v,) ;
w^A^VfcV,)) = wete^VjhV,)) * Nfjl ;
for( j = 1 ; i <N0 ; i = i + 1 )

we(e^vhvi)) = we{e^yk,vi)) + nw{0_SETh vk) * nw{p_SETh v,) ;
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The first step of the fanout-oriented algorithm entails enumerating the relationships

between the present states and the output space. If two different present states assert an out

put, it is possible to extract a common cube corresponding to the intersection of the two state

codes. By constructing the N0 different output sets and counting the number of times a pair of

states occurs together in each output set, the algorithm effectively computes the number of

occurrences of the common cube X (*\ Y, for all states X and Y.

In the second step, the next states produced by each pair of present states are compared.

A state pair which produces the same next state has an associated common cube correspond

ing to the pair-wise intersection. The number of occurrences of this common cube is depen

dent on the number of Is in the code of the next state and therefore cannot be estimated

exactly (unlike in the first step). It is assumed that the average number of Is in a state's code

is NJ2. Since one is concerned with relative rather than absolute merits, the approximation

that each common cube occurs in NJ2 next state lines is a good one. Thus, a multiplying fac

tor of Nffl is used in the second step. Ideally, this factor should be a function of the encod

ing and not a constant for all state pairs.

Given the number of occurrences of different common cubes in the machine, this algo

rithm assigns weights so as to maximize the size of the most frequently occurring cubes.

The graph generated by the fanout-oriented algorithm for the example FSM of Figure

4.6 is shown in Figure 4.10. The output set corresponding to the single output is

(stO2, stl2, s(i2), where the superscripts denote the weights nwQ for each state in the set. The

next state sets are:

stO -»CsrO2, stl1)

stl -» (stO1, stl1,stl1)

sa->(stl\st2\sal)

st3 -»{stl1, sG1)

The weight of the edge between the states sCL and sfi with Nb = 2 is
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(1 x 1 + 1 x 1) x Ni/1 +3x2 = 8. Similarly, the other edge weights can be calculated.

4.4.5.2 A Fanin-Oriented Algorithm

The algorithm described above ignored the input space of the finite state machine. The algo

rithm works well for FSMs with a large number of outputs and small number of inputs. How

ever, the number of input and output variables could both be quite large. In this section, a

fanin-oriented algorithm is described, which operates on the input and fanin for each state.

Next states which are produced by similar inputs and similar sets of present states are given

high edge weights (and eventuaUy close codes) so as to maximize the number of common

cubes in the next state lines.

The algorithm proceeds as follows:

(1) The graph GM is constructed. Ns sets of weighted next states which fan out from each

present state in G are constructed as shown below, nw stores the weight of each node

in all the sets.

Fig. 4.10 Graph produced by fanout-oriented algorithm



foreach( edge e(yk, vj) 6 G ) {
PSJSETk = PS_SETk[j Vi ;
nw(PSJSETk, vi) = nw(PSJSETh v7) + 1 ;

}
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(2) For each input, sets of next states are identified which are produced when the input is 1

and when the input is 0. 2*Nt such sets are constructed as shown below.

for( i = 1 ; / ZNi; i = i + I ) {
foreach( edge eiy* vt) e G ) {

if ( W(e).input{i] is 1 ) {
I_SET°Ni = I_SET°Ni \j v, ;
nw{I_SET°Nh v,) = nw(J_SET°Ni, v,) + 1 ;

}
if ( W(e).input[i] is 0 ) {

IJEIopfi =I_SErOFFi\<j v, ;
nwiI_SET°FFi, v,) = nw(IJSET°FFh v,) + 1 ;

}
}

}

(3) The weights on the edges in the graph, we, are found using the N; I_SET°N,

Ni I_SET°FF and Ns PSJSET sets of nodes as illustrated in the pseudo-code below.

Between each pair of nodes in Gu, an edge with weight equal to the multiplication of

the weights of the two nodes across all the present state sets (scaled by Nb) and all the

input sets is added.



foreach( (v*. v,) e GM){
for( i=l;i<Ns;i = i + l)

we(e^yhv,)) = we{e^vk,vt)) + nw(PS_SETh v*) * nw(PS_SETh v,) ;
weteaO'fcV/)) = we(ei£?hVi)) * Nb ;
for( / = 1 ; i <Nt; i = i + 1 ) {

weie^v^,)) = weie^vt)) + nw{I_SET°Vh Vk) * nw{I_SETONi, vt) ;
w^mO^v,)) = weie^vd) + nw(I_SET°FFh v*) * nw(I_SET°FFh vt) ;

}
}
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The first step of the fanin-oriented algorithm entails enumerating the relationships

between the input and next state space. A next state produced by two different input combi

nations ix and i2 has a common cube it ("} i^. The size of this cube can be found. By con

structing die 2 x N; different input sets and counting the number of times a pair of states

occurs together in each input set, the algorithm computes similarity relationships between all

next state pairs in terms of the inputs. Giving next state pairs that are produced by similar

inputs high edge weights will result in maximizing the number of occurrences of the largest

common input cubes in the next state lines.

In the second step, the present states producing each pair of next states are compared.

If two different next states are produced by the same present state, the state is common to

some next state lines. The number of occurrences of this common cube is dependent on the

intersection of the two next state codes. To maximize the number of occurrences of these

cubes, next state pairs which have many common present states are given correspondingly

high edge weights. Since each of these cubes have Nb literals (as opposed to a single literal

for a single input), a multiplying factor of Nb is used while combining the weights computed

in the two steps.

Given the sizes of the different common cubes in the machine, this algorithm assigns

weights so as to maximize the number of occurrences of these cubes.
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The graph generated by the fanin-oriented algorithm for the example FSM of Figure 4.6

is shown in Figure 4.11. As can be seen, the weights of the edges in the graph are different

from those generated by the fanout-oriented algorithm (Figure 4.10). Here the input sets are:

*i(0) -> (stl*,st32)

. i,(l) -»(rtO2,^3)

i2(0) -> (sto^ti^a1)

The present state sets are:

stO -» (st&jtl1)

stl -» (stO^tVjtl1)

sa-^istVj&jG1)

st3 -» (stl1)

The weight of the edge between stO and stl for Nb = 2 is

(1 x 1 + 2 x 1) + Nb x (2 x 1 + 1 x 1) = 9. The other edge weights are calculated in a simi-

Fig. 4.11 Graph produced by fanin-oriented algorithm
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lar fashion.

4.4.6 The Embedding Algorithm

The algorithms presented above generate a graph and a set of weights, like the graphs of Fig

ure 5 and Figure 6, to guide die state encoding process. The problem now is to assign the

actual codes to states according to the analysis performed by the fanin and the fanout-oriented

algorithms. This problem is a classical combinatorial optimization problem called graph

embedding [120]. Here, GM has to be embedded in a Boolean hypercube so that the adja

cency relations identified by GM are satisfied in an optimal way. Unfortunately, this problem is

NP-complete and there is little hope to solve it exactly in an efficient way. Thus, a heuristic

approach to this embedding problem is used, that has given satisfactory results for the state

assignment problem dealt with here.

The heuristic algorithm is called wedge clustering. This algorithm is used to assign

codes to the nodes in GM to minimize

X X we(euivh V;)) * disK enc( v, ), enc{ v} ) )

where the vk are the vertices in GM, we^^v*, v,)) is the weight of the edge, e, between ver

tices vk and v,, enc{ vk) is the encoding of vertex v*. The function distQ returns the distance

between two binary codes.

The graphs generated by the fanout and fanin-oriented algorithms have a certain struc

ture associated with them, especially for large machines. In these graphs, typically small

groups of states exist that are strongly connected internally (edges between states in the same

group have high weights) but weakly connected externally (edges between states not in the

same cluster have low weights). The embedding heuristic has been tailored to meet the

requirements of this particular problem. The heuristic exploits the nature of the graph by

attempting to identify strongly connected clusters and assigning states within each cluster with

uni-distant codes.
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The embedding algorithm proceeds as follows. Clusters of nodes with the cardinality of

the cluster no greater than Nb + 1 and consisting of edges of maximum total weight are

identified in GM. Given GM, the identification of these clusters is as follows - A node,

Vi g GM, with the maximum sum of weights of any Nb connected edges is identified. The Nb

nodes, yx, y2,.. yNb which correspond to the Nb edges from Vj and vj itself are assigned

minimally distant codes from the pool of unassigned codes (vi may have been assigned

already, so may the other y,). A maximum of Nbnodes are chosen so the yt can be (possibly)

assigned uni-distant codes from v^ After the assignment, vj and all the edges connected to vx

have been deleted from GM and the node selection/code assignment process is repeated till all

the nodes are assigned codes. The pseudo-code below illustrates the procedure:

GG = GM
while( GG is not empty) {

Select v: e GG, yt e GG so ^ve{e^y\, y; )) is maximum ;

assign the yt and Vi minimally distant codes from unassigned codes ;
GG-GG-Vi ;

}

The following optimality result about the embedding heuristic can be proven. For con

venience in notation, assume that weiyt, y,) = 0 -V / 3 y,- e GM.

Theorem 4.1: At a given iteration, if the Nb states yi, y2, .. y// are given uni-distant codes

from the selected state v, and if

wefoi(vlty;)) ^ we{e^ylyy})) + we{e^yit yk)) 1 £ i, j, k<,Nb, frfck (4.1)

then the assignment is optimum for this cluster of Nb+ 1 states, i.e.

Nb Nb Nb

Zwe(c«(vi> yd) * disKenc(vi), enciy:)) + E E we(*wO'n yj)) * dist(enc(yi), enc(yj))

is minimum.

Proof: We have to prove that no assignment of codes to states can produce a cost which is
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less than the cost, C(vx), produced by assigning the Nb states with uni-distant codes from vj.

We have:

Nb fb Nb

CM = Xwe(^(vi, yd) +2*JJ*«(«*(*. yj»

since the ylt ..yNb have uni-distant codes from vx and therefore are distance-2 from each other.

To decrease the cost, the distances between the codes of the yt have to be reduced from 2 to

1. This can only be done at the expense of an increase in the distance between some of the y,-

and Vj from 1 to 2. There are three possible ways of doing so. First, any state ys can be

selected from ylf ..yNj> and code the rest of the y,- and V! can be encoded with uni-distant codes

from ys. Without loss of generality, assume yx was selected. We know, since v2 was selected

initially, that

Nb Nb

ipe(fiifti, yd) * 2>efo<(yjb yj» +weieufy* Vl)) v k (4.2)
i=i j=\

Using (2) above, it can easily be shown that:

C(yj = Jjveifihfos* yd) + we(ylt vj))
«2

»h Nb *b
+ 2*ZZ ^eie^i, yj)) + 2 *JX^, yd) > C(vt)

i=2 /=j+1 i=2

and similarly for Ciyfi, .. C(yN).

The second alternative in assigning codes is to select a ys and assign it a code which is

uni-distant from two other y,- ( Only two y,- can be chosen since the y,- are distance-2 from each

other). This code will be distance-3 from the unselected y,- and will be distance-2 from v^

Without loss of generality, assume that yx was selected and assigned a uni-distant code from

y2 and y3. We have:

Nb 3
C(yi) = 5>*(*m(vi, yi)) + Ewe^jXyi, yd) + 2 * we{e^vx, yx)) + 2 * we(ei^y2, y3)) +

t=2 i'=2

*6 ** 3 "i >*b
2 * X E ™**«<y/, yy)) + 2*EX wefaiCy* ?;)) + 3 * Jjnbrfyi, yd)

1=4 y=i+l i=2 y=t+l »'=4
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Expanding C(vx), we have:

** 3

C(vx) = Xw*(^(vi» yd) + 2 * Swfcjrfy,, ?,))+ w^^V!, y,)) + 2 * wetewfrz, y3)) +
/=2 1=2

*» *6 3 *k "ft

2*XZ >ve(eM(yJ-, yy)) +2 * X E ™(«ii(y* yy)) +2 * 2X«j*(yi, y,))
t=4 y=rt>l i=2 y=i+l fc4

Canceling terms from C(yx) and using relation (1), shows that C(y{) > C(y\).

The third alternative in assigning codes is to select a state ys and 2 < p < Nb - 1 states

from the remaining ys and make these p states uni-distant from ys. ys will be uni-distant from

vi, the p states will be distance-2 from V! and will be distance-2 from each other. If p £ 2,

then one is back to the second alternative (or worse) which is non-optimal. Similarly,

p = Nb- 1 brings us back to the first alternative which is non-optimal. Assuming yx and

y2,.. yp+i are selected, we have:

C(y{) = weieutvt, yd) + 2 * Xwefoi(vi> yd) + X w«(^vi» yd) +
t=2 i=p+2

JH-1 "b »b
^weie^y^ yi)) + 2 * X X w«(««(y/» 3$)
i'=2 i=2 y=i*+i

Expanding C(vi), we have:

w,.p+i

C(vO = w^e^vi, yO) + Xwe^^V!, y,)) + X we^Vj, y,)) +
i=2 i=p+2

i*l Nh Nb
2 * !><«*<yi. yd) + 2 * X X w«(ej|(y/, yy))

/=2 i=2 y=i+i

Canceling terms from C(yi) and using equation (4.1), shows that C(yx) > C(yx). In the general

case, more than one ys, each with an associated set of states from the remaining yh may be

selected and each set made uni-distant from ys. The proof for this case is more involved but

follows in a similar way as for the previous case, expanding C(yx) and using equation (4.1).

Q.E.D.

Thus, the heuristic is optimal for a graph satisfying equation (4.1) at each iteration of

the embedding, if sets of minimally distant codes can be found. It produces good (though
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perhaps sub-optimal) solutions for graphs satisfying

we(ej^ylt y:)) £ RAT * weie^ y})) + we{.e^yit yk)) 1 £ i, j, kZN* teftk

where RAT is close to 1. This, coupled with the fact that typical graphs produced by the

fanout and fanin-oriented algorithms have strongly connected clusters of states, makes the

embedding algorithm eminently suitable for our purpose.

The algorithm is quite fast and has a worst-case time complexity of

0{N2 (log(Ns) + Nb)). Initially, the Nt - 1 fanout edges from each of the Ns states are sorted

in decreasing order of weights which takes 0(NS2 log(Ns)) time. The embedding itself may

require a maximum of Ns - Nb iterations. This is because in the first iteration, Nb + 1 states

are encoded and in the worst case only one state is encoded in following iterations. To select

a state, with maximum weight of any Nb connected edges, can be accomplished in 0(NS Nb)

time, giving anoverall time complexity of 0(N2 (log(Ns) + Nb)).

The embedding algorithm is illustrated in Figure 4.12 using a small example with 5

states, to be encoded using 3 bits. Initially, the node corresponding to state st3 is selected - it

is the node with the maximum set of any 3 edge weights. The states corresponding to these

three edges are stO, stl and st2. The three states are given codes uni-distant from st3. st3 and

its edges are deleted from the graph. The selection process continues, picking stl from the

modified graph and encoding st4. This completes the encoding.

4.4.7 Results

I have run 20 benchmark examples (which have been obtained from various university and

industrial sources) representing a wide range of finite automata on different state assignment

programs as well as on the algorithms described in the previous sections. The size statistics

of the examples are given in Table 4.1, with the minimum possible encoding for each FSM

indicated under the column #enc.

The results obtained via random state assignment (RANDOM-A and RANDOM-B),

using the state assignment program KISS (KISS), the fanout-oriented algorithm (MUST-P) and
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NB = 3

st3 (stO, stl, st2)

st3 —» OOO stO —» 001

stl —> 010 st2 —»100

stl (stO, st2, st4)

st4 -> 110

Fig. 4.12 An Embedding Example



EXAMPLE #ino #out #states #enc

bbara 4 2 10 4

bbsse 7 7 16 4

bbtas 2 2 6 3

cse 7 7 16 4

dkl5x 3 5 4 2

dkl6x 2 3 27 5

keyb 7 2 19 5

lion 2 1 4 2

lion9 2 1 9 4

markl 5 16 14 4

mc 3 5 4 2

modulol2 1 1 11 4

planet 7 19 48 6

si 8 6 20 5

sla 8 6 20 5

scf 27 56 128 7

shiftreg 1 1 8 3

tav 4 4 4 2

tbk.min 6 3 16 4

trainll 2 1 10 4

Table 4.1 Statistics of benchmark examples
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the fanin-oriented algorithm (MUST-N) for multi-level implementations are summarized in

Table 4.2 and 4.3. The number of literals after running through two optimization scripts in

the multi-level logic synthesis tool MIS [6] are given for each of the state assignment tech

niques. The literal counts of Table 4.2 were obtained using a short optimization script and

those of Table 4.3 using a much longer optimization script (which produces better results).

The literal counts under RANDOM-A were obtained using a statistical average of 10

different random state assignments (using different starting seeds) on each example.

RANDOM-B was the best result obtained in the different runs. RANDOM-B is significantly

better than RANDOM-A especially for the smaller examples. MUSTANG is the best result
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EXAMPLE
RANDOM-A RANDOM-B KISS MUST-P

#lit

MUST-N

#lit

MUSTANG

#Iit#lit RAT #lit RAT #lit RAT

bbara 120 1.48 91 1.12 103 1.27 81 108 81

bbsse 214 1.48 190 1.31 145 1.01 144 177 144

bbtas 37 1.15 26 0.81 34 1.06 51 32 32

cse 405 1.33 339 1.11 264 0.87 304 319 304

dkl5x 122 1.17 109 1.04 91 0.87 104 128 104

dkl6x 553 1.59 516 1.49 411 1.18 383 346 346

keyb 810 2.45 663 2.00 474 1.43 495 330 330

lion 20 1.11 18 1.00 21 1.16 18 22 18

lion9 61 3.05 52 2.60 37 1.85 25 20 20

markl 112 1.28 89 1.02 114 1.31 130 87 87

mc 40 1.11 37 1.02 43 1.19 37 36 36

modulol2 43 1.19 40 1.11 49 1.36 40 36 36

planet 1063 1.24 1012 1.18 869 1.01 1033 854 854

si 852 4.26 805 4.02 690 3.45 639 200 200

sla 649 4.0 583 3.59 382 2.35 514 162 162

scf 1674 1.31 1596 1.25 1441 1.13 1390 1274 1274

shiftreg 37 18.5 32 16.0 8 4.00 2 8 2

tav 25 1.04 24 1.00 24 1.00 25 24 24

tbk.min 540 1.12 532 1.10 563 1.16 515 482 482

trainll 67 1.34 53 1.06 46 0.92 50 55 50

TOTAL 7444 1.62 6807 1.48 5809 1.26 4586

#lit: Numberof literals aftermulti-levellogic optimization using fast script
RAT: Ratio to number of literals produced by MUSTANG using fast script

Table 4.2 Results obtained using fast script

produced by either the fanout or the fanin-oriented algorithm for each givenexample.

MUSTANG can be constrained to use any numberof encoding bits greater than or equal

to the minimum. For all examples, MUSTANG was ran using the minimum possible bit

encoding. Minimum bit encoding has been found to be uniformly good for multi-level logic

implementations. KISS typically uses a 1-3 bits more than the niinimum encoding length.

The time required by MUSTANG for encoding these benchmarks varied between 0.1 CPU

seconds for the small examples to 100 CPU seconds for the largest example, scf, on a VAX

11/8650.

The algorithms developed have achieved the goal of producing encodings which pro

duce minimal area implementations after multi-level logic optimization as illustrated in Tables
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EXAMPLE
RANDOM-A RANDOM-B KISS MUST-P MUST-N

#lit

MUSTANG

#lit#lit RAT #lit RAT #lit RAT #lit

bbara 95 1.39 76 1.11 79 1.16 68 75 68

bbsse 153 1.29 131 1.11 118 1.00 118 144 118

bbtas 32 1.45 24 1.09 28 1.27 41 22 22

cse 273 1.24 240 1.09 203 0.92 224 220 220

dkl5x 109 1.18 94 1.02 85 0.92 92 108 92

dkl6x 406 1.40 394 1.35 315 1.08 326 290 290

keyb 369 1.75 311 1.48 213 1.01 320 210 210

lion 19 1.18 16 1.00 16 1.00 16 16 16

lion9 55 2.75 43 2.15 36 1.80 22 20 20

markl 102 1.22 99 1.19 99 1.19 115 83 83

mc 39 1.08 37 1.02 42 1.16 37 36 36

modulo12 41 1.24 36 1.09 47 1.42 38 33 33

planet 697 1.23 654 1.16 547 0.97 597 563 563

si 424 2.65 354 2.21 352 2.20 376 160 160

sla 363 2.57 337 2.39 258 1.82 307 141 141

scf 939 1.10 922 1.08 861 1.01 881 852 852

shiftreg 36 18.0 24 12.0 8 4.0 2 8 2

tav 23 0.95 22 0.91 22 0.91 24 24 24

tbkjnin 355 1.19 342 1.15 381 1.28 348 297 297

train11 64 1.30 54 1.10 44 0.90 49 55 49

TOTAL 4594 L39 4210 1.27 3754 L14 3296

#lit: Numberof literals aftermulti-levellogic optimization usinglong script
RAT: Ratio to number of literals produced by MUSTANG using long script

Table 4.3 Results obtained using long script

4.2 and 4.3. The literal counts obtained by MUSTANG are on the average 30% better than

random state assignment and 20% better than KISS. In some cases, the fanout-oriented algo

rithm does better than the fanin-oriented algorithm, when ignoring the common sub

expressions in the input space is a good approximation.

MUSTANG does comparatively better than random assignment or KISS in the shorter

optimization script case than in the more complex optimization script This is to be expected

since MUSTANG models only the common cube extraction process in multi-level logic

optimization. In the short optimization script, cube factors dominate in the reduction of the

size of the network. More complicated factors, not modeled by MUSTANG; come into play

in the complex optimization script.



EXAMPLE
RANDOM-B KISS MUSTANG-N

#lit #gate #lit #gate #lit #eate

cse 240 115 203 95 220 105

dkl6x 394 175 315 143 290 124

keyb 311 158 213 112 210 112

planet 654 290 547 249 563 267

si 354 174 352 173 160 93

sla 337 169 258 131 141 83

scf 922 445 861 401 852 393

tblcmin 342 170 381 169 297 130

Table 4.4 Results after long script and technology mapping
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For any given example, the literal counts obtained using MUSTANG and short or long

optimization scripts are comparatively closer than using KISS or random assignment. For

example, in bbara, using random assignment produces 120 literals after quick optimization

versus 76 after a long optimization (on an average). The corresponding numbers for MUST-P

are 81 and 68 respectively. MUSTANG eases the job of the multi-level logic optimizer, by

providing a large number of easily detectable factors in the network before optimization - a

short script can produce good results. Also, the time taken by MIS to optimize MUSTANG

encoded examples is significantly shorter (20-40%) than to optimize examples encoded using

different techniques. Again, this is because a large number of easily detectable factors exist in

the pre-optimized network.

Recently, a paper was published in the Design Automation Conference [104], which

reported erroneous results for MUSTANG in comparison with random assignment. The

results were corrected during the presentation at the 1988 DAC. Over a wide range of exam

ples (including others from those presented here), it has been determined that MUSTANG, on

an average, outperforms random assignment (the best of 10 runs) by 25%.

Both MUSTANG and MIS optimize for literal counts rather than the number of gates in

the network. MIS may produce arbitrarily complex gates in an optimized netwoik. In many
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cases, these gates have to be mapped to a specific technology library. It is worthwhile to see

if the gains in literal counts do produce networks with fewer gates. The number of gates in

the benchmark examples after intensive logic optimization and technology mapping are given

in Table 4.4 for the different state assignment techniques. Only the largest examples are

shown, the small examples had insignificant numbers of complex gates.

4.5 Conclusions

All previous work in automatic state assignment has been targeted toward two-level logic

implementations of finite state machines. Multi-level logic implementations can be substan

tially faster and/or smaller than corresponding two-level implementations. The need for new

techniques of state assignment directiy targeting multi-level logic implementations has been

shown and algorithms have been developed for this purpose. As compared to existing tech

niques, significant reductions in literal counts, averaging 20-40%, have been obtained on

benchmark examples. Some erroneous results using these algorithms, which have been imple

mented in the program MUSTANG, have been published in the literature recently [104]. It

has been shown that MUSTANG can consistently outperform random assignment over a wide

range of examples.
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CHAPTER 5

Combinational Logic Optimization

5.1 Introduction

Combinational logic circuits are extensively used in ASIC chips - in datapaths to realize arith

metic and Boolean operations and in finite state machine (FSM) controllers. Combinational

logic circuitry can occupy a very significant fraction of area in an IC. The optimization of

combinationalcircuits for speed and area is thus a very real and important problem.

Research over the past 30 years has resulted in efficient methods for implementing com

binational logic in optimal two-level form using Programmable Logic Arrays (PLAs). How

ever, many logic blocks are inappropriate for this kind of implementation. For example, there

exist functions whose minimum two-level representation has 2n~1 product terms, where n is the

number of primary inputs. In addition, even if a two-level representation contains a reason

able number of product terms, there are many cases in which a multi-level representation can

be implemented in less area and generally as a much faster circuit. Two-level logic represen

tations can be viewed as special cases of more general multi-level representations.

Optimal multi-level logic synthesis is a known difficult problem which has been studied

since the 1950's. In recent years, an increasing level of research has become apparent in

multi-level logic synthesis. One of the first of the modem developments is the Logic Syn

thesis system (LSS) [79] [121] at IBM, which has as a target technology a variety of gate

arrays and standard cells. The Yorktown Silicon Compiler [78], which automatically syn

thesizes and lays out CMOS dynamic logic is based completely on multi-level logic and has

Domino CMOS logic as its primary target technology. The SOCRATES system [77] is a

multi-level logic synthesis system which uses gate arrays and standard cells, and is one of the
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earliest to emphasize timing performance. The recently developed MIS system [6], is targeted

toward area and timing optimization and uses algorithms which easily support a variety of tar

get technologies.

For multi-level design, two basic methodologies have evolved: 1) global re-structuring,

where the logic functions are "factored" into an optimal multi-level form with little considera

tion of the form of the original description (e.g. [6] [78]; 2) peephole optimization, where

local transformations are applied to the user-specified (or globally-optimized) logic function

(e.g. [79] [80]).

Global re-structuring procedures have been shown to be crucially necessary in producing

optimal designs. Factoring algorithms have been proposed [76] [6] which are effective in par

titioning complex logic functions.

The factoring algorithms proposed in [76] [6] are primarily based on algebraic tech

niques. Boolean factoring/division techniques can achieve superior results. However, tech

niques proposed so far for Boolean factoring and multi-level Boolean minimization (e.g [81])

require large amounts of CPU time.

Multi-level logic networks can be realized by standard cell or gate array implementa

tions. For small-medium (< 50 product terms) sized two-level representations the PLA is a

very compact structure whose size is comparable (if not smaller) than a corresponding multi

level implementation. Topological optimization techniques like folding [82] can further

reduce PLA area. A set of interconnected PLAs can thus exploit both the layout compactness

of PLAs without being constrained by the relative inflexibility of two-level logic structures.

A PLA can be decomposed into a set of interconnected PLAs which feed into one

another. To perform this decomposition, factoring algorithms are required. In this chapter,

algorithms for Boolean decomposition are presented, which decompose a PLA into a set of

smaller interconnected PLAs such that the overall area of the resulting logic network, deemed

to be the sum of the areas of the constituent PLAs, is minimized.
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The algorithms are based on multiple-valued Boolean minimization [83]. Given a PLA,

a subset of inputs to the PLA is selected. This selection step incorporates a new algorithm

which selects a set of inputs such that the cardinality of the multiple-valued cover, produced

by representing all combinations of these inputs as different values of a single multiple-valued

variable, is much smaller man the original binary cover cardinality. A relatively small size

for the multiple-valued cover implies that the number of good Boolean factors contained in

this subset of inputs is large. Selecting different sets of inputs in the given logic function

results in different multiple-valued cover cardinalities. Given a constraint on the number of

inputs to be selected, the algorithm identifies a subset of inputs which when represented by a

single multiple-valued variable results in the maximum reduction of cover cardinality.

Next, the different cube combinations given by this subset of inputs are re-encoded to

satisfy the constraints given by the multiple-valued cover, thus producing a binary cover for

the original PLA whose cardinality equals the multiple-valued cover cardinality. The number

of distinct constraints specified by the multiple-valued cover affects the number of bits

required to satisfy these constraints, which in turn affects the areas of the resulting PLAs.

This problem of optimal constrained encoding, i.e. satisfying a set of constraints by a

minimum code-length is a complex combinatorial optimization problem. Optimal constrained

encoding has been formulated as a constraint ordering problem. The re-encoding process

incorporates a new encoding algorithm which heuristically minimizes the number of bits

required to satisfy all or a subset of the constraints produced by multiple-valued minimization.

These algorithms have produced excellent results over a wide range of examples. Total

delays and areas of resulting PLAs after Boolean decomposition are invariably smaller than

those for the original PLAs. This approach exploits the layout compactness of PLA structures

to produce small, fast multi-level logic implementations. Large PLAs have been reduced by

factors of 2-3 in size and delay [83].
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In Section 5.2, basic definitions and notations used are given. The overall strategy is

outlined using a simple example in Section 5.3. The input selection algorithm is described in

Section 5.4. The algorithm used to re-encode the different input combinations, while minim

izing the code-length, is described in Section 5.5. Results on several benchmark examples are

given in Section 5.6.

52 Preliminaries

A multiple-valued variable nf can take on values 0, 1 .. p-l. In particular, a binary-valued

variable m1 can take on values of 0 or 1. If the superscript is omitted, it is assumed to be 2.

Let pi for i=l • • • n be positive integers representing the number of values for each of

n variables. Define the setPt s {0,.., p,—1} for i = 1 • • n'which represents the p{ values

that variable i may assume, and define B} = {0, 1, *} which represent the value of the func

tion. A multiple-valued input, binary-valued output function with k outputs, Pnxk,

(hereafter known as a multiple-valued function) is a mapping

Pnxk:Pi*P2 ••• xPn->Bxx..xBk

The function is said to have n multiple-valued inputs, mf', kbinary-valued outputs, and

variable i is said to take on pt possible values.

The cover of a multiple-valued function, P„xk is a collection of cubes or implicants

{ch 1 <i£\P\) where:

c,- = (c,i, c,2,.. cin, biX .. bik)

\P\ is the number of cubes in the cover. The first n entries represent the input part of

the cube, and the next k entries represent the output part of the cube. (In the sequel, when

no confusion can arise, only the input part of a cube will be listed). c,y a. P} is a collection of

values of mp that appear in cube c,-.

A bit-vector representation of length p} will be used for c,y = [ c,y(0), .. , C[fpt - 1) ],

where:
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Cifk) = 1 if k e dy else 0

The inputs to a binary-valued logic function will be denoted *,-.

The area of a logic function, Pn xk is defined to be (2n + k)x \P\.

53 Overall Strategy for PLA Decomposition

The goal is to decompose a given PLA into two smaller PLAs such that one PLA feeds into

the second and the sum total of the areas of the two PLAs is minimum. This transformation

is illustrated in Figure 5.1.

It should be noted that (1) a primary input may feed into both PLA I and n and (2) only

a subset of the inputs of the original PLA feed into the decomposing PLA I.

Consider the PLA specification of Figure 52(a). This specification is optimal, with

minimum cardinality. Inputs 1, 2 and 3 are selected. Eight distinct combinations of these

inputs exist in the PLA description corresponding to eight minterms. These inputs now are

re-encoded, i.e. assigned different binary codes. The binary codes assigned to the various

input combinations are listed in Hgure 5.2(b). Now, replacing each input combination by its

distinct binary code results in the PLA specification shown in Figure 5.2(c). Minimizing these

two PLA specifications, namely the encoding PLA (Figure 5.2(b)) and the re-encoded PLA

M ->

^j Original PLA PLA-I

-) PLA-II
-->

Fig. 5.1 PLA Decomposition



105

(Figure 52(c)), produces the results in Figure 5.2(d). The cardinality of the re-encoded PLA

is one-quarter that of the original. The original PLA can be realized in smaller area by PLA-

n feeding into the decomposed PLA-I as shown in Figure 5.1.

Thus, two steps have to be performed in PLA decomposition. First, a subset of inputs

to the original PLA have to be selected. Next, these inputs have to be re-encoded. Re-

encoding a set of inputs is a process that replaces each distinct combination of these inputs

(which occur in the original PLA description) by a distinct binary pattem. The length of these

binary patterns may be less than, equal to, or greater than the number of inputs being re-

encoded. The only constraint on the pattem length (the number of re-encoding bits), is due

to the fact that no binary pattern may be assigned to more than one input combination. If for

a set of inputs of cardinality nh Nd<21 distinct input combinations exist, the number of re-

encoding bits required is Nb> logiNj).

The final goal of both the selection and re-encoding steps is to minimize the number of

product terms in the decomposed PLA description. Now, given a selection of inputs, a lower

bound on the number of product terms in the decomposed PLA (PLA-H) exists even for an

optimal re-encoding. The goal of the selection step is to find a subset of inputs which has the

least lower bound so as to obtain a maximal area decrease via decomposition. The re-

encoding step can be formulated as a multiple-valued minimization problem followed by a

constrained encoding problem (The state assignment problem was similarly formulated in [26]

previously). The lower bound on the number of product terms in the decomposed PLA, given

a selection of inputs, can be found via multiple-valued minimization. Also, this lower bound

can always be achieved by re-encoding. However, the number of encoding bits required, Nb,

can vary greatly. Finding a minimum Nb during re-encoding is a complex combinatorial

optimization problem.

The formulation of re-encoding as a multiple-valued minimization followed by a con

strained encoding problem is illustrated in Figure 5.3. The PLA specification of Hgure 5.2(a)



100 00 1

010 00 1

001 00 1

111 00 1

000 10 1

110 10 1

101 10 1

on 10 1

000 01 1

110 01 1

101 01 1

on 01 1

100 11 1

010 11 1

001 11 1

111 11 1
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111 00 1

110 00 1

101 00 1

100 00 1

Oil 10 1

010 10 1

001 10 1

000 10 1

Oil 01 1

010 01 1

001 01 1

000 01 1

111 11 1

110 11 1

101 11 1

100 11 1

(a) Original PLA (c) Re-encoded PLA

100 -> 111

010 -> 110 HI 100
001 -> 101 010 100 100— 1
111 -> 100 001 100 0101- 1
000 -> Oil 100 100 001— 1
110 -> 010 —0 010 111-0 1
101 -> 001 -o- 001

Oil -> 000

(b) Re-encoding (d) Minimized PLAs II & I

Fig. 5.2 Example decomposition

is reproduced in Hgure 5.3(a). This time two inputs, namely inputs 1 and 2 are selected. A
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new cover where each of the distinct combinations of these inputs is represented by a value of

a single multiple-valued variable, M, is shown in Hgure 5.3(c). This variable takes on four

different values. The values correspond to the four distinct input combinations and are shown

in Hgure 5.3(b). The multiple-valued cover of Hgure 5.3(c) is minimized to produce the

cover of Hgure 5.3(d). The multiple-valued cover has half the cardinality of the original

PLA. The constraints to be satisfied by an encoding to produce a binary cover with the same

cardinality are enumerated in Hgure 52(e). These constraints are all the distinct combinations

existing in the multiple-valued part of the cover of Hgure 5.3(d).

Given the constraints obtained from the minimized multiple-valued cover; an encoding

of input combinations can be found, which will produce a binary cover for the decomposed

PLA of the same cardinality as the cardinality of the minimized multiple-valued cover (Hgure

5.3(d)). In fact, an encoding can be found such that each of the implicants in the multiple-

valued cover can be represented by a single implicant in the binary cover. The encoding has

to the satisfy the constraint relation imposed by the multiple-valued implicants [26].

For this description, each distinct input combination to be encoded is called a node.

Each node represents a value of the multiple-valued variable, M. A node is said to exist in a

constraint (which corresponds to a multiple-valued implicant) if the implicant takes on the

value of the node (in the notation used, this means that the bit position corresponding to the

node contains a 1). For any given constraint, C, the group face, CF, for C, is the smallest

cube containing the codes of each node in C. The constraint relation imposed is that each

group face, CF is disjoint (does not intersect) any codes of all other nodes not in C [26].

In the example above, the encoding for the input combinations in Rgure 5.2(b).satisfies

the constraints of Figure 5.3(e). The group face corresponding to the first constraint 1100 is

0-3 ( = 01 \j 00 ) which does not intersect the codes of the other two nodes, namely 10 and

3 The symbol - is used to represent a don't care condition for the variable.
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010001
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000101
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101011
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001111

nini

10000001

01000001

00101001
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00010101

1000no1

01001101

00100011
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10001011
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1000on1

0100on1

00101111
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(a)OriginalPLA(c)M-Vcover

10->1000

01->0100

01->0010

11->0001

10->1000

01->0100

11000001

11001101

11001011

noooni

(b)M-Vreplacement00111001
00110101

00110011

00111111
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(e)Constraints(d)Minimizedcover
Fig.5.3Re-encodingviamultiple-valuedminimization

11.
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5.4 Selection

The goal of the selection process is to identify a subset of inputs, ST, 1571 = N„ in the given

PLA which when re-encoded will reduce the cardinality of the binary cover to a maximum

extent (more than any other subset of Ns inputs).

One approach is to identify these inputs by exhaustive search. For each subset of

inputs, all distinct input combinations can be replaced by a multiple-valued variable and the

cover minimized. The subset of inputs which produces the smallest multiple-valued cover

cardinality can be selected.

There are two problems with the above-mentioned approach. The number of possible

subsets of inputs is exponentially related to the number of inputs to the PLA. Also, the

evaluation of a selection can be very time consuming, since it involves performing an optimal

or near-optimal multiple-valued minimization. Thus, this approach is infeasible for anything

but the smallest PLAs (about 8 inputs).

The approach used to computing the cover cardinality after re-encoding is to estimate

(rather than evaluate) the cardinality of the optimal multiple-valued cover produced by replac

ing all distinct combinations of the selected inputs by a single multiple-valued variable. Each

distinct combination becomes a different value of the multiple-valued variable. The cardinal

ity of the minimum cover of the new multiple-valued input, binary output logic function is the

minimum cardinality that can be achieved by re-encoding the selectedinputs.

Informally, the selection algorithm proceeds as follows:

(1) All, or a subset of inputs, are selected, and each distinct input combination in the origi

nal PLA is represented by a value of a multiple-valued variable.

(2) A complete, undirected graph where each vertex in the graph is an input to the PLA is

constructed. The graph has weighted edges whose weights are all initially set to zero.

(3) The multiple-valued cover is minimizedfusing a multiple-valued logic minimizer like

ESPRESSO-MV [85].
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(4) Next, the multiple-valued cover is examined to see what values, i.e. what distinct input

combinations, have been merged together. Each implicant in die multiple-valued cover

contains one or more values which correspond to the original binary input combinations.

For each implicant, the set of binary input combinations which have merged to form this

implicant is found. The inputs which prevent this set of binary input combinations from

merging in the original binary cover are found for each implicant.

(5) Given the set of inputs for each implicant, the edge weights in the graph are modified.

Essentially, a weight directly proportional to the number of merged input combinations

in the implicant and inversely proportional to the number of inputs preventing this

merge from occurring in the original binary cover is added to the edge between each

pair of inputs in the set.

(6) Given the graph with weighted edges, a set of vertices (inputs) of cardinality Ns with the

maximum sum of weights of interconnecting edges is found. This set of inputs is the

selected set

A more formal description of the selection algorithm follows. A binary cover Pn xk is

given. (If the cover is minimal all L = \P\ cubes c,- = (ciX, c&, • • • cin) are distinct). A new

function, PrXxk is constructed, whose input is a single multiple-valued variable, mm. Each

cube gj e P/Xxk corresponds to a value of the variable m,lpl

g,{j) = lifj = ielseO, l<j<L

Thus, a function with n binary-valued inputs, P„xk is converted into a function with a single

multiple-valued input, P/Xxk. P/Xxkis then minimized to produce P"x xh

I will illustrate this transformation with an example. A binary cover P$xi and the

resulting functions P'xx 3 and P"x x3 are shown in Figure 5.4.

We have a graph G(V, E, W(E)) where V= {v;: v,- o jc,} are the vertices in the graph.

xs, i = 1 .. n are the n inputs to the PLA. The edges in graph E - {v,-, vj}^i, j i>j ; the graph

is complete and undirected. Initially the weights of the edges W(E) = 0.
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P 3 x 3 P' 1x 3 P" 1x 3

100 001 1000 001 0100 010

010 010 v 0100 010 v 0011 100

101 100 ~*. 0010 100 ' 1001 001
Oil 101 0001 101

Fig. 5.4 Selection

The pseudo-code below illustrates the calculation of weights of the edges in the graph

W(E).

calculate-edge-weightsO
{

foreach ( cube g{ e P"x xk ) {
Ci=[Cj:g,<j)=l},l^i^\P\ ;
Xi = {xi:3 cj, ck e C{, cjt * cki] ;

IC,I

}
}

W - 1) *
foreach (x, y e Xiy x * y ) {

w(x, y) - w(x, y) + wt;

C/is the set of input combinations in the original binary cover which merge to form the impli

cant m; in the minimized multiple-valued cover. X{ is the set of input combinations which

prevent this merging in the original cover. For example, two binary implicants c„ c} e Pn xk

which differ in two (ormore) bit positions, r and s, i.e. c,> * cjr and c^ * c^ cannot merge due
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to inputs xr and xs. If any input takes on different values in the cubes in Ch it is included in

Xh The weight of the edge between each pair of inputs in X-t is incremented by w,-.

The rationale for the calculation of w(- is as follows. If the inputs in the set X{ are

selected, then C,- cubes in the binary cover will merge into a single multiple-valued implicant

Since the goal is maximum cardinality decrease the edges between these inputs are weighted

correspondingly. However, since one typically wants to select a fixed number of inputs, the

cardinality of X,- is also a factor. The weight is inversely proportional to the number of inputs

in X;. A single input cannot prevent a merging of cubes by itself in a binary cover, so the

cardinality of IX,I > 2. What one requires is the largest possible reduction in the cardinality of

the cover (given by \C,] for each implicant) selecting the smallest number of inputs (given by

TO.

Given the graph G{V, E, W(E)) a set of Ns vertices, ST = [vk] (inputs) are selected such

that:

N, N,

2 Z ^[i], S{J]) S[i], S\J\ 6 ST
i'=l j=i+l

is maximized.

This selection of inputs is performed by exhaustive search. Typically, the number of

inputs, Nh to the logic functions encountered in practice, is £ 100. The number of inputs

N
selected, Af„ varies between 2-8. An exhaustive search algorithm has a complexity of 0(N{ ')

and is feasible. A heuristic polynomial-time algorithm that will iteratively select N*s (< Ns)

inputs at a time until Ns inputs are selected can be used if Ns is large.

This selection algorithm has been experimentally shown to be a good heuristic for a

large class of logic functions (see Section 5.5). In addition, I can prove that the algorithm

produces an optimal selection for a certain class of functions.

Theorem 5.1: Given an optimal binary cover, Pnxkt the cardinality of the optimal multiple-

valued cover produced by replacing all distinct combinations of any / < k inputs by a single



\P\

2h
multiple-valued variable is £ ~px-
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Proof (By contradiction): Let us assume that the multiple-valued cover has a cardinality

\P\
M< ——. It is true that any single-output function with r inputs can be represented by a

cover of cardinality £ 2r~1. Therefore, each of the implicants of the multiple-valued cover can

at most represent 2M binary implicants. This means that the multiple-valued cover can be

transformed into an equivalent binary cover of cardinality Mx 2M < \P\, implying that the

original binary cover was non-optimal. Q.E.D.

Theorem 52: Given a set of functions, F, each with n input variables X = xx,x2,.. xn of the

form Fi = (xxQx2 .. ®Xk) . GiX(xM,.. xn) + (xx®x2 .. 9x*). Ga(xM,.. xn) 3 Gix p> Ga - 4> *

z with it > 2, the optimal selection for £ inputs is xx,.. xk and will be produced by the selec

tion algorithm.

Proof: It is easy to see that selecting xx,.. xk will result in a multiple-valued cover cardinality

IF1 ———————, since \xx®x2 .. ®xt\ = bc^^ .. ®xk\ - 2*"1. This is the maximum possible for any selec

tion of k inputs by Theorem 5.2. We now have to prove that the graph, G, constructed by the

selection algorithm has the maximum sum of weights of edges between inputs xx,.. xk for any

k out the n inputs to F. Call the multiple-valued cover produced by selecting all x-t e X, Fm.

\F\Obviously LFJ £ —j^j-. Each of the implicants in Fm have been prevented from forming m

the original binary cover by every pair of inputs xiy xj3 1 £ i, j £k, and possibly other pairs

of inputs Xy,x.3y>korz>k. Therefore the clique, CeG, comprising the inputs xx, .. xk

has each of its edges incremented by w{ (in the inner loop of function calculate-edge-

weightsO) for every implicant g; 6 Fm. Weights of other edges in graph not in C may also be

incremented by wh but in every iteration of the outer loop in function calculate-edge-

weightsO, 2 2 w(*fl' xb) is incremented by k x k-l x wt. We immediately have:
a=l b=a+l



k k k k

2 2 "(*«> **) ^ 2 2 h<jM, *M) * *M, s[r] e X
fl=l fc=a+l q=l r=q+l

Q.E.D.
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5.5 Encoding

The selection process identifies a. subset of inputs, ST. The different binary combinations of

the input variables in ST are now re-encoded to minimize the number of product terms in the

original PLA, Pnxk.

First the input cubes, c{ e Pnxh are separated to form («,-, si), where u,- represents that

part of Cj corresponding to the unselected binary-valued inputs, and S; represents the part of c;

corresponding to the selected binary-valued inputs, ST. The cubes c{ are made disjoint in s{,

i.e.

Si p| Sj = <|> if Si # sj

to produce c',- e P*n xh Note that \P*\ > \P\.

Note that a trivial transformation \P\ -» IF'I exists, where each of die j,'s is a minterm.

However, this may result in a very large \P'\ > l/»l, (IP'I S 2IWI x IPI), decreasing computational

efficiency (1571 is the number of selected inputs). Thus, one would like to find a transforma

tion which mmimizes LP'I while satisfying the $,- disjointness constraint A simple strategy of

splitting a S( cube only if it intersects another cube sj suffices to keep IP'I from increasing

exponentially with IS/1. The worst-case complexity is, however, exponential.

A description of the algorithms used in re-encoding follows. Let D be a set of nodes

where each node corresponds to a distinct s{. D is represented by a multiple-valued variable

with \D\ values, mm, each value corresponding to a node inD. Replacing the S{ e c',- e Tyn xk

with a multiple-valued variable, mm, a new cover Q(„_is/i+i) xkis obtained, which has n-IS/1

binary-valued inputs and a single multiple-valued input

Q is minimized using a multiple-valued logic minimizer (e.g. ESPRESSO-MV [23] ) to

produce Q\n-um+i) x*•
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Define a code matrix Ae {0, 1} bwhose rows are the new encodings of the nodes in

D. Define a constraint matrix Mce {0, 1}lg1 *lflf

MJ(i,J) = 1 if m',</) e g' = 1 eto 0

In [26] it was shown that if the different values of m (each node in D) were given

binary codes A, of some length A^, satisfying the constraint relation imposed by Ma a ininim-

ized binary cover PF^n^SMf^xk, with n-iS\+Nb binary-valued inputs, would be such that

\PF\ £ 10.

Each row in Me specifies a constraint on the binary codes, A. Given a row, i, in M„ Ni

is the group of nodes for which Mc(iJ) = 1. The groupface for N: is the smallest cube con

taining the codes of each node in Nh The constraint relation imposedis that each group face,

7V; is disjoint (does not intersect) any of the codes of all other nodes in D not in TV; [26].

The constrained encoding problem is to find a matrix A with the minimum number of

columns Nb which satisfies the constraint matrix M^ The number of columns in A directly

affects the areas of the resulting PLAs after decomposition.

It was shown in [26] that:

(1) All duplicate rows in Mc may be discarded.

(2) All rows with a single 1 or all l's can be discarded.

(3) Any row which is the bit-wise intersection of two or more rows can be discarded.

(4) Mj, the transpose ofMa satisfies the constraint relation, Mc.

The approach used to solving the constrained encoding problem is different from [26]

and [28]. In [26], a row-based encoding scheme has been proposed. This encoding scheme

constructs A row by row. This row-based encoding scheme fails to be effective for large

examples [28]. A column-based encoding scheme, which constructs A column by column was

proposed in [28]. Here, the constraint matrix Me is compacted using relation (3) above and A

is constructed incrementally as Af/. If at any point a constraint is already satisfied byA, then
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it is discarded. This is possible even if all relationships using relation (3) have been

exploited. I prove a result stronger than relation (3) here and formulate the constraint com

paction problem as an constraint ordering problem.

Theorem 53: Given a constraint matrix, M„ A = Mj satisfies all constraints which are

obtained by bitwise-intersecting two or more rows in Me or their (bitwise) complements in any

combination.

Proof: Construct a constraint, C, which is the bitwise intersection of the rows or complement

of rows in Mc in any combination. We assume without loss of generality that C is constructed

using all the rows in Afe in true or complemented form. (If C is constracted using a subset of

rows, then we can identify a matrix Afc corresponding to this- subset of rows. We then have

to prove that A' = NfJ satisfies C, where C has been constructed using all the rows of Afc).

A bit vector B specifies if C has been constructed using the true or complemented form of

each row in Afc. That is, B[i] = 1 if row Mc(i) has been used in true from and B[i] - 0 if Afc(0

has been used in complemented form. Examining A, it is easy to see that the group face

corresponding to the group of nodes specified by C is F = B. The codes of nodes not in the

group given by C differ from F in at least one bit position. If the code of a node, i, not in the

group, was the same as F then B[i] would equal 1, and a contradiction exists. Since the codes

of nodes not in the group differ from F, A satisfies C. Q.E.D.

As indicated by Theorem 5.3, given a set of n constraints, 3""1 (corresponding to true,

complemented and unused possibilities for each constraint) possible constraints may exist

which can be derived from these n constraints. Thus, given a constraint matrix Mc, it is quite

possible that a large fraction of the rows of Mc can be derived from a small fraction of

remaining rows. An incremental, column-based encoding scheme like in [28] which only

checks for relationships given by (3) will produce a non-optimal solution if the constraints

which can be derived from other constraints are satisfied first.
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For small n, the relationships between all constraints can be found. However, checking

for relationships given by Theorem 5.3 between all constraints is not possible for large n.

Constraint ordering is a viable alternative. Given a particular ordering of rows in Mc A is

constracted incrementally, column by column, as in [28]. Constraints which are already

satisfied are discarded. The cost of a particular ordering is the number of columns, Af6, in A.

Then the ordering of rows in Mc is changed and A is re-constructed. It is possible that a

different value for N*b corresponds to the new A. The goal is find an ordering which minim

izes the number of encoding bits required, N't,.

A variety of search techniques can be used to find an optimal ordering which minimizes

/VV I have applied simulated annealing and a constructive heuristic algorithm to solve this

problem. I have found that the constructive heuristic algorithm produces results close to the

results produced by the iterative simulated-annealing-based algorithm, but much more quickly.

For small examples, where the optimal solution is known, this algorithm, which is described

below has found the optimal ordering (the ordering which minimizes the number of encoding

bits, AQ.

The algorithm first determines the set of required constraints, which cannot be derived

from all the remaining constraints. For each constraint an encoding based on all the remain

ing constraints is constructed and a check is made to see if the encoding satisfies the con

straint The complexity of encoding construction is 0(Nc*Nn) where Nc is the number of con

straints and Nn the number of nodes to be encoded. The complexity of checking if an encod

ing satisfies a constraint is 0(Nn*Ni), where Nn is as before and Nt is the length the encoding.

A column-based encoding which uses each of the required constraints is constructed.

All remaining constraints satisfied by this encoding are discarded. If any constraints remain, a

constraint is selected which when added to the required constraint set produces an encoding

which satisfies a maximum number of unsatisfied constraints. The process is repeated until all

constraints have been satisfied. The number of encoding bits required is equal to the number
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of required constraints.

Thus, A has been determined by this procedure given a Q'. A PLAPF^n^sMTAxk such

that \PF\ = IQ1 is produced. A second PLA PSm x*r6, whose cubes psf are formed from the s{

corresponding to the nodes in D, and A is the encoding PLA. The input part of ps{ is the cube

Si and the output part is the z-th row of A. These two PLA's perform the function of the origi

nal PLA, Pnxk.

find-optimal-ordering:
{

foreach (row / in Mc) {
delete row i from Mc;
if (A' = Af/ does not satisfy Afc)

JJo^oU^");
}
Me = Me - Rq ;

R = Rq ;
while (Me is not empty) {

foreach ( row / in Me ) [
if (A satisfies Mc(i))

delete row i from A/e ;
}
C = select-constraint( A, Afc);
delete the row corresponding to C from Afc ;
R=R\jC;
A=RT;

)
}



select-constraint( A0, A/0):

{

foreach ( row / in Af0 ) {
A =A0 ;
append column M0(T)T toA ;
Af is obtained by deleting row i from Af0 ;
num = 0 ;
foreach ( row j in M ) {

if (A satisfies M(j))
. num —num + 1 ;

1
select b, the row with maximum num ;

• )
return( Mj(b));

}
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5.6 Results

Decomposition results obtained on a large set of benchmark PLAs are given in Table 5.1.

The PLAs were all optimized using the logic minimizer ESPRESSO before decomposition. In

the table, the number of inputs to the original PLA (#inp), the number of outputs (#out) and

the number of product terms (#prod) after two-level minimization, the area of the PLA (orig.

area) are given. The number of selected inputs in decomposition (# seL inputs), the areas of

the two resulting PLAs (area PLA-I and area PLA-II), the ratio of areas after and before

decomposition (ratio) and the CPU time required for decomposition on a VAX 11/8800 are

given. The numbers under the ratio column are calculated by dividing the total area of the

two resulting PLAs by the area of the original PLA. As can be seen, large reductions in areas

have been obtained (some numbers are as low as 0.2). A simple timing analysis indicated that

the delays of the decomposed PLA pair were smaller than those of the original PLA for all

the examples. The CPU times required for decomposition are quite reasonable. The examples

x7dn and seq are very large and hence require significantly more time than the other exam

ples. A large fraction of the CPU time is expended by multiple-valued minimization during

/
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the selection and encoding phases.

For standard cell or gate-array implementations of logic, a good estimate of area is the

number of literals (transistors) in the logic. The primary goal of the decomposition algorithms

is to try to minimize the number of product terms in the resulting PLAs rather than the

EXAMPLE #inp #out #prod orig.
area

#sel.

inputs
area

PLA-I

area

PLA-n

ratio CPU

time

5xpl 7 10 65 1560 4 255 884 0.73 5.0

9sym 9 1 87 1653 4 240 700 0.57 5.0

Z5xpl 7 10 63 1512 4 272 918 0.78 5.3

add6 12 7 355 11005 4. 121 3973 0.37 21.4

alu3 10 8 66 1848 4 180 1326 0.81 5.3

clpl 11 5 20 540 4 30 345 0.69 1.2

dist 8 5 121 2541 2 1479 860 0.92 6.8

duke2 22 29 86 6278 4 44 6468 1.03 12.3

f51m 8 8 76 1824 4 304 1178 0.81 3.8

in2 19 10 136 6528 4 91 6272 0.97 16.7

in4 32 20 212 17808 4 196 13904 0.79 95.7

in7 26 10 54 3348 4 60 3162 0.96 8.0

maxl28 7 22 82 2952 3 104 2508 0.88 22.3

misg 56 23 69 9315 4 154 7923 0.86 12.5

mp2d 14 14 31 1302 4 195 924 0.86 7.9

nxcplal 9 23 41 1681 3 98 1568 0.99 5.4

radd 8 5 75 1575 4 121 475 0.38 1.5

rd53 5 3 31 403 3 63 156 0.54 0.2

rd73 7 3 127 2159 4 224 459 0.31 1.8

rd84 8 4 255 5100 4 192 848 0.20 4.1

root 8 5 57 1197 4 210 756 0.80 5.0

sao2 10 4 58 1392 4 224 1088 0.94 8.7

seq 41 35 334 39078 4 1332 27846 0.74 546.1

sqr6 6 12 49 1176 2 21 1248 1.08 7.6

symlO 10 1 210 4410 4 195 1311 0.34 9.2

vg2 25 8 110 6380 4 154 4928 0.79 10.7

xldn 27 6 110 6600 4 99 3696 0.58 5.5

x2dn 82 56 104 22880 4 176 20520 0.90 52.6

x7dn 66 15 539 79233 8 1184 35045 0.45 944.2

z4ml 7 4 59 1062 3 56 384 0.41 0.8

Table5.1 J »LA Decompositioii Results



EXAMPLE Original PLA Decomposed
Initial Final

#lit #lit

PLA

CPU

time

Initial

#lit

Final

#lit

CPU

time

5xpl 347 152 76.4 165 104 18.5

9sym 609 201 403.6 229 122 106.5

Z5xpl 358 165 85.4 163 108 23.0

add6 2551 81 1345.7 155 80 16.3

alu3 347 95 32.5 135 95 33.6

clpl 75 19 1.9 29 19 1.0

countl 394 161 173.6 177 140 41.7

dist 874 402 609.9 507 401 507.4

duke2 993 505 25.5 962 491 26.4

51m 395 109 65.9 176 101 22.8

radd 415 49 29.8 63 45 6.2

rd53 175 53 12.3 62 47 6.8

rd73 903 94 182.4 182 104 31.1

rd84 2451 126 917.7 188 127 48.7

root 383 159 110.4 194 137 76.5

sao2 496 154 88.5 221 173 56.3

sqr6 266 142 36.3 179 132 37.5

symlO 1470 302 1289.3 246 176 164.4

vg2 914 92 79.8 281 111 12.3

xldn 1097 108 85.2 182 108 18.6

x2dn 564 218 326.8 297 218 67.3

z4ml 311 39 20.4 53 39 5.6

Table 5.2 Multi-level Optimization Results
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number of literals. However, the decomposed PLAs serve as an excellent starting point for

multi-level logic optimizers even if targeting toward standard cell or gate-array layout styles

because a large number of good factors are identified during decomposition. This is illustrated

in Table 5.2. For each example, the multi-level logic optimizer, MIS [6] was made to execute

a standard optimization script with different starting points, namely, the original PLA and the

two decomposed PLAs. For a set of examples run with the two different starting points, the

number of Uterals before and after optimization and the CPU time required for optimization

are given in Table 5.2. As can be seen better results were achieved in significantly faster time
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using the decomposed PLA pair rather than the original PLA.

There are two examples (duke2 and sqr6 ) where the total area of decomposed PLA

pair is larger than the area of original PLA. This was because in both cases the number of

encoding bits required to satisfy the constraints produced after multiple-valued minimization

was much larger than the number of selected inputs. Although a respectable decrease in the

number of product terms was achieved the increase in the number of inputs resulted in the

area of the re-encoded PLA (PLA-II) becoming larger than the original, However, the re-

encoded PLA has fewer literals (transistors) than the original PLA. In fact, if both the origi

nal PLA and the decomposed PLA are compacted using a folding program like GENIE [86],

the area of the decomposed PLA pair becomes smaller than the original PLA (since the

decomposed PLAs are sparser than the original). Also, even for these two examples, the

results obtained by MIS using the decomposed PLA pair as the starting point were better than

starting with the original PLA. Also, in both cases, the decomposed implementation is faster

than the original PLA.

5.7 Conclusions

Multi-level implementations of logic can be substantially smaller and faster than correspond

ing two-level i.e. Programmable Logic Array (PLA) implementations. Work in the area of

multi-level logic optimization has been concentrated primarily in the development of algebraic

techniques for factoring and decomposing logic equations. In this paper, algorithms for

Boolean decomposition have been presented, which decompose a PLA into a set of smaller,

interconnected PLAs such that the overall area of the resulting logic network, deemed to be

the sum of the areas of the constituent PLAs, is minimized.

These algorithms have produced excellent results over a wide range of examples. This

approach exploits the layout compactness of PLA structures to produce small, fast multi-level

logic implementations. Large PLAs have been reduced by factors of 2-3 in size and delay.
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CHAPTER 6

Verification of Logic Circuits

6.1 Introduction

Logic verification refers to the Boolean equivalence check of two logic designs. The designs

in question may be purely combinational logic or they may be sequential finite state machines.

These designs may be described at different levels of abstraction - a combinational logic

design may be represented by a schematic gate-level description or by a Boolean Truth Table;

a sequential circuit may be described by a State Transition Graph, as an interconnection of

gates and flip-flops or in a register-transfer (RT) level language (e.g. ISPS [17]).

Verifying the equivalence of logic circuit descriptions at differing levels of abstraction is

an important problem and has many possible applications. For example, after the synthesis of

a logic-level finite automaton from a higherlevel register-transfer description, it is essential to

be able to verify that the optimization tools during synthesis have not introduced any design

errors in the circuit and that the synthesized description and the original specification actually

represent the same machine.

One approach to the general verification problem is exhaustive simulation. Unfor

tunately, the number of simulations required grows exponentially with the number of inputs

for even a purely combinational logic circuit, and grows even faster for sequential circuits

since all possible input vector sequences have to be simulated to prove equivalence. A

different approach is to useformal verification techniques which are input pattern independent

and can guarantee functional equivalence.

Many formal verification approaches have been taken to prove/disprove the equivalence

of two combinational logic circuits, at the gate level and at differing levels [89] [30] [90] [92]
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[122] [123] [124]. Some of these approaches, for example, [30] and [90] transform the

verification problem into a testing problem. A package of programs called PROTEUS [29]

incorporates several efficient algorithms for verifying combinational logic circuits. In particu

lar, an algorithm called LOVER [29] in PROTEUS has successfully been used on combina

tional circuits with a large number of gates.

Boolean equivalence checks can also be performed at the switch level [124] [123].

Using symbolic simulation and heuristically efficient Boolean function manipulation algo

rithms, the program MOSSYM [124] performs equivalence checks between combinational

logic descriptions at the switch level against a specification of Boolean equations.

Sequential circuit verification is a considerably more difficult problem, in the general

case when there is no correspondence between the latches (states) of the two circuits4. The

approaches taken to solve the sequential verification problem include the use of temporal logic

[125] and PROLOG [126]. The use of temporal logic helps for asynchronous circuits [127]

but is not necessary in the synchronous circuit case. Algorithms have been proposed for for

mally verifying the equivalence of two gate-level sequential circuit descriptions with differing

numbers of latches using symbolic Boolean manipulation [128]. However because of the

intractability of the problem, most of the approaches taken so far have been restricted to small

to medium sized circuits with a small amount of memory elements (4-6 latches).

Algorithms for formally verifying the equivalence of two sequential machines described

at the register-transfer, State Table or logic level have been developed as part of this research

and have been incorporated in the verification subsystem of our behavioral synthesis system.

By exploiting the don't care information available at the various levels of abstraction (e.g.

invalid input and output sequences), the complexity of the verification problem has been

reduced significantly and the equivalence of finite automata with more than a thousand gates

and 256 states has been successfully verified in less than 10 CPU minutes on a VAX 11/8650

4 In the special case of a one-to-one correspondence between the two circuits, the problem reduces to a combi
national circuit verification problem:
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[31].

Given two logic-level finite automata and a reset state/transfer sequence for each

machine, a two-phase enumeration-simulation verification algorithm efficient both in terms of

memory and CPU time usage has been developed. I have used this approach for verifying the

equivalence of logic finite automata with 17 latches and more than 2500 valid states [31].

This chapter is organized as follows - in Section 6.2, the formal definitions for the

equivalence of two combinational or sequential logic designs are given. Combinational logic

verification algorithms are briefly reviewed in Section 6.3. Algorithms developed for verify

ing sequential machines across differing levels of abstraction are presented in Section 6.4.

62 Definitions of Equivalence

62.1 Basic Definitions

In this section, a framework of concise definitions is provided for use in the remainder of the

chapter. In the definitions, the objectbeing defined appears in bold type.

Let B = {0,1}, y = {0,1,2}. A logic (Boolean, switching) function ff in n input vari

ables, xx^c2,.jcn, and m output variables, yx,y2,..ym, is a function

ff.Bn -» Ym

where x = [xx,.jc„] e B" is the input and y = [yx,..yj e Y™ is the output of ff. Bn is the

Boolean n-space associated with the functionff. Note that in addition to the usual values of 0

and 1, the outputs y,- may also take the don't care value 2 (or -). Such functions are called

incompletely specified logic functions. A completely specified function / is a logic function

taking values in {0,1 \m, i.e., all the values of the input map into 0 or 1 for all the components

of/. For each component of an incompletely specified logic function ff, ff{,i = l,..m, one can

define: the ON-set, X?1* (also denoted by FF?N(x) ) c Bn, the set of input values x such that

fffc) = 1, the OFF-set, Xi0FF (also denoted by FFi0FF(x)), the set of values such that fft{x) = 0

and the don't care setXf30, the set of values such that ff,{x) = 2. A logic function with m=l
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is called a single-output function, while m>l, it is called a multiple-output function.

The complement of a completely specified logic function /, called /, is another com

pletely specified logic function, such that its components, fx,..fm, have their ON-sets equal to

the OFF-sets of the corresponding components of /. The intersection of two completely

specified logic functions, / p^ g, is defined to be the completely specified logic function h,

whose components hiy have ON-sets equal to the intersection of the ON-sets of the

corresponding components of/ and g. The difference between two completely specified logic

functions, h-f-g, is a completely specified logic function h given by the intersection of/

with the complement of g. The ON-sets of the components of A are the elements of the ON-

sets of the corresponding components of / that are not in the ON-set of the corresponding

components of g. The union of two completely specified logic functions is a completely

specified logic function h=f\^jg, such that the ON-sets of the components of h, hit are the

union of the ON-sets of/- and g,-.

A completely specified logic function/is a tautology, written/s 1, if the OFF-sets of

all its components are empty. In other words, the outputs off are 1 for all inputs. For exam

ple, for any completely specified function/,/^/is a tautology.

A cube in a Boolean n-space associated with a logic function, /, can be specified by its

vertices and by an index indicating to which components of/it belongs. An input cube c is

specified by a row vector c = [cx,..cj where each input variable takes on one of three values

0, 1 or 2 (or -). A 2 in the cube is a don't care input, which means that the input can take

the values of either 0 or t. For example, the cube 002 is equal to the union of the cubes 001

and 000. A cube with only 0 and 1 values of inputs is called a minterm. A cube, c, is

defined to cover (contain) another cube, d, if each entry of c is equal to the corresponding
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entry of d or is equal to 2.

6.2.2 Combinational Logic Design Equivalence

Combinational logic designs may be represented by two-level or multi-level logic functions or

by gate-level circuits.

Two completely specified (single output) logic functions, / and g, are Boolean

equivalent if and only if

/=1 «* * = 1. (6.1)

Given two incompletely specified logic functions /and g, their ON and OFF-sets and the don't

care set F°c(x) (FDC(x) could represent input combinations that cannot occur), / and g are

Boolean equivalent under F°c(;c) if and only if

(F°N(x) n G0FF(x)) U (F°FF(x) O G°N(*)) <= ^C(*)- (6-2)
Given two functions F and G and a Boolean function D representing the don't care inputs

(e.g. inputs which cannot occur or for which equivalence is not required) checking the condi

tion

D(x) U (F°N(x) n G°N(x)) U (F°FF(x) n G°FFix)) = 1 (6.3)

amounts to checking F and G for equivalence.

Given a gate-level circuit Y, every input combination evaluates the circuit to some

known value, either a 0 or a 1. So, Yrepresents a completely specified logic function.

The Boolean equivalence of two gate-level circuits A and B implementing /, given that
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F°c(x) = <(), can be verified by checking that A0N = B0N orA0FF = B0FF.

623 Sequential Circuit Equivalence

A finite automaton (FA, finite state machine, FSM) consists of a finite set of states and a set

of transitions from state.to state that occur on input symbols chosen from an alphabet I. For

each input symbol there is exactly one transition out of each state (possibly back to the state

itself). One state, usually denoted qQ, is the initial state, from which the automaton starts.

Some states are designated as final or accepting states.

A deterministic finite automaton (DFA) is formally denoted by a five-tuple

G2,Z,5,<7r>F)» where Q is a finite set of states, Z is a finite input alphabet, 5 is the

transition function mapping from QX Z to Q, q0 is the initial state and F eg consists of

states designated as final or accepting states. That is, h\q^t) is a state for each state q and

input symbol a.

A directed graph, called a State Transition Graph (STG) or State Transition Diagram,

is associated with an DFA. A State Transition Graph was defined in Chapter 4, Section 4.2.

The State Transition Graph of the DFA may also be equivalently represented by a State Tran

sition Table.

The DFA accepts a string x if the sequence of transitions corresponding to the symbols

of x leads from the start state to a final or accepting state. More formally, a string x is said to

be accepted by a finite automaton M = (QX&qoJF) if 8(q0j:) = p for some p e F. The

language accepted by M denoted L(A/), is the set [xlbXqoyX) gF],

Finite automata with multiple outputs fall into two categories. The output is associated

with the state in a Moore machine, and with the transition in a Mealy machine. A Moore

machine is a six-tuple (QX^,,bik,q0 ), where Q£,§ and q0 are as in the DFA. A is the output

alphabet and X is a mapping from Q to A giving the output associated with each state.
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A Mealy machine is also a six-tuple (QXAAKqo )> where all is as in the Moore

machine except that Xmaps (Q X I) to A giving the output associated with each transition.

Furthermore, a finite automaton may be described at the register-transfer (RT) or logic

levels. In the former, the transitions occurring due to different input symbols (i.e. the X and 5

mappings) are specified in a high-level programming language-like description using control

constructs. In the latter, the machine is described by an interconnection of logic gates and

flip-flops. The logic gates implement the 5 and X mapping functions and the flip-flops

(memory elements) store the state of the machine q e Q. That is, the state of the machine is

specified by the binary values stored in the flip-flops.

Here, only synchronous finite state machines are considered. Synchronous finite state

machines have the property that the inputs to the machine are sampled only at integral multi

ples of a duration of time called a clockperiod. The outputs of the machine also change only

at integral multiples of a clock period. It is possible to define the equivalence of sequential

circuits with different or same clock periods.

Each sequential circuit, C, considered here has the following properties. The circuit

may be described at the register-transfer, State Transition Graph (STG) or logic level. C is

assumed to be completely specified, i.e. every transition from every possible state is specified.

(1) C has exactly one output

(2) If C is implemented by logic gates and flip-flops, it will be assumed mat logic gates are

delayless and that latches have unit delays (one clock cycle).

(3) All primary inputs arrive simultaneously, after p(C) cycles, for some integer p(C). The

input lines may change values only at time kp(Q for k - 1, 2 ... Thus the circuit is

when-determinate [129].

If C is an m-input circuit, w a (possibly infinite) binary sequence, z an integer, and q0 a

state of C, then C(w,z,q0) denotes the output of C after z cycles, starting from state q0, where

the first m bits of w are input to C initially, followed by the second m bits of w, where in
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general bits (r-l)m+l through rm of w constitute the rth set of inputs to C.

We are given sequential circuits, Cx and C2 along with p(Cx) and p(C£ and a start state

(an initial assignment to the latches for a logic-level circuit, or an identified state in the given

STG), qx and q2 respectively.

The equivalence of Cx and C2 amounts to checking the condition

Cx(w, r p(d), qx) = C2(w, r p&J, <&) (6.4)

for all infinite binary sequences w, for all integers r>l.

Equation 6.4 represents a very general form of equivalence checking between sequential

circuits with different input sampling rates, p(C). hi fact, one can check a combinational

logic circuit for equivalence with a sequential circuit One circuit may be a 4-bit parallel

combinational adder and the other a serial single-bit sequential implementation. In this case,

p(Cx) = 1 and p(C£ = 4.

62A Segmentation: Single-Output Cone Extraction

A decomposition method widely adopted in performing logic verification checks for multi-

output circuits is segmentation [29]. Segmentation decomposes a multi-output circuit into

many single output segments called cone circuits. Cone circuits are verified separately. In the

sequel, unless otherwise specified, all circuits are assumed to be cone circuits.

6.3 Combinational Logic Verification Methods

In this section, approaches to verifying combinational logic designs are reviewed. Four

different kinds of methods are described in the following subsections - verification by exhaus

tive simulation, verification using test generation techniques, verification using symbolic simu

lation and verification using enumeration-simulation techniques. Comparisons between some

of these methods have been drawn using the logic verification framework called PROTEUS
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and can be found in [29].

6.3.1 Verification by Exhaustive Simulation

Verification using exhaustive simulation entails applying all possible input combinations to the

circuits, simulating them and checking to see if the output responses are identical. This can

be carried out by a hardware accelerator or a software simulator.

Exhaustive simulation is impractical in most cases. Given a twenty input circuit the

number of binary patterns to be simulated is over a million. Hardware accelerators can allevi

ate the problem to a certain extent, but more intelligent verification techniques are required for

large circuits.

632 Verification using Testing Methods

The verification problem can be formulated as a redundancy identification problem as shown

in Figure 6.1. The two circuits which are to be checked for equivalence A and B are con

nected by an exclusive-nor gate. Establishing the fact that F-stuck-at-1 is a redundant fault is

equivalent to verifying the two designs for equivalence. If a test can be found to detect F-

stuck-at-1 the test vector is an input combination which differentiates the two circuits.

Pis

Y i

Circuit A\) VL
i

r-

Circuit B
1 //.

Ys

Fig. 6.1 Logic Verification via Redundancy Identification
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Test pattem generation algorithms like the D-algorithm [130] and PODEM [131] can be

used for identifying redundant faults in circuits and thus can be used to perform equivalence

checks on logic circuits. VERIFY [90], a verification algorithm based on the D-algorithm

finds counter-examples by performing line justification. Another algorithm called POVER

[29] is based on the PODEM test generation algorithm. POVER is described in the next sec

tion.

63.2.1 Justification using PODEM - POVER

Given the composite circuit which has been constructed as shown in Figure 6.1, the backtrace

algorithm of PODEM [131] can be used to perform line justification. In PODEM, given an

output signal and a desired value on the output (F = 0), a path is traced from the signal to the

primary inputs (PI) to obtain a PI assignment This PI assignment is simulated to see if the

desired value of the signal has been set up. If so, the procedure terminates. If the opposite

value has been set, an opposite value is assigned to the PI and this value is propagated. If the

signal remains unspecified, path tracing is repeated. The above procedure continues until

either a successful PI assignment has been found (a counter-example has been found and the

circuits are not equivalent) or all the PI assignments have been exhausted (the circuits are

equivalent).

An efficient justification algorithm tries to justify an output value by setting a nunimum

subset of input values. In PODEM, justification of input combinations which are cubes rather

than minterms is attempted in order to cover a large portion of the input space. For example,
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justification could be attempted for an input combination, 1-1, representing four minterms.

6.3.3 Symbolic Verification

Algorithms for the symbolic manipulation of Boolean functions using a graphical representa

tion have been proposed in [123] [124]. Verification is performed by extracting the Boolean

functions from switch or gate-level circuits, representing them as directed, acyclic graphs and

performing Boolean operations like and, or and complement to check for equivalence.

The data structure used resembles the binary decision diagram proposed by Lee [132]

and Akers [133]. However, further restrictions are placed on the ordering of decision vari

ables in the vertices. These restrictions enable the development of algorithms for manipulat

ing the representations in a more efficient manner. The representation is in terms of reduced

graphs and is a canonical form, i.e. every function has a unique representation.

The time complexities of the Boolean manipulation algorithms proposed in [124] are

bounded by the product of the graph sizes for the functions being operated on. Complement

ing a function requires time proportional to the size of the function graph, while combining

two functions with a binary operation (e.g. intersection, subtraction) requires at most time pro

portional to the product of the graph sizes. Since every function has a unique representation,

checking for equivalence simply involves testing whether the two graphs match exactly. The

identity check is performed by a graph isomorphism algorithm which requires time at most

proportional to the sum of the two graph sizes.

The time required to validate logic designs is directly related to the size and number of

the Boolean equations to be checked for equivalence. Verifying unstructured logic designs for

equivalence is comparatively harder in this approach than verifying structured logic designs

like ALUs. This is because the ALU can be specified by a compact set of Boolean equations

(for example, the carry bit of an ALU can be compactly represented as a chain of exclusive-

or's) whereas given a large unstructured control logic block, there may exist no compact

Boolean representation for it It then becomes very difficult to extract the Boolean functions
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the logic block implements via symbolic simulation. The logic in a multiplier is much less

structured than an ALU and has no compact Boolean representation. Hence, the multipUer is

much more difficult to verify using symbolic simulation.

63.4 The LOVER Approach

LOVER (LOgic VERification) is an enumeration-simulation approach first proposed in [29]

and is part of the PROTEUS system.

Let the two circuits to be checked for equivalence be A and B. First, a cube c from

A0N is generated (enumerated) and then simulated on B to check if B produces a 1 at the out

put. If so, the enumeration process continues to cubes from A0N. If a 0 appears the circuits

are not Boolean equivalent. If an x (unknown) appears c is split (cube-split) into smaller

cubes and re-simulated until a known value appears at the output of B for each of the smaller

cubes. Cube-splitting and simulation are implicitly exhaustive. The process continues until

all the cubes from A0N have been simulated. A similar process fotAOFF is then performed.

This framework does not specify which enumeration and simulation algorithm to use.

The next section illustrates how justification algorithms (like the PODEM justification algo

rithm reviewed in Section 6.2.3.1) can be extended to become enumeration algorithms.

63.4.1 Enumeration as an Extension of Justification

In general, to perform equivalence checks, all values of input combinations that produce a 1

(0) at the output of a circuit A have to be found. That is, A0N (A0FF) has to be found. Of

course, it is of interest to find the most compact representation of A0N (A0FF). If setting a

subset of input values generates a 1 (0) at the output, it can be inferred that the input combi

nations produced by setting the remaining unset inputs in all possible ways will produce a 1

(0) at the output Setting a small subset of input values to justify a 1 (0) to the output results

in determining a large subspace ofAON (A0FF).
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The difference between enumeration and justification is that in enumeration one is not

satisfied when a single assignment to primary inputs which creates a 1 (0) at the output has

been found. All possible input combinations have to be found. To make sure that the entire

space is examined, backtracking at the decision points is performed recursively, beginning

from the deepest decision point, and an alternative assignment is tried. The process continues

until all decision alternatives are examined.

Thus, most justification algorithms, become enumeration algorithms after proper

modification of the termination criterion. Consider a decision node in the decision tree shown

in Figure 6.2(a) that a justification algorithm follows. Three choices are available at node A:

c„ i = 1, 2, 3. cx is chosen and eventually leads to a successful justification denoted by a "T"

(Termination) leaf node. In a justification problem the goal is to reach a successful

justification; the process backtracks and tries the next available choice only when the current

choice of decision does not yield a solution. There is no need for the process to return to the

current decision node when a solution can be found for the present choice. So c2 and c3 are

not tried and the dashed lines reflect this. However, in the enumeration application, where the

aim is to enumerate, implicitly and exhaustively, all the possible justifications, even, when a

successful justification is found, the process still needs to return and try all the remaining

choices. This is illustrated by Figure 6.2(b) where both c2 and c3 are followed regardless of

the outcome of cx.

LOVER incorporates enumeration algorithms based on PODEM backtrace algorithm and
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6.4 Sequential Logic Verification
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6.4.1 Introduction

Much less work has gone into verifying sequential designs as compared to combinational

designs. Sequential circuit verification is a considerably harder problem. If a one-to-one

correspondence can be made between the latches/states of two sequential circuits, then the

problem reduces to one of combinational logic verification, but this is not always possible.

6.4.1.1 Difficulties in Sequential Logic Verification

Verifying the equivalence of two combinational logic designs has been shown to be NP-

complete [134]. This means that there is little hope of finding an algorithm whose running

time is bounded by a polynomial in the number of inputs to the designs. Given two n-input

logic designs, in the worst case, T possible input combinations may have to be verified.

Sequential logic verification is even more difficult A trivial algorithm based on Eq.

6.4, checking all possible input sequences for equivalence, would incur huge CPU time expen

diture. The State Transition Graph of a finite automaton is a more compact representation of

the machine. Checking the equivalence of two machines by checking the equivalence of their

State Transition Graphs is a comparatively easier task than verification by Eq. 6.4. However,

given a description of a machine in the RT or logic levels, the State Transition Graph of the

machine or an equivalent representation has to be extracted from the description. Extraction

from logic-level descriptions can be a very time and memory intensive operation.

NIn fact, given a logic-level sequential circuit with Ns latches and Nr inputs, up to 2 s

possible states can exist for the machine (some of these states may not be reachable from the

given reset state of the machine, in which case they become irrelevant during verification).

Each of these states has 2 l edges fanning out of it, if the edge is represented by a minterm.

The number ofedges in the State Transition Graph ofthe sequential circuit thus is 0( 2 '+ s).

The State Transition Graph of the circuit has to be extracted from the logic description to

check for equivalence. Even if the CPU time required to extract all the edges in the State

Transition Graph (which is required for equivalence check) is affordable, memory
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requirements for storing these edges may be too expensive.

6.4.1.2 The New Approach

The new approach that has been developed involves extracting the State Transition Graphs

(STGs) of the two finite automata - from the register level or the gate level circuit These

two STGs are then checked for equivalence. While extracting the second STG from the

logic-level circuit the use of don't care information from the first STG enables us to reduce

the number of states and the number of edges in the second STG. The number of states of a

finite automaton grows exponentially with the number of latches in the circuit. However, for

large machines, the number of states actually visited given the input sequences is typically a

small fraction of the total number of possible states. This is especially true if a state assign

ment program [26] has been used in the synthesis process which minimizes combinational

logic and may or may not produce a minimum bit encoding of the states. The use of invalid

output sequence information and implicit cube enumeration (Section 6.4.2.2) on the combina

tional logic part of the gate level finite automaton enables us to detect these invalid states

(actually decode the internal state encoding) thereby reducing the complexity in checking

equivalence. Given a large number of states, the number of edges in the STG may be prohi

bitively large. Allowing only valid input sequences enables us to reduce the number of edges

in the STG, again reducing the time required to check for equivalence. As opposed to the

symbolic Boolean manipulation [124] techniques used in [128] and [92] for sequential circuit

verification, modifications of backward justification algorithms are used on the combinational

logic parts to implicitly enumerate the input combinations.

A two-phase enumeration-simulation algorithm to verify the equivalence of two logic-

level finite automata given a reset state/transfer sequence for each machine has been

developed. The State Transition Graph (STG) of one of the logic automata is enumerated

using a generalized PODEM-based [131] enumeration algorithm for sequential circuits. That is,

paths from the reset state in the STG are dynamically enumerated from the first logic automa-
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ton and simulated on the second logic automaton. One of the attractive features of this

approach is that the entire STG (all the edges) of the logic automaton does not have to be

stored, merely a single path in the STG (whose length can be constrained), is stored. This

verification algorithm is efficient both in terms of memory and CPU time usage.

The algorithms used in the extraction of STGs of Deterministic Finite Automata (also

known as DFAs or Moore machines) described at the gate level exploiting don't care informa

tion are described in Section 6.4.2. The extraction of the STG from the register-transfer level

finite automaton and the algorithm used for formally checking the equivalence of two DFAs

represented by STG's are described in Section 6.4.3 & 6.4.4 respectively. The algorithms

described for DFAs (Moore machine) in Section 6.4.2 are extended to Non-deterministic Finite

Automata (NFAs or Mealy machines) machine) in Section 6.4.5. The enumeration-simulation

approach for the verification of two logic-level finite automata with specified reset states is

described in Section 6.4.6. Results for several examples for both approaches are given in Sec

tion 6.4.7.

6.4.2 Extraction of Moore Machine State Graphs

A general model for a Moore machine, given by a six-tuple (QJ,OJ^SL,OL,qQ), at the logic

level is shown in Figure 6.3. The output combinational logic block, OL, performs the Q to O

mapping. The next state logic block, NSL, generates the next state given the present state

and input vector, performing the Q XI to Q mapping and q0 is the initial state. D latches or

flip-flops constitute the memory elements. The two combinational logic blocks will hen

ceforth be referred to as the OL and NSL blocks respectively. The Moore machine is con

structed in such a fashion that the output is only a function of the present state and not a func

tion of the present input vector. For a Moore machine we have

Oi =fi(psx#s2,..#sN) l<>i<N0

nsi = g,{psx,ps2,..j>sNt,ix,i2,..,iN) l£i<>Ns

where psj and nsj denote the present state and next state values respectively and ik denotes the
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Fig. 6.3 General Moore Machine Model
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6.4.2.1 Extraction Task

Given a logic-level description consisting of gates and latches of a machine the goal is to

extract the State Transition Graph of the corresponding DFA. This can be done in a number

of ways.

One method which has been used in this context [128] [92] is symbolic Boolean simula

tion [123] of the combinational logic blocks in the circuit which expresses each output as a

algebraic function (with Boolean operations) of the inputs. Given these algebraic functions,

the edge transitions between two arbitrary states can be expressed as a conjunction of these

functions and possibly their complements. Thus the equations corresponding to /• and g, can

be extracted from the OL and NSL blocks of the machine and the edge transitions can be

expressed as a function of the gi and g; and the output for each state can be found using /•.

Unfortunately, for combinational logic blocks with a large number of gates the size/length of
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the equations becomes prohibitively large and the extraction process becomes inefficient.

Also, before including an edge in the State Transition Graph, it has to be checked for

satisfiability, which is an NP-complete operation [120].

Flattening the logic circuit is another alternative. Flattening involves reducing the com

binational logic blocks into two level (PLA) form. Given a truth table for these combinational

logic blocks the edges in the transition table can easily be found by inspection. Flattening

however may require exponential CPU time and memory requirements and is not viable in

many cases.

A third approach involves using backward justification algorithms to enumerate the ON

and. OFF sets of a logic function. Enumeration has been successfully used in the combina

tional logic verification problem [29]. A method for STG extraction, using an enumeration

algorithm based on the PODEM justification algorithm, while exploiting don't care informa

tion is described in Section 6.4.2.4.

6.4.2.2 Implicit Cube Enumeration using PODEM

By modifying the termination condition of the justification algorithm used in PODEM

(described in Section 6.3.2.1), both the ON-set and OFF-set can be implicitly, but exhaus

tively, enumerated. This is illustrated in Figures 6.4 and 6.5.

An example circuit with 5 inputs and a single output is shown in Figure 6.4. The deci

sion tree used while enumerating the ON-set of the output is shown in Figure 6.5. In general,

two decision trees are required: one for the ON-set verification and the other for the OFF-set.

Each node in the decision tree represents a primary input (PI) assignment. Initially, all

primary inputs are assigned unknown values (corresponding to the node START in the deci

sion tree of Figure 6.5).

Given an initial objective, i.e. to set a primary output line to a 1 or 0, a path is traced

from the objective line backwards to a primary input to obtain a PI assignment. A 1 initial
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objective corresponds to the enumeration of the ON-set and a 0 initial objective corresponds

to the OFF-set enumeration. In this example, the objective was to set the primary output line

to a 1. The first PI assignment was to set input C to 0 (Figure 6.5).

After each new PI assignment, the circuit is simulated using the current set of PI assign

ments to see if the value at the objective line has been set up. If not, the backtrace process

continues. For example in Figure 6.5, after setting input C (to 0) the value of the primary

output is unknown, so the backtrace process continues, selecting and setting input D (to 0).

If the desired value has been achieved, a cube in the corresponding set has been found.

In the example, after D has been set, the desired value of the output (= 1) has been set up.

The cube -00- has been enumerated in the ON-set of the circuit (Figure 6.5). If verifying
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against another circuit, this cube would be simulated on the other circuit.

If the opposite value has been set up, the algorithm backtracks to the last PI assignment,

tries the alternative value and flags the node to indicate that both assignment choices has been

tried. If the alternative has already been tried, the node is removed and the backtrack process

continues until an unflagged node with a possible alternative is reached. The backtrack pro

cess is also applied when a desired value has been set up at the objective line. After

enumerating cube —00-, the algorithm backtracks to the last PI assignment, namely D, and sets

it to a different value of 1 (Figure 6.5). This is different from PODEM in which the enumera

tion process terminates when the desired value is set up at the objective line. When the deci

sion tree is found to be empty in the backtrack process, the total input space for the

corresponding set has been implicidy, but exhaustively, enumerated.

6.4.23 Extraction Using Enumeration

The inputs to the logic-level extraction program are the combinational logic blocks OL and

NSL and the State Transition Table, S7T1, generated either from a RTL description, or

another logic-level description. The output is-a State Transition Table STT2. The extraction

of a State Transition Table from an ISP-like RTL description is described in Section 6.4.3.

The input and output sequence don't care information can be derived from 5771 and used in

generating S7T2. The following steps are performed during the extraction process.

(1) The ON-set and OFF-set is found for each output of the OL and NSL blocks, using impli

cit cube enumeration. CA0FF (CA0N) is denoted as the OFF-set (ON-set) for a line A.

(2) If there exist Ns latches in the logic description, i.e. Ns outputs to the NSL block, the

N
number of states which can exist in the corresponding finite automaton is 2 '. However, given

a set of valid input sequences, some of these states may never be reachable from the starting

state q0. For example, given a 4-bit encoding of states in a 9 state finite automaton, 7 (= 24 -

9) such states exist These states which can never be reached from q0 can be discarded, since

one wishes to verify the outputs of the two machines under the valid input set alone. Finding
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STARTj

Fig. 6.5 Decision Tree of LOVER-PODEM

these invalid states is non-trivial since the internal encoding of the states in the logic-level

finite automaton is not known. However, the output sequence information can be used to find

some, if not all, of these invalid states.
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The set of valid output vector cubes VO = [vox,vo2,..,vo.) is constructed by inspecting

5171. Constructing this set takes 0(E) time, E being the number of edges in 5771. If the

two machines are equivalent, all output vectors in 57T2 e VO. Using a logic minimizer like

ESPRESSO-II [23] VO is found. A logic minimizer is invoked so as to reduce following

computations which are proportional to the number of literals (0 and 1) in VO.

Lemma 1: If a state q produces an invalid output vector vo e VO, q is an invalid state.

Lemma 1 is the basis of finding invalid state encodings while generating 5772. The fol

lowing section of code illustrates how invalid states are found given VO and the ON and

OFF-sets of the OL block outputs.

TNVAL_S = <j>
foreach( cube iv e VO ) [

I*find all input cubesproducing this invalid output cube */

INVAL_S = INVAL_S \J { n C/W p> p C°FF ) *»

}

where iv is a cube of length Ns (inputs to the OL block), /^{iu'vpl} and r={z:zv=0}. The -

(don't care) literals in the cube iv are ignored in this computation. For example, given a cube

iv - 10-1, CX0N n C20FF p| CA0N is computed and added to INVAL_S. As one can see the

number of cube set intersections performed in this step is proportional to the number of 0 and

1 literals in VO which is why a fast logic minimization while computing VO is employed.

This technique cannot find an invalid state which produces a valid output cube. However, in

large examples, typically a significant number of invalid states can be found using a small

fraction of the total CPU time spent in the verification process as indicated in Section 6.4.7.

(3) TNVAL_S is complemented to find the set of valid states VAL_S. The set of all valid input
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cubes VALJ, which contains all distinct input vector combinations (cubes or minterms) in

5771 is then constracted in 0(E) time, E being the number of edges in 5771. Typically,

given a RTL description, the size of VALJ is quite small in a cube representation. The edges

in STT2 are generated using the NSL block enumerations. The section of code shown below

illustrates this process.

foreach( state QF e VALJS ) {

I*find all inputs to NSLproducing this state as output */

tnput_ps = { nd0N p n c°ff ) ;

foreach( cube ip e INPUTJ*S ) {

input = i><0:iVy- 1> ;
QP = ipbfi'Jfs+N,- l> ;

if(g/ € VALJS AND input e VALJ)
include edge QT -» QF on input in 57T2 ;

}
}

where TNPUTJPS is a cube of length NrhNs (inputs to the NSL block), t={i:QF=l) and

r=[i:QFt=Q}. For example, given Ns = 2 and N{ = 2, and QF = 10, first

INPUTJ*S = CX0N p C20FF is computed. Then, if a cube, say 010-, exists in INPUTJS,

an edge between 01 (the first two bits of 010-) and QF is added to 57T2 on the input combi

nation 0- (the last two bits of 010-).

Checking to see if input e VALJ can significantiy reduce the number of edges in 57T2.

The: output corresponding to each state is found by simulating the state vector on the OL

block.

(4) A state s2 in 57T2 which produces the same output as sx the starting state in 5771 is

picked as the starting state of 57T2. All the states which cannot be reached from s2 in 5772
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(if any) are deleted.

Cube set intersections require time complexity 0(n2+m2) given two sets of cubes with n

and m cardinality. Two things are done to speed up cube intersections during the invalid state

detection and edge generation process. Firstly, intersections within each cube (iv or ip) are

performed in an order of increasing cube set cardinality so the number of intersected cubes at

any point is minimum. Secondly, invalid output/state cubes are grouped in such a fashion that

repetition of intersections between ON/OFF-sets of the same pair of outputs is minimized,

without storing more than two intermediate results. This technique cannot find an invalid

state which produces a valid output cube. However, in large examples, typically a significant

number of invalid states can be found using a small fraction of the total CPU time spent in

the verification process as indicated in Section 6.4.7.

6.43 Extraction from RTL Descriptions

6.4.3.1 Input RTL Description

The input description is at the register-transfer level, and has the following main constructs:

(1) Procedures and functions

(2) If and Select for control/branching

(3) Loops - While and For.

The description is ISP-like [17] except that clock boundaries are explicitly delineated using a

wait statement on the rising/falling edge of the clock (or clock phase) §x. A sample input
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description is shown in Figure 6.6.

6.4.3.2 Extraction from RTL Description

The extraction process is only concemed with the control flow in the RTL description, we

wish to generate a DFA controller for the input specification. The DFA will have the control

variables as the inputs (e.g. instmction bits, ALU status bits ) and assert outputs (e.g. register

load, ALU add) depending on the present state.

The following steps are carried out during the DFA extraction:

(1) In the first pass, a one-to-one correspondence between the controlling input variables

and output signals of the RTL description and the logic level description is made. For

example, in the description shown in Figure 6.6, the variables run and pb are two

inputs. The output signals associated which each micro-instruction are specified along

with the RTL description, e.g. the micro-instruction MA = 0 @ pa may require (a) the

load signal of the MA register be high and (b) the load signal of the ALU be high with

the ALU operation code HI.

(2) Given the inputs and outputs, the description is parsed starting from the routine MAIN

and entering and exiting all procedures in the order they are called in. If a micro

instruction is encountered then the corresponding outputs of the micro-instruction are

asserted in the output of the present state. If a wait(<t>i) statement is encountered a new

state is generated.

(3) If a branch statement like IF or SELECT is encountered, two or more states are gen

erated depending on the number of branching conditions and a transition edge between

the previous state and each possible present state is created with the corresponding

input pattern. The extraction process continues with each possible present state recur

sively enumerating all the possible combinations. The recursion may terminate at the

end of the MAIN routine or terminate if any input condition is violated.
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BEGIN

run = 1;

WHILE ran DO

BEGIN

fetch_instructionO;
effective_address();
executeO;
IF interrapLenable EQL 1 THEN

IF interruptrequest EQL 1 THEN
BEGIN

MBR = PC ;
MP[0] = MBR;
PC = 1;
wait(<j>!);

END

END

END

! subroutine for effective address calculations

ROUTINE effective_address()
BEGIN

SELECT pb FROM
[0]: BEGIN MA = 0 @ pa; END
[1]: BEGIN MA = lastpc<0:4> @ pa; END

ENDSELECT ;

wait(fo);

IF ib EQL 1 THEN
BEGIN

MA = MP[MA] ;
wait^O;

END
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END ! end of routine effective_address()

Fig. 6.6 Sample Input RTL Description

The State Transition Graph for the routine effective_address() is shown in Figure 6.7.
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MA = 0 © pa MA = lasl.pc @ pa

MA = MP[MA]

\|/
ib

Fig. 6.7 State Transition Graph for effective_address()

only the local inputs and outputs are shown.

6.4.4 DFA Equivalence

6.4.4.1 Verifying the equivalence of two DFA's

Verifying that two incompletely specified finite automata are equivalent is done using a

modified form of the method used to test completely specified finite automata [135]. Given

the completely specified finite automata Mx and M2 accepting languages L(MX) and L(M2)

respectively, (UMX) pj L(M£) [j (L(MX) p> UM^) is accepted by some finite automaton

M3. M3 accepts a non-empty language if and only if Mx * M2.
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The languages accepted by finite automata are essentially the State Graphs of the finite

automata. Given two State Graphs, a composite State Graph is constructed, which is

effectively the exclusive-or of the two State Graphs. If a path exists from the starting state of

the State Graph to any of the final states, the two original machines are not equivalent, and

this path constitutes a differentiating sequence. If no such path exists, the machines are

equivalent A simple inductive proof [135] establishes this result The construction of this

composite State Graph is described in the sequel.

One way of handling incompletely specified DFAs [128] is to enter a third sequential

machine, D, which accepts the inputs Mx and M2 don't accept and perform an extra intersec

tion. Machines Mx and M2 are equivalent relative to the don't care condition, if

L(D)p, Z,(M3)

is empty. However, a more efficient way is to add a single dummy state in each of 5TT1 and

STT2 to which all the don't care transitions fanout to.

foreach(state q e STTl) [
fanout = <|>;

foreach( fanout edge E from q )
fanout = fanout \j EJnput;

dcfanout = fanout;
add dcfanout edges from q to dummy_s ;

The same is done for STT2. STTl' and STT2' are now completely specified DFA's and if they

are equal it follows that STTl and STT2 are equal.

A composite finite automaton S7T3 given 5771' and STT2' is constructed as shown by

the pseudo-code shown below. The states in STT3, are unordered pairs of states in 57T1 and

STT2. Each pair of edges in STTl' and STT2' are intersected. If the intersection is non-
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empty, an edge is added between the state in 5773 given by the fanin and fanout states of the

first edge and the state in 5773, given by the fanin and fanout states of the second edge.

foreach( edge ex in 5771') {
foreach( edge e2 in 5772') {

if ( e\ C\ ei*§)
include edge {ex.From , ex.To] -» [e2From , e2.To] in 5773 ;

}
}

where From and To denote the fanout and fanin nodes of an edge. 5773 may have as many

as NX*N2 states given Nx and N2 states in 5771' and 5772' respectively. If a path exists from

{sxs2} to any final node in 5773 the machines are not equivalent (if a path does not exist

5771 = 5772).

The set of final nodes in 5773 have to be found. A set of final states exists for each

output of 5771 (and 5772). Assume, for simplicity, that 5771 has a single output. Then, if

the starting state of 5771 asserts the output of 1 (0), the final states in 5771 for this output are

all the states which assert an output of 0 (1). Given 5771 and 5772, each with a single out

put, the final nodes in 5773 are all the pairs of states in 5771 and 5772 such that one state of

the pair (not both) is a final state of either 5771 or 5772. The final nodes in 5773 for multi-

output finite automata are found as illustrated below.

for( i = 1 To N0 ) {
foreach( state [qx , q2} 6 5773 ) {

if (( qx .output; = 1 AND q2.outputt = 0 )
OR

( qx.outputi - 0 AND q2.outputi = 1 ))
mark {qx , q2] as a final node ;

}
}
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An example composite State Graph construction is illustrated in Figure 6.7. The two

original State Graphs are equivalent (one is state minimized form of the other) and are shown

in Figure 6.8(a). They have a single output. The output bit corresponding to each state in the

two graphs is indicated near each state. The composite State Graph is shown in Figure 6.8(b).

Since the original State Graphs are equivalent, there is no path from the initial state (marked

(a) Two state graphs

l-

s0,q2; 11

sO.ql) F (sl.qO) p (sl,q2) p
(b) The composite state graph

Fig. 6.8
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I) to any of the final states (marked F) in the composite State Graph.

6.4.4.2 Starting or Reset States

In general, the starting state is not specified for logic-level finite automata, since the encoding

of states is not known. The starting state for the register-transfer level finite automaton is

easily found - it is merely the first state generated during extraction. So given sx in the RTL

automaton and the output vector asserted by sx, a set of all states 52 is found which assert the

same output in the logic-level automaton's STG. If for any s2 e S2, no path exists from the

[sxj2] to any final node then the machines are equivalent under {ji,j2}- The construction of

the composite FSM is not affected by knowing or not knowing the starting state of the logic-

level automaton - only the path finding process is repeated for each pair of possible starting

states.

Given reset states/transfer sequences for logic-level finite automata, a two-phase

enumeration-simulation approach can be used to verify the equivalence of two machines. This

approach is described in Section 6.4.6.

6.4.43 Sub-Routine or Sub-Module Verification

Very often it is the case that one wishes to verify the operation of a sub-routine in a RTL

description against a logic implementation. Since the logic-level description is not hierarchi

cal it is difficult to make a correspondence across the two levels. Verification of the entire

description in order to verify the sub-routine is obviously inefficient

The extraction algorithms described so far are capable of extracting only that portion of

the logic-level finite automaton's STG which corresponds to the given sub-routine in the RTL

description without having to extract the entire STG of the automaton. Verification of a sub

routine can be done correspondingly faster than the entire RTL description.

Sub-routine verification proceeds as follows:
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(1) The STG of the sub-routine is extracted treating the sub-routine as the entire input

RTL description.

(2) Given this STG, the valid input and output sequence sets are found and invalid states

in the logic-level finite automaton are detected using this information. These invalid

states may contain states which are valid states in other sub-routines in the complete

RTL description. Detecting these states produces a smaller STG and verification is

correspondingly quicker.

6.4.5 Extension of Algorithms to Mealy Machines

A finite automaton whose output is associated both with the input and the state is called a

Mealy machine. A Mealy machine is also a six-tuple (QJ,OJJSL,OL,q0), where all is as in

the Moore machine, except that OL maps Qxl to O. For a Mealy machine we have:

Oi =f6psx,ps2,..4>sNi,ixj2,..,iN) l£i£N0

ns{.= g,{psx,ps2,..,psNjxj2,..,iN) l£i£Ns

where psj and nsj denote the present state and next state values respectively and ik denotes the

input

Finding the complement of a NFA requires conversion to a DFA [135]. Hence, to ver

ify the equivalence of two Mealy machine STG's by constructing (Lx (~\ Li) \j (Lx (~} Li)

we need to convert them into Moore machine STGs. This transformation is always possible,

however the resulting Moore machine will have a larger number of states and edges than the

AT

original Mealy machine. The number of extra states required is £( Dt - 1 ) where Z>,- is the
i=i

number of different output vectors for state i, and Af is the number of states in the Moore

machine.

The invalid state detection process is different for a Mealy machine because ft is now a

function of both ps and i.

Lemma 2a: If [q,i] always produces a invalid output vector for all i e VALJ, then q is an
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invalid state.

Lemma 2b: If [q,i] always produces an invahd next state for all i e VALJ, then q is an

invalid state.

where [q,i] implies that input i is being applied to the machine presendy in state q. VALJ is

the set of valid inputs. For Lemma 2b to apply, at least one invalid state has to be detected

using Lemma 2a. The two lemmas are alternately used until neither apply.

6.4.6 Verification by Enumeration and Simulation

6.4.6.1 Introduction

Two combinational logic circuits can be verified using an enumeration-simulation approach -

The ON and OFF-sets of the outputs, of the first circuit can be enumerated (as described in

Section 6.3.2) and simulated on the other circuit to check if all input combinations produce

the same values. This approach was first taken in [29]. The efficiency of this approach lies in

the fact that cubes are enumerated and not minterms, i.e. implicit but exhaustive enumeration

on the input space is performed.

The same approach can be generalized to sequential circuits where no correspondence

exists between memory elements. The sequential circuits may represent Moore or Mealy

machines - this approach deals uniformly with either kind of machine. Paths starting from the

reset- state of the first finite automaton (usually the one with the fewer number of latches) are

enumerated. Each path consists of a sequence of inputs and asserted output values represent

ing a sequence of edges in the STG of the automaton. (The input patterns are generally cubes

and not minterms). These paths are acyclic in the sense that no fanout state pair, where each

fanout state corresponds to one of the two machines being verified, for equivalence, appears

more than once in the edges in the path. The sequence of input cube patterns in the path is

simulated on the second automaton to see if the same output values are asserted; the same

next states need not be asserted. If so, the path enumeration continues. If not, the machines
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are declared non-equivalent. The attractive feature of this approach is that the entire STG of

the finite automaton is not stored, merely a single path is stored. Only the valid states in the

automaton's STG are visited, thus invalid state detection in this approach comes as a bonus.

6.4.6.2 Enumerating paths in the STG

The inputs to the path enumerationprogram is the combinational logic block of the finite state

machine and information about latch inputs and outputs, ie. present and next state lines. In

the case of the Moore machine the two blocks in Figure 6.3 are merged into a single block.

This approach deals uniformly with Moore or Mealy machines.

The STG enumeration proceeds in a depth-first fashion beginning with sequential cube-

enumeration of all fanout edges from the given reset state, q0. Whenever a new edge is

found, it is added to the current path if a certain condition is satisfied. Let the next state pro

duced in Mx, the machine being enumerated on, be nx for the current edge in the path. The

corresponding state in M2, the machine being simulated on, is n2. The condition is that the

state pair (nx, n2) should not appear more than once in the path. If the condition is not

satisfied, the fanout of the current starting state (the state the current edge fans out of) contin

ues to be enumerated, with the current path unchanged. Else, the edge is added to the path

and nx is picked as a new starting state. The procedure is repeated until no more edges can

be enumerated. All the edges in the complete STG will be implicitly and collectively

enumerated in the paths. There is a hard limit, LIMIT, on the number of edges in each path

to restrict memory requirements. Because of this limit un-enumerated states have to be

"remembered" and placed on a stack for later enumeration. At any stage all the valid states in

the STG and a single path is stored. The pseudo-code shown below illustrates the global stra

tegy used. EnumerateDfsO is initially called with the reset state, q0, of the machine and with

an empty valid state set, VAL_STATES.

Like the general approach, this algorithm does not have to deal with the invalid states in

the STG of the logic-level finite automaton. Only the states reachable from the reset state of



the machine are visited during the enumeration.

EnumerateDfs(State, VAL_STATES)

{

UN_ENUM_STATES = <|>;
PathEnumerate(State, <{>, UN_ENUM_STATES, VAL.STATES);
foreach( state q e UN_ENUM_STATES ) {

EnumerateDfsG?, VAL STATES);
}

}

PathEnumerate(State, Path, UnEnumStates, ValStates )
{

ValStates = ValStates \j State ;
while (State.Enumerated is FALSE) {

/* using PODEM, enumerate the next Edgefanning outfrom State */
Edge = EnumerateStateFanout(State);
simulate Edge on M2 ;

if (Edge.Output(Afx) * Edge.Output(Af2))
Mx and M2 are not equivalent;

/* check if the state pair of the edge exists in the path */
if ((Edge.FaninState(M1), Edge.FaninState(A/2)) e Path.Spairs) {

continue ;

}
else {

ValStates = ValStates \j Edge.FaninState(M1);
Path = Path + Edge ;
update Path.Spairs ;
if (Path.Length > LIMIT ) {

/* limit exceeded, push fanin state on un-enumerated stack */
UnEnumStates = UnEnumStates \j EdgcFaninState^);

}
else {

/* depth first enumeration continues */
PathEnumerate(Edge.FaninState(M1), Path, UnEnumStates, ValStates);
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}

The algorithm used to enumerate the fanout edges from a state, EnumerateSta-

teFanout(), is an extension to the implicit enumeration algorithm of PODEM [131]. Initially,

the values of all primary inputs and next states of the logic-level finite state machine are set to

unknown. The logic-level circuit is simulated with the present state lines fixed at their

specified values. An unknown next state line is then picked and a path is backtraced from it

to an unknown primary input with the objective to set the value of the chosen next state line

to a known one. A 1 or 0 is assigned to that primary input The circuit is then simulated

again. The setting of primary inputs and simulation of the circuit is continued until all next

state lines are set to known values - a fanout edge is enumerated. Whenever an edge is

found, the algorithm backtracks to where a primary input is first set to a known value and

assigns it an opposite value. The simulation and primary input setting are then repeated.

When no more backtracking can be done, all the edges from a state are implicitly, but exhaus

tively enumerated.

An alternative to the bacfctracmg/backtracking approach to STG enumeration described

above is forward simulation on the input space given a starting present state. The forward

simulation process begins with all the input lines set to unknown values. Inputs are set ran

domly to 0 or 1 in a pre-specified order till all the next state lines are all set to known values.

Backtracking on primary input values is done after setting all next state lines. However, this

approach is less efficient than the approach described earlier because a primary input value

may be unnecessarily set in order to set the next state lines. This can lead to a great amount

of redundant simulations. On the contrary, in the backlxacing/bracktracking approach, the

backtracing process makes sure that the next primary input to be set and the simulation fol-
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lowing the value-setting always contribute to the setting of the next state lines.

6.4.63 Simulating paths

Every time an edge, corresponding to an enumerated input combination is produced, it is

simulated on the second machine, M2, to find the next state associated with the edge. The

edge is simulated with the knowledge of the present state of M2 (which is the next state of the

previous edge in the path). Simultaneously, the output of the edge are checked to see if they

are the same across Mx and M2. If they are, verification continues, else the machines are

declared not equivalent.

Since the input patterns in the path are in general cubes and not minterms, cube-splitting

[29] may be necessary on the input lines to produce known output and next state values. In

practice, since parallel vector simulation is used, 16 or 32 edges may be stored and simulated

simultaneously on the second automaton.

6.4.7 Examples and Results

For verifying RTL descriptions against logic-level descriptions, I give results for fourdifferent

examples in Table 2. The statistics of these examples are described in Table 1. The first

example is small and the total CPU time for extraction and verification is under 12 CPU

seconds on a VAX 11/8650. Example 2 is large and is verified in about 1.5 minutes. The

third example is a very large machine with 128 states and is also successfully verified within

10 CPU minutes. The first three examples are Moore machines, example 4 is a Mealy

machine comparable in size to example 2, but takes almost twice as long due to conversion to

a larger Moore machine for equivalence checking.

Note that for all the examples, the invalid state detection time is a small fraction of the

total CPU time, but a very significant number of invalid states are found. A minimum bit

encoding of states minimizes the number of invalid states in a logic level finite automaton, but

typically state assignment programs like KISS [26] use encodings with a few more bits than
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the minimum necessary to implement the machine since great savings in combinational logic

can be made with extra state field bits.

Verifying equivalence between the two State Transition Diagrams has a time complexity

of 0(Ex*E2) where Ex and E2 are the number of edges in the two machines. The number of

edges in a machine grows approximately as the square of the number of states in the machine.

Thus finding invalid states and invalid edges is a big gain - Example 3, when run without

using don't care information, required 68 minutes to verify.

I also give results for verifying logic-level automata with known reset states for

equivalence using the enumeration-simulation approach described in the previous section.

Table 3 gives both the statistics and the CPU times required for six examples which have

EXAMPLE

RTL Description Logic Level Descri]ption

#states

in STT

#edges
in STT

#inputs #outputs #latches OLB

#eates

NSLB

#eates

1 5 10 2 2 4 9 15

2 33 300 10 10 7 220 388

3 128 529 27 56 8 368 667

4 29* 240* 8 16 6 0** 511

* After conversion to Moore, #states = 61, #edgcs = 417
** Only one block of logic for a Mealy machine.

Table 6.1 Description of examples

EXAMPLE

Logic Description Cpu Times (seconds on VAX 8650)

#states

initial

#invalid

states

detected

#edges enum

eration

invalid

state

detection

edge
gener

ation

equiv
alence

check

total

1 16 11 2 1.0 1.9 2.4 6.0 11

2 128 94 1165 4.3 12.1 32.1 48.2 97

3 256 126 1372 21.1 71.2 126.2 368.1 587

4 64* 24* 912* 7.6 30.3 46.2 84.1 168

After conversion to Moore, #states = 74, #edges = 1356.

Table 6.2 Run-Time Statistics Of Examples
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been obtained from various industrial and university sources. The examples, sbcl and sbc.2

are single-cone output circuits from a 28 latch FSM in the Snooping Bus Controller of the

Berkeley SPUR chip set [136].

Verification was performed between implementations of the same circuit with different

encodings, implying no correspondence between the latches of the two circuits. The largest

example, sbc.2, has 17 latches and 2764 valid states (total number of states is 131072) yet

verification was possible in 5.36 hours on our VAX 11/8650. Note that over 2.6 million edges

were enumerated, for this example. However, these edges did not have to be stored, since the

paths were dynamically generated and simulated on the second finite automaton. Previous

approaches to sequential verification are unable to deal with such large finite automata.

Memory usage was restricted to less than 1Mbyte for all these examples. Cube enumeration

drastically reduced the number of edges generated - minterm enumeration on each state would

have resulted in over3.7x 1011 (= 2764 * 227) edges. Theefficiency of this approach both in

EXAMPLE #inp #out #gates #latcheS #valid

states

#edges
in STG

CPU

time

cse 7 7 192 4 16 167 1.2s

sand 11 9 555 6 32 237 4.9s

planet 7 6 606 6 48 182 4.2s

scf 27 56 959 8 115 393 15.6s

sbcl 31 13 465 13 2040 4846383 8.94h

sbc.2 27 17 492 17 2764 2662236 5.36h

s denotes CPU-seconds andh denotes CPU-hours on VAX 11/8650 '

Table 63 Verification using Enumeration and Simulation
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terms of CPU time and memory usage is amply demonstrated by my results.

6.5 Conclusions

An effective method for the verification of two sequential machines at differing levels of

abstraction has been presented. Previous work in this area involved verifying relatively small

sequential circuits at the logic level By exploiting the don't care information present at the

register-transfer level (invalid input and output sequences) description of a sequential machine

I have successfully compared descriptions of large machines at the RTL and logic levels

(Tables 6.1 and 62). Don't care information can be exploited in the case of verifying two

logic-level descriptions as well.

A memory and CPU time efficient enumeration-simulation strategy for verifying the

equivalence of logic-level finite automata with known reset states has also been presented.

This approach has been used successfully to verify the equivalence of finite automata with

more than 2500 states (Table 6.3).

Future work in this area includes development of a more efficient algorithm for verify

ing the equivalence of two State Transition Graphs of Mealy machines and more efficient

cube enumeration techniques at the logic level to speed up the verification process.
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CHAPTER 7

Testing of Logic Circuits

7.1 Introduction

Testing of VLSI circuits is a process to ensure that a chip satisfies its functional specification

For testing a circuit, binary patterns, called test patterns or tests, are applied to the inputs of

the circuit and the response of the circuit is compared with the expected one. Application of

all possible input patterns, for combinational circuits, will guarantee that the chips passing the

test are functionally correct However, this exhaustive method becomes infeasible, in terms of

testing time, when the number of inputs is large. In practice, a set of test patterns that are

aimed to detect a high percentage of modeled faults is used. The most widely used fault

model has been the stuck—type model [38]. Physical failures are assumed to correspond to a

line in the gate-level description of the circuit stuck at a 0 or 1 value and an assumption is

made that only one fault can occur at a time. It has been empirically shown that a high per

centage of the chips passing the set of test patterns for stuck-type faults are correct working

chips.

Test generation is a process which produces a set of tests that detect all or a large sub

set of potential faults in a logic circuit whose existence would cause the circuit to function

incorrectly. Test generation for combinational circuits has traditionally been considered to be

a search problem [130] [131]. A test pattern for a fault is generated by searching through the

input space to find an input pattern that excites the fault and propagates its effect to one of the

primary outputs. The cost of test generation can be very high and it has been proved that the

problem of test generation is NP-complete [134]. It is especially expensive to generate tests

for circuits that contain a large number of redundant faults. Redundant faults are faults for
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which no test can be found after searching, implicitly or explicitly, across the entire input

space. The cost for trying to generate tests for redundant faults can be more than 90% of the

total test generation time. Redundant faults are due to logic redundancies in a circuit. Redun

dancies may be introduced intentionally, for reliability, performance, elimination of static

hazards or other reasons, but often they are due to unoptimized designs. It can therefore be

conjectured that designs which have gone through logic minimization, which in general aims

to reduce the overall size of a circuit by removing logic redundancies, are more testable and

easier to generate tests for.

Generating tests for sequential circuits is considerably harder than for combinational cir

cuits. Even if the combinational part of a sequential circuit is made fully testable, it may still

be impossible to obtain a high fault coverage for the sequential circuit. Some of the inputs

and outputs of the combinational part are outputs and inputs respectively of the memory ele

ments, i.e. flip-flops. Test patterns generated considering only the combinational part cannot

be readily applied and fault effects cannot be observed directly at the inputs of these memory

elements.

A popular approach to solving the problem of test generation for sequential circuits is to

make all the memory elements controllable and observable, e.g. Complete Scan Design [36]

[37]. Scan Design approaches have been successfully used to reduce the complexity of the

problem of test generation for sequential circuits by transforming it into one of combinational

test generation which is considerably less difficult The design rules of Scan Design also con

strain the sequential circuits to be synchronous so that the normal operation of the sequential

circuit is free of critical races. However, there are situations where the cost in terms of area

and performance of Complete Scan Design is unaffordable. In addition, even though the gen

eral sequential testing problem is very difficult, there may be cases where test generation can

be effective. Simply making all the memory elements scannable in a sequential circuit

without first investigating how difficult is the problem of generating tests for it could unduly
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incur unnecessary area cost

The difficulty in generating a test usually lies with: (1) setting the states of the memory

elements into a certain combination so that the fault under test is excited; (2) propagating the

fault effect to the primary outputs. An input sequence is usually required in both cases (if

such a sequence exists). In general, the longer the length of the shortest input sequence

needed to perform steps (1) and (2), the more difficult it is to find an input sequence to test

the circuit Both approaches mentioned above attempt to shorten the length of the input

sequence. In the Scan Design approach, the length of the input sequence is reduced to one

when all memory elements are made scannable.

Several approaches [93] [94] [39] [95] [96] [97] have been taken in the past to solve the

problem of test generation for sequential circuits. They are either extensions to the classical

D-Algorithm [93] [39] [95] [97] or based on random techniques [94] [96]. When the number

of states of the circuit is large and the tests demand long input sequences, they can be quite

ineffective for test generation. This is because no a priori knowledge of the length of the test

sequence is available. In the extended D-Algorithm methods, a large amount of effort may be

wasted in trying to find short sequence tests for faults that require long ones. Random testing

techniques are based on continuous simulations and grading of test vectors according to simu

lation results. They can be very time consuming for difficult faults that have only a few long

test sequences.

An approach to sequential testing has been developed, which represents a significant

departure from previous methods. A new test generation algorithm [99], effective for small to

medium-sized finite state machines, based on the concept of state space enumeration has been

developed. The algorithm quickly generates tests for all the faults or a large subset of faults

in the given circuit Then, a minimal subset of memory elements is found, which if made

observable and controllable, results in easy detection of all remaining irredundant but

difficult-to-detect faults. This step represents an Incomplete Scan Design approach to the
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sequential testing problem. The test generation algorithm [99] is again used to generate tests

for these faults in the modified circuit (the circuit with the identified memory elements made

scannable). This algorithm can guarantee detection of all irredundant faults as in the Com

plete Scan Design case, but at much less area and performance cost.

In the next section, the problem of test generation for sequential circuits is described.

In Section 7.3, representative approaches taken previously to solving this problem are

reviewed. The new approach to sequential test generation is described in Section 7.4 and 7.5.

72 The Sequential Testing Problem

A general model of a synchronous sequential circuit S, is shown in Figure 7.1(a). S is

assumed to have a reset state Rt from which all test sequences begin. S can be modeled as an

iterative array C, shown in Figure 7.1(b), by cutting the feedback loops at the clocked flip-

flops. The combinational circuits Ch where i = i,...p, are all identical to the combinational

portion C of the original sequential circuit and all flip-flops are modeled as combinational ele

ments, referred to as pseudo flip-flops. The iterative array is logically equivalent to the

sequential circuit - the temporal response of the sequential circuit is mapped into a spatial

response of the iterative array. If an input sequence x(l),x(2),... x(p) is applied to S in initial

state y(J) generating output sequence z(l),z(2)... z(p), then the iterative array will generate the

output z,- from cell / in response to the input x,- to cell i and z,- = z(i) if xt = x(i) and y7 = y(J).

A single fault in S corresponds to the multiple fault / consisting of the same fault in every

cell C; of Cp. The goal is to generate input vector sequences for each possible fault in the

combinational circuit C, which when applied to the faulty circuit detects the fault, by produc

ing a different set of output vectors than in the fault-free circuit

For a fault to be detected, first the states of the memory elements have to be set to a

certain combination so the fault is excited. That is, 5 first has to be brought into a state from

the reset state, R, which can excite the fault This process is called state justification. After

state justification, the effect of the fault has to be propagated to the primary outputs. This
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process is calledfault propagation. In general, both these steps need a sequence of input vec

tors.

7.3 Previous Work in Sequential Testing

7.3.1 The Extended D-algorithm for Synchronous Circuits

As described in Section 7.2, a synchronous sequential circuit S can be modeled as an iterative

array C, shown in Figure 7.1(b), by cutting the feedback loops at the clocked flip-flops. The

test generation procedure for a self-initializing test sequence based on the iterative array

model is as follows:
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(1) Determine the maximum number of time frames, p, allowed for test generation.

(2) Choose an initial value for p and construct the iterative array model with yr of unknown

value. (If a reset state is given, yt will be assigned the value of the reset state.)

(3) Choose the time frame q from which the D-drive must be organized. Apply the D-

algorithm to find a test for the multiple fault f so that a D or D appears at one of the

outputs zuz2,... zp. If a test is found, exit; otherwise, continue.

(4) If possible, increment p by 1 and return to step 3); otherwise, exit with no test.

Since the length of test sequence cannot be determined a priori, a large amount of effort

may be wasted in trying to generating tests with inappropriate choice of p.

132 Weighted random test-pattern generation

In a random test-pattern generator, a sequence of random patterns are applied to the circuit.

Usually, the patterns differ in a single primary input In general, all primary inputs (Pis) of

the circuit have the same weights, i.e. each PI is exercised approximately the same number of

times averaging over a long period of time. In a weighted random test-pattern generator (e.g.

[94] ), different weights are assigned to the Pis in proportion to their relative importance, Le.

some Pis are exercised more often than others. A single input changes between two consecu

tive patterns as before.

One way to determine the weight assigned to each PI is to measure the amount of gate

switching activity produced inside the circuit as the result of exercising that PI. A set of ran

dom patterns is simulated on the circuit The number of gates changing for the first time from

a logic 1 to 0, and vice versa, due to the switching of any of the Pis, is counted. The switch

ing activity count is then accumulated over the complete set of random patterns. By compar

ing the activity created by all the Pis, different weights can be determined for all the Pis.

However, this method suffers from the drawback that the importance of the order of patterns

applied to detect a fault is ignored. Furthermore, test sequences consisting of more than one



170

change between consecutive patterns cannot be generated.

A dynamic adaptive technique has been used to partially alleviate the problem of ignor

ing the order of test patterns mentioned above in weighted random test-pattern generation.

This technique introduces the rates of changes of activity into the function of determining the

weight for each PL Results show that this technique achieves a significant improvement in

fault coverage over the static weighted random test-pattern generators. A reduction technique

is used to reduce the total number of random patterns generated as random approaches usually

create a large number of test patterns. Random pattern techniques offer no guarantees of test

coverage/redundancy identification unlike deterministic test pattern generators.

7.3.3 A new approach to sequential test generatiorr

In this section, an approach to solving the problem of test generation for synchronous sequen

tial circuits is described.

This approach to sequential test generation consists of three steps. First, using an

efficient deterministic sequential test generation algorithm tests are generated for all or a large

subset of the faults in the given circuit If the fault coverage obtained is less than the target

fault coverage, a minimal subset of memory elements are identified (Incomplete Scan Design)

which if made observable and controllable result in easy detection of the remaining irredun-

dant but difficult-to-detect faults. Then, the sequential test generation algorithm is applied to

the modified circuit (the circuit with the identified memory elements made scannable) to

detect the remaining faults. In Section 7.4, the sequential test generation algorithm is

described. In Section 7.5, the algorithm used for the identification of the critical memory ele-
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ments is described.

7.4 A Deterministic Sequential Test Generation Algorithm

7.4.1 Introduction

In this section, an algorithm for sequential testing [99] based on the PODEM justification

algorithm is described.

It is assumed that the sequential circuit under test is synchronous and free of races under

simple design rules. It is also assumed that there is a reset state for the synchronous sequen

tial machine and memory elements such as D flip-flops are identified and represented as logi

cal primitives to facilitate loop cutting in transforming the synchronous sequential circuit into

an iterative array. First, a part of the State Transition Graph (STG) of the finite state machine

is extracted, using purely structural information, i.e. the gate-level description of a sequential

circuit The construction of the partial STG is based on an efficient state-enumeration algo

rithm that finds paths from the reset state to different valid states (states reachable from the

reset state) in the STG. For circuits with relatively few states, a partial STG including all

valid states is built For circuits with a large number of states, only a subset of valid states is

included in the partial STG. The partial STG is then used in conjunction with efficient

enumeration-based fault excitation-and-propagation and state justification algorithms for gen

erating tests for line stuck-at faults. Tests have been successfully generated for finite state

machines with a large number of states using reasonable amounts of CPU time and obtained

close to maximum possible fault coverages.

The following section outlines the test generation process. Extraction of the fully or

partially connected State Transition Graph from the logic-level finite state machine is

described in Section 7.4.2. The enumeration-based fault excitation-and-propagation and state

justification algorithms are described in Section 7.4.3 and 7.4.4 respectively. In Section 7.4.5,

the detection of a special class of redundant faults is described. Results for a number of finite



172

state machines are presented in Section 7.4.6.

7.4.2 The Test Generation Process

Assuming the complete State Transition Graph (STG) of a sequential circuit is available, test

generation for a fault under test can be done by first finding an input sequence 71 and an ini

tial state 50 that excite and propagate the effect of the fault to the primary outputs within 4"

time frames, where n is the number of latches in the sequential circuit A reset state is

assumed to exist for the machine. Then, every path from the reset state to any state 51 that

covers 50, a potential setup sequence, in the complete STG is fault simulated. If a path 70

(setup sequence) to a state 51 that covers 50 can be found under fault conditions, a test

sequence 72 is generated by concatenating the path TO with 71. Even though a setup

sequence 70 may not be found, the fault may still be detected by one of the potential setup

sequences through fault simulation. If this is the case, that particular potential setup sequence

itself can serve as a test sequence 72. If no test sequence can be found, a new input sequence

71 and a new initial state 50 which is disjoint from all previously generated ones is searched

and the procedure is repeated.

The algorithm is complete, Le. if a fault is testable, a test will be found given sufficient

time. The main drawbacks of this method are: (1) the memory storage for the complete STG

may be unreasonably large and the generation of the complete STG may demand astronomical

CPU time; (2) fault simulation of all potential setup sequences is extremely time consuming.

A remedy to (1) is to generate the potential setup sequences on-the-fly using a backward

justification algorithm that searches for paths from the reset state to the 50s under fault-free

conditions. No information of the STG is required/used.

A test generation algorithm following the ideas presented above is as follows.

Algorithm Structure 1



173

(1) Find an (new) input sequence 71 and an (new) initial state 50 that will excite and pro

pagate the effect of the fault under test to the primary outputs within 4" time frames

using the state-enumeration-based forward propagation algorithm (described in Section

7.4.3). If no solution exists, exit without a test.

(2) Find a (new) path 70 (potential setup sequence) from the reset state to the initial state

50 using a backward justification algorithm. If no solution exists, go to (1).

(3) Fault simulate the potential setup sequence 70. If it detects the fault generate the test

sequence 72 from 70 and go to (5). Else if it is a valid setup sequence, go to (4). Else

if 70 neither detects the fault nor is a setup sequence go to (2).

(4) Concatenate the input sequence 70 that represents the path from the reset state to the

initial state 50 with 71 to form 72 which is the test sequence for the fault under test

(5) Exit with a test sequence.

Even though this algorithm is potentially effective, backward justification in general is

difficult when the setup sequence is long. In addition, some states may need to be justified

more than once. Therefore, an important enhancement is to generate a partial STG containing

as many valid states (and paths from the reset states to them) as possible provided that the

partial STG extraction process (through forward enumeration as described in Section 7.4.2) is

carried out efficiently. Note that the partial STG may contain all the valid states in the com

plete STG but contains much fewer edges. States and edges may be added to the partial STG

via backward justification during test generation.

The second drawback mentioned above, i.e. that fault simulation of all potential setup

sequences is very time consuming, does not actually pose a problem. From experimental

observations, if 70 is an invalid setup sequence, it is very likely to be a test sequence. There

fore, there is rarely the need for fault simulation of more than one potential setup sequence for

a fault.
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Finally, an efficient test generation algorithm combining the advantages of forward

enumeration and backwardjustification by using the partial STG is as follows.

Algorithm Structure 2

(1) Find an (new) input sequence 71 and an (new) initial state 50 that will excite and pro

pagate the effect of the fault under test to the primary outputs within a prescribed

number of time frames using the state-enumeration-based forward propagation algorithm

(described in Section 7.4.3). If no solution exists, exit without a test

(2) Search for a path (potential setup sequence) 70 from the reset state to 50 in the partial.

STG. If it is found, go to (5).

(3) If the partial STG includes all valid states, go to (1).

(4) Find a path 70 from the reset state to the initial state 50 using the state justification

algorithm (described in Section 7.4.4). If no solution exists, go to (1).

(5) Fault simulate the potential setup sequence 70. If it detects the fault generate the test

sequence 72 from 70 and go to (7). Else if it is a valid setup sequence, continue. Else

go to (1).

(6) Concatenate the input sequence 70 that represents the path from the reset state to the

initial state 50 with 71 to form 72 which is the test sequence for the fault under test.

(7) Exit with a test sequence.

The initial state 50 can be a cube containing don't care bits or a minterm with every

state bit specified. In the case of a cube, a path from the reset state to a minterm covered by
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50 can serve the purpose of a setup sequence.

7.4.3 State Transition Graph Extraction

The algorithm used for State Transition Graph (STG) extraction is the same as the algorithm

used in the verification subsystem for dynamic cube-enumeration of the STG of a finite auto

maton which was described in Chapter 6, Section 6.4.6.2. It is given the combinational logic

block CLB of the finite state machine and information about latch inputs and outputs i.e.

present and next state lines. If a partial STG is to be extracted, a limit is placed on the

number of states at any given level from the reset state. A limit may be placed on the

number of levels or the total number of distinct states to be enumerated.

The STG extraction first sequentially cube-enumerates all fanout edges from the given

reset state. Whenever a new edge is found, it is added to the current STG if the next state it

fans into does not exist in the STG. Each next state is then picked as a new starting state.

The procedure is repeated until no more distinct valid states can be found. All the edges in

the complete STG will be implicitly, but exhaustively enumerated. The partial STG con

structed is a tree, Le. there is only a single path from the reset state to any other state. This is

to restrict the storage space for the partial STG so that synchronous sequential machines with

very large number of states can be handled.

7.4.4 The Fault Excitation-and-Propagation Algorithm

The Fault Excitation-and-Propagation algorithm (FEP) is based on the decision tree concept of

the test pattern generation algorithm PODEM. FEP uses the conventional iterative array

model for generating an input sequence 71 and an initial state 50 to excite and propagate the

effect of the fault under test to the primary outputs within a prescribed number of time

frames. The iterative array is considered wholly as a combinational circuit with primary

inputs of different time frames time-indexed and the present state lines of the first time frame

treated as pseudo inputs. The initial state 50 is specified by the values of the pseudo inputs.
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FEP first tries to propagate the fault effect to the primary outputs of the first time frame. If it

fails, it will use the primary outputs of the second time frame for fault propagation and so on

until the prescribed number of time frames is reached.

FEP uses two decision trees, one for the primary inputs of different time frames and the

other for the initial state 50, as opposed to only one in PODEM. The two decision trees are

built in a similar way through the backtracing and backtracking processes as used in PODEM.

The present state lines of the first time frame are treated similarly as the primary inputs during

the fault excitation-and-propagation process. Values of the present state lines and primary

inputs of different time frames are continuously set one at a time through the backtracing pro

cess and the iterative array is simulated whenever a primary input or a pseudo input is set to a

known value. The value-setting-and-simulation process continues until the effect of the fault

under test is excited and propagated to the primary outputs of at least one of the time frames

or when the backtracking limit is reached. Backtracking takes place whenever it has esta

blished that under the current set of primary input and pseudo input assignments, the effect of

the fault under test cannot be excited and/or observed at the primary outputs of the specified

time frame with further input assignments. Backtracking during the search for 71 and 50 is

done on both decision trees.

FEP employs the concept of disjoint state enumeration to make sure that all the tests it

generates for a specific fault will have disjoint initial states 50's; this is necessary because of

the loop in the test generation process described in Section 7.4.1. Whenever the search for a

new test is begun, the primary input decision tree (Dl) for the previous test is scratched com

pletely, but the present state decision tree (D2) of the initial state 50 is retained. Immediately,

backtracking is done on Dl. Then the value-setting-and-simulation process is carried out as

described above. The reason that tests generated for a specific fault by FEP should all have

disjoint 50s is related to how FEP is used in the test generation process as described in Sec

tion 7.4.1. For a specific fault a new test is requested only if one cannot find the path from
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the reset state to the 50 in the previous test, neither in the extracted STG nor through the state

justification algorithm described in Section 7.4.5. Therefore, all tests generated for a specific

fault should have disjoint 50s.

A single decision tree could have been used instead of two separated ones as described

above. And instead of completely resetting all primary input values to unknown, i.e. scratch

ing the entire primary input decision tree, when a new search is started, one can simply back

track on the single decision tree to where a pseudo input is first set to a known value and

assign it an opposite value. But due to the inherent characteristics of the enumeration

approach of PODEM, it is more efficient to begin a search with as small a number of preset

inputs as possible. Therefore the double decision tree method is used

7.4.5 The State Justification Algorithm

Given a goal state 50, the state justification algorithm (SJ) attempts to find a path (setup

sequence) from the reset state to it 50 can be a cube containing don't care state bits or a

minterm with every state bit specified. In the case of a cube, SJ needs only to find a path to

any minterm state that is covered by 50.

First SJ sequentially enumerates all the fanin edges to 50. It then checks whether any

state the edges fanout from covers the reset state. If such a state exists, a path is found. Oth

erwise, SJ picks each fanin state as a new goal state and carries out fanin edge enumeration

again. The procedure is repeated until a path is found or no path can be found. SJ actually

proceeds in a depth-first fashion and there is a limit on the maximum length of the

justification sequence.

The edge enumeration algorithm is an extension to the enumeration algorithm PLOVER

in [32]. The difference is that here we have multiple line (the next state lines) values to be

justified simultaneously rather than a single output line as in PLOVER. The concept of state

enumeration is also employed in SJ. There are two decision trees to be maintained as in Sec

tion 7.4.3, i.e. one (Dl) for the primary inputs and the other (D2) for the present state lines.
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All the present state lines and primary inputs are set to unknown values initially. Through

backtracing and backtracking processes, the primary inputs and present state lines are continu

ously set to some known values, 1 or 0, until all the next state lines are found to be set to

their specified values through simulation. Whenever the search for a new fanin edge is begun,

Dl is completely scratched, but D2 is retained. Immediately, backtracking is done on D2.

Then the enumeration procedure is repeated again. All edges (with disjoint fanin states) fan

ning out of a state are enumerated when no more backtracking is possible.

7.4.6 Detection of Redundant Faults

The difficulty in test generation for sequential circuits does not just lie with finding tests for

the difficult testable faults. The determination of redundant faults is equally formidable, if not

more difficult Obtaining a low fault coverage does not necessary mean the test generator is

inadequate if one can show that the fault coverage is close to the maximum achievable value.

However, to determine whether faults, that no test has been generated for, are redundant or

testable may demand astronomical CPU times. For the purpose of judging how close the fault

coverage obtained by the test generator is to the maximum possible value, all the redundant

faults based on Theorem 7.1 given below are found and the other undetected faults are treated

as possibly testable faults. This gives a pessimistic estimate of the number of redundant faults

in a given circuit

Definition 7.1: An edge in the State Transition Graph is said to be corrupted by a stuck-at

fault if the effect of the fault can be excited and propagated to the primary outputs and/or next

state lines by the input vector corresponding to the edge with the present state lines values set

to the fanin state of the edge.

Theorem 7.1: In order for a stuck-at fault to be detected, the fault should at least corrupt one

fanout edge from a valid state that is reachable from the reset state in the State Transition

Graph.
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Proof: In order to detect a fault, we need a test sequence starting from the reset state and end

ing with a corrupted edge in the STG. If a fault does not corrupt any fanout edge from a

valid state in the STG, no test sequence can detect the fault since no corrupted edge can be

reached from the reset state. Q.E.D.

Determining this special class of redundant faults requires the extraction of a partial

STG containing all valid states reachable from the reset states. The procedure to find these

redundant faults is based on the FEP algorithm described in Section 7.4.3. A single time

frame is used and all next state lines are treated as primary outputs. All tests are generated

for a potential redundant fault with disjoint initial states. If none of the initial states exists in

the partial STG, the fault under test is redundant

7.4.7 Results

Results for six finite state machines are given in Table 7.1. In Table 7.2, time profiles for

each of the examples are given. In the tables m and s stand for minutes and seconds respec

tively. For each example in Table 7.1, the number of inputs (#inp), number of outputs (#out),

number of gates (#gate), number of latches (#lat), number of equivalent faults (#eqv. faults),

the number of test sequences (#test seq.), total number of test vectors (#vect), maximum test

sequence length (max. seq. len.), fault coverage, percentage of provably redundant faults

(using Theorem 7.1), total fault coverage including detected and provably redundant faults

(tfc), and CPU time on the VAX 11/8800 are indicated. CPU times for extracting the partial

State Transition Graph, test sequence generation, fault simulation, miscellaneous setup and for

the entire test generation process are given in Table 7.2.

As can be seen the test generation technique obtains close to the maximum possible

fault coverage in all the examples. The extraction of the STG consumes a relatively small

amount of CPU time with respect to the total TPG time in all cases. Fault simulation consti

tutes a large percentage of total TPG time in most cases except in sse, as can be seen in Table

7.2. The fault simulator used incorporates the parallel-fault event-driven technique and a
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CKT #inp #out #gate #lat

#eqv.
faults

#test

seq. #vec

max.

seq.

len.

fault

cov.

(ft)

red.*

fault

(%)

tfc§ CPUf
time

cse 7 7 192 4 680 96 472 8 99.71 0.29 100.0 53.2s

sse 7 7 130 6 486 46 284 10 84.57 15.23 99.8 69.9s

planet 7 19 606 6 2028 80 1191 26 97.39 2.56 99.95 12.6m

sand 9 6 555 6 1932 165 1077 24 94.36 5.18 99.54 22.4m

scf 27 54 959 8 3338 136 2238 21 94.37 3.86 98.23 83.0m

sbc 40 56 1011 28 3008 168 1063 24 95.68 2.66 98.34 62.1m

* percentage of provably redundant faults
§ total fault coverage including detected and provably redundant faults
f All times are obtained on a VAX 11/8800

Table 7.1 Results for 6 example circuits

CKT

STG

Extraction

Test

Generation

Fault

Simulation Miscell. Total

cse 0.9s 8.3s 43.8s 0.2s 53.2s

sse 0.4s 52.2s 17.1s 0.2s 69.9s

planet 3.2s 1.2m 11.4m 0.7s 12.6m

sand 4.6s 10.7m 11.6m 0.6s 22.4m

scf 13.9s 11.5m 71.2m 1.2s 83.0m

sbc 12.4m 28.3m 21.4m 1.3s 62.1m

Table 7.2 Time profiles for example circuits

more sophisticated one using concurrent techniques will significantly speed up the test genera

tion process. The reason that test generation time is the dominant constituent in the total CPU

time in sse is because a great amount of time is consumed in trying to find tests for the large

number of redundant faults.
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The first five examples are finite state machines obtained from various industrial

sources. The largest example SBC is the snooping bus controller [136] in the SPUR chip set

It was synthesized using the multiple level logic optimization system MIS [6].

7.5 An Incomplete Scan Design Approach

7.5.1 Introduction

In the approach to sequential test generation as described in Section 7.4, two different steps of

forward fault propagation and backward state justification are performed. Given the circuit

and a fault to be detected from R (the reset state of the machine), First, a state, 50, and an

input vector sequence, /, which can propagate the effect of the fault to the primary outputs are

found. Then, a path from 50 to R is found using a backward justification algorithm. In this

approach, the backward justification step is in general the bottleneck as regards CPU time for

fault detection i.e. 50 and / are quickly found, but finding a path from R to 50 is much more

difficult The difficulties in backward justification are alleviated by extracting a partial State

Transition Graph as described in Section 7.4.2. However, for large circuits ( > 100 latches), a

significant number of states cannot be justified, resulting in the corresponding fault remaining

undetected. The Incomplete Scan Design algorithm identifies a set of memory elements,

which when made controllable, modify the State Transition Graph of the sequential circuit so

as to result in easy justification of previously unjustifiable states.

The overall structure of the Incomplete Scan Design algorithm is described in the next

section. The heuristic selection process is described in Section 7.5.3. Results obtained using
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this algorithm are presented in Section 7.5.4.

7.5.2 Overall Structure of the Algorithm

The algorithm incorporates the sequential test generation algorithm, STALLION, described in

previous sections. It is given the sequential circuit 5 and a set of faults to be detected, F. It

produces a set of test sequences, T, each beginning from the reset state of the machine, R, and

identifies a set of memory elements, A/, to be made scannable. The T are such that they

detect the faults F in 5M, the sequential circuit, 5, with the memory elements, Af, made

observable and controllable.

Incomplete Scan Design Algorithm

(1) Given the sequential circuit 5, for each fault /ef, attempt to find a fault-excitation-

and-propagation sequence, Pp which will propagate the effect of/to the primary outputs

if possible else to the next state lines. Trie length of Pfis limited to MAX_PROP_LEN.

If Pf does not propagate / to the primary outputs, a set of next state lines, NSp to which

the effect of / can be propagated to, is found. The set of faults which can be pro

pagated only to next state lines is called F*®.

(2) All distinct state vectors in Pf, the first vector in the sequence Pf are found. Call this

set of distinct state vectors, K.

(3) Generate MAXJSTATE states, Qh at different levels, i, from R, in the State Transition

Graph (STG) of 5. i varies from 1 to MAX_LEVEL. The generation of these states uses

the extraction algorithm described in Section 7.4.2.

(4) For each k e Kt find the memory lines to made scannable such that each state q e <2,

covers k. For each k generate MAXjCHOICE best (with the least number of lines)

choices for line sets, which if made scannable will result in the covering of k by
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(5) Given K and MAXjCHOICE choices of line sets for each k e K, and a line set NSf for

each/s FNS, select a line set for each kand a single line from each MSyiine set so the

number of distinct lines to be made scannable, M, is minimized.

In Step 1, propagation sequences are found for faults in the sequential circuit, 5, using

the sequential test generation algorithm, STALLION. While running STALLION, the present

state lines of 5 are set last so the state vectors K, found in Step 2, have as many don't care

bits in them as possible. STALLION produces a starting state, 50, and an input vector

sequence, /, which propagate the effect of the fault to either the primary outputs or the next

state lines of 5. If the effect of the fault is propagated to the primary outputs, then it only

remains to justify 50, else the complete set of next state lines to which the effect of the fault

can be propagated, NSp has to be found as well.

In Step 3, a large set of states in the State Transition Graph of 5, and paths from the

reset state leading to each state are found. These states are extracted using the forward state

enumeration algorithm, based on the PODEM enumeration algorithm (Section 7A2). The

number of states and the lengths of the justification paths, are bounded by MAXJSTATES and

MAX_LEVELy respectively.

The distance between two arbitrary bit vectors of length N, A(i) and fl(i), where each

bit can take the values of 0, 1 and 2 (don't care) is defined as the number of bits where A(t) is

1 and B(i) is 0 or vice versa over i = 1 ,.. N. Given a state q e g; and a state k e K, the dis

tance between q and k then gives the number of state line values that q and k differ in. It is

easy to see that if the state lines which are different between q and k are made controllable,

any justification sequence for q has to work for k. Don't care bits in it do not contribute to

distance since they can take the values of 0 or 1. So to minimize distance between the states

in K and Qh the number of don't care bits in AT is maximized by setting the state lines last in

Step 1.
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In Step 4, for each pair of q and k, the set of lines which are to be made scannable for

the justification sequence of q to be usable for k is found. Then, for each k, MAXjCHOICE

such line sets with the least number of lines and secondarily the smallest justification sequence

length are selected.

Given these MAXjCHOICE sets of lines for each k, a heuristic algorithm (Step 5) is

used to select one particular line set, (corresponding to one particular q e Q-) for each k, so as

to minimize the total number of distinct lines in all the line sets selected. Simultaneously, for

each fault, /, which could not be propagated to the primary outputs, a line from NSf (the set of

next state lines to which / can be propagated) is selected. Two selection algorithms which

have been employed are described in the next sectioa

After the heuristic selection process, a minimal number of state lines to be made scann

able and justification sequences for K are identified. A set of test sequences, T, is formed by

concatenating the justification sequences, /, with the propagation sequences, P, generated

using STALLION. T willdetect all undetected faults in SM, namely, F.

7.5.3 The Heuristic Selection Process

The subproblem to be solved is as follows. We have N elements (each corresponding to a

fault), each with a set of line groups. The number of line groups may vary. It is assumed

that for any given element, none of the line groups is a superset or subset of any other line

group of the same element. The goal is to identify a line group for each element such that the

number of distinct lines in the selected line groups is minimum. Some of the elements may

have a set of line groups each containing a single line. For example, during test generation,

faults that can only be propagated to next state lines will result in an element with the pro

perty mentioned above.



Two heuristic algorithms which produce minimal solutions are described below.

Algorithm 1
for ( i = 1; i £ N; i++ ) {

Element = e[i] ;
for ( j = 1; j < ElementNumChoices; j++ ) {

Solution = greedy( Element.Choice[j], Element);

select best Solution ;

greedy( lineGroup, element) {

Lines = Lines ^j lineGroup ;
for ( i = 1; i <, N; i++ ) {

if ( e[i] * element) {
for (j = 1; j < e[i].NumChoices; j++ ) {

card = I Lines {j e[i].Choice(j] I;
}
pick k so card is minimum ;
Lines = Lines i^j e[i].Choices[k] ;

}
}
return( Lines);

}

Algorithm 1 is a very fast greedy algorithm run with different starting points.

Algorithm 2

find all required lines, Lines ;

while ( choices to be made ) {

pick Ne elements, eit .. eN and choices

for the elements, cls .. c^ minimizing

I Lines {j e,{cj\ I i = l,Ne ;

mark choices made for e:;

185
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Algorithm 2 first finds all lines which are definitely required, if any. For example, if

for any element, a line exists in all its choices, that line is definitely required. Then Ne best

elements and line groups in these elements are picked at a time. The complexity of this algo

rithm is 0( AT* ). Trie larger the Ne is, the better the solution can potentially be (Ne = N is

exhaustive search) but more CPU time is required. I have found that Ne = 3 gives near-

optimal results within acceptable run times.

7.5.4 Results

Results obtained on several circuits are summarized in Table 7.3. In the table, the number of

inputs (#inp), outputs (#out), gates (#gate), and latches (#lat) in each circuit is indicated. The

percentage of combinationally redundant faults (which cannot be detected even using Com

plete Scan Design), initial fault coverage achieved by the sequential test generation algorithm,

the number of latches made scannable, the final fault coverage in the modified circuit and the

CPU times used for selection on a VAX 11/8650 are also given. The CPU times for sequen

tial test generation varied between a minute for the smaller examples to an hour for the largest

example sbc on a VAX 11/8650. It should be noted that the CPU time used for sequential

test generation can be bounded by limiting the number of backtracks allowed. However, if

this is done, quite possibly fewer faults will be detected and more scan latches may be

required.

As can be seen, making a small subset of latches scannable increases the fault coverage

obtained to the maximum possible value or very close to the maximum possible value for all

the circuits. For instance in example sckt4, making 9 out of 21 latches scannable raised the

fault coverage from 26.25% to the maximum possible value of 98.91% (1.09% of the faults

are combinationally redundant). Depending on the fault coverage required, differing numbers

of scan latches suffice. Trade-offs can be made for each example as indicated in Table 7.3.

The results demonstrate the advantages in using a combined approach of sequential test

generation and Incomplete Scan Design. A large percentage of faults are detected using the
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EXAMPLE #inp #out #gate Mat red.

fault

%

initial

fault

cov.

scan

latches

final

fault

cov.

CPU

time

(sees)

sse 7 7 130 6 0.0 84.57 3 100.0 4.9

sand 9 6 555 6 0.21 94.31 2 99.79 5.3

scf 27 54 959 8 0.51 94.67 2 99.49 1.8

donfile 2 1 232 12 0.0 63.60 5

9

96.34

100.0

11.1

14.3

sckt4 3 6 160 21 1.09 26.55 6

9

92.93

98.91

2.1

2.4

sbc2 35 51 1011 33 2.83 81.25 5

10

95.68

97.17

9.1

17.1

lexl 27 52 395 97 0.0 75.86 39 97.94 6.3

Table 73 Incomplete Scan Design Results

efficient sequential test generation algorithm and the remaining irredundant faults are detected

by the same algorithm after making a minimal subset of flip-flops observable and controllable.

7.6 Conclusions

In this chapter, a new approach to solving the test generation problem for sequential circuits

was presented. An efficient deterministic test generation algorithm based on the concept of

state space enumeration has been developed. This algorithm is effective for mid-sized sequen

tial circuits ( < 50 latches). For larger sequential circuits (> 50 latches), an effective approach

to Incomplete Scan Design has been developed. After using the test generation algorithm on

the given sequential circuit a minimal number of memory elements are identified, which

when made scannable, results in easy detection of the undetected faults. Excellent results

have been obtained on large sequential circuits.
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CHAPTER 8

Relationships between

Logic Synthesis and Testing

8.1 Introduction

An intimate relationship exists between combinational logic optimization and synthesis algo

rithms and the testability of the synthesized circuit Test generation algorithms can be, in

general, modified for logic minimization to identify redundancies in a combinational circuit.

However, removing all the redundancies of a circuit does not always produce an optimal solu

tion. For example, a two-level network without any redundancies may have an equivalent

multi-level representation that is smaller in some sense. Logic minimization can, in turn,

guarantee that the optimized network is 100% testable. In [81], a synthesis procedure which

guaranteed fully testable irredundant combinational logic circuits was proposed. Equally inti

mate relationships between the more complicated problems of sequential circuit synthesis and

test generation have been envisioned.

Generating tests for sequential circuits is considerably harder than for combinational cir

cuits. Even if the combinational part of a sequential circuit is made fully testable via logic

minimization, it may still be impossible to obtain a high fault coverage for the sequential cir

cuit Some of the inputs and outputs of the combinational part are outputs and inputs respec

tively of the memory elements, i.e. flip-flops. Test patterns generated considering only the

combinational part cannot be readily applied and fault effects cannot be observed directly at

the inputs of these memory elements. Thus, an improperly designed sequential circuit may

have large numbers of redundant and/or difficult-to-detect faults, in the sequential sense, even
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though the faults are all detectable in the combinational sense.

One of the advantages of Scan Design is that all combinationally irredundant faults can

be easily detected since direct access is provided to the flip-flop inputs and outputs. However,

they may be cases where the area/performance penalty of Scan Design rules is unaffordable.

Sequential test generation algorithms are very attractive. An efficient sequential test genera

tion algorithm was described in the previous chapter. Now, we take a synthesis approach to

solving the test generation problem.

In this chapter, we propose a synthesis and optimization procedure which beginning

from a State Transition Graph description of a Moore or Mealy finite automaton produces a

100% testable logic-level implementation of the machine. This implementation is both fully

as well as easily testable. The test sequences for all single stuck-at faults in the machine can

be derived using test generation algorithms on the combinational logic blocks of the machine.

I show that a strong relationship exists between state assignment logic optimization and

testability of a sequential machine. A procedure of constrained state assignment and combina

tional logic optimization which ensures 100% testability for both Moore and Mealy finite state

machines is outlined. Results obtained on benchmark examples show that the area penalties

incurred due to the constraints imposed during state coding and logic optimization are small.

The performance of the resulting circuit is usually better than a unconstrained design (This is

because one of the constraints imposed requires combinational logic partitioning in the

machine).

The relationship between combinational logic optimization and test generation is

reviewed in Section 8.2. Basic definitions and terminologies used in sequential circuit syn

thesis and test generation are given in Section 8.3. In Section 8.4, we state the necessary con

ditions required for a fully and easily testable Moore machine. Extensions to Mealy machines

are made in Section 8.5. In Section 8.6, we discuss how the state assignment algorithms

described in Chapter 4 can be modified to produce a constrained encoding satisfying the testa-
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bility criterion. Results obtained are presented in Section 8.7.

8.2 Relationship between combinational testing and logic

minimization

A Boolean network is a multi-level structure for representing an incompletely specified logic

function. A Boolean network, T|, is a pair (F, PO), where F= {F,^pl,2,..m} is a set of m

given representations of the ON-sets fj of incompletely specified functions (Xj0N, XjDC JCj0FF).

With each Fj is associated a "local output" logic variable y-} in the set IV = {yi,..ym}. The

specified primary output set is PO c IV.

Given a Boolean network, T|, a cube c of the two-level representation of Fj is prime if

no literal of c can be removed without causing the resulting networkif to be not equivalent to

T|. Similarly, a cube c of Fj is irredundant if c cannot be removed from Fj without causing

the resulting network T)' to be not equivalent to T). A Boolean network T| is said to be prime

if all the cubes in each of the representations Fj of r) are prime, and irredundant if all of

these cubes are irredundant.

These two concepts are associated with local minima of a cost function which is nonde-

creasing in the total number of cubes and literals required to represent the incompletely

specified logic functions, realized by the given Boolean network.

An internal stuck fault is a fault in which vk (or Vk) of cube c of representation Fj or a

node nj of a Boolean network is stuck at either its existing value vk (or v^) or its opposite

value vk (or v*). If each two-level function Fj is physically implemented with an AND-OR

complex gate, each internal fault would correspond to an input stuck-at fault in the gate-level

representation of the Boolean network.

Theorem 8.1: A Boolean Network is prime and irredundant if and only if it is 100% testable

for internal stuck faults.
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This theorem relates directly the testability of the Boolean network with concepts of

logic minimization. The proof of the theorem for a Boolean network can be found in [81].

Similarly for a gate-level implementation of a Boolean network, the corresponding concept of

primality and irredundancy can be defined for primitive gates AND, OR, NAND, NOR,

NOT. An input stuck-at fault of a primitive gate is equivalent to an internal stuck fault of a

node of a Boolean network corresponding to that primitive gate.

A primitive gate is prime if none of its inputs can be removed without causing the

resulting circuit to be functionally different. A gate is irredundant if its removal causes the

resulting circuit to be functionally different. A gate-level circuit is said to be prime if all the

gates are prime, and irredundant if all the gates are irredundant

Corollary 8.1: A gate-level circuit is prime and irredundant if and only if it is 100% testable

for all single stuck-at faults.

8.3 Preliminaries

A variable is a symbol representing a single coordinate of the Boolean space (e.g. a). A

literal is a variable or its negation (e.g. a or a). A cube is a set C of literals such that xe C

implies xiC (e.g., [a,b,c] is a cube, and [aja] is not a cube). A cube represents the conjunc

tion of its literals. The trivial cubes, written 0 and 1, represent the Boolean functions 0 and 1

respectively. An expression is a set/of cubes. For example, {{a},{&,c}} is an expression

consisting of the two cubes {a} and {b,c}. An expression represents the disjunction of its

cubes.

A cube may also be written as a bit vector on a set of variables with each bit position

representing a distinct variable. The values taken by each bit can be 1, 0 or 2 (don't care),

signifying the true form, negated form and non-existence respectively of the variable

corresponding to that position. A minterm is a cube with only 0 and 1 entries.
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The distance between two minterms is defined to be the number of bit positions they

differ in.

A finite state machine is represented by its State Transition Graph (STG),

G(VJS,W(E)) as defined in Chapter 4, Section 4.2.

Given n inputs to a machine, 2" edges with minterm input labels fan out from each

state. A STG where the next state and output labels for every possible transition from every

state is defined to correspond to a completely specified machine. An incompletely specified

machine is one where at least one transition edge from some state is not specified.

A starting or initial state is assumed to exist for a machine, also called the reset state.

A R-reachable finite state machine has a STG such that for every possible state, q, in the

STG an input sequence exists which when applied to the machine, initially at the reset state,

places the machine in q. Thus every state is reachable from the reset state.

The fault model assumed is single stuck-at. A finite state machine is assumed to be

implemented by combinational logic and feedback registers. Tests are generated for stuck-at

faults in the combinational logic part

A combinational logic network is said to be irredundant if all the faults in the network

are testable.

To detect a fault in a sequential machine, the machine has to be placed in a state which

can then excite and propagate the effect of the fault to the primary outputs. The first step of

reaching the state in question is called state justification. The second step is called fault

excitation-and-propagation.

An edge in a State Transition Graph of a machine is said to be corrupted by a fault if

either the fanout state or output label of this edge is changed because of the existence of the

fault. A path in a State Transition Graph is said to be corrupted if at least one edge in the
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path has been corrupted.

8.4 Fully and Easily Testable Moore Machines

A general model for a Moore finite state machine was shown in Figure 6.3. It is realized by

two logic blocks, the Output Logic {OL) block and the Next State Logic (NSL) block, and

feedback registers. In a Moore machine, the outputs depend only on the present state of the

machine.

Given n latches in the machine, the machine has 2" possible states. However, the

number of states in a State Transition Graph (STG) description of a machine need not neces

sarily be an integer power of 2.

I first prove the following result:

Theorem 8.2: Given a a-latch logic-level implementation of a Moore machine (shown in Fig

ure 6.3), if (1) the combinational logic blocks OL and NSL are irredundant (2) the machine is

R-reachable i.e. all 2" states are reachable from the reset state and (3) all the 2" states have

distinct outputs, the machine is fully testable for all stuck-at faults in OL and NSL.

Proof: Consider a fault F, in the OL block. Since the block is irredundant (Condition 1), a

state, s, exists which detects F. This state, s, can be reached from the reset state, R, of the

machine via an input sequence, /, because the machine is R-reachable (Condition 2). State s

will be reached on applying / from R regardless of F since F is in the OL block. Therefore, a

sequence exists, namely /, which can detect F.

Now consider a fault F in the NSL block. Again, since NSL is irredundant, a state, s,

and an input i exist which propagate the effect of this fault to the next state lines. Instead of

obtaining the true next state, q, we obtain a faulty next state qF. q and qF have distinct out

puts (Condition 3). Therefore, at the next clock cycle the effect of F is propagated to the pri

mary outputs. We however, have to reach s from R. A path exists from s to R (Condition 2).

However, this path may or may not have been corrupted by F. If the path has not been
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corrupted, we can detect F after reaching s and applying input /. If the path has been cor

rupted, it means that for some edge in the path, the next state reached was different due to F.

In this case, the fault is detected even before reaching s, since two different states were

reached in the faulty and fault-free machine. Q.E.D.

The implications of each of the conditions of Theorem 8.2 are now analyzed. (1) is an

essential condition. Obviously, a redundant fault in NSL or OL cannot be detected in the

sequential machine. Redundancies are sometimes introduced for performance reasons, but

mostly they are due to unoptimized logic [81]. An irredundant logic network would have

minimum area. With recent advances in multi-level logic optimization, large networks can be

made irredundant. If redundancies are required in the combinational logic for performance

reasons, the proposed procedure will still guarantee testability and produce tests for all combi

nationally irredundant faults.

In general, State Transition Graph specifications of machines have reset states and are

R-reachable. However, as mentioned previously, a STG specification of a machine need not

necessarily have Ns = 2* states, k = 1, 2... Given the number of encoding bits to be used, n

(n> log(AQ ), the number of states in a STG can be raised to 2". We have to ensure that

these new states are reachable from the reset state to satisfy the R-reachability condition.

Given a single unspecified transition edge (minterm or cube) from a single state in the original

STG, edges can be added to the STG so as to ensure that all the added states are reachable (If

the machine is completely specified, an extra input has to be added). Most STGs encountered

in practical design are very incompletely specified.

Condition 3 is obviously unacceptable, since if the STG specification does not satisfy it,

it cannot be made to do so without changing the functionality of the machine. This condition

is now relaxed.
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Consider the logic-level implementation of the Moore machine shown in Figure 8.1.

The NSL block has been realized as n distinct single-output circuits or partitions. The follow

ing theorem shows that a constrained state assignment can ensure a fully testable circuit

Theorem 8.3: Given a n-latch logic-level implementation of a Moore machine (shown in Fig

ure 8.1), if (1) the combinational logic blocks OL and NSLh i = 1,2.. n, are irredundant (2) the

machine is R-reachable and (3) if the state encoding of the machine is such that each pair of

states asserting the same output has codes of distance-2 from each other, the machine is fully

testable.

Proof: The faults in the OL block are detected as before in Theorem 8.2. Consider a fault F

in the NSL block. Without loss of generality, assume that F is in the first partition. The

effect of the fault when detected is to produce a 0 (1) instead of a 1 (0) at the NSLX. In either

case, the faulty next state produced, qF, will differ from the true state, q, in at most one bit

Since state assignment has guaranteed that all states asserting the same outputs have been

assigned distance-2 codes, q and qF assert different outputs. This means that F is detected in

the next clock cycle. Q.E.D.

A realization of a machine like the one shown in Figure 8.1 implies that logic cannot be

shared between next state lines. Thus, a certain area penalty may be associated with such an

implementation. The performance of the circuit does not suffer due to logic partitioning (and

in fact may improve). However, the implementation shown is an extreme case and can be

generalized. A partition may contain more than one NSLh This means that the logic between

these lines can be shared.

The number of NSL partitions required relates to the number of states asserting the same

output in the original STG. It is first shown that the state assignment constraint (Condition 3

of Theorem 8.3) can be satisfied quite easily.
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Fig. 8.1 Partitioned Moore Machine Model

Lemma 8.1: Given a State Transition Graph, if at most half the number of states assert the

same output, a state assignment satisfying a distance-2 constraint between states with the same

outputs can be found.

Proof: Given k bits, we have 2* possible codes. These codes can be split into 2 sets each of

cardinality 2*~\ such that codes within each set are of distance-2. Given a STG with Ns

states, we add states to raise the number of states to 2

distance-2 set is 2
" 2 "

The number of states in a

The following result which gives the required number of partitions of the NSL lines as

a function of the number of states with the same output, is proved.
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Theorem 8.4: If at most k states exist in a State Transition Graph which produce the same

outputs, \log(kj\ + 1 separate partitions suffice to obtain a fully testable machine.

Proof: In the worst possible case, if we have 2" states in the machine, we have a situation

where sets of states exist the states within each set asserting the same output.

We need to ensure for each set that no two of these k states are ever produced as a

fault-free faulty pair due to a fault in NSL. This means that the codes assigned to any two of

these states must differ in at least two next state lines belonging to two distinct partitions. By

Lemma 3.1, the number of bits required to generate 2 sets of 2/>~1 distance-2 codes is p. To

generate 2 sets of k distance-2 codes, we require [/<?g(&)l + 1 partitions. We now have

n- (\log(k)] + 1) bits remaining. This means we can have

>/l-1
_ v 9 = .

k

sets each with k codes which differ in two next state lines belonging to two distinct partitions.

Q.E.D.

There are thus three steps in producing combinational logic specifications for OL and

NSL blocks from a State Transition Graph description. These steps are (1) raising the number

of states in the State Transition Graph to 2", where n is the number of latches (2) obtaining

constraints for the state assignment on the basis of state outputs and (3) state assignment obey

ing the constraint relations generated. A straightforward solution exists for Steps 1 and 2,

however the optimality of the eventual implementation depend on the choices made during

these steps. For example, in Step 1, transition edges connecting original states in the STG to

the new states can be added in a variety of ways. The new states can be connected in a chain

or separately connected from the original states. Similarly, if the number of required parti

tions is less than the number of next state lines, choices exist as to which next state lines to

group together. Next state lines which can share logic maximally should be placed in the

9« - l/og(*)l -1 v 9 _ 2 v o _
2lto*<*>1
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same partition. In Step 3, an optimal state assignment which minimizes combinational logic

while meeting the distance constraints has to be found. This step is further discussed in Sec

tion 8.6.

After obtaining the combinational logic specifications, logic optimization algorithms

which can ensure an irredundant logic network (e.g. [81]) can be applied. If redundancies are

required in the logic, this synthesis procedure ensures that all combinationally irredundant

faults are sequentially irredundant as well.

To generate tests for the sequential machine, test vectors are generated for all faults in

the OL and NSL blocks. Then, justification paths are obtained from the STG using simple

breadth-first search. It is guaranteed (by the theorems proved in this section) that these paths

concatenated with the test vectors applied to the primary inputs of the sequential machine will

detect all possible faults in the machine so as to be observable at the primary outputs.

This procedure has ensured that a faulty state is always propagated to the primary out

puts in a single clock cycle via state assignment This can, in fact, be generalized to

multiple-vector propagation. That is, state assignment constraints can be derived which ensure

that a faulty state is propagated to the primary outputs in at most N clock cycles (iV>l). A

state assignment algorithm can construct an optimal encoding which satisfies these constraints.

For larger N, the constraints are less stringent but more difficult to state succinctly.

A re-statement of Condition 3 in Theorem 3.2 to ensure full testability via N-vector pro

pagation sequences can be made. The re-statement for N = 2 is given below.

The state encoding of the machine should be such that each pair of states asserting the

same output should have codes at least distance-2 apart or for each pair of states, q\ and q2,

which assert the same outputs and have uni-distant codes, the following should hold. Assume

that qx and q2 differ in bit i. An input combination should exist which drives the fault-free

machine from q1 and q2 to states Si and s2 respectively, such that
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(1) S\ and s2 assert different outputs and

(2) $2', which is the state that differs from s2 in bit / alone, asserts a different output from

8.5 Fully and Easily Testable Mealy Machines

A general model for a Mealy finite state machine is shown in Figure 8.2. It is realized by a

single logic block and feedback registers. The output logic and the next state logic are both

realized by one block. In a Mealy machine, the outputs depend on both the present state as

well as the primary inputs. A model for a Mealy machine with each next state line realized

as a separate circuit and with the output and next state logic separated is shown in Figure 8.3.

A theorem in direct correspondence to Theorem 8.3 for Mealy machines can be proven.

First, I define the notion of O-equivalence between two states in a Mealy machine.

Definition 8.1: Two states in a Mealy machine are said to be O-equivalent if each pair of

fanout edges on thesame input from these states produces the same output.

Theorem 8.5: Given a n-latch logic-level implementation of a Mealy machine (shown in

PI

NSL + OL

FF

Fig. 8.2 General Mealy Machine Model

PO
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Figure 8.3), if (1) the combinational logic blocks OL and NSLh i = 1,2.. n, are irredundant (2)

the machine is R-reachable i.e. all 2" states are reachable from the reset state and (3) if the

codes of states of the machine are such that each pair of O-equivalent states have codes of

distance-2 from each other, the machine is fully testable.

Proof: Consider a fault in the OLblock. There exists a state, s and input i which detects this

fault by Condition 1. R-reachability and the fact that F is in the OL block imply that state s

can be reached from R. F can thus be detected.

Consider a fault F in the NSL block. Without loss of generality, assume that F is in the

first partition. Since this partition is irredundant a state s and an input ix exist which can pro

pagate the effect of the fault to the next state line. The effect of the fault when detected is to

produce a 0 (1) instead of a 1 (0) at the NSL{. In either case, the faulty next state produced,

cf, will differ from the true state, q, in at most one bit. Condition 3 guarantees that q and qF

are not O-equivalent since all O-equivalent states have distance-2 codes. This means that an

input z*2> exists which will produce a different output in the faulty machine (which is in q*)

from the fault-free machine (which is in q). We, however, have to reach s from R. A path

exists from s to R (Condition 2). However, this path may or may not have been corrupted by

F. If the path has not been corrupted, we can detect F after reaching s and applying input i\

followed by i2. If the path has been corrupted, it means that for some edge in the path, the

next state reached was different due to F. We have a fault-free/faulty pair (qf, q'F) By the

argument above, an input i3 which produces a different output for q' and q'F exists, thus

detecting F. Q.E.D.

The synthesis procedure for obtaining a fully testable Mealy machine is the same as the

procedure outlined for the Moore machine in Section 8.4. To generate tests for the machine,

as before, all the combinational logic tests for the OL and NSL blocks are generated. The

justification path to the state detecting the fault concatenated with the primary input part of
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the combinational test vector and the differentiating input vector (for the fault-free/faulty next

state pair) constitutes the test sequence for a given fault.

8.6 Constrained State Encoding

State assignment is the process of assigning binary codes to the internal states of a finite auto

maton. The problem of optimal state assignment is to find an encoding of states which

minimizes the combinational logic part of the sequential machine.

The combinational logic part of the sequential machine can be implemented using a

Programmable Logic Array (PLA) or using multi-level logic. State assignment techniques tar

geting both these implementations have been proposed (e.g. [26] [74]). The program MUS

TANG [74], described in Chapter 4, produces a state assignment that heuristically minimizes

PI

Fig. 8.3 Partitioned Mealy Machine Model
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the number of literals in the combinational logic after multiple-level logic optimization.

The technique used by MUSTANG is based on maximizing common factors in the logic

in an effort to reduce the area of the network. A weighted graph whose nodes represent each

state of the machine is constructed. The weights between the edges in the graph reflect the

"gains" in coding the corresponding states with uni-distant codes.

An embedding algorithm (Section 4.4.6) is used to actually assign binary codes to the

states (nodes in the graph) so as to maximize the overall gain. The algorithm iteratively

selects groups of states to be encoded. These states are given minimally-distant codes from

the unassigned codes.

For the problem of satisfying distance constraints, the graph construction part remains

the same. During embedding, when a group of states is selected, they are checked for

distance-2 constraints. A minimally-distant set of codes satisfying these constraints is

assigned to the states.

8.7 Results

Results obtained on five State Transition Graphs from the MCNC 1987 Logic Synthesis

Workshop benchmark set are given in Table 8.1. First, the machines were encoded and

optimized disregarding testability. The number of gates in the machine, the fault coverage

obtained and the test generation time are given in Table 8.1 under the column labeled

OPTIMIZE. Test generation was accomplished using an efficient test generation algorithm

described in Chapter 7. Then, each of the machines were synthesized using the procedure

described in Sections 8.4 and 8.5. Again, the number of gates, fault coverage obtained and

the test generation time are given. Sequential test generation for these circuits was faster

because combinational test generation and breadth-first search suffice to produce the test

sequences. The example scf is a Moore machine, the others Mealy machines.

The area penalties incurred are due to three reasons : (1) the constraints imposed during

state assignment (2) the addition of extra edges to the STG to obtain R-reachability and (3)
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logic partitioning constraints. Empirical evidence has shown that (3) is easily the most

significant factor - the next state lines may have to be realized as separate circuits. Addition

ally, for a Mealy machine, unlike in a unconstrained design, the next state and the output

logic have to be separated.

Logic partitioning is extensively used to gain higher performance. A Mealy machine

with separate next state and output logic blocks can be .clocked faster than a machine with a

single lumped block of logic. This is the case in the example designs of Table 8.1 as well.

Thus, the fully and easily testable machines produced by logic partitioning may well represent

a more desirable point in the area/performance tradeoff curve.

The number of gates in a circuit is, in general, indicative of the area required to imple

ment the circuit. However, in some cases, this measure of area may not be very accurate. To

obtain accurate estimates of circuit areas, the synthesized examples of Table 8.1 were placed

and routed using the TimberWolf standard cell placement and routing package [61]. The

areas of the resulting designs after place and route for the unconstrained and constrained cases

are given in Table 8.2. For each example, the areas of the designs have been normalized to

that of the unconstrained design.

EX #inp #out #states #lat I- OPTIMIZE n- TESTABLE

#gates fault

cov.

tpg
time

#gates fault

cov.

tpg
time

sse 7 7 13 4 91 84.57 69.9s 119 100.0 5.2s

tbk 6 3 16 4 181 98.57* 72.1s 231 98.57* 4.1s

scf 27 54 97 7 502 96.14 83.1m 541 100.0 71s

dfile 2 1 24 5 124 96.94 104s 144 100.0 2.0s

planet 7 19 48 6 417 98.82 373s 449 100.0 14s

s is CPU-

* OL bloc

seconds, m is CPU-minutes o
k was not combinationally ir

Table 8.1

n a VAX 11/8650 running ULTRIX
redundant

Synthesis for Testability Results



EXAMPLE I-OPTIMIZE H - TESTABLE

#sates area #gates area

sse 91 1.0 129 1.34

tbk 181 1.0 231 1.10

scf 502 1.0 541 1.01

dfile 124 1.0 144 0.98

planet 417 . 1.0 449 0.86

Table 8.2 Areas of Standard Cell Designs
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In Table 8.2, some constrained designs are about the same size or smaller than the

corresponding unconstrained ones. Logic partitioning, in these cases, has decreased routing

complexity in the circuit to the extent of nullifying the increase in the number of logic gates.

The cost function used in multi-level logic optimization is the number of literals (transistors)

in the circuit [6], and is sometimes a poor estimate of the circuit area.

The number of test sequences required varied between 30-70 for these examples. The

number of test sequences can be reduced by applying combinational test compaction strategies

after generating all the test vectors for the combinational logic blocks. The average length of

each sequence was about 5. Since the test vectors only access the primary inputs and only the

primary outputs are observed, each vector can be applied in one clock cycle.

8.8 Conclusions

A synthesis procedure has been described that produces an optimized, fully and easily testable,

logic implementation of a sequential machine from a State Transition Graph description of the

machine. This logic-level implementation is guaranteed to be testable for all single stuck-at

faults. No access to the memory elements is required. The test sequences for these faults can

be obtained using combinational test generation techniques alone.
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It has been shown that an intimate relationship exists between state assignment and the

testability of a sequential machine. A procedure of constrained state assignment and logic

optimization can guarantee a fully testable machine.

The testing time required in this method is smaller than that using a Scan Design

methodology. Experimental results have shown that the area penalty incurred due to the con

straints on the optimization are small. The performance of the synthesized design is usually

better than a unconstrained design optimized for area alone. Future work includes generaliz

ing these techniques to cascaded and interconnected finite state machine descriptions.
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CHAPTER 9

Conclusions

In this dissertation, a framework for automated synthesis of integrated circuit chips from

behavioral descriptions was presented. This prototype behavioral synthesis system incor

porates a number of optimization tools for datapath and control synthesis as well as efficient

verification and test strategies.

An introduction to existing synthesis systems was provided in Chapter 1. The different

phases in synthesizing from behavioral descriptions were described and the optimization steps

required during synthesis were discussed. The need for verification and test subsystems in a

synthesis system was indicated. Finally, work done previously in this area was reviewed.

In Chapter 2, an overview of the synthesis system developed was presented. The first

step in synthesis, hardware allocation, produces a structural specification of the circuit from a

behavioral description. Datapath and control specifications are produced. Logic synthesis

tools operate on these specifications to produce gate-level descriptions. Layout synthesis tools

generate layout from this gate-level specification. A synthesis system is incomplete without

verification and test strategies. Verification tools compare circuit specifications at different

levels to ensure that the optimization tools have not introduced any logic errors in the circuit

Test generation algorithms produce a set of test vectors which are applied to the fabricated

chip to check for correct functionality.

The new algorithms and tools developed for synthesis, verification and test were

described in Chapters 3-8. Hardware allocation is the most creative step in synthesis. The

structure of the circuit, i.e. the number of registers, arithmetic units and their interconnections,

is decided during this step. The allocation problem was formulated as a two-dimensional
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placement problem of operations in space and time. A simulated-annealing-based algorithm

was used to solve the allocation problem. Excellent results were achieved because the optimi

zation strategy was global. Tradeoffs between hardware resource cost and execution speed of

the synthesized chip can be effectively explored using this algorithm. This algorithm was also

extended to synthesize pipelined datapaths. Future work in this area includes optimal schedul

ing loops with data-dependent exits, where the number of iterations cannot be statically deter

mined.

After hardware allocation, the finite state machine (FSM) controller associated with the

resulting datapath must be synthesized. The tools used for this control synthesis step were

described in Chapter 4. The specification of the FSM controller is derived from the two-

dimensional placement of operations produced by the hardware allocation step. State assign

ment and logic optimization tools operate on this FSM specification to produce gate-level

descriptions. All previous work in automatic state assignment of FSM's was aimed at two-

level i.e. Programmable Logic Array (PLA) implementations of the combinational logic of the

FSM. Multi-level logic implementations can be substantially faster and smaller than

corresponding two-level implementations. New algorithms for state assignment of FSM's tar

geted toward multi-level logic implementations of the combinational part of the FSM were

developed. These algorithms, implemented in the program MUSTANG, minimize an estimate

of the area of the FSM after multi-level logic optimization. The estimate of area used is the

number of literals in a factored form of logic. MUSTANG produces literal counts between 25

and 40% less than other state assignment techniques. However, these results could be

improved by modeling more complicated multi-level logic optimizations like common kernel

extraction.

A substantial fraction of datapath and controller area is occupied by combinational cir

cuits. Combinational logic is used to realize arithmetic and Boolean operations as well as to

implement finite state machines. The optimization of combinational circuits for area and
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speed is a very important problem. Significant advances have been made in the use of alge

braic techniques to factorize and decompose logic equations and realize minimal area multi

level logic networks. Boolean decomposition techniques are potentially more powerful. In

Chapter 5, algorithms for Boolean decomposition which can be used for decomposing a PLA

into a smaller set of interconnected PLAs, optimized for area and delay, were presented.

These algorithms have produced excellent results on benchmark examples. Many steps in

these algorithms have worst-case exponential time complexities, which may result in exorbi

tant decomposition times for large PLAs. Also, these algorithms are restricted to begin from a

two-level representation of a function, which may not be available. Future work should

address these limitations.

The verification subsystem in the synthesis system was described in Chapter 6. This

subsystem incorporates tools for verifying sequential machines across different levels of

abstraction. Thus, circuit specifications can be verified across optimization tools in the syn

thesis pipeline. Sequential circuit verification is a difficult problem and previous approaches

to solving this problem have been restricted to verifying circuits with small amounts of

memory (4-6 latches). New algorithms based on cube-enumeration (as opposed to minterm-

enumeration) have significantly reduced the complexity of the verification problem and

enabled successful verifications of sequential circuits with more than 15 latches.

In Chapter 7, the testing problem for VLSI circuits was addressed. Test generation is a

process which produces a set of tests that detect all or a large subset of potential faults in a

logic circuit whose existence would cause the circuit to function incorrectly. The logic circuit

may be purely combinational or may be a sequential machine. Generating tests for sequential

circuits is a considerably harder problem than combinational logic test generation, because no

access is provided to the inputs and output of the memory elements. Approaches taken to

solve the sequential testing problem have not proven to be effective thus far. The sequential

testing problem is transformed into an easier combinational testing one by applying Scan
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Design rales - making all memory elements controllable and observable. However, Scan

Design may result in a significant area^performance penalty. The approach to sequential test

ing described in Chapter 7 represents a significant departure from previous methods. A new

sequential test generation algorithm based on the concept of state space enumeration has been

developed. This algorithm, used in conjunction with an Incomplete Scan Design approach to

sequential test generation, produces excellent results for small-large sequential circuits.

Developing deterministic algorithms, effective for circuits with over a 100 latches, with the

capability of identifying redundant faults represents a major challenge in this research area.

In Chapter 8, the relationship between combinational logic optimization and test genera

tion for combinational circuits was reviewed. A strong relationship was shown to exist

between state assignment, logic optimization and the testability of a sequential circuit. A syn

thesis and optimization procedure for obtaining fully and easily testable Moore and Mealy

finite state machines has been developed. A procedure of constrained state assignment and

logic optimization was outlined in Chapter 8. This procedure not only results in a fully

testable sequential machine, but also produces the test sequences required to test all single

stuck-at faults in the machine via test generation on the combinational blocks of machine.

Results obtained indicate negligible performance and small area penalties. Thus, this pro

cedure can be used as a viable alternative to Scan Design approaches especially when testing

time is a consideration. Optimal sequential synthesis procedures, without associated con

straints, for fully testable non-scan sequential machines have not yet been proposed. Develop

ing such procedures, represents a major theoretical challenge in this area.

The synthesis tools described in this dissertation produce gate-level descriptions of the

circuit from its behavioral specification. Layout synthesis tools in the Berkeley Design

Environment [63] [60] [59] [86] [62] generate layout for these gate-level specifications.
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APPENDIX A

DEVICE MODEL ROUTINES FOR

A CIRCUIT SIMULATOR

C Description

/*
* evalMosfet: this routine evaluates the MOS (Level 1) model for current
* and conductance, and transconductance terms. It also loads
* the entries into the appropriate matrix locations provided
* in the MOSFET instance.

*/

evalMosfet(mosfet)
MOSFET mosfet;

{
BOOL forward,pmosfet;
FLOAT vt, q, wolkp, wolkpla, vgst, vbd,vbs,vdst, vdiff, vds;
FLOAT gmin = 1.0e-12;
FLOAT exp() ,idbd4dbs,gdbd,gdbs;
FLOAT phis;
FLOAT gds, gmg, gmb, gsu, ids, ieq, sqrt(), fabs();
FLOAT vd,vs,vb,vg;
MODEL mosType;
STRING pmos = "pmos";

/*
* get model mosType from mosfet
*/

mosType = mosfet->mosfetType;
wolkp = mosfet->wolkp;

/*
* check if pmos or nmos transistor.If pmos invert all the voltages
*/

if (strcmp(mosType->modelName,pmos)=0)
pmosfet = TRUE;

else

pmosfet = FALSE;

if (pmosfet)
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{
vd = - *(mosfet->pvd);
vg = - *(mosfet->pvg);
vs = - *(mosfet->pvs);
vb = - *(mosfet->pvb);
mosType->VBI = - mosType->VBI;

i

else

I

vd =

vg =

vs =

vb =

}

*(mosfet->pvd);
*(mosfet->pvg);
*(mosfet->pvs);
*(mosfet->pvb);

/*

*/

To avoid singular matrices

*(mosfet->pgg) += gmin;

/*
* check for forward operation (vd > vs)
*/

if( vd > vs ) {
phis = mosType->PHIS;
q = sqrt(MAX(phis, vs - vb+phis));
vt = mosType->VBI + mosType->GAMMA*q;

/*
* forward but must be above threshold

*/
if( (vgst = vg - vs - vt) <= 0.0 ) {
*(mosfet->pdd) +=gmin;
*(mosfet->pss) +=gmin;
return;

}
vds = vd-vs;
vdst = MIN( vds, vgst);
wolkpla = wolkp*(1.0 + mosType->LAMBDA*vds);
forward = TRUE;

}
else if( vd < vs ) {

phis = mosType->PHIS;
q = sqrt(MAX(phis, vd-vb+phis));
vt = mosType->VBI + mosType->GAMMA*q;

/*
* inverse but must be above threshold

*/
if( (vgst = vg - vd - vt) <= 0.0 ) {

*(mosfet->pdd) +=gmin;
*(mosfet->pss) +=gmin;
return;

}
vds = vs-vd;
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vdst ss MIN( vds, vgst);
wolkpla sb wolkp*(1.0 + mosType->LAMBDA*vds);
forward = FALSE;

}
else {

/*
* vds = 0; no current flows
*/

phis ssmosType->PHIS;
q = sqrt(MAX(phis, vs-vb+phis));
vt = mosType->VBI + mosType->GAMMA*q;

gds = wolkp*fabs(vg - vs - vt);
*(mosfet->pdd) += gds;
*(mosfet->pss) += gds;
*(mosfet->psd) -= gds;
*(mosfet->pds) -= gds;
return;

}
vbs = MIN(vb - vs ,0.0);
vbd ss MIN(vb - vd ,0.0);
idbs = mosType->IS *( exp(vbs/KTQ)*( 1 - vbs/KTQ ) -1);
idbd = mosType->IS *( exp(vbd/KTQ)*( 1 - vbd/KTQ ) -1 );
gdbs ss(mosType->IS)/KTQ * exp(vbs/KTQ);
gdbd = (mosType->IS)/KTQ * exp(vbd/KTQ);
vdiff = vgst-vdst;
gmg s= wolkpla*vdst;
if( mosType->LAMBDA <= 0.0 ) {

gds - wolkpla*vdiff;
}
else {

gds = wolkp*(vdiff + mosType->LAMBDA*(vds*vdiff+vdst*(vgst-vdst/2.0)));
}
gmb = wolkpla*mosType->GAMMA*vdst/2.0/q;
gsu = gds + gmg + gmb;
if( forward) {

ids = wolkpla*(vgst-vdst/2.0)*vdst;
ieq ss ids - gmg*(vg-vs)

- gmb*(vb-vs) - gds*vds;
/*
* load matrix & rhs for forward operation

if (Ipmosfet)
{
*(mosfet->pdr) -= (ieq-idbd );
*(mosfet->psr) += (ieq+idbs);
*(mosfet->pbr) -=3 (idbs+idbd);

}
else

{
*(mosfet->pdr) +33 (ieq - idbd);
*(mosfet->psr) -= (ieq + idbs);
*(mosfet->pbr) +=s (idbs+idbd);

}
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*(mosfet->pdd) += (gds+gdbd);
*(mosfet->pdg) += gmg;
*(mosfet->pds) -= gsu;
*(mosfet->pdb) += (gmb - gdbd);
*(mosfet->psd) -= gds;
*(mosfet->psg) -=3 gmg;
*(mosfet->pss) += (gsu+gdbs);
*(mosfet->psb) -= (gmb+gdbs);

*(mosfet->pbb) +ss (gdbd + gdbs );
*(mosfet->pbd) -s= gdbd;
*(mosfet->pbs) -= gdbs;

}
else {

ids =5 wolkpla*(vgst-vdst/2.0)*vdst;
ieq = ids - gmg*(vg-vd)

- gmb*(vb-vd) - gds*vds;
/*
* load matrix & rhs for inverse operation
*/

if (Ipmosfet)
{
*(mosfet->pdr) +ss (ieq + idbd );
*(mosfet->psr) -= (ieq - idbs );
*(mosfet->pbr) -= (idbs + idbd);
}
else

{
*(mosfet->pdr) -ss (ieq + idbd);
*(mosfet->psr) +S3 (ieq - idbs);
*(mosfet->pbr) += (idbs + idbd);

}
*(mosfet->pdd) += gsu;
*(mosfet->pdg) -ss gmg;
*(mosfet->pds) -= gds;
*(mosfet->pdb) -= (gmb+gdbd);
*(mosfet->psd) -ss gsu;
*(mosfet->psg) +ss gmg;
*(mosfet->pss) += (gds+gdbs);
*(mosfet->psb) += (gmb - gdbs);

*(mosfet->pbb) += (gdbd + gdbs);
*(mosfet->pbd) -= gdbd;
*(mosfet->pbs) -= gdbs;

}

/*
* invert the threshold voltage back again if it was a pmos Xstr

r

if (pmosfet)
mosType->VBI ss. mosType->VBI;

*

return;
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Intermediate Description

#

# evalMosfet: this routine evaluates the MOS (Levell) model for current
# and conductance, and transconductance terms. It also loads
# the entries into the appropriate matrix locations provided
# in the MOSFET instance.

#

#

# REGISTERS

#

# forward, pmosfet
# vt, q, wolkp, vgst, vbd, vbs, vdst, vdiff, vds
# gmin, idbd, idbs, gdbd, gdbs
# phis, gdsm gmg, gmb, gsu
# ids, ieq, ktq, pmos
# vd, vs, vb, vg
# temp*
#

#

#

(serial
(parallel

(equal MOSFET[WOLKP] wolkp)
(equal 1.0e-12 gmin)
(equal PMOS pmos)
(equal KTQ ktq)

)
#

# check if pmos or nmos transistor. If pmos invert all the voltages
#

(compare MOSFET[MODELNAME] pmos STATUS)
#

# branch on pmosfet or nmosfet
#

(eior ! on STATUS
(equal TRUE pmosfet)
(equal FALSE pmosfet)

)
#

# branch on pmosfet or nmosfet
#

(eior
(serial
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)

(parallel
(equal MOSFET[PVD] vd)
(equal MOSFET[PVG] vg )
(equal MOSFET[PVB] vb )
(equal MOSFET[PVS] vs )

)
(parallel

(minus 0.0 vd vd)
(minus 0.0 vg vg)
(minus 0.0 vb vb)
(minus 0.0 vs vs)
(minus 0.0 MOSFET[VBI] MOSFET[VBI] )

)
)
(parallel

(equal MOSFET[PVD] vd)
(equal MOSFET[PVG] vg )
(equal MOSFET[PVB] vb)
(equal MOSFET[PVS] vs )

)

#

# To avoid singular matrices
#

(parallel
(add MATRDC[PGG] gmin MATRDC[PGG])
(compare vd vs STATUS)

)
#

# check for forward operation (vd > vs)
#

(eior ! STATUS
(serial

• (implic
(equal MOSFET[PHIS] phis)
(minus vs vb templa)
(add phis templa temp2a)
(max phis temp2a temp3a)
(sqrt temp3a q)
(mult MOSFET[GAMMA] q temp4a)
(add MOSFET[VBI] temp4a vt)

#

# forward but must be above threshold

#

(minus vg vs temp5a)
(minus temp5a vt vgst)
(compare vgst 0.0 STATUS)

)
#

# check if above or below threshold

#

(eior ! STATUS
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(parallel
(add MATRIX[PDD] grain MATRDC[PDD])
(add MATRDC[PSS] gmin MATEUX[PSS])

)
(implic

(minus vd vs vds)
(min vds vgst vdst)
(mult vds MOSFETJLAMBDA] temp6a)
(add temp6a 1.0 temp7a)
(mult wolkp temp7a wolkpla)
(equal TRUE forward)

)
)

)
(serial

(implic
(equal MOSFET[PHIS] phis)
(minus vd vb templb)
(add phis templb temp2b)
(max phis temp2b temp3b)
(sqrt temp3b q)
(mult MOSFET[GAMMA] q temp4b)
(add MOSFETfVBI] temp4b vt)

#

# inverse but must be above threshold

#

(minus vg vd temp5b)
(minus tempSb vt vgst)
(compare vgst 0.0 STATUS)

)
#

# check if above or below threshold

#

(eior ! STATUS
(parallel

(add.MATRIX[PDD] gmin MATRIX[PDD])
(add MATRDC[PSS] gmin MATRIX[PSS])

)
(implic

(minus vs vd vds)
(min vds vgst vdst)
(mult vds MOSFET[LAMBDA] temp6b)
(add temp6b 1.0 temp7b)
(mult wolkp temp7b wolkpla)
(equal FALSE forward)

)
)

)
(implic

#

# vds =S33 0; no current flows
#

(equal MOSFET[PHIS] phis)
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(minus vs vb temple)
(add phis temple temp2c)
(max phis temp2c temp3c)
(sqrt temp3c q)
(mult MOSFET[GAMMA] q temp4c)
(add MOSFET[VBI] temp4c vt)
(minus vg vs temp5c)
(minus temp5c vt temp6c)
(fabs temp6c temp7c)
(mult wolkp temp7c gds)
(add MATRDC[PDD] gds MATRIX[PDD])
(add MATRLX[PSS] gds MATRDC[PSS])
(minus MATRDCfPSD] gds MATRK[PSD])
(minus MATRIXfPDS] gds MATRDC[PDS])

)
)
(implic

(minus vb vs temp8)
(minus vb vd temp9)
(min 0.0 temp8 vbs)
(min 0.0 temp9 vbd)
(divide vbs ktq tempi0)
(divide vbd ktq tempi1)
(exp templO temp 12)
(exp tempi 1 temp 13)
(minus 1.0 templO temp14)
(minus 1.0 tempi 1 temp15)
(mult temp 12 temp 14 temp16)
(mult templ3 templ5 templ7)
(minus templ6 1.0 templ8)
(minus templ7 1.0 templ9)
(mult MOSFET[IS] templ8 idbs)
(mult MOSFETpS] templ9 idbd)
(mult MOSFETfIS] templ2 temp20)
(mult MOSFETjTS] templ3 temp21)
(divide temp20 ktq gdbs)
(divide temp21 ktq gdbd)
(minus vgst vdst vdiff)
(mult wolkpla vdst gmg)

)
(compare MOSFETpj^MBDA] 0.0 STATUS)

#

# branch on lambda postive or negative
#

(eior ! STATUS
(mult wolkpla vdiff gds)
(implic

(divide vdst 2.0 temp22)
(minus vgst temp22 temp23)
(mult vds vdiff temp24)
(mult temp23 vdst temp25)
(add temp25 temp24 temp26)
(mult MOSFETpj^vlBDA] temp26 temp27)
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(add.vdiff temp27 temp28)
(mult wolkp temp28 gds)

)
)
(implic

(mult wolkpla MOSFET[GAMMA] temp29)
(mult temp29 vdst temp30)
(mult q 2.0 temp31)
(divide temp30 temp31 gmb)
(add gds gmg temp32)
(add temp32 gmb gsu)

)
#

# branch on forward operation or reverse
#

(eior
(serial

(implic
(divide vdst 2.0 temp33a)
(minus vgst temp33a temp34a)
(mult wolkpla vdst temp35a)
(mult temp35a temp34a ids)
(minus vg vs temp36a)
(minus vb vs temp37a)
(mult gds vds temp38a)
(mult gmb temp37a temp39a)
(mult gmg temp36a temp40a)
(minus ids temp40a temp41a)
(minus temp41a temp39a temp42a)
(minus temp42a temp38a ieq)

)
#

# load matrix & rhs for forward operation
# branch on pmosfet or nmosfet
#

(eior
(serial

(parallel
(minus ieq idbd temp43a)
(add ieq idbs temp44a)

••* (add idbs idbd temp45a)
)
(parallel

(minus MATRIXP»DR] temp43a MATRLXp>DR])
(add MATRDCP>SR] temp44a MATRDCfPSR])
(minus MATRDCPPBR] temp45a MATRIX[PBR])

)
)
(serial

(parallel
(minus ieq idbd temp43a)
(add ieq idbs temp44a)
(add idbs idbd temp45a)
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)
(parallel

(add MA™xp>DR] temp43a MATRLX[PDR])
(minus MATRIXP>SR] temp44a MATRDCP'SR])
(add MATRDCP>BR] temp45a MATRLXp>BR])

)
)

)
(implic

(add gds gdbd temp46a)
(minus gmb gdbd temp47a)
(add gsu gdbs temp48a)
(add gmb gdbs temp49a)
(add gdbd gdbs temp50a)
(add MATRDCP>DD] temp46a MATRDC[PDD])
(add MATRDCP>DG] gmg MATRDCP>DG])
(minus MATRDCP>DS] gsu MATRIXp>DS])
(add MATRIXP>DB] temp47a MATTUXrPDB])
(minus MATRLXP>SD] gds MATRDCp>SD])
(minus MATRLXp>SG] gmg MATRDC[PSG])
(add MATRDCP»SS] temp48a MATRDCp>SS])
(minus MATRDCp>SB] temp49a MA*nUX[PSB])
(add MATOLXP>BB] temp50a MATRDCP>BB])
(minus MATRLXp>BD] gdbd MATODCPPBD])
(minus MATRDCrjPBS] gdbs MATOIXp>BS])

)
)
(serial

(implic
(divide vdst 2.0 temp33b)
(minus vgst temp33b temp34b)
(mult wolkpla vdst temp35b)
(mult temp35b temp34b ids)
(minus vg vd temp36b)
(minus vb vd temp37b)
(mult gds vds temp38b)
(mult gmb temp37b temp39b)
(mult gmg temp36b temp40b)
(minus ids temp40b temp41b)
(minus temp41b temp39b temp42b)
(minus temp42b temp38b ieq)

)
#

# load matrix & rhs for inverse operation
# branch on pmosfet or nmosfet
#

(eior
(serial

(parallel
(add ieq idbd temp43b)
(minus ieq idbs temp44b)
(add idbs idbd temp45b)

)
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)
)

(parallel
(add MATRDCPPDR] temp43b MATRLX[PDR])
(minus MATRLX[PSR] temp44b MATRDCp>SR])
(minus MATRLXfPBR] temp45b MATRLXp>BR])

)
)
(serial

(parallel
(add ieq idbd temp43b)
(minus ieq idbs temp44b)
(add idbs idbd temp45b)

)
(parallel

(minus MATRIX[PDR] temp43b MATRIX[PDR])
(add MATRLXP>SR] temp44b MATRLX[PSR])
(add MATRLXPPBR] temp45b MATRLXp>BR])

)
)

)
(implic

(add gmb gdbd temp46b)
(add gds gdbs temp47b)
(minus gmb gdbs temp48b)
(add gdbd gdbs temp49b)
(add MATRIXP>DD] gsu MATRDCP>DD])
(minus MATRLXP>DG] gmg MATRIX[PDG])
(minus MATRIX[PDS] gds MATRLXP>DS])
(minus MATRDC[PDB] temp46b MATRLX[PDB])
(minus MATRDC0PSD] gsu MATRLXp>SD])
(add MATRLXP>SG] gmg MATRLXpSG])
(add MATRLXP>SS] temp47b MATRDqPSS])
(add MATRIXP>SB] temp48b MATRKpSB])
(add MA*niIXP>BB] temp49b MATRLXP>BB])
(minus MATRLXP>BD] gdbd MATRDCP»BD])
(minus MATRDC[PBS] gdbs MATRDCp>BS])

)

# only if pmosfet
#

(minus 0.0 MOSFET[VBI] MOSFET[VBI])

)
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* CONSTANT 0.0 1.0 2.0 TRUE FALSE 1.0e-12 PMOS KTQ
SYMMETRIC add mult

INITIAL MOSFET[WOLKP] MOSFETP'VD] MOSFETp>VS] MOSFETp>VB] MOSFETP>VG]
INITIAL MOSFETCVBI] MOSFETpj^MBDA] MOSFETp>fflS] MOSFETpS] MOSFET[GAMMA]

INITIAL MOSFETprfODELNAME]
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INITIAL MATRLXP»DR] MATRDCp>SR] MATRLXp>BR]
INITIAL MATRLXP»DD] MATRLXDPDS] MATRIXfPDB] MATRLXP>DG]
INITIAL MATRKP>SD] MATRLXP>SS] MATRDC[PSB] MATKIXp>SG]
INITIAL MATRLXP>BD] MATRK^BS] MATRDC[PBB]
INITIAL MATRIX[PGG]

INITIAL STATUS

FINAL MOSFET[WOLKP] MOSFETP>VD] MOSFETp>VS] MOSFETP>VB] MOSFET[PVG]
FINAL MOSFET[VBI] MOSFETp,AMBDA] MOSFETP>fflS] MOSFETPS] MOSFET[GAMMA]

FINAL MOSFETfMODELNAME]

FINAL MATRLXP»DR] MATRLXfPSR] MATTUXP>BR]
FINAL MATRLXP»DD] MATRDCP>DS] MATRIXP>DB] MATRIXp>DG]
FINAL MATRLXP>SD] MATRLX[PSS] MATRDCP>SB] MATRLXp»SG]
FINAL MATRDCp>Bb] MATRIXES] MATRIXP>BB]
FINAL MATRLXP>GG]

FINAL STATUS forward pmosfet
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